1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUCallLowering.h"
19 #include "AMDGPUFrameLowering.h"
20 #include "AMDGPUIntrinsicInfo.h"
21 #include "AMDGPURegisterInfo.h"
22 #include "AMDGPUSubtarget.h"
23 #include "AMDGPUTargetMachine.h"
24 #include "R600MachineFunctionInfo.h"
25 #include "SIInstrInfo.h"
26 #include "SIMachineFunctionInfo.h"
27 #include "llvm/CodeGen/CallingConvLower.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/Support/KnownBits.h"
35 using namespace llvm;
36 
37 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
38                             CCValAssign::LocInfo LocInfo,
39                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
40   MachineFunction &MF = State.getMachineFunction();
41   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
42 
43   uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
44                                          ArgFlags.getOrigAlign());
45   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
46   return true;
47 }
48 
49 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
50                            CCValAssign::LocInfo LocInfo,
51                            ISD::ArgFlagsTy ArgFlags, CCState &State,
52                            const TargetRegisterClass *RC,
53                            unsigned NumRegs) {
54   ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs);
55   unsigned RegResult = State.AllocateReg(RegList);
56   if (RegResult == AMDGPU::NoRegister)
57     return false;
58 
59   State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo));
60   return true;
61 }
62 
63 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
64                               CCValAssign::LocInfo LocInfo,
65                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
66   switch (LocVT.SimpleTy) {
67   case MVT::i64:
68   case MVT::f64:
69   case MVT::v2i32:
70   case MVT::v2f32: {
71     // Up to SGPR0-SGPR39
72     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
73                           &AMDGPU::SGPR_64RegClass, 20);
74   }
75   default:
76     return false;
77   }
78 }
79 
80 // Allocate up to VGPR31.
81 //
82 // TODO: Since there are no VGPR alignent requirements would it be better to
83 // split into individual scalar registers?
84 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
85                               CCValAssign::LocInfo LocInfo,
86                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
87   switch (LocVT.SimpleTy) {
88   case MVT::i64:
89   case MVT::f64:
90   case MVT::v2i32:
91   case MVT::v2f32: {
92     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
93                           &AMDGPU::VReg_64RegClass, 31);
94   }
95   case MVT::v4i32:
96   case MVT::v4f32:
97   case MVT::v2i64:
98   case MVT::v2f64: {
99     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
100                           &AMDGPU::VReg_128RegClass, 29);
101   }
102   case MVT::v8i32:
103   case MVT::v8f32: {
104     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
105                           &AMDGPU::VReg_256RegClass, 25);
106 
107   }
108   case MVT::v16i32:
109   case MVT::v16f32: {
110     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
111                           &AMDGPU::VReg_512RegClass, 17);
112 
113   }
114   default:
115     return false;
116   }
117 }
118 
119 #include "AMDGPUGenCallingConv.inc"
120 
121 // Find a larger type to do a load / store of a vector with.
122 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
123   unsigned StoreSize = VT.getStoreSizeInBits();
124   if (StoreSize <= 32)
125     return EVT::getIntegerVT(Ctx, StoreSize);
126 
127   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
128   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
129 }
130 
131 bool AMDGPUTargetLowering::isOrEquivalentToAdd(SelectionDAG &DAG, SDValue Op)
132 {
133   assert(Op.getOpcode() == ISD::OR);
134 
135   SDValue N0 = Op->getOperand(0);
136   SDValue N1 = Op->getOperand(1);
137   EVT VT = N0.getValueType();
138 
139   if (VT.isInteger() && !VT.isVector()) {
140     KnownBits LHSKnown, RHSKnown;
141     DAG.computeKnownBits(N0, LHSKnown);
142 
143     if (LHSKnown.Zero.getBoolValue()) {
144       DAG.computeKnownBits(N1, RHSKnown);
145 
146       if (!(~RHSKnown.Zero & ~LHSKnown.Zero))
147         return true;
148     }
149   }
150 
151   return false;
152 }
153 
154 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
155                                            const AMDGPUSubtarget &STI)
156     : TargetLowering(TM), Subtarget(&STI) {
157   AMDGPUASI = AMDGPU::getAMDGPUAS(TM);
158   // Lower floating point store/load to integer store/load to reduce the number
159   // of patterns in tablegen.
160   setOperationAction(ISD::LOAD, MVT::f32, Promote);
161   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
162 
163   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
164   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
165 
166   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
167   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
168 
169   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
170   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
171 
172   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
173   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
174 
175   setOperationAction(ISD::LOAD, MVT::i64, Promote);
176   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
177 
178   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
179   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
180 
181   setOperationAction(ISD::LOAD, MVT::f64, Promote);
182   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
183 
184   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
185   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
186 
187   // There are no 64-bit extloads. These should be done as a 32-bit extload and
188   // an extension to 64-bit.
189   for (MVT VT : MVT::integer_valuetypes()) {
190     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
191     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
192     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
193   }
194 
195   for (MVT VT : MVT::integer_valuetypes()) {
196     if (VT == MVT::i64)
197       continue;
198 
199     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
200     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
201     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
202     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
203 
204     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
205     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
206     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
207     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
208 
209     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
210     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
211     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
212     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
213   }
214 
215   for (MVT VT : MVT::integer_vector_valuetypes()) {
216     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
217     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
218     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
219     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
220     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
221     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
222     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
223     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
224     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
225     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
226     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
227     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
228   }
229 
230   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
231   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
232   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
233   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
234 
235   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
236   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
237   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
238   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
239 
240   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
241   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
242   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
243   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
244 
245   setOperationAction(ISD::STORE, MVT::f32, Promote);
246   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
247 
248   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
249   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
250 
251   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
252   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
253 
254   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
255   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
256 
257   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
258   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
259 
260   setOperationAction(ISD::STORE, MVT::i64, Promote);
261   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
262 
263   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
264   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
265 
266   setOperationAction(ISD::STORE, MVT::f64, Promote);
267   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
268 
269   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
270   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
271 
272   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
273   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
274   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
275   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
276 
277   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
278   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
279   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
280   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
281 
282   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
283   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
284   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
285   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
286 
287   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
288   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
289 
290   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
291   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
292 
293   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
294   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
295 
296   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
297   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
298 
299 
300   setOperationAction(ISD::Constant, MVT::i32, Legal);
301   setOperationAction(ISD::Constant, MVT::i64, Legal);
302   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
303   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
304 
305   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
306   setOperationAction(ISD::BRIND, MVT::Other, Expand);
307 
308   // This is totally unsupported, just custom lower to produce an error.
309   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
310 
311   // Library functions.  These default to Expand, but we have instructions
312   // for them.
313   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
314   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
315   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
316   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
317   setOperationAction(ISD::FABS,   MVT::f32, Legal);
318   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
319   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
320   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
321   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
322   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
323 
324   setOperationAction(ISD::FROUND, MVT::f32, Custom);
325   setOperationAction(ISD::FROUND, MVT::f64, Custom);
326 
327   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
328   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
329 
330   setOperationAction(ISD::FREM, MVT::f32, Custom);
331   setOperationAction(ISD::FREM, MVT::f64, Custom);
332 
333   // v_mad_f32 does not support denormals according to some sources.
334   if (!Subtarget->hasFP32Denormals())
335     setOperationAction(ISD::FMAD, MVT::f32, Legal);
336 
337   // Expand to fneg + fadd.
338   setOperationAction(ISD::FSUB, MVT::f64, Expand);
339 
340   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
341   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
342   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
343   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
344   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
345   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
346   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
347   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
348   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
349   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
350 
351   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
352     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
353     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
354     setOperationAction(ISD::FRINT, MVT::f64, Custom);
355     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
356   }
357 
358   if (!Subtarget->hasBFI()) {
359     // fcopysign can be done in a single instruction with BFI.
360     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
361     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
362   }
363 
364   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
365   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
366   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
367 
368   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
369   for (MVT VT : ScalarIntVTs) {
370     // These should use [SU]DIVREM, so set them to expand
371     setOperationAction(ISD::SDIV, VT, Expand);
372     setOperationAction(ISD::UDIV, VT, Expand);
373     setOperationAction(ISD::SREM, VT, Expand);
374     setOperationAction(ISD::UREM, VT, Expand);
375 
376     // GPU does not have divrem function for signed or unsigned.
377     setOperationAction(ISD::SDIVREM, VT, Custom);
378     setOperationAction(ISD::UDIVREM, VT, Custom);
379 
380     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
381     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
382     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
383 
384     setOperationAction(ISD::BSWAP, VT, Expand);
385     setOperationAction(ISD::CTTZ, VT, Expand);
386     setOperationAction(ISD::CTLZ, VT, Expand);
387   }
388 
389   if (!Subtarget->hasBCNT(32))
390     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
391 
392   if (!Subtarget->hasBCNT(64))
393     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
394 
395   // The hardware supports 32-bit ROTR, but not ROTL.
396   setOperationAction(ISD::ROTL, MVT::i32, Expand);
397   setOperationAction(ISD::ROTL, MVT::i64, Expand);
398   setOperationAction(ISD::ROTR, MVT::i64, Expand);
399 
400   setOperationAction(ISD::MUL, MVT::i64, Expand);
401   setOperationAction(ISD::MULHU, MVT::i64, Expand);
402   setOperationAction(ISD::MULHS, MVT::i64, Expand);
403   setOperationAction(ISD::UDIV, MVT::i32, Expand);
404   setOperationAction(ISD::UREM, MVT::i32, Expand);
405   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
406   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
407   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
408   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
409   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
410 
411   setOperationAction(ISD::SMIN, MVT::i32, Legal);
412   setOperationAction(ISD::UMIN, MVT::i32, Legal);
413   setOperationAction(ISD::SMAX, MVT::i32, Legal);
414   setOperationAction(ISD::UMAX, MVT::i32, Legal);
415 
416   if (Subtarget->hasFFBH())
417     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
418 
419   if (Subtarget->hasFFBL())
420     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
421 
422   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
423   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
424   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
425   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
426 
427   // We only really have 32-bit BFE instructions (and 16-bit on VI).
428   //
429   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
430   // effort to match them now. We want this to be false for i64 cases when the
431   // extraction isn't restricted to the upper or lower half. Ideally we would
432   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
433   // span the midpoint are probably relatively rare, so don't worry about them
434   // for now.
435   if (Subtarget->hasBFE())
436     setHasExtractBitsInsn(true);
437 
438   static const MVT::SimpleValueType VectorIntTypes[] = {
439     MVT::v2i32, MVT::v4i32
440   };
441 
442   for (MVT VT : VectorIntTypes) {
443     // Expand the following operations for the current type by default.
444     setOperationAction(ISD::ADD,  VT, Expand);
445     setOperationAction(ISD::AND,  VT, Expand);
446     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
447     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
448     setOperationAction(ISD::MUL,  VT, Expand);
449     setOperationAction(ISD::MULHU, VT, Expand);
450     setOperationAction(ISD::MULHS, VT, Expand);
451     setOperationAction(ISD::OR,   VT, Expand);
452     setOperationAction(ISD::SHL,  VT, Expand);
453     setOperationAction(ISD::SRA,  VT, Expand);
454     setOperationAction(ISD::SRL,  VT, Expand);
455     setOperationAction(ISD::ROTL, VT, Expand);
456     setOperationAction(ISD::ROTR, VT, Expand);
457     setOperationAction(ISD::SUB,  VT, Expand);
458     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
459     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
460     setOperationAction(ISD::SDIV, VT, Expand);
461     setOperationAction(ISD::UDIV, VT, Expand);
462     setOperationAction(ISD::SREM, VT, Expand);
463     setOperationAction(ISD::UREM, VT, Expand);
464     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
465     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
466     setOperationAction(ISD::SDIVREM, VT, Custom);
467     setOperationAction(ISD::UDIVREM, VT, Expand);
468     setOperationAction(ISD::ADDC, VT, Expand);
469     setOperationAction(ISD::SUBC, VT, Expand);
470     setOperationAction(ISD::ADDE, VT, Expand);
471     setOperationAction(ISD::SUBE, VT, Expand);
472     setOperationAction(ISD::SELECT, VT, Expand);
473     setOperationAction(ISD::VSELECT, VT, Expand);
474     setOperationAction(ISD::SELECT_CC, VT, Expand);
475     setOperationAction(ISD::XOR,  VT, Expand);
476     setOperationAction(ISD::BSWAP, VT, Expand);
477     setOperationAction(ISD::CTPOP, VT, Expand);
478     setOperationAction(ISD::CTTZ, VT, Expand);
479     setOperationAction(ISD::CTLZ, VT, Expand);
480     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
481     setOperationAction(ISD::SETCC, VT, Expand);
482   }
483 
484   static const MVT::SimpleValueType FloatVectorTypes[] = {
485     MVT::v2f32, MVT::v4f32
486   };
487 
488   for (MVT VT : FloatVectorTypes) {
489     setOperationAction(ISD::FABS, VT, Expand);
490     setOperationAction(ISD::FMINNUM, VT, Expand);
491     setOperationAction(ISD::FMAXNUM, VT, Expand);
492     setOperationAction(ISD::FADD, VT, Expand);
493     setOperationAction(ISD::FCEIL, VT, Expand);
494     setOperationAction(ISD::FCOS, VT, Expand);
495     setOperationAction(ISD::FDIV, VT, Expand);
496     setOperationAction(ISD::FEXP2, VT, Expand);
497     setOperationAction(ISD::FLOG2, VT, Expand);
498     setOperationAction(ISD::FREM, VT, Expand);
499     setOperationAction(ISD::FPOW, VT, Expand);
500     setOperationAction(ISD::FFLOOR, VT, Expand);
501     setOperationAction(ISD::FTRUNC, VT, Expand);
502     setOperationAction(ISD::FMUL, VT, Expand);
503     setOperationAction(ISD::FMA, VT, Expand);
504     setOperationAction(ISD::FRINT, VT, Expand);
505     setOperationAction(ISD::FNEARBYINT, VT, Expand);
506     setOperationAction(ISD::FSQRT, VT, Expand);
507     setOperationAction(ISD::FSIN, VT, Expand);
508     setOperationAction(ISD::FSUB, VT, Expand);
509     setOperationAction(ISD::FNEG, VT, Expand);
510     setOperationAction(ISD::VSELECT, VT, Expand);
511     setOperationAction(ISD::SELECT_CC, VT, Expand);
512     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
513     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
514     setOperationAction(ISD::SETCC, VT, Expand);
515   }
516 
517   // This causes using an unrolled select operation rather than expansion with
518   // bit operations. This is in general better, but the alternative using BFI
519   // instructions may be better if the select sources are SGPRs.
