1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUDiagnosticInfoUnsupported.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DataLayout.h" 31 32 using namespace llvm; 33 34 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), 38 ArgFlags.getOrigAlign()); 39 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 40 41 return true; 42 } 43 44 #include "AMDGPUGenCallingConv.inc" 45 46 // Find a larger type to do a load / store of a vector with. 47 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 48 unsigned StoreSize = VT.getStoreSizeInBits(); 49 if (StoreSize <= 32) 50 return EVT::getIntegerVT(Ctx, StoreSize); 51 52 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 53 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 54 } 55 56 // Type for a vector that will be loaded to. 57 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 58 unsigned StoreSize = VT.getStoreSizeInBits(); 59 if (StoreSize <= 32) 60 return EVT::getIntegerVT(Ctx, 32); 61 62 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 setOperationAction(ISD::Constant, MVT::i32, Legal); 69 setOperationAction(ISD::Constant, MVT::i64, Legal); 70 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 71 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 72 73 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 74 setOperationAction(ISD::BRIND, MVT::Other, Expand); 75 76 // This is totally unsupported, just custom lower to produce an error. 77 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 78 79 // We need to custom lower some of the intrinsics 80 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 81 82 // Library functions. These default to Expand, but we have instructions 83 // for them. 84 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 85 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 86 setOperationAction(ISD::FPOW, MVT::f32, Legal); 87 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 88 setOperationAction(ISD::FABS, MVT::f32, Legal); 89 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 90 setOperationAction(ISD::FRINT, MVT::f32, Legal); 91 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 92 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 93 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 94 95 setOperationAction(ISD::FROUND, MVT::f32, Custom); 96 setOperationAction(ISD::FROUND, MVT::f64, Custom); 97 98 setOperationAction(ISD::FREM, MVT::f32, Custom); 99 setOperationAction(ISD::FREM, MVT::f64, Custom); 100 101 // v_mad_f32 does not support denormals according to some sources. 102 if (!Subtarget->hasFP32Denormals()) 103 setOperationAction(ISD::FMAD, MVT::f32, Legal); 104 105 // Expand to fneg + fadd. 106 setOperationAction(ISD::FSUB, MVT::f64, Expand); 107 108 // Lower floating point store/load to integer store/load to reduce the number 109 // of patterns in tablegen. 110 setOperationAction(ISD::STORE, MVT::f32, Promote); 111 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 112 113 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 114 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 115 116 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 117 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 118 119 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 120 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 121 122 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 123 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 124 125 setOperationAction(ISD::STORE, MVT::f64, Promote); 126 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64); 127 128 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 129 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64); 130 131 // Custom lowering of vector stores is required for local address space 132 // stores. 133 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 134 135 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 136 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 137 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 138 139 // XXX: This can be change to Custom, once ExpandVectorStores can 140 // handle 64-bit stores. 141 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 142 143 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 144 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 145 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 146 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 147 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand); 148 149 150 setOperationAction(ISD::LOAD, MVT::f32, Promote); 151 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 152 153 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 155 156 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 158 159 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 161 162 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 164 165 setOperationAction(ISD::LOAD, MVT::f64, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64); 167 168 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64); 170 171 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 172 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 173 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 174 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 175 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 176 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 177 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 178 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 179 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 180 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 181 182 // There are no 64-bit extloads. These should be done as a 32-bit extload and 183 // an extension to 64-bit. 184 for (MVT VT : MVT::integer_valuetypes()) { 185 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 186 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 187 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 188 } 189 190 for (MVT VT : MVT::integer_vector_valuetypes()) { 191 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 193 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 194 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 195 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 196 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 197 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 198 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 199 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 200 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 201 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 202 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 203 } 204 205 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 206 207 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 208 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 209 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 210 setOperationAction(ISD::FRINT, MVT::f64, Custom); 211 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 212 } 213 214 if (!Subtarget->hasBFI()) { 215 // fcopysign can be done in a single instruction with BFI. 216 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 217 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 218 } 219 220 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 221 222 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 223 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 226 227 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 228 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 231 232 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 233 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 234 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 235 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 236 237 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 238 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 239 240 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 241 for (MVT VT : ScalarIntVTs) { 242 setOperationAction(ISD::SREM, VT, Expand); 243 setOperationAction(ISD::SDIV, VT, Expand); 244 245 // GPU does not have divrem function for signed or unsigned. 246 setOperationAction(ISD::SDIVREM, VT, Custom); 247 setOperationAction(ISD::UDIVREM, VT, Custom); 248 249 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 250 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 251 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 252 253 setOperationAction(ISD::BSWAP, VT, Expand); 254 setOperationAction(ISD::CTTZ, VT, Expand); 255 setOperationAction(ISD::CTLZ, VT, Expand); 256 } 257 258 if (!Subtarget->hasBCNT(32)) 259 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 260 261 if (!Subtarget->hasBCNT(64)) 262 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 263 264 // The hardware supports 32-bit ROTR, but not ROTL. 265 setOperationAction(ISD::ROTL, MVT::i32, Expand); 266 setOperationAction(ISD::ROTL, MVT::i64, Expand); 267 setOperationAction(ISD::ROTR, MVT::i64, Expand); 268 269 setOperationAction(ISD::MUL, MVT::i64, Expand); 270 setOperationAction(ISD::MULHU, MVT::i64, Expand); 271 setOperationAction(ISD::MULHS, MVT::i64, Expand); 272 setOperationAction(ISD::UDIV, MVT::i32, Expand); 273 setOperationAction(ISD::UREM, MVT::i32, Expand); 274 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 275 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 276 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 277 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 278 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 279 280 setOperationAction(ISD::SMIN, MVT::i32, Legal); 281 setOperationAction(ISD::UMIN, MVT::i32, Legal); 282 setOperationAction(ISD::SMAX, MVT::i32, Legal); 283 setOperationAction(ISD::UMAX, MVT::i32, Legal); 284 285 if (!Subtarget->hasFFBH()) 286 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 287 288 if (!Subtarget->hasFFBL()) 289 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 290 291 static const MVT::SimpleValueType VectorIntTypes[] = { 292 MVT::v2i32, MVT::v4i32 293 }; 294 295 for (MVT VT : VectorIntTypes) { 296 // Expand the following operations for the current type by default. 297 setOperationAction(ISD::ADD, VT, Expand); 298 setOperationAction(ISD::AND, VT, Expand); 299 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 300 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 301 setOperationAction(ISD::MUL, VT, Expand); 302 setOperationAction(ISD::OR, VT, Expand); 303 setOperationAction(ISD::SHL, VT, Expand); 304 setOperationAction(ISD::SRA, VT, Expand); 305 setOperationAction(ISD::SRL, VT, Expand); 306 setOperationAction(ISD::ROTL, VT, Expand); 307 setOperationAction(ISD::ROTR, VT, Expand); 308 setOperationAction(ISD::SUB, VT, Expand); 309 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 310 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 311 setOperationAction(ISD::SDIV, VT, Expand); 312 setOperationAction(ISD::UDIV, VT, Expand); 313 setOperationAction(ISD::SREM, VT, Expand); 314 setOperationAction(ISD::UREM, VT, Expand); 315 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 316 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 317 setOperationAction(ISD::SDIVREM, VT, Custom); 318 setOperationAction(ISD::UDIVREM, VT, Expand); 319 setOperationAction(ISD::ADDC, VT, Expand); 320 setOperationAction(ISD::SUBC, VT, Expand); 321 setOperationAction(ISD::ADDE, VT, Expand); 322 setOperationAction(ISD::SUBE, VT, Expand); 323 setOperationAction(ISD::SELECT, VT, Expand); 324 setOperationAction(ISD::VSELECT, VT, Expand); 325 setOperationAction(ISD::SELECT_CC, VT, Expand); 326 setOperationAction(ISD::XOR, VT, Expand); 327 setOperationAction(ISD::BSWAP, VT, Expand); 328 setOperationAction(ISD::CTPOP, VT, Expand); 329 setOperationAction(ISD::CTTZ, VT, Expand); 330 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 331 setOperationAction(ISD::CTLZ, VT, Expand); 332 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 333 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 334 } 335 336 static const MVT::SimpleValueType FloatVectorTypes[] = { 337 MVT::v2f32, MVT::v4f32 338 }; 339 340 for (MVT VT : FloatVectorTypes) { 341 