1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUMachineFunction.h" 19 #include "GCNSubtarget.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/IR/DiagnosticInfo.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 using namespace llvm; 29 30 #include "AMDGPUGenCallingConv.inc" 31 32 static cl::opt<bool> AMDGPUBypassSlowDiv( 33 "amdgpu-bypass-slow-div", 34 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 35 cl::init(true)); 36 37 // Find a larger type to do a load / store of a vector with. 38 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 39 unsigned StoreSize = VT.getStoreSizeInBits(); 40 if (StoreSize <= 32) 41 return EVT::getIntegerVT(Ctx, StoreSize); 42 43 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 44 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 45 } 46 47 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 48 return DAG.computeKnownBits(Op).countMaxActiveBits(); 49 } 50 51 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 52 EVT VT = Op.getValueType(); 53 54 // In order for this to be a signed 24-bit value, bit 23, must 55 // be a sign bit. 56 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 57 } 58 59 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 60 const AMDGPUSubtarget &STI) 61 : TargetLowering(TM), Subtarget(&STI) { 62 // Lower floating point store/load to integer store/load to reduce the number 63 // of patterns in tablegen. 64 setOperationAction(ISD::LOAD, MVT::f32, Promote); 65 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 66 67 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 68 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 69 70 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 71 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 72 73 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 75 76 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 78 79 setOperationAction(ISD::LOAD, MVT::v6f32, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32); 81 82 setOperationAction(ISD::LOAD, MVT::v7f32, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32); 84 85 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 87 88 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 90 91 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 92 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 93 94 setOperationAction(ISD::LOAD, MVT::i64, Promote); 95 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 96 97 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 98 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 99 100 setOperationAction(ISD::LOAD, MVT::f64, Promote); 101 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 102 103 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 104 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 105 106 setOperationAction(ISD::LOAD, MVT::v3i64, Promote); 107 AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32); 108 109 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 110 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 111 112 setOperationAction(ISD::LOAD, MVT::v3f64, Promote); 113 AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32); 114 115 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 116 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 117 118 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 119 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 120 121 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 122 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 123 124 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 125 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 126 127 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 128 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 129 130 // There are no 64-bit extloads. These should be done as a 32-bit extload and 131 // an extension to 64-bit. 132 for (MVT VT : MVT::integer_valuetypes()) { 133 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 134 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 135 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 136 } 137 138 for (MVT VT : MVT::integer_valuetypes()) { 139 if (VT == MVT::i64) 140 continue; 141 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 144 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 146 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 150 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 151 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 154 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 155 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 156 } 157 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 159 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 161 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 162 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 164 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 165 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 167 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 168 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 170 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 171 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 172 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 173 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 174 } 175 176 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 181 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 182 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 183 184 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand); 187 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 188 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 189 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 190 191 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 193 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand); 194 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 195 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 196 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 197 198 setOperationAction(ISD::STORE, MVT::f32, Promote); 199 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 200 201 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 202 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 203 204 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 205 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 206 207 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 208 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 209 210 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 211 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 212 213 setOperationAction(ISD::STORE, MVT::v6f32, Promote); 214 AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32); 215 216 setOperationAction(ISD::STORE, MVT::v7f32, Promote); 217 AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32); 218 219 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 220 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 221 222 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 223 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 224 225 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 226 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 227 228 setOperationAction(ISD::STORE, MVT::i64, Promote); 229 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 230 231 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 232 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 233 234 setOperationAction(ISD::STORE, MVT::f64, Promote); 235 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 236 237 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 238 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 239 240 setOperationAction(ISD::STORE, MVT::v3i64, Promote); 241 AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32); 242 243 setOperationAction(ISD::STORE, MVT::v3f64, Promote); 244 AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32); 245 246 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 247 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 248 249 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 250 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 251 252 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 253 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 254 255 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 256 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 257 258 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 259 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 260 261 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 262 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 263 264 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 265 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 266 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 267 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 268 269 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 270 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 271 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 272 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 273 274 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 275 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 276 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 277 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 278 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 279 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 280 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 281 282 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 283 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 284 285 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 286 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 287 288 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 289 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 290 setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand); 291 setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand); 292 293 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 294 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 295 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 296 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 297 298 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 299 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 300 301 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 302 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 303 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 304 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 305 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 306 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 307 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 308 309 setOperationAction(ISD::Constant, MVT::i32, Legal); 310 setOperationAction(ISD::Constant, MVT::i64, Legal); 311 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 312 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 313 314 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 315 setOperationAction(ISD::BRIND, MVT::Other, Expand); 316 317 // This is totally unsupported, just custom lower to produce an error. 318 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 319 320 // Library functions. These default to Expand, but we have instructions 321 // for them. 322 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 323 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 324 setOperationAction(ISD::FPOW, MVT::f32, Legal); 325 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 326 setOperationAction(ISD::FABS, MVT::f32, Legal); 327 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 328 setOperationAction(ISD::FRINT, MVT::f32, Legal); 329 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 330 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 331 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 332 333 setOperationAction(ISD::FROUND, MVT::f32, Custom); 334 setOperationAction(ISD::FROUND, MVT::f64, Custom); 335 336 setOperationAction(ISD::FLOG, MVT::f32, Custom); 337 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 338 setOperationAction(ISD::FEXP, MVT::f32, Custom); 339 340 341 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 342 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 343 344 setOperationAction(ISD::FREM, MVT::f16, Custom); 345 setOperationAction(ISD::FREM, MVT::f32, Custom); 346 setOperationAction(ISD::FREM, MVT::f64, Custom); 347 348 // Expand to fneg + fadd. 349 setOperationAction(ISD::FSUB, MVT::f64, Expand); 350 351 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 352 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 353 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 354 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 355 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 356 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 357 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom); 358 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom); 359 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom); 360 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom); 361 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 362 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 363 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom); 364 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom); 365 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 366 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 367 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 368 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 369 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 370 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 371 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 372 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 373 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom); 374 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom); 375 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom); 376 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom); 377 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 378 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 379 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 380 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 381 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 382 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 383 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 384 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 385 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom); 386 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom); 387 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 388 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 389 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 390 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 391 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 392 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 393 394 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 395 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 396 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 397 398 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 399 for (MVT VT : ScalarIntVTs) { 400 // These should use [SU]DIVREM, so set them to expand 401 setOperationAction(ISD::SDIV, VT, Expand); 402 setOperationAction(ISD::UDIV, VT, Expand); 403 setOperationAction(ISD::SREM, VT, Expand); 404 setOperationAction(ISD::UREM, VT, Expand); 405 406 // GPU does not have divrem function for signed or unsigned. 407 setOperationAction(ISD::SDIVREM, VT, Custom); 408 setOperationAction(ISD::UDIVREM, VT, Custom); 409 410 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 411 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 412 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 413 414 setOperationAction(ISD::BSWAP, VT, Expand); 415 setOperationAction(ISD::CTTZ, VT, Expand); 416 setOperationAction(ISD::CTLZ, VT, Expand); 417 418 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 419 setOperationAction(ISD::ADDC, VT, Legal); 420 setOperationAction(ISD::SUBC, VT, Legal); 421 setOperationAction(ISD::ADDE, VT, Legal); 422 setOperationAction(ISD::SUBE, VT, Legal); 423 } 424 425 // The hardware supports 32-bit FSHR, but not FSHL. 426 setOperationAction(ISD::FSHR, MVT::i32, Legal); 427 428 // The hardware supports 32-bit ROTR, but not ROTL. 429 setOperationAction(ISD::ROTL, MVT::i32, Expand); 430 setOperationAction(ISD::ROTL, MVT::i64, Expand); 431 setOperationAction(ISD::ROTR, MVT::i64, Expand); 432 433 setOperationAction(ISD::MULHU, MVT::i16, Expand); 434 setOperationAction(ISD::MULHS, MVT::i16, Expand); 435 436 setOperationAction(ISD::MUL, MVT::i64, Expand); 437 setOperationAction(ISD::MULHU, MVT::i64, Expand); 438 setOperationAction(ISD::MULHS, MVT::i64, Expand); 439 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 440 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 441 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 442 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 443 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 444 445 setOperationAction(ISD::SMIN, MVT::i32, Legal); 446 setOperationAction(ISD::UMIN, MVT::i32, Legal); 447 setOperationAction(ISD::SMAX, MVT::i32, Legal); 448 setOperationAction(ISD::UMAX, MVT::i32, Legal); 449 450 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 451 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 452 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 453 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 454 455 static const MVT::SimpleValueType VectorIntTypes[] = { 456 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32}; 457 458 for (MVT VT : VectorIntTypes) { 459 // Expand the following operations for the current type by default. 