520   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
521   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
522 
523   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
524   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
525 
526   // There are no libcalls of any kind.
527   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
528     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
529 
530   setBooleanContents(ZeroOrNegativeOneBooleanContent);
531   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
532 
533   setSchedulingPreference(Sched::RegPressure);
534   setJumpIsExpensive(true);
535 
536   // FIXME: This is only partially true. If we have to do vector compares, any
537   // SGPR pair can be a condition register. If we have a uniform condition, we
538   // are better off doing SALU operations, where there is only one SCC. For now,
539   // we don't have a way of knowing during instruction selection if a condition
540   // will be uniform and we always use vector compares. Assume we are using
541   // vector compares until that is fixed.
542   setHasMultipleConditionRegisters(true);
543 
544   // SI at least has hardware support for floating point exceptions, but no way
545   // of using or handling them is implemented. They are also optional in OpenCL
546   // (Section 7.3)
547   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
548 
549   PredictableSelectIsExpensive = false;
550 
551   // We want to find all load dependencies for long chains of stores to enable
552   // merging into very wide vectors. The problem is with vectors with > 4
553   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
554   // vectors are a legal type, even though we have to split the loads
555   // usually. When we can more precisely specify load legality per address
556   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
557   // smarter so that they can figure out what to do in 2 iterations without all
558   // N > 4 stores on the same chain.
559   GatherAllAliasesMaxDepth = 16;
560 
561   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
562   // about these during lowering.
563   MaxStoresPerMemcpy  = 0xffffffff;
564   MaxStoresPerMemmove = 0xffffffff;
565   MaxStoresPerMemset  = 0xffffffff;
566 
567   setTargetDAGCombine(ISD::BITCAST);
568   setTargetDAGCombine(ISD::SHL);
569   setTargetDAGCombine(ISD::SRA);
570   setTargetDAGCombine(ISD::SRL);
571   setTargetDAGCombine(ISD::MUL);
572   setTargetDAGCombine(ISD::MULHU);
573   setTargetDAGCombine(ISD::MULHS);
574   setTargetDAGCombine(ISD::SELECT);
575   setTargetDAGCombine(ISD::SELECT_CC);
576   setTargetDAGCombine(ISD::STORE);
577   setTargetDAGCombine(ISD::FADD);
578   setTargetDAGCombine(ISD::FSUB);
579   setTargetDAGCombine(ISD::FNEG);
580   setTargetDAGCombine(ISD::FABS);
581   setTargetDAGCombine(ISD::AssertZext);
582   setTargetDAGCombine(ISD::AssertSext);
583 }
584 
585 //===----------------------------------------------------------------------===//
586 // Target Information
587 //===----------------------------------------------------------------------===//
588 
589 LLVM_READNONE
590 static bool fnegFoldsIntoOp(unsigned Opc) {
591   switch (Opc) {
592   case ISD::FADD:
593   case ISD::FSUB:
594   case ISD::FMUL:
595   case ISD::FMA:
596   case ISD::FMAD:
597   case ISD::FMINNUM:
598   case ISD::FMAXNUM:
599   case ISD::FSIN:
600   case ISD::FTRUNC:
601   case ISD::FRINT:
602   case ISD::FNEARBYINT:
603   case AMDGPUISD::RCP:
604   case AMDGPUISD::RCP_LEGACY:
605   case AMDGPUISD::SIN_HW:
606   case AMDGPUISD::FMUL_LEGACY:
607   case AMDGPUISD::FMIN_LEGACY:
608   case AMDGPUISD::FMAX_LEGACY:
609     return true;
610   default:
611     return false;
612   }
613 }
614 
615 /// \p returns true if the operation will definitely need to use a 64-bit
616 /// encoding, and thus will use a VOP3 encoding regardless of the source
617 /// modifiers.
618 LLVM_READONLY
619 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
620   return N->getNumOperands() > 2 || VT == MVT::f64;
621 }
622 
623 // Most FP instructions support source modifiers, but this could be refined
624 // slightly.
625 LLVM_READONLY
626 static bool hasSourceMods(const SDNode *N) {
627   if (isa<MemSDNode>(N))
628     return false;
629 
630   switch (N->getOpcode()) {
631   case ISD::CopyToReg:
632   case ISD::SELECT:
633   case ISD::FDIV:
634   case ISD::FREM:
635   case ISD::INLINEASM:
636   case AMDGPUISD::INTERP_P1:
637   case AMDGPUISD::INTERP_P2:
638   case AMDGPUISD::DIV_SCALE:
639 
640   // TODO: Should really be looking at the users of the bitcast. These are
641   // problematic because bitcasts are used to legalize all stores to integer
642   // types.
643   case ISD::BITCAST:
644     return false;
645   default:
646     return true;
647   }
648 }
649 
650 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
651                                                  unsigned CostThreshold) {
652   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
653   // it is truly free to use a source modifier in all cases. If there are
654   // multiple users but for each one will necessitate using VOP3, there will be
655   // a code size increase. Try to avoid increasing code size unless we know it
656   // will save on the instruction count.
657   unsigned NumMayIncreaseSize = 0;
658   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
659 
660   // XXX - Should this limit number of uses to check?
661   for (const SDNode *U : N->uses()) {
662     if (!hasSourceMods(U))
663       return false;
664 
665     if (!opMustUseVOP3Encoding(U, VT)) {
666       if (++NumMayIncreaseSize > CostThreshold)
667         return false;
668     }
669   }
670 
671   return true;
672 }
673 
674 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
675   return MVT::i32;
676 }
677 
678 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
679   return true;
680 }
681 
682 // The backend supports 32 and 64 bit floating point immediates.
683 // FIXME: Why are we reporting vectors of FP immediates as legal?
684 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
685   EVT ScalarVT = VT.getScalarType();
686   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
687          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
688 }
689 
690 // We don't want to shrink f64 / f32 constants.
691 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
692   EVT ScalarVT = VT.getScalarType();
693   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
694 }
695 
696 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
697                                                  ISD::LoadExtType,
698                                                  EVT NewVT) const {
699 
700   unsigned NewSize = NewVT.getStoreSizeInBits();
701 
702   // If we are reducing to a 32-bit load, this is always better.
703   if (NewSize == 32)
704     return true;
705 
706   EVT OldVT = N->getValueType(0);
707   unsigned OldSize = OldVT.getStoreSizeInBits();
708 
709   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
710   // extloads, so doing one requires using a buffer_load. In cases where we
711   // still couldn't use a scalar load, using the wider load shouldn't really
712   // hurt anything.
713 
714   // If the old size already had to be an extload, there's no harm in continuing
715   // to reduce the width.
716   return (OldSize < 32);
717 }
718 
719 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
720                                                    EVT CastTy) const {
721 
722   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
723 
724   if (LoadTy.getScalarType() == MVT::i32)
725     return false;
726 
727   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
728   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
729 
730   return (LScalarSize < CastScalarSize) ||
731          (CastScalarSize >= 32);
732 }
733 
734 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
735 // profitable with the expansion for 64-bit since it's generally good to
736 // speculate things.
737 // FIXME: These should really have the size as a parameter.
738 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
739   return true;
740 }
741 
742 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
743   return true;
744 }
745 
746 //===---------------------------------------------------------------------===//
747 // Target Properties
748 //===---------------------------------------------------------------------===//
749 
750 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
751   assert(VT.isFloatingPoint());
752 
753   // Packed operations do not have a fabs modifier.
754   return VT == MVT::f32 || VT == MVT::f64 ||
755          (Subtarget->has16BitInsts() && VT == MVT::f16);
756 }
757 
758 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
759   assert(VT.isFloatingPoint());
760   return VT == MVT::f32 || VT == MVT::f64 ||
761          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
762          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
763 }
764 
765 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
766                                                          unsigned NumElem,
767                                                          unsigned AS) const {
768   return true;
769 }
770 
771 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
772   // There are few operations which truly have vector input operands. Any vector
773   // operation is going to involve operations on each component, and a
774   // build_vector will be a copy per element, so it always makes sense to use a
775   // build_vector input in place of the extracted element to avoid a copy into a
776   // super register.
777   //
778   // We should probably only do this if all users are extracts only, but this
779   // should be the common case.
780   return true;
781 }
782 
783 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
784   // Truncate is just accessing a subregister.
785 
786   unsigned SrcSize = Source.getSizeInBits();
787   unsigned DestSize = Dest.getSizeInBits();
788 
789   return DestSize < SrcSize && DestSize % 32 == 0 ;
790 }
791 
792 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
793   // Truncate is just accessing a subregister.
794 
795   unsigned SrcSize = Source->getScalarSizeInBits();
796   unsigned DestSize = Dest->getScalarSizeInBits();
797 
798   if (DestSize== 16 && Subtarget->has16BitInsts())
799     return SrcSize >= 32;
800 
801   return DestSize < SrcSize && DestSize % 32 == 0;
802 }
803 
804 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
805   unsigned SrcSize = Src->getScalarSizeInBits();
806   unsigned DestSize = Dest->getScalarSizeInBits();
807 
808   if (SrcSize == 16 && Subtarget->has16BitInsts())
809     return DestSize >= 32;
810 
811   return SrcSize == 32 && DestSize == 64;
812 }
813 
814 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
815   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
816   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
817   // this will enable reducing 64-bit operations the 32-bit, which is always
818   // good.
819 
820   if (Src == MVT::i16)
821     return Dest == MVT::i32 ||Dest == MVT::i64 ;
822 
823   return Src == MVT::i32 && Dest == MVT::i64;
824 }
825 
826 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
827   return isZExtFree(Val.getValueType(), VT2);
828 }
829 
830 // v_mad_mix* support a conversion from f16 to f32.
831 //
832 // There is only one special case when denormals are enabled we don't currently,
833 // where this is OK to use.
834 bool AMDGPUTargetLowering::isFPExtFoldable(unsigned Opcode,
835                                            EVT DestVT, EVT SrcVT) const {
836   return Opcode == ISD::FMAD && Subtarget->hasMadMixInsts() &&
837          DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
838          SrcVT.getScalarType() == MVT::f16;
839 }
840 
841 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
842   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
843   // limited number of native 64-bit operations. Shrinking an operation to fit
844   // in a single 32-bit register should always be helpful. As currently used,
845   // this is much less general than the name suggests, and is only used in
846   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
847   // not profitable, and may actually be harmful.
848   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
849 }
850 
851 //===---------------------------------------------------------------------===//
852 // TargetLowering Callbacks
853 //===---------------------------------------------------------------------===//
854 
855 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
856                                                   bool IsVarArg) {
857   switch (CC) {
858   case CallingConv::AMDGPU_KERNEL:
859   case CallingConv::SPIR_KERNEL:
860     return CC_AMDGPU_Kernel;
861   case CallingConv::AMDGPU_VS:
862   case CallingConv::AMDGPU_GS:
863   case CallingConv::AMDGPU_PS:
864   case CallingConv::AMDGPU_CS:
865   case CallingConv::AMDGPU_HS:
866   case CallingConv::AMDGPU_ES:
867   case CallingConv::AMDGPU_LS:
868     return CC_AMDGPU;
869   case CallingConv::C:
870   case CallingConv::Fast:
871   case CallingConv::Cold:
872     return CC_AMDGPU_Func;
873   default:
874     report_fatal_error("Unsupported calling convention.");
875   }
876 }
877 
878 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
879                                                     bool IsVarArg) {
880   switch (CC) {
881   case CallingConv::AMDGPU_KERNEL:
882   case CallingConv::SPIR_KERNEL:
883     return CC_AMDGPU_Kernel;
884   case CallingConv::AMDGPU_VS:
885   case CallingConv::AMDGPU_GS:
886   case CallingConv::AMDGPU_PS:
887   case CallingConv::AMDGPU_CS:
888   case CallingConv::AMDGPU_HS:
889   case CallingConv::AMDGPU_ES:
890   case CallingConv::AMDGPU_LS:
891     return RetCC_SI_Shader;
892   case CallingConv::C:
893   case CallingConv::Fast:
894   case CallingConv::Cold:
895     return RetCC_AMDGPU_Func;
896   default:
897     report_fatal_error("Unsupported calling convention.");
898   }
899 }
900 
901 /// The SelectionDAGBuilder will automatically promote function arguments
902 /// with illegal types.  However, this does not work for the AMDGPU targets
903 /// since the function arguments are stored in memory as these illegal types.
904 /// In order to handle this properly we need to get the original types sizes
905 /// from the LLVM IR Function and fixup the ISD:InputArg values before
906 /// passing them to AnalyzeFormalArguments()
907 
908 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
909 /// input values across multiple registers.  Each item in the Ins array
910 /// represents a single value that will be stored in registers.  Ins[x].VT is
911 /// the value type of the value that will be stored in the register, so
912 /// whatever SDNode we lower the argument to needs to be this type.
913 ///
914 /// In order to correctly lower the arguments we need to know the size of each
915 /// argument.  Since Ins[x].VT gives us the size of the register that will
916 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
917 /// for the orignal function argument so that we can deduce the correct memory
918 /// type to use for Ins[x].  In most cases the correct memory type will be
919 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
920 /// we have a kernel argument of type v8i8, this argument will be split into
921 /// 8 parts and each part will be represented by its own item in the Ins array.
922 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
923 /// the argument before it was split.  From this, we deduce that the memory type
924 /// for each individual part is i8.  We pass the memory type as LocVT to the
925 /// calling convention analysis function and the register type (Ins[x].VT) as
926 /// the ValVT.
927 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State,
928                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
929   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
930     const ISD::InputArg &In = Ins[i];
931     EVT MemVT;
932 
933     unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT);
934 
935     if (!Subtarget->isAmdHsaOS() &&
936         (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) {
937       // The ABI says the caller will extend these values to 32-bits.
938       MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32;
939     } else if (NumRegs == 1) {
940       // This argument is not split, so the IR type is the memory type.
941       assert(!In.Flags.isSplit());
942       if (In.ArgVT.isExtended()) {
943         // We have an extended type, like i24, so we should just use the register type
944         MemVT = In.VT;
945       } else {
946         MemVT = In.ArgVT;
947       }
948     } else if (In.ArgVT.isVector() && In.VT.isVector() &&
949                In.ArgVT.getScalarType() == In.VT.getScalarType()) {
950       assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements());
951       // We have a vector value which has been split into a vector with
952       // the same scalar type, but fewer elements.  This should handle
953       // all the floating-point vector types.