setOperationAction(ISD::FABS, VT, Expand); 342 setOperationAction(ISD::FMINNUM, VT, Expand); 343 setOperationAction(ISD::FMAXNUM, VT, Expand); 344 setOperationAction(ISD::FADD, VT, Expand); 345 setOperationAction(ISD::FCEIL, VT, Expand); 346 setOperationAction(ISD::FCOS, VT, Expand); 347 setOperationAction(ISD::FDIV, VT, Expand); 348 setOperationAction(ISD::FEXP2, VT, Expand); 349 setOperationAction(ISD::FLOG2, VT, Expand); 350 setOperationAction(ISD::FREM, VT, Expand); 351 setOperationAction(ISD::FPOW, VT, Expand); 352 setOperationAction(ISD::FFLOOR, VT, Expand); 353 setOperationAction(ISD::FTRUNC, VT, Expand); 354 setOperationAction(ISD::FMUL, VT, Expand); 355 setOperationAction(ISD::FMA, VT, Expand); 356 setOperationAction(ISD::FRINT, VT, Expand); 357 setOperationAction(ISD::FNEARBYINT, VT, Expand); 358 setOperationAction(ISD::FSQRT, VT, Expand); 359 setOperationAction(ISD::FSIN, VT, Expand); 360 setOperationAction(ISD::FSUB, VT, Expand); 361 setOperationAction(ISD::FNEG, VT, Expand); 362 setOperationAction(ISD::SELECT, VT, Expand); 363 setOperationAction(ISD::VSELECT, VT, Expand); 364 setOperationAction(ISD::SELECT_CC, VT, Expand); 365 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 366 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 367 } 368 369 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 370 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 371 372 setTargetDAGCombine(ISD::SHL); 373 setTargetDAGCombine(ISD::MUL); 374 setTargetDAGCombine(ISD::SELECT); 375 setTargetDAGCombine(ISD::SELECT_CC); 376 setTargetDAGCombine(ISD::STORE); 377 378 setTargetDAGCombine(ISD::FADD); 379 setTargetDAGCombine(ISD::FSUB); 380 381 setBooleanContents(ZeroOrNegativeOneBooleanContent); 382 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 383 384 setSchedulingPreference(Sched::RegPressure); 385 setJumpIsExpensive(true); 386 387 // SI at least has hardware support for floating point exceptions, but no way 388 // of using or handling them is implemented. They are also optional in OpenCL 389 // (Section 7.3) 390 setHasFloatingPointExceptions(false); 391 392 setSelectIsExpensive(false); 393 PredictableSelectIsExpensive = false; 394 395 setFsqrtIsCheap(true); 396 397 // We want to find all load dependencies for long chains of stores to enable 398 // merging into very wide vectors. The problem is with vectors with > 4 399 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 400 // vectors are a legal type, even though we have to split the loads 401 // usually. When we can more precisely specify load legality per address 402 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 403 // smarter so that they can figure out what to do in 2 iterations without all 404 // N > 4 stores on the same chain. 405 GatherAllAliasesMaxDepth = 16; 406 407 // FIXME: Need to really handle these. 408 MaxStoresPerMemcpy = 4096; 409 MaxStoresPerMemmove = 4096; 410 MaxStoresPerMemset = 4096; 411 } 412 413 //===----------------------------------------------------------------------===// 414 // Target Information 415 //===----------------------------------------------------------------------===// 416 417 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 418 return MVT::i32; 419 } 420 421 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 422 return true; 423 } 424 425 // The backend supports 32 and 64 bit floating point immediates. 426 // FIXME: Why are we reporting vectors of FP immediates as legal? 427 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 428 EVT ScalarVT = VT.getScalarType(); 429 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 430 } 431 432 // We don't want to shrink f64 / f32 constants. 433 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 434 EVT ScalarVT = VT.getScalarType(); 435 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 436 } 437 438 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 439 ISD::LoadExtType, 440 EVT NewVT) const { 441 442 unsigned NewSize = NewVT.getStoreSizeInBits(); 443 444 // If we are reducing to a 32-bit load, this is always better. 445 if (NewSize == 32) 446 return true; 447 448 EVT OldVT = N->getValueType(0); 449 unsigned OldSize = OldVT.getStoreSizeInBits(); 450 451 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 452 // extloads, so doing one requires using a buffer_load. In cases where we 453 // still couldn't use a scalar load, using the wider load shouldn't really 454 // hurt anything. 455 456 // If the old size already had to be an extload, there's no harm in continuing 457 // to reduce the width. 458 return (OldSize < 32); 459 } 460 461 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 462 EVT CastTy) const { 463 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 464 return true; 465 466 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 467 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 468 469 return ((LScalarSize <= CastScalarSize) || 470 (CastScalarSize >= 32) || 471 (LScalarSize < 32)); 472 } 473 474 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 475 // profitable with the expansion for 64-bit since it's generally good to 476 // speculate things. 477 // FIXME: These should really have the size as a parameter. 478 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 479 return true; 480 } 481 482 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 483 return true; 484 } 485 486 //===---------------------------------------------------------------------===// 487 // Target Properties 488 //===---------------------------------------------------------------------===// 489 490 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 491 assert(VT.isFloatingPoint()); 492 return VT == MVT::f32 || VT == MVT::f64; 493 } 494 495 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 496 assert(VT.isFloatingPoint()); 497 return VT == MVT::f32 || VT == MVT::f64; 498 } 499 500 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 501 unsigned NumElem, 502 unsigned AS) const { 503 return true; 504 } 505 506 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 507 // There are few operations which truly have vector input operands. Any vector 508 // operation is going to involve operations on each component, and a 509 // build_vector will be a copy per element, so it always makes sense to use a 510 // build_vector input in place of the extracted element to avoid a copy into a 511 // super register. 512 // 513 // We should probably only do this if all users are extracts only, but this 514 // should be the common case. 515 return true; 516 } 517 518 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 519 // Truncate is just accessing a subregister. 520 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 521 } 522 523 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 524 // Truncate is just accessing a subregister. 525 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 526 (Dest->getPrimitiveSizeInBits() % 32 == 0); 527 } 528 529 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 530 unsigned SrcSize = Src->getScalarSizeInBits(); 531 unsigned DestSize = Dest->getScalarSizeInBits(); 532 533 return SrcSize == 32 && DestSize == 64; 534 } 535 536 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 537 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 538 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 539 // this will enable reducing 64-bit operations the 32-bit, which is always 540 // good. 541 return Src == MVT::i32 && Dest == MVT::i64; 542 } 543 544 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 545 return isZExtFree(Val.getValueType(), VT2); 546 } 547 548 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 549 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 550 // limited number of native 64-bit operations. Shrinking an operation to fit 551 // in a single 32-bit register should always be helpful. As currently used, 552 // this is much less general than the name suggests, and is only used in 553 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 554 // not profitable, and may actually be harmful. 555 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 556 } 557 558 //===---------------------------------------------------------------------===// 559 // TargetLowering Callbacks 560 //===---------------------------------------------------------------------===// 561 562 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 563 const SmallVectorImpl<ISD::InputArg> &Ins) const { 564 565 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 566 } 567 568 SDValue AMDGPUTargetLowering::LowerReturn( 569 SDValue Chain, 570 CallingConv::ID CallConv, 571 bool isVarArg, 572 const SmallVectorImpl<ISD::OutputArg> &Outs, 573 const SmallVectorImpl<SDValue> &OutVals, 574 SDLoc DL, SelectionDAG &DAG) const { 575 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 576 } 577 578 //===---------------------------------------------------------------------===// 579 // Target specific lowering 580 //===---------------------------------------------------------------------===// 581 582 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 583 SmallVectorImpl<SDValue> &InVals) const { 584 SDValue Callee = CLI.Callee; 585 SelectionDAG &DAG = CLI.DAG; 586 587 const Function &Fn = *DAG.getMachineFunction().getFunction(); 588 589 StringRef FuncName("<unknown>"); 590 591 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 592 FuncName = G->getSymbol(); 593 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 594 FuncName = G->getGlobal()->getName(); 595 596 DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName); 597 DAG.getContext()->diagnose(NoCalls); 598 return SDValue(); 599 } 600 601 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 602 SelectionDAG &DAG) const { 603 const Function &Fn = *DAG.getMachineFunction().getFunction(); 604 605 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "dynamic alloca"); 606 DAG.getContext()->diagnose(NoDynamicAlloca); 607 return SDValue(); 608 } 609 610 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 611 SelectionDAG &DAG) const { 612 switch (Op.getOpcode()) { 613 default: 614 Op.getNode()->dump(); 615 llvm_unreachable("Custom lowering code for this" 616 "instruction is not implemented yet!"); 617 break; 618 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 619 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 620 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 621 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); 622 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 623 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 624 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 625 case ISD::FREM: return LowerFREM(Op, DAG); 626 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 627 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 628 case ISD::FRINT: return LowerFRINT(Op, DAG); 629 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 630 case ISD::FROUND: return LowerFROUND(Op, DAG); 631 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 632 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 633 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 634 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 635 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 636 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 637 } 638 return Op; 639 } 640 641 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 642 SmallVectorImpl<SDValue> &Results, 643 SelectionDAG &DAG) const { 644 switch (N->getOpcode()) { 645 case ISD::SIGN_EXTEND_INREG: 646 // Different parts of legalization seem to interpret which type of 647 // sign_extend_inreg is the one to check for custom lowering. The extended 648 // from type is what really matters, but some places check for custom 649 // lowering of the result type. This results in trying to use 650 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 651 // nothing here and let the illegal result integer be handled normally. 