1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUCallLowering.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUSubtarget.h"
20 #include "AMDGPUTargetMachine.h"
21 #include "Utils/AMDGPUBaseInfo.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIInstrInfo.h"
24 #include "SIMachineFunctionInfo.h"
25 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/CallingConvLower.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Support/MathExtras.h"
36 using namespace llvm;
37 
38 #include "AMDGPUGenCallingConv.inc"
39 
40 static cl::opt<bool> AMDGPUBypassSlowDiv(
41   "amdgpu-bypass-slow-div",
42   cl::desc("Skip 64-bit divide for dynamic 32-bit values"),
43   cl::init(true));
44 
45 // Find a larger type to do a load / store of a vector with.
46 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
47   unsigned StoreSize = VT.getStoreSizeInBits();
48   if (StoreSize <= 32)
49     return EVT::getIntegerVT(Ctx, StoreSize);
50 
51   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
52   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
53 }
54 
55 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
56   EVT VT = Op.getValueType();
57   KnownBits Known = DAG.computeKnownBits(Op);
58   return VT.getSizeInBits() - Known.countMinLeadingZeros();
59 }
60 
61 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
62   EVT VT = Op.getValueType();
63 
64   // In order for this to be a signed 24-bit value, bit 23, must
65   // be a sign bit.
66   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
67 }
68 
69 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
70                                            const AMDGPUSubtarget &STI)
71     : TargetLowering(TM), Subtarget(&STI) {
72   // Lower floating point store/load to integer store/load to reduce the number
73   // of patterns in tablegen.
74   setOperationAction(ISD::LOAD, MVT::f32, Promote);
75   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
76 
77   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
78   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
79 
80   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
81   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
82 
83   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
84   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
85 
86   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
87   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
88 
89   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
90   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
91 
92   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
93   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
94 
95   setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
96   AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
97 
98   setOperationAction(ISD::LOAD, MVT::i64, Promote);
99   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
100 
101   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
102   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
103 
104   setOperationAction(ISD::LOAD, MVT::f64, Promote);
105   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
106 
107   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
108   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
109 
110   setOperationAction(ISD::LOAD, MVT::v4i64, Promote);
111   AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32);
112 
113   setOperationAction(ISD::LOAD, MVT::v4f64, Promote);
114   AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32);
115 
116   setOperationAction(ISD::LOAD, MVT::v8i64, Promote);
117   AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32);
118 
119   setOperationAction(ISD::LOAD, MVT::v8f64, Promote);
120   AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32);
121 
122   // There are no 64-bit extloads. These should be done as a 32-bit extload and
123   // an extension to 64-bit.
124   for (MVT VT : MVT::integer_valuetypes()) {
125     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
126     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
127     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
128   }
129 
130   for (MVT VT : MVT::integer_valuetypes()) {
131     if (VT == MVT::i64)
132       continue;
133 
134     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
135     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
136     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
137     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
138 
139     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
140     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
141     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
142     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
143 
144     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
145     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
146     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
147     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
148   }
149 
150   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
151     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
152     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
153     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
154     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
155     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
156     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
157     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
158     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
159     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
160     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
161     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
162     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
163     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
164     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
165     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
166   }
167 
168   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
169   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
170   setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
171   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
172   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
173   setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
174   setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
175 
176   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
177   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
178   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
179   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
180 
181   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
182   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
183   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
184   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
185 
186   setOperationAction(ISD::STORE, MVT::f32, Promote);
187   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
188 
189   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
190   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
191 
192   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
193   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
194 
195   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
196   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
197 
198   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
199   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
200 
201   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
202   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
203 
204   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
205   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
206 
207   setOperationAction(ISD::STORE, MVT::v32f32, Promote);
208   AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
209 
210   setOperationAction(ISD::STORE, MVT::i64, Promote);
211   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
212 
213   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
214   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
215 
216   setOperationAction(ISD::STORE, MVT::f64, Promote);
217   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
218 
219   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
220   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
221 
222   setOperationAction(ISD::STORE, MVT::v4i64, Promote);
223   AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32);
224 
225   setOperationAction(ISD::STORE, MVT::v4f64, Promote);
226   AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32);
227 
228   setOperationAction(ISD::STORE, MVT::v8i64, Promote);
229   AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32);
230 
231   setOperationAction(ISD::STORE, MVT::v8f64, Promote);
232   AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32);
233 
234   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
235   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
236   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
237   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
238 
239   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
240   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
241   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
242   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
243 
244   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
245   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
246   setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
247   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
248   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
249   setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
250   setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
251 
252   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
253   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
254 
255   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
256   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
257 
258   setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand);
259   setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand);
260   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
261   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
262 
263   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
264   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
265 
266 
267   setOperationAction(ISD::Constant, MVT::i32, Legal);
268   setOperationAction(ISD::Constant, MVT::i64, Legal);
269   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
270   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
271 
272   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
273   setOperationAction(ISD::BRIND, MVT::Other, Expand);
274 
275   // This is totally unsupported, just custom lower to produce an error.
276   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
277 
278   // Library functions.  These default to Expand, but we have instructions
279   // for them.
280   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
281   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
282   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
283   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
284   setOperationAction(ISD::FABS,   MVT::f32, Legal);
285   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
286   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
287   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
288   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
289   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
290 
291   setOperationAction(ISD::FROUND, MVT::f32, Custom);
292   setOperationAction(ISD::FROUND, MVT::f64, Custom);
293 
294   setOperationAction(ISD::FLOG, MVT::f32, Custom);
295   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
296   setOperationAction(ISD::FEXP, MVT::f32, Custom);
297 
298 
299   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
300   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
301 
302   setOperationAction(ISD::FREM, MVT::f32, Custom);
303   setOperationAction(ISD::FREM, MVT::f64, Custom);
304 
305   // Expand to fneg + fadd.
306   setOperationAction(ISD::FSUB, MVT::f64, Expand);
307 
308   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
309   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
310   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
311   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
312   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
313   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
314   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
315   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
316   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
317   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
318   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
319   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
320   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
321   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
322   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
323   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
324   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
325   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
326   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
327   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
328   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
329   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
330 
331   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
332   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
333   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
334 
335   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
336   for (MVT VT : ScalarIntVTs) {
337     // These should use [SU]DIVREM, so set them to expand
338     setOperationAction(ISD::SDIV, VT, Expand);
339     setOperationAction(ISD::UDIV, VT, Expand);
340     setOperationAction(ISD::SREM, VT, Expand);
341     setOperationAction(ISD::UREM, VT, Expand);
342 
343     // GPU does not have divrem function for signed or unsigned.
344     setOperationAction(ISD::SDIVREM, VT, Custom);
345     setOperationAction(ISD::UDIVREM, VT, Custom);
346 
347     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
348     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
349     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
350 
351     setOperationAction(ISD::BSWAP, VT, Expand);
352     setOperationAction(ISD::CTTZ, VT, Expand);
353     setOperationAction(ISD::CTLZ, VT, Expand);
354 
355     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
356     setOperationAction(ISD::ADDC, VT, Legal);
357     setOperationAction(ISD::SUBC, VT, Legal);
358     setOperationAction(ISD::ADDE, VT, Legal);
359     setOperationAction(ISD::SUBE, VT, Legal);
360   }
361 
362   // The hardware supports 32-bit FSHR, but not FSHL.
363   setOperationAction(ISD::FSHR, MVT::i32, Legal);
364 
365   // The hardware supports 32-bit ROTR, but not ROTL.
366   setOperationAction(ISD::ROTL, MVT::i32, Expand);
367   setOperationAction(ISD::ROTL, MVT::i64, Expand);
368   setOperationAction(ISD::ROTR, MVT::i64, Expand);
369 
370   setOperationAction(ISD::MUL, MVT::i64, Expand);
371   setOperationAction(ISD::MULHU, MVT::i64, Expand);
372   setOperationAction(ISD::MULHS, MVT::i64, Expand);
373   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
374   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
375   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
376   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
377   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
378 
379   setOperationAction(ISD::SMIN, MVT::i32, Legal);
380   setOperationAction(ISD::UMIN, MVT::i32, Legal);
381   setOperationAction(ISD::SMAX, MVT::i32, Legal);
382   setOperationAction(ISD::UMAX, MVT::i32, Legal);
383 
384   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
385   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
386   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
387   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
388 
389   static const MVT::SimpleValueType VectorIntTypes[] = {
390     MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
391   };
392 
393   for (MVT VT : VectorIntTypes) {
394     // Expand the following operations for the current type by default.
395     setOperationAction(ISD::ADD,  VT, Expand);
396     setOperationAction(ISD::AND,  VT, Expand);
397     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
398     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
399     setOperationAction(ISD::MUL,  VT, Expand);
400     setOperationAction(ISD::MULHU, VT, Expand);
401     setOperationAction(ISD::MULHS, VT, Expand);
402     setOperationAction(ISD::OR,   VT, Expand);
403     setOperationAction(ISD::SHL,  VT, Expand);
404     setOperationAction(ISD::SRA,  VT, Expand);
405     setOperationAction(ISD::SRL,  VT, Expand);
406     setOperationAction(ISD::ROTL, VT, Expand);
407     setOperationAction(ISD::ROTR, VT, Expand);
408     setOperationAction(ISD::SUB,  VT, Expand);
409     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
410     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
411     setOperationAction(ISD::SDIV, VT, Expand);
412     setOperationAction(ISD::UDIV, VT, Expand);
413     setOperationAction(ISD::SREM, VT, Expand);
414     setOperationAction(ISD::UREM, VT, Expand);
415     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
416     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
417     setOperationAction(ISD::SDIVREM, VT, Custom);
418     setOperationAction(ISD::UDIVREM, VT, Expand);
419     setOperationAction(ISD::SELECT, VT, Expand);
420     setOperationAction(ISD::VSELECT, VT, Expand);
421     setOperationAction(ISD::SELECT_CC, VT, Expand);
422     setOperationAction(ISD::XOR,  VT, Expand);
423     setOperationAction(ISD::BSWAP, VT, Expand);
424     setOperationAction(ISD::CTPOP, VT, Expand);
425     setOperationAction(ISD::CTTZ, VT, Expand);
426     setOperationAction(ISD::CTLZ, VT, Expand);
427     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
428     setOperationAction(ISD::SETCC, VT, Expand);
429   }
430 
431   static const MVT::SimpleValueType FloatVectorTypes[] = {
432      MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
433   };
434 
435   for (MVT VT : FloatVectorTypes) {
436     setOperationAction(ISD::FABS, VT, Expand);
437     setOperationAction(ISD::FMINNUM, VT, Expand);
438     setOperationAction(ISD::FMAXNUM, VT, Expand);
439     setOperationAction(ISD::FADD, VT, Expand);
440     setOperationAction(ISD::FCEIL, VT, Expand);
441     setOperationAction(ISD::FCOS, VT, Expand);
442     setOperationAction(ISD::FDIV, VT, Expand);
443     setOperationAction(ISD::FEXP2, VT, Expand);
444     setOperationAction(ISD::FEXP, VT, Expand);
445     setOperationAction(ISD::FLOG2, VT, Expand);
446     setOperationAction(ISD::FREM, VT, Expand);
447     setOperationAction(ISD::FLOG, VT, Expand);
448     setOperationAction(ISD::FLOG10, VT, Expand);
449     setOperationAction(ISD::FPOW, VT, Expand);
450     setOperationAction(ISD::FFLOOR, VT, Expand);
451     setOperationAction(ISD::FTRUNC, VT, Expand);
452     setOperationAction(ISD::FMUL, VT, Expand);
453     setOperationAction(ISD::FMA, VT, Expand);
454     setOperationAction(ISD::FRINT, VT, Expand);
455     setOperationAction(ISD::FNEARBYINT, VT, Expand);
456     setOperationAction(ISD::FSQRT, VT, Expand);
457     setOperationAction(ISD::FSIN, VT, Expand);
458     setOperationAction(ISD::FSUB, VT, Expand);
459     setOperationAction(ISD::FNEG, VT, Expand);
460     setOperationAction(ISD::VSELECT, VT, Expand);
461     setOperationAction(ISD::SELECT_CC, VT, Expand);
462     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
463     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
464     setOperationAction(ISD::SETCC, VT, Expand);
465     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
466   }
467 
468   // This causes using an unrolled select operation rather than expansion with
469   // bit operations. This is in general better, but the alternative using BFI
470   // instructions may be better if the select sources are SGPRs.
471   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
472   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
473 
474   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
475   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
476 
477   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
478   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
479 
480   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
481   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
482 
483   // There are no libcalls of any kind.
484   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
485     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
486 
487   setSchedulingPreference(Sched::RegPressure);
488   setJumpIsExpensive(true);
489 
490   // FIXME: This is only partially true. If we have to do vector compares, any
491   // SGPR pair can be a condition register. If we have a uniform condition, we
492   // are better off doing SALU operations, where there is only one SCC. For now,
493   // we don't have a way of knowing during instruction selection if a condition
494   // will be uniform and we always use vector compares. Assume we are using
495   // vector compares until that is fixed.
496   setHasMultipleConditionRegisters(true);
497 
498   setMinCmpXchgSizeInBits(32);
499   setSupportsUnalignedAtomics(false);
500 
501   PredictableSelectIsExpensive = false;
502 
503   // We want to find all load dependencies for long chains of stores to enable
504   // merging into very wide vectors. The problem is with vectors with > 4
505   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
506   // vectors are a legal type, even though we have to split the loads
507   // usually. When we can more precisely specify load legality per address
508   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
509   // smarter so that they can figure out what to do in 2 iterations without all
510   // N > 4 stores on the same chain.
511   GatherAllAliasesMaxDepth = 16;
512 
513   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
514   // about these during lowering.
515   MaxStoresPerMemcpy  = 0xffffffff;
516   MaxStoresPerMemmove = 0xffffffff;
517   MaxStoresPerMemset  = 0xffffffff;
518 
519   // The expansion for 64-bit division is enormous.
520   if (AMDGPUBypassSlowDiv)
521     addBypassSlowDiv(64, 32);
522 
523   setTargetDAGCombine(ISD::BITCAST);
524   setTargetDAGCombine(ISD::SHL);
525   setTargetDAGCombine(ISD::SRA);
526   setTargetDAGCombine(ISD::SRL);
527   setTargetDAGCombine(ISD::TRUNCATE);
528   setTargetDAGCombine(ISD::MUL);
529   setTargetDAGCombine(ISD::MULHU);
530   setTargetDAGCombine(ISD::MULHS);
531   setTargetDAGCombine(ISD::SELECT);
532   setTargetDAGCombine(ISD::SELECT_CC);
533   setTargetDAGCombine(ISD::STORE);
534   setTargetDAGCombine(ISD::FADD);
535   setTargetDAGCombine(ISD::FSUB);
536   setTargetDAGCombine(ISD::FNEG);
537   setTargetDAGCombine(ISD::FABS);
538   setTargetDAGCombine(ISD::AssertZext);
539   setTargetDAGCombine(ISD::AssertSext);
540   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
541 }
542 
543 //===----------------------------------------------------------------------===//
544 // Target Information
545 //===----------------------------------------------------------------------===//
546 
547 LLVM_READNONE
548 static bool fnegFoldsIntoOp(unsigned Opc) {
549   switch (Opc) {
550   case ISD::FADD:
551   case ISD::FSUB:
552   case ISD::FMUL:
553   case ISD::FMA:
554   case ISD::FMAD:
555   case ISD::FMINNUM:
556   case ISD::FMAXNUM:
557   case ISD::FMINNUM_IEEE:
558   case ISD::FMAXNUM_IEEE:
559   case ISD::FSIN:
560   case ISD::FTRUNC:
561   case ISD::FRINT:
562   case ISD::FNEARBYINT:
563   case ISD::FCANONICALIZE:
564   case AMDGPUISD::RCP:
565   case AMDGPUISD::RCP_LEGACY:
566   case AMDGPUISD::RCP_IFLAG:
567   case AMDGPUISD::SIN_HW:
568   case AMDGPUISD::FMUL_LEGACY:
569   case AMDGPUISD::FMIN_LEGACY:
570   case AMDGPUISD::FMAX_LEGACY:
571   case AMDGPUISD::FMED3:
572     return true;
573   default:
574     return false;
575   }
576 }
577 
578 /// \p returns true if the operation will definitely need to use a 64-bit
579 /// encoding, and thus will use a VOP3 encoding regardless of the source
580 /// modifiers.
581 LLVM_READONLY
582 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
583   return N->getNumOperands() > 2 || VT == MVT::f64;
584 }
585 
586 // Most FP instructions support source modifiers, but this could be refined
587 // slightly.