954       MemVT = In.VT;
955     } else if (In.ArgVT.isVector() &&
956                In.ArgVT.getVectorNumElements() == NumRegs) {
957       // This arg has been split so that each element is stored in a separate
958       // register.
959       MemVT = In.ArgVT.getScalarType();
960     } else if (In.ArgVT.isExtended()) {
961       // We have an extended type, like i65.
962       MemVT = In.VT;
963     } else {
964       unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs;
965       assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0);
966       if (In.VT.isInteger()) {
967         MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
968       } else if (In.VT.isVector()) {
969         assert(!In.VT.getScalarType().isFloatingPoint());
970         unsigned NumElements = In.VT.getVectorNumElements();
971         assert(MemoryBits % NumElements == 0);
972         // This vector type has been split into another vector type with
973         // a different elements size.
974         EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
975                                          MemoryBits / NumElements);
976         MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
977       } else {
978         llvm_unreachable("cannot deduce memory type.");
979       }
980     }
981 
982     // Convert one element vectors to scalar.
983     if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
984       MemVT = MemVT.getScalarType();
985 
986     if (MemVT.isExtended()) {
987       // This should really only happen if we have vec3 arguments
988       assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
989       MemVT = MemVT.getPow2VectorType(State.getContext());
990     }
991 
992     assert(MemVT.isSimple());
993     allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags,
994                     State);
995   }
996 }
997 
998 SDValue AMDGPUTargetLowering::LowerReturn(
999   SDValue Chain, CallingConv::ID CallConv,
1000   bool isVarArg,
1001   const SmallVectorImpl<ISD::OutputArg> &Outs,
1002   const SmallVectorImpl<SDValue> &OutVals,
1003   const SDLoc &DL, SelectionDAG &DAG) const {
1004   // FIXME: Fails for r600 tests
1005   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1006   // "wave terminate should not have return values");
1007   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1008 }
1009 
1010 //===---------------------------------------------------------------------===//
1011 // Target specific lowering
1012 //===---------------------------------------------------------------------===//
1013 
1014 /// Selects the correct CCAssignFn for a given CallingConvention value.
1015 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1016                                                     bool IsVarArg) {
1017   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1018 }
1019 
1020 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1021                                                       bool IsVarArg) {
1022   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1023 }
1024 
1025 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1026                                                   SelectionDAG &DAG,
1027                                                   MachineFrameInfo &MFI,
1028                                                   int ClobberedFI) const {
1029   SmallVector<SDValue, 8> ArgChains;
1030   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1031   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1032 
1033   // Include the original chain at the beginning of the list. When this is
1034   // used by target LowerCall hooks, this helps legalize find the
1035   // CALLSEQ_BEGIN node.
1036   ArgChains.push_back(Chain);
1037 
1038   // Add a chain value for each stack argument corresponding
1039   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1040                             UE = DAG.getEntryNode().getNode()->use_end();
1041        U != UE; ++U) {
1042     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1043       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1044         if (FI->getIndex() < 0) {
1045           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1046           int64_t InLastByte = InFirstByte;
1047           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1048 
1049           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1050               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1051             ArgChains.push_back(SDValue(L, 1));
1052         }
1053       }
1054     }
1055   }
1056 
1057   // Build a tokenfactor for all the chains.
1058   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1059 }
1060 
1061 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1062                                                  SmallVectorImpl<SDValue> &InVals,
1063                                                  StringRef Reason) const {
1064   SDValue Callee = CLI.Callee;
1065   SelectionDAG &DAG = CLI.DAG;
1066 
1067   const Function &Fn = *DAG.getMachineFunction().getFunction();
1068 
1069   StringRef FuncName("<unknown>");
1070 
1071   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1072     FuncName = G->getSymbol();
1073   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1074     FuncName = G->getGlobal()->getName();
1075 
1076   DiagnosticInfoUnsupported NoCalls(
1077     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1078   DAG.getContext()->diagnose(NoCalls);
1079 
1080   if (!CLI.IsTailCall) {
1081     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1082       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1083   }
1084 
1085   return DAG.getEntryNode();
1086 }
1087 
1088 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1089                                         SmallVectorImpl<SDValue> &InVals) const {
1090   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1091 }
1092 
1093 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1094                                                       SelectionDAG &DAG) const {
1095   const Function &Fn = *DAG.getMachineFunction().getFunction();
1096 
1097   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1098                                             SDLoc(Op).getDebugLoc());
1099   DAG.getContext()->diagnose(NoDynamicAlloca);
1100   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1101   return DAG.getMergeValues(Ops, SDLoc());
1102 }
1103 
1104 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1105                                              SelectionDAG &DAG) const {
1106   switch (Op.getOpcode()) {
1107   default:
1108     Op->print(errs(), &DAG);
1109     llvm_unreachable("Custom lowering code for this"
1110                      "instruction is not implemented yet!");
1111     break;
1112   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1113   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1114   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1115   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1116   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1117   case ISD::FREM: return LowerFREM(Op, DAG);
1118   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1119   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1120   case ISD::FRINT: return LowerFRINT(Op, DAG);
1121   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1122   case ISD::FROUND: return LowerFROUND(Op, DAG);
1123   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1124   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1125   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1126   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1127   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1128   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1129   case ISD::CTTZ:
1130   case ISD::CTTZ_ZERO_UNDEF:
1131   case ISD::CTLZ:
1132   case ISD::CTLZ_ZERO_UNDEF:
1133     return LowerCTLZ_CTTZ(Op, DAG);
1134   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1135   }
1136   return Op;
1137 }
1138 
1139 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1140                                               SmallVectorImpl<SDValue> &Results,
1141                                               SelectionDAG &DAG) const {
1142   switch (N->getOpcode()) {
1143   case ISD::SIGN_EXTEND_INREG:
1144     // Different parts of legalization seem to interpret which type of
1145     // sign_extend_inreg is the one to check for custom lowering. The extended
1146     // from type is what really matters, but some places check for custom
1147     // lowering of the result type. This results in trying to use
1148     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1149     // nothing here and let the illegal result integer be handled normally.
1150     return;
1151   default:
1152     return;
1153   }
1154 }
1155 
1156 static bool hasDefinedInitializer(const GlobalValue *GV) {
1157   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1158   if (!GVar || !GVar->hasInitializer())
1159     return false;
1160 
1161   return !isa<UndefValue>(GVar->getInitializer());
1162 }
1163 
1164 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1165                                                  SDValue Op,
1166                                                  SelectionDAG &DAG) const {
1167 
1168   const DataLayout &DL = DAG.getDataLayout();
1169   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1170   const GlobalValue *GV = G->getGlobal();
1171 
1172   if  (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) {
1173     // XXX: What does the value of G->getOffset() mean?
1174     assert(G->getOffset() == 0 &&
1175          "Do not know what to do with an non-zero offset");
1176 
1177     // TODO: We could emit code to handle the initialization somewhere.
1178     if (!hasDefinedInitializer(GV)) {
1179       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1180       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1181     }
1182   }
1183 
1184   const Function &Fn = *DAG.getMachineFunction().getFunction();
1185   DiagnosticInfoUnsupported BadInit(
1186       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1187   DAG.getContext()->diagnose(BadInit);
1188   return SDValue();
1189 }
1190 
1191 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1192                                                   SelectionDAG &DAG) const {
1193   SmallVector<SDValue, 8> Args;
1194 
1195   for (const SDUse &U : Op->ops())
1196     DAG.ExtractVectorElements(U.get(), Args);
1197 
1198   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1199 }
1200 
1201 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1202                                                      SelectionDAG &DAG) const {
1203 
1204   SmallVector<SDValue, 8> Args;
1205   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1206   EVT VT = Op.getValueType();
1207   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1208                             VT.getVectorNumElements());
1209 
1210   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1211 }
1212 
1213 /// \brief Generate Min/Max node
1214 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1215                                                    SDValue LHS, SDValue RHS,
1216                                                    SDValue True, SDValue False,
1217                                                    SDValue CC,
1218                                                    DAGCombinerInfo &DCI) const {
1219   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1220     return SDValue();
1221 
1222   SelectionDAG &DAG = DCI.DAG;
1223   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1224   switch (CCOpcode) {
1225   case ISD::SETOEQ:
1226   case ISD::SETONE:
1227   case ISD::SETUNE:
1228   case ISD::SETNE:
1229   case ISD::SETUEQ:
1230   case ISD::SETEQ:
1231   case ISD::SETFALSE:
1232   case ISD::SETFALSE2:
1233   case ISD::SETTRUE:
1234   case ISD::SETTRUE2:
1235   case ISD::SETUO:
1236   case ISD::SETO:
1237     break;
1238   case ISD::SETULE:
1239   case ISD::SETULT: {
1240     if (LHS == True)
1241       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1242     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1243   }
1244   case ISD::SETOLE:
1245   case ISD::SETOLT:
1246   case ISD::SETLE:
1247   case ISD::SETLT: {
1248     // Ordered. Assume ordered for undefined.
1249 
1250     // Only do this after legalization to avoid interfering with other combines
1251     // which might occur.
1252     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1253         !DCI.isCalledByLegalizer())
1254       return SDValue();
1255 
1256     // We need to permute the operands to get the correct NaN behavior. The
1257     // selected operand is the second one based on the failing compare with NaN,
1258     // so permute it based on the compare type the hardware uses.
1259     if (LHS == True)
1260       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1261     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1262   }
1263   case ISD::SETUGE:
1264   case ISD::SETUGT: {
1265     if (LHS == True)
1266       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1267     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1268   }
1269   case ISD::SETGT:
1270   case ISD::SETGE:
1271   case ISD::SETOGE:
1272   case ISD::SETOGT: {
1273     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1274         !DCI.isCalledByLegalizer())
1275       return SDValue();
1276 
1277     if (LHS == True)
1278       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1279     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1280   }
1281   case ISD::SETCC_INVALID:
1282     llvm_unreachable("Invalid setcc condcode!");
1283   }
1284   return SDValue();
1285 }
1286 
1287 std::pair<SDValue, SDValue>
1288 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1289   SDLoc SL(Op);
1290 
1291   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1292 
1293   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1294   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1295 
1296   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1297   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1298 
1299   return std::make_pair(Lo, Hi);
1300 }
1301 
1302 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1303   SDLoc SL(Op);
1304 
1305   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1306   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1307   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1308 }
1309 
1310 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1311   SDLoc SL(Op);
1312 
1313   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1314   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1315   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1316 }
1317 
1318 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1319                                               SelectionDAG &DAG) const {
1320   LoadSDNode *Load = cast<LoadSDNode>(Op);
1321   EVT VT = Op.getValueType();
1322 
1323 
1324   // If this is a 2 element vector, we really want to scalarize and not create
1325   // weird 1 element vectors.
1326   if (VT.getVectorNumElements() == 2)
1327     return scalarizeVectorLoad(Load, DAG);
1328 
1329   SDValue BasePtr = Load->getBasePtr();
1330   EVT PtrVT = BasePtr.getValueType();
1331   EVT MemVT = Load->getMemoryVT();
1332   SDLoc SL(Op);
1333 
1334   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1335 
1336   EVT LoVT, HiVT;
1337   EVT LoMemVT, HiMemVT;
1338   SDValue Lo, Hi;
1339 
1340   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1341   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1342   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1343 
1344   unsigned Size = LoMemVT.getStoreSize();
1345   unsigned BaseAlign = Load->getAlignment();
1346   unsigned HiAlign = MinAlign(BaseAlign, Size);
1347 
1348   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1349                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1350                                   BaseAlign, Load->getMemOperand()->getFlags());
1351   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1352                               DAG.getConstant(Size, SL, PtrVT));
1353   SDValue HiLoad =
1354       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1355                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1356                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1357 
1358   SDValue Ops[] = {
1359     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1360     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1361                 LoLoad.getValue(1), HiLoad.getValue(1))
1362   };
1363 
1364   return DAG.getMergeValues(Ops, SL);
1365 }
1366 
1367 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1368                                                SelectionDAG &DAG) const {
1369   StoreSDNode *Store = cast<StoreSDNode>(Op);
1370   SDValue Val = Store->getValue();
1371   EVT VT = Val.getValueType();
1372 
1373   // If this is a 2 element vector, we really want to scalarize and not create
1374   // weird 1 element vectors.
1375   if (VT.getVectorNumElements() == 2)
1376     return scalarizeVectorStore(Store, DAG);
1377 
1378   EVT MemVT = Store->getMemoryVT();
1379   SDValue Chain = Store->getChain();
1380   SDValue BasePtr = Store->getBasePtr();
1381   SDLoc SL(Op);
1382 
1383   EVT LoVT, HiVT;
1384   EVT LoMemVT, HiMemVT;
1385   SDValue Lo, Hi;
1386 
1387   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1388   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1389   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1390 
1391   EVT PtrVT = BasePtr.getValueType();
1392   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1393                               DAG.getConstant(LoMemVT.getStoreSize(), SL,
1394                                               PtrVT));
1395 
1396   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1397   unsigned BaseAlign = Store->getAlignment();
1398   unsigned Size = LoMemVT.getStoreSize();
1399   unsigned HiAlign = MinAlign(BaseAlign, Size);
1400 
1401   SDValue LoStore =
1402       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1403                         Store->getMemOperand()->getFlags());
1404   SDValue HiStore =
1405       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1406                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1407 
1408   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1409 }
1410 
1411 // This is a shortcut for integer division because we have fast i32<->f32
1412 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1413 // float is enough to accurately represent up to a 24-bit signed integer.
1414 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1415                                             bool Sign) const {
1416   SDLoc DL(Op);
1417   EVT VT = Op.getValueType();
1418   SDValue LHS = Op.getOperand(0);
1419   SDValue RHS = Op.getOperand(1);
1420   MVT IntVT = MVT::i32;
1421   MVT FltVT = MVT::f32;
1422 
1423   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1424   if (LHSSignBits < 9)
1425     return SDValue();
1426 
1427   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1428   if (RHSSignBits < 9)
1429     return SDValue();
1430 
1431   unsigned BitSize = VT.getSizeInBits();
1432   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1433   unsigned DivBits = BitSize - SignBits;
1434   if (Sign)
1435     ++DivBits;
1436 
1437   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1438   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1439 
1440   SDValue jq = DAG.getConstant(1, DL, IntVT);
1441 
1442   if (Sign) {
1443     // char|short jq = ia ^ ib;
1444     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1445 
1446     // jq = jq >> (bitsize - 2)
1447     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1448                      DAG.getConstant(BitSize - 2, DL, VT));
1449 
1450     // jq = jq | 0x1
1451     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1452   }
1453 
1454   // int ia = (int)LHS;
1455   SDValue ia = LHS;
1456 
1457   // int ib, (int)RHS;
1458   SDValue ib = RHS;
1459 
1460   // float fa = (float)ia;
1461   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1462 
1463   // float fb = (float)ib;
1464   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1465 
1466   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1467                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1468 
1469   // fq = trunc(fq);
1470   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1471 
1472   // float fqneg = -fq;
1473   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1474 
1475   // float fr = mad(fqneg, fb, fa);
1476   unsigned OpCode = Subtarget->hasFP32Denormals() ?