652 return; 653 case ISD::LOAD: { 654 SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode(); 655 if (!Node) 656 return; 657 658 Results.push_back(SDValue(Node, 0)); 659 Results.push_back(SDValue(Node, 1)); 660 // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode 661 // function 662 DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1)); 663 return; 664 } 665 case ISD::STORE: { 666 SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG); 667 if (Lowered.getNode()) 668 Results.push_back(Lowered); 669 return; 670 } 671 default: 672 return; 673 } 674 } 675 676 // FIXME: This implements accesses to initialized globals in the constant 677 // address space by copying them to private and accessing that. It does not 678 // properly handle illegal types or vectors. The private vector loads are not 679 // scalarized, and the illegal scalars hit an assertion. This technique will not 680 // work well with large initializers, and this should eventually be 681 // removed. Initialized globals should be placed into a data section that the 682 // runtime will load into a buffer before the kernel is executed. Uses of the 683 // global need to be replaced with a pointer loaded from an implicit kernel 684 // argument into this buffer holding the copy of the data, which will remove the 685 // need for any of this. 686 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 687 const GlobalValue *GV, 688 const SDValue &InitPtr, 689 SDValue Chain, 690 SelectionDAG &DAG) const { 691 const DataLayout &TD = DAG.getDataLayout(); 692 SDLoc DL(InitPtr); 693 Type *InitTy = Init->getType(); 694 695 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 696 EVT VT = EVT::getEVT(InitTy); 697 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 698 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 699 MachinePointerInfo(UndefValue::get(PtrTy)), false, 700 false, TD.getPrefTypeAlignment(InitTy)); 701 } 702 703 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 704 EVT VT = EVT::getEVT(CFP->getType()); 705 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 706 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 707 MachinePointerInfo(UndefValue::get(PtrTy)), false, 708 false, TD.getPrefTypeAlignment(CFP->getType())); 709 } 710 711 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 712 const StructLayout *SL = TD.getStructLayout(ST); 713 714 EVT PtrVT = InitPtr.getValueType(); 715 SmallVector<SDValue, 8> Chains; 716 717 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 718 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 719 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 720 721 Constant *Elt = Init->getAggregateElement(I); 722 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 723 } 724 725 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 726 } 727 728 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 729 EVT PtrVT = InitPtr.getValueType(); 730 731 unsigned NumElements; 732 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 733 NumElements = AT->getNumElements(); 734 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 735 NumElements = VT->getNumElements(); 736 else 737 llvm_unreachable("Unexpected type"); 738 739 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 740 SmallVector<SDValue, 8> Chains; 741 for (unsigned i = 0; i < NumElements; ++i) { 742 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 743 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 744 745 Constant *Elt = Init->getAggregateElement(i); 746 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 747 } 748 749 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 750 } 751 752 if (isa<UndefValue>(Init)) { 753 EVT VT = EVT::getEVT(InitTy); 754 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 755 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 756 MachinePointerInfo(UndefValue::get(PtrTy)), false, 757 false, TD.getPrefTypeAlignment(InitTy)); 758 } 759 760 Init->dump(); 761 llvm_unreachable("Unhandled constant initializer"); 762 } 763 764 static bool hasDefinedInitializer(const GlobalValue *GV) { 765 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 766 if (!GVar || !GVar->hasInitializer()) 767 return false; 768 769 if (isa<UndefValue>(GVar->getInitializer())) 770 return false; 771 772 return true; 773 } 774 775 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 776 SDValue Op, 777 SelectionDAG &DAG) const { 778 779 const DataLayout &DL = DAG.getDataLayout(); 780 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 781 const GlobalValue *GV = G->getGlobal(); 782 783 switch (G->getAddressSpace()) { 784 case AMDGPUAS::LOCAL_ADDRESS: { 785 // XXX: What does the value of G->getOffset() mean? 786 assert(G->getOffset() == 0 && 787 "Do not know what to do with an non-zero offset"); 788 789 // TODO: We could emit code to handle the initialization somewhere. 790 if (hasDefinedInitializer(GV)) 791 break; 792 793 unsigned Offset; 794 if (MFI->LocalMemoryObjects.count(GV) == 0) { 795 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 796 Offset = MFI->LDSSize; 797 MFI->LocalMemoryObjects[GV] = Offset; 798 // XXX: Account for alignment? 799 MFI->LDSSize += Size; 800 } else { 801 Offset = MFI->LocalMemoryObjects[GV]; 802 } 803 804 return DAG.getConstant(Offset, SDLoc(Op), 805 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 806 } 807 case AMDGPUAS::CONSTANT_ADDRESS: { 808 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 809 Type *EltType = GV->getType()->getElementType(); 810 unsigned Size = DL.getTypeAllocSize(EltType); 811 unsigned Alignment = DL.getPrefTypeAlignment(EltType); 812 813 MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS); 814 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 815 816 int FI = FrameInfo->CreateStackObject(Size, Alignment, false); 817 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT); 818 819 const GlobalVariable *Var = cast<GlobalVariable>(GV); 820 if (!Var->hasInitializer()) { 821 // This has no use, but bugpoint will hit it. 822 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 823 } 824 825 const Constant *Init = Var->getInitializer(); 826 SmallVector<SDNode*, 8> WorkList; 827 828 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(), 829 E = DAG.getEntryNode()->use_end(); I != E; ++I) { 830 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD) 831 continue; 832 WorkList.push_back(*I); 833 } 834 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG); 835 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(), 836 E = WorkList.end(); I != E; ++I) { 837 SmallVector<SDValue, 8> Ops; 838 Ops.push_back(Chain); 839 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) { 840 Ops.push_back((*I)->getOperand(i)); 841 } 842 DAG.UpdateNodeOperands(*I, Ops); 843 } 844 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 845 } 846 } 847 848 const Function &Fn = *DAG.getMachineFunction().getFunction(); 849 DiagnosticInfoUnsupported BadInit(Fn, 850 "initializer for address space"); 851 DAG.getContext()->diagnose(BadInit); 852 return SDValue(); 853 } 854 855 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 856 SelectionDAG &DAG) const { 857 SmallVector<SDValue, 8> Args; 858 859 for (const SDUse &U : Op->ops()) 860 DAG.ExtractVectorElements(U.get(), Args); 861 862 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 863 } 864 865 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 866 SelectionDAG &DAG) const { 867 868 SmallVector<SDValue, 8> Args; 869 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 870 EVT VT = Op.getValueType(); 871 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 872 VT.getVectorNumElements()); 873 874 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 875 } 876 877 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op, 878 SelectionDAG &DAG) const { 879 880 MachineFunction &MF = DAG.getMachineFunction(); 881 const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering(); 882 883 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 884 885 unsigned FrameIndex = FIN->getIndex(); 886 unsigned IgnoredFrameReg; 887 unsigned Offset = 888 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); 889 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), 890 Op.getValueType()); 891 } 892 893 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 894 SelectionDAG &DAG) const { 895 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 896 SDLoc DL(Op); 897 EVT VT = Op.getValueType(); 898 899 switch (IntrinsicID) { 900 default: return Op; 901 case AMDGPUIntrinsic::AMDGPU_abs: 902 case AMDGPUIntrinsic::AMDIL_abs: // Legacy name. 903 return LowerIntrinsicIABS(Op, DAG); 904 case AMDGPUIntrinsic::AMDGPU_lrp: 905 return LowerIntrinsicLRP(Op, DAG); 906 907 case AMDGPUIntrinsic::AMDGPU_clamp: 908 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 909 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 910 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 911 912 case Intrinsic::AMDGPU_div_scale: { 913 // 3rd parameter required to be a constant. 914 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3)); 915 if (!Param) 916 return DAG.getUNDEF(VT); 917 918 // Translate to the operands expected by the machine instruction. The 919 // first parameter must be the same as the first instruction. 920 SDValue Numerator = Op.getOperand(1); 921 SDValue Denominator = Op.getOperand(2); 922 923 // Note this order is opposite of the machine instruction's operations, 924 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 925 // intrinsic has the numerator as the first operand to match a normal 926 // division operation. 927 928 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 929 930 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 931 Denominator, Numerator); 932 } 933 934 case Intrinsic::AMDGPU_div_fmas: 935 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 936 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 937 Op.getOperand(4)); 938 939 case Intrinsic::AMDGPU_div_fixup: 940 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 941 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 942 943 case Intrinsic::AMDGPU_trig_preop: 944 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, 945 Op.getOperand(1), Op.getOperand(2)); 946 947 case Intrinsic::AMDGPU_rcp: 948 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 949 950 case Intrinsic::AMDGPU_rsq: 951 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 952 953 case AMDGPUIntrinsic::AMDGPU_legacy_rsq: 954 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); 955 956 case Intrinsic::AMDGPU_rsq_clamped: 957 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 958 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 959 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 960 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 961 962 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 963 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 964 DAG.getConstantFP(Max, DL, VT)); 965 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 966 DAG.getConstantFP(Min, DL, VT)); 967 } else { 968 return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1)); 969 } 970 971 case Intrinsic::AMDGPU_ldexp: 972 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 973 Op.getOperand(2)); 974 975 case AMDGPUIntrinsic::AMDGPU_imax: 976 return DAG.getNode(ISD::SMAX, DL, VT, Op.getOperand(1), 977 Op.getOperand(2)); 978 case AMDGPUIntrinsic::AMDGPU_umax: 979 return DAG.getNode(ISD::UMAX, DL, VT, Op.getOperand(1), 980 Op.getOperand(2)); 981 case AMDGPUIntrinsic::AMDGPU_imin: 982 return DAG.getNode(ISD::SMIN, DL, VT, Op.getOperand(1), 983 Op.getOperand(2)); 984 case AMDGPUIntrinsic::AMDGPU_umin: 985 return DAG.getNode(ISD::UMIN, DL, VT, Op.getOperand(1), 986 Op.getOperand(2)); 987 988 case AMDGPUIntrinsic::AMDGPU_umul24: 989 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, 990 Op.getOperand(1), Op.getOperand(2)); 991 992 case AMDGPUIntrinsic::AMDGPU_imul24: 993 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, 994 Op.getOperand(1), Op.getOperand(2)); 995 996 case AMDGPUIntrinsic::AMDGPU_umad24: 997 return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT, 998 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 999 1000 case AMDGPUIntrinsic::AMDGPU_imad24: 1001 return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT, 1002 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 1003 