460 setOperationAction(ISD::ADD, VT, Expand); 461 setOperationAction(ISD::AND, VT, Expand); 462 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 463 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 464 setOperationAction(ISD::MUL, VT, Expand); 465 setOperationAction(ISD::MULHU, VT, Expand); 466 setOperationAction(ISD::MULHS, VT, Expand); 467 setOperationAction(ISD::OR, VT, Expand); 468 setOperationAction(ISD::SHL, VT, Expand); 469 setOperationAction(ISD::SRA, VT, Expand); 470 setOperationAction(ISD::SRL, VT, Expand); 471 setOperationAction(ISD::ROTL, VT, Expand); 472 setOperationAction(ISD::ROTR, VT, Expand); 473 setOperationAction(ISD::SUB, VT, Expand); 474 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 475 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 476 setOperationAction(ISD::SDIV, VT, Expand); 477 setOperationAction(ISD::UDIV, VT, Expand); 478 setOperationAction(ISD::SREM, VT, Expand); 479 setOperationAction(ISD::UREM, VT, Expand); 480 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 481 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 482 setOperationAction(ISD::SDIVREM, VT, Expand); 483 setOperationAction(ISD::UDIVREM, VT, Expand); 484 setOperationAction(ISD::SELECT, VT, Expand); 485 setOperationAction(ISD::VSELECT, VT, Expand); 486 setOperationAction(ISD::SELECT_CC, VT, Expand); 487 setOperationAction(ISD::XOR, VT, Expand); 488 setOperationAction(ISD::BSWAP, VT, Expand); 489 setOperationAction(ISD::CTPOP, VT, Expand); 490 setOperationAction(ISD::CTTZ, VT, Expand); 491 setOperationAction(ISD::CTLZ, VT, Expand); 492 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 493 setOperationAction(ISD::SETCC, VT, Expand); 494 } 495 496 static const MVT::SimpleValueType FloatVectorTypes[] = { 497 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32}; 498 499 for (MVT VT : FloatVectorTypes) { 500 setOperationAction(ISD::FABS, VT, Expand); 501 setOperationAction(ISD::FMINNUM, VT, Expand); 502 setOperationAction(ISD::FMAXNUM, VT, Expand); 503 setOperationAction(ISD::FADD, VT, Expand); 504 setOperationAction(ISD::FCEIL, VT, Expand); 505 setOperationAction(ISD::FCOS, VT, Expand); 506 setOperationAction(ISD::FDIV, VT, Expand); 507 setOperationAction(ISD::FEXP2, VT, Expand); 508 setOperationAction(ISD::FEXP, VT, Expand); 509 setOperationAction(ISD::FLOG2, VT, Expand); 510 setOperationAction(ISD::FREM, VT, Expand); 511 setOperationAction(ISD::FLOG, VT, Expand); 512 setOperationAction(ISD::FLOG10, VT, Expand); 513 setOperationAction(ISD::FPOW, VT, Expand); 514 setOperationAction(ISD::FFLOOR, VT, Expand); 515 setOperationAction(ISD::FTRUNC, VT, Expand); 516 setOperationAction(ISD::FMUL, VT, Expand); 517 setOperationAction(ISD::FMA, VT, Expand); 518 setOperationAction(ISD::FRINT, VT, Expand); 519 setOperationAction(ISD::FNEARBYINT, VT, Expand); 520 setOperationAction(ISD::FSQRT, VT, Expand); 521 setOperationAction(ISD::FSIN, VT, Expand); 522 setOperationAction(ISD::FSUB, VT, Expand); 523 setOperationAction(ISD::FNEG, VT, Expand); 524 setOperationAction(ISD::VSELECT, VT, Expand); 525 setOperationAction(ISD::SELECT_CC, VT, Expand); 526 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 527 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 528 setOperationAction(ISD::SETCC, VT, Expand); 529 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 530 } 531 532 // This causes using an unrolled select operation rather than expansion with 533 // bit operations. This is in general better, but the alternative using BFI 534 // instructions may be better if the select sources are SGPRs. 535 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 536 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 537 538 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 539 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 540 541 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 542 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 543 544 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 545 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 546 547 setOperationAction(ISD::SELECT, MVT::v6f32, Promote); 548 AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32); 549 550 setOperationAction(ISD::SELECT, MVT::v7f32, Promote); 551 AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32); 552 553 // There are no libcalls of any kind. 554 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 555 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 556 557 setSchedulingPreference(Sched::RegPressure); 558 setJumpIsExpensive(true); 559 560 // FIXME: This is only partially true. If we have to do vector compares, any 561 // SGPR pair can be a condition register. If we have a uniform condition, we 562 // are better off doing SALU operations, where there is only one SCC. For now, 563 // we don't have a way of knowing during instruction selection if a condition 564 // will be uniform and we always use vector compares. Assume we are using 565 // vector compares until that is fixed. 566 setHasMultipleConditionRegisters(true); 567 568 setMinCmpXchgSizeInBits(32); 569 setSupportsUnalignedAtomics(false); 570 571 PredictableSelectIsExpensive = false; 572 573 // We want to find all load dependencies for long chains of stores to enable 574 // merging into very wide vectors. The problem is with vectors with > 4 575 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 576 // vectors are a legal type, even though we have to split the loads 577 // usually. When we can more precisely specify load legality per address 578 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 579 // smarter so that they can figure out what to do in 2 iterations without all 580 // N > 4 stores on the same chain. 581 GatherAllAliasesMaxDepth = 16; 582 583 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 584 // about these during lowering. 585 MaxStoresPerMemcpy = 0xffffffff; 586 MaxStoresPerMemmove = 0xffffffff; 587 MaxStoresPerMemset = 0xffffffff; 588 589 // The expansion for 64-bit division is enormous. 590 if (AMDGPUBypassSlowDiv) 591 addBypassSlowDiv(64, 32); 592 593 setTargetDAGCombine(ISD::BITCAST); 594 setTargetDAGCombine(ISD::SHL); 595 setTargetDAGCombine(ISD::SRA); 596 setTargetDAGCombine(ISD::SRL); 597 setTargetDAGCombine(ISD::TRUNCATE); 598 setTargetDAGCombine(ISD::MUL); 599 setTargetDAGCombine(ISD::MULHU); 600 setTargetDAGCombine(ISD::MULHS); 601 setTargetDAGCombine(ISD::SELECT); 602 setTargetDAGCombine(ISD::SELECT_CC); 603 setTargetDAGCombine(ISD::STORE); 604 setTargetDAGCombine(ISD::FADD); 605 setTargetDAGCombine(ISD::FSUB); 606 setTargetDAGCombine(ISD::FNEG); 607 setTargetDAGCombine(ISD::FABS); 608 setTargetDAGCombine(ISD::AssertZext); 609 setTargetDAGCombine(ISD::AssertSext); 610 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 611 } 612 613 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { 614 if (getTargetMachine().Options.NoSignedZerosFPMath) 615 return true; 616 617 const auto Flags = Op.getNode()->getFlags(); 618 if (Flags.hasNoSignedZeros()) 619 return true; 620 621 return false; 622 } 623 624 //===----------------------------------------------------------------------===// 625 // Target Information 626 //===----------------------------------------------------------------------===// 627 628 LLVM_READNONE 629 static bool fnegFoldsIntoOp(unsigned Opc) { 630 switch (Opc) { 631 case ISD::FADD: 632 case ISD::FSUB: 633 case ISD::FMUL: 634 case ISD::FMA: 635 case ISD::FMAD: 636 case ISD::FMINNUM: 637 case ISD::FMAXNUM: 638 case ISD::FMINNUM_IEEE: 639 case ISD::FMAXNUM_IEEE: 640 case ISD::FSIN: 641 case ISD::FTRUNC: 642 case ISD::FRINT: 643 case ISD::FNEARBYINT: 644 case ISD::FCANONICALIZE: 645 case AMDGPUISD::RCP: 646 case AMDGPUISD::RCP_LEGACY: 647 case AMDGPUISD::RCP_IFLAG: 648 case AMDGPUISD::SIN_HW: 649 case AMDGPUISD::FMUL_LEGACY: 650 case AMDGPUISD::FMIN_LEGACY: 651 case AMDGPUISD::FMAX_LEGACY: 652 case AMDGPUISD::FMED3: 653 // TODO: handle llvm.amdgcn.fma.legacy 654 return true; 655 default: 656 return false; 657 } 658 } 659 660 /// \p returns true if the operation will definitely need to use a 64-bit 661 /// encoding, and thus will use a VOP3 encoding regardless of the source 662 /// modifiers. 663 LLVM_READONLY 664 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 665 return N->getNumOperands() > 2 || VT == MVT::f64; 666 } 667 668 // Most FP instructions support source modifiers, but this could be refined 669 // slightly. 670 LLVM_READONLY 671 static bool hasSourceMods(const SDNode *N) { 672 if (isa<MemSDNode>(N)) 673 return false; 674 675 switch (N->getOpcode()) { 676 case ISD::CopyToReg: 677 case ISD::SELECT: 678 case ISD::FDIV: 679 case ISD::FREM: 680 case ISD::INLINEASM: 681 case ISD::INLINEASM_BR: 682 case AMDGPUISD::DIV_SCALE: 683 case ISD::INTRINSIC_W_CHAIN: 684 685 // TODO: Should really be looking at the users of the bitcast. These are 686 // problematic because bitcasts are used to legalize all stores to integer 687 // types. 688 case ISD::BITCAST: 689 return false; 690 case ISD::INTRINSIC_WO_CHAIN: { 691 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 692 case Intrinsic::amdgcn_interp_p1: 693 case Intrinsic::amdgcn_interp_p2: 694 case Intrinsic::amdgcn_interp_mov: 695 case Intrinsic::amdgcn_interp_p1_f16: 696 case Intrinsic::amdgcn_interp_p2_f16: 697 return false; 698 default: 699 return true; 700 } 701 } 702 default: 703 return true; 704 } 705 } 706 707 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 708 unsigned CostThreshold) { 709 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 710 // it is truly free to use a source modifier in all cases. If there are 711 // multiple users but for each one will necessitate using VOP3, there will be 712 // a code size increase. Try to avoid increasing code size unless we know it 713 // will save on the instruction count. 714 unsigned NumMayIncreaseSize = 0; 715 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 716 717 // XXX - Should this limit number of uses to check? 718 for (const SDNode *U : N->uses()) { 719 if (!hasSourceMods(U)) 720 return false; 721 722 if (!opMustUseVOP3Encoding(U, VT)) { 723 if (++NumMayIncreaseSize > CostThreshold) 724 return false; 725 } 726 } 727 728 return true; 729 } 730 731 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 732 ISD::NodeType ExtendKind) const { 733 assert(!VT.isVector() && "only scalar expected"); 734 735 // Round to the next multiple of 32-bits. 736 unsigned Size = VT.getSizeInBits(); 737 if (Size <= 32) 738 return MVT::i32; 739 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 740 } 741 742 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 743 return MVT::i32; 744 } 745 746 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 747 return true; 748 } 749 750 // The backend supports 32 and 64 bit floating point immediates. 751 // FIXME: Why are we reporting vectors of FP immediates as legal? 752 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 753 bool ForCodeSize) const { 754 EVT ScalarVT = VT.getScalarType(); 755 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 756 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 757 } 758 759 // We don't want to shrink f64 / f32 constants. 760 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 761 EVT ScalarVT = VT.getScalarType(); 762 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 763 } 764 765 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 766 ISD::LoadExtType ExtTy, 767 EVT NewVT) const { 768 // TODO: This may be worth removing. Check regression tests for diffs. 769 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 770 return false; 771 772 unsigned NewSize = NewVT.getStoreSizeInBits(); 773 774 // If we are reducing to a 32-bit load or a smaller multi-dword load, 775 // this is always better. 776 if (NewSize >= 32) 777 return true; 778 779 EVT OldVT = N->getValueType(0); 780 unsigned OldSize = OldVT.getStoreSizeInBits(); 781 782 MemSDNode *MN = cast<MemSDNode>(N); 783 unsigned AS = MN->getAddressSpace(); 784 // Do not shrink an aligned scalar load to sub-dword. 785 // Scalar engine cannot do sub-dword loads. 786 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 787 (AS == AMDGPUAS::CONSTANT_ADDRESS || 788 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 789 (isa<LoadSDNode>(N) && 790 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 791 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 792 return false; 793 794 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 795 // extloads, so doing one requires using a buffer_load. In cases where we 796 // still couldn't use a scalar load, using the wider load shouldn't really 797 // hurt anything. 798 799 // If the old size already had to be an extload, there's no harm in continuing 800 // to reduce the width. 801 return (OldSize < 32); 802 } 803 804 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 805 const SelectionDAG &DAG, 806 const MachineMemOperand &MMO) const { 807 808 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 809 810 if (LoadTy.getScalarType() == MVT::i32) 811 return false; 812 813 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 814 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 815 816 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 817 return false; 818 819 bool Fast = false; 820 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 821 CastTy, MMO, &Fast) && 822 Fast; 823 } 824 825 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 826 // profitable with the expansion for 64-bit since it's generally good to 827 // speculate things. 828 // FIXME: These should really have the size as a parameter. 829 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 830 return true; 831 } 832 833 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 834 return true; 835 } 836 837 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 838 switch (N->getOpcode()) { 839 case ISD::EntryToken: 840 case ISD::TokenFactor: 841 return true; 842 case ISD::INTRINSIC_WO_CHAIN: { 843 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 844 switch (IntrID) { 845 case Intrinsic::amdgcn_readfirstlane: 846 case Intrinsic::amdgcn_readlane: 847 return true; 848 } 849 return false; 850 } 851 case ISD::LOAD: 852 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 853 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 854 return true; 855 return false; 856 } 857 return false; 858 } 859 860 SDValue AMDGPUTargetLowering::getNegatedExpression( 861 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 862 NegatibleCost &Cost, unsigned Depth) const { 863 864 switch (Op.getOpcode()) { 865 case ISD::FMA: 866 case ISD::FMAD: { 867 // Negating a fma is not free if it has users without source mods. 868 if (!allUsesHaveSourceMods(Op.getNode())) 869 return SDValue(); 870 break; 871 } 872 default: 873 break; 874 } 875 876 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 877 ForCodeSize, Cost, Depth); 878 } 879 880 //===---------------------------------------------------------------------===// 881 // Target Properties 882 //===---------------------------------------------------------------------===// 883 884 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 885 assert(VT.isFloatingPoint()); 886 887 // Packed operations do not have a fabs modifier. 888 return VT == MVT::f32 || VT == MVT::f64 || 889 (Subtarget->has16BitInsts() && VT == MVT::f16); 890 } 891 892 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 893 assert(VT.isFloatingPoint()); 894 // Report this based on the end legalized type. 895 VT = VT.getScalarType(); 896 return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16; 897 } 898 899 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 900 unsigned NumElem, 901 unsigned AS) const { 902 return true; 903 } 904 905 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 906 // There are few operations which truly have vector input operands. Any vector 907 // operation is going to involve operations on each component, and a 908 // build_vector will be a copy per element, so it always makes sense to use a 909 // build_vector input in place of the extracted element to avoid a copy into a 910 // super register. 911 // 912 // We should probably only do this if all users are extracts only, but this 913 // should be the common case. 914 return true; 915 } 916 917 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 918 // Truncate is just accessing a subregister. 919 920 unsigned SrcSize = Source.getSizeInBits(); 921 unsigned DestSize = Dest.getSizeInBits(); 922 923 return DestSize < SrcSize && DestSize % 32 == 0 ; 924 } 925 926 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 927 // Truncate is just accessing a subregister. 928 929 unsigned SrcSize = Source->getScalarSizeInBits(); 930 unsigned DestSize = Dest->getScalarSizeInBits(); 931 932 if (DestSize== 16 && Subtarget->has16BitInsts()) 933 return SrcSize >= 32; 934 935 return DestSize < SrcSize && DestSize % 32 == 0; 936 } 937 938 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 939 unsigned SrcSize = Src->getScalarSizeInBits(); 940 unsigned DestSize = Dest->getScalarSizeInBits(); 941 942 if (SrcSize == 16 && Subtarget->has16BitInsts()) 943 return DestSize >= 32; 944 945 return SrcSize == 32 && DestSize == 64; 946 } 947 948 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 949 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 950 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 951 // this will enable reducing 64-bit operations the 32-bit, which is always 952 // good. 953 954 if (Src == MVT::i16) 955 return Dest == MVT::i32 ||Dest == MVT::i64 ; 956 957 return Src == MVT::i32 && Dest == MVT::i64; 958 } 959 960 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 961 return isZExtFree(Val.getValueType(), VT2); 962 } 963 964 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 965 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 966 // limited number of native 64-bit operations. Shrinking an operation to fit 967 // in a single 32-bit register should always be helpful. As currently used, 968 // this is much less general than the name suggests, and is only used in 969 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 970 // not profitable, and may actually be harmful. 