1477                     (unsigned)AMDGPUISD::FMAD_FTZ :
1478                     (unsigned)ISD::FMAD;
1479   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1480 
1481   // int iq = (int)fq;
1482   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1483 
1484   // fr = fabs(fr);
1485   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1486 
1487   // fb = fabs(fb);
1488   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1489 
1490   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1491 
1492   // int cv = fr >= fb;
1493   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1494 
1495   // jq = (cv ? jq : 0);
1496   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1497 
1498   // dst = iq + jq;
1499   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1500 
1501   // Rem needs compensation, it's easier to recompute it
1502   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1503   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1504 
1505   // Truncate to number of bits this divide really is.
1506   if (Sign) {
1507     SDValue InRegSize
1508       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1509     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1510     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1511   } else {
1512     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1513     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1514     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1515   }
1516 
1517   return DAG.getMergeValues({ Div, Rem }, DL);
1518 }
1519 
1520 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1521                                       SelectionDAG &DAG,
1522                                       SmallVectorImpl<SDValue> &Results) const {
1523   SDLoc DL(Op);
1524   EVT VT = Op.getValueType();
1525 
1526   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1527 
1528   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1529 
1530   SDValue One = DAG.getConstant(1, DL, HalfVT);
1531   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1532 
1533   //HiLo split
1534   SDValue LHS = Op.getOperand(0);
1535   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1536   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1537 
1538   SDValue RHS = Op.getOperand(1);
1539   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1540   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1541 
1542   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1543       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1544 
1545     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1546                               LHS_Lo, RHS_Lo);
1547 
1548     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1549     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1550 
1551     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1552     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1553     return;
1554   }
1555 
1556   if (isTypeLegal(MVT::i64)) {
1557     // Compute denominator reciprocal.
1558     unsigned FMAD = Subtarget->hasFP32Denormals() ?
1559                     (unsigned)AMDGPUISD::FMAD_FTZ :
1560                     (unsigned)ISD::FMAD;
1561 
1562     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1563     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1564     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1565       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1566       Cvt_Lo);
1567     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1568     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1569       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1570     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1571       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1572     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1573     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1574       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1575       Mul1);
1576     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1577     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1578     SDValue Rcp64 = DAG.getBitcast(VT,
1579                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1580 
1581     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1582     SDValue One64  = DAG.getConstant(1, DL, VT);
1583     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1584     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1585 
1586     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1587     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1588     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1589     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1590                                     Zero);
1591     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1592                                     One);
1593 
1594     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1595                                   Mulhi1_Lo, Zero1);
1596     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1597                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1598     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1599     SDValue Add1 = DAG.getBitcast(VT,
1600                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1601 
1602     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1603     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1604     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1605                                     Zero);
1606     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1607                                     One);
1608 
1609     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1610                                   Mulhi2_Lo, Zero1);
1611     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1612                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1613     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1614                                   Zero, Add2_Lo.getValue(1));
1615     SDValue Add2 = DAG.getBitcast(VT,
1616                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1617     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1618 
1619     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1620 
1621     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1622     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1623     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1624                                   Mul3_Lo, Zero1);
1625     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1626                                   Mul3_Hi, Sub1_Lo.getValue(1));
1627     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1628     SDValue Sub1 = DAG.getBitcast(VT,
1629                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1630 
1631     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1632     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1633                                  ISD::SETUGE);
1634     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1635                                  ISD::SETUGE);
1636     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1637 
1638     // TODO: Here and below portions of the code can be enclosed into if/endif.
1639     // Currently control flow is unconditional and we have 4 selects after
1640     // potential endif to substitute PHIs.
1641 
1642     // if C3 != 0 ...
1643     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1644                                   RHS_Lo, Zero1);
1645     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1646                                   RHS_Hi, Sub1_Lo.getValue(1));
1647     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1648                                   Zero, Sub2_Lo.getValue(1));
1649     SDValue Sub2 = DAG.getBitcast(VT,
1650                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1651 
1652     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1653 
1654     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1655                                  ISD::SETUGE);
1656     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1657                                  ISD::SETUGE);
1658     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1659 
1660     // if (C6 != 0)
1661     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1662 
1663     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1664                                   RHS_Lo, Zero1);
1665     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1666                                   RHS_Hi, Sub2_Lo.getValue(1));
1667     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1668                                   Zero, Sub3_Lo.getValue(1));
1669     SDValue Sub3 = DAG.getBitcast(VT,
1670                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1671 
1672     // endif C6
1673     // endif C3
1674 
1675     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1676     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1677 
1678     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1679     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1680 
1681     Results.push_back(Div);
1682     Results.push_back(Rem);
1683 
1684     return;
1685   }
1686 
1687   // r600 expandion.
1688   // Get Speculative values
1689   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1690   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1691 
1692   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1693   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1694   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1695 
1696   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1697   SDValue DIV_Lo = Zero;
1698 
1699   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1700 
1701   for (unsigned i = 0; i < halfBitWidth; ++i) {
1702     const unsigned bitPos = halfBitWidth - i - 1;
1703     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1704     // Get value of high bit
1705     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1706     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1707     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1708 
1709     // Shift
1710     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1711     // Add LHS high bit
1712     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1713 
1714     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1715     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1716 
1717     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1718 
1719     // Update REM
1720     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1721     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1722   }
1723 
1724   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1725   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1726   Results.push_back(DIV);
1727   Results.push_back(REM);
1728 }
1729 
1730 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1731                                            SelectionDAG &DAG) const {
1732   SDLoc DL(Op);
1733   EVT VT = Op.getValueType();
1734 
1735   if (VT == MVT::i64) {
1736     SmallVector<SDValue, 2> Results;
1737     LowerUDIVREM64(Op, DAG, Results);
1738     return DAG.getMergeValues(Results, DL);
1739   }
1740 
1741   if (VT == MVT::i32) {
1742     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1743       return Res;
1744   }
1745 
1746   SDValue Num = Op.getOperand(0);
1747   SDValue Den = Op.getOperand(1);
1748 
1749   // RCP =  URECIP(Den) = 2^32 / Den + e
1750   // e is rounding error.
1751   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1752 
1753   // RCP_LO = mul(RCP, Den) */
1754   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1755 
1756   // RCP_HI = mulhu (RCP, Den) */
1757   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1758 
1759   // NEG_RCP_LO = -RCP_LO
1760   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1761                                                      RCP_LO);
1762 
1763   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1764   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1765                                            NEG_RCP_LO, RCP_LO,
1766                                            ISD::SETEQ);
1767   // Calculate the rounding error from the URECIP instruction
1768   // E = mulhu(ABS_RCP_LO, RCP)
1769   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1770 
1771   // RCP_A_E = RCP + E
1772   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1773 
1774   // RCP_S_E = RCP - E
1775   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1776 
1777   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1778   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1779                                      RCP_A_E, RCP_S_E,
1780                                      ISD::SETEQ);
1781   // Quotient = mulhu(Tmp0, Num)
1782   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1783 
1784   // Num_S_Remainder = Quotient * Den
1785   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1786 
1787   // Remainder = Num - Num_S_Remainder
1788   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1789 
1790   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1791   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1792                                                  DAG.getConstant(-1, DL, VT),
1793                                                  DAG.getConstant(0, DL, VT),
1794                                                  ISD::SETUGE);
1795   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1796   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1797                                                   Num_S_Remainder,
1798                                                   DAG.getConstant(-1, DL, VT),
1799                                                   DAG.getConstant(0, DL, VT),
1800                                                   ISD::SETUGE);
1801   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1802   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1803                                                Remainder_GE_Zero);
1804 
1805   // Calculate Division result:
1806 
1807   // Quotient_A_One = Quotient + 1
1808   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1809                                        DAG.getConstant(1, DL, VT));
1810 
1811   // Quotient_S_One = Quotient - 1
1812   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1813                                        DAG.getConstant(1, DL, VT));
1814 
1815   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1816   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1817                                      Quotient, Quotient_A_One, ISD::SETEQ);
1818 
1819   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1820   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1821                             Quotient_S_One, Div, ISD::SETEQ);
1822 
1823   // Calculate Rem result:
1824 
1825   // Remainder_S_Den = Remainder - Den
1826   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1827 
1828   // Remainder_A_Den = Remainder + Den
1829   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1830 
1831   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1832   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1833                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1834 
1835   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1836   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1837                             Remainder_A_Den, Rem, ISD::SETEQ);
1838   SDValue Ops[2] = {
1839     Div,
1840     Rem
1841   };
1842   return DAG.getMergeValues(Ops, DL);
1843 }
1844 
1845 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1846                                            SelectionDAG &DAG) const {
1847   SDLoc DL(Op);
1848   EVT VT = Op.getValueType();
1849 
1850   SDValue LHS = Op.getOperand(0);
1851   SDValue RHS = Op.getOperand(1);
1852 
1853   SDValue Zero = DAG.getConstant(0, DL, VT);
1854   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1855 
1856   if (VT == MVT::i32) {
1857     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1858       return Res;
1859   }
1860 
1861   if (VT == MVT::i64 &&
1862       DAG.ComputeNumSignBits(LHS) > 32 &&
1863       DAG.ComputeNumSignBits(RHS) > 32) {
1864     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1865 
1866     //HiLo split
1867     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1868     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1869     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1870                                  LHS_Lo, RHS_Lo);
1871     SDValue Res[2] = {
1872       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1873       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1874     };
1875     return DAG.getMergeValues(Res, DL);
1876   }
1877 
1878   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1879   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1880   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1881   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1882 
1883   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1884   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1885 
1886   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1887   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1888 
1889   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1890   SDValue Rem = Div.getValue(1);
1891 
1892   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1893   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1894 
1895   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1896   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1897 
1898   SDValue Res[2] = {
1899     Div,
1900     Rem
1901   };
1902   return DAG.getMergeValues(Res, DL);
1903 }
1904 
1905 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1906 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1907   SDLoc SL(Op);
1908   EVT VT = Op.getValueType();
1909   SDValue X = Op.getOperand(0);
1910   SDValue Y = Op.getOperand(1);
1911 
1912   // TODO: Should this propagate fast-math-flags?
1913 
1914   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1915   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1916   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1917 
1918   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1919 }
1920 
1921 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1922   SDLoc SL(Op);
1923   SDValue Src = Op.getOperand(0);
1924 
1925   // result = trunc(src)
1926   // if (src > 0.0 && src != result)
1927   //   result += 1.0
1928 
1929   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1930 
1931   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1932   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1933 
1934   EVT SetCCVT =
1935       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1936 
1937   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1938   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1939   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1940 
1941   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1942   // TODO: Should this propagate fast-math-flags?
1943   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1944 }
1945 
1946 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1947                                   SelectionDAG &DAG) {
1948   const unsigned FractBits = 52;
1949   const unsigned ExpBits = 11;
1950 
1951   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1952                                 Hi,
1953                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1954                                 DAG.getConstant(ExpBits, SL, MVT::i32));
1955   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1956                             DAG.getConstant(1023, SL, MVT::i32));
1957 
1958   return Exp;
1959 }
1960 
1961 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1962   SDLoc SL(Op);
1963   SDValue Src = Op.getOperand(0);
1964 
1965   assert(Op.getValueType() == MVT::f64);
1966 
1967   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1968   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1969 
1970   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1971 
1972   // Extract the upper half, since this is where we will find the sign and
1973   // exponent.
1974   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1975 
1976   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1977 
1978   const unsigned FractBits = 52;
1979 
1980   // Extract the sign bit.
1981   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
1982   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1983 
1984   // Extend back to to 64-bits.
1985   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
1986   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1987 
1988   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1989   const SDValue FractMask
1990     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
1991 
1992   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1993   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1994   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1995 
1996   EVT SetCCVT =
1997       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1998 
1999   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2000 
2001   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2002   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2003 
2004   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2005   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2006 
2007   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2008 }
2009 
2010 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2011   SDLoc SL(Op);
2012   SDValue Src = Op.getOperand(0);
2013 
2014   assert(Op.getValueType() == MVT::f64);
2015 
2016   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2017   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2018   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2019 
2020   // TODO: Should this propagate fast-math-flags?
2021 
2022   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2023   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2024 
2025   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2026 
2027   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2028   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2029 
2030   EVT SetCCVT =
2031       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2032   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2033 
2034   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2035 }
2036 
2037 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2038   // FNEARBYINT and FRINT are the same, except in their handling of FP
2039   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2040   // rint, so just treat them as equivalent.
2041   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2042 }
2043 
2044 // XXX - May require not supporting f32 denormals?
2045 
2046 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2047 // compare and vselect end up producing worse code than scalarizing the whole
2048 // operation.
2049 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2050   SDLoc SL(Op);
2051   SDValue X = Op.getOperand(0);
2052   EVT VT = Op.getValueType();
2053 
2054   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2055 
2056   // TODO: Should this propagate fast-math-flags?
2057 
2058   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2059 
2060   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2061 
2062   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2063   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2064   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2065 
2066   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2067 
2068   EVT SetCCVT =
2069       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2070 
2071   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2072 
2073   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2074 
2075   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2076 }
2077 
2078 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2079   SDLoc SL(Op);
2080   SDValue X = Op.getOperand(0);
2081 
2082   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2083 
2084   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2085   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2086   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2087   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2088   EVT SetCCVT =
2089       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2090 
2091   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2092 
2093   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2094 
2095   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2096 
2097   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2098                                        MVT::i64);
2099 
2100   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2101   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2102                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2103                                           MVT::i64),
2104                           Exp);
2105 
2106   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2107   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2108                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2109                               ISD::SETNE);
2110 
2111   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2112                              D, DAG.getConstant(0, SL, MVT::i64));
2113   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2114 
2115   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2116   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2117 
2118   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2119   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2120   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2121 
2122   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2123                             ExpEqNegOne,
2124                             DAG.getConstantFP(1.0, SL, MVT::f64),
2125                             DAG.getConstantFP(0.0, SL, MVT::f64));
2126 
2127   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2128 
2129   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2130   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2131 
2132   return K;
2133 }
2134 
2135 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2136   EVT VT = Op.getValueType();
2137 
2138   if (VT == MVT::f32 || VT == MVT::f16)
2139     return LowerFROUND32_16(Op, DAG);
2140 
2141   if (VT == MVT::f64)
2142     return LowerFROUND64(Op, DAG);
2143 
2144   llvm_unreachable("unhandled type");
2145 }
2146 
2147 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2148   SDLoc SL(Op);
2149   SDValue Src = Op.getOperand(0);
2150 
2151   // result = trunc(src);
2152   // if (src < 0.0 && src != result)
2153   //   result += -1.0.