1004 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0: 1005 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1)); 1006 1007 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1: 1008 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1)); 1009 1010 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2: 1011 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1)); 1012 1013 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3: 1014 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1)); 1015 1016 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 1017 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 1018 Op.getOperand(1), 1019 Op.getOperand(2), 1020 Op.getOperand(3)); 1021 1022 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 1023 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 1024 Op.getOperand(1), 1025 Op.getOperand(2), 1026 Op.getOperand(3)); 1027 1028 case AMDGPUIntrinsic::AMDGPU_bfi: 1029 return DAG.getNode(AMDGPUISD::BFI, DL, VT, 1030 Op.getOperand(1), 1031 Op.getOperand(2), 1032 Op.getOperand(3)); 1033 1034 case AMDGPUIntrinsic::AMDGPU_bfm: 1035 return DAG.getNode(AMDGPUISD::BFM, DL, VT, 1036 Op.getOperand(1), 1037 Op.getOperand(2)); 1038 1039 case AMDGPUIntrinsic::AMDGPU_brev: 1040 return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1)); 1041 1042 case Intrinsic::AMDGPU_class: 1043 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 1044 Op.getOperand(1), Op.getOperand(2)); 1045 1046 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 1047 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 1048 1049 case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name. 1050 return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1)); 1051 case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name. 1052 return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1)); 1053 } 1054 } 1055 1056 ///IABS(a) = SMAX(sub(0, a), a) 1057 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op, 1058 SelectionDAG &DAG) const { 1059 SDLoc DL(Op); 1060 EVT VT = Op.getValueType(); 1061 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1062 Op.getOperand(1)); 1063 1064 return DAG.getNode(ISD::SMAX, DL, VT, Neg, Op.getOperand(1)); 1065 } 1066 1067 /// Linear Interpolation 1068 /// LRP(a, b, c) = muladd(a, b, (1 - a) * c) 1069 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op, 1070 SelectionDAG &DAG) const { 1071 SDLoc DL(Op); 1072 EVT VT = Op.getValueType(); 1073 // TODO: Should this propagate fast-math-flags? 1074 SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT, 1075 DAG.getConstantFP(1.0f, DL, MVT::f32), 1076 Op.getOperand(1)); 1077 SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA, 1078 Op.getOperand(3)); 1079 return DAG.getNode(ISD::FADD, DL, VT, 1080 DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)), 1081 OneSubAC); 1082 } 1083 1084 /// \brief Generate Min/Max node 1085 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, 1086 EVT VT, 1087 SDValue LHS, 1088 SDValue RHS, 1089 SDValue True, 1090 SDValue False, 1091 SDValue CC, 1092 DAGCombinerInfo &DCI) const { 1093 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 1094 return SDValue(); 1095 1096 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1097 return SDValue(); 1098 1099 SelectionDAG &DAG = DCI.DAG; 1100 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1101 switch (CCOpcode) { 1102 case ISD::SETOEQ: 1103 case ISD::SETONE: 1104 case ISD::SETUNE: 1105 case ISD::SETNE: 1106 case ISD::SETUEQ: 1107 case ISD::SETEQ: 1108 case ISD::SETFALSE: 1109 case ISD::SETFALSE2: 1110 case ISD::SETTRUE: 1111 case ISD::SETTRUE2: 1112 case ISD::SETUO: 1113 case ISD::SETO: 1114 break; 1115 case ISD::SETULE: 1116 case ISD::SETULT: { 1117 if (LHS == True) 1118 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1119 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1120 } 1121 case ISD::SETOLE: 1122 case ISD::SETOLT: 1123 case ISD::SETLE: 1124 case ISD::SETLT: { 1125 // Ordered. Assume ordered for undefined. 1126 1127 // Only do this after legalization to avoid interfering with other combines 1128 // which might occur. 1129 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1130 !DCI.isCalledByLegalizer()) 1131 return SDValue(); 1132 1133 // We need to permute the operands to get the correct NaN behavior. The 1134 // selected operand is the second one based on the failing compare with NaN, 1135 // so permute it based on the compare type the hardware uses. 1136 if (LHS == True) 1137 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1138 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1139 } 1140 case ISD::SETUGE: 1141 case ISD::SETUGT: { 1142 if (LHS == True) 1143 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1144 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1145 } 1146 case ISD::SETGT: 1147 case ISD::SETGE: 1148 case ISD::SETOGE: 1149 case ISD::SETOGT: { 1150 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1151 !DCI.isCalledByLegalizer()) 1152 return SDValue(); 1153 1154 if (LHS == True) 1155 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1156 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1157 } 1158 case ISD::SETCC_INVALID: 1159 llvm_unreachable("Invalid setcc condcode!"); 1160 } 1161 return SDValue(); 1162 } 1163 1164 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op, 1165 SelectionDAG &DAG) const { 1166 LoadSDNode *Load = cast<LoadSDNode>(Op); 1167 EVT MemVT = Load->getMemoryVT(); 1168 EVT MemEltVT = MemVT.getVectorElementType(); 1169 1170 EVT LoadVT = Op.getValueType(); 1171 EVT EltVT = LoadVT.getVectorElementType(); 1172 EVT PtrVT = Load->getBasePtr().getValueType(); 1173 1174 unsigned NumElts = Load->getMemoryVT().getVectorNumElements(); 1175 SmallVector<SDValue, 8> Loads; 1176 SmallVector<SDValue, 8> Chains; 1177 1178 SDLoc SL(Op); 1179 unsigned MemEltSize = MemEltVT.getStoreSize(); 1180 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1181 1182 for (unsigned i = 0; i < NumElts; ++i) { 1183 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(), 1184 DAG.getConstant(i * MemEltSize, SL, PtrVT)); 1185 1186 SDValue NewLoad 1187 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT, 1188 Load->getChain(), Ptr, 1189 SrcValue.getWithOffset(i * MemEltSize), 1190 MemEltVT, Load->isVolatile(), Load->isNonTemporal(), 1191 Load->isInvariant(), Load->getAlignment()); 1192 Loads.push_back(NewLoad.getValue(0)); 1193 Chains.push_back(NewLoad.getValue(1)); 1194 } 1195 1196 SDValue Ops[] = { 1197 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads), 1198 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains) 1199 }; 1200 1201 return DAG.getMergeValues(Ops, SL); 1202 } 1203 1204 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1205 SelectionDAG &DAG) const { 1206 EVT VT = Op.getValueType(); 1207 1208 // If this is a 2 element vector, we really want to scalarize and not create 1209 // weird 1 element vectors. 1210 if (VT.getVectorNumElements() == 2) 1211 return ScalarizeVectorLoad(Op, DAG); 1212 1213 LoadSDNode *Load = cast<LoadSDNode>(Op); 1214 SDValue BasePtr = Load->getBasePtr(); 1215 EVT PtrVT = BasePtr.getValueType(); 1216 EVT MemVT = Load->getMemoryVT(); 1217 SDLoc SL(Op); 1218 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1219 1220 EVT LoVT, HiVT; 1221 EVT LoMemVT, HiMemVT; 1222 SDValue Lo, Hi; 1223 1224 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1225 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1226 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1227 SDValue LoLoad 1228 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1229 Load->getChain(), BasePtr, 1230 SrcValue, 1231 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1232 Load->isInvariant(), Load->getAlignment()); 1233 1234 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1235 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1236 PtrVT)); 1237 1238 SDValue HiLoad 1239 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1240 Load->getChain(), HiPtr, 1241 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1242 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1243 Load->isInvariant(), Load->getAlignment()); 1244 1245 SDValue Ops[] = { 1246 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1247 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1248 LoLoad.getValue(1), HiLoad.getValue(1)) 1249 }; 1250 1251 return DAG.getMergeValues(Ops, SL); 1252 } 1253 1254 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1255 SelectionDAG &DAG) const { 1256 StoreSDNode *Store = cast<StoreSDNode>(Op); 1257 EVT MemVT = Store->getMemoryVT(); 1258 unsigned MemBits = MemVT.getSizeInBits(); 1259 1260 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1261 // truncating store into an i32 store. 1262 // XXX: We could also handle optimize other vector bitwidths. 1263 if (!MemVT.isVector() || MemBits > 32) { 1264 return SDValue(); 1265 } 1266 1267 SDLoc DL(Op); 1268 SDValue Value = Store->getValue(); 1269 EVT VT = Value.getValueType(); 1270 EVT ElemVT = VT.getVectorElementType(); 1271 SDValue Ptr = Store->getBasePtr(); 1272 EVT MemEltVT = MemVT.getVectorElementType(); 1273 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1274 unsigned MemNumElements = MemVT.getVectorNumElements(); 1275 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1276 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1277 1278 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1279 1280 SDValue PackedValue; 1281 for (unsigned i = 0; i < MemNumElements; ++i) { 1282 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1283 DAG.getConstant(i, DL, MVT::i32)); 1284 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1285 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1286 1287 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1288 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1289 1290 if (i == 0) { 1291 PackedValue = Elt; 1292 } else { 1293 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1294 } 1295 } 1296 1297 if (PackedSize < 32) { 1298 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1299 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1300 Store->getMemOperand()->getPointerInfo(), 1301 PackedVT, 1302 Store->isNonTemporal(), Store->isVolatile(), 1303 Store->getAlignment()); 1304 } 1305 1306 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1307 Store->getMemOperand()->getPointerInfo(), 1308 Store->isVolatile(), Store->isNonTemporal(), 1309 Store->getAlignment()); 1310 } 1311 1312 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op, 1313 SelectionDAG &DAG) const { 1314 StoreSDNode *Store = cast<StoreSDNode>(Op); 1315 EVT MemEltVT = Store->getMemoryVT().getVectorElementType(); 1316 EVT EltVT = Store->getValue().getValueType().getVectorElementType(); 1317 EVT PtrVT = Store->getBasePtr().getValueType(); 1318 unsigned NumElts = Store->getMemoryVT().getVectorNumElements(); 1319 SDLoc SL(Op); 1320 1321 SmallVector<SDValue, 8> Chains; 1322 1323 unsigned EltSize = MemEltVT.getStoreSize(); 1324 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1325 1326 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1327 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 1328 Store->getValue(), 1329 DAG.getConstant(i, SL, MVT::i32)); 1330 1331 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT); 1332 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset); 1333 SDValue NewStore = 1334 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr, 1335 SrcValue.getWithOffset(i * EltSize), 1336 MemEltVT, Store->isNonTemporal(), Store->isVolatile(), 1337 Store->getAlignment()); 1338 Chains.push_back(NewStore); 1339 } 1340 1341 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains); 1342 } 1343 1344 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1345 SelectionDAG &DAG) const { 1346 StoreSDNode *Store = cast<StoreSDNode>(Op); 1347 SDValue Val = Store->getValue(); 1348 EVT VT = Val.getValueType(); 1349 1350 // If this is a 2 element vector, we really want to scalarize and not create 1351 // weird 1 element vectors. 