971 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 972 } 973 974 //===---------------------------------------------------------------------===// 975 // TargetLowering Callbacks 976 //===---------------------------------------------------------------------===// 977 978 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 979 bool IsVarArg) { 980 switch (CC) { 981 case CallingConv::AMDGPU_VS: 982 case CallingConv::AMDGPU_GS: 983 case CallingConv::AMDGPU_PS: 984 case CallingConv::AMDGPU_CS: 985 case CallingConv::AMDGPU_HS: 986 case CallingConv::AMDGPU_ES: 987 case CallingConv::AMDGPU_LS: 988 return CC_AMDGPU; 989 case CallingConv::C: 990 case CallingConv::Fast: 991 case CallingConv::Cold: 992 return CC_AMDGPU_Func; 993 case CallingConv::AMDGPU_Gfx: 994 return CC_SI_Gfx; 995 case CallingConv::AMDGPU_KERNEL: 996 case CallingConv::SPIR_KERNEL: 997 default: 998 report_fatal_error("Unsupported calling convention for call"); 999 } 1000 } 1001 1002 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 1003 bool IsVarArg) { 1004 switch (CC) { 1005 case CallingConv::AMDGPU_KERNEL: 1006 case CallingConv::SPIR_KERNEL: 1007 llvm_unreachable("kernels should not be handled here"); 1008 case CallingConv::AMDGPU_VS: 1009 case CallingConv::AMDGPU_GS: 1010 case CallingConv::AMDGPU_PS: 1011 case CallingConv::AMDGPU_CS: 1012 case CallingConv::AMDGPU_HS: 1013 case CallingConv::AMDGPU_ES: 1014 case CallingConv::AMDGPU_LS: 1015 return RetCC_SI_Shader; 1016 case CallingConv::AMDGPU_Gfx: 1017 return RetCC_SI_Gfx; 1018 case CallingConv::C: 1019 case CallingConv::Fast: 1020 case CallingConv::Cold: 1021 return RetCC_AMDGPU_Func; 1022 default: 1023 report_fatal_error("Unsupported calling convention."); 1024 } 1025 } 1026 1027 /// The SelectionDAGBuilder will automatically promote function arguments 1028 /// with illegal types. However, this does not work for the AMDGPU targets 1029 /// since the function arguments are stored in memory as these illegal types. 1030 /// In order to handle this properly we need to get the original types sizes 1031 /// from the LLVM IR Function and fixup the ISD:InputArg values before 1032 /// passing them to AnalyzeFormalArguments() 1033 1034 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 1035 /// input values across multiple registers. Each item in the Ins array 1036 /// represents a single value that will be stored in registers. Ins[x].VT is 1037 /// the value type of the value that will be stored in the register, so 1038 /// whatever SDNode we lower the argument to needs to be this type. 1039 /// 1040 /// In order to correctly lower the arguments we need to know the size of each 1041 /// argument. Since Ins[x].VT gives us the size of the register that will 1042 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 1043 /// for the original function argument so that we can deduce the correct memory 1044 /// type to use for Ins[x]. In most cases the correct memory type will be 1045 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 1046 /// we have a kernel argument of type v8i8, this argument will be split into 1047 /// 8 parts and each part will be represented by its own item in the Ins array. 1048 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1049 /// the argument before it was split. From this, we deduce that the memory type 1050 /// for each individual part is i8. We pass the memory type as LocVT to the 1051 /// calling convention analysis function and the register type (Ins[x].VT) as 1052 /// the ValVT. 1053 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1054 CCState &State, 1055 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1056 const MachineFunction &MF = State.getMachineFunction(); 1057 const Function &Fn = MF.getFunction(); 1058 LLVMContext &Ctx = Fn.getParent()->getContext(); 1059 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1060 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1061 CallingConv::ID CC = Fn.getCallingConv(); 1062 1063 Align MaxAlign = Align(1); 1064 uint64_t ExplicitArgOffset = 0; 1065 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1066 1067 unsigned InIndex = 0; 1068 1069 for (const Argument &Arg : Fn.args()) { 1070 const bool IsByRef = Arg.hasByRefAttr(); 1071 Type *BaseArgTy = Arg.getType(); 1072 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1073 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1074 if (!Alignment) 1075 Alignment = DL.getABITypeAlign(MemArgTy); 1076 MaxAlign = max(Alignment, MaxAlign); 1077 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1078 1079 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1080 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1081 1082 // We're basically throwing away everything passed into us and starting over 1083 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1084 // to us as computed in Ins. 1085 // 1086 // We also need to figure out what type legalization is trying to do to get 1087 // the correct memory offsets. 1088 1089 SmallVector<EVT, 16> ValueVTs; 1090 SmallVector<uint64_t, 16> Offsets; 1091 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1092 1093 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1094 Value != NumValues; ++Value) { 1095 uint64_t BasePartOffset = Offsets[Value]; 1096 1097 EVT ArgVT = ValueVTs[Value]; 1098 EVT MemVT = ArgVT; 1099 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1100 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1101 1102 if (NumRegs == 1) { 1103 // This argument is not split, so the IR type is the memory type. 1104 if (ArgVT.isExtended()) { 1105 // We have an extended type, like i24, so we should just use the 1106 // register type. 1107 MemVT = RegisterVT; 1108 } else { 1109 MemVT = ArgVT; 1110 } 1111 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1112 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1113 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1114 // We have a vector value which has been split into a vector with 1115 // the same scalar type, but fewer elements. This should handle 1116 // all the floating-point vector types. 1117 MemVT = RegisterVT; 1118 } else if (ArgVT.isVector() && 1119 ArgVT.getVectorNumElements() == NumRegs) { 1120 // This arg has been split so that each element is stored in a separate 1121 // register. 1122 MemVT = ArgVT.getScalarType(); 1123 } else if (ArgVT.isExtended()) { 1124 // We have an extended type, like i65. 1125 MemVT = RegisterVT; 1126 } else { 1127 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1128 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1129 if (RegisterVT.isInteger()) { 1130 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1131 } else if (RegisterVT.isVector()) { 1132 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1133 unsigned NumElements = RegisterVT.getVectorNumElements(); 1134 assert(MemoryBits % NumElements == 0); 1135 // This vector type has been split into another vector type with 1136 // a different elements size. 1137 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1138 MemoryBits / NumElements); 1139 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1140 } else { 1141 llvm_unreachable("cannot deduce memory type."); 1142 } 1143 } 1144 1145 // Convert one element vectors to scalar. 1146 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1147 MemVT = MemVT.getScalarType(); 1148 1149 // Round up vec3/vec5 argument. 1150 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1151 assert(MemVT.getVectorNumElements() == 3 || 1152 MemVT.getVectorNumElements() == 5); 1153 MemVT = MemVT.getPow2VectorType(State.getContext()); 1154 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1155 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1156 } 1157 1158 unsigned PartOffset = 0; 1159 for (unsigned i = 0; i != NumRegs; ++i) { 1160 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1161 BasePartOffset + PartOffset, 1162 MemVT.getSimpleVT(), 1163 CCValAssign::Full)); 1164 PartOffset += MemVT.getStoreSize(); 1165 } 1166 } 1167 } 1168 } 1169 1170 SDValue AMDGPUTargetLowering::LowerReturn( 1171 SDValue Chain, CallingConv::ID CallConv, 1172 bool isVarArg, 1173 const SmallVectorImpl<ISD::OutputArg> &Outs, 1174 const SmallVectorImpl<SDValue> &OutVals, 1175 const SDLoc &DL, SelectionDAG &DAG) const { 1176 // FIXME: Fails for r600 tests 1177 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1178 // "wave terminate should not have return values"); 1179 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1180 } 1181 1182 //===---------------------------------------------------------------------===// 1183 // Target specific lowering 1184 //===---------------------------------------------------------------------===// 1185 1186 /// Selects the correct CCAssignFn for a given CallingConvention value. 1187 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1188 bool IsVarArg) { 1189 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1190 } 1191 1192 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1193 bool IsVarArg) { 1194 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1195 } 1196 1197 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1198 SelectionDAG &DAG, 1199 MachineFrameInfo &MFI, 1200 int ClobberedFI) const { 1201 SmallVector<SDValue, 8> ArgChains; 1202 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1203 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1204 1205 // Include the original chain at the beginning of the list. When this is 1206 // used by target LowerCall hooks, this helps legalize find the 1207 // CALLSEQ_BEGIN node. 1208 ArgChains.push_back(Chain); 1209 1210 // Add a chain value for each stack argument corresponding 1211 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1212 UE = DAG.getEntryNode().getNode()->use_end(); 1213 U != UE; ++U) { 1214 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1215 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1216 if (FI->getIndex() < 0) { 1217 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1218 int64_t InLastByte = InFirstByte; 1219 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1220 1221 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1222 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1223 ArgChains.push_back(SDValue(L, 1)); 1224 } 1225 } 1226 } 1227 } 1228 1229 // Build a tokenfactor for all the chains. 1230 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1231 } 1232 1233 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1234 SmallVectorImpl<SDValue> &InVals, 1235 StringRef Reason) const { 1236 SDValue Callee = CLI.Callee; 1237 SelectionDAG &DAG = CLI.DAG; 1238 1239 const Function &Fn = DAG.getMachineFunction().getFunction(); 1240 1241 StringRef FuncName("<unknown>"); 1242 1243 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1244 FuncName = G->getSymbol(); 1245 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1246 FuncName = G->getGlobal()->getName(); 1247 1248 DiagnosticInfoUnsupported NoCalls( 1249 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1250 DAG.getContext()->diagnose(NoCalls); 1251 1252 if (!CLI.IsTailCall) { 1253 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1254 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1255 } 1256 1257 return DAG.getEntryNode(); 1258 } 1259 1260 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1261 SmallVectorImpl<SDValue> &InVals) const { 1262 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1263 } 1264 1265 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1266 SelectionDAG &DAG) const { 1267 const Function &Fn = DAG.getMachineFunction().getFunction(); 1268 1269 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1270 SDLoc(Op).getDebugLoc()); 1271 DAG.getContext()->diagnose(NoDynamicAlloca); 1272 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1273 return DAG.getMergeValues(Ops, SDLoc()); 1274 } 1275 1276 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1277 SelectionDAG &DAG) const { 1278 switch (Op.getOpcode()) { 1279 default: 1280 Op->print(errs(), &DAG); 1281 llvm_unreachable("Custom lowering code for this " 1282 "instruction is not implemented yet!"); 1283 break; 1284 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1285 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1286 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1287 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1288 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1289 case ISD::FREM: return LowerFREM(Op, DAG); 1290 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1291 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1292 case ISD::FRINT: return LowerFRINT(Op, DAG); 1293 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1294 case ISD::FROUND: return LowerFROUND(Op, DAG); 1295 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1296 case ISD::FLOG: 1297 return LowerFLOG(Op, DAG, numbers::ln2f); 1298 case ISD::FLOG10: 1299 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1300 case ISD::FEXP: 1301 return lowerFEXP(Op, DAG); 1302 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1303 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1304 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1305 case ISD::FP_TO_SINT: 1306 case ISD::FP_TO_UINT: 1307 return LowerFP_TO_INT(Op, DAG); 1308 case ISD::CTTZ: 1309 case ISD::CTTZ_ZERO_UNDEF: 1310 case ISD::CTLZ: 1311 case ISD::CTLZ_ZERO_UNDEF: 1312 return LowerCTLZ_CTTZ(Op, DAG); 1313 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1314 } 1315 return Op; 1316 } 1317 1318 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1319 SmallVectorImpl<SDValue> &Results, 1320 SelectionDAG &DAG) const { 1321 switch (N->getOpcode()) { 1322 case ISD::SIGN_EXTEND_INREG: 1323 // Different parts of legalization seem to interpret which type of 1324 // sign_extend_inreg is the one to check for custom lowering. The extended 1325 // from type is what really matters, but some places check for custom 1326 // lowering of the result type. This results in trying to use 1327 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1328 // nothing here and let the illegal result integer be handled normally. 1329 return; 1330 default: 1331 return; 1332 } 1333 } 1334 1335 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1336 SDValue Op, 1337 SelectionDAG &DAG) const { 1338 1339 const DataLayout &DL = DAG.getDataLayout(); 1340 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1341 const GlobalValue *GV = G->getGlobal(); 1342 1343 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1344 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1345 if (!MFI->isModuleEntryFunction() && 1346 !GV->getName().equals("llvm.amdgcn.module.lds")) { 1347 SDLoc DL(Op); 1348 const Function &Fn = DAG.getMachineFunction().getFunction(); 1349 DiagnosticInfoUnsupported BadLDSDecl( 1350 Fn, "local memory global used by non-kernel function", 1351 DL.getDebugLoc(), DS_Warning); 1352 DAG.getContext()->diagnose(BadLDSDecl); 1353 1354 // We currently don't have a way to correctly allocate LDS objects that 1355 // aren't directly associated with a kernel. We do force inlining of 1356 // functions that use local objects. However, if these dead functions are 1357 // not eliminated, we don't want a compile time error. Just emit a warning 1358 // and a trap, since there should be no callable path here. 1359 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1360 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1361 Trap, DAG.getRoot()); 1362 DAG.setRoot(OutputChain); 1363 return DAG.getUNDEF(Op.getValueType()); 1364 } 1365 1366 // XXX: What does the value of G->getOffset() mean? 1367 assert(G->getOffset() == 0 && 1368 "Do not know what to do with an non-zero offset"); 1369 1370 // TODO: We could emit code to handle the initialization somewhere. 1371 // We ignore the initializer for now and legalize it to allow selection. 1372 // The initializer will anyway get errored out during assembly emission. 1373 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1374 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1375 } 1376 return SDValue(); 1377 } 1378 1379 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1380 SelectionDAG &DAG) const { 1381 SmallVector<SDValue, 8> Args; 1382 1383 EVT VT = Op.getValueType(); 1384 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1385 SDLoc SL(Op); 1386 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1387 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1388 1389 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1390 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1391 } 1392 1393 for (const SDUse &U : Op->ops()) 1394 DAG.ExtractVectorElements(U.get(), Args); 1395 1396 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1397 } 1398 1399 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1400 SelectionDAG &DAG) const { 1401 1402 SmallVector<SDValue, 8> Args; 1403 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1404 EVT VT = Op.getValueType(); 1405 EVT SrcVT = Op.getOperand(0).getValueType(); 1406 1407 // For these types, we have some TableGen patterns except if the index is 1 1408 if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) || 1409 (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) && 1410 Start != 1) 1411 return Op; 1412 1413 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1414 VT.getVectorNumElements()); 1415 1416 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1417 } 1418 1419 /// Generate Min/Max node 1420 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1421 SDValue LHS, SDValue RHS, 1422 SDValue True, SDValue False, 1423 SDValue CC, 1424 DAGCombinerInfo &DCI) const { 1425 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1426 return SDValue(); 1427 1428 SelectionDAG &DAG = DCI.DAG; 1429 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1430 switch (CCOpcode) { 1431 case ISD::SETOEQ: 1432 case ISD::SETONE: 1433 case ISD::SETUNE: 1434 case ISD::SETNE: 1435 case ISD::SETUEQ: 1436 case ISD::SETEQ: 1437 case ISD::SETFALSE: 1438 case ISD::SETFALSE2: 1439 case ISD::SETTRUE: 1440 case ISD::SETTRUE2: 1441 case ISD::SETUO: 1442 case ISD::SETO: 1443 break; 1444 case ISD::SETULE: 1445 case ISD::SETULT: { 1446 if (LHS == True) 1447 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1448 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1449 } 1450 case ISD::SETOLE: 1451 case ISD::SETOLT: 1452 case ISD::SETLE: 1453 case ISD::SETLT: { 1454 // Ordered. Assume ordered for undefined. 