588 LLVM_READONLY
589 static bool hasSourceMods(const SDNode *N) {
590   if (isa<MemSDNode>(N))
591     return false;
592 
593   switch (N->getOpcode()) {
594   case ISD::CopyToReg:
595   case ISD::SELECT:
596   case ISD::FDIV:
597   case ISD::FREM:
598   case ISD::INLINEASM:
599   case ISD::INLINEASM_BR:
600   case AMDGPUISD::DIV_SCALE:
601   case ISD::INTRINSIC_W_CHAIN:
602 
603   // TODO: Should really be looking at the users of the bitcast. These are
604   // problematic because bitcasts are used to legalize all stores to integer
605   // types.
606   case ISD::BITCAST:
607     return false;
608   case ISD::INTRINSIC_WO_CHAIN: {
609     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
610     case Intrinsic::amdgcn_interp_p1:
611     case Intrinsic::amdgcn_interp_p2:
612     case Intrinsic::amdgcn_interp_mov:
613     case Intrinsic::amdgcn_interp_p1_f16:
614     case Intrinsic::amdgcn_interp_p2_f16:
615       return false;
616     default:
617       return true;
618     }
619   }
620   default:
621     return true;
622   }
623 }
624 
625 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
626                                                  unsigned CostThreshold) {
627   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
628   // it is truly free to use a source modifier in all cases. If there are
629   // multiple users but for each one will necessitate using VOP3, there will be
630   // a code size increase. Try to avoid increasing code size unless we know it
631   // will save on the instruction count.
632   unsigned NumMayIncreaseSize = 0;
633   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
634 
635   // XXX - Should this limit number of uses to check?
636   for (const SDNode *U : N->uses()) {
637     if (!hasSourceMods(U))
638       return false;
639 
640     if (!opMustUseVOP3Encoding(U, VT)) {
641       if (++NumMayIncreaseSize > CostThreshold)
642         return false;
643     }
644   }
645 
646   return true;
647 }
648 
649 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
650                                               ISD::NodeType ExtendKind) const {
651   assert(!VT.isVector() && "only scalar expected");
652 
653   // Round to the next multiple of 32-bits.
654   unsigned Size = VT.getSizeInBits();
655   if (Size <= 32)
656     return MVT::i32;
657   return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32));
658 }
659 
660 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
661   return MVT::i32;
662 }
663 
664 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
665   return true;
666 }
667 
668 // The backend supports 32 and 64 bit floating point immediates.
669 // FIXME: Why are we reporting vectors of FP immediates as legal?
670 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
671                                         bool ForCodeSize) const {
672   EVT ScalarVT = VT.getScalarType();
673   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
674          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
675 }
676 
677 // We don't want to shrink f64 / f32 constants.
678 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
679   EVT ScalarVT = VT.getScalarType();
680   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
681 }
682 
683 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
684                                                  ISD::LoadExtType ExtTy,
685                                                  EVT NewVT) const {
686   // TODO: This may be worth removing. Check regression tests for diffs.
687   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
688     return false;
689 
690   unsigned NewSize = NewVT.getStoreSizeInBits();
691 
692   // If we are reducing to a 32-bit load or a smaller multi-dword load,
693   // this is always better.
694   if (NewSize >= 32)
695     return true;
696 
697   EVT OldVT = N->getValueType(0);
698   unsigned OldSize = OldVT.getStoreSizeInBits();
699 
700   MemSDNode *MN = cast<MemSDNode>(N);
701   unsigned AS = MN->getAddressSpace();
702   // Do not shrink an aligned scalar load to sub-dword.
703   // Scalar engine cannot do sub-dword loads.
704   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
705       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
706        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
707        (isa<LoadSDNode>(N) &&
708         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
709       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
710     return false;
711 
712   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
713   // extloads, so doing one requires using a buffer_load. In cases where we
714   // still couldn't use a scalar load, using the wider load shouldn't really
715   // hurt anything.
716 
717   // If the old size already had to be an extload, there's no harm in continuing
718   // to reduce the width.
719   return (OldSize < 32);
720 }
721 
722 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
723                                                    const SelectionDAG &DAG,
724                                                    const MachineMemOperand &MMO) const {
725 
726   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
727 
728   if (LoadTy.getScalarType() == MVT::i32)
729     return false;
730 
731   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
732   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
733 
734   if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
735     return false;
736 
737   bool Fast = false;
738   return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
739                                         CastTy, MMO, &Fast) &&
740          Fast;
741 }
742 
743 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
744 // profitable with the expansion for 64-bit since it's generally good to
745 // speculate things.
746 // FIXME: These should really have the size as a parameter.
747 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
748   return true;
749 }
750 
751 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
752   return true;
753 }
754 
755 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
756   switch (N->getOpcode()) {
757     default:
758     return false;
759     case ISD::EntryToken:
760     case ISD::TokenFactor:
761       return true;
762     case ISD::INTRINSIC_WO_CHAIN:
763     {
764       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
765       switch (IntrID) {
766         default:
767         return false;
768         case Intrinsic::amdgcn_readfirstlane:
769         case Intrinsic::amdgcn_readlane:
770           return true;
771       }
772     }
773     break;
774     case ISD::LOAD:
775     {
776       if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
777           AMDGPUAS::CONSTANT_ADDRESS_32BIT)
778         return true;
779       return false;
780     }
781     break;
782   }
783 }
784 
785 TargetLowering::NegatibleCost
786 AMDGPUTargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG,
787                                        bool LegalOperations, bool ForCodeSize,
788                                        unsigned Depth) const {
789   switch (Op.getOpcode()) {
790   case ISD::FMA:
791   case ISD::FMAD: {
792     // Negating a fma is not free if it has users without source mods.
793     if (!allUsesHaveSourceMods(Op.getNode()))
794       return NegatibleCost::Expensive;
795     break;
796   }
797   default:
798     break;
799   }
800 
801   return TargetLowering::getNegatibleCost(Op, DAG, LegalOperations, ForCodeSize,
802                                           Depth);
803 }
804 
805 //===---------------------------------------------------------------------===//
806 // Target Properties
807 //===---------------------------------------------------------------------===//
808 
809 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
810   assert(VT.isFloatingPoint());
811 
812   // Packed operations do not have a fabs modifier.
813   return VT == MVT::f32 || VT == MVT::f64 ||
814          (Subtarget->has16BitInsts() && VT == MVT::f16);
815 }
816 
817 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
818   assert(VT.isFloatingPoint());
819   return VT == MVT::f32 || VT == MVT::f64 ||
820          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
821          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
822 }
823 
824 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
825                                                          unsigned NumElem,
826                                                          unsigned AS) const {
827   return true;
828 }
829 
830 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
831   // There are few operations which truly have vector input operands. Any vector
832   // operation is going to involve operations on each component, and a
833   // build_vector will be a copy per element, so it always makes sense to use a
834   // build_vector input in place of the extracted element to avoid a copy into a
835   // super register.
836   //
837   // We should probably only do this if all users are extracts only, but this
838   // should be the common case.
839   return true;
840 }
841 
842 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
843   // Truncate is just accessing a subregister.
844 
845   unsigned SrcSize = Source.getSizeInBits();
846   unsigned DestSize = Dest.getSizeInBits();
847 
848   return DestSize < SrcSize && DestSize % 32 == 0 ;
849 }
850 
851 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
852   // Truncate is just accessing a subregister.
853 
854   unsigned SrcSize = Source->getScalarSizeInBits();
855   unsigned DestSize = Dest->getScalarSizeInBits();
856 
857   if (DestSize== 16 && Subtarget->has16BitInsts())
858     return SrcSize >= 32;
859 
860   return DestSize < SrcSize && DestSize % 32 == 0;
861 }
862 
863 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
864   unsigned SrcSize = Src->getScalarSizeInBits();
865   unsigned DestSize = Dest->getScalarSizeInBits();
866 
867   if (SrcSize == 16 && Subtarget->has16BitInsts())
868     return DestSize >= 32;
869 
870   return SrcSize == 32 && DestSize == 64;
871 }
872 
873 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
874   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
875   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
876   // this will enable reducing 64-bit operations the 32-bit, which is always
877   // good.
878 
879   if (Src == MVT::i16)
880     return Dest == MVT::i32 ||Dest == MVT::i64 ;
881 
882   return Src == MVT::i32 && Dest == MVT::i64;
883 }
884 
885 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
886   return isZExtFree(Val.getValueType(), VT2);
887 }
888 
889 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
890   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
891   // limited number of native 64-bit operations. Shrinking an operation to fit
892   // in a single 32-bit register should always be helpful. As currently used,
893   // this is much less general than the name suggests, and is only used in
894   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
895   // not profitable, and may actually be harmful.
896   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
897 }
898 
899 //===---------------------------------------------------------------------===//
900 // TargetLowering Callbacks
901 //===---------------------------------------------------------------------===//
902 
903 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
904                                                   bool IsVarArg) {
905   switch (CC) {
906   case CallingConv::AMDGPU_VS:
907   case CallingConv::AMDGPU_GS:
908   case CallingConv::AMDGPU_PS:
909   case CallingConv::AMDGPU_CS:
910   case CallingConv::AMDGPU_HS:
911   case CallingConv::AMDGPU_ES:
912   case CallingConv::AMDGPU_LS:
913     return CC_AMDGPU;
914   case CallingConv::C:
915   case CallingConv::Fast:
916   case CallingConv::Cold:
917     return CC_AMDGPU_Func;
918   case CallingConv::AMDGPU_KERNEL:
919   case CallingConv::SPIR_KERNEL:
920   default:
921     report_fatal_error("Unsupported calling convention for call");
922   }
923 }
924 
925 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
926                                                     bool IsVarArg) {
927   switch (CC) {
928   case CallingConv::AMDGPU_KERNEL:
929   case CallingConv::SPIR_KERNEL:
930     llvm_unreachable("kernels should not be handled here");
931   case CallingConv::AMDGPU_VS:
932   case CallingConv::AMDGPU_GS:
933   case CallingConv::AMDGPU_PS:
934   case CallingConv::AMDGPU_CS:
935   case CallingConv::AMDGPU_HS:
936   case CallingConv::AMDGPU_ES:
937   case CallingConv::AMDGPU_LS:
938     return RetCC_SI_Shader;
939   case CallingConv::C:
940   case CallingConv::Fast:
941   case CallingConv::Cold:
942     return RetCC_AMDGPU_Func;
943   default:
944     report_fatal_error("Unsupported calling convention.");
945   }
946 }
947 
948 /// The SelectionDAGBuilder will automatically promote function arguments
949 /// with illegal types.  However, this does not work for the AMDGPU targets
950 /// since the function arguments are stored in memory as these illegal types.
951 /// In order to handle this properly we need to get the original types sizes
952 /// from the LLVM IR Function and fixup the ISD:InputArg values before
953 /// passing them to AnalyzeFormalArguments()
954 
955 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
956 /// input values across multiple registers.  Each item in the Ins array
957 /// represents a single value that will be stored in registers.  Ins[x].VT is
958 /// the value type of the value that will be stored in the register, so
959 /// whatever SDNode we lower the argument to needs to be this type.
960 ///
961 /// In order to correctly lower the arguments we need to know the size of each
962 /// argument.  Since Ins[x].VT gives us the size of the register that will
963 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
964 /// for the orignal function argument so that we can deduce the correct memory
965 /// type to use for Ins[x].  In most cases the correct memory type will be
966 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
967 /// we have a kernel argument of type v8i8, this argument will be split into
968 /// 8 parts and each part will be represented by its own item in the Ins array.
969 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
970 /// the argument before it was split.  From this, we deduce that the memory type
971 /// for each individual part is i8.  We pass the memory type as LocVT to the
972 /// calling convention analysis function and the register type (Ins[x].VT) as
973 /// the ValVT.
974 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
975   CCState &State,
976   const SmallVectorImpl<ISD::InputArg> &Ins) const {
977   const MachineFunction &MF = State.getMachineFunction();
978   const Function &Fn = MF.getFunction();
979   LLVMContext &Ctx = Fn.getParent()->getContext();
980   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
981   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
982   CallingConv::ID CC = Fn.getCallingConv();
983 
984   unsigned MaxAlign = 1;
985   uint64_t ExplicitArgOffset = 0;
986   const DataLayout &DL = Fn.getParent()->getDataLayout();
987 
988   unsigned InIndex = 0;
989 
990   for (const Argument &Arg : Fn.args()) {
991     Type *BaseArgTy = Arg.getType();
992     unsigned Align = DL.getABITypeAlignment(BaseArgTy);
993     MaxAlign = std::max(Align, MaxAlign);
994     unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
995 
996     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
997     ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
998 
999     // We're basically throwing away everything passed into us and starting over
1000     // to get accurate in-memory offsets. The "PartOffset" is completely useless
1001     // to us as computed in Ins.
1002     //
1003     // We also need to figure out what type legalization is trying to do to get
1004     // the correct memory offsets.
1005 
1006     SmallVector<EVT, 16> ValueVTs;
1007     SmallVector<uint64_t, 16> Offsets;
1008     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
1009 
1010     for (unsigned Value = 0, NumValues = ValueVTs.size();
1011          Value != NumValues; ++Value) {
1012       uint64_t BasePartOffset = Offsets[Value];
1013 
1014       EVT ArgVT = ValueVTs[Value];
1015       EVT MemVT = ArgVT;
1016       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
1017       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
1018 
1019       if (NumRegs == 1) {
1020         // This argument is not split, so the IR type is the memory type.
1021         if (ArgVT.isExtended()) {
1022           // We have an extended type, like i24, so we should just use the
1023           // register type.
1024           MemVT = RegisterVT;
1025         } else {
1026           MemVT = ArgVT;
1027         }
1028       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
1029                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
1030         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
1031         // We have a vector value which has been split into a vector with
1032         // the same scalar type, but fewer elements.  This should handle
1033         // all the floating-point vector types.
1034         MemVT = RegisterVT;
1035       } else if (ArgVT.isVector() &&
1036                  ArgVT.getVectorNumElements() == NumRegs) {
1037         // This arg has been split so that each element is stored in a separate
1038         // register.
1039         MemVT = ArgVT.getScalarType();
1040       } else if (ArgVT.isExtended()) {
1041         // We have an extended type, like i65.
1042         MemVT = RegisterVT;
1043       } else {
1044         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1045         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1046         if (RegisterVT.isInteger()) {
1047           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1048         } else if (RegisterVT.isVector()) {
1049           assert(!RegisterVT.getScalarType().isFloatingPoint());
1050           unsigned NumElements = RegisterVT.getVectorNumElements();
1051           assert(MemoryBits % NumElements == 0);
1052           // This vector type has been split into another vector type with
1053           // a different elements size.
1054           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1055                                            MemoryBits / NumElements);
1056           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1057         } else {
1058           llvm_unreachable("cannot deduce memory type.");
1059         }
1060       }
1061 
1062       // Convert one element vectors to scalar.
1063       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1064         MemVT = MemVT.getScalarType();
1065 
1066       // Round up vec3/vec5 argument.
1067       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1068         assert(MemVT.getVectorNumElements() == 3 ||
1069                MemVT.getVectorNumElements() == 5);
1070         MemVT = MemVT.getPow2VectorType(State.getContext());
1071       } else if (!MemVT.isSimple() && !MemVT.isVector()) {
1072         MemVT = MemVT.getRoundIntegerType(State.getContext());
1073       }
1074 
1075       unsigned PartOffset = 0;
1076       for (unsigned i = 0; i != NumRegs; ++i) {
1077         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1078                                                BasePartOffset + PartOffset,
1079                                                MemVT.getSimpleVT(),
1080                                                CCValAssign::Full));
1081         PartOffset += MemVT.getStoreSize();
1082       }
1083     }
1084   }
1085 }
1086 
1087 SDValue AMDGPUTargetLowering::LowerReturn(
1088   SDValue Chain, CallingConv::ID CallConv,
1089   bool isVarArg,
1090   const SmallVectorImpl<ISD::OutputArg> &Outs,
1091   const SmallVectorImpl<SDValue> &OutVals,
1092   const SDLoc &DL, SelectionDAG &DAG) const {
1093   // FIXME: Fails for r600 tests
1094   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1095   // "wave terminate should not have return values");
1096   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1097 }
1098 
1099 //===---------------------------------------------------------------------===//
1100 // Target specific lowering
1101 //===---------------------------------------------------------------------===//
1102 
1103 /// Selects the correct CCAssignFn for a given CallingConvention value.
1104 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1105                                                     bool IsVarArg) {
1106   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1107 }
1108 
1109 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1110                                                       bool IsVarArg) {
1111   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1112 }
1113 
1114 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1115                                                   SelectionDAG &DAG,
1116                                                   MachineFrameInfo &MFI,
1117                                                   int ClobberedFI) const {
1118   SmallVector<SDValue, 8> ArgChains;
1119   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1120   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1121 
1122   // Include the original chain at the beginning of the list. When this is
1123   // used by target LowerCall hooks, this helps legalize find the
1124   // CALLSEQ_BEGIN node.