2154 
2155   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2156 
2157   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2158   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2159 
2160   EVT SetCCVT =
2161       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2162 
2163   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2164   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2165   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2166 
2167   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2168   // TODO: Should this propagate fast-math-flags?
2169   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2170 }
2171 
2172 static bool isCtlzOpc(unsigned Opc) {
2173   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2174 }
2175 
2176 static bool isCttzOpc(unsigned Opc) {
2177   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2178 }
2179 
2180 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2181   SDLoc SL(Op);
2182   SDValue Src = Op.getOperand(0);
2183   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2184                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2185 
2186   unsigned ISDOpc, NewOpc;
2187   if (isCtlzOpc(Op.getOpcode())) {
2188     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2189     NewOpc = AMDGPUISD::FFBH_U32;
2190   } else if (isCttzOpc(Op.getOpcode())) {
2191     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2192     NewOpc = AMDGPUISD::FFBL_B32;
2193   } else
2194     llvm_unreachable("Unexpected OPCode!!!");
2195 
2196 
2197   if (ZeroUndef && Src.getValueType() == MVT::i32)
2198     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2199 
2200   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2201 
2202   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2203   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2204 
2205   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2206   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2207 
2208   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2209                                    *DAG.getContext(), MVT::i32);
2210 
2211   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2212   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2213 
2214   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2215   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2216 
2217   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2218   SDValue Add, NewOpr;
2219   if (isCtlzOpc(Op.getOpcode())) {
2220     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2221     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2222     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2223   } else {
2224     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2225     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2226     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2227   }
2228 
2229   if (!ZeroUndef) {
2230     // Test if the full 64-bit input is zero.
2231 
2232     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2233     // which we probably don't want.
2234     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2235     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2236     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2237 
2238     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2239     // with the same cycles, otherwise it is slower.
2240     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2241     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2242 
2243     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2244 
2245     // The instruction returns -1 for 0 input, but the defined intrinsic
2246     // behavior is to return the number of bits.
2247     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2248                          SrcIsZero, Bits32, NewOpr);
2249   }
2250 
2251   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2252 }
2253 
2254 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2255                                                bool Signed) const {
2256   // Unsigned
2257   // cul2f(ulong u)
2258   //{
2259   //  uint lz = clz(u);
2260   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2261   //  u = (u << lz) & 0x7fffffffffffffffUL;
2262   //  ulong t = u & 0xffffffffffUL;
2263   //  uint v = (e << 23) | (uint)(u >> 40);
2264   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2265   //  return as_float(v + r);
2266   //}
2267   // Signed
2268   // cl2f(long l)
2269   //{
2270   //  long s = l >> 63;
2271   //  float r = cul2f((l + s) ^ s);
2272   //  return s ? -r : r;
2273   //}
2274 
2275   SDLoc SL(Op);
2276   SDValue Src = Op.getOperand(0);
2277   SDValue L = Src;
2278 
2279   SDValue S;
2280   if (Signed) {
2281     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2282     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2283 
2284     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2285     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2286   }
2287 
2288   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2289                                    *DAG.getContext(), MVT::f32);
2290 
2291 
2292   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2293   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2294   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2295   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2296 
2297   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2298   SDValue E = DAG.getSelect(SL, MVT::i32,
2299     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2300     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2301     ZeroI32);
2302 
2303   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2304     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2305     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2306 
2307   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2308                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2309 
2310   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2311                              U, DAG.getConstant(40, SL, MVT::i64));
2312 
2313   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2314     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2315     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2316 
2317   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2318   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2319   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2320 
2321   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2322 
2323   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2324 
2325   SDValue R = DAG.getSelect(SL, MVT::i32,
2326     RCmp,
2327     One,
2328     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2329   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2330   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2331 
2332   if (!Signed)
2333     return R;
2334 
2335   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2336   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2337 }
2338 
2339 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2340                                                bool Signed) const {
2341   SDLoc SL(Op);
2342   SDValue Src = Op.getOperand(0);
2343 
2344   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2345 
2346   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2347                            DAG.getConstant(0, SL, MVT::i32));
2348   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2349                            DAG.getConstant(1, SL, MVT::i32));
2350 
2351   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2352                               SL, MVT::f64, Hi);
2353 
2354   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2355 
2356   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2357                               DAG.getConstant(32, SL, MVT::i32));
2358   // TODO: Should this propagate fast-math-flags?
2359   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2360 }
2361 
2362 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2363                                                SelectionDAG &DAG) const {
2364   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2365          "operation should be legal");
2366 
2367   // TODO: Factor out code common with LowerSINT_TO_FP.
2368 
2369   EVT DestVT = Op.getValueType();
2370   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2371     SDLoc DL(Op);
2372     SDValue Src = Op.getOperand(0);
2373 
2374     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2375     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2376     SDValue FPRound =
2377         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2378 
2379     return FPRound;
2380   }
2381 
2382   if (DestVT == MVT::f32)
2383     return LowerINT_TO_FP32(Op, DAG, false);
2384 
2385   assert(DestVT == MVT::f64);
2386   return LowerINT_TO_FP64(Op, DAG, false);
2387 }
2388 
2389 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2390                                               SelectionDAG &DAG) const {
2391   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2392          "operation should be legal");
2393 
2394   // TODO: Factor out code common with LowerUINT_TO_FP.
2395 
2396   EVT DestVT = Op.getValueType();
2397   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2398     SDLoc DL(Op);
2399     SDValue Src = Op.getOperand(0);
2400 
2401     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2402     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2403     SDValue FPRound =
2404         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2405 
2406     return FPRound;
2407   }
2408 
2409   if (DestVT == MVT::f32)
2410     return LowerINT_TO_FP32(Op, DAG, true);
2411 
2412   assert(DestVT == MVT::f64);
2413   return LowerINT_TO_FP64(Op, DAG, true);
2414 }
2415 
2416 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2417                                                bool Signed) const {
2418   SDLoc SL(Op);
2419 
2420   SDValue Src = Op.getOperand(0);
2421 
2422   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2423 
2424   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2425                                  MVT::f64);
2426   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2427                                  MVT::f64);
2428   // TODO: Should this propagate fast-math-flags?
2429   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2430 
2431   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2432 
2433 
2434   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2435 
2436   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2437                            MVT::i32, FloorMul);
2438   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2439 
2440   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2441 
2442   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2443 }
2444 
2445 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2446   SDLoc DL(Op);
2447   SDValue N0 = Op.getOperand(0);
2448 
2449   // Convert to target node to get known bits
2450   if (N0.getValueType() == MVT::f32)
2451     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2452 
2453   if (getTargetMachine().Options.UnsafeFPMath) {
2454     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2455     return SDValue();
2456   }
2457 
2458   assert(N0.getSimpleValueType() == MVT::f64);
2459 
2460   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2461   const unsigned ExpMask = 0x7ff;
2462   const unsigned ExpBiasf64 = 1023;
2463   const unsigned ExpBiasf16 = 15;
2464   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2465   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2466   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2467   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2468                            DAG.getConstant(32, DL, MVT::i64));
2469   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2470   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2471   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2472                           DAG.getConstant(20, DL, MVT::i64));
2473   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2474                   DAG.getConstant(ExpMask, DL, MVT::i32));
2475   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2476   // add the f16 bias (15) to get the biased exponent for the f16 format.
2477   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2478                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2479 
2480   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2481                           DAG.getConstant(8, DL, MVT::i32));
2482   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2483                   DAG.getConstant(0xffe, DL, MVT::i32));
2484 
2485   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2486                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2487   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2488 
2489   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2490   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2491 
2492   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2493   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2494       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2495                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2496 
2497   // N = M | (E << 12);
2498   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2499       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2500                   DAG.getConstant(12, DL, MVT::i32)));
2501 
2502   // B = clamp(1-E, 0, 13);
2503   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2504                                   One, E);
2505   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2506   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2507                   DAG.getConstant(13, DL, MVT::i32));
2508 
2509   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2510                                    DAG.getConstant(0x1000, DL, MVT::i32));
2511 
2512   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2513   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2514   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2515   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2516 
2517   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2518   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2519                               DAG.getConstant(0x7, DL, MVT::i32));
2520   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2521                   DAG.getConstant(2, DL, MVT::i32));
2522   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2523                                One, Zero, ISD::SETEQ);
2524   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2525                                One, Zero, ISD::SETGT);
2526   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2527   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2528 
2529   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2530                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2531   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2532                       I, V, ISD::SETEQ);
2533 
2534   // Extract the sign bit.
2535   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2536                             DAG.getConstant(16, DL, MVT::i32));
2537   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2538                      DAG.getConstant(0x8000, DL, MVT::i32));
2539 
2540   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2541   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2542 }
2543 
2544 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2545                                               SelectionDAG &DAG) const {
2546   SDValue Src = Op.getOperand(0);
2547 
2548   // TODO: Factor out code common with LowerFP_TO_UINT.
2549 
2550   EVT SrcVT = Src.getValueType();
2551   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2552     SDLoc DL(Op);
2553 
2554     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2555     SDValue FpToInt32 =
2556         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2557 
2558     return FpToInt32;
2559   }
2560 
2561   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2562     return LowerFP64_TO_INT(Op, DAG, true);
2563 
2564   return SDValue();
2565 }
2566 
2567 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2568                                               SelectionDAG &DAG) const {
2569   SDValue Src = Op.getOperand(0);
2570 
2571   // TODO: Factor out code common with LowerFP_TO_SINT.
2572 
2573   EVT SrcVT = Src.getValueType();
2574   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2575     SDLoc DL(Op);
2576 
2577     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2578     SDValue FpToInt32 =
2579         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2580 
2581     return FpToInt32;
2582   }
2583 
2584   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2585     return LowerFP64_TO_INT(Op, DAG, false);
2586 
2587   return SDValue();
2588 }
2589 
2590 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2591                                                      SelectionDAG &DAG) const {
2592   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2593   MVT VT = Op.getSimpleValueType();
2594   MVT ScalarVT = VT.getScalarType();
2595 
2596   assert(VT.isVector());
2597 
2598   SDValue Src = Op.getOperand(0);
2599   SDLoc DL(Op);
2600 
2601   // TODO: Don't scalarize on Evergreen?
2602   unsigned NElts = VT.getVectorNumElements();
2603   SmallVector<SDValue, 8> Args;
2604   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2605 
2606   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2607   for (unsigned I = 0; I < NElts; ++I)
2608     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2609 
2610   return DAG.getBuildVector(VT, DL, Args);
2611 }
2612 
2613 //===----------------------------------------------------------------------===//
2614 // Custom DAG optimizations
2615 //===----------------------------------------------------------------------===//
2616 
2617 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2618   KnownBits Known;
2619   EVT VT = Op.getValueType();
2620   DAG.computeKnownBits(Op, Known);
2621 
2622   return (VT.getSizeInBits() - Known.countMinLeadingZeros()) <= 24;
2623 }
2624 
2625 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2626   EVT VT = Op.getValueType();
2627 
2628   // In order for this to be a signed 24-bit value, bit 23, must
2629   // be a sign bit.
2630   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2631                                      // as unsigned 24-bit values.
2632          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2633 }
2634 
2635 static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
2636                         TargetLowering::DAGCombinerInfo &DCI) {
2637 
2638   SelectionDAG &DAG = DCI.DAG;
2639   SDValue Op = Node24->getOperand(OpIdx);
2640   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2641   EVT VT = Op.getValueType();
2642 
2643   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2644   APInt KnownZero, KnownOne;
2645   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2646   if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO))
2647     return true;
2648 
2649   return false;
2650 }
2651 
2652 template <typename IntTy>
2653 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2654                                uint32_t Width, const SDLoc &DL) {
2655   if (Width + Offset < 32) {
2656     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2657     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2658     return DAG.getConstant(Result, DL, MVT::i32);
2659   }
2660 
2661   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2662 }
2663 
2664 static bool hasVolatileUser(SDNode *Val) {
2665   for (SDNode *U : Val->uses()) {
2666     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2667       if (M->isVolatile())
2668         return true;
2669     }
2670   }
2671 
2672   return false;
2673 }
2674 
2675 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2676   // i32 vectors are the canonical memory type.
2677   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2678     return false;
2679 
2680   if (!VT.isByteSized())
2681     return false;
2682 
2683   unsigned Size = VT.getStoreSize();
2684 
2685   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2686     return false;
2687 
2688   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2689     return false;
2690 
2691   return true;
2692 }
2693 
2694 // Replace load of an illegal type with a store of a bitcast to a friendlier
2695 // type.
2696 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2697                                                  DAGCombinerInfo &DCI) const {
2698   if (!DCI.isBeforeLegalize())
2699     return SDValue();
2700 
2701   LoadSDNode *LN = cast<LoadSDNode>(N);
2702   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2703     return SDValue();
2704 
2705   SDLoc SL(N);
2706   SelectionDAG &DAG = DCI.DAG;
2707   EVT VT = LN->getMemoryVT();
2708 
2709   unsigned Size = VT.getStoreSize();
2710   unsigned Align = LN->getAlignment();
2711   if (Align < Size && isTypeLegal(VT)) {
2712     bool IsFast;
2713     unsigned AS = LN->getAddressSpace();
2714 
2715     // Expand unaligned loads earlier than legalization. Due to visitation order
2716     // problems during legalization, the emitted instructions to pack and unpack
2717     // the bytes again are not eliminated in the case of an unaligned copy.
2718     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2719       if (VT.isVector())
2720         return scalarizeVectorLoad(LN, DAG);
2721 
2722       SDValue Ops[2];
2723       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2724       return DAG.getMergeValues(Ops, SDLoc(N));
2725     }
2726 
2727     if (!IsFast)
2728       return SDValue();
2729   }
2730 
2731   if (!shouldCombineMemoryType(VT))
2732     return SDValue();
2733 
2734   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2735 
2736   SDValue NewLoad
2737     = DAG.getLoad(NewVT, SL, LN->getChain(),
2738                   LN->getBasePtr(), LN->getMemOperand());
2739 
2740   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2741   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2742   return SDValue(N, 0);
2743 }
2744 
2745 // Replace store of an illegal type with a store of a bitcast to a friendlier
2746 // type.