1455 1456 // Only do this after legalization to avoid interfering with other combines 1457 // which might occur. 1458 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1459 !DCI.isCalledByLegalizer()) 1460 return SDValue(); 1461 1462 // We need to permute the operands to get the correct NaN behavior. The 1463 // selected operand is the second one based on the failing compare with NaN, 1464 // so permute it based on the compare type the hardware uses. 1465 if (LHS == True) 1466 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1467 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1468 } 1469 case ISD::SETUGE: 1470 case ISD::SETUGT: { 1471 if (LHS == True) 1472 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1473 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1474 } 1475 case ISD::SETGT: 1476 case ISD::SETGE: 1477 case ISD::SETOGE: 1478 case ISD::SETOGT: { 1479 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1480 !DCI.isCalledByLegalizer()) 1481 return SDValue(); 1482 1483 if (LHS == True) 1484 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1485 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1486 } 1487 case ISD::SETCC_INVALID: 1488 llvm_unreachable("Invalid setcc condcode!"); 1489 } 1490 return SDValue(); 1491 } 1492 1493 std::pair<SDValue, SDValue> 1494 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1495 SDLoc SL(Op); 1496 1497 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1498 1499 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1500 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1501 1502 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1503 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1504 1505 return std::make_pair(Lo, Hi); 1506 } 1507 1508 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1509 SDLoc SL(Op); 1510 1511 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1512 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1513 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1514 } 1515 1516 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1517 SDLoc SL(Op); 1518 1519 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1520 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1521 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1522 } 1523 1524 // Split a vector type into two parts. The first part is a power of two vector. 1525 // The second part is whatever is left over, and is a scalar if it would 1526 // otherwise be a 1-vector. 1527 std::pair<EVT, EVT> 1528 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1529 EVT LoVT, HiVT; 1530 EVT EltVT = VT.getVectorElementType(); 1531 unsigned NumElts = VT.getVectorNumElements(); 1532 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1533 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1534 HiVT = NumElts - LoNumElts == 1 1535 ? EltVT 1536 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1537 return std::make_pair(LoVT, HiVT); 1538 } 1539 1540 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1541 // scalar. 1542 std::pair<SDValue, SDValue> 1543 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1544 const EVT &LoVT, const EVT &HiVT, 1545 SelectionDAG &DAG) const { 1546 assert(LoVT.getVectorNumElements() + 1547 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1548 N.getValueType().getVectorNumElements() && 1549 "More vector elements requested than available!"); 1550 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1551 DAG.getVectorIdxConstant(0, DL)); 1552 SDValue Hi = DAG.getNode( 1553 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1554 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1555 return std::make_pair(Lo, Hi); 1556 } 1557 1558 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1559 SelectionDAG &DAG) const { 1560 LoadSDNode *Load = cast<LoadSDNode>(Op); 1561 EVT VT = Op.getValueType(); 1562 SDLoc SL(Op); 1563 1564 1565 // If this is a 2 element vector, we really want to scalarize and not create 1566 // weird 1 element vectors. 1567 if (VT.getVectorNumElements() == 2) { 1568 SDValue Ops[2]; 1569 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1570 return DAG.getMergeValues(Ops, SL); 1571 } 1572 1573 SDValue BasePtr = Load->getBasePtr(); 1574 EVT MemVT = Load->getMemoryVT(); 1575 1576 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1577 1578 EVT LoVT, HiVT; 1579 EVT LoMemVT, HiMemVT; 1580 SDValue Lo, Hi; 1581 1582 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1583 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1584 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1585 1586 unsigned Size = LoMemVT.getStoreSize(); 1587 unsigned BaseAlign = Load->getAlignment(); 1588 unsigned HiAlign = MinAlign(BaseAlign, Size); 1589 1590 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1591 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1592 BaseAlign, Load->getMemOperand()->getFlags()); 1593 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1594 SDValue HiLoad = 1595 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1596 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1597 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1598 1599 SDValue Join; 1600 if (LoVT == HiVT) { 1601 // This is the case that the vector is power of two so was evenly split. 1602 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1603 } else { 1604 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1605 DAG.getVectorIdxConstant(0, SL)); 1606 Join = DAG.getNode( 1607 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1608 VT, Join, HiLoad, 1609 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1610 } 1611 1612 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1613 LoLoad.getValue(1), HiLoad.getValue(1))}; 1614 1615 return DAG.getMergeValues(Ops, SL); 1616 } 1617 1618 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, 1619 SelectionDAG &DAG) const { 1620 LoadSDNode *Load = cast<LoadSDNode>(Op); 1621 EVT VT = Op.getValueType(); 1622 SDValue BasePtr = Load->getBasePtr(); 1623 EVT MemVT = Load->getMemoryVT(); 1624 SDLoc SL(Op); 1625 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1626 unsigned BaseAlign = Load->getAlignment(); 1627 unsigned NumElements = MemVT.getVectorNumElements(); 1628 1629 // Widen from vec3 to vec4 when the load is at least 8-byte aligned 1630 // or 16-byte fully dereferenceable. Otherwise, split the vector load. 1631 if (NumElements != 3 || 1632 (BaseAlign < 8 && 1633 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) 1634 return SplitVectorLoad(Op, DAG); 1635 1636 assert(NumElements == 3); 1637 1638 EVT WideVT = 1639 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1640 EVT WideMemVT = 1641 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1642 SDValue WideLoad = DAG.getExtLoad( 1643 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1644 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1645 return DAG.getMergeValues( 1646 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1647 DAG.getVectorIdxConstant(0, SL)), 1648 WideLoad.getValue(1)}, 1649 SL); 1650 } 1651 1652 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1653 SelectionDAG &DAG) const { 1654 StoreSDNode *Store = cast<StoreSDNode>(Op); 1655 SDValue Val = Store->getValue(); 1656 EVT VT = Val.getValueType(); 1657 1658 // If this is a 2 element vector, we really want to scalarize and not create 1659 // weird 1 element vectors. 1660 if (VT.getVectorNumElements() == 2) 1661 return scalarizeVectorStore(Store, DAG); 1662 1663 EVT MemVT = Store->getMemoryVT(); 1664 SDValue Chain = Store->getChain(); 1665 SDValue BasePtr = Store->getBasePtr(); 1666 SDLoc SL(Op); 1667 1668 EVT LoVT, HiVT; 1669 EVT LoMemVT, HiMemVT; 1670 SDValue Lo, Hi; 1671 1672 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1673 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1674 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1675 1676 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1677 1678 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1679 unsigned BaseAlign = Store->getAlignment(); 1680 unsigned Size = LoMemVT.getStoreSize(); 1681 unsigned HiAlign = MinAlign(BaseAlign, Size); 1682 1683 SDValue LoStore = 1684 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1685 Store->getMemOperand()->getFlags()); 1686 SDValue HiStore = 1687 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1688 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1689 1690 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1691 } 1692 1693 // This is a shortcut for integer division because we have fast i32<->f32 1694 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1695 // float is enough to accurately represent up to a 24-bit signed integer. 1696 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1697 bool Sign) const { 1698 SDLoc DL(Op); 1699 EVT VT = Op.getValueType(); 1700 SDValue LHS = Op.getOperand(0); 1701 SDValue RHS = Op.getOperand(1); 1702 MVT IntVT = MVT::i32; 1703 MVT FltVT = MVT::f32; 1704 1705 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1706 if (LHSSignBits < 9) 1707 return SDValue(); 1708 1709 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1710 if (RHSSignBits < 9) 1711 return SDValue(); 1712 1713 unsigned BitSize = VT.getSizeInBits(); 1714 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1715 unsigned DivBits = BitSize - SignBits; 1716 if (Sign) 1717 ++DivBits; 1718 1719 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1720 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1721 1722 SDValue jq = DAG.getConstant(1, DL, IntVT); 1723 1724 if (Sign) { 1725 // char|short jq = ia ^ ib; 1726 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1727 1728 // jq = jq >> (bitsize - 2) 1729 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1730 DAG.getConstant(BitSize - 2, DL, VT)); 1731 1732 // jq = jq | 0x1 1733 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1734 } 1735 1736 // int ia = (int)LHS; 1737 SDValue ia = LHS; 1738 1739 // int ib, (int)RHS; 1740 SDValue ib = RHS; 1741 1742 // float fa = (float)ia; 1743 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1744 1745 // float fb = (float)ib; 1746 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1747 1748 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1749 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1750 1751 // fq = trunc(fq); 1752 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1753 1754 // float fqneg = -fq; 1755 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1756 1757 MachineFunction &MF = DAG.getMachineFunction(); 1758 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1759 1760 // float fr = mad(fqneg, fb, fa); 1761 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1762 (unsigned)ISD::FMA : 1763 !MFI->getMode().allFP32Denormals() ? 1764 (unsigned)ISD::FMAD : 1765 (unsigned)AMDGPUISD::FMAD_FTZ; 1766 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1767 1768 // int iq = (int)fq; 1769 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1770 1771 // fr = fabs(fr); 1772 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1773 1774 // fb = fabs(fb); 1775 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1776 1777 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1778 1779 // int cv = fr >= fb; 1780 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1781 1782 // jq = (cv ? jq : 0); 1783 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1784 1785 // dst = iq + jq; 1786 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1787 1788 // Rem needs compensation, it's easier to recompute it 1789 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1790 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1791 1792 // Truncate to number of bits this divide really is. 1793 if (Sign) { 1794 SDValue InRegSize 1795 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1796 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1797 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1798 } else { 1799 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1800 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1801 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1802 } 1803 1804 return DAG.getMergeValues({ Div, Rem }, DL); 1805 } 1806 1807 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1808 SelectionDAG &DAG, 1809 SmallVectorImpl<SDValue> &Results) const { 1810 SDLoc DL(Op); 1811 EVT VT = Op.getValueType(); 1812 1813 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1814 1815 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1816 1817 SDValue One = DAG.getConstant(1, DL, HalfVT); 1818 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1819 1820 //HiLo split 1821 SDValue LHS = Op.getOperand(0); 1822 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1823 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1824 1825 SDValue RHS = Op.getOperand(1); 1826 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1827 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1828 1829 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1830 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1831 1832 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1833 LHS_Lo, RHS_Lo); 1834 1835 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1836 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1837 1838 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1839 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1840 return; 1841 } 1842 1843 if (isTypeLegal(MVT::i64)) { 1844 MachineFunction &MF = DAG.getMachineFunction(); 1845 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1846 1847 // Compute denominator reciprocal. 1848 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1849 (unsigned)ISD::FMA : 1850 !MFI->getMode().allFP32Denormals() ? 1851 (unsigned)ISD::FMAD : 1852 (unsigned)AMDGPUISD::FMAD_FTZ; 1853 1854 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1855 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1856 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1857 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1858 Cvt_Lo); 1859 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1860 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1861 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1862 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1863 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1864 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1865 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1866 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1867 Mul1); 1868 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1869 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1870 SDValue Rcp64 = DAG.getBitcast(VT, 1871 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1872 1873 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1874 SDValue One64 = DAG.getConstant(1, DL, VT); 1875 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1876 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1877 1878 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1879 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1880 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1881 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1882 Zero); 1883 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1884 One); 1885 1886 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1887 Mulhi1_Lo, Zero1); 1888 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1889 Mulhi1_Hi, Add1_Lo.getValue(1)); 1890 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1891 SDValue Add1 = DAG.getBitcast(VT, 1892 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1893 1894 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1895 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1896 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1897 Zero); 1898 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1899 One); 1900 1901 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1902 Mulhi2_Lo, Zero1); 1903 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1904 Mulhi2_Hi, Add1_Lo.getValue(1)); 1905 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1906 Zero, Add2_Lo.getValue(1)); 1907 SDValue Add2 = DAG.getBitcast(VT, 1908 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1909 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1910 1911 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1912 1913 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1914 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1915 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1916 Mul3_Lo, Zero1); 1917 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1918 Mul3_Hi, Sub1_Lo.getValue(1)); 1919 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1920 SDValue Sub1 = DAG.getBitcast(VT, 1921 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1922 1923 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1924 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1925 ISD::SETUGE); 1926 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1927 ISD::SETUGE); 1928 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1929 1930 // TODO: Here and below portions of the code can be enclosed into if/endif. 