1125   ArgChains.push_back(Chain);
1126 
1127   // Add a chain value for each stack argument corresponding
1128   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1129                             UE = DAG.getEntryNode().getNode()->use_end();
1130        U != UE; ++U) {
1131     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1132       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1133         if (FI->getIndex() < 0) {
1134           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1135           int64_t InLastByte = InFirstByte;
1136           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1137 
1138           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1139               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1140             ArgChains.push_back(SDValue(L, 1));
1141         }
1142       }
1143     }
1144   }
1145 
1146   // Build a tokenfactor for all the chains.
1147   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1148 }
1149 
1150 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1151                                                  SmallVectorImpl<SDValue> &InVals,
1152                                                  StringRef Reason) const {
1153   SDValue Callee = CLI.Callee;
1154   SelectionDAG &DAG = CLI.DAG;
1155 
1156   const Function &Fn = DAG.getMachineFunction().getFunction();
1157 
1158   StringRef FuncName("<unknown>");
1159 
1160   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1161     FuncName = G->getSymbol();
1162   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1163     FuncName = G->getGlobal()->getName();
1164 
1165   DiagnosticInfoUnsupported NoCalls(
1166     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1167   DAG.getContext()->diagnose(NoCalls);
1168 
1169   if (!CLI.IsTailCall) {
1170     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1171       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1172   }
1173 
1174   return DAG.getEntryNode();
1175 }
1176 
1177 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1178                                         SmallVectorImpl<SDValue> &InVals) const {
1179   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1180 }
1181 
1182 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1183                                                       SelectionDAG &DAG) const {
1184   const Function &Fn = DAG.getMachineFunction().getFunction();
1185 
1186   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1187                                             SDLoc(Op).getDebugLoc());
1188   DAG.getContext()->diagnose(NoDynamicAlloca);
1189   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1190   return DAG.getMergeValues(Ops, SDLoc());
1191 }
1192 
1193 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1194                                              SelectionDAG &DAG) const {
1195   switch (Op.getOpcode()) {
1196   default:
1197     Op->print(errs(), &DAG);
1198     llvm_unreachable("Custom lowering code for this"
1199                      "instruction is not implemented yet!");
1200     break;
1201   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1202   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1203   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1204   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1205   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1206   case ISD::FREM: return LowerFREM(Op, DAG);
1207   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1208   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1209   case ISD::FRINT: return LowerFRINT(Op, DAG);
1210   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1211   case ISD::FROUND: return LowerFROUND(Op, DAG);
1212   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1213   case ISD::FLOG:
1214     return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef);
1215   case ISD::FLOG10:
1216     return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1217   case ISD::FEXP:
1218     return lowerFEXP(Op, DAG);
1219   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1220   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1221   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1222   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1223   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1224   case ISD::CTTZ:
1225   case ISD::CTTZ_ZERO_UNDEF:
1226   case ISD::CTLZ:
1227   case ISD::CTLZ_ZERO_UNDEF:
1228     return LowerCTLZ_CTTZ(Op, DAG);
1229   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1230   }
1231   return Op;
1232 }
1233 
1234 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1235                                               SmallVectorImpl<SDValue> &Results,
1236                                               SelectionDAG &DAG) const {
1237   switch (N->getOpcode()) {
1238   case ISD::SIGN_EXTEND_INREG:
1239     // Different parts of legalization seem to interpret which type of
1240     // sign_extend_inreg is the one to check for custom lowering. The extended
1241     // from type is what really matters, but some places check for custom
1242     // lowering of the result type. This results in trying to use
1243     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1244     // nothing here and let the illegal result integer be handled normally.
1245     return;
1246   default:
1247     return;
1248   }
1249 }
1250 
1251 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1252   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1253   if (!GVar || !GVar->hasInitializer())
1254     return false;
1255 
1256   return !isa<UndefValue>(GVar->getInitializer());
1257 }
1258 
1259 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1260                                                  SDValue Op,
1261                                                  SelectionDAG &DAG) const {
1262 
1263   const DataLayout &DL = DAG.getDataLayout();
1264   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1265   const GlobalValue *GV = G->getGlobal();
1266 
1267   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1268       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1269     if (!MFI->isEntryFunction()) {
1270       SDLoc DL(Op);
1271       const Function &Fn = DAG.getMachineFunction().getFunction();
1272       DiagnosticInfoUnsupported BadLDSDecl(
1273         Fn, "local memory global used by non-kernel function",
1274         DL.getDebugLoc(), DS_Warning);
1275       DAG.getContext()->diagnose(BadLDSDecl);
1276 
1277       // We currently don't have a way to correctly allocate LDS objects that
1278       // aren't directly associated with a kernel. We do force inlining of
1279       // functions that use local objects. However, if these dead functions are
1280       // not eliminated, we don't want a compile time error. Just emit a warning
1281       // and a trap, since there should be no callable path here.
1282       SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode());
1283       SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1284                                         Trap, DAG.getRoot());
1285       DAG.setRoot(OutputChain);
1286       return DAG.getUNDEF(Op.getValueType());
1287     }
1288 
1289     // XXX: What does the value of G->getOffset() mean?
1290     assert(G->getOffset() == 0 &&
1291          "Do not know what to do with an non-zero offset");
1292 
1293     // TODO: We could emit code to handle the initialization somewhere.
1294     if (!hasDefinedInitializer(GV)) {
1295       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1296       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1297     }
1298   }
1299 
1300   const Function &Fn = DAG.getMachineFunction().getFunction();
1301   DiagnosticInfoUnsupported BadInit(
1302       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1303   DAG.getContext()->diagnose(BadInit);
1304   return SDValue();
1305 }
1306 
1307 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1308                                                   SelectionDAG &DAG) const {
1309   SmallVector<SDValue, 8> Args;
1310 
1311   EVT VT = Op.getValueType();
1312   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1313     SDLoc SL(Op);
1314     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1315     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1316 
1317     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1318     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1319   }
1320 
1321   for (const SDUse &U : Op->ops())
1322     DAG.ExtractVectorElements(U.get(), Args);
1323 
1324   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1325 }
1326 
1327 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1328                                                      SelectionDAG &DAG) const {
1329 
1330   SmallVector<SDValue, 8> Args;
1331   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1332   EVT VT = Op.getValueType();
1333   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1334                             VT.getVectorNumElements());
1335 
1336   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1337 }
1338 
1339 /// Generate Min/Max node
1340 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1341                                                    SDValue LHS, SDValue RHS,
1342                                                    SDValue True, SDValue False,
1343                                                    SDValue CC,
1344                                                    DAGCombinerInfo &DCI) const {
1345   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1346     return SDValue();
1347 
1348   SelectionDAG &DAG = DCI.DAG;
1349   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1350   switch (CCOpcode) {
1351   case ISD::SETOEQ:
1352   case ISD::SETONE:
1353   case ISD::SETUNE:
1354   case ISD::SETNE:
1355   case ISD::SETUEQ:
1356   case ISD::SETEQ:
1357   case ISD::SETFALSE:
1358   case ISD::SETFALSE2:
1359   case ISD::SETTRUE:
1360   case ISD::SETTRUE2:
1361   case ISD::SETUO:
1362   case ISD::SETO:
1363     break;
1364   case ISD::SETULE:
1365   case ISD::SETULT: {
1366     if (LHS == True)
1367       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1368     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1369   }
1370   case ISD::SETOLE:
1371   case ISD::SETOLT:
1372   case ISD::SETLE:
1373   case ISD::SETLT: {
1374     // Ordered. Assume ordered for undefined.
1375 
1376     // Only do this after legalization to avoid interfering with other combines
1377     // which might occur.
1378     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1379         !DCI.isCalledByLegalizer())
1380       return SDValue();
1381 
1382     // We need to permute the operands to get the correct NaN behavior. The
1383     // selected operand is the second one based on the failing compare with NaN,
1384     // so permute it based on the compare type the hardware uses.
1385     if (LHS == True)
1386       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1387     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1388   }
1389   case ISD::SETUGE:
1390   case ISD::SETUGT: {
1391     if (LHS == True)
1392       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1393     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1394   }
1395   case ISD::SETGT:
1396   case ISD::SETGE:
1397   case ISD::SETOGE:
1398   case ISD::SETOGT: {
1399     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1400         !DCI.isCalledByLegalizer())
1401       return SDValue();
1402 
1403     if (LHS == True)
1404       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1405     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1406   }
1407   case ISD::SETCC_INVALID:
1408     llvm_unreachable("Invalid setcc condcode!");
1409   }
1410   return SDValue();
1411 }
1412 
1413 std::pair<SDValue, SDValue>
1414 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1415   SDLoc SL(Op);
1416 
1417   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1418 
1419   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1420   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1421 
1422   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1423   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1424 
1425   return std::make_pair(Lo, Hi);
1426 }
1427 
1428 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1429   SDLoc SL(Op);
1430 
1431   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1432   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1433   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1434 }
1435 
1436 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1437   SDLoc SL(Op);
1438 
1439   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1440   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1441   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1442 }
1443 
1444 // Split a vector type into two parts. The first part is a power of two vector.
1445 // The second part is whatever is left over, and is a scalar if it would
1446 // otherwise be a 1-vector.
1447 std::pair<EVT, EVT>
1448 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1449   EVT LoVT, HiVT;
1450   EVT EltVT = VT.getVectorElementType();
1451   unsigned NumElts = VT.getVectorNumElements();
1452   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1453   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1454   HiVT = NumElts - LoNumElts == 1
1455              ? EltVT
1456              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1457   return std::make_pair(LoVT, HiVT);
1458 }
1459 
1460 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1461 // scalar.
1462 std::pair<SDValue, SDValue>
1463 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1464                                   const EVT &LoVT, const EVT &HiVT,
1465                                   SelectionDAG &DAG) const {
1466   assert(LoVT.getVectorNumElements() +
1467                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1468              N.getValueType().getVectorNumElements() &&
1469          "More vector elements requested than available!");
1470   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1471                            DAG.getVectorIdxConstant(0, DL));
1472   SDValue Hi = DAG.getNode(
1473       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1474       HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
1475   return std::make_pair(Lo, Hi);
1476 }
1477 
1478 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1479                                               SelectionDAG &DAG) const {
1480   LoadSDNode *Load = cast<LoadSDNode>(Op);
1481   EVT VT = Op.getValueType();
1482   SDLoc SL(Op);
1483 
1484 
1485   // If this is a 2 element vector, we really want to scalarize and not create
1486   // weird 1 element vectors.
1487   if (VT.getVectorNumElements() == 2) {
1488     SDValue Ops[2];
1489     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1490     return DAG.getMergeValues(Ops, SL);
1491   }
1492 
1493   SDValue BasePtr = Load->getBasePtr();
1494   EVT MemVT = Load->getMemoryVT();
1495 
1496   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1497 
1498   EVT LoVT, HiVT;
1499   EVT LoMemVT, HiMemVT;
1500   SDValue Lo, Hi;
1501 
1502   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1503   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1504   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1505 
1506   unsigned Size = LoMemVT.getStoreSize();
1507   unsigned BaseAlign = Load->getAlignment();
1508   unsigned HiAlign = MinAlign(BaseAlign, Size);
1509 
1510   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1511                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1512                                   BaseAlign, Load->getMemOperand()->getFlags());
1513   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1514   SDValue HiLoad =
1515       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1516                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1517                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1518 
1519   SDValue Join;
1520   if (LoVT == HiVT) {
1521     // This is the case that the vector is power of two so was evenly split.
1522     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1523   } else {
1524     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1525                        DAG.getVectorIdxConstant(0, SL));
1526     Join = DAG.getNode(
1527         HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
1528         VT, Join, HiLoad,
1529         DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
1530   }
1531 
1532   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1533                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1534 
1535   return DAG.getMergeValues(Ops, SL);
1536 }
1537 
1538 // Widen a vector load from vec3 to vec4.
1539 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1540                                               SelectionDAG &DAG) const {
1541   LoadSDNode *Load = cast<LoadSDNode>(Op);
1542   EVT VT = Op.getValueType();
1543   assert(VT.getVectorNumElements() == 3);
1544   SDValue BasePtr = Load->getBasePtr();
1545   EVT MemVT = Load->getMemoryVT();
1546   SDLoc SL(Op);
1547   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1548   unsigned BaseAlign = Load->getAlignment();
1549 
1550   EVT WideVT =
1551       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1552   EVT WideMemVT =
1553       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1554   SDValue WideLoad = DAG.getExtLoad(
1555       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1556       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1557   return DAG.getMergeValues(
1558       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1559                    DAG.getVectorIdxConstant(0, SL)),
1560        WideLoad.getValue(1)},
1561       SL);
1562 }
1563 
1564 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1565                                                SelectionDAG &DAG) const {
1566   StoreSDNode *Store = cast<StoreSDNode>(Op);
1567   SDValue Val = Store->getValue();
1568   EVT VT = Val.getValueType();
1569 
1570   // If this is a 2 element vector, we really want to scalarize and not create
1571   // weird 1 element vectors.
1572   if (VT.getVectorNumElements() == 2)
1573     return scalarizeVectorStore(Store, DAG);
1574 
1575   EVT MemVT = Store->getMemoryVT();
1576   SDValue Chain = Store->getChain();
1577   SDValue BasePtr = Store->getBasePtr();
1578   SDLoc SL(Op);
1579 
1580   EVT LoVT, HiVT;
1581   EVT LoMemVT, HiMemVT;
1582   SDValue Lo, Hi;
1583 
1584   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1585   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1586   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1587 
1588   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1589 
1590   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1591   unsigned BaseAlign = Store->getAlignment();
1592   unsigned Size = LoMemVT.getStoreSize();
1593   unsigned HiAlign = MinAlign(BaseAlign, Size);
1594 
1595   SDValue LoStore =
1596       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1597                         Store->getMemOperand()->getFlags());
1598   SDValue HiStore =
1599       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1600                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1601 
1602   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1603 }
1604 
1605 // This is a shortcut for integer division because we have fast i32<->f32
1606 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1607 // float is enough to accurately represent up to a 24-bit signed integer.
1608 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1609                                             bool Sign) const {
1610   SDLoc DL(Op);
1611   EVT VT = Op.getValueType();
1612   SDValue LHS = Op.getOperand(0);
1613   SDValue RHS = Op.getOperand(1);
1614   MVT IntVT = MVT::i32;
1615   MVT FltVT = MVT::f32;
1616 
1617   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1618   if (LHSSignBits < 9)
1619     return SDValue();
1620 
1621   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1622   if (RHSSignBits < 9)
1623     return SDValue();
1624 
1625   unsigned BitSize = VT.getSizeInBits();
1626   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1627   unsigned DivBits = BitSize - SignBits;
1628   if (Sign)
1629     ++DivBits;
1630 
1631   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1632   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1633 
1634   SDValue jq = DAG.getConstant(1, DL, IntVT);
1635 
1636   if (Sign) {
1637     // char|short jq = ia ^ ib;
1638     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1639 
1640     // jq = jq >> (bitsize - 2)
1641     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1642                      DAG.getConstant(BitSize - 2, DL, VT));
1643 
1644     // jq = jq | 0x1
1645     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1646   }
1647 
1648   // int ia = (int)LHS;
1649   SDValue ia = LHS;
1650 
1651   // int ib, (int)RHS;
1652   SDValue ib = RHS;
1653 
1654   // float fa = (float)ia;
1655   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1656 
1657   // float fb = (float)ib;
1658   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1659 
1660   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1661                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1662 
1663   // fq = trunc(fq);
1664   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1665 
1666   // float fqneg = -fq;
1667   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1668 
1669   MachineFunction &MF = DAG.getMachineFunction();
1670   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
1671 
1672   // float fr = mad(fqneg, fb, fa);
1673   unsigned OpCode = !MFI->getMode().allFP32Denormals() ?
1674                     (unsigned)ISD::FMAD :
1675                     (unsigned)AMDGPUISD::FMAD_FTZ;
1676 
1677   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1678 
1679   // int iq = (int)fq;
1680   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1681 
1682   // fr = fabs(fr);
1683   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1684 
1685   // fb = fabs(fb);
1686   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1687 
1688   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1689 
1690   // int cv = fr >= fb;
1691   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1692 
1693   // jq = (cv ? jq : 0);
1694   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1695 
1696   // dst = iq + jq;
1697   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1698 
1699   // Rem needs compensation, it's easier to recompute it
1700   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1701   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1702 
1703   // Truncate to number of bits this divide really is.