1352 if (VT.getVectorNumElements() == 2) 1353 return ScalarizeVectorStore(Op, DAG); 1354 1355 EVT MemVT = Store->getMemoryVT(); 1356 SDValue Chain = Store->getChain(); 1357 SDValue BasePtr = Store->getBasePtr(); 1358 SDLoc SL(Op); 1359 1360 EVT LoVT, HiVT; 1361 EVT LoMemVT, HiMemVT; 1362 SDValue Lo, Hi; 1363 1364 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1365 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1366 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1367 1368 EVT PtrVT = BasePtr.getValueType(); 1369 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1370 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1371 PtrVT)); 1372 1373 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1374 SDValue LoStore 1375 = DAG.getTruncStore(Chain, SL, Lo, 1376 BasePtr, 1377 SrcValue, 1378 LoMemVT, 1379 Store->isNonTemporal(), 1380 Store->isVolatile(), 1381 Store->getAlignment()); 1382 SDValue HiStore 1383 = DAG.getTruncStore(Chain, SL, Hi, 1384 HiPtr, 1385 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1386 HiMemVT, 1387 Store->isNonTemporal(), 1388 Store->isVolatile(), 1389 Store->getAlignment()); 1390 1391 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1392 } 1393 1394 1395 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1396 SDLoc DL(Op); 1397 LoadSDNode *Load = cast<LoadSDNode>(Op); 1398 ISD::LoadExtType ExtType = Load->getExtensionType(); 1399 EVT VT = Op.getValueType(); 1400 EVT MemVT = Load->getMemoryVT(); 1401 1402 if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) { 1403 assert(VT == MVT::i1 && "Only i1 non-extloads expected"); 1404 // FIXME: Copied from PPC 1405 // First, load into 32 bits, then truncate to 1 bit. 1406 1407 SDValue Chain = Load->getChain(); 1408 SDValue BasePtr = Load->getBasePtr(); 1409 MachineMemOperand *MMO = Load->getMemOperand(); 1410 1411 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 1412 BasePtr, MVT::i8, MMO); 1413 1414 SDValue Ops[] = { 1415 DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD), 1416 NewLD.getValue(1) 1417 }; 1418 1419 return DAG.getMergeValues(Ops, DL); 1420 } 1421 1422 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS || 1423 Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS || 1424 ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32)) 1425 return SDValue(); 1426 1427 // <SI && AS=PRIVATE && EXTLOAD && size < 32bit, 1428 // register (2-)byte extract. 1429 1430 // Get Register holding the target. 1431 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(), 1432 DAG.getConstant(2, DL, MVT::i32)); 1433 // Load the Register. 1434 SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(), 1435 Load->getChain(), Ptr, 1436 DAG.getTargetConstant(0, DL, MVT::i32), 1437 Op.getOperand(2)); 1438 1439 // Get offset within the register. 1440 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, 1441 Load->getBasePtr(), 1442 DAG.getConstant(0x3, DL, MVT::i32)); 1443 1444 // Bit offset of target byte (byteIdx * 8). 1445 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1446 DAG.getConstant(3, DL, MVT::i32)); 1447 1448 // Shift to the right. 1449 Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt); 1450 1451 // Eliminate the upper bits by setting them to ... 1452 EVT MemEltVT = MemVT.getScalarType(); 1453 1454 // ... ones. 1455 if (ExtType == ISD::SEXTLOAD) { 1456 SDValue MemEltVTNode = DAG.getValueType(MemEltVT); 1457 1458 SDValue Ops[] = { 1459 DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode), 1460 Load->getChain() 1461 }; 1462 1463 return DAG.getMergeValues(Ops, DL); 1464 } 1465 1466 // ... or zeros. 1467 SDValue Ops[] = { 1468 DAG.getZeroExtendInReg(Ret, DL, MemEltVT), 1469 Load->getChain() 1470 }; 1471 1472 return DAG.getMergeValues(Ops, DL); 1473 } 1474 1475 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1476 SDLoc DL(Op); 1477 SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG); 1478 if (Result.getNode()) { 1479 return Result; 1480 } 1481 1482 StoreSDNode *Store = cast<StoreSDNode>(Op); 1483 SDValue Chain = Store->getChain(); 1484 if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1485 Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && 1486 Store->getValue().getValueType().isVector()) { 1487 return SplitVectorStore(Op, DAG); 1488 } 1489 1490 EVT MemVT = Store->getMemoryVT(); 1491 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS && 1492 MemVT.bitsLT(MVT::i32)) { 1493 unsigned Mask = 0; 1494 if (Store->getMemoryVT() == MVT::i8) { 1495 Mask = 0xff; 1496 } else if (Store->getMemoryVT() == MVT::i16) { 1497 Mask = 0xffff; 1498 } 1499 SDValue BasePtr = Store->getBasePtr(); 1500 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr, 1501 DAG.getConstant(2, DL, MVT::i32)); 1502 SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32, 1503 Chain, Ptr, 1504 DAG.getTargetConstant(0, DL, MVT::i32)); 1505 1506 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr, 1507 DAG.getConstant(0x3, DL, MVT::i32)); 1508 1509 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1510 DAG.getConstant(3, DL, MVT::i32)); 1511 1512 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, 1513 Store->getValue()); 1514 1515 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); 1516 1517 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, 1518 MaskedValue, ShiftAmt); 1519 1520 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, 1521 DAG.getConstant(Mask, DL, MVT::i32), 1522 ShiftAmt); 1523 DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask, 1524 DAG.getConstant(0xffffffff, DL, MVT::i32)); 1525 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); 1526 1527 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); 1528 return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, 1529 Chain, Value, Ptr, 1530 DAG.getTargetConstant(0, DL, MVT::i32)); 1531 } 1532 return SDValue(); 1533 } 1534 1535 // This is a shortcut for integer division because we have fast i32<->f32 1536 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1537 // float is enough to accurately represent up to a 24-bit integer. 1538 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const { 1539 SDLoc DL(Op); 1540 EVT VT = Op.getValueType(); 1541 SDValue LHS = Op.getOperand(0); 1542 SDValue RHS = Op.getOperand(1); 1543 MVT IntVT = MVT::i32; 1544 MVT FltVT = MVT::f32; 1545 1546 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1547 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1548 1549 if (VT.isVector()) { 1550 unsigned NElts = VT.getVectorNumElements(); 1551 IntVT = MVT::getVectorVT(MVT::i32, NElts); 1552 FltVT = MVT::getVectorVT(MVT::f32, NElts); 1553 } 1554 1555 unsigned BitSize = VT.getScalarType().getSizeInBits(); 1556 1557 SDValue jq = DAG.getConstant(1, DL, IntVT); 1558 1559 if (sign) { 1560 // char|short jq = ia ^ ib; 1561 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1562 1563 // jq = jq >> (bitsize - 2) 1564 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1565 DAG.getConstant(BitSize - 2, DL, VT)); 1566 1567 // jq = jq | 0x1 1568 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1569 1570 // jq = (int)jq 1571 jq = DAG.getSExtOrTrunc(jq, DL, IntVT); 1572 } 1573 1574 // int ia = (int)LHS; 1575 SDValue ia = sign ? 1576 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT); 1577 1578 // int ib, (int)RHS; 1579 SDValue ib = sign ? 1580 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT); 1581 1582 // float fa = (float)ia; 1583 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1584 1585 // float fb = (float)ib; 1586 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1587 1588 // TODO: Should this propagate fast-math-flags? 1589 // float fq = native_divide(fa, fb); 1590 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1591 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1592 1593 // fq = trunc(fq); 1594 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1595 1596 // float fqneg = -fq; 1597 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1598 1599 // float fr = mad(fqneg, fb, fa); 1600 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT, 1601 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa); 1602 1603 // int iq = (int)fq; 1604 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1605 1606 // fr = fabs(fr); 1607 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1608 1609 // fb = fabs(fb); 1610 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1611 1612 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1613 1614 // int cv = fr >= fb; 1615 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1616 1617 // jq = (cv ? jq : 0); 1618 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1619 1620 // dst = trunc/extend to legal type 1621 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT); 1622 1623 // dst = iq + jq; 1624 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1625 1626 // Rem needs compensation, it's easier to recompute it 1627 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1628 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1629 1630 SDValue Res[2] = { 1631 Div, 1632 Rem 1633 }; 1634 return DAG.getMergeValues(Res, DL); 1635 } 1636 1637 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1638 SelectionDAG &DAG, 1639 SmallVectorImpl<SDValue> &Results) const { 1640 assert(Op.getValueType() == MVT::i64); 1641 1642 SDLoc DL(Op); 1643 EVT VT = Op.getValueType(); 1644 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1645 1646 SDValue one = DAG.getConstant(1, DL, HalfVT); 1647 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1648 1649 //HiLo split 1650 SDValue LHS = Op.getOperand(0); 1651 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1652 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1653 1654 SDValue RHS = Op.getOperand(1); 1655 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1656 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1657 1658 if (VT == MVT::i64 && 1659 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1660 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1661 1662 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1663 LHS_Lo, RHS_Lo); 1664 1665 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero); 1666 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero); 1667 Results.push_back(DIV); 1668 Results.push_back(REM); 1669 return; 1670 } 1671 1672 // Get Speculative values 1673 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1674 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1675 1676 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1677 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero); 1678 1679 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1680 SDValue DIV_Lo = zero; 1681 1682 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1683 1684 for (unsigned i = 0; i < halfBitWidth; ++i) { 1685 const unsigned bitPos = halfBitWidth - i - 1; 1686 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1687 // Get value of high bit 1688 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1689 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1690 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1691 1692 // Shift 1693 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1694 // Add LHS high bit 1695 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1696 1697 SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT); 1698 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1699 1700 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1701 1702 // Update REM 1703 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1704 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1705 } 1706 1707 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi); 1708 Results.push_back(DIV); 1709 Results.push_back(REM); 1710 } 1711 1712 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1713 SelectionDAG &DAG) const { 1714 SDLoc DL(Op); 1715 EVT VT = Op.getValueType(); 1716 1717 if (VT == MVT::i64) { 1718 SmallVector<SDValue, 2> Results; 1719 LowerUDIVREM64(Op, DAG, Results); 1720 return DAG.getMergeValues(Results, DL); 1721 } 1722 1723 SDValue Num = Op.getOperand(0); 1724 SDValue Den = Op.getOperand(1); 1725 1726 if (VT == MVT::i32) { 1727 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) && 1728 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) { 1729 // TODO: We technically could do this for i64, but shouldn't that just be 1730 // handled by something generally reducing 64-bit division on 32-bit 1731 // values to 32-bit? 1732 return LowerDIVREM24(Op, DAG, false); 1733 } 1734 } 1735 1736 // RCP = URECIP(Den) = 2^32 / Den + e 1737 // e is rounding error. 