2747 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2748                                                   DAGCombinerInfo &DCI) const {
2749   if (!DCI.isBeforeLegalize())
2750     return SDValue();
2751 
2752   StoreSDNode *SN = cast<StoreSDNode>(N);
2753   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2754     return SDValue();
2755 
2756   EVT VT = SN->getMemoryVT();
2757   unsigned Size = VT.getStoreSize();
2758 
2759   SDLoc SL(N);
2760   SelectionDAG &DAG = DCI.DAG;
2761   unsigned Align = SN->getAlignment();
2762   if (Align < Size && isTypeLegal(VT)) {
2763     bool IsFast;
2764     unsigned AS = SN->getAddressSpace();
2765 
2766     // Expand unaligned stores earlier than legalization. Due to visitation
2767     // order problems during legalization, the emitted instructions to pack and
2768     // unpack the bytes again are not eliminated in the case of an unaligned
2769     // copy.
2770     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2771       if (VT.isVector())
2772         return scalarizeVectorStore(SN, DAG);
2773 
2774       return expandUnalignedStore(SN, DAG);
2775     }
2776 
2777     if (!IsFast)
2778       return SDValue();
2779   }
2780 
2781   if (!shouldCombineMemoryType(VT))
2782     return SDValue();
2783 
2784   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2785   SDValue Val = SN->getValue();
2786 
2787   //DCI.AddToWorklist(Val.getNode());
2788 
2789   bool OtherUses = !Val.hasOneUse();
2790   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2791   if (OtherUses) {
2792     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2793     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2794   }
2795 
2796   return DAG.getStore(SN->getChain(), SL, CastVal,
2797                       SN->getBasePtr(), SN->getMemOperand());
2798 }
2799 
2800 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N,
2801                                                   DAGCombinerInfo &DCI) const {
2802   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
2803   if (!CSrc)
2804     return SDValue();
2805 
2806   const APFloat &F = CSrc->getValueAPF();
2807   APFloat Zero = APFloat::getZero(F.getSemantics());
2808   APFloat::cmpResult Cmp0 = F.compare(Zero);
2809   if (Cmp0 == APFloat::cmpLessThan ||
2810       (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) {
2811     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
2812   }
2813 
2814   APFloat One(F.getSemantics(), "1.0");
2815   APFloat::cmpResult Cmp1 = F.compare(One);
2816   if (Cmp1 == APFloat::cmpGreaterThan)
2817     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
2818 
2819   return SDValue(CSrc, 0);
2820 }
2821 
2822 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2823 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2824 // issues.
2825 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
2826                                                         DAGCombinerInfo &DCI) const {
2827   SelectionDAG &DAG = DCI.DAG;
2828   SDValue N0 = N->getOperand(0);
2829 
2830   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2831   //     (vt2 (truncate (assertzext vt0:x, vt1)))
2832   if (N0.getOpcode() == ISD::TRUNCATE) {
2833     SDValue N1 = N->getOperand(1);
2834     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
2835     SDLoc SL(N);
2836 
2837     SDValue Src = N0.getOperand(0);
2838     EVT SrcVT = Src.getValueType();
2839     if (SrcVT.bitsGE(ExtVT)) {
2840       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
2841       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
2842     }
2843   }
2844 
2845   return SDValue();
2846 }
2847 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2848 /// binary operation \p Opc to it with the corresponding constant operands.
2849 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2850   DAGCombinerInfo &DCI, const SDLoc &SL,
2851   unsigned Opc, SDValue LHS,
2852   uint32_t ValLo, uint32_t ValHi) const {
2853   SelectionDAG &DAG = DCI.DAG;
2854   SDValue Lo, Hi;
2855   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
2856 
2857   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
2858   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
2859 
2860   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
2861   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
2862 
2863   // Re-visit the ands. It's possible we eliminated one of them and it could
2864   // simplify the vector.
2865   DCI.AddToWorklist(Lo.getNode());
2866   DCI.AddToWorklist(Hi.getNode());
2867 
2868   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2869   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2870 }
2871 
2872 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2873                                                 DAGCombinerInfo &DCI) const {
2874   EVT VT = N->getValueType(0);
2875 
2876   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2877   if (!RHS)
2878     return SDValue();
2879 
2880   SDValue LHS = N->getOperand(0);
2881   unsigned RHSVal = RHS->getZExtValue();
2882   if (!RHSVal)
2883     return LHS;
2884 
2885   SDLoc SL(N);
2886   SelectionDAG &DAG = DCI.DAG;
2887 
2888   switch (LHS->getOpcode()) {
2889   default:
2890     break;
2891   case ISD::ZERO_EXTEND:
2892   case ISD::SIGN_EXTEND:
2893   case ISD::ANY_EXTEND: {
2894     SDValue X = LHS->getOperand(0);
2895 
2896     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
2897         isTypeLegal(MVT::v2i16)) {
2898       // Prefer build_vector as the canonical form if packed types are legal.
2899       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
2900       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
2901        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
2902       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
2903     }
2904 
2905     // shl (ext x) => zext (shl x), if shift does not overflow int
2906     if (VT != MVT::i64)
2907       break;
2908     KnownBits Known;
2909     DAG.computeKnownBits(X, Known);
2910     unsigned LZ = Known.countMinLeadingZeros();
2911     if (LZ < RHSVal)
2912       break;
2913     EVT XVT = X.getValueType();
2914     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
2915     return DAG.getZExtOrTrunc(Shl, SL, VT);
2916   }
2917   case ISD::OR:
2918     if (!isOrEquivalentToAdd(DAG, LHS))
2919       break;
2920     LLVM_FALLTHROUGH;
2921   case ISD::ADD: {
2922     // shl (or|add x, c2), c1 => or|add (shl x, c1), (c2 << c1)
2923     if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
2924       SDValue Shl = DAG.getNode(ISD::SHL, SL, VT, LHS->getOperand(0),
2925                                 SDValue(RHS, 0));
2926       SDValue C2V = DAG.getConstant(C2->getAPIntValue() << RHSVal,
2927                                     SDLoc(C2), VT);
2928       return DAG.getNode(LHS->getOpcode(), SL, VT, Shl, C2V);
2929     }
2930     break;
2931   }
2932   }
2933 
2934   if (VT != MVT::i64)
2935     return SDValue();
2936 
2937   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2938 
2939   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2940   // common case, splitting this into a move and a 32-bit shift is faster and
2941   // the same code size.
2942   if (RHSVal < 32)
2943     return SDValue();
2944 
2945   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
2946 
2947   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2948   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
2949 
2950   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2951 
2952   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
2953   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2954 }
2955 
2956 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
2957                                                 DAGCombinerInfo &DCI) const {
2958   if (N->getValueType(0) != MVT::i64)
2959     return SDValue();
2960 
2961   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2962   if (!RHS)
2963     return SDValue();
2964 
2965   SelectionDAG &DAG = DCI.DAG;
2966   SDLoc SL(N);
2967   unsigned RHSVal = RHS->getZExtValue();
2968 
2969   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
2970   if (RHSVal == 32) {
2971     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2972     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2973                                    DAG.getConstant(31, SL, MVT::i32));
2974 
2975     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
2976     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2977   }
2978 
2979   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
2980   if (RHSVal == 63) {
2981     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2982     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2983                                    DAG.getConstant(31, SL, MVT::i32));
2984     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
2985     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2986   }
2987 
2988   return SDValue();
2989 }
2990 
2991 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
2992                                                 DAGCombinerInfo &DCI) const {
2993   if (N->getValueType(0) != MVT::i64)
2994     return SDValue();
2995 
2996   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2997   if (!RHS)
2998     return SDValue();
2999 
3000   unsigned ShiftAmt = RHS->getZExtValue();
3001   if (ShiftAmt < 32)
3002     return SDValue();
3003 
3004   // srl i64:x, C for C >= 32
3005   // =>
3006   //   build_pair (srl hi_32(x), C - 32), 0
3007 
3008   SelectionDAG &DAG = DCI.DAG;
3009   SDLoc SL(N);
3010 
3011   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3012   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3013 
3014   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
3015   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
3016                            VecOp, One);
3017 
3018   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3019   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3020 
3021   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3022 
3023   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3024 }
3025 
3026 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3027 // instructions. If we only match on the legalized i64 mul expansion,
3028 // SimplifyDemandedBits will be unable to remove them because there will be
3029 // multiple uses due to the separate mul + mulh[su].
3030 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3031                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3032   if (Size <= 32) {
3033     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3034     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3035   }
3036 
3037   // Because we want to eliminate extension instructions before the
3038   // operation, we need to create a single user here (i.e. not the separate
3039   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3040 
3041   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3042 
3043   SDValue Mul = DAG.getNode(MulOpc, SL,
3044                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3045 
3046   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3047                      Mul.getValue(0), Mul.getValue(1));
3048 }
3049 
3050 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3051                                                 DAGCombinerInfo &DCI) const {
3052   EVT VT = N->getValueType(0);
3053 
3054   unsigned Size = VT.getSizeInBits();
3055   if (VT.isVector() || Size > 64)
3056     return SDValue();
3057 
3058   // There are i16 integer mul/mad.
3059   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3060     return SDValue();
3061 
3062   SelectionDAG &DAG = DCI.DAG;
3063   SDLoc DL(N);
3064 
3065   SDValue N0 = N->getOperand(0);
3066   SDValue N1 = N->getOperand(1);
3067   SDValue Mul;
3068 
3069   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3070     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3071     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3072     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3073   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3074     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3075     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3076     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3077   } else {
3078     return SDValue();
3079   }
3080 
3081   // We need to use sext even for MUL_U24, because MUL_U24 is used
3082   // for signed multiply of 8 and 16-bit types.
3083   return DAG.getSExtOrTrunc(Mul, DL, VT);
3084 }
3085 
3086 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3087                                                   DAGCombinerInfo &DCI) const {
3088   EVT VT = N->getValueType(0);
3089 
3090   if (!Subtarget->hasMulI24() || VT.isVector())
3091     return SDValue();
3092 
3093   SelectionDAG &DAG = DCI.DAG;
3094   SDLoc DL(N);
3095 
3096   SDValue N0 = N->getOperand(0);
3097   SDValue N1 = N->getOperand(1);
3098 
3099   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3100     return SDValue();
3101 
3102   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3103   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3104 
3105   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3106   DCI.AddToWorklist(Mulhi.getNode());
3107   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3108 }
3109 
3110 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3111                                                   DAGCombinerInfo &DCI) const {
3112   EVT VT = N->getValueType(0);
3113 
3114   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3115     return SDValue();
3116 
3117   SelectionDAG &DAG = DCI.DAG;
3118   SDLoc DL(N);
3119 
3120   SDValue N0 = N->getOperand(0);
3121   SDValue N1 = N->getOperand(1);
3122 
3123   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3124     return SDValue();
3125 
3126   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3127   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3128 
3129   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3130   DCI.AddToWorklist(Mulhi.getNode());
3131   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3132 }
3133 
3134 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3135   SDNode *N, DAGCombinerInfo &DCI) const {
3136   SelectionDAG &DAG = DCI.DAG;
3137 
3138   // Simplify demanded bits before splitting into multiple users.
3139   if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI))
3140     return SDValue();
3141 
3142   SDValue N0 = N->getOperand(0);
3143   SDValue N1 = N->getOperand(1);
3144 
3145   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3146 
3147   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3148   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3149 
3150   SDLoc SL(N);
3151 
3152   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3153   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3154   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3155 }
3156 
3157 static bool isNegativeOne(SDValue Val) {
3158   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3159     return C->isAllOnesValue();
3160   return false;
3161 }
3162 
3163 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3164                                           SDValue Op,
3165                                           const SDLoc &DL,
3166                                           unsigned Opc) const {
3167   EVT VT = Op.getValueType();
3168   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3169   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3170                               LegalVT != MVT::i16))
3171     return SDValue();
3172 
3173   if (VT != MVT::i32)
3174     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3175 
3176   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3177   if (VT != MVT::i32)
3178     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3179 
3180   return FFBX;
3181 }
3182 
3183 // The native instructions return -1 on 0 input. Optimize out a select that
3184 // produces -1 on 0.
3185 //
3186 // TODO: If zero is not undef, we could also do this if the output is compared
3187 // against the bitwidth.
3188 //
3189 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3190 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3191                                                  SDValue LHS, SDValue RHS,
3192                                                  DAGCombinerInfo &DCI) const {
3193   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3194   if (!CmpRhs || !CmpRhs->isNullValue())
3195     return SDValue();
3196 
3197   SelectionDAG &DAG = DCI.DAG;
3198   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3199   SDValue CmpLHS = Cond.getOperand(0);
3200 
3201   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3202                                            AMDGPUISD::FFBH_U32;
3203 
3204   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3205   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3206   if (CCOpcode == ISD::SETEQ &&
3207       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3208       RHS.getOperand(0) == CmpLHS &&
3209       isNegativeOne(LHS)) {
3210     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3211   }
3212 
3213   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3214   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3215   if (CCOpcode == ISD::SETNE &&
3216       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3217       LHS.getOperand(0) == CmpLHS &&
3218       isNegativeOne(RHS)) {
3219     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3220   }
3221 
3222   return SDValue();
3223 }
3224 
3225 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3226                                          unsigned Op,
3227                                          const SDLoc &SL,
3228                                          SDValue Cond,
3229                                          SDValue N1,
3230                                          SDValue N2) {
3231   SelectionDAG &DAG = DCI.DAG;
3232   EVT VT = N1.getValueType();
3233 
3234   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3235                                   N1.getOperand(0), N2.getOperand(0));
3236   DCI.AddToWorklist(NewSelect.getNode());
3237   return DAG.getNode(Op, SL, VT, NewSelect);
3238 }
3239 
3240 // Pull a free FP operation out of a select so it may fold into uses.
3241 //
3242 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3243 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3244 //
3245 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3246 // select c, (fabs x), +k -> fabs (select c, x, k)
3247 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3248                                     SDValue N) {
3249   SelectionDAG &DAG = DCI.DAG;
3250   SDValue Cond = N.getOperand(0);
3251   SDValue LHS = N.getOperand(1);
3252   SDValue RHS = N.getOperand(2);
3253 
3254   EVT VT = N.getValueType();
3255   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3256       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3257     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3258                                      SDLoc(N), Cond, LHS, RHS);
3259   }
3260 
3261   bool Inv = false;
3262   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3263     std::swap(LHS, RHS);
3264     Inv = true;
3265   }
3266 
3267   // TODO: Support vector constants.