1704   if (Sign) {
1705     SDValue InRegSize
1706       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1707     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1708     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1709   } else {
1710     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1711     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1712     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1713   }
1714 
1715   return DAG.getMergeValues({ Div, Rem }, DL);
1716 }
1717 
1718 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1719                                       SelectionDAG &DAG,
1720                                       SmallVectorImpl<SDValue> &Results) const {
1721   SDLoc DL(Op);
1722   EVT VT = Op.getValueType();
1723 
1724   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1725 
1726   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1727 
1728   SDValue One = DAG.getConstant(1, DL, HalfVT);
1729   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1730 
1731   //HiLo split
1732   SDValue LHS = Op.getOperand(0);
1733   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1734   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1735 
1736   SDValue RHS = Op.getOperand(1);
1737   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1738   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1739 
1740   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1741       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1742 
1743     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1744                               LHS_Lo, RHS_Lo);
1745 
1746     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1747     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1748 
1749     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1750     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1751     return;
1752   }
1753 
1754   if (isTypeLegal(MVT::i64)) {
1755     MachineFunction &MF = DAG.getMachineFunction();
1756     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1757 
1758     // Compute denominator reciprocal.
1759     unsigned FMAD = !MFI->getMode().allFP32Denormals() ?
1760                     (unsigned)ISD::FMAD :
1761                     (unsigned)AMDGPUISD::FMAD_FTZ;
1762 
1763 
1764     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1765     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1766     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1767       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1768       Cvt_Lo);
1769     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1770     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1771       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1772     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1773       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1774     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1775     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1776       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1777       Mul1);
1778     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1779     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1780     SDValue Rcp64 = DAG.getBitcast(VT,
1781                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1782 
1783     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1784     SDValue One64  = DAG.getConstant(1, DL, VT);
1785     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1786     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1787 
1788     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1789     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1790     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1791     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1792                                     Zero);
1793     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1794                                     One);
1795 
1796     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1797                                   Mulhi1_Lo, Zero1);
1798     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1799                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1800     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1801     SDValue Add1 = DAG.getBitcast(VT,
1802                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1803 
1804     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1805     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1806     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1807                                     Zero);
1808     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1809                                     One);
1810 
1811     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1812                                   Mulhi2_Lo, Zero1);
1813     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1814                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1815     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1816                                   Zero, Add2_Lo.getValue(1));
1817     SDValue Add2 = DAG.getBitcast(VT,
1818                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1819     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1820 
1821     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1822 
1823     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1824     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1825     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1826                                   Mul3_Lo, Zero1);
1827     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1828                                   Mul3_Hi, Sub1_Lo.getValue(1));
1829     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1830     SDValue Sub1 = DAG.getBitcast(VT,
1831                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1832 
1833     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1834     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1835                                  ISD::SETUGE);
1836     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1837                                  ISD::SETUGE);
1838     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1839 
1840     // TODO: Here and below portions of the code can be enclosed into if/endif.
1841     // Currently control flow is unconditional and we have 4 selects after
1842     // potential endif to substitute PHIs.
1843 
1844     // if C3 != 0 ...
1845     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1846                                   RHS_Lo, Zero1);
1847     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1848                                   RHS_Hi, Sub1_Lo.getValue(1));
1849     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1850                                   Zero, Sub2_Lo.getValue(1));
1851     SDValue Sub2 = DAG.getBitcast(VT,
1852                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1853 
1854     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1855 
1856     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1857                                  ISD::SETUGE);
1858     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1859                                  ISD::SETUGE);
1860     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1861 
1862     // if (C6 != 0)
1863     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1864 
1865     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1866                                   RHS_Lo, Zero1);
1867     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1868                                   RHS_Hi, Sub2_Lo.getValue(1));
1869     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1870                                   Zero, Sub3_Lo.getValue(1));
1871     SDValue Sub3 = DAG.getBitcast(VT,
1872                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1873 
1874     // endif C6
1875     // endif C3
1876 
1877     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1878     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1879 
1880     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1881     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1882 
1883     Results.push_back(Div);
1884     Results.push_back(Rem);
1885 
1886     return;
1887   }
1888 
1889   // r600 expandion.
1890   // Get Speculative values
1891   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1892   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1893 
1894   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1895   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1896   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1897 
1898   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1899   SDValue DIV_Lo = Zero;
1900 
1901   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1902 
1903   for (unsigned i = 0; i < halfBitWidth; ++i) {
1904     const unsigned bitPos = halfBitWidth - i - 1;
1905     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1906     // Get value of high bit
1907     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1908     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1909     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1910 
1911     // Shift
1912     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1913     // Add LHS high bit
1914     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1915 
1916     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1917     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1918 
1919     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1920 
1921     // Update REM
1922     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1923     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1924   }
1925 
1926   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1927   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1928   Results.push_back(DIV);
1929   Results.push_back(REM);
1930 }
1931 
1932 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1933                                            SelectionDAG &DAG) const {
1934   SDLoc DL(Op);
1935   EVT VT = Op.getValueType();
1936 
1937   if (VT == MVT::i64) {
1938     SmallVector<SDValue, 2> Results;
1939     LowerUDIVREM64(Op, DAG, Results);
1940     return DAG.getMergeValues(Results, DL);
1941   }
1942 
1943   if (VT == MVT::i32) {
1944     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1945       return Res;
1946   }
1947 
1948   SDValue Num = Op.getOperand(0);
1949   SDValue Den = Op.getOperand(1);
1950 
1951   // RCP =  URECIP(Den) = 2^32 / Den + e
1952   // e is rounding error.
1953   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1954 
1955   // RCP_LO = mul(RCP, Den) */
1956   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1957 
1958   // RCP_HI = mulhu (RCP, Den) */
1959   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1960 
1961   // NEG_RCP_LO = -RCP_LO
1962   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1963                                                      RCP_LO);
1964 
1965   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1966   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1967                                            NEG_RCP_LO, RCP_LO,
1968                                            ISD::SETEQ);
1969   // Calculate the rounding error from the URECIP instruction
1970   // E = mulhu(ABS_RCP_LO, RCP)
1971   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1972 
1973   // RCP_A_E = RCP + E
1974   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1975 
1976   // RCP_S_E = RCP - E
1977   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1978 
1979   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1980   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1981                                      RCP_A_E, RCP_S_E,
1982                                      ISD::SETEQ);
1983   // Quotient = mulhu(Tmp0, Num)
1984   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1985 
1986   // Num_S_Remainder = Quotient * Den
1987   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1988 
1989   // Remainder = Num - Num_S_Remainder
1990   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1991 
1992   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1993   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1994                                                  DAG.getConstant(-1, DL, VT),
1995                                                  DAG.getConstant(0, DL, VT),
1996                                                  ISD::SETUGE);
1997   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1998   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1999                                                   Num_S_Remainder,
2000                                                   DAG.getConstant(-1, DL, VT),
2001                                                   DAG.getConstant(0, DL, VT),
2002                                                   ISD::SETUGE);
2003   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
2004   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
2005                                                Remainder_GE_Zero);
2006 
2007   // Calculate Division result:
2008 
2009   // Quotient_A_One = Quotient + 1
2010   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
2011                                        DAG.getConstant(1, DL, VT));
2012 
2013   // Quotient_S_One = Quotient - 1
2014   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
2015                                        DAG.getConstant(1, DL, VT));
2016 
2017   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
2018   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
2019                                      Quotient, Quotient_A_One, ISD::SETEQ);
2020 
2021   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
2022   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
2023                             Quotient_S_One, Div, ISD::SETEQ);
2024 
2025   // Calculate Rem result:
2026 
2027   // Remainder_S_Den = Remainder - Den
2028   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
2029 
2030   // Remainder_A_Den = Remainder + Den
2031   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
2032 
2033   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
2034   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
2035                                     Remainder, Remainder_S_Den, ISD::SETEQ);
2036 
2037   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
2038   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
2039                             Remainder_A_Den, Rem, ISD::SETEQ);
2040   SDValue Ops[2] = {
2041     Div,
2042     Rem
2043   };
2044   return DAG.getMergeValues(Ops, DL);
2045 }
2046 
2047 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
2048                                            SelectionDAG &DAG) const {
2049   SDLoc DL(Op);
2050   EVT VT = Op.getValueType();
2051 
2052   SDValue LHS = Op.getOperand(0);
2053   SDValue RHS = Op.getOperand(1);
2054 
2055   SDValue Zero = DAG.getConstant(0, DL, VT);
2056   SDValue NegOne = DAG.getConstant(-1, DL, VT);
2057 
2058   if (VT == MVT::i32) {
2059     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2060       return Res;
2061   }
2062 
2063   if (VT == MVT::i64 &&
2064       DAG.ComputeNumSignBits(LHS) > 32 &&
2065       DAG.ComputeNumSignBits(RHS) > 32) {
2066     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2067 
2068     //HiLo split
2069     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2070     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2071     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2072                                  LHS_Lo, RHS_Lo);
2073     SDValue Res[2] = {
2074       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2075       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2076     };
2077     return DAG.getMergeValues(Res, DL);
2078   }
2079 
2080   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2081   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2082   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2083   SDValue RSign = LHSign; // Remainder sign is the same as LHS
2084 
2085   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2086   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2087 
2088   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2089   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2090 
2091   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2092   SDValue Rem = Div.getValue(1);
2093 
2094   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2095   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2096 
2097   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2098   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2099 
2100   SDValue Res[2] = {
2101     Div,
2102     Rem
2103   };
2104   return DAG.getMergeValues(Res, DL);
2105 }
2106 
2107 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2108 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2109   SDLoc SL(Op);
2110   EVT VT = Op.getValueType();
2111   SDValue X = Op.getOperand(0);
2112   SDValue Y = Op.getOperand(1);
2113 
2114   // TODO: Should this propagate fast-math-flags?
2115 
2116   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2117   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2118   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2119 
2120   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2121 }
2122 
2123 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2124   SDLoc SL(Op);
2125   SDValue Src = Op.getOperand(0);
2126 
2127   // result = trunc(src)
2128   // if (src > 0.0 && src != result)
2129   //   result += 1.0
2130 
2131   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2132 
2133   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2134   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2135 
2136   EVT SetCCVT =
2137       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2138 
2139   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2140   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2141   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2142 
2143   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2144   // TODO: Should this propagate fast-math-flags?
2145   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2146 }
2147 
2148 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2149                                   SelectionDAG &DAG) {
2150   const unsigned FractBits = 52;
2151   const unsigned ExpBits = 11;
2152 
2153   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2154                                 Hi,
2155                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2156                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2157   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2158                             DAG.getConstant(1023, SL, MVT::i32));
2159 
2160   return Exp;
2161 }
2162 
2163 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2164   SDLoc SL(Op);
2165   SDValue Src = Op.getOperand(0);
2166 
2167   assert(Op.getValueType() == MVT::f64);
2168 
2169   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2170   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2171 
2172   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2173 
2174   // Extract the upper half, since this is where we will find the sign and
2175   // exponent.
2176   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2177 
2178   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2179 
2180   const unsigned FractBits = 52;
2181 
2182   // Extract the sign bit.
2183   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2184   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2185 
2186   // Extend back to 64-bits.
2187   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2188   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2189 
2190   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2191   const SDValue FractMask
2192     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2193 
2194   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2195   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2196   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2197 
2198   EVT SetCCVT =
2199       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2200 
2201   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2202 
2203   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2204   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2205 
2206   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2207   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2208 
2209   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2210 }
2211 
2212 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2213   SDLoc SL(Op);
2214   SDValue Src = Op.getOperand(0);
2215 
2216   assert(Op.getValueType() == MVT::f64);
2217 
2218   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2219   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2220   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2221 
2222   // TODO: Should this propagate fast-math-flags?
2223 
2224   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2225   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2226 
2227   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2228 
2229   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2230   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2231 
2232   EVT SetCCVT =
2233       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2234   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2235 
2236   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2237 }
2238 
2239 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2240   // FNEARBYINT and FRINT are the same, except in their handling of FP
2241   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2242   // rint, so just treat them as equivalent.
2243   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2244 }
2245 
2246 // XXX - May require not supporting f32 denormals?
2247 
2248 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2249 // compare and vselect end up producing worse code than scalarizing the whole
2250 // operation.
2251 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2252   SDLoc SL(Op);
2253   SDValue X = Op.getOperand(0);
2254   EVT VT = Op.getValueType();
2255 
2256   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2257 
2258   // TODO: Should this propagate fast-math-flags?
2259 
2260   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2261 
2262   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2263 
2264   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2265   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2266   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2267 
2268   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2269 
2270   EVT SetCCVT =
2271       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2272 
2273   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2274 
2275   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2276 
2277   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2278 }
2279 
2280 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2281   SDLoc SL(Op);
2282   SDValue Src = Op.getOperand(0);
2283 
2284   // result = trunc(src);
2285   // if (src < 0.0 && src != result)
2286   //   result += -1.0.
2287 
2288   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2289 
2290   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2291   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2292 
2293   EVT SetCCVT =
2294       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2295 
2296   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2297   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2298   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2299 
2300   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2301   // TODO: Should this propagate fast-math-flags?
2302   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2303 }
2304 
2305 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2306                                         double Log2BaseInverted) const {
2307   EVT VT = Op.getValueType();
2308 
2309   SDLoc SL(Op);
2310   SDValue Operand = Op.getOperand(0);
2311   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2312   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2313 
2314   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2315 }
2316 
2317 // exp2(M_LOG2E_F * f);
2318 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2319   EVT VT = Op.getValueType();
2320   SDLoc SL(Op);
2321   SDValue Src = Op.getOperand(0);
2322 
2323   const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2324   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2325   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2326 }
2327 
2328 static bool isCtlzOpc(unsigned Opc) {
2329   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2330 }
2331 
2332 static bool isCttzOpc(unsigned Opc) {
2333   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2334 }
2335 
2336 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2337   SDLoc SL(Op);
2338   SDValue Src = Op.getOperand(0);
2339   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2340                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2341 
2342   unsigned ISDOpc, NewOpc;
2343   if (isCtlzOpc(Op.getOpcode())) {
2344     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2345     NewOpc = AMDGPUISD::FFBH_U32;
2346   } else if (isCttzOpc(Op.getOpcode())) {
2347     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2348     NewOpc = AMDGPUISD::FFBL_B32;
2349   } else
2350     llvm_unreachable("Unexpected OPCode!!!");
2351 
2352 
2353   if (ZeroUndef && Src.getValueType() == MVT::i32)
2354     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2355 
2356   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2357 
2358   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2359   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2360 
2361   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2362   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2363 
2364   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2365                                    *DAG.getContext(), MVT::i32);
2366 
2367   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2368   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2369 
2370   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2371   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2372 
2373   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2374   SDValue Add, NewOpr;
2375   if (isCtlzOpc(Op.getOpcode())) {
2376     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2377     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2378     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2379   } else {
2380     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2381     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2382     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2383   }
2384 
2385   if (!ZeroUndef) {
2386     // Test if the full 64-bit input is zero.
2387 
2388     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2389     // which we probably don't want.
2390     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2391     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2392     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2393 
2394     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2395     // with the same cycles, otherwise it is slower.
2396     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2397     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2398 
2399     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2400 
2401     // The instruction returns -1 for 0 input, but the defined intrinsic
2402     // behavior is to return the number of bits.
2403     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2404                          SrcIsZero, Bits32, NewOpr);
2405   }
2406 
2407   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2408 }
2409 
2410 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2411                                                bool Signed) const {
2412   // Unsigned
2413   // cul2f(ulong u)
2414   //{
2415   //  uint lz = clz(u);
2416   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2417   //  u = (u << lz) & 0x7fffffffffffffffUL;
2418   //  ulong t = u & 0xffffffffffUL;
2419   //  uint v = (e << 23) | (uint)(u >> 40);
2420   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2421   //  return as_float(v + r);
2422   //}
2423   // Signed
2424   // cl2f(long l)
2425   //{
2426   //  long s = l >> 63;
2427   //  float r = cul2f((l + s) ^ s);
2428   //  return s ? -r : r;
2429   //}
2430 
2431   SDLoc SL(Op);
2432   SDValue Src = Op.getOperand(0);
2433   SDValue L = Src;
2434 
2435   SDValue S;
2436   if (Signed) {
2437     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2438     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2439 
2440     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2441     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2442   }
2443 
2444   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2445                                    *DAG.getContext(), MVT::f32);
2446 
2447 
2448   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2449   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2450   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2451   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2452 
2453   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2454   SDValue E = DAG.getSelect(SL, MVT::i32,
2455     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2456     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2457     ZeroI32);
2458 
2459   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2460     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2461     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2462 
2463   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2464                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2465 
2466   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2467                              U, DAG.getConstant(40, SL, MVT::i64));
2468 
2469   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2470     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2471     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2472 
2473   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2474   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2475   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2476 
2477   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2478 
2479   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2480 
2481   SDValue R = DAG.getSelect(SL, MVT::i32,
2482     RCmp,
2483     One,
2484     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2485   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2486   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2487 
2488   if (!Signed)
2489     return R;
2490 
2491   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2492   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2493 }
2494 
2495 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2496                                                bool Signed) const {
2497   SDLoc SL(Op);
2498   SDValue Src = Op.getOperand(0);
2499 
2500   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2501 
2502   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2503                            DAG.getConstant(0, SL, MVT::i32));
2504   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2505                            DAG.getConstant(1, SL, MVT::i32));
2506 
2507   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2508                               SL, MVT::f64, Hi);
2509 
2510   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2511 
2512   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2513                               DAG.getConstant(32, SL, MVT::i32));
2514   // TODO: Should this propagate fast-math-flags?