1931 // Currently control flow is unconditional and we have 4 selects after 1932 // potential endif to substitute PHIs. 1933 1934 // if C3 != 0 ... 1935 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1936 RHS_Lo, Zero1); 1937 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1938 RHS_Hi, Sub1_Lo.getValue(1)); 1939 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1940 Zero, Sub2_Lo.getValue(1)); 1941 SDValue Sub2 = DAG.getBitcast(VT, 1942 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1943 1944 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1945 1946 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1947 ISD::SETUGE); 1948 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1949 ISD::SETUGE); 1950 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1951 1952 // if (C6 != 0) 1953 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1954 1955 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1956 RHS_Lo, Zero1); 1957 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1958 RHS_Hi, Sub2_Lo.getValue(1)); 1959 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1960 Zero, Sub3_Lo.getValue(1)); 1961 SDValue Sub3 = DAG.getBitcast(VT, 1962 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1963 1964 // endif C6 1965 // endif C3 1966 1967 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1968 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1969 1970 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1971 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1972 1973 Results.push_back(Div); 1974 Results.push_back(Rem); 1975 1976 return; 1977 } 1978 1979 // r600 expandion. 1980 // Get Speculative values 1981 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1982 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1983 1984 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1985 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1986 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1987 1988 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1989 SDValue DIV_Lo = Zero; 1990 1991 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1992 1993 for (unsigned i = 0; i < halfBitWidth; ++i) { 1994 const unsigned bitPos = halfBitWidth - i - 1; 1995 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1996 // Get value of high bit 1997 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1998 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1999 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 2000 2001 // Shift 2002 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 2003 // Add LHS high bit 2004 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 2005 2006 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 2007 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 2008 2009 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 2010 2011 // Update REM 2012 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 2013 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 2014 } 2015 2016 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 2017 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 2018 Results.push_back(DIV); 2019 Results.push_back(REM); 2020 } 2021 2022 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 2023 SelectionDAG &DAG) const { 2024 SDLoc DL(Op); 2025 EVT VT = Op.getValueType(); 2026 2027 if (VT == MVT::i64) { 2028 SmallVector<SDValue, 2> Results; 2029 LowerUDIVREM64(Op, DAG, Results); 2030 return DAG.getMergeValues(Results, DL); 2031 } 2032 2033 if (VT == MVT::i32) { 2034 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 2035 return Res; 2036 } 2037 2038 SDValue X = Op.getOperand(0); 2039 SDValue Y = Op.getOperand(1); 2040 2041 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 2042 // algorithm used here. 2043 2044 // Initial estimate of inv(y). 2045 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 2046 2047 // One round of UNR. 2048 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 2049 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 2050 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 2051 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 2052 2053 // Quotient/remainder estimate. 2054 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 2055 SDValue R = 2056 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 2057 2058 // First quotient/remainder refinement. 2059 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2060 SDValue One = DAG.getConstant(1, DL, VT); 2061 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2062 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2063 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2064 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2065 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2066 2067 // Second quotient/remainder refinement. 2068 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2069 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2070 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2071 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2072 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2073 2074 return DAG.getMergeValues({Q, R}, DL); 2075 } 2076 2077 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2078 SelectionDAG &DAG) const { 2079 SDLoc DL(Op); 2080 EVT VT = Op.getValueType(); 2081 2082 SDValue LHS = Op.getOperand(0); 2083 SDValue RHS = Op.getOperand(1); 2084 2085 SDValue Zero = DAG.getConstant(0, DL, VT); 2086 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2087 2088 if (VT == MVT::i32) { 2089 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2090 return Res; 2091 } 2092 2093 if (VT == MVT::i64 && 2094 DAG.ComputeNumSignBits(LHS) > 32 && 2095 DAG.ComputeNumSignBits(RHS) > 32) { 2096 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2097 2098 //HiLo split 2099 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2100 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2101 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2102 LHS_Lo, RHS_Lo); 2103 SDValue Res[2] = { 2104 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2105 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2106 }; 2107 return DAG.getMergeValues(Res, DL); 2108 } 2109 2110 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2111 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2112 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2113 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2114 2115 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2116 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2117 2118 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2119 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2120 2121 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2122 SDValue Rem = Div.getValue(1); 2123 2124 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2125 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2126 2127 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2128 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2129 2130 SDValue Res[2] = { 2131 Div, 2132 Rem 2133 }; 2134 return DAG.getMergeValues(Res, DL); 2135 } 2136 2137 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2138 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2139 SDLoc SL(Op); 2140 EVT VT = Op.getValueType(); 2141 auto Flags = Op->getFlags(); 2142 SDValue X = Op.getOperand(0); 2143 SDValue Y = Op.getOperand(1); 2144 2145 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2146 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2147 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2148 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2149 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2150 } 2151 2152 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2153 SDLoc SL(Op); 2154 SDValue Src = Op.getOperand(0); 2155 2156 // result = trunc(src) 2157 // if (src > 0.0 && src != result) 2158 // result += 1.0 2159 2160 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2161 2162 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2163 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2164 2165 EVT SetCCVT = 2166 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2167 2168 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2169 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2170 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2171 2172 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2173 // TODO: Should this propagate fast-math-flags? 2174 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2175 } 2176 2177 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2178 SelectionDAG &DAG) { 2179 const unsigned FractBits = 52; 2180 const unsigned ExpBits = 11; 2181 2182 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2183 Hi, 2184 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2185 DAG.getConstant(ExpBits, SL, MVT::i32)); 2186 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2187 DAG.getConstant(1023, SL, MVT::i32)); 2188 2189 return Exp; 2190 } 2191 2192 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2193 SDLoc SL(Op); 2194 SDValue Src = Op.getOperand(0); 2195 2196 assert(Op.getValueType() == MVT::f64); 2197 2198 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2199 2200 // Extract the upper half, since this is where we will find the sign and 2201 // exponent. 2202 SDValue Hi = getHiHalf64(Src, DAG); 2203 2204 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2205 2206 const unsigned FractBits = 52; 2207 2208 // Extract the sign bit. 2209 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2210 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2211 2212 // Extend back to 64-bits. 2213 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2214 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2215 2216 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2217 const SDValue FractMask 2218 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2219 2220 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2221 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2222 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2223 2224 EVT SetCCVT = 2225 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2226 2227 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2228 2229 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2230 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2231 2232 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2233 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2234 2235 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2236 } 2237 2238 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2239 SDLoc SL(Op); 2240 SDValue Src = Op.getOperand(0); 2241 2242 assert(Op.getValueType() == MVT::f64); 2243 2244 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2245 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2246 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2247 2248 // TODO: Should this propagate fast-math-flags? 2249 2250 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2251 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2252 2253 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2254 2255 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2256 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2257 2258 EVT SetCCVT = 2259 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2260 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2261 2262 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2263 } 2264 2265 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2266 // FNEARBYINT and FRINT are the same, except in their handling of FP 2267 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2268 // rint, so just treat them as equivalent. 2269 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2270 } 2271 2272 // XXX - May require not supporting f32 denormals? 2273 2274 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2275 // compare and vselect end up producing worse code than scalarizing the whole 2276 // operation. 2277 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2278 SDLoc SL(Op); 2279 SDValue X = Op.getOperand(0); 2280 EVT VT = Op.getValueType(); 2281 2282 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2283 2284 // TODO: Should this propagate fast-math-flags? 2285 2286 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2287 2288 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2289 2290 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2291 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2292 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2293 2294 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2295 2296 EVT SetCCVT = 2297 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2298 2299 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2300 2301 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2302 2303 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2304 } 2305 2306 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2307 SDLoc SL(Op); 2308 SDValue Src = Op.getOperand(0); 2309 2310 // result = trunc(src); 2311 // if (src < 0.0 && src != result) 2312 // result += -1.0. 2313 2314 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2315 2316 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2317 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2318 2319 EVT SetCCVT = 2320 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2321 2322 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2323 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2324 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2325 2326 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2327 // TODO: Should this propagate fast-math-flags? 2328 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2329 } 2330 2331 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2332 double Log2BaseInverted) const { 2333 EVT VT = Op.getValueType(); 2334 2335 SDLoc SL(Op); 2336 SDValue Operand = Op.getOperand(0); 2337 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2338 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2339 2340 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2341 } 2342 2343 // exp2(M_LOG2E_F * f); 2344 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2345 EVT VT = Op.getValueType(); 2346 SDLoc SL(Op); 2347 SDValue Src = Op.getOperand(0); 2348 2349 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2350 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2351 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2352 } 2353 2354 static bool isCtlzOpc(unsigned Opc) { 2355 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2356 } 2357 2358 static bool isCttzOpc(unsigned Opc) { 2359 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2360 } 2361 2362 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2363 SDLoc SL(Op); 2364 SDValue Src = Op.getOperand(0); 2365 2366 assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode())); 2367 bool Ctlz = isCtlzOpc(Op.getOpcode()); 2368 unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32; 2369 2370 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF || 2371 Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF; 2372 2373 if (Src.getValueType() == MVT::i32) { 2374 // (ctlz hi:lo) -> (umin (ffbh src), 32) 2375 // (cttz hi:lo) -> (umin (ffbl src), 32) 2376 // (ctlz_zero_undef src) -> (ffbh src) 2377 // (cttz_zero_undef src) -> (ffbl src) 2378 SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src); 2379 if (!ZeroUndef) { 2380 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2381 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32); 2382 } 2383 return NewOpr; 2384 } 2385 2386 SDValue Lo, Hi; 2387 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2388 2389 SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo); 2390 SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi); 2391 2392 // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64) 2393 // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64) 2394 // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32)) 2395 // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo)) 2396 2397 unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT; 2398 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2399 if (Ctlz) 2400 OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32); 2401 else 2402 OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32); 2403 2404 SDValue NewOpr; 2405 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi); 2406 if (!ZeroUndef) { 2407 const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32); 2408 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64); 2409 } 2410 2411 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2412 } 2413 2414 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2415 bool Signed) const { 2416 // The regular method converting a 64-bit integer to float roughly consists of 2417 // 2 steps: normalization and rounding. In fact, after normalization, the 2418 // conversion from a 64-bit integer to a float is essentially the same as the 2419 // one from a 32-bit integer. The only difference is that it has more 2420 // trailing bits to be rounded. To leverage the native 32-bit conversion, a 2421 // 64-bit integer could be preprocessed and fit into a 32-bit integer then 2422 // converted into the correct float number. The basic steps for the unsigned 2423 // conversion are illustrated in the following pseudo code: 2424 // 2425 // f32 uitofp(i64 u) { 2426 // i32 hi, lo = split(u); 2427 // // Only count the leading zeros in hi as we have native support of the 2428 // // conversion from i32 to f32. If hi is all 0s, the conversion is 2429 // // reduced to a 32-bit one automatically. 