3268   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3269   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3270     SDLoc SL(N);
3271     // If one side is an fneg/fabs and the other is a constant, we can push the
3272     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3273     SDValue NewLHS = LHS.getOperand(0);
3274     SDValue NewRHS = RHS;
3275 
3276     // Careful: if the neg can be folded up, don't try to pull it back down.
3277     bool ShouldFoldNeg = true;
3278 
3279     if (NewLHS.hasOneUse()) {
3280       unsigned Opc = NewLHS.getOpcode();
3281       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3282         ShouldFoldNeg = false;
3283       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3284         ShouldFoldNeg = false;
3285     }
3286 
3287     if (ShouldFoldNeg) {
3288       if (LHS.getOpcode() == ISD::FNEG)
3289         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3290       else if (CRHS->isNegative())
3291         return SDValue();
3292 
3293       if (Inv)
3294         std::swap(NewLHS, NewRHS);
3295 
3296       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3297                                       Cond, NewLHS, NewRHS);
3298       DCI.AddToWorklist(NewSelect.getNode());
3299       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3300     }
3301   }
3302 
3303   return SDValue();
3304 }
3305 
3306 
3307 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3308                                                    DAGCombinerInfo &DCI) const {
3309   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3310     return Folded;
3311 
3312   SDValue Cond = N->getOperand(0);
3313   if (Cond.getOpcode() != ISD::SETCC)
3314     return SDValue();
3315 
3316   EVT VT = N->getValueType(0);
3317   SDValue LHS = Cond.getOperand(0);
3318   SDValue RHS = Cond.getOperand(1);
3319   SDValue CC = Cond.getOperand(2);
3320 
3321   SDValue True = N->getOperand(1);
3322   SDValue False = N->getOperand(2);
3323 
3324   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3325     SelectionDAG &DAG = DCI.DAG;
3326     if ((DAG.isConstantValueOfAnyType(True) ||
3327          DAG.isConstantValueOfAnyType(True)) &&
3328         (!DAG.isConstantValueOfAnyType(False) &&
3329          !DAG.isConstantValueOfAnyType(False))) {
3330       // Swap cmp + select pair to move constant to false input.
3331       // This will allow using VOPC cndmasks more often.
3332       // select (setcc x, y), k, x -> select (setcc y, x) x, x
3333 
3334       SDLoc SL(N);
3335       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3336                                             LHS.getValueType().isInteger());
3337 
3338       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3339       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3340     }
3341 
3342     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3343       SDValue MinMax
3344         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3345       // Revisit this node so we can catch min3/max3/med3 patterns.
3346       //DCI.AddToWorklist(MinMax.getNode());
3347       return MinMax;
3348     }
3349   }
3350 
3351   // There's no reason to not do this if the condition has other uses.
3352   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3353 }
3354 
3355 static bool isConstantFPZero(SDValue N) {
3356   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N))
3357     return C->isZero() && !C->isNegative();
3358   return false;
3359 }
3360 
3361 static unsigned inverseMinMax(unsigned Opc) {
3362   switch (Opc) {
3363   case ISD::FMAXNUM:
3364     return ISD::FMINNUM;
3365   case ISD::FMINNUM:
3366     return ISD::FMAXNUM;
3367   case AMDGPUISD::FMAX_LEGACY:
3368     return AMDGPUISD::FMIN_LEGACY;
3369   case AMDGPUISD::FMIN_LEGACY:
3370     return  AMDGPUISD::FMAX_LEGACY;
3371   default:
3372     llvm_unreachable("invalid min/max opcode");
3373   }
3374 }
3375 
3376 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3377                                                  DAGCombinerInfo &DCI) const {
3378   SelectionDAG &DAG = DCI.DAG;
3379   SDValue N0 = N->getOperand(0);
3380   EVT VT = N->getValueType(0);
3381 
3382   unsigned Opc = N0.getOpcode();
3383 
3384   // If the input has multiple uses and we can either fold the negate down, or
3385   // the other uses cannot, give up. This both prevents unprofitable
3386   // transformations and infinite loops: we won't repeatedly try to fold around
3387   // a negate that has no 'good' form.
3388   if (N0.hasOneUse()) {
3389     // This may be able to fold into the source, but at a code size cost. Don't
3390     // fold if the fold into the user is free.
3391     if (allUsesHaveSourceMods(N, 0))
3392       return SDValue();
3393   } else {
3394     if (fnegFoldsIntoOp(Opc) &&
3395         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3396       return SDValue();
3397   }
3398 
3399   SDLoc SL(N);
3400   switch (Opc) {
3401   case ISD::FADD: {
3402     if (!mayIgnoreSignedZero(N0))
3403       return SDValue();
3404 
3405     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3406     SDValue LHS = N0.getOperand(0);
3407     SDValue RHS = N0.getOperand(1);
3408 
3409     if (LHS.getOpcode() != ISD::FNEG)
3410       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3411     else
3412       LHS = LHS.getOperand(0);
3413 
3414     if (RHS.getOpcode() != ISD::FNEG)
3415       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3416     else
3417       RHS = RHS.getOperand(0);
3418 
3419     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3420     if (!N0.hasOneUse())
3421       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3422     return Res;
3423   }
3424   case ISD::FMUL:
3425   case AMDGPUISD::FMUL_LEGACY: {
3426     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3427     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3428     SDValue LHS = N0.getOperand(0);
3429     SDValue RHS = N0.getOperand(1);
3430 
3431     if (LHS.getOpcode() == ISD::FNEG)
3432       LHS = LHS.getOperand(0);
3433     else if (RHS.getOpcode() == ISD::FNEG)
3434       RHS = RHS.getOperand(0);
3435     else
3436       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3437 
3438     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3439     if (!N0.hasOneUse())
3440       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3441     return Res;
3442   }
3443   case ISD::FMA:
3444   case ISD::FMAD: {
3445     if (!mayIgnoreSignedZero(N0))
3446       return SDValue();
3447 
3448     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3449     SDValue LHS = N0.getOperand(0);
3450     SDValue MHS = N0.getOperand(1);
3451     SDValue RHS = N0.getOperand(2);
3452 
3453     if (LHS.getOpcode() == ISD::FNEG)
3454       LHS = LHS.getOperand(0);
3455     else if (MHS.getOpcode() == ISD::FNEG)
3456       MHS = MHS.getOperand(0);
3457     else
3458       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3459 
3460     if (RHS.getOpcode() != ISD::FNEG)
3461       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3462     else
3463       RHS = RHS.getOperand(0);
3464 
3465     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3466     if (!N0.hasOneUse())
3467       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3468     return Res;
3469   }
3470   case ISD::FMAXNUM:
3471   case ISD::FMINNUM:
3472   case AMDGPUISD::FMAX_LEGACY:
3473   case AMDGPUISD::FMIN_LEGACY: {
3474     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3475     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3476     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3477     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3478 
3479     SDValue LHS = N0.getOperand(0);
3480     SDValue RHS = N0.getOperand(1);
3481 
3482     // 0 doesn't have a negated inline immediate.
3483     // TODO: Shouldn't fold 1/2pi either, and should be generalized to other
3484     // operations.
3485     if (isConstantFPZero(RHS))
3486       return SDValue();
3487 
3488     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3489     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3490     unsigned Opposite = inverseMinMax(Opc);
3491 
3492     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3493     if (!N0.hasOneUse())
3494       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3495     return Res;
3496   }
3497   case ISD::FP_EXTEND:
3498   case ISD::FTRUNC:
3499   case ISD::FRINT:
3500   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3501   case ISD::FSIN:
3502   case AMDGPUISD::RCP:
3503   case AMDGPUISD::RCP_LEGACY:
3504   case AMDGPUISD::SIN_HW: {
3505     SDValue CvtSrc = N0.getOperand(0);
3506     if (CvtSrc.getOpcode() == ISD::FNEG) {
3507       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3508       // (fneg (rcp (fneg x))) -> (rcp x)
3509       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3510     }
3511 
3512     if (!N0.hasOneUse())
3513       return SDValue();
3514 
3515     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3516     // (fneg (rcp x)) -> (rcp (fneg x))
3517     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3518     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3519   }
3520   case ISD::FP_ROUND: {
3521     SDValue CvtSrc = N0.getOperand(0);
3522 
3523     if (CvtSrc.getOpcode() == ISD::FNEG) {
3524       // (fneg (fp_round (fneg x))) -> (fp_round x)
3525       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3526                          CvtSrc.getOperand(0), N0.getOperand(1));
3527     }
3528 
3529     if (!N0.hasOneUse())
3530       return SDValue();
3531 
3532     // (fneg (fp_round x)) -> (fp_round (fneg x))
3533     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3534     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3535   }
3536   case ISD::FP16_TO_FP: {
3537     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3538     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3539     // Put the fneg back as a legal source operation that can be matched later.
3540     SDLoc SL(N);
3541 
3542     SDValue Src = N0.getOperand(0);
3543     EVT SrcVT = Src.getValueType();
3544 
3545     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3546     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3547                                   DAG.getConstant(0x8000, SL, SrcVT));
3548     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3549   }
3550   default:
3551     return SDValue();
3552   }
3553 }
3554 
3555 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3556                                                  DAGCombinerInfo &DCI) const {
3557   SelectionDAG &DAG = DCI.DAG;
3558   SDValue N0 = N->getOperand(0);
3559 
3560   if (!N0.hasOneUse())
3561     return SDValue();
3562 
3563   switch (N0.getOpcode()) {
3564   case ISD::FP16_TO_FP: {
3565     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3566     SDLoc SL(N);
3567     SDValue Src = N0.getOperand(0);
3568     EVT SrcVT = Src.getValueType();
3569 
3570     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3571     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3572                                   DAG.getConstant(0x7fff, SL, SrcVT));
3573     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3574   }
3575   default:
3576     return SDValue();
3577   }
3578 }
3579 
3580 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3581                                                 DAGCombinerInfo &DCI) const {
3582   SelectionDAG &DAG = DCI.DAG;
3583   SDLoc DL(N);
3584 
3585   switch(N->getOpcode()) {
3586   default:
3587     break;
3588   case ISD::BITCAST: {
3589     EVT DestVT = N->getValueType(0);
3590 
3591     // Push casts through vector builds. This helps avoid emitting a large
3592     // number of copies when materializing floating point vector constants.
3593     //
3594     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3595     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3596     if (DestVT.isVector()) {
3597       SDValue Src = N->getOperand(0);
3598       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3599         EVT SrcVT = Src.getValueType();
3600         unsigned NElts = DestVT.getVectorNumElements();
3601 
3602         if (SrcVT.getVectorNumElements() == NElts) {
3603           EVT DestEltVT = DestVT.getVectorElementType();
3604 
3605           SmallVector<SDValue, 8> CastedElts;
3606           SDLoc SL(N);
3607           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3608             SDValue Elt = Src.getOperand(I);
3609             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3610           }
3611 
3612           return DAG.getBuildVector(DestVT, SL, CastedElts);
3613         }
3614       }
3615     }
3616 
3617     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3618       break;
3619 
3620     // Fold bitcasts of constants.
3621     //
3622     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3623     // TODO: Generalize and move to DAGCombiner
3624     SDValue Src = N->getOperand(0);
3625     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3626       assert(Src.getValueType() == MVT::i64);
3627       SDLoc SL(N);
3628       uint64_t CVal = C->getZExtValue();
3629       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
3630                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3631                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3632     }
3633 
3634     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3635       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3636       SDLoc SL(N);
3637       uint64_t CVal = Val.getZExtValue();
3638       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3639                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3640                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3641 
3642       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3643     }
3644 
3645     break;
3646   }
3647   case ISD::SHL: {
3648     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3649       break;
3650 
3651     return performShlCombine(N, DCI);
3652   }
3653   case ISD::SRL: {
3654     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3655       break;
3656 
3657     return performSrlCombine(N, DCI);
3658   }
3659   case ISD::SRA: {
3660     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3661       break;
3662 
3663     return performSraCombine(N, DCI);
3664   }
3665   case ISD::MUL:
3666     return performMulCombine(N, DCI);
3667   case ISD::MULHS:
3668     return performMulhsCombine(N, DCI);
3669   case ISD::MULHU:
3670     return performMulhuCombine(N, DCI);
3671   case AMDGPUISD::MUL_I24:
3672   case AMDGPUISD::MUL_U24:
3673   case AMDGPUISD::MULHI_I24:
3674   case AMDGPUISD::MULHI_U24: {
3675     // If the first call to simplify is successfull, then N may end up being
3676     // deleted, so we shouldn't call simplifyI24 again.
3677     simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI);
3678     return SDValue();
3679   }
3680   case AMDGPUISD::MUL_LOHI_I24:
3681   case AMDGPUISD::MUL_LOHI_U24:
3682     return performMulLoHi24Combine(N, DCI);
3683   case ISD::SELECT:
3684     return performSelectCombine(N, DCI);
3685   case ISD::FNEG:
3686     return performFNegCombine(N, DCI);
3687   case ISD::FABS:
3688     return performFAbsCombine(N, DCI);
3689   case AMDGPUISD::BFE_I32:
3690   case AMDGPUISD::BFE_U32: {
3691     assert(!N->getValueType(0).isVector() &&
3692            "Vector handling of BFE not implemented");
3693     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
3694     if (!Width)
3695       break;
3696 
3697     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
3698     if (WidthVal == 0)
3699       return DAG.getConstant(0, DL, MVT::i32);
3700 
3701     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
3702     if (!Offset)
3703       break;
3704 
3705     SDValue BitsFrom = N->getOperand(0);
3706     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
3707 
3708     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
3709 
3710     if (OffsetVal == 0) {
3711       // This is already sign / zero extended, so try to fold away extra BFEs.
3712       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
3713 
3714       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
3715       if (OpSignBits >= SignBits)
3716         return BitsFrom;
3717 
3718       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
3719       if (Signed) {
3720         // This is a sign_extend_inreg. Replace it to take advantage of existing
3721         // DAG Combines. If not eliminated, we will match back to BFE during
3722         // selection.
3723 
3724         // TODO: The sext_inreg of extended types ends, although we can could
3725         // handle them in a single BFE.