2515   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2516 }
2517 
2518 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2519                                                SelectionDAG &DAG) const {
2520   // TODO: Factor out code common with LowerSINT_TO_FP.
2521   EVT DestVT = Op.getValueType();
2522   SDValue Src = Op.getOperand(0);
2523   EVT SrcVT = Src.getValueType();
2524 
2525   if (SrcVT == MVT::i16) {
2526     if (DestVT == MVT::f16)
2527       return Op;
2528     SDLoc DL(Op);
2529 
2530     // Promote src to i32
2531     SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2532     return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2533   }
2534 
2535   assert(SrcVT == MVT::i64 && "operation should be legal");
2536 
2537   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2538     SDLoc DL(Op);
2539 
2540     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2541     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2542     SDValue FPRound =
2543         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2544 
2545     return FPRound;
2546   }
2547 
2548   if (DestVT == MVT::f32)
2549     return LowerINT_TO_FP32(Op, DAG, false);
2550 
2551   assert(DestVT == MVT::f64);
2552   return LowerINT_TO_FP64(Op, DAG, false);
2553 }
2554 
2555 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2556                                               SelectionDAG &DAG) const {
2557   EVT DestVT = Op.getValueType();
2558 
2559   SDValue Src = Op.getOperand(0);
2560   EVT SrcVT = Src.getValueType();
2561 
2562   if (SrcVT == MVT::i16) {
2563     if (DestVT == MVT::f16)
2564       return Op;
2565 
2566     SDLoc DL(Op);
2567     // Promote src to i32
2568     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2569     return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2570   }
2571 
2572   assert(SrcVT == MVT::i64 && "operation should be legal");
2573 
2574   // TODO: Factor out code common with LowerUINT_TO_FP.
2575 
2576   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2577     SDLoc DL(Op);
2578     SDValue Src = Op.getOperand(0);
2579 
2580     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2581     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2582     SDValue FPRound =
2583         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2584 
2585     return FPRound;
2586   }
2587 
2588   if (DestVT == MVT::f32)
2589     return LowerINT_TO_FP32(Op, DAG, true);
2590 
2591   assert(DestVT == MVT::f64);
2592   return LowerINT_TO_FP64(Op, DAG, true);
2593 }
2594 
2595 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2596                                                bool Signed) const {
2597   SDLoc SL(Op);
2598 
2599   SDValue Src = Op.getOperand(0);
2600 
2601   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2602 
2603   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2604                                  MVT::f64);
2605   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2606                                  MVT::f64);
2607   // TODO: Should this propagate fast-math-flags?
2608   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2609 
2610   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2611 
2612 
2613   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2614 
2615   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2616                            MVT::i32, FloorMul);
2617   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2618 
2619   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2620 
2621   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2622 }
2623 
2624 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2625   SDLoc DL(Op);
2626   SDValue N0 = Op.getOperand(0);
2627 
2628   // Convert to target node to get known bits
2629   if (N0.getValueType() == MVT::f32)
2630     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2631 
2632   if (getTargetMachine().Options.UnsafeFPMath) {
2633     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2634     return SDValue();
2635   }
2636 
2637   assert(N0.getSimpleValueType() == MVT::f64);
2638 
2639   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2640   const unsigned ExpMask = 0x7ff;
2641   const unsigned ExpBiasf64 = 1023;
2642   const unsigned ExpBiasf16 = 15;
2643   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2644   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2645   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2646   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2647                            DAG.getConstant(32, DL, MVT::i64));
2648   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2649   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2650   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2651                           DAG.getConstant(20, DL, MVT::i64));
2652   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2653                   DAG.getConstant(ExpMask, DL, MVT::i32));
2654   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2655   // add the f16 bias (15) to get the biased exponent for the f16 format.
2656   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2657                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2658 
2659   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2660                           DAG.getConstant(8, DL, MVT::i32));
2661   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2662                   DAG.getConstant(0xffe, DL, MVT::i32));
2663 
2664   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2665                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2666   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2667 
2668   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2669   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2670 
2671   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2672   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2673       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2674                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2675 
2676   // N = M | (E << 12);
2677   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2678       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2679                   DAG.getConstant(12, DL, MVT::i32)));
2680 
2681   // B = clamp(1-E, 0, 13);
2682   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2683                                   One, E);
2684   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2685   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2686                   DAG.getConstant(13, DL, MVT::i32));
2687 
2688   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2689                                    DAG.getConstant(0x1000, DL, MVT::i32));
2690 
2691   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2692   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2693   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2694   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2695 
2696   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2697   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2698                               DAG.getConstant(0x7, DL, MVT::i32));
2699   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2700                   DAG.getConstant(2, DL, MVT::i32));
2701   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2702                                One, Zero, ISD::SETEQ);
2703   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2704                                One, Zero, ISD::SETGT);
2705   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2706   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2707 
2708   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2709                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2710   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2711                       I, V, ISD::SETEQ);
2712 
2713   // Extract the sign bit.
2714   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2715                             DAG.getConstant(16, DL, MVT::i32));
2716   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2717                      DAG.getConstant(0x8000, DL, MVT::i32));
2718 
2719   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2720   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2721 }
2722 
2723 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2724                                               SelectionDAG &DAG) const {
2725   SDValue Src = Op.getOperand(0);
2726 
2727   // TODO: Factor out code common with LowerFP_TO_UINT.
2728 
2729   EVT SrcVT = Src.getValueType();
2730   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2731     SDLoc DL(Op);
2732 
2733     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2734     SDValue FpToInt32 =
2735         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2736 
2737     return FpToInt32;
2738   }
2739 
2740   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2741     return LowerFP64_TO_INT(Op, DAG, true);
2742 
2743   return SDValue();
2744 }
2745 
2746 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2747                                               SelectionDAG &DAG) const {
2748   SDValue Src = Op.getOperand(0);
2749 
2750   // TODO: Factor out code common with LowerFP_TO_SINT.
2751 
2752   EVT SrcVT = Src.getValueType();
2753   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2754     SDLoc DL(Op);
2755 
2756     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2757     SDValue FpToInt32 =
2758         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2759 
2760     return FpToInt32;
2761   }
2762 
2763   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2764     return LowerFP64_TO_INT(Op, DAG, false);
2765 
2766   return SDValue();
2767 }
2768 
2769 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2770                                                      SelectionDAG &DAG) const {
2771   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2772   MVT VT = Op.getSimpleValueType();
2773   MVT ScalarVT = VT.getScalarType();
2774 
2775   assert(VT.isVector());
2776 
2777   SDValue Src = Op.getOperand(0);
2778   SDLoc DL(Op);
2779 
2780   // TODO: Don't scalarize on Evergreen?
2781   unsigned NElts = VT.getVectorNumElements();
2782   SmallVector<SDValue, 8> Args;
2783   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2784 
2785   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2786   for (unsigned I = 0; I < NElts; ++I)
2787     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2788 
2789   return DAG.getBuildVector(VT, DL, Args);
2790 }
2791 
2792 //===----------------------------------------------------------------------===//
2793 // Custom DAG optimizations
2794 //===----------------------------------------------------------------------===//
2795 
2796 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2797   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2798 }
2799 
2800 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2801   EVT VT = Op.getValueType();
2802   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2803                                      // as unsigned 24-bit values.
2804     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2805 }
2806 
2807 static SDValue simplifyI24(SDNode *Node24,
2808                            TargetLowering::DAGCombinerInfo &DCI) {
2809   SelectionDAG &DAG = DCI.DAG;
2810   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2811   bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2812 
2813   SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2814   SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2815   unsigned NewOpcode = Node24->getOpcode();
2816   if (IsIntrin) {
2817     unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2818     NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2819       AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2820   }
2821 
2822   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2823 
2824   // First try to simplify using SimplifyMultipleUseDemandedBits which allows
2825   // the operands to have other uses, but will only perform simplifications that
2826   // involve bypassing some nodes for this user.
2827   SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG);
2828   SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG);
2829   if (DemandedLHS || DemandedRHS)
2830     return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2831                        DemandedLHS ? DemandedLHS : LHS,
2832                        DemandedRHS ? DemandedRHS : RHS);
2833 
2834   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2835   // operands if this node is the only user.
2836   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2837     return SDValue(Node24, 0);
2838   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2839     return SDValue(Node24, 0);
2840 
2841   return SDValue();
2842 }
2843 
2844 template <typename IntTy>
2845 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2846                                uint32_t Width, const SDLoc &DL) {
2847   if (Width + Offset < 32) {
2848     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2849     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2850     return DAG.getConstant(Result, DL, MVT::i32);
2851   }
2852 
2853   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2854 }
2855 
2856 static bool hasVolatileUser(SDNode *Val) {
2857   for (SDNode *U : Val->uses()) {
2858     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2859       if (M->isVolatile())
2860         return true;
2861     }
2862   }
2863 
2864   return false;
2865 }
2866 
2867 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2868   // i32 vectors are the canonical memory type.
2869   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2870     return false;
2871 
2872   if (!VT.isByteSized())
2873     return false;
2874 
2875   unsigned Size = VT.getStoreSize();
2876 
2877   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2878     return false;
2879 
2880   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2881     return false;
2882 
2883   return true;
2884 }
2885 
2886 // Replace load of an illegal type with a store of a bitcast to a friendlier
2887 // type.
2888 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2889                                                  DAGCombinerInfo &DCI) const {
2890   if (!DCI.isBeforeLegalize())
2891     return SDValue();
2892 
2893   LoadSDNode *LN = cast<LoadSDNode>(N);
2894   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2895     return SDValue();
2896 
2897   SDLoc SL(N);
2898   SelectionDAG &DAG = DCI.DAG;
2899   EVT VT = LN->getMemoryVT();
2900 
2901   unsigned Size = VT.getStoreSize();
2902   unsigned Align = LN->getAlignment();
2903   if (Align < Size && isTypeLegal(VT)) {
2904     bool IsFast;
2905     unsigned AS = LN->getAddressSpace();
2906 
2907     // Expand unaligned loads earlier than legalization. Due to visitation order
2908     // problems during legalization, the emitted instructions to pack and unpack
2909     // the bytes again are not eliminated in the case of an unaligned copy.
2910     if (!allowsMisalignedMemoryAccesses(
2911             VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) {
2912       SDValue Ops[2];
2913 
2914       if (VT.isVector())
2915         std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
2916       else
2917         std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2918 
2919       return DAG.getMergeValues(Ops, SDLoc(N));
2920     }
2921 
2922     if (!IsFast)
2923       return SDValue();
2924   }
2925 
2926   if (!shouldCombineMemoryType(VT))
2927     return SDValue();
2928 
2929   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2930 
2931   SDValue NewLoad
2932     = DAG.getLoad(NewVT, SL, LN->getChain(),
2933                   LN->getBasePtr(), LN->getMemOperand());
2934 
2935   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2936   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2937   return SDValue(N, 0);
2938 }
2939 
2940 // Replace store of an illegal type with a store of a bitcast to a friendlier
2941 // type.
2942 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2943                                                   DAGCombinerInfo &DCI) const {
2944   if (!DCI.isBeforeLegalize())
2945     return SDValue();
2946 
2947   StoreSDNode *SN = cast<StoreSDNode>(N);
2948   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2949     return SDValue();
2950 
2951   EVT VT = SN->getMemoryVT();
2952   unsigned Size = VT.getStoreSize();
2953 
2954   SDLoc SL(N);
2955   SelectionDAG &DAG = DCI.DAG;
2956   unsigned Align = SN->getAlignment();
2957   if (Align < Size && isTypeLegal(VT)) {
2958     bool IsFast;
2959     unsigned AS = SN->getAddressSpace();
2960 
2961     // Expand unaligned stores earlier than legalization. Due to visitation
2962     // order problems during legalization, the emitted instructions to pack and
2963     // unpack the bytes again are not eliminated in the case of an unaligned
2964     // copy.
2965     if (!allowsMisalignedMemoryAccesses(
2966             VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) {
2967       if (VT.isVector())
2968         return scalarizeVectorStore(SN, DAG);
2969 
2970       return expandUnalignedStore(SN, DAG);
2971     }
2972 
2973     if (!IsFast)
2974       return SDValue();
2975   }
2976 
2977   if (!shouldCombineMemoryType(VT))
2978     return SDValue();
2979 
2980   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2981   SDValue Val = SN->getValue();
2982 
2983   //DCI.AddToWorklist(Val.getNode());
2984 
2985   bool OtherUses = !Val.hasOneUse();
2986   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2987   if (OtherUses) {
2988     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2989     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2990   }
2991 
2992   return DAG.getStore(SN->getChain(), SL, CastVal,
2993                       SN->getBasePtr(), SN->getMemOperand());
2994 }
2995 
2996 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2997 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2998 // issues.
2999 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3000                                                         DAGCombinerInfo &DCI) const {
3001   SelectionDAG &DAG = DCI.DAG;
3002   SDValue N0 = N->getOperand(0);
3003 
3004   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3005   //     (vt2 (truncate (assertzext vt0:x, vt1)))
3006   if (N0.getOpcode() == ISD::TRUNCATE) {
3007     SDValue N1 = N->getOperand(1);
3008     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3009     SDLoc SL(N);
3010 
3011     SDValue Src = N0.getOperand(0);
3012     EVT SrcVT = Src.getValueType();
3013     if (SrcVT.bitsGE(ExtVT)) {
3014       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3015       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3016     }
3017   }
3018 
3019   return SDValue();
3020 }
3021 
3022 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3023   SDNode *N, DAGCombinerInfo &DCI) const {
3024   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3025   switch (IID) {
3026   case Intrinsic::amdgcn_mul_i24:
3027   case Intrinsic::amdgcn_mul_u24:
3028     return simplifyI24(N, DCI);
3029   case Intrinsic::amdgcn_fract:
3030   case Intrinsic::amdgcn_rsq:
3031   case Intrinsic::amdgcn_rcp_legacy:
3032   case Intrinsic::amdgcn_rsq_legacy:
3033   case Intrinsic::amdgcn_rsq_clamp:
3034   case Intrinsic::amdgcn_ldexp: {
3035     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
3036     SDValue Src = N->getOperand(1);
3037     return Src.isUndef() ? Src : SDValue();
3038   }
3039   default:
3040     return SDValue();
3041   }
3042 }
3043 
3044 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3045 /// binary operation \p Opc to it with the corresponding constant operands.
3046 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3047   DAGCombinerInfo &DCI, const SDLoc &SL,
3048   unsigned Opc, SDValue LHS,
3049   uint32_t ValLo, uint32_t ValHi) const {
3050   SelectionDAG &DAG = DCI.DAG;
3051   SDValue Lo, Hi;
3052   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3053 
3054   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3055   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3056 
3057   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3058   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3059 
3060   // Re-visit the ands. It's possible we eliminated one of them and it could
3061   // simplify the vector.
3062   DCI.AddToWorklist(Lo.getNode());
3063   DCI.AddToWorklist(Hi.getNode());
3064 
3065   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3066   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3067 }
3068 
3069 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3070                                                 DAGCombinerInfo &DCI) const {
3071   EVT VT = N->getValueType(0);
3072 
3073   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3074   if (!RHS)
3075     return SDValue();
3076 
3077   SDValue LHS = N->getOperand(0);
3078   unsigned RHSVal = RHS->getZExtValue();
3079   if (!RHSVal)
3080     return LHS;
3081 
3082   SDLoc SL(N);
3083   SelectionDAG &DAG = DCI.DAG;
3084 
3085   switch (LHS->getOpcode()) {
3086   default:
3087     break;
3088   case ISD::ZERO_EXTEND:
3089   case ISD::SIGN_EXTEND:
3090   case ISD::ANY_EXTEND: {
3091     SDValue X = LHS->getOperand(0);
3092 
3093     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3094         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3095       // Prefer build_vector as the canonical form if packed types are legal.
3096       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3097       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3098        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3099       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3100     }
3101 
3102     // shl (ext x) => zext (shl x), if shift does not overflow int
3103     if (VT != MVT::i64)
3104       break;
3105     KnownBits Known = DAG.computeKnownBits(X);
3106     unsigned LZ = Known.countMinLeadingZeros();
3107     if (LZ < RHSVal)
3108       break;
3109     EVT XVT = X.getValueType();
3110     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3111     return DAG.getZExtOrTrunc(Shl, SL, VT);
3112   }
3113   }
3114 
3115   if (VT != MVT::i64)
3116     return SDValue();
3117 
3118   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3119 
3120   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3121   // common case, splitting this into a move and a 32-bit shift is faster and
3122   // the same code size.