2430 // i32 shamt = clz(hi); // Return 32 if hi is all 0s. 2431 // u <<= shamt; 2432 // hi, lo = split(u); 2433 // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo. 2434 // // convert it as a 32-bit integer and scale the result back. 2435 // return uitofp(hi) * 2^(32 - shamt); 2436 // } 2437 // 2438 // The signed one follows the same principle but uses 'ffbh_i32' to count its 2439 // sign bits instead. If 'ffbh_i32' is not available, its absolute value is 2440 // converted instead followed by negation based its sign bit. 2441 2442 SDLoc SL(Op); 2443 SDValue Src = Op.getOperand(0); 2444 2445 SDValue Lo, Hi; 2446 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2447 SDValue Sign; 2448 SDValue ShAmt; 2449 if (Signed && Subtarget->isGCN()) { 2450 // We also need to consider the sign bit in Lo if Hi has just sign bits, 2451 // i.e. Hi is 0 or -1. However, that only needs to take the MSB into 2452 // account. That is, the maximal shift is 2453 // - 32 if Lo and Hi have opposite signs; 2454 // - 33 if Lo and Hi have the same sign. 2455 // 2456 // Or, MaxShAmt = 33 + OppositeSign, where 2457 // 2458 // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is 2459 // - -1 if Lo and Hi have opposite signs; and 2460 // - 0 otherwise. 2461 // 2462 // All in all, ShAmt is calculated as 2463 // 2464 // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1. 2465 // 2466 // or 2467 // 2468 // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31). 2469 // 2470 // to reduce the critical path. 2471 SDValue OppositeSign = DAG.getNode( 2472 ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi), 2473 DAG.getConstant(31, SL, MVT::i32)); 2474 SDValue MaxShAmt = 2475 DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2476 OppositeSign); 2477 // Count the leading sign bits. 2478 ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi); 2479 // Different from unsigned conversion, the shift should be one bit less to 2480 // preserve the sign bit. 2481 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt, 2482 DAG.getConstant(1, SL, MVT::i32)); 2483 ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt); 2484 } else { 2485 if (Signed) { 2486 // Without 'ffbh_i32', only leading zeros could be counted. Take the 2487 // absolute value first. 2488 Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src, 2489 DAG.getConstant(63, SL, MVT::i64)); 2490 SDValue Abs = 2491 DAG.getNode(ISD::XOR, SL, MVT::i64, 2492 DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign); 2493 std::tie(Lo, Hi) = split64BitValue(Abs, DAG); 2494 } 2495 // Count the leading zeros. 2496 ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi); 2497 // The shift amount for signed integers is [0, 32]. 2498 } 2499 // Normalize the given 64-bit integer. 2500 SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt); 2501 // Split it again. 2502 std::tie(Lo, Hi) = split64BitValue(Norm, DAG); 2503 // Calculate the adjust bit for rounding. 2504 // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo) 2505 SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32, 2506 DAG.getConstant(1, SL, MVT::i32), Lo); 2507 // Get the 32-bit normalized integer. 2508 Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust); 2509 // Convert the normalized 32-bit integer into f32. 2510 unsigned Opc = 2511 (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 2512 SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm); 2513 2514 // Finally, need to scale back the converted floating number as the original 2515 // 64-bit integer is converted as a 32-bit one. 2516 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2517 ShAmt); 2518 // On GCN, use LDEXP directly. 2519 if (Subtarget->isGCN()) 2520 return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt); 2521 2522 // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent 2523 // part directly to emulate the multiplication of 2^ShAmt. That 8-bit 2524 // exponent is enough to avoid overflowing into the sign bit. 2525 SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt, 2526 DAG.getConstant(23, SL, MVT::i32)); 2527 SDValue IVal = 2528 DAG.getNode(ISD::ADD, SL, MVT::i32, 2529 DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp); 2530 if (Signed) { 2531 // Set the sign bit. 2532 Sign = DAG.getNode(ISD::SHL, SL, MVT::i32, 2533 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign), 2534 DAG.getConstant(31, SL, MVT::i32)); 2535 IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign); 2536 } 2537 return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal); 2538 } 2539 2540 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2541 bool Signed) const { 2542 SDLoc SL(Op); 2543 SDValue Src = Op.getOperand(0); 2544 2545 SDValue Lo, Hi; 2546 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2547 2548 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2549 SL, MVT::f64, Hi); 2550 2551 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2552 2553 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2554 DAG.getConstant(32, SL, MVT::i32)); 2555 // TODO: Should this propagate fast-math-flags? 2556 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2557 } 2558 2559 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2560 SelectionDAG &DAG) const { 2561 // TODO: Factor out code common with LowerSINT_TO_FP. 2562 EVT DestVT = Op.getValueType(); 2563 SDValue Src = Op.getOperand(0); 2564 EVT SrcVT = Src.getValueType(); 2565 2566 if (SrcVT == MVT::i16) { 2567 if (DestVT == MVT::f16) 2568 return Op; 2569 SDLoc DL(Op); 2570 2571 // Promote src to i32 2572 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2573 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2574 } 2575 2576 assert(SrcVT == MVT::i64 && "operation should be legal"); 2577 2578 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2579 SDLoc DL(Op); 2580 2581 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2582 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2583 SDValue FPRound = 2584 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2585 2586 return FPRound; 2587 } 2588 2589 if (DestVT == MVT::f32) 2590 return LowerINT_TO_FP32(Op, DAG, false); 2591 2592 assert(DestVT == MVT::f64); 2593 return LowerINT_TO_FP64(Op, DAG, false); 2594 } 2595 2596 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2597 SelectionDAG &DAG) const { 2598 EVT DestVT = Op.getValueType(); 2599 2600 SDValue Src = Op.getOperand(0); 2601 EVT SrcVT = Src.getValueType(); 2602 2603 if (SrcVT == MVT::i16) { 2604 if (DestVT == MVT::f16) 2605 return Op; 2606 2607 SDLoc DL(Op); 2608 // Promote src to i32 2609 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2610 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2611 } 2612 2613 assert(SrcVT == MVT::i64 && "operation should be legal"); 2614 2615 // TODO: Factor out code common with LowerUINT_TO_FP. 2616 2617 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2618 SDLoc DL(Op); 2619 SDValue Src = Op.getOperand(0); 2620 2621 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2622 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2623 SDValue FPRound = 2624 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2625 2626 return FPRound; 2627 } 2628 2629 if (DestVT == MVT::f32) 2630 return LowerINT_TO_FP32(Op, DAG, true); 2631 2632 assert(DestVT == MVT::f64); 2633 return LowerINT_TO_FP64(Op, DAG, true); 2634 } 2635 2636 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG, 2637 bool Signed) const { 2638 SDLoc SL(Op); 2639 2640 SDValue Src = Op.getOperand(0); 2641 EVT SrcVT = Src.getValueType(); 2642 2643 assert(SrcVT == MVT::f32 || SrcVT == MVT::f64); 2644 2645 // The basic idea of converting a floating point number into a pair of 32-bit 2646 // integers is illustrated as follows: 2647 // 2648 // tf := trunc(val); 2649 // hif := floor(tf * 2^-32); 2650 // lof := tf - hif * 2^32; // lof is always positive due to floor. 2651 // hi := fptoi(hif); 2652 // lo := fptoi(lof); 2653 // 2654 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src); 2655 SDValue Sign; 2656 if (Signed && SrcVT == MVT::f32) { 2657 // However, a 32-bit floating point number has only 23 bits mantissa and 2658 // it's not enough to hold all the significant bits of `lof` if val is 2659 // negative. To avoid the loss of precision, We need to take the absolute 2660 // value after truncating and flip the result back based on the original 2661 // signedness. 2662 Sign = DAG.getNode(ISD::SRA, SL, MVT::i32, 2663 DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc), 2664 DAG.getConstant(31, SL, MVT::i32)); 2665 Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc); 2666 } 2667 2668 SDValue K0, K1; 2669 if (SrcVT == MVT::f64) { 2670 K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)), 2671 SL, SrcVT); 2672 K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)), 2673 SL, SrcVT); 2674 } else { 2675 K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL, 2676 SrcVT); 2677 K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL, 2678 SrcVT); 2679 } 2680 // TODO: Should this propagate fast-math-flags? 2681 SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0); 2682 2683 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul); 2684 2685 SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc); 2686 2687 SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT 2688 : ISD::FP_TO_UINT, 2689 SL, MVT::i32, FloorMul); 2690 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2691 2692 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2693 DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi})); 2694 2695 if (Signed && SrcVT == MVT::f32) { 2696 assert(Sign); 2697 // Flip the result based on the signedness, which is either all 0s or 1s. 2698 Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2699 DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign})); 2700 // r := xor(r, sign) - sign; 2701 Result = 2702 DAG.getNode(ISD::SUB, SL, MVT::i64, 2703 DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign); 2704 } 2705 2706 return Result; 2707 } 2708 2709 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2710 SDLoc DL(Op); 2711 SDValue N0 = Op.getOperand(0); 2712 2713 // Convert to target node to get known bits 2714 if (N0.getValueType() == MVT::f32) 2715 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2716 2717 if (getTargetMachine().Options.UnsafeFPMath) { 2718 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2719 return SDValue(); 2720 } 2721 2722 assert(N0.getSimpleValueType() == MVT::f64); 2723 2724 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2725 const unsigned ExpMask = 0x7ff; 2726 const unsigned ExpBiasf64 = 1023; 2727 const unsigned ExpBiasf16 = 15; 2728 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2729 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2730 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2731 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2732 DAG.getConstant(32, DL, MVT::i64)); 2733 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2734 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2735 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2736 DAG.getConstant(20, DL, MVT::i64)); 2737 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2738 DAG.getConstant(ExpMask, DL, MVT::i32)); 2739 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2740 // add the f16 bias (15) to get the biased exponent for the f16 format. 2741 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2742 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2743 2744 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2745 DAG.getConstant(8, DL, MVT::i32)); 2746 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2747 DAG.getConstant(0xffe, DL, MVT::i32)); 2748 2749 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2750 DAG.getConstant(0x1ff, DL, MVT::i32)); 2751 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2752 2753 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2754 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2755 2756 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2757 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2758 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2759 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2760 2761 // N = M | (E << 12); 2762 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2763 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2764 DAG.getConstant(12, DL, MVT::i32))); 2765 2766 // B = clamp(1-E, 0, 13); 2767 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2768 One, E); 2769 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2770 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2771 DAG.getConstant(13, DL, MVT::i32)); 2772 2773 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2774 DAG.getConstant(0x1000, DL, MVT::i32)); 2775 2776 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2777 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2778 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2779 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2780 2781 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2782 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2783 DAG.getConstant(0x7, DL, MVT::i32)); 2784 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2785 DAG.getConstant(2, DL, MVT::i32)); 2786 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2787 One, Zero, ISD::SETEQ); 2788 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2789 One, Zero, ISD::SETGT); 2790 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2791 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2792 2793 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2794 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2795 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2796 I, V, ISD::SETEQ); 2797 2798 // Extract the sign bit. 2799 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2800 DAG.getConstant(16, DL, MVT::i32)); 2801 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2802 DAG.getConstant(0x8000, DL, MVT::i32)); 2803 2804 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2805 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2806 } 2807 2808 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op, 2809 SelectionDAG &DAG) const { 2810 SDValue Src = Op.getOperand(0); 2811 unsigned OpOpcode = Op.getOpcode(); 2812 EVT SrcVT = Src.getValueType(); 2813 EVT DestVT = Op.getValueType(); 2814 2815 // Will be selected natively 2816 if (SrcVT == MVT::f16 && DestVT == MVT::i16) 2817 return Op; 2818 2819 // Promote i16 to i32 2820 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { 2821 SDLoc DL(Op); 2822 2823 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2824 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32); 2825 } 2826 2827 if (SrcVT == MVT::f16 || 2828 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2829 SDLoc DL(Op); 2830 2831 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2832 unsigned Ext = 2833 OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2834 return DAG.getNode(Ext, DL, MVT::i64, FpToInt32); 2835 } 2836 2837 if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) 2838 return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT); 2839 2840 return SDValue(); 2841 } 2842 2843 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2844 SelectionDAG &DAG) const { 2845 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2846 MVT VT = Op.getSimpleValueType(); 2847 MVT ScalarVT = VT.getScalarType(); 2848 2849 assert(VT.isVector()); 2850 2851 SDValue Src = Op.getOperand(0); 2852 SDLoc DL(Op); 2853 2854 // TODO: Don't scalarize on Evergreen? 2855 unsigned NElts = VT.getVectorNumElements(); 2856 SmallVector<SDValue, 8> Args; 2857 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2858 2859 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2860 for (unsigned I = 0; I < NElts; ++I) 2861 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2862 2863 return DAG.getBuildVector(VT, DL, Args); 2864 } 2865 2866 //===----------------------------------------------------------------------===// 2867 // Custom DAG optimizations 2868 //===----------------------------------------------------------------------===// 2869 2870 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2871 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2872 } 2873 2874 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2875 EVT VT = Op.getValueType(); 2876 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2877 // as unsigned 24-bit values. 