3726         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
3727                            DAG.getValueType(SmallVT));
3728       }
3729 
3730       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
3731     }
3732 
3733     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
3734       if (Signed) {
3735         return constantFoldBFE<int32_t>(DAG,
3736                                         CVal->getSExtValue(),
3737                                         OffsetVal,
3738                                         WidthVal,
3739                                         DL);
3740       }
3741 
3742       return constantFoldBFE<uint32_t>(DAG,
3743                                        CVal->getZExtValue(),
3744                                        OffsetVal,
3745                                        WidthVal,
3746                                        DL);
3747     }
3748 
3749     if ((OffsetVal + WidthVal) >= 32 &&
3750         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
3751       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
3752       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
3753                          BitsFrom, ShiftVal);
3754     }
3755 
3756     if (BitsFrom.hasOneUse()) {
3757       APInt Demanded = APInt::getBitsSet(32,
3758                                          OffsetVal,
3759                                          OffsetVal + WidthVal);
3760 
3761       KnownBits Known;
3762       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3763                                             !DCI.isBeforeLegalizeOps());
3764       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3765       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
3766           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
3767         DCI.CommitTargetLoweringOpt(TLO);
3768       }
3769     }
3770 
3771     break;
3772   }
3773   case ISD::LOAD:
3774     return performLoadCombine(N, DCI);
3775   case ISD::STORE:
3776     return performStoreCombine(N, DCI);
3777   case AMDGPUISD::CLAMP:
3778     return performClampCombine(N, DCI);
3779   case AMDGPUISD::RCP: {
3780     if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
3781       // XXX - Should this flush denormals?
3782       const APFloat &Val = CFP->getValueAPF();
3783       APFloat One(Val.getSemantics(), "1.0");
3784       return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3785     }
3786 
3787     break;
3788   }
3789   case ISD::AssertZext:
3790   case ISD::AssertSext:
3791     return performAssertSZExtCombine(N, DCI);
3792   }
3793   return SDValue();
3794 }
3795 
3796 //===----------------------------------------------------------------------===//
3797 // Helper functions
3798 //===----------------------------------------------------------------------===//
3799 
3800 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
3801                                                    const TargetRegisterClass *RC,
3802                                                    unsigned Reg, EVT VT,
3803                                                    const SDLoc &SL,
3804                                                    bool RawReg) const {
3805   MachineFunction &MF = DAG.getMachineFunction();
3806   MachineRegisterInfo &MRI = MF.getRegInfo();
3807   unsigned VReg;
3808 
3809   if (!MRI.isLiveIn(Reg)) {
3810     VReg = MRI.createVirtualRegister(RC);
3811     MRI.addLiveIn(Reg, VReg);
3812   } else {
3813     VReg = MRI.getLiveInVirtReg(Reg);
3814   }
3815 
3816   if (RawReg)
3817     return DAG.getRegister(VReg, VT);
3818 
3819   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
3820 }
3821 
3822 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
3823                                                   EVT VT,
3824                                                   const SDLoc &SL,
3825                                                   int64_t Offset) const {
3826   MachineFunction &MF = DAG.getMachineFunction();
3827   MachineFrameInfo &MFI = MF.getFrameInfo();
3828 
3829   int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
3830   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
3831   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
3832 
3833   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
3834                      MachineMemOperand::MODereferenceable |
3835                      MachineMemOperand::MOInvariant);
3836 }
3837 
3838 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
3839                                                    const SDLoc &SL,
3840                                                    SDValue Chain,
3841                                                    SDValue StackPtr,
3842                                                    SDValue ArgVal,
3843                                                    int64_t Offset) const {
3844   MachineFunction &MF = DAG.getMachineFunction();
3845   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
3846   SDValue PtrOffset = DAG.getConstant(Offset, SL, MVT::i32);
3847   SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, StackPtr, PtrOffset);
3848 
3849   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
3850                                MachineMemOperand::MODereferenceable);
3851   return Store;
3852 }
3853 
3854 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
3855                                              const TargetRegisterClass *RC,
3856                                              EVT VT, const SDLoc &SL,
3857                                              const ArgDescriptor &Arg) const {
3858   assert(Arg && "Attempting to load missing argument");
3859 
3860   if (Arg.isRegister())
3861     return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL);
3862   return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
3863 }
3864 
3865 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
3866     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
3867   unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr();
3868   uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment);
3869   switch (Param) {
3870   case GRID_DIM:
3871     return ArgOffset;
3872   case GRID_OFFSET:
3873     return ArgOffset + 4;
3874   }
3875   llvm_unreachable("unexpected implicit parameter type");
3876 }
3877 
3878 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
3879 
3880 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
3881   switch ((AMDGPUISD::NodeType)Opcode) {
3882   case AMDGPUISD::FIRST_NUMBER: break;
3883   // AMDIL DAG nodes
3884   NODE_NAME_CASE(UMUL);
3885   NODE_NAME_CASE(BRANCH_COND);
3886 
3887   // AMDGPU DAG nodes
3888   NODE_NAME_CASE(IF)
3889   NODE_NAME_CASE(ELSE)
3890   NODE_NAME_CASE(LOOP)
3891   NODE_NAME_CASE(CALL)
3892   NODE_NAME_CASE(TC_RETURN)
3893   NODE_NAME_CASE(TRAP)
3894   NODE_NAME_CASE(RET_FLAG)
3895   NODE_NAME_CASE(RETURN_TO_EPILOG)
3896   NODE_NAME_CASE(ENDPGM)
3897   NODE_NAME_CASE(DWORDADDR)
3898   NODE_NAME_CASE(FRACT)
3899   NODE_NAME_CASE(SETCC)
3900   NODE_NAME_CASE(SETREG)
3901   NODE_NAME_CASE(FMA_W_CHAIN)
3902   NODE_NAME_CASE(FMUL_W_CHAIN)
3903   NODE_NAME_CASE(CLAMP)
3904   NODE_NAME_CASE(COS_HW)
3905   NODE_NAME_CASE(SIN_HW)
3906   NODE_NAME_CASE(FMAX_LEGACY)
3907   NODE_NAME_CASE(FMIN_LEGACY)
3908   NODE_NAME_CASE(FMAX3)
3909   NODE_NAME_CASE(SMAX3)
3910   NODE_NAME_CASE(UMAX3)
3911   NODE_NAME_CASE(FMIN3)
3912   NODE_NAME_CASE(SMIN3)
3913   NODE_NAME_CASE(UMIN3)
3914   NODE_NAME_CASE(FMED3)
3915   NODE_NAME_CASE(SMED3)
3916   NODE_NAME_CASE(UMED3)
3917   NODE_NAME_CASE(URECIP)
3918   NODE_NAME_CASE(DIV_SCALE)
3919   NODE_NAME_CASE(DIV_FMAS)
3920   NODE_NAME_CASE(DIV_FIXUP)
3921   NODE_NAME_CASE(FMAD_FTZ)
3922   NODE_NAME_CASE(TRIG_PREOP)
3923   NODE_NAME_CASE(RCP)
3924   NODE_NAME_CASE(RSQ)
3925   NODE_NAME_CASE(RCP_LEGACY)
3926   NODE_NAME_CASE(RSQ_LEGACY)
3927   NODE_NAME_CASE(FMUL_LEGACY)
3928   NODE_NAME_CASE(RSQ_CLAMP)
3929   NODE_NAME_CASE(LDEXP)
3930   NODE_NAME_CASE(FP_CLASS)
3931   NODE_NAME_CASE(DOT4)
3932   NODE_NAME_CASE(CARRY)
3933   NODE_NAME_CASE(BORROW)
3934   NODE_NAME_CASE(BFE_U32)
3935   NODE_NAME_CASE(BFE_I32)
3936   NODE_NAME_CASE(BFI)
3937   NODE_NAME_CASE(BFM)
3938   NODE_NAME_CASE(FFBH_U32)
3939   NODE_NAME_CASE(FFBH_I32)
3940   NODE_NAME_CASE(FFBL_B32)
3941   NODE_NAME_CASE(MUL_U24)
3942   NODE_NAME_CASE(MUL_I24)
3943   NODE_NAME_CASE(MULHI_U24)
3944   NODE_NAME_CASE(MULHI_I24)
3945   NODE_NAME_CASE(MUL_LOHI_U24)
3946   NODE_NAME_CASE(MUL_LOHI_I24)
3947   NODE_NAME_CASE(MAD_U24)
3948   NODE_NAME_CASE(MAD_I24)
3949   NODE_NAME_CASE(TEXTURE_FETCH)
3950   NODE_NAME_CASE(EXPORT)
3951   NODE_NAME_CASE(EXPORT_DONE)
3952   NODE_NAME_CASE(R600_EXPORT)
3953   NODE_NAME_CASE(CONST_ADDRESS)
3954   NODE_NAME_CASE(REGISTER_LOAD)
3955   NODE_NAME_CASE(REGISTER_STORE)
3956   NODE_NAME_CASE(SAMPLE)
3957   NODE_NAME_CASE(SAMPLEB)
3958   NODE_NAME_CASE(SAMPLED)
3959   NODE_NAME_CASE(SAMPLEL)
3960   NODE_NAME_CASE(CVT_F32_UBYTE0)
3961   NODE_NAME_CASE(CVT_F32_UBYTE1)
3962   NODE_NAME_CASE(CVT_F32_UBYTE2)
3963   NODE_NAME_CASE(CVT_F32_UBYTE3)
3964   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
3965   NODE_NAME_CASE(FP_TO_FP16)
3966   NODE_NAME_CASE(FP16_ZEXT)
3967   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
3968   NODE_NAME_CASE(CONST_DATA_PTR)
3969   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
3970   NODE_NAME_CASE(KILL)
3971   NODE_NAME_CASE(DUMMY_CHAIN)
3972   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
3973   NODE_NAME_CASE(INIT_EXEC)
3974   NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
3975   NODE_NAME_CASE(SENDMSG)
3976   NODE_NAME_CASE(SENDMSGHALT)
3977   NODE_NAME_CASE(INTERP_MOV)
3978   NODE_NAME_CASE(INTERP_P1)
3979   NODE_NAME_CASE(INTERP_P2)
3980   NODE_NAME_CASE(STORE_MSKOR)
3981   NODE_NAME_CASE(LOAD_CONSTANT)
3982   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
3983   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3)
3984   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
3985   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
3986   NODE_NAME_CASE(ATOMIC_INC)
3987   NODE_NAME_CASE(ATOMIC_DEC)
3988   NODE_NAME_CASE(BUFFER_LOAD)
3989   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
3990   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
3991   }
3992   return nullptr;
3993 }
3994 
3995 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
3996                                               SelectionDAG &DAG, int Enabled,
3997                                               int &RefinementSteps,
3998                                               bool &UseOneConstNR,
3999                                               bool Reciprocal) const {
4000   EVT VT = Operand.getValueType();
4001 
4002   if (VT == MVT::f32) {
4003     RefinementSteps = 0;
4004     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4005   }
4006 
4007   // TODO: There is also f64 rsq instruction, but the documentation is less
4008   // clear on its precision.
4009 
4010   return SDValue();
4011 }
4012 
4013 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4014                                                SelectionDAG &DAG, int Enabled,
4015                                                int &RefinementSteps) const {
4016   EVT VT = Operand.getValueType();
4017 
4018   if (VT == MVT::f32) {
4019     // Reciprocal, < 1 ulp error.
4020     //
4021     // This reciprocal approximation converges to < 0.5 ulp error with one
4022     // newton rhapson performed with two fused multiple adds (FMAs).
4023 
4024     RefinementSteps = 0;
4025     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4026   }
4027 
4028   // TODO: There is also f64 rcp instruction, but the documentation is less
4029   // clear on its precision.
4030 
4031   return SDValue();
4032 }
4033 
4034 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4035     const SDValue Op, KnownBits &Known,
4036     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4037 
4038   Known.resetAll(); // Don't know anything.
4039 
4040   unsigned Opc = Op.getOpcode();
4041 
4042   switch (Opc) {
4043   default:
4044     break;
4045   case AMDGPUISD::CARRY:
4046   case AMDGPUISD::BORROW: {
4047     Known.Zero = APInt::getHighBitsSet(32, 31);
4048     break;
4049   }
4050 
4051   case AMDGPUISD::BFE_I32:
4052   case AMDGPUISD::BFE_U32: {
4053     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4054     if (!CWidth)
4055       return;
4056 
4057     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4058 
4059     if (Opc == AMDGPUISD::BFE_U32)
4060       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4061 
4062     break;
4063   }
4064   case AMDGPUISD::FP_TO_FP16:
4065   case AMDGPUISD::FP16_ZEXT: {
4066     unsigned BitWidth = Known.getBitWidth();
4067 
4068     // High bits are zero.
4069     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4070     break;
4071   }
4072   case AMDGPUISD::MUL_U24:
4073   case AMDGPUISD::MUL_I24: {
4074     KnownBits LHSKnown, RHSKnown;
4075     DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1);
4076     DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1);
4077 
4078     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4079                       RHSKnown.countMinTrailingZeros();
4080     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4081 
4082     unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u);
4083     unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u);
4084     unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4085     if (MaxValBits >= 32)
4086       break;
4087     bool Negative = false;
4088     if (Opc == AMDGPUISD::MUL_I24) {
4089       bool LHSNegative = !!(LHSKnown.One  & (1 << 23));
4090       bool LHSPositive = !!(LHSKnown.Zero & (1 << 23));
4091       bool RHSNegative = !!(RHSKnown.One  & (1 << 23));
4092       bool RHSPositive = !!(RHSKnown.Zero & (1 << 23));
4093       if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4094         break;
4095       Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4096     }
4097     if (Negative)
4098       Known.One.setHighBits(32 - MaxValBits);
4099     else
4100       Known.Zero.setHighBits(32 - MaxValBits);
4101     break;
4102   }
4103   }
4104 }
4105 
4106 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4107     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4108     unsigned Depth) const {
4109   switch (Op.getOpcode()) {
4110   case AMDGPUISD::BFE_I32: {
4111     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4112     if (!Width)
4113       return 1;
4114 
4115     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4116     if (!isNullConstant(Op.getOperand(1)))
4117       return SignBits;
4118 
4119     // TODO: Could probably figure something out with non-0 offsets.
4120     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4121     return std::max(SignBits, Op0SignBits);
4122   }
4123 
4124   case AMDGPUISD::BFE_U32: {
4125     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4126     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4127   }
4128 
4129   case AMDGPUISD::CARRY:
4130   case AMDGPUISD::BORROW:
4131     return 31;
4132   case AMDGPUISD::FP_TO_FP16:
4133   case AMDGPUISD::FP16_ZEXT:
4134     return 16;
4135   default:
4136     return 1;
4137   }
4138 }
4139