1738 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1739 1740 // RCP_LO = mul(RCP, Den) */ 1741 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1742 1743 // RCP_HI = mulhu (RCP, Den) */ 1744 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1745 1746 // NEG_RCP_LO = -RCP_LO 1747 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1748 RCP_LO); 1749 1750 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1751 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1752 NEG_RCP_LO, RCP_LO, 1753 ISD::SETEQ); 1754 // Calculate the rounding error from the URECIP instruction 1755 // E = mulhu(ABS_RCP_LO, RCP) 1756 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1757 1758 // RCP_A_E = RCP + E 1759 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1760 1761 // RCP_S_E = RCP - E 1762 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1763 1764 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1765 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1766 RCP_A_E, RCP_S_E, 1767 ISD::SETEQ); 1768 // Quotient = mulhu(Tmp0, Num) 1769 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1770 1771 // Num_S_Remainder = Quotient * Den 1772 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1773 1774 // Remainder = Num - Num_S_Remainder 1775 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1776 1777 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1778 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1779 DAG.getConstant(-1, DL, VT), 1780 DAG.getConstant(0, DL, VT), 1781 ISD::SETUGE); 1782 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1783 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1784 Num_S_Remainder, 1785 DAG.getConstant(-1, DL, VT), 1786 DAG.getConstant(0, DL, VT), 1787 ISD::SETUGE); 1788 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1789 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1790 Remainder_GE_Zero); 1791 1792 // Calculate Division result: 1793 1794 // Quotient_A_One = Quotient + 1 1795 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1796 DAG.getConstant(1, DL, VT)); 1797 1798 // Quotient_S_One = Quotient - 1 1799 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1800 DAG.getConstant(1, DL, VT)); 1801 1802 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1803 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1804 Quotient, Quotient_A_One, ISD::SETEQ); 1805 1806 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1807 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1808 Quotient_S_One, Div, ISD::SETEQ); 1809 1810 // Calculate Rem result: 1811 1812 // Remainder_S_Den = Remainder - Den 1813 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1814 1815 // Remainder_A_Den = Remainder + Den 1816 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1817 1818 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1819 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1820 Remainder, Remainder_S_Den, ISD::SETEQ); 1821 1822 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1823 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1824 Remainder_A_Den, Rem, ISD::SETEQ); 1825 SDValue Ops[2] = { 1826 Div, 1827 Rem 1828 }; 1829 return DAG.getMergeValues(Ops, DL); 1830 } 1831 1832 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1833 SelectionDAG &DAG) const { 1834 SDLoc DL(Op); 1835 EVT VT = Op.getValueType(); 1836 1837 SDValue LHS = Op.getOperand(0); 1838 SDValue RHS = Op.getOperand(1); 1839 1840 SDValue Zero = DAG.getConstant(0, DL, VT); 1841 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1842 1843 if (VT == MVT::i32 && 1844 DAG.ComputeNumSignBits(LHS) > 8 && 1845 DAG.ComputeNumSignBits(RHS) > 8) { 1846 return LowerDIVREM24(Op, DAG, true); 1847 } 1848 if (VT == MVT::i64 && 1849 DAG.ComputeNumSignBits(LHS) > 32 && 1850 DAG.ComputeNumSignBits(RHS) > 32) { 1851 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1852 1853 //HiLo split 1854 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1855 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1856 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1857 LHS_Lo, RHS_Lo); 1858 SDValue Res[2] = { 1859 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1860 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1861 }; 1862 return DAG.getMergeValues(Res, DL); 1863 } 1864 1865 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1866 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1867 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1868 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1869 1870 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1871 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1872 1873 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1874 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1875 1876 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1877 SDValue Rem = Div.getValue(1); 1878 1879 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1880 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1881 1882 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1883 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1884 1885 SDValue Res[2] = { 1886 Div, 1887 Rem 1888 }; 1889 return DAG.getMergeValues(Res, DL); 1890 } 1891 1892 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1893 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1894 SDLoc SL(Op); 1895 EVT VT = Op.getValueType(); 1896 SDValue X = Op.getOperand(0); 1897 SDValue Y = Op.getOperand(1); 1898 1899 // TODO: Should this propagate fast-math-flags? 1900 1901 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1902 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1903 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1904 1905 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1906 } 1907 1908 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1909 SDLoc SL(Op); 1910 SDValue Src = Op.getOperand(0); 1911 1912 // result = trunc(src) 1913 // if (src > 0.0 && src != result) 1914 // result += 1.0 1915 1916 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1917 1918 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1919 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1920 1921 EVT SetCCVT = 1922 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1923 1924 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1925 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1926 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1927 1928 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1929 // TODO: Should this propagate fast-math-flags? 1930 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1931 } 1932 1933 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { 1934 const unsigned FractBits = 52; 1935 const unsigned ExpBits = 11; 1936 1937 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1938 Hi, 1939 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1940 DAG.getConstant(ExpBits, SL, MVT::i32)); 1941 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1942 DAG.getConstant(1023, SL, MVT::i32)); 1943 1944 return Exp; 1945 } 1946 1947 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1948 SDLoc SL(Op); 1949 SDValue Src = Op.getOperand(0); 1950 1951 assert(Op.getValueType() == MVT::f64); 1952 1953 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1954 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1955 1956 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1957 1958 // Extract the upper half, since this is where we will find the sign and 1959 // exponent. 1960 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1961 1962 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1963 1964 const unsigned FractBits = 52; 1965 1966 // Extract the sign bit. 1967 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1968 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1969 1970 // Extend back to to 64-bits. 1971 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 1972 Zero, SignBit); 1973 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1974 1975 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1976 const SDValue FractMask 1977 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1978 1979 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1980 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1981 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1982 1983 EVT SetCCVT = 1984 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1985 1986 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1987 1988 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1989 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1990 1991 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1992 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1993 1994 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1995 } 1996 1997 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1998 SDLoc SL(Op); 1999 SDValue Src = Op.getOperand(0); 2000 2001 assert(Op.getValueType() == MVT::f64); 2002 2003 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 2004 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2005 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2006 2007 // TODO: Should this propagate fast-math-flags? 2008 2009 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2010 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2011 2012 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2013 2014 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 2015 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2016 2017 EVT SetCCVT = 2018 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2019 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2020 2021 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2022 } 2023 2024 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2025 // FNEARBYINT and FRINT are the same, except in their handling of FP 2026 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2027 // rint, so just treat them as equivalent. 2028 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2029 } 2030 2031 // XXX - May require not supporting f32 denormals? 2032 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 2033 SDLoc SL(Op); 2034 SDValue X = Op.getOperand(0); 2035 2036 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 2037 2038 // TODO: Should this propagate fast-math-flags? 2039 2040 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 2041 2042 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 2043 2044 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 2045 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 2046 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 2047 2048 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 2049 2050 EVT SetCCVT = 2051 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 2052 2053 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2054 2055 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 2056 2057 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 2058 } 2059 2060 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2061 SDLoc SL(Op); 2062 SDValue X = Op.getOperand(0); 2063 2064 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2065 2066 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2067 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2068 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2069 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2070 EVT SetCCVT = 2071 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2072 2073 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2074 2075 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2076 2077 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2078 2079 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2080 MVT::i64); 2081 2082 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2083 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2084 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2085 MVT::i64), 2086 Exp); 2087 2088 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2089 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2090 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2091 ISD::SETNE); 2092 2093 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2094 D, DAG.getConstant(0, SL, MVT::i64)); 2095 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2096 2097 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2098 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2099 2100 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2101 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2102 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2103 2104 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2105 ExpEqNegOne, 2106 DAG.getConstantFP(1.0, SL, MVT::f64), 2107 DAG.getConstantFP(0.0, SL, MVT::f64)); 2108 2109 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2110 2111 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2112 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2113 2114 return K; 2115 } 2116 2117 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2118 EVT VT = Op.getValueType(); 2119 2120 if (VT == MVT::f32) 2121 return LowerFROUND32(Op, DAG); 2122 2123 if (VT == MVT::f64) 2124 return LowerFROUND64(Op, DAG); 2125 2126 llvm_unreachable("unhandled type"); 2127 } 2128 2129 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2130 SDLoc SL(Op); 2131 SDValue Src = Op.getOperand(0); 2132 2133 // result = trunc(src); 2134 // if (src < 0.0 && src != result) 2135 // result += -1.0. 