2878 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2879 } 2880 2881 static SDValue simplifyMul24(SDNode *Node24, 2882 TargetLowering::DAGCombinerInfo &DCI) { 2883 SelectionDAG &DAG = DCI.DAG; 2884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2885 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2886 2887 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2888 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2889 unsigned NewOpcode = Node24->getOpcode(); 2890 if (IsIntrin) { 2891 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2892 switch (IID) { 2893 case Intrinsic::amdgcn_mul_i24: 2894 NewOpcode = AMDGPUISD::MUL_I24; 2895 break; 2896 case Intrinsic::amdgcn_mul_u24: 2897 NewOpcode = AMDGPUISD::MUL_U24; 2898 break; 2899 case Intrinsic::amdgcn_mulhi_i24: 2900 NewOpcode = AMDGPUISD::MULHI_I24; 2901 break; 2902 case Intrinsic::amdgcn_mulhi_u24: 2903 NewOpcode = AMDGPUISD::MULHI_U24; 2904 break; 2905 default: 2906 llvm_unreachable("Expected 24-bit mul intrinsic"); 2907 } 2908 } 2909 2910 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2911 2912 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2913 // the operands to have other uses, but will only perform simplifications that 2914 // involve bypassing some nodes for this user. 2915 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2916 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2917 if (DemandedLHS || DemandedRHS) 2918 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2919 DemandedLHS ? DemandedLHS : LHS, 2920 DemandedRHS ? DemandedRHS : RHS); 2921 2922 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2923 // operands if this node is the only user. 2924 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2925 return SDValue(Node24, 0); 2926 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2927 return SDValue(Node24, 0); 2928 2929 return SDValue(); 2930 } 2931 2932 template <typename IntTy> 2933 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2934 uint32_t Width, const SDLoc &DL) { 2935 if (Width + Offset < 32) { 2936 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2937 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2938 return DAG.getConstant(Result, DL, MVT::i32); 2939 } 2940 2941 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2942 } 2943 2944 static bool hasVolatileUser(SDNode *Val) { 2945 for (SDNode *U : Val->uses()) { 2946 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2947 if (M->isVolatile()) 2948 return true; 2949 } 2950 } 2951 2952 return false; 2953 } 2954 2955 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2956 // i32 vectors are the canonical memory type. 2957 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2958 return false; 2959 2960 if (!VT.isByteSized()) 2961 return false; 2962 2963 unsigned Size = VT.getStoreSize(); 2964 2965 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2966 return false; 2967 2968 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2969 return false; 2970 2971 return true; 2972 } 2973 2974 // Replace load of an illegal type with a store of a bitcast to a friendlier 2975 // type. 2976 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2977 DAGCombinerInfo &DCI) const { 2978 if (!DCI.isBeforeLegalize()) 2979 return SDValue(); 2980 2981 LoadSDNode *LN = cast<LoadSDNode>(N); 2982 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2983 return SDValue(); 2984 2985 SDLoc SL(N); 2986 SelectionDAG &DAG = DCI.DAG; 2987 EVT VT = LN->getMemoryVT(); 2988 2989 unsigned Size = VT.getStoreSize(); 2990 Align Alignment = LN->getAlign(); 2991 if (Alignment < Size && isTypeLegal(VT)) { 2992 bool IsFast; 2993 unsigned AS = LN->getAddressSpace(); 2994 2995 // Expand unaligned loads earlier than legalization. Due to visitation order 2996 // problems during legalization, the emitted instructions to pack and unpack 2997 // the bytes again are not eliminated in the case of an unaligned copy. 2998 if (!allowsMisalignedMemoryAccesses( 2999 VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) { 3000 SDValue Ops[2]; 3001 3002 if (VT.isVector()) 3003 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 3004 else 3005 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 3006 3007 return DAG.getMergeValues(Ops, SDLoc(N)); 3008 } 3009 3010 if (!IsFast) 3011 return SDValue(); 3012 } 3013 3014 if (!shouldCombineMemoryType(VT)) 3015 return SDValue(); 3016 3017 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3018 3019 SDValue NewLoad 3020 = DAG.getLoad(NewVT, SL, LN->getChain(), 3021 LN->getBasePtr(), LN->getMemOperand()); 3022 3023 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 3024 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 3025 return SDValue(N, 0); 3026 } 3027 3028 // Replace store of an illegal type with a store of a bitcast to a friendlier 3029 // type. 3030 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 3031 DAGCombinerInfo &DCI) const { 3032 if (!DCI.isBeforeLegalize()) 3033 return SDValue(); 3034 3035 StoreSDNode *SN = cast<StoreSDNode>(N); 3036 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 3037 return SDValue(); 3038 3039 EVT VT = SN->getMemoryVT(); 3040 unsigned Size = VT.getStoreSize(); 3041 3042 SDLoc SL(N); 3043 SelectionDAG &DAG = DCI.DAG; 3044 Align Alignment = SN->getAlign(); 3045 if (Alignment < Size && isTypeLegal(VT)) { 3046 bool IsFast; 3047 unsigned AS = SN->getAddressSpace(); 3048 3049 // Expand unaligned stores earlier than legalization. Due to visitation 3050 // order problems during legalization, the emitted instructions to pack and 3051 // unpack the bytes again are not eliminated in the case of an unaligned 3052 // copy. 3053 if (!allowsMisalignedMemoryAccesses( 3054 VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) { 3055 if (VT.isVector()) 3056 return scalarizeVectorStore(SN, DAG); 3057 3058 return expandUnalignedStore(SN, DAG); 3059 } 3060 3061 if (!IsFast) 3062 return SDValue(); 3063 } 3064 3065 if (!shouldCombineMemoryType(VT)) 3066 return SDValue(); 3067 3068 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3069 SDValue Val = SN->getValue(); 3070 3071 //DCI.AddToWorklist(Val.getNode()); 3072 3073 bool OtherUses = !Val.hasOneUse(); 3074 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 3075 if (OtherUses) { 3076 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3077 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3078 } 3079 3080 return DAG.getStore(SN->getChain(), SL, CastVal, 3081 SN->getBasePtr(), SN->getMemOperand()); 3082 } 3083 3084 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3085 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3086 // issues. 3087 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3088 DAGCombinerInfo &DCI) const { 3089 SelectionDAG &DAG = DCI.DAG; 3090 SDValue N0 = N->getOperand(0); 3091 3092 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3093 // (vt2 (truncate (assertzext vt0:x, vt1))) 3094 if (N0.getOpcode() == ISD::TRUNCATE) { 3095 SDValue N1 = N->getOperand(1); 3096 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3097 SDLoc SL(N); 3098 3099 SDValue Src = N0.getOperand(0); 3100 EVT SrcVT = Src.getValueType(); 3101 if (SrcVT.bitsGE(ExtVT)) { 3102 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3103 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3104 } 3105 } 3106 3107 return SDValue(); 3108 } 3109 3110 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3111 SDNode *N, DAGCombinerInfo &DCI) const { 3112 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3113 switch (IID) { 3114 case Intrinsic::amdgcn_mul_i24: 3115 case Intrinsic::amdgcn_mul_u24: 3116 case Intrinsic::amdgcn_mulhi_i24: 3117 case Intrinsic::amdgcn_mulhi_u24: 3118 return simplifyMul24(N, DCI); 3119 case Intrinsic::amdgcn_fract: 3120 case Intrinsic::amdgcn_rsq: 3121 case Intrinsic::amdgcn_rcp_legacy: 3122 case Intrinsic::amdgcn_rsq_legacy: 3123 case Intrinsic::amdgcn_rsq_clamp: 3124 case Intrinsic::amdgcn_ldexp: { 3125 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3126 SDValue Src = N->getOperand(1); 3127 return Src.isUndef() ? Src : SDValue(); 3128 } 3129 default: 3130 return SDValue(); 3131 } 3132 } 3133 3134 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3135 /// binary operation \p Opc to it with the corresponding constant operands. 3136 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3137 DAGCombinerInfo &DCI, const SDLoc &SL, 3138 unsigned Opc, SDValue LHS, 3139 uint32_t ValLo, uint32_t ValHi) const { 3140 SelectionDAG &DAG = DCI.DAG; 3141 SDValue Lo, Hi; 3142 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3143 3144 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3145 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3146 3147 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3148 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3149 3150 // Re-visit the ands. It's possible we eliminated one of them and it could 3151 // simplify the vector. 3152 DCI.AddToWorklist(Lo.getNode()); 3153 DCI.AddToWorklist(Hi.getNode()); 3154 3155 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3156 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3157 } 3158 3159 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3160 DAGCombinerInfo &DCI) const { 3161 EVT VT = N->getValueType(0); 3162 3163 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3164 if (!RHS) 3165 return SDValue(); 3166 3167 SDValue LHS = N->getOperand(0); 3168 unsigned RHSVal = RHS->getZExtValue(); 3169 if (!RHSVal) 3170 return LHS; 3171 3172 SDLoc SL(N); 3173 SelectionDAG &DAG = DCI.DAG; 3174 3175 switch (LHS->getOpcode()) { 3176 default: 3177 break; 3178 case ISD::ZERO_EXTEND: 3179 case ISD::SIGN_EXTEND: 3180 case ISD::ANY_EXTEND: { 3181 SDValue X = LHS->getOperand(0); 3182 3183 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3184 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3185 // Prefer build_vector as the canonical form if packed types are legal. 3186 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3187 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3188 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3189 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3190 } 3191 3192 // shl (ext x) => zext (shl x), if shift does not overflow int 3193 if (VT != MVT::i64) 3194 break; 3195 KnownBits Known = DAG.computeKnownBits(X); 3196 unsigned LZ = Known.countMinLeadingZeros(); 3197 if (LZ < RHSVal) 3198 break; 3199 EVT XVT = X.getValueType(); 3200 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3201 return DAG.getZExtOrTrunc(Shl, SL, VT); 3202 } 3203 } 3204 3205 if (VT != MVT::i64) 3206 return SDValue(); 3207 3208 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3209 3210 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3211 // common case, splitting this into a move and a 32-bit shift is faster and 3212 // the same code size. 3213 if (RHSVal < 32) 3214 return SDValue(); 3215 3216 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3217 3218 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3219 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3220 3221 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3222 3223 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3224 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3225 } 3226 3227 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3228 DAGCombinerInfo &DCI) const { 3229 if (N->getValueType(0) != MVT::i64) 3230 return SDValue(); 3231 3232 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3233 if (!RHS) 3234 return SDValue(); 3235 3236 SelectionDAG &DAG = DCI.DAG; 3237 SDLoc SL(N); 3238 unsigned RHSVal = RHS->getZExtValue(); 3239 3240 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3241 if (RHSVal == 32) { 3242 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3243 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3244 DAG.getConstant(31, SL, MVT::i32)); 3245 3246 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3247 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3248 } 3249 3250 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3251 if (RHSVal == 63) { 3252 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3253 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3254 DAG.getConstant(31, SL, MVT::i32)); 3255 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3256 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3257 } 3258 3259 return SDValue(); 3260 } 3261 3262 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3263 DAGCombinerInfo &DCI) const { 3264 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3265 if (!RHS) 3266 return SDValue(); 3267 3268 EVT VT = N->getValueType(0); 3269 SDValue LHS = N->getOperand(0); 3270 unsigned ShiftAmt = RHS->getZExtValue(); 3271 SelectionDAG &DAG = DCI.DAG; 3272 SDLoc SL(N); 3273 3274 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3275 // this improves the ability to match BFE patterns in isel. 3276 if (LHS.getOpcode() == ISD::AND) { 3277 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3278 if (Mask->getAPIntValue().isShiftedMask() && 3279 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3280 return DAG.getNode( 3281 ISD::AND, SL, VT, 3282 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3283 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3284 } 3285 } 3286 } 3287 3288 if (VT != MVT::i64) 3289 return SDValue(); 3290 3291 if (ShiftAmt < 32) 3292 return SDValue(); 3293 3294 // srl i64:x, C for C >= 32 3295 // => 3296 // build_pair (srl hi_32(x), C - 32), 0 3297 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3298 3299 SDValue Hi = getHiHalf64(LHS, DAG); 3300 3301 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3302 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3303 3304 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3305 3306 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3307 } 3308 3309 SDValue AMDGPUTargetLowering::performTruncateCombine( 3310 SDNode *N, DAGCombinerInfo &DCI) const { 3311 SDLoc SL(N); 3312 SelectionDAG &DAG = DCI.DAG; 3313 EVT VT = N->getValueType(0); 3314 SDValue Src = N->getOperand(0); 3315 3316 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3317 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3318 SDValue Vec = Src.getOperand(0); 3319 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3320 SDValue Elt0 = Vec.getOperand(0); 3321 EVT EltVT = Elt0.getValueType(); 3322 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { 3323 if (EltVT.isFloatingPoint()) { 3324 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3325 EltVT.changeTypeToInteger(), Elt0); 3326 } 3327 3328 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3329 } 3330 } 3331 } 3332 3333 // Equivalent of above for accessing the high element of a vector as an 3334 // integer operation. 3335 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3336 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3337 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3338 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3339 SDValue BV = stripBitcast(Src.getOperand(0)); 3340 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3341 BV.getValueType().getVectorNumElements() == 2) { 3342 SDValue SrcElt = BV.getOperand(1); 3343 EVT SrcEltVT = SrcElt.getValueType(); 3344 if (SrcEltVT.isFloatingPoint()) { 3345 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3346 SrcEltVT.changeTypeToInteger(), SrcElt); 3347 } 3348 3349 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3350 } 3351 } 3352 } 3353 } 3354 3355 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3356 // 3357 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3358 // i16 (trunc (srl (i32 (trunc x), K))) 3359 if (VT.getScalarSizeInBits() < 32) { 3360 EVT SrcVT = Src.getValueType(); 3361 if (SrcVT.getScalarSizeInBits() > 32 && 3362 (Src.getOpcode() == ISD::SRL || 3363 Src.getOpcode() == ISD::SRA || 3364 Src.getOpcode() == ISD::SHL)) { 3365 SDValue Amt = Src.getOperand(1); 3366 KnownBits Known = DAG.computeKnownBits(Amt); 3367 unsigned Size = VT.getScalarSizeInBits(); 3368 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3369 (Known.countMaxActiveBits() <= Log2_32(Size))) { 3370 EVT MidVT = VT.isVector() ? 3371 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3372 VT.getVectorNumElements()) : MVT::i32; 3373 3374 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3375 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3376 Src.getOperand(0)); 3377 DCI.AddToWorklist(Trunc.getNode()); 3378 3379 if (Amt.getValueType() != NewShiftVT) { 3380 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3381 DCI.AddToWorklist(Amt.getNode()); 3382 } 3383 3384 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3385 Trunc, Amt); 3386 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3387 } 3388 } 3389 } 3390 3391 return SDValue(); 3392 } 3393 3394 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3395 // instructions. If we only match on the legalized i64 mul expansion, 3396 // SimplifyDemandedBits will be unable to remove them because there will be 3397 // multiple uses due to the separate mul + mulh[su]. 3398 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3399 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3400 if (Size <= 32) { 3401 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3402 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3403 } 3404 3405 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3406 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3407 3408 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3409 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3410 3411 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); 3412 } 3413 3414 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3415 DAGCombinerInfo &DCI) const { 3416 EVT VT = N->getValueType(0); 3417 3418 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3419 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3420 // unnecessarily). isDivergent() is used as an approximation of whether the 3421 // value is in an SGPR. 3422 if (!N->isDivergent()) 3423 return SDValue(); 3424 3425 unsigned Size = VT.getSizeInBits(); 3426 if (VT.isVector() || Size > 64) 3427 return SDValue(); 3428 3429 // There are i16 integer mul/mad. 3430 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3431 return SDValue(); 3432 3433 SelectionDAG &DAG = DCI.DAG; 3434 SDLoc DL(N); 3435 3436 SDValue N0 = N->getOperand(0); 3437 SDValue N1 = N->getOperand(1); 3438 3439 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3440 // in the source into any_extends if the result of the mul is truncated. Since 3441 // we can assume the high bits are whatever we want, use the underlying value 3442 // to avoid the unknown high bits from interfering. 