3123   if (RHSVal < 32)
3124     return SDValue();
3125 
3126   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3127 
3128   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3129   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3130 
3131   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3132 
3133   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3134   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3135 }
3136 
3137 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3138                                                 DAGCombinerInfo &DCI) const {
3139   if (N->getValueType(0) != MVT::i64)
3140     return SDValue();
3141 
3142   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3143   if (!RHS)
3144     return SDValue();
3145 
3146   SelectionDAG &DAG = DCI.DAG;
3147   SDLoc SL(N);
3148   unsigned RHSVal = RHS->getZExtValue();
3149 
3150   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3151   if (RHSVal == 32) {
3152     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3153     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3154                                    DAG.getConstant(31, SL, MVT::i32));
3155 
3156     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3157     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3158   }
3159 
3160   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3161   if (RHSVal == 63) {
3162     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3163     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3164                                    DAG.getConstant(31, SL, MVT::i32));
3165     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3166     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3167   }
3168 
3169   return SDValue();
3170 }
3171 
3172 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3173                                                 DAGCombinerInfo &DCI) const {
3174   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3175   if (!RHS)
3176     return SDValue();
3177 
3178   EVT VT = N->getValueType(0);
3179   SDValue LHS = N->getOperand(0);
3180   unsigned ShiftAmt = RHS->getZExtValue();
3181   SelectionDAG &DAG = DCI.DAG;
3182   SDLoc SL(N);
3183 
3184   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3185   // this improves the ability to match BFE patterns in isel.
3186   if (LHS.getOpcode() == ISD::AND) {
3187     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3188       if (Mask->getAPIntValue().isShiftedMask() &&
3189           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3190         return DAG.getNode(
3191             ISD::AND, SL, VT,
3192             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3193             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3194       }
3195     }
3196   }
3197 
3198   if (VT != MVT::i64)
3199     return SDValue();
3200 
3201   if (ShiftAmt < 32)
3202     return SDValue();
3203 
3204   // srl i64:x, C for C >= 32
3205   // =>
3206   //   build_pair (srl hi_32(x), C - 32), 0
3207   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3208   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3209 
3210   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3211   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3212 
3213   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3214   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3215 
3216   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3217 
3218   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3219 }
3220 
3221 SDValue AMDGPUTargetLowering::performTruncateCombine(
3222   SDNode *N, DAGCombinerInfo &DCI) const {
3223   SDLoc SL(N);
3224   SelectionDAG &DAG = DCI.DAG;
3225   EVT VT = N->getValueType(0);
3226   SDValue Src = N->getOperand(0);
3227 
3228   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3229   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3230     SDValue Vec = Src.getOperand(0);
3231     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3232       SDValue Elt0 = Vec.getOperand(0);
3233       EVT EltVT = Elt0.getValueType();
3234       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3235         if (EltVT.isFloatingPoint()) {
3236           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3237                              EltVT.changeTypeToInteger(), Elt0);
3238         }
3239 
3240         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3241       }
3242     }
3243   }
3244 
3245   // Equivalent of above for accessing the high element of a vector as an
3246   // integer operation.
3247   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3248   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3249     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3250       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3251         SDValue BV = stripBitcast(Src.getOperand(0));
3252         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3253             BV.getValueType().getVectorNumElements() == 2) {
3254           SDValue SrcElt = BV.getOperand(1);
3255           EVT SrcEltVT = SrcElt.getValueType();
3256           if (SrcEltVT.isFloatingPoint()) {
3257             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3258                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3259           }
3260 
3261           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3262         }
3263       }
3264     }
3265   }
3266 
3267   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3268   //
3269   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3270   //     i16 (trunc (srl (i32 (trunc x), K)))
3271   if (VT.getScalarSizeInBits() < 32) {
3272     EVT SrcVT = Src.getValueType();
3273     if (SrcVT.getScalarSizeInBits() > 32 &&
3274         (Src.getOpcode() == ISD::SRL ||
3275          Src.getOpcode() == ISD::SRA ||
3276          Src.getOpcode() == ISD::SHL)) {
3277       SDValue Amt = Src.getOperand(1);
3278       KnownBits Known = DAG.computeKnownBits(Amt);
3279       unsigned Size = VT.getScalarSizeInBits();
3280       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3281           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3282         EVT MidVT = VT.isVector() ?
3283           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3284                            VT.getVectorNumElements()) : MVT::i32;
3285 
3286         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3287         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3288                                     Src.getOperand(0));
3289         DCI.AddToWorklist(Trunc.getNode());
3290 
3291         if (Amt.getValueType() != NewShiftVT) {
3292           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3293           DCI.AddToWorklist(Amt.getNode());
3294         }
3295 
3296         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3297                                           Trunc, Amt);
3298         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3299       }
3300     }
3301   }
3302 
3303   return SDValue();
3304 }
3305 
3306 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3307 // instructions. If we only match on the legalized i64 mul expansion,
3308 // SimplifyDemandedBits will be unable to remove them because there will be
3309 // multiple uses due to the separate mul + mulh[su].
3310 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3311                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3312   if (Size <= 32) {
3313     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3314     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3315   }
3316 
3317   // Because we want to eliminate extension instructions before the
3318   // operation, we need to create a single user here (i.e. not the separate
3319   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3320 
3321   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3322 
3323   SDValue Mul = DAG.getNode(MulOpc, SL,
3324                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3325 
3326   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3327                      Mul.getValue(0), Mul.getValue(1));
3328 }
3329 
3330 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3331                                                 DAGCombinerInfo &DCI) const {
3332   EVT VT = N->getValueType(0);
3333 
3334   unsigned Size = VT.getSizeInBits();
3335   if (VT.isVector() || Size > 64)
3336     return SDValue();
3337 
3338   // There are i16 integer mul/mad.
3339   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3340     return SDValue();
3341 
3342   SelectionDAG &DAG = DCI.DAG;
3343   SDLoc DL(N);
3344 
3345   SDValue N0 = N->getOperand(0);
3346   SDValue N1 = N->getOperand(1);
3347 
3348   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3349   // in the source into any_extends if the result of the mul is truncated. Since
3350   // we can assume the high bits are whatever we want, use the underlying value
3351   // to avoid the unknown high bits from interfering.
3352   if (N0.getOpcode() == ISD::ANY_EXTEND)
3353     N0 = N0.getOperand(0);
3354 
3355   if (N1.getOpcode() == ISD::ANY_EXTEND)
3356     N1 = N1.getOperand(0);
3357 
3358   SDValue Mul;
3359 
3360   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3361     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3362     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3363     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3364   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3365     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3366     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3367     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3368   } else {
3369     return SDValue();
3370   }
3371 
3372   // We need to use sext even for MUL_U24, because MUL_U24 is used
3373   // for signed multiply of 8 and 16-bit types.
3374   return DAG.getSExtOrTrunc(Mul, DL, VT);
3375 }
3376 
3377 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3378                                                   DAGCombinerInfo &DCI) const {
3379   EVT VT = N->getValueType(0);
3380 
3381   if (!Subtarget->hasMulI24() || VT.isVector())
3382     return SDValue();
3383 
3384   SelectionDAG &DAG = DCI.DAG;
3385   SDLoc DL(N);
3386 
3387   SDValue N0 = N->getOperand(0);
3388   SDValue N1 = N->getOperand(1);
3389 
3390   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3391     return SDValue();
3392 
3393   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3394   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3395 
3396   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3397   DCI.AddToWorklist(Mulhi.getNode());
3398   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3399 }
3400 
3401 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3402                                                   DAGCombinerInfo &DCI) const {
3403   EVT VT = N->getValueType(0);
3404 
3405   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3406     return SDValue();
3407 
3408   SelectionDAG &DAG = DCI.DAG;
3409   SDLoc DL(N);
3410 
3411   SDValue N0 = N->getOperand(0);
3412   SDValue N1 = N->getOperand(1);
3413 
3414   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3415     return SDValue();
3416 
3417   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3418   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3419 
3420   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3421   DCI.AddToWorklist(Mulhi.getNode());
3422   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3423 }
3424 
3425 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3426   SDNode *N, DAGCombinerInfo &DCI) const {
3427   SelectionDAG &DAG = DCI.DAG;
3428 
3429   // Simplify demanded bits before splitting into multiple users.
3430   if (SDValue V = simplifyI24(N, DCI))
3431     return V;
3432 
3433   SDValue N0 = N->getOperand(0);
3434   SDValue N1 = N->getOperand(1);
3435 
3436   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3437 
3438   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3439   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3440 
3441   SDLoc SL(N);
3442 
3443   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3444   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3445   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3446 }
3447 
3448 static bool isNegativeOne(SDValue Val) {
3449   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3450     return C->isAllOnesValue();
3451   return false;
3452 }
3453 
3454 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3455                                           SDValue Op,
3456                                           const SDLoc &DL,
3457                                           unsigned Opc) const {
3458   EVT VT = Op.getValueType();
3459   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3460   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3461                               LegalVT != MVT::i16))
3462     return SDValue();
3463 
3464   if (VT != MVT::i32)
3465     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3466 
3467   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3468   if (VT != MVT::i32)
3469     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3470 
3471   return FFBX;
3472 }
3473 
3474 // The native instructions return -1 on 0 input. Optimize out a select that
3475 // produces -1 on 0.
3476 //
3477 // TODO: If zero is not undef, we could also do this if the output is compared
3478 // against the bitwidth.
3479 //
3480 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3481 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3482                                                  SDValue LHS, SDValue RHS,
3483                                                  DAGCombinerInfo &DCI) const {
3484   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3485   if (!CmpRhs || !CmpRhs->isNullValue())
3486     return SDValue();
3487 
3488   SelectionDAG &DAG = DCI.DAG;
3489   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3490   SDValue CmpLHS = Cond.getOperand(0);
3491 
3492   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3493                                            AMDGPUISD::FFBH_U32;
3494 
3495   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3496   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3497   if (CCOpcode == ISD::SETEQ &&
3498       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3499       RHS.getOperand(0) == CmpLHS &&
3500       isNegativeOne(LHS)) {
3501     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3502   }
3503 
3504   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3505   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3506   if (CCOpcode == ISD::SETNE &&
3507       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3508       LHS.getOperand(0) == CmpLHS &&
3509       isNegativeOne(RHS)) {
3510     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3511   }
3512 
3513   return SDValue();
3514 }
3515 
3516 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3517                                          unsigned Op,
3518                                          const SDLoc &SL,
3519                                          SDValue Cond,
3520                                          SDValue N1,
3521                                          SDValue N2) {
3522   SelectionDAG &DAG = DCI.DAG;
3523   EVT VT = N1.getValueType();
3524 
3525   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3526                                   N1.getOperand(0), N2.getOperand(0));
3527   DCI.AddToWorklist(NewSelect.getNode());
3528   return DAG.getNode(Op, SL, VT, NewSelect);
3529 }
3530 
3531 // Pull a free FP operation out of a select so it may fold into uses.
3532 //
3533 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3534 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3535 //
3536 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3537 // select c, (fabs x), +k -> fabs (select c, x, k)
3538 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3539                                     SDValue N) {
3540   SelectionDAG &DAG = DCI.DAG;
3541   SDValue Cond = N.getOperand(0);
3542   SDValue LHS = N.getOperand(1);
3543   SDValue RHS = N.getOperand(2);
3544 
3545   EVT VT = N.getValueType();
3546   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3547       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3548     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3549                                      SDLoc(N), Cond, LHS, RHS);
3550   }
3551 
3552   bool Inv = false;
3553   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3554     std::swap(LHS, RHS);
3555     Inv = true;
3556   }
3557 
3558   // TODO: Support vector constants.
3559   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3560   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3561     SDLoc SL(N);
3562     // If one side is an fneg/fabs and the other is a constant, we can push the
3563     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3564     SDValue NewLHS = LHS.getOperand(0);
3565     SDValue NewRHS = RHS;
3566 
3567     // Careful: if the neg can be folded up, don't try to pull it back down.
3568     bool ShouldFoldNeg = true;
3569 
3570     if (NewLHS.hasOneUse()) {
3571       unsigned Opc = NewLHS.getOpcode();
3572       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3573         ShouldFoldNeg = false;
3574       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3575         ShouldFoldNeg = false;
3576     }
3577 
3578     if (ShouldFoldNeg) {
3579       if (LHS.getOpcode() == ISD::FNEG)
3580         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3581       else if (CRHS->isNegative())
3582         return SDValue();
3583 
3584       if (Inv)
3585         std::swap(NewLHS, NewRHS);
3586 
3587       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3588                                       Cond, NewLHS, NewRHS);
3589       DCI.AddToWorklist(NewSelect.getNode());
3590       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3591     }
3592   }
3593 
3594   return SDValue();
3595 }
3596 
3597 
3598 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3599                                                    DAGCombinerInfo &DCI) const {
3600   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3601     return Folded;
3602 
3603   SDValue Cond = N->getOperand(0);
3604   if (Cond.getOpcode() != ISD::SETCC)
3605     return SDValue();
3606 
3607   EVT VT = N->getValueType(0);
3608   SDValue LHS = Cond.getOperand(0);
3609   SDValue RHS = Cond.getOperand(1);
3610   SDValue CC = Cond.getOperand(2);
3611 
3612   SDValue True = N->getOperand(1);
3613   SDValue False = N->getOperand(2);
3614 
3615   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3616     SelectionDAG &DAG = DCI.DAG;
3617     if (DAG.isConstantValueOfAnyType(True) &&
3618         !DAG.isConstantValueOfAnyType(False)) {
3619       // Swap cmp + select pair to move constant to false input.
3620       // This will allow using VOPC cndmasks more often.
3621       // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3622 
3623       SDLoc SL(N);
3624       ISD::CondCode NewCC =
3625           getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3626 
3627       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3628       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3629     }
3630 
3631     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3632       SDValue MinMax
3633         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3634       // Revisit this node so we can catch min3/max3/med3 patterns.
3635       //DCI.AddToWorklist(MinMax.getNode());
3636       return MinMax;
3637     }
3638   }
3639 
3640   // There's no reason to not do this if the condition has other uses.
3641   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3642 }
3643 
3644 static bool isInv2Pi(const APFloat &APF) {
3645   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3646   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3647   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3648 
3649   return APF.bitwiseIsEqual(KF16) ||
3650          APF.bitwiseIsEqual(KF32) ||
3651          APF.bitwiseIsEqual(KF64);
3652 }
3653 
3654 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3655 // additional cost to negate them.
3656 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3657   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3658     if (C->isZero() && !C->isNegative())
3659       return true;
3660 
3661     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3662       return true;
3663   }
3664 
3665   return false;
3666 }
3667 
3668 static unsigned inverseMinMax(unsigned Opc) {
3669   switch (Opc) {
3670   case ISD::FMAXNUM:
3671     return ISD::FMINNUM;
3672   case ISD::FMINNUM:
3673     return ISD::FMAXNUM;
3674   case ISD::FMAXNUM_IEEE:
3675     return ISD::FMINNUM_IEEE;
3676   case ISD::FMINNUM_IEEE:
3677     return ISD::FMAXNUM_IEEE;
3678   case AMDGPUISD::FMAX_LEGACY:
3679     return AMDGPUISD::FMIN_LEGACY;
3680   case AMDGPUISD::FMIN_LEGACY:
3681     return  AMDGPUISD::FMAX_LEGACY;
3682   default:
3683     llvm_unreachable("invalid min/max opcode");
3684   }
3685 }
3686 
3687 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3688                                                  DAGCombinerInfo &DCI) const {
3689   SelectionDAG &DAG = DCI.DAG;
3690   SDValue N0 = N->getOperand(0);
3691   EVT VT = N->getValueType(0);
3692 
3693   unsigned Opc = N0.getOpcode();
3694 
3695   // If the input has multiple uses and we can either fold the negate down, or
3696   // the other uses cannot, give up. This both prevents unprofitable
3697   // transformations and infinite loops: we won't repeatedly try to fold around
3698   // a negate that has no 'good' form.
3699   if (N0.hasOneUse()) {
3700     // This may be able to fold into the source, but at a code size cost. Don't
3701     // fold if the fold into the user is free.
3702     if (allUsesHaveSourceMods(N, 0))
3703       return SDValue();
3704   } else {
3705     if (fnegFoldsIntoOp(Opc) &&
3706         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3707       return SDValue();
3708   }
3709 
3710   SDLoc SL(N);
3711   switch (Opc) {
3712   case ISD::FADD: {
3713     if (!mayIgnoreSignedZero(N0))
3714       return SDValue();
3715 
3716     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3717     SDValue LHS = N0.getOperand(0);
3718     SDValue RHS = N0.getOperand(1);
3719 
3720     if (LHS.getOpcode() != ISD::FNEG)
3721       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3722     else
3723       LHS = LHS.getOperand(0);
3724 
3725     if (RHS.getOpcode() != ISD::FNEG)
3726       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3727     else
3728       RHS = RHS.getOperand(0);
3729 
3730     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3731     if (Res.getOpcode() != ISD::FADD)
3732       return SDValue(); // Op got folded away.