2136 2137 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2138 2139 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2140 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2141 2142 EVT SetCCVT = 2143 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2144 2145 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2146 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2147 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2148 2149 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2150 // TODO: Should this propagate fast-math-flags? 2151 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2152 } 2153 2154 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2155 bool Signed) const { 2156 SDLoc SL(Op); 2157 SDValue Src = Op.getOperand(0); 2158 2159 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2160 2161 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2162 DAG.getConstant(0, SL, MVT::i32)); 2163 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2164 DAG.getConstant(1, SL, MVT::i32)); 2165 2166 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2167 SL, MVT::f64, Hi); 2168 2169 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2170 2171 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2172 DAG.getConstant(32, SL, MVT::i32)); 2173 // TODO: Should this propagate fast-math-flags? 2174 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2175 } 2176 2177 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2178 SelectionDAG &DAG) const { 2179 SDValue S0 = Op.getOperand(0); 2180 if (S0.getValueType() != MVT::i64) 2181 return SDValue(); 2182 2183 EVT DestVT = Op.getValueType(); 2184 if (DestVT == MVT::f64) 2185 return LowerINT_TO_FP64(Op, DAG, false); 2186 2187 assert(DestVT == MVT::f32); 2188 2189 SDLoc DL(Op); 2190 2191 // f32 uint_to_fp i64 2192 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2193 DAG.getConstant(0, DL, MVT::i32)); 2194 SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo); 2195 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2196 DAG.getConstant(1, DL, MVT::i32)); 2197 SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi); 2198 // TODO: Should this propagate fast-math-flags? 2199 FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi, 2200 DAG.getConstantFP(4294967296.0f, DL, MVT::f32)); // 2^32 2201 return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi); 2202 } 2203 2204 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2205 SelectionDAG &DAG) const { 2206 SDValue Src = Op.getOperand(0); 2207 if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64) 2208 return LowerINT_TO_FP64(Op, DAG, true); 2209 2210 return SDValue(); 2211 } 2212 2213 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2214 bool Signed) const { 2215 SDLoc SL(Op); 2216 2217 SDValue Src = Op.getOperand(0); 2218 2219 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2220 2221 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2222 MVT::f64); 2223 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2224 MVT::f64); 2225 // TODO: Should this propagate fast-math-flags? 2226 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2227 2228 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2229 2230 2231 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2232 2233 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2234 MVT::i32, FloorMul); 2235 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2236 2237 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi); 2238 2239 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2240 } 2241 2242 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2243 SelectionDAG &DAG) const { 2244 SDValue Src = Op.getOperand(0); 2245 2246 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2247 return LowerFP64_TO_INT(Op, DAG, true); 2248 2249 return SDValue(); 2250 } 2251 2252 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2253 SelectionDAG &DAG) const { 2254 SDValue Src = Op.getOperand(0); 2255 2256 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2257 return LowerFP64_TO_INT(Op, DAG, false); 2258 2259 return SDValue(); 2260 } 2261 2262 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2263 SelectionDAG &DAG) const { 2264 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2265 MVT VT = Op.getSimpleValueType(); 2266 MVT ScalarVT = VT.getScalarType(); 2267 2268 if (!VT.isVector()) 2269 return SDValue(); 2270 2271 SDValue Src = Op.getOperand(0); 2272 SDLoc DL(Op); 2273 2274 // TODO: Don't scalarize on Evergreen? 2275 unsigned NElts = VT.getVectorNumElements(); 2276 SmallVector<SDValue, 8> Args; 2277 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2278 2279 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2280 for (unsigned I = 0; I < NElts; ++I) 2281 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2282 2283 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args); 2284 } 2285 2286 //===----------------------------------------------------------------------===// 2287 // Custom DAG optimizations 2288 //===----------------------------------------------------------------------===// 2289 2290 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2291 APInt KnownZero, KnownOne; 2292 EVT VT = Op.getValueType(); 2293 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2294 2295 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2296 } 2297 2298 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2299 EVT VT = Op.getValueType(); 2300 2301 // In order for this to be a signed 24-bit value, bit 23, must 2302 // be a sign bit. 2303 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2304 // as unsigned 24-bit values. 2305 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2306 } 2307 2308 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2309 2310 SelectionDAG &DAG = DCI.DAG; 2311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2312 EVT VT = Op.getValueType(); 2313 2314 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2315 APInt KnownZero, KnownOne; 2316 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2317 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2318 DCI.CommitTargetLoweringOpt(TLO); 2319 } 2320 2321 template <typename IntTy> 2322 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, 2323 uint32_t Offset, uint32_t Width, SDLoc DL) { 2324 if (Width + Offset < 32) { 2325 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2326 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2327 return DAG.getConstant(Result, DL, MVT::i32); 2328 } 2329 2330 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2331 } 2332 2333 static bool usesAllNormalStores(SDNode *LoadVal) { 2334 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2335 if (!ISD::isNormalStore(*I)) 2336 return false; 2337 } 2338 2339 return true; 2340 } 2341 2342 // If we have a copy of an illegal type, replace it with a load / store of an 2343 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2344 // instructions emitted when handling extloads and truncstores. Ideally we could 2345 // recognize the pack / unpack pattern to eliminate it. 2346 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2347 DAGCombinerInfo &DCI) const { 2348 if (!DCI.isBeforeLegalize()) 2349 return SDValue(); 2350 2351 StoreSDNode *SN = cast<StoreSDNode>(N); 2352 SDValue Value = SN->getValue(); 2353 EVT VT = Value.getValueType(); 2354 2355 if (isTypeLegal(VT) || SN->isVolatile() || 2356 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2357 return SDValue(); 2358 2359 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2360 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2361 return SDValue(); 2362 2363 EVT MemVT = LoadVal->getMemoryVT(); 2364 2365 SDLoc SL(N); 2366 SelectionDAG &DAG = DCI.DAG; 2367 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2368 2369 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2370 LoadVT, SL, 2371 LoadVal->getChain(), 2372 LoadVal->getBasePtr(), 2373 LoadVal->getOffset(), 2374 LoadVT, 2375 LoadVal->getMemOperand()); 2376 2377 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2378 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2379 2380 return DAG.getStore(SN->getChain(), SL, NewLoad, 2381 SN->getBasePtr(), SN->getMemOperand()); 2382 } 2383 2384 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2385 DAGCombinerInfo &DCI) const { 2386 if (N->getValueType(0) != MVT::i64) 2387 return SDValue(); 2388 2389 // i64 (shl x, 32) -> (build_pair 0, x) 2390 2391 // Doing this with moves theoretically helps MI optimizations that understand 2392 // copies. 2 v_mov_b32_e32 will have the same code size / cycle count as 2393 // v_lshl_b64. In the SALU case, I think this is slightly worse since it 2394 // doubles the code size and I'm unsure about cycle count. 2395 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2396 if (!RHS || RHS->getZExtValue() != 32) 2397 return SDValue(); 2398 2399 SDValue LHS = N->getOperand(0); 2400 2401 SDLoc SL(N); 2402 SelectionDAG &DAG = DCI.DAG; 2403 2404 // Extract low 32-bits. 2405 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2406 2407 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2408 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, Zero, Lo); 2409 } 2410 2411 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2412 DAGCombinerInfo &DCI) const { 2413 EVT VT = N->getValueType(0); 2414 2415 if (VT.isVector() || VT.getSizeInBits() > 32) 2416 return SDValue(); 2417 2418 SelectionDAG &DAG = DCI.DAG; 2419 SDLoc DL(N); 2420 2421 SDValue N0 = N->getOperand(0); 2422 SDValue N1 = N->getOperand(1); 2423 SDValue Mul; 2424 2425 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2426 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2427 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2428 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2429 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2430 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2431 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2432 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2433 } else { 2434 return SDValue(); 2435 } 2436 2437 // We need to use sext even for MUL_U24, because MUL_U24 is used 2438 // for signed multiply of 8 and 16-bit types. 