3733     if (!N0.hasOneUse())
3734       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3735     return Res;
3736   }
3737   case ISD::FMUL:
3738   case AMDGPUISD::FMUL_LEGACY: {
3739     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3740     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3741     SDValue LHS = N0.getOperand(0);
3742     SDValue RHS = N0.getOperand(1);
3743 
3744     if (LHS.getOpcode() == ISD::FNEG)
3745       LHS = LHS.getOperand(0);
3746     else if (RHS.getOpcode() == ISD::FNEG)
3747       RHS = RHS.getOperand(0);
3748     else
3749       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3750 
3751     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3752     if (Res.getOpcode() != Opc)
3753       return SDValue(); // Op got folded away.
3754     if (!N0.hasOneUse())
3755       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3756     return Res;
3757   }
3758   case ISD::FMA:
3759   case ISD::FMAD: {
3760     if (!mayIgnoreSignedZero(N0))
3761       return SDValue();
3762 
3763     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3764     SDValue LHS = N0.getOperand(0);
3765     SDValue MHS = N0.getOperand(1);
3766     SDValue RHS = N0.getOperand(2);
3767 
3768     if (LHS.getOpcode() == ISD::FNEG)
3769       LHS = LHS.getOperand(0);
3770     else if (MHS.getOpcode() == ISD::FNEG)
3771       MHS = MHS.getOperand(0);
3772     else
3773       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3774 
3775     if (RHS.getOpcode() != ISD::FNEG)
3776       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3777     else
3778       RHS = RHS.getOperand(0);
3779 
3780     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3781     if (Res.getOpcode() != Opc)
3782       return SDValue(); // Op got folded away.
3783     if (!N0.hasOneUse())
3784       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3785     return Res;
3786   }
3787   case ISD::FMAXNUM:
3788   case ISD::FMINNUM:
3789   case ISD::FMAXNUM_IEEE:
3790   case ISD::FMINNUM_IEEE:
3791   case AMDGPUISD::FMAX_LEGACY:
3792   case AMDGPUISD::FMIN_LEGACY: {
3793     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3794     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3795     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3796     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3797 
3798     SDValue LHS = N0.getOperand(0);
3799     SDValue RHS = N0.getOperand(1);
3800 
3801     // 0 doesn't have a negated inline immediate.
3802     // TODO: This constant check should be generalized to other operations.
3803     if (isConstantCostlierToNegate(RHS))
3804       return SDValue();
3805 
3806     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3807     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3808     unsigned Opposite = inverseMinMax(Opc);
3809 
3810     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3811     if (Res.getOpcode() != Opposite)
3812       return SDValue(); // Op got folded away.
3813     if (!N0.hasOneUse())
3814       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3815     return Res;
3816   }
3817   case AMDGPUISD::FMED3: {
3818     SDValue Ops[3];
3819     for (unsigned I = 0; I < 3; ++I)
3820       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3821 
3822     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3823     if (Res.getOpcode() != AMDGPUISD::FMED3)
3824       return SDValue(); // Op got folded away.
3825     if (!N0.hasOneUse())
3826       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3827     return Res;
3828   }
3829   case ISD::FP_EXTEND:
3830   case ISD::FTRUNC:
3831   case ISD::FRINT:
3832   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3833   case ISD::FSIN:
3834   case ISD::FCANONICALIZE:
3835   case AMDGPUISD::RCP:
3836   case AMDGPUISD::RCP_LEGACY:
3837   case AMDGPUISD::RCP_IFLAG:
3838   case AMDGPUISD::SIN_HW: {
3839     SDValue CvtSrc = N0.getOperand(0);
3840     if (CvtSrc.getOpcode() == ISD::FNEG) {
3841       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3842       // (fneg (rcp (fneg x))) -> (rcp x)
3843       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3844     }
3845 
3846     if (!N0.hasOneUse())
3847       return SDValue();
3848 
3849     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3850     // (fneg (rcp x)) -> (rcp (fneg x))
3851     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3852     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3853   }
3854   case ISD::FP_ROUND: {
3855     SDValue CvtSrc = N0.getOperand(0);
3856 
3857     if (CvtSrc.getOpcode() == ISD::FNEG) {
3858       // (fneg (fp_round (fneg x))) -> (fp_round x)
3859       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3860                          CvtSrc.getOperand(0), N0.getOperand(1));
3861     }
3862 
3863     if (!N0.hasOneUse())
3864       return SDValue();
3865 
3866     // (fneg (fp_round x)) -> (fp_round (fneg x))
3867     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3868     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3869   }
3870   case ISD::FP16_TO_FP: {
3871     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3872     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3873     // Put the fneg back as a legal source operation that can be matched later.
3874     SDLoc SL(N);
3875 
3876     SDValue Src = N0.getOperand(0);
3877     EVT SrcVT = Src.getValueType();
3878 
3879     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3880     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3881                                   DAG.getConstant(0x8000, SL, SrcVT));
3882     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3883   }
3884   default:
3885     return SDValue();
3886   }
3887 }
3888 
3889 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3890                                                  DAGCombinerInfo &DCI) const {
3891   SelectionDAG &DAG = DCI.DAG;
3892   SDValue N0 = N->getOperand(0);
3893 
3894   if (!N0.hasOneUse())
3895     return SDValue();
3896 
3897   switch (N0.getOpcode()) {
3898   case ISD::FP16_TO_FP: {
3899     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3900     SDLoc SL(N);
3901     SDValue Src = N0.getOperand(0);
3902     EVT SrcVT = Src.getValueType();
3903 
3904     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3905     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3906                                   DAG.getConstant(0x7fff, SL, SrcVT));
3907     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3908   }
3909   default:
3910     return SDValue();
3911   }
3912 }
3913 
3914 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3915                                                 DAGCombinerInfo &DCI) const {
3916   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3917   if (!CFP)
3918     return SDValue();
3919 
3920   // XXX - Should this flush denormals?
3921   const APFloat &Val = CFP->getValueAPF();
3922   APFloat One(Val.getSemantics(), "1.0");
3923   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3924 }
3925 
3926 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3927                                                 DAGCombinerInfo &DCI) const {
3928   SelectionDAG &DAG = DCI.DAG;
3929   SDLoc DL(N);
3930 
3931   switch(N->getOpcode()) {
3932   default:
3933     break;
3934   case ISD::BITCAST: {
3935     EVT DestVT = N->getValueType(0);
3936 
3937     // Push casts through vector builds. This helps avoid emitting a large
3938     // number of copies when materializing floating point vector constants.
3939     //
3940     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3941     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3942     if (DestVT.isVector()) {
3943       SDValue Src = N->getOperand(0);
3944       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3945         EVT SrcVT = Src.getValueType();
3946         unsigned NElts = DestVT.getVectorNumElements();
3947 
3948         if (SrcVT.getVectorNumElements() == NElts) {
3949           EVT DestEltVT = DestVT.getVectorElementType();
3950 
3951           SmallVector<SDValue, 8> CastedElts;
3952           SDLoc SL(N);
3953           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3954             SDValue Elt = Src.getOperand(I);
3955             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3956           }
3957 
3958           return DAG.getBuildVector(DestVT, SL, CastedElts);
3959         }
3960       }
3961     }
3962 
3963     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3964       break;
3965 
3966     // Fold bitcasts of constants.
3967     //
3968     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3969     // TODO: Generalize and move to DAGCombiner
3970     SDValue Src = N->getOperand(0);
3971     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3972       if (Src.getValueType() == MVT::i64) {
3973         SDLoc SL(N);
3974         uint64_t CVal = C->getZExtValue();
3975         SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3976                                  DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3977                                  DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3978         return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3979       }
3980     }
3981 
3982     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3983       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3984       SDLoc SL(N);
3985       uint64_t CVal = Val.getZExtValue();
3986       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3987                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3988                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3989 
3990       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3991     }
3992 
3993     break;
3994   }
3995   case ISD::SHL: {
3996     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3997       break;
3998 
3999     return performShlCombine(N, DCI);
4000   }
4001   case ISD::SRL: {
4002     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4003       break;
4004 
4005     return performSrlCombine(N, DCI);
4006   }
4007   case ISD::SRA: {
4008     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4009       break;
4010 
4011     return performSraCombine(N, DCI);
4012   }
4013   case ISD::TRUNCATE:
4014     return performTruncateCombine(N, DCI);
4015   case ISD::MUL:
4016     return performMulCombine(N, DCI);
4017   case ISD::MULHS:
4018     return performMulhsCombine(N, DCI);
4019   case ISD::MULHU:
4020     return performMulhuCombine(N, DCI);
4021   case AMDGPUISD::MUL_I24:
4022   case AMDGPUISD::MUL_U24:
4023   case AMDGPUISD::MULHI_I24:
4024   case AMDGPUISD::MULHI_U24: {
4025     if (SDValue V = simplifyI24(N, DCI))
4026       return V;
4027     return SDValue();
4028   }
4029   case AMDGPUISD::MUL_LOHI_I24:
4030   case AMDGPUISD::MUL_LOHI_U24:
4031     return performMulLoHi24Combine(N, DCI);
4032   case ISD::SELECT:
4033     return performSelectCombine(N, DCI);
4034   case ISD::FNEG:
4035     return performFNegCombine(N, DCI);
4036   case ISD::FABS:
4037     return performFAbsCombine(N, DCI);
4038   case AMDGPUISD::BFE_I32:
4039   case AMDGPUISD::BFE_U32: {
4040     assert(!N->getValueType(0).isVector() &&
4041            "Vector handling of BFE not implemented");
4042     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4043     if (!Width)
4044       break;
4045 
4046     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4047     if (WidthVal == 0)
4048       return DAG.getConstant(0, DL, MVT::i32);
4049 
4050     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4051     if (!Offset)
4052       break;
4053 
4054     SDValue BitsFrom = N->getOperand(0);
4055     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4056 
4057     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4058 
4059     if (OffsetVal == 0) {
4060       // This is already sign / zero extended, so try to fold away extra BFEs.
4061       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4062 
4063       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4064       if (OpSignBits >= SignBits)
4065         return BitsFrom;
4066 
4067       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4068       if (Signed) {
4069         // This is a sign_extend_inreg. Replace it to take advantage of existing
4070         // DAG Combines. If not eliminated, we will match back to BFE during
4071         // selection.
4072 
4073         // TODO: The sext_inreg of extended types ends, although we can could
4074         // handle them in a single BFE.
4075         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4076                            DAG.getValueType(SmallVT));
4077       }
4078 
4079       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4080     }
4081 
4082     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4083       if (Signed) {
4084         return constantFoldBFE<int32_t>(DAG,
4085                                         CVal->getSExtValue(),
4086                                         OffsetVal,
4087                                         WidthVal,
4088                                         DL);
4089       }
4090 
4091       return constantFoldBFE<uint32_t>(DAG,
4092                                        CVal->getZExtValue(),
4093                                        OffsetVal,
4094                                        WidthVal,
4095                                        DL);
4096     }
4097 
4098     if ((OffsetVal + WidthVal) >= 32 &&
4099         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4100       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4101       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4102                          BitsFrom, ShiftVal);
4103     }
4104 
4105     if (BitsFrom.hasOneUse()) {
4106       APInt Demanded = APInt::getBitsSet(32,
4107                                          OffsetVal,
4108                                          OffsetVal + WidthVal);
4109 
4110       KnownBits Known;
4111       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4112                                             !DCI.isBeforeLegalizeOps());
4113       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4114       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4115           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4116         DCI.CommitTargetLoweringOpt(TLO);
4117       }
4118     }
4119 
4120     break;
4121   }
4122   case ISD::LOAD:
4123     return performLoadCombine(N, DCI);
4124   case ISD::STORE:
4125     return performStoreCombine(N, DCI);
4126   case AMDGPUISD::RCP:
4127   case AMDGPUISD::RCP_IFLAG:
4128     return performRcpCombine(N, DCI);
4129   case ISD::AssertZext:
4130   case ISD::AssertSext:
4131     return performAssertSZExtCombine(N, DCI);
4132   case ISD::INTRINSIC_WO_CHAIN:
4133     return performIntrinsicWOChainCombine(N, DCI);
4134   }
4135   return SDValue();
4136 }
4137 
4138 //===----------------------------------------------------------------------===//
4139 // Helper functions
4140 //===----------------------------------------------------------------------===//
4141 
4142 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4143                                                    const TargetRegisterClass *RC,
4144                                                    Register Reg, EVT VT,
4145                                                    const SDLoc &SL,
4146                                                    bool RawReg) const {
4147   MachineFunction &MF = DAG.getMachineFunction();
4148   MachineRegisterInfo &MRI = MF.getRegInfo();
4149   Register VReg;
4150 
4151   if (!MRI.isLiveIn(Reg)) {
4152     VReg = MRI.createVirtualRegister(RC);
4153     MRI.addLiveIn(Reg, VReg);
4154   } else {
4155     VReg = MRI.getLiveInVirtReg(Reg);
4156   }
4157 
4158   if (RawReg)
4159     return DAG.getRegister(VReg, VT);
4160 
4161   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4162 }
4163 
4164 // This may be called multiple times, and nothing prevents creating multiple
4165 // objects at the same offset. See if we already defined this object.
4166 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4167                                        int64_t Offset) {
4168   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4169     if (MFI.getObjectOffset(I) == Offset) {
4170       assert(MFI.getObjectSize(I) == Size);
4171       return I;
4172     }
4173   }
4174 
4175   return MFI.CreateFixedObject(Size, Offset, true);
4176 }
4177 
4178 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4179                                                   EVT VT,
4180                                                   const SDLoc &SL,
4181                                                   int64_t Offset) const {
4182   MachineFunction &MF = DAG.getMachineFunction();
4183   MachineFrameInfo &MFI = MF.getFrameInfo();
4184   int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4185 
4186   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4187   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4188 
4189   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4190                      MachineMemOperand::MODereferenceable |
4191                      MachineMemOperand::MOInvariant);
4192 }
4193 
4194 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4195                                                    const SDLoc &SL,
4196                                                    SDValue Chain,
4197                                                    SDValue ArgVal,
4198                                                    int64_t Offset) const {
4199   MachineFunction &MF = DAG.getMachineFunction();
4200   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4201 
4202   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4203   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4204                                MachineMemOperand::MODereferenceable);
4205   return Store;
4206 }
4207 
4208 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4209                                              const TargetRegisterClass *RC,
4210                                              EVT VT, const SDLoc &SL,
4211                                              const ArgDescriptor &Arg) const {
4212   assert(Arg && "Attempting to load missing argument");