2439 return DAG.getSExtOrTrunc(Mul, DL, VT); 2440 } 2441 2442 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2443 DAGCombinerInfo &DCI) const { 2444 SelectionDAG &DAG = DCI.DAG; 2445 SDLoc DL(N); 2446 2447 switch(N->getOpcode()) { 2448 default: 2449 break; 2450 case ISD::SHL: { 2451 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2452 break; 2453 2454 return performShlCombine(N, DCI); 2455 } 2456 case ISD::MUL: 2457 return performMulCombine(N, DCI); 2458 case AMDGPUISD::MUL_I24: 2459 case AMDGPUISD::MUL_U24: { 2460 SDValue N0 = N->getOperand(0); 2461 SDValue N1 = N->getOperand(1); 2462 simplifyI24(N0, DCI); 2463 simplifyI24(N1, DCI); 2464 return SDValue(); 2465 } 2466 case ISD::SELECT: { 2467 SDValue Cond = N->getOperand(0); 2468 if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) { 2469 EVT VT = N->getValueType(0); 2470 SDValue LHS = Cond.getOperand(0); 2471 SDValue RHS = Cond.getOperand(1); 2472 SDValue CC = Cond.getOperand(2); 2473 2474 SDValue True = N->getOperand(1); 2475 SDValue False = N->getOperand(2); 2476 2477 if (VT == MVT::f32) 2478 return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI); 2479 } 2480 2481 break; 2482 } 2483 case AMDGPUISD::BFE_I32: 2484 case AMDGPUISD::BFE_U32: { 2485 assert(!N->getValueType(0).isVector() && 2486 "Vector handling of BFE not implemented"); 2487 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2488 if (!Width) 2489 break; 2490 2491 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2492 if (WidthVal == 0) 2493 return DAG.getConstant(0, DL, MVT::i32); 2494 2495 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2496 if (!Offset) 2497 break; 2498 2499 SDValue BitsFrom = N->getOperand(0); 2500 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2501 2502 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2503 2504 if (OffsetVal == 0) { 2505 // This is already sign / zero extended, so try to fold away extra BFEs. 2506 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2507 2508 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2509 if (OpSignBits >= SignBits) 2510 return BitsFrom; 2511 2512 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2513 if (Signed) { 2514 // This is a sign_extend_inreg. Replace it to take advantage of existing 2515 // DAG Combines. If not eliminated, we will match back to BFE during 2516 // selection. 2517 2518 // TODO: The sext_inreg of extended types ends, although we can could 2519 // handle them in a single BFE. 2520 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2521 DAG.getValueType(SmallVT)); 2522 } 2523 2524 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2525 } 2526 2527 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2528 if (Signed) { 2529 return constantFoldBFE<int32_t>(DAG, 2530 CVal->getSExtValue(), 2531 OffsetVal, 2532 WidthVal, 2533 DL); 2534 } 2535 2536 return constantFoldBFE<uint32_t>(DAG, 2537 CVal->getZExtValue(), 2538 OffsetVal, 2539 WidthVal, 2540 DL); 2541 } 2542 2543 if ((OffsetVal + WidthVal) >= 32) { 2544 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2545 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2546 BitsFrom, ShiftVal); 2547 } 2548 2549 if (BitsFrom.hasOneUse()) { 2550 APInt Demanded = APInt::getBitsSet(32, 2551 OffsetVal, 2552 OffsetVal + WidthVal); 2553 2554 APInt KnownZero, KnownOne; 2555 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2556 !DCI.isBeforeLegalizeOps()); 2557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2558 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2559 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2560 KnownZero, KnownOne, TLO)) { 2561 DCI.CommitTargetLoweringOpt(TLO); 2562 } 2563 } 2564 2565 break; 2566 } 2567 2568 case ISD::STORE: 2569 return performStoreCombine(N, DCI); 2570 } 2571 return SDValue(); 2572 } 2573 2574 //===----------------------------------------------------------------------===// 2575 // Helper functions 2576 //===----------------------------------------------------------------------===// 2577 2578 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2579 SelectionDAG &DAG, 2580 const Function *F, 2581 const SmallVectorImpl<ISD::InputArg> &Ins, 2582 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2583 2584 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2585 if (Ins[i].ArgVT == Ins[i].VT) { 2586 OrigIns.push_back(Ins[i]); 2587 continue; 2588 } 2589 2590 EVT VT; 2591 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2592 // Vector has been split into scalars. 2593 VT = Ins[i].ArgVT.getVectorElementType(); 2594 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2595 Ins[i].ArgVT.getVectorElementType() != 2596 Ins[i].VT.getVectorElementType()) { 2597 // Vector elements have been promoted 2598 VT = Ins[i].ArgVT; 2599 } else { 2600 // Vector has been spilt into smaller vectors. 2601 VT = Ins[i].VT; 2602 } 2603 2604 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2605 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2606 OrigIns.push_back(Arg); 2607 } 2608 } 2609 2610 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const { 2611 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2612 return CFP->isExactlyValue(1.0); 2613 } 2614 return isAllOnesConstant(Op); 2615 } 2616 2617 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const { 2618 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2619 return CFP->getValueAPF().isZero(); 2620 } 2621 return isNullConstant(Op); 2622 } 2623 2624 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2625 const TargetRegisterClass *RC, 2626 unsigned Reg, EVT VT) const { 2627 MachineFunction &MF = DAG.getMachineFunction(); 2628 MachineRegisterInfo &MRI = MF.getRegInfo(); 2629 unsigned VirtualRegister; 2630 if (!MRI.isLiveIn(Reg)) { 2631 VirtualRegister = MRI.createVirtualRegister(RC); 2632 MRI.addLiveIn(Reg, VirtualRegister); 2633 } else { 2634 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2635 } 2636 return DAG.getRegister(VirtualRegister, VT); 2637 } 2638 2639 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2640 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2641 uint64_t ArgOffset = MFI->ABIArgOffset; 2642 switch (Param) { 2643 case GRID_DIM: 2644 return ArgOffset; 2645 case GRID_OFFSET: 2646 return ArgOffset + 4; 2647 } 2648 llvm_unreachable("unexpected implicit parameter type"); 2649 } 2650 2651 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2652 2653 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2654 switch ((AMDGPUISD::NodeType)Opcode) { 2655 case AMDGPUISD::FIRST_NUMBER: break; 2656 // AMDIL DAG nodes 2657 NODE_NAME_CASE(CALL); 2658 NODE_NAME_CASE(UMUL); 2659 NODE_NAME_CASE(RET_FLAG); 2660 NODE_NAME_CASE(BRANCH_COND); 2661 2662 // AMDGPU DAG nodes 2663 NODE_NAME_CASE(DWORDADDR) 2664 NODE_NAME_CASE(FRACT) 2665 NODE_NAME_CASE(CLAMP) 2666 NODE_NAME_CASE(COS_HW) 2667 NODE_NAME_CASE(SIN_HW) 2668 NODE_NAME_CASE(FMAX_LEGACY) 2669 NODE_NAME_CASE(FMIN_LEGACY) 2670 NODE_NAME_CASE(FMAX3) 2671 NODE_NAME_CASE(SMAX3) 2672 NODE_NAME_CASE(UMAX3) 2673 NODE_NAME_CASE(FMIN3) 2674 NODE_NAME_CASE(SMIN3) 2675 NODE_NAME_CASE(UMIN3) 2676 NODE_NAME_CASE(URECIP) 2677 NODE_NAME_CASE(DIV_SCALE) 2678 NODE_NAME_CASE(DIV_FMAS) 2679 NODE_NAME_CASE(DIV_FIXUP) 2680 NODE_NAME_CASE(TRIG_PREOP) 2681 NODE_NAME_CASE(RCP) 2682 NODE_NAME_CASE(RSQ) 2683 NODE_NAME_CASE(RSQ_LEGACY) 2684 NODE_NAME_CASE(RSQ_CLAMPED) 2685 NODE_NAME_CASE(LDEXP) 2686 NODE_NAME_CASE(FP_CLASS) 2687 NODE_NAME_CASE(DOT4) 2688 NODE_NAME_CASE(CARRY) 2689 NODE_NAME_CASE(BORROW) 2690 NODE_NAME_CASE(BFE_U32) 2691 NODE_NAME_CASE(BFE_I32) 2692 NODE_NAME_CASE(BFI) 2693 NODE_NAME_CASE(BFM) 2694 NODE_NAME_CASE(BREV) 2695 NODE_NAME_CASE(MUL_U24) 2696 NODE_NAME_CASE(MUL_I24) 2697 NODE_NAME_CASE(MAD_U24) 2698 NODE_NAME_CASE(MAD_I24) 2699 NODE_NAME_CASE(TEXTURE_FETCH) 2700 NODE_NAME_CASE(EXPORT) 2701 NODE_NAME_CASE(CONST_ADDRESS) 2702 NODE_NAME_CASE(REGISTER_LOAD) 2703 NODE_NAME_CASE(REGISTER_STORE) 2704 NODE_NAME_CASE(LOAD_CONSTANT) 2705 NODE_NAME_CASE(LOAD_INPUT) 2706 NODE_NAME_CASE(SAMPLE) 2707 NODE_NAME_CASE(SAMPLEB) 2708 NODE_NAME_CASE(SAMPLED) 2709 NODE_NAME_CASE(SAMPLEL) 2710 NODE_NAME_CASE(CVT_F32_UBYTE0) 2711 NODE_NAME_CASE(CVT_F32_UBYTE1) 2712 NODE_NAME_CASE(CVT_F32_UBYTE2) 2713 NODE_NAME_CASE(CVT_F32_UBYTE3) 2714 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2715 NODE_NAME_CASE(CONST_DATA_PTR) 2716 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2717 NODE_NAME_CASE(SENDMSG) 2718 NODE_NAME_CASE(INTERP_MOV) 2719 NODE_NAME_CASE(INTERP_P1) 2720 NODE_NAME_CASE(INTERP_P2) 2721 NODE_NAME_CASE(STORE_MSKOR) 2722 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2723 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2724 } 2725 return nullptr; 2726 } 2727 2728 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2729 DAGCombinerInfo &DCI, 2730 unsigned &RefinementSteps, 2731 bool &UseOneConstNR) const { 2732 SelectionDAG &DAG = DCI.DAG; 2733 EVT VT = Operand.getValueType(); 2734 2735 if (VT == MVT::f32) { 2736 RefinementSteps = 0; 2737 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2738 } 2739 2740 // TODO: There is also f64 rsq instruction, but the documentation is less 2741 // clear on its precision. 2742 2743 return SDValue(); 2744 } 2745 2746 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2747 DAGCombinerInfo &DCI, 2748 unsigned &RefinementSteps) const { 2749 SelectionDAG &DAG = DCI.DAG; 2750 EVT VT = Operand.getValueType(); 2751 2752 if (VT == MVT::f32) { 2753 // Reciprocal, < 1 ulp error. 2754 // 2755 // This reciprocal approximation converges to < 0.5 ulp error with one 2756 // newton rhapson performed with two fused multiple adds (FMAs). 2757 2758 RefinementSteps = 0; 2759 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2760 } 2761 2762 // TODO: There is also f64 rcp instruction, but the documentation is less 2763 // clear on its precision. 2764 2765 return SDValue(); 2766 } 2767 2768 static void computeKnownBitsForMinMax(const SDValue Op0, 2769 const SDValue Op1, 2770 APInt &KnownZero, 2771 APInt &KnownOne, 2772 const SelectionDAG &DAG, 2773 unsigned Depth) { 2774 APInt Op0Zero, Op0One; 2775 APInt Op1Zero, Op1One; 2776 DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth); 2777 DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth); 2778 2779 KnownZero = Op0Zero & Op1Zero; 2780 KnownOne = Op0One & Op1One; 2781 } 2782 2783 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2784 const SDValue Op, 2785 APInt &KnownZero, 2786 APInt &KnownOne, 2787 const SelectionDAG &DAG, 2788 unsigned Depth) const { 2789 2790 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2791 2792 APInt KnownZero2; 2793 APInt KnownOne2; 2794 unsigned Opc = Op.getOpcode(); 2795 2796 switch (Opc) { 2797 default: 2798 break; 2799 case ISD::INTRINSIC_WO_CHAIN: { 2800 // FIXME: The intrinsic should just use the node. 2801 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 2802 case AMDGPUIntrinsic::AMDGPU_imax: 2803 case AMDGPUIntrinsic::AMDGPU_umax: 2804 case AMDGPUIntrinsic::AMDGPU_imin: 2805 case AMDGPUIntrinsic::AMDGPU_umin: 2806 computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2), 2807 KnownZero, KnownOne, DAG, Depth); 2808 break; 2809 default: 2810 break; 2811 } 2812 2813 break; 2814 } 2815 case AMDGPUISD::CARRY: 2816 case AMDGPUISD::BORROW: { 2817 KnownZero = APInt::getHighBitsSet(32, 31); 2818 break; 2819 } 2820 2821 case AMDGPUISD::BFE_I32: 2822 case AMDGPUISD::BFE_U32: { 2823 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2824 if (!CWidth) 2825 return; 2826 2827 unsigned BitWidth = 32; 2828 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2829 2830 if (Opc == AMDGPUISD::BFE_U32) 2831 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2832 2833 break; 2834 } 2835 } 2836 } 2837 2838 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2839 SDValue Op, 2840 const SelectionDAG &DAG, 2841 unsigned Depth) const { 2842 switch (Op.getOpcode()) { 2843 case AMDGPUISD::BFE_I32: { 2844 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2845 if (!Width) 2846 return 1; 2847 2848 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2849 if (!isNullConstant(Op.getOperand(1))) 2850 return SignBits; 2851 2852 // TODO: Could probably figure something out with non-0 offsets. 2853 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2854 return std::max(SignBits, Op0SignBits); 2855 } 2856 2857 case AMDGPUISD::BFE_U32: { 2858 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2859 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2860 } 2861 2862 case AMDGPUISD::CARRY: 2863 case AMDGPUISD::BORROW: 2864 return 31; 2865 2866 default: 2867 return 1; 2868 } 2869 } 2870