4213 
4214   SDValue V = Arg.isRegister() ?
4215     CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4216     loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4217 
4218   if (!Arg.isMasked())
4219     return V;
4220 
4221   unsigned Mask = Arg.getMask();
4222   unsigned Shift = countTrailingZeros<unsigned>(Mask);
4223   V = DAG.getNode(ISD::SRL, SL, VT, V,
4224                   DAG.getShiftAmountConstant(Shift, VT, SL));
4225   return DAG.getNode(ISD::AND, SL, VT, V,
4226                      DAG.getConstant(Mask >> Shift, SL, VT));
4227 }
4228 
4229 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4230     const MachineFunction &MF, const ImplicitParameter Param) const {
4231   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4232   const AMDGPUSubtarget &ST =
4233       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4234   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4235   const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4236   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4237                        ExplicitArgOffset;
4238   switch (Param) {
4239   case GRID_DIM:
4240     return ArgOffset;
4241   case GRID_OFFSET:
4242     return ArgOffset + 4;
4243   }
4244   llvm_unreachable("unexpected implicit parameter type");
4245 }
4246 
4247 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4248 
4249 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4250   switch ((AMDGPUISD::NodeType)Opcode) {
4251   case AMDGPUISD::FIRST_NUMBER: break;
4252   // AMDIL DAG nodes
4253   NODE_NAME_CASE(UMUL);
4254   NODE_NAME_CASE(BRANCH_COND);
4255 
4256   // AMDGPU DAG nodes
4257   NODE_NAME_CASE(IF)
4258   NODE_NAME_CASE(ELSE)
4259   NODE_NAME_CASE(LOOP)
4260   NODE_NAME_CASE(CALL)
4261   NODE_NAME_CASE(TC_RETURN)
4262   NODE_NAME_CASE(TRAP)
4263   NODE_NAME_CASE(RET_FLAG)
4264   NODE_NAME_CASE(RETURN_TO_EPILOG)
4265   NODE_NAME_CASE(ENDPGM)
4266   NODE_NAME_CASE(DWORDADDR)
4267   NODE_NAME_CASE(FRACT)
4268   NODE_NAME_CASE(SETCC)
4269   NODE_NAME_CASE(SETREG)
4270   NODE_NAME_CASE(DENORM_MODE)
4271   NODE_NAME_CASE(FMA_W_CHAIN)
4272   NODE_NAME_CASE(FMUL_W_CHAIN)
4273   NODE_NAME_CASE(CLAMP)
4274   NODE_NAME_CASE(COS_HW)
4275   NODE_NAME_CASE(SIN_HW)
4276   NODE_NAME_CASE(FMAX_LEGACY)
4277   NODE_NAME_CASE(FMIN_LEGACY)
4278   NODE_NAME_CASE(FMAX3)
4279   NODE_NAME_CASE(SMAX3)
4280   NODE_NAME_CASE(UMAX3)
4281   NODE_NAME_CASE(FMIN3)
4282   NODE_NAME_CASE(SMIN3)
4283   NODE_NAME_CASE(UMIN3)
4284   NODE_NAME_CASE(FMED3)
4285   NODE_NAME_CASE(SMED3)
4286   NODE_NAME_CASE(UMED3)
4287   NODE_NAME_CASE(FDOT2)
4288   NODE_NAME_CASE(URECIP)
4289   NODE_NAME_CASE(DIV_SCALE)
4290   NODE_NAME_CASE(DIV_FMAS)
4291   NODE_NAME_CASE(DIV_FIXUP)
4292   NODE_NAME_CASE(FMAD_FTZ)
4293   NODE_NAME_CASE(TRIG_PREOP)
4294   NODE_NAME_CASE(RCP)
4295   NODE_NAME_CASE(RSQ)
4296   NODE_NAME_CASE(RCP_LEGACY)
4297   NODE_NAME_CASE(RCP_IFLAG)
4298   NODE_NAME_CASE(FMUL_LEGACY)
4299   NODE_NAME_CASE(RSQ_CLAMP)
4300   NODE_NAME_CASE(LDEXP)
4301   NODE_NAME_CASE(FP_CLASS)
4302   NODE_NAME_CASE(DOT4)
4303   NODE_NAME_CASE(CARRY)
4304   NODE_NAME_CASE(BORROW)
4305   NODE_NAME_CASE(BFE_U32)
4306   NODE_NAME_CASE(BFE_I32)
4307   NODE_NAME_CASE(BFI)
4308   NODE_NAME_CASE(BFM)
4309   NODE_NAME_CASE(FFBH_U32)
4310   NODE_NAME_CASE(FFBH_I32)
4311   NODE_NAME_CASE(FFBL_B32)
4312   NODE_NAME_CASE(MUL_U24)
4313   NODE_NAME_CASE(MUL_I24)
4314   NODE_NAME_CASE(MULHI_U24)
4315   NODE_NAME_CASE(MULHI_I24)
4316   NODE_NAME_CASE(MUL_LOHI_U24)
4317   NODE_NAME_CASE(MUL_LOHI_I24)
4318   NODE_NAME_CASE(MAD_U24)
4319   NODE_NAME_CASE(MAD_I24)
4320   NODE_NAME_CASE(MAD_I64_I32)
4321   NODE_NAME_CASE(MAD_U64_U32)
4322   NODE_NAME_CASE(PERM)
4323   NODE_NAME_CASE(TEXTURE_FETCH)
4324   NODE_NAME_CASE(R600_EXPORT)
4325   NODE_NAME_CASE(CONST_ADDRESS)
4326   NODE_NAME_CASE(REGISTER_LOAD)
4327   NODE_NAME_CASE(REGISTER_STORE)
4328   NODE_NAME_CASE(SAMPLE)
4329   NODE_NAME_CASE(SAMPLEB)
4330   NODE_NAME_CASE(SAMPLED)
4331   NODE_NAME_CASE(SAMPLEL)
4332   NODE_NAME_CASE(CVT_F32_UBYTE0)
4333   NODE_NAME_CASE(CVT_F32_UBYTE1)
4334   NODE_NAME_CASE(CVT_F32_UBYTE2)
4335   NODE_NAME_CASE(CVT_F32_UBYTE3)
4336   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4337   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4338   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4339   NODE_NAME_CASE(CVT_PK_I16_I32)
4340   NODE_NAME_CASE(CVT_PK_U16_U32)
4341   NODE_NAME_CASE(FP_TO_FP16)
4342   NODE_NAME_CASE(FP16_ZEXT)
4343   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4344   NODE_NAME_CASE(CONST_DATA_PTR)
4345   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4346   NODE_NAME_CASE(LDS)
4347   NODE_NAME_CASE(DUMMY_CHAIN)
4348   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4349   NODE_NAME_CASE(LOAD_D16_HI)
4350   NODE_NAME_CASE(LOAD_D16_LO)
4351   NODE_NAME_CASE(LOAD_D16_HI_I8)
4352   NODE_NAME_CASE(LOAD_D16_HI_U8)
4353   NODE_NAME_CASE(LOAD_D16_LO_I8)
4354   NODE_NAME_CASE(LOAD_D16_LO_U8)
4355   NODE_NAME_CASE(STORE_MSKOR)
4356   NODE_NAME_CASE(LOAD_CONSTANT)
4357   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4358   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4359   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4360   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4361   NODE_NAME_CASE(DS_ORDERED_COUNT)
4362   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4363   NODE_NAME_CASE(ATOMIC_INC)
4364   NODE_NAME_CASE(ATOMIC_DEC)
4365   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4366   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4367   NODE_NAME_CASE(BUFFER_LOAD)
4368   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4369   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4370   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4371   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4372   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4373   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4374   NODE_NAME_CASE(SBUFFER_LOAD)
4375   NODE_NAME_CASE(BUFFER_STORE)
4376   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4377   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4378   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4379   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4380   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4381   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4382   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4383   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4384   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4385   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4386   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4387   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4388   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4389   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4390   NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4391   NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4392   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4393   NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4394   NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD)
4395   NODE_NAME_CASE(ATOMIC_PK_FADD)
4396 
4397   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4398   }
4399   return nullptr;
4400 }
4401 
4402 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4403                                               SelectionDAG &DAG, int Enabled,
4404                                               int &RefinementSteps,
4405                                               bool &UseOneConstNR,
4406                                               bool Reciprocal) const {
4407   EVT VT = Operand.getValueType();
4408 
4409   if (VT == MVT::f32) {
4410     RefinementSteps = 0;
4411     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4412   }
4413 
4414   // TODO: There is also f64 rsq instruction, but the documentation is less
4415   // clear on its precision.
4416 
4417   return SDValue();
4418 }
4419 
4420 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4421                                                SelectionDAG &DAG, int Enabled,
4422                                                int &RefinementSteps) const {
4423   EVT VT = Operand.getValueType();
4424 
4425   if (VT == MVT::f32) {
4426     // Reciprocal, < 1 ulp error.
4427     //
4428     // This reciprocal approximation converges to < 0.5 ulp error with one
4429     // newton rhapson performed with two fused multiple adds (FMAs).
4430 
4431     RefinementSteps = 0;
4432     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4433   }
4434 
4435   // TODO: There is also f64 rcp instruction, but the documentation is less
4436   // clear on its precision.
4437 
4438   return SDValue();
4439 }
4440 
4441 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4442     const SDValue Op, KnownBits &Known,
4443     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4444 
4445   Known.resetAll(); // Don't know anything.
4446 
4447   unsigned Opc = Op.getOpcode();
4448 
4449   switch (Opc) {
4450   default:
4451     break;
4452   case AMDGPUISD::CARRY:
4453   case AMDGPUISD::BORROW: {
4454     Known.Zero = APInt::getHighBitsSet(32, 31);
4455     break;
4456   }
4457 
4458   case AMDGPUISD::BFE_I32:
4459   case AMDGPUISD::BFE_U32: {
4460     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4461     if (!CWidth)
4462       return;
4463 
4464     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4465 
4466     if (Opc == AMDGPUISD::BFE_U32)
4467       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4468 
4469     break;
4470   }
4471   case AMDGPUISD::FP_TO_FP16:
4472   case AMDGPUISD::FP16_ZEXT: {
4473     unsigned BitWidth = Known.getBitWidth();
4474 
4475     // High bits are zero.
4476     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4477     break;
4478   }
4479   case AMDGPUISD::MUL_U24:
4480   case AMDGPUISD::MUL_I24: {
4481     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4482     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4483     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4484                       RHSKnown.countMinTrailingZeros();
4485     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4486     // Skip extra check if all bits are known zeros.
4487     if (TrailZ >= 32)
4488       break;
4489 
4490     // Truncate to 24 bits.
4491     LHSKnown = LHSKnown.trunc(24);
4492     RHSKnown = RHSKnown.trunc(24);
4493 
4494     if (Opc == AMDGPUISD::MUL_I24) {
4495       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4496       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4497       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4498       if (MaxValBits >= 32)
4499         break;
4500       bool LHSNegative = LHSKnown.isNegative();
4501       bool LHSNonNegative = LHSKnown.isNonNegative();
4502       bool LHSPositive = LHSKnown.isStrictlyPositive();
4503       bool RHSNegative = RHSKnown.isNegative();
4504       bool RHSNonNegative = RHSKnown.isNonNegative();
4505       bool RHSPositive = RHSKnown.isStrictlyPositive();
4506 
4507       if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4508         Known.Zero.setHighBits(32 - MaxValBits);
4509       else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4510         Known.One.setHighBits(32 - MaxValBits);
4511     } else {
4512       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4513       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4514       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4515       if (MaxValBits >= 32)
4516         break;
4517       Known.Zero.setHighBits(32 - MaxValBits);
4518     }
4519     break;
4520   }
4521   case AMDGPUISD::PERM: {
4522     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4523     if (!CMask)
4524       return;
4525 
4526     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4527     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4528     unsigned Sel = CMask->getZExtValue();
4529 
4530     for (unsigned I = 0; I < 32; I += 8) {
4531       unsigned SelBits = Sel & 0xff;
4532       if (SelBits < 4) {
4533         SelBits *= 8;
4534         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4535         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4536       } else if (SelBits < 7) {
4537         SelBits = (SelBits & 3) * 8;
4538         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4539         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4540       } else if (SelBits == 0x0c) {
4541         Known.Zero |= 0xFFull << I;
4542       } else if (SelBits > 0x0c) {
4543         Known.One |= 0xFFull << I;
4544       }
4545       Sel >>= 8;
4546     }
4547     break;
4548   }
4549   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4550     Known.Zero.setHighBits(24);
4551     break;
4552   }
4553   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4554     Known.Zero.setHighBits(16);
4555     break;
4556   }
4557   case AMDGPUISD::LDS: {
4558     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4559     unsigned Align = GA->getGlobal()->getAlignment();
4560 
4561     Known.Zero.setHighBits(16);
4562     if (Align)
4563       Known.Zero.setLowBits(Log2_32(Align));
4564     break;
4565   }
4566   case ISD::INTRINSIC_WO_CHAIN: {
4567     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4568     switch (IID) {
4569     case Intrinsic::amdgcn_mbcnt_lo:
4570     case Intrinsic::amdgcn_mbcnt_hi: {
4571       const GCNSubtarget &ST =
4572           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4573       // These return at most the wavefront size - 1.
4574       unsigned Size = Op.getValueType().getSizeInBits();
4575       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4576       break;
4577     }
4578     default:
4579       break;
4580     }
4581   }
4582   }
4583 }
4584 
4585 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4586     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4587     unsigned Depth) const {
4588   switch (Op.getOpcode()) {
4589   case AMDGPUISD::BFE_I32: {
4590     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4591     if (!Width)
4592       return 1;
4593 
4594     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4595     if (!isNullConstant(Op.getOperand(1)))
4596       return SignBits;
4597 
4598     // TODO: Could probably figure something out with non-0 offsets.
4599     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4600     return std::max(SignBits, Op0SignBits);
4601   }
4602 
4603   case AMDGPUISD::BFE_U32: {
4604     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4605     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4606   }
4607 
4608   case AMDGPUISD::CARRY:
4609   case AMDGPUISD::BORROW:
4610     return 31;
4611   case AMDGPUISD::BUFFER_LOAD_BYTE:
4612     return 25;
4613   case AMDGPUISD::BUFFER_LOAD_SHORT:
4614     return 17;
4615   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4616     return 24;
4617   case AMDGPUISD::BUFFER_LOAD_USHORT:
4618     return 16;
4619   case AMDGPUISD::FP_TO_FP16:
4620   case AMDGPUISD::FP16_ZEXT:
4621     return 16;
4622   default:
4623     return 1;
4624   }
4625 }
4626 
4627 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr(
4628   GISelKnownBits &Analysis, Register R,
4629   const APInt &DemandedElts, const MachineRegisterInfo &MRI,
4630   unsigned Depth) const {
4631   const MachineInstr *MI = MRI.getVRegDef(R);
4632   if (!MI)
4633     return 1;
4634 
4635   // TODO: Check range metadata on MMO.
4636   switch (MI->getOpcode()) {
4637   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE:
4638     return 25;
4639   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT:
4640     return 17;
4641   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
4642     return 24;
4643   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
4644     return 16;
4645   default:
4646     return 1;
4647   }
4648 }
4649 
4650 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4651                                                         const SelectionDAG &DAG,
4652                                                         bool SNaN,
4653                                                         unsigned Depth) const {
4654   unsigned Opcode = Op.getOpcode();
4655   switch (Opcode) {
4656   case AMDGPUISD::FMIN_LEGACY:
4657   case AMDGPUISD::FMAX_LEGACY: {
4658     if (SNaN)
4659       return true;
4660 
4661     // TODO: Can check no nans on one of the operands for each one, but which
4662     // one?
4663     return false;
4664   }
4665   case AMDGPUISD::FMUL_LEGACY:
4666   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4667     if (SNaN)
4668       return true;
4669     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4670            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4671   }
4672   case AMDGPUISD::FMED3:
4673   case AMDGPUISD::FMIN3:
4674   case AMDGPUISD::FMAX3:
4675   case AMDGPUISD::FMAD_FTZ: {
4676     if (SNaN)
4677       return true;
4678     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4679            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4680            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4681   }
4682   case AMDGPUISD::CVT_F32_UBYTE0:
4683   case AMDGPUISD::CVT_F32_UBYTE1:
4684   case AMDGPUISD::CVT_F32_UBYTE2:
4685   case AMDGPUISD::CVT_F32_UBYTE3:
4686     return true;
4687 
4688   case AMDGPUISD::RCP:
4689   case AMDGPUISD::RSQ:
4690   case AMDGPUISD::RCP_LEGACY:
4691   case AMDGPUISD::RSQ_CLAMP: {
4692     if (SNaN)
4693       return true;
4694 
4695     // TODO: Need is known positive check.
4696     return false;
4697   }
4698   case AMDGPUISD::LDEXP:
4699   case AMDGPUISD::FRACT: {
4700     if (SNaN)
4701       return true;
4702     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4703   }
4704   case AMDGPUISD::DIV_SCALE:
4705   case AMDGPUISD::DIV_FMAS:
4706   case AMDGPUISD::DIV_FIXUP:
4707   case AMDGPUISD::TRIG_PREOP:
4708     // TODO: Refine on operands.
4709     return SNaN;
4710   case AMDGPUISD::SIN_HW:
4711   case AMDGPUISD::COS_HW: {
4712     // TODO: Need check for infinity
4713     return SNaN;
4714   }
4715   case ISD::INTRINSIC_WO_CHAIN: {
4716     unsigned IntrinsicID
4717       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4718     // TODO: Handle more intrinsics
4719     switch (IntrinsicID) {
4720     case Intrinsic::amdgcn_cubeid:
4721       return true;
4722 
4723     case Intrinsic::amdgcn_frexp_mant: {
4724       if (SNaN)
4725         return true;
4726       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4727     }
4728     case Intrinsic::amdgcn_cvt_pkrtz: {
4729       if (SNaN)
4730         return true;
4731       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4732              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4733     }
4734     case Intrinsic::amdgcn_rcp:
4735     case Intrinsic::amdgcn_rsq:
4736     case Intrinsic::amdgcn_rcp_legacy:
4737     case Intrinsic::amdgcn_rsq_legacy:
4738     case Intrinsic::amdgcn_rsq_clamp: {
4739       if (SNaN)
4740         return true;
4741 
4742       // TODO: Need is known positive check.
4743       return false;
4744     }
4745     case Intrinsic::amdgcn_fdot2:
4746       // TODO: Refine on operand
4747       return SNaN;
4748     default:
4749       return false;
4750     }
4751   }
4752   default:
4753     return false;
4754   }
4755 }
4756 
4757 TargetLowering::AtomicExpansionKind
4758 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4759   switch (RMW->getOperation()) {
4760   case AtomicRMWInst::Nand:
4761   case AtomicRMWInst::FAdd:
4762   case AtomicRMWInst::FSub:
4763     return AtomicExpansionKind::CmpXChg;
4764   default:
4765     return AtomicExpansionKind::None;
4766   }
4767 }
4768