3443 if (N0.getOpcode() == ISD::ANY_EXTEND) 3444 N0 = N0.getOperand(0); 3445 3446 if (N1.getOpcode() == ISD::ANY_EXTEND) 3447 N1 = N1.getOperand(0); 3448 3449 SDValue Mul; 3450 3451 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3452 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3453 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3454 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3455 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3456 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3457 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3458 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3459 } else { 3460 return SDValue(); 3461 } 3462 3463 // We need to use sext even for MUL_U24, because MUL_U24 is used 3464 // for signed multiply of 8 and 16-bit types. 3465 return DAG.getSExtOrTrunc(Mul, DL, VT); 3466 } 3467 3468 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3469 DAGCombinerInfo &DCI) const { 3470 EVT VT = N->getValueType(0); 3471 3472 if (!Subtarget->hasMulI24() || VT.isVector()) 3473 return SDValue(); 3474 3475 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3476 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3477 // unnecessarily). isDivergent() is used as an approximation of whether the 3478 // value is in an SGPR. 3479 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3480 // valu op anyway) 3481 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3482 return SDValue(); 3483 3484 SelectionDAG &DAG = DCI.DAG; 3485 SDLoc DL(N); 3486 3487 SDValue N0 = N->getOperand(0); 3488 SDValue N1 = N->getOperand(1); 3489 3490 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3491 return SDValue(); 3492 3493 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3494 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3495 3496 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3497 DCI.AddToWorklist(Mulhi.getNode()); 3498 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3499 } 3500 3501 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3502 DAGCombinerInfo &DCI) const { 3503 EVT VT = N->getValueType(0); 3504 3505 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3506 return SDValue(); 3507 3508 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3509 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3510 // unnecessarily). isDivergent() is used as an approximation of whether the 3511 // value is in an SGPR. 3512 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3513 // valu op anyway) 3514 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3515 return SDValue(); 3516 3517 SelectionDAG &DAG = DCI.DAG; 3518 SDLoc DL(N); 3519 3520 SDValue N0 = N->getOperand(0); 3521 SDValue N1 = N->getOperand(1); 3522 3523 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3524 return SDValue(); 3525 3526 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3527 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3528 3529 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3530 DCI.AddToWorklist(Mulhi.getNode()); 3531 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3532 } 3533 3534 static bool isNegativeOne(SDValue Val) { 3535 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3536 return C->isAllOnes(); 3537 return false; 3538 } 3539 3540 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3541 SDValue Op, 3542 const SDLoc &DL, 3543 unsigned Opc) const { 3544 EVT VT = Op.getValueType(); 3545 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3546 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3547 LegalVT != MVT::i16)) 3548 return SDValue(); 3549 3550 if (VT != MVT::i32) 3551 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3552 3553 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3554 if (VT != MVT::i32) 3555 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3556 3557 return FFBX; 3558 } 3559 3560 // The native instructions return -1 on 0 input. Optimize out a select that 3561 // produces -1 on 0. 3562 // 3563 // TODO: If zero is not undef, we could also do this if the output is compared 3564 // against the bitwidth. 3565 // 3566 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3567 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3568 SDValue LHS, SDValue RHS, 3569 DAGCombinerInfo &DCI) const { 3570 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3571 if (!CmpRhs || !CmpRhs->isZero()) 3572 return SDValue(); 3573 3574 SelectionDAG &DAG = DCI.DAG; 3575 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3576 SDValue CmpLHS = Cond.getOperand(0); 3577 3578 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3579 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3580 if (CCOpcode == ISD::SETEQ && 3581 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3582 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3583 unsigned Opc = 3584 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3585 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3586 } 3587 3588 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3589 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3590 if (CCOpcode == ISD::SETNE && 3591 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3592 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3593 unsigned Opc = 3594 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3595 3596 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3597 } 3598 3599 return SDValue(); 3600 } 3601 3602 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3603 unsigned Op, 3604 const SDLoc &SL, 3605 SDValue Cond, 3606 SDValue N1, 3607 SDValue N2) { 3608 SelectionDAG &DAG = DCI.DAG; 3609 EVT VT = N1.getValueType(); 3610 3611 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3612 N1.getOperand(0), N2.getOperand(0)); 3613 DCI.AddToWorklist(NewSelect.getNode()); 3614 return DAG.getNode(Op, SL, VT, NewSelect); 3615 } 3616 3617 // Pull a free FP operation out of a select so it may fold into uses. 3618 // 3619 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3620 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3621 // 3622 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3623 // select c, (fabs x), +k -> fabs (select c, x, k) 3624 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3625 SDValue N) { 3626 SelectionDAG &DAG = DCI.DAG; 3627 SDValue Cond = N.getOperand(0); 3628 SDValue LHS = N.getOperand(1); 3629 SDValue RHS = N.getOperand(2); 3630 3631 EVT VT = N.getValueType(); 3632 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3633 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3634 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3635 SDLoc(N), Cond, LHS, RHS); 3636 } 3637 3638 bool Inv = false; 3639 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3640 std::swap(LHS, RHS); 3641 Inv = true; 3642 } 3643 3644 // TODO: Support vector constants. 3645 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3646 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3647 SDLoc SL(N); 3648 // If one side is an fneg/fabs and the other is a constant, we can push the 3649 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3650 SDValue NewLHS = LHS.getOperand(0); 3651 SDValue NewRHS = RHS; 3652 3653 // Careful: if the neg can be folded up, don't try to pull it back down. 3654 bool ShouldFoldNeg = true; 3655 3656 if (NewLHS.hasOneUse()) { 3657 unsigned Opc = NewLHS.getOpcode(); 3658 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3659 ShouldFoldNeg = false; 3660 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3661 ShouldFoldNeg = false; 3662 } 3663 3664 if (ShouldFoldNeg) { 3665 if (LHS.getOpcode() == ISD::FNEG) 3666 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3667 else if (CRHS->isNegative()) 3668 return SDValue(); 3669 3670 if (Inv) 3671 std::swap(NewLHS, NewRHS); 3672 3673 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3674 Cond, NewLHS, NewRHS); 3675 DCI.AddToWorklist(NewSelect.getNode()); 3676 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3677 } 3678 } 3679 3680 return SDValue(); 3681 } 3682 3683 3684 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3685 DAGCombinerInfo &DCI) const { 3686 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3687 return Folded; 3688 3689 SDValue Cond = N->getOperand(0); 3690 if (Cond.getOpcode() != ISD::SETCC) 3691 return SDValue(); 3692 3693 EVT VT = N->getValueType(0); 3694 SDValue LHS = Cond.getOperand(0); 3695 SDValue RHS = Cond.getOperand(1); 3696 SDValue CC = Cond.getOperand(2); 3697 3698 SDValue True = N->getOperand(1); 3699 SDValue False = N->getOperand(2); 3700 3701 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3702 SelectionDAG &DAG = DCI.DAG; 3703 if (DAG.isConstantValueOfAnyType(True) && 3704 !DAG.isConstantValueOfAnyType(False)) { 3705 // Swap cmp + select pair to move constant to false input. 3706 // This will allow using VOPC cndmasks more often. 3707 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3708 3709 SDLoc SL(N); 3710 ISD::CondCode NewCC = 3711 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3712 3713 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3714 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3715 } 3716 3717 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3718 SDValue MinMax 3719 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3720 // Revisit this node so we can catch min3/max3/med3 patterns. 3721 //DCI.AddToWorklist(MinMax.getNode()); 3722 return MinMax; 3723 } 3724 } 3725 3726 // There's no reason to not do this if the condition has other uses. 3727 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3728 } 3729 3730 static bool isInv2Pi(const APFloat &APF) { 3731 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3732 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3733 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3734 3735 return APF.bitwiseIsEqual(KF16) || 3736 APF.bitwiseIsEqual(KF32) || 3737 APF.bitwiseIsEqual(KF64); 3738 } 3739 3740 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3741 // additional cost to negate them. 3742 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3743 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3744 if (C->isZero() && !C->isNegative()) 3745 return true; 3746 3747 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3748 return true; 3749 } 3750 3751 return false; 3752 } 3753 3754 static unsigned inverseMinMax(unsigned Opc) { 3755 switch (Opc) { 3756 case ISD::FMAXNUM: 3757 return ISD::FMINNUM; 3758 case ISD::FMINNUM: 3759 return ISD::FMAXNUM; 3760 case ISD::FMAXNUM_IEEE: 3761 return ISD::FMINNUM_IEEE; 3762 case ISD::FMINNUM_IEEE: 3763 return ISD::FMAXNUM_IEEE; 3764 case AMDGPUISD::FMAX_LEGACY: 3765 return AMDGPUISD::FMIN_LEGACY; 3766 case AMDGPUISD::FMIN_LEGACY: 3767 return AMDGPUISD::FMAX_LEGACY; 3768 default: 3769 llvm_unreachable("invalid min/max opcode"); 3770 } 3771 } 3772 3773 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3774 DAGCombinerInfo &DCI) const { 3775 SelectionDAG &DAG = DCI.DAG; 3776 SDValue N0 = N->getOperand(0); 3777 EVT VT = N->getValueType(0); 3778 3779 unsigned Opc = N0.getOpcode(); 3780 3781 // If the input has multiple uses and we can either fold the negate down, or 3782 // the other uses cannot, give up. This both prevents unprofitable 3783 // transformations and infinite loops: we won't repeatedly try to fold around 3784 // a negate that has no 'good' form. 3785 if (N0.hasOneUse()) { 3786 // This may be able to fold into the source, but at a code size cost. Don't 3787 // fold if the fold into the user is free. 3788 if (allUsesHaveSourceMods(N, 0)) 3789 return SDValue(); 3790 } else { 3791 if (fnegFoldsIntoOp(Opc) && 3792 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3793 return SDValue(); 3794 } 3795 3796 SDLoc SL(N); 3797 switch (Opc) { 3798 case ISD::FADD: { 3799 if (!mayIgnoreSignedZero(N0)) 3800 return SDValue(); 3801 3802 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3803 SDValue LHS = N0.getOperand(0); 3804 SDValue RHS = N0.getOperand(1); 3805 3806 if (LHS.getOpcode() != ISD::FNEG) 3807 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3808 else 3809 LHS = LHS.getOperand(0); 3810 3811 if (RHS.getOpcode() != ISD::FNEG) 3812 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3813 else 3814 RHS = RHS.getOperand(0); 3815 3816 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3817 if (Res.getOpcode() != ISD::FADD) 3818 return SDValue(); // Op got folded away. 3819 if (!N0.hasOneUse()) 3820 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3821 return Res; 3822 } 3823 case ISD::FMUL: 3824 case AMDGPUISD::FMUL_LEGACY: { 3825 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3826 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3827 SDValue LHS = N0.getOperand(0); 3828 SDValue RHS = N0.getOperand(1); 3829 3830 if (LHS.getOpcode() == ISD::FNEG) 3831 LHS = LHS.getOperand(0); 3832 else if (RHS.getOpcode() == ISD::FNEG) 3833 RHS = RHS.getOperand(0); 3834 else 3835 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3836 3837 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3838 if (Res.getOpcode() != Opc) 3839 return SDValue(); // Op got folded away. 3840 if (!N0.hasOneUse()) 3841 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3842 return Res; 3843 } 3844 case ISD::FMA: 3845 case ISD::FMAD: { 3846 // TODO: handle llvm.amdgcn.fma.legacy 3847 if (!mayIgnoreSignedZero(N0)) 3848 return SDValue(); 3849 3850 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3851 SDValue LHS = N0.getOperand(0); 3852 SDValue MHS = N0.getOperand(1); 3853 SDValue RHS = N0.getOperand(2); 3854 3855 if (LHS.getOpcode() == ISD::FNEG) 3856 LHS = LHS.getOperand(0); 3857 else if (MHS.getOpcode() == ISD::FNEG) 3858 MHS = MHS.getOperand(0); 3859 else 3860 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3861 3862 if (RHS.getOpcode() != ISD::FNEG) 3863 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3864 else 3865 RHS = RHS.getOperand(0); 3866 3867 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3868 if (Res.getOpcode() != Opc) 3869 return SDValue(); // Op got folded away. 3870 if (!N0.hasOneUse()) 3871 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3872 return Res; 3873 } 3874 case ISD::FMAXNUM: 3875 case ISD::FMINNUM: 3876 case ISD::FMAXNUM_IEEE: 3877 case ISD::FMINNUM_IEEE: 3878 case AMDGPUISD::FMAX_LEGACY: 3879 case AMDGPUISD::FMIN_LEGACY: { 3880 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3881 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3882 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3883 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3884 3885 SDValue LHS = N0.getOperand(0); 3886 SDValue RHS = N0.getOperand(1); 3887 3888 // 0 doesn't have a negated inline immediate. 3889 // TODO: This constant check should be generalized to other operations. 3890 if (isConstantCostlierToNegate(RHS)) 3891 return SDValue(); 3892 3893 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3894 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3895 unsigned Opposite = inverseMinMax(Opc); 3896 3897 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3898 if (Res.getOpcode() != Opposite) 3899 return SDValue(); // Op got folded away. 3900 if (!N0.hasOneUse()) 3901 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3902 return Res; 3903 } 3904 case AMDGPUISD::FMED3: { 3905 SDValue Ops[3]; 3906 for (unsigned I = 0; I < 3; ++I) 3907 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3908 3909 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3910 if (Res.getOpcode() != AMDGPUISD::FMED3) 3911 return SDValue(); // Op got folded away. 3912 3913 if (!N0.hasOneUse()) { 3914 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3915 DAG.ReplaceAllUsesWith(N0, Neg); 3916 3917 for (SDNode *U : Neg->uses()) 3918 DCI.AddToWorklist(U); 3919 } 3920 3921 return Res; 3922 } 3923 case ISD::FP_EXTEND: 3924 case ISD::FTRUNC: 3925 case ISD::FRINT: 3926 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3927 case ISD::FSIN: 3928 case ISD::FCANONICALIZE: 3929 case AMDGPUISD::RCP: 3930 case AMDGPUISD::RCP_LEGACY: 3931 case AMDGPUISD::RCP_IFLAG: 3932 case AMDGPUISD::SIN_HW: { 3933 SDValue CvtSrc = N0.getOperand(0); 3934 if (CvtSrc.getOpcode() == ISD::FNEG) { 3935 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3936 // (fneg (rcp (fneg x))) -> (rcp x) 3937 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3938 } 3939 3940 if (!N0.hasOneUse()) 3941 return SDValue(); 3942 3943 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3944 // (fneg (rcp x)) -> (rcp (fneg x)) 3945 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3946 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3947 } 3948 case ISD::FP_ROUND: { 3949 SDValue CvtSrc = N0.getOperand(0); 3950 3951 if (CvtSrc.getOpcode() == ISD::FNEG) { 3952 // (fneg (fp_round (fneg x))) -> (fp_round x) 3953 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3954 CvtSrc.getOperand(0), N0.getOperand(1)); 3955 } 3956 3957 if (!N0.hasOneUse()) 3958 return SDValue(); 3959 3960 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3961 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3962 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3963 } 3964 case ISD::FP16_TO_FP: { 3965 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3966 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3967 // Put the fneg back as a legal source operation that can be matched later. 3968 SDLoc SL(N); 3969 3970 SDValue Src = N0.getOperand(0); 3971 EVT SrcVT = Src.getValueType(); 3972 3973 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3974 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3975 DAG.getConstant(0x8000, SL, SrcVT)); 3976 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3977 } 3978 default: 3979 return SDValue(); 3980 } 3981 } 3982 3983 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3984 DAGCombinerInfo &DCI) const { 3985 SelectionDAG &DAG = DCI.DAG; 3986 SDValue N0 = N->getOperand(0); 3987 3988 if (!N0.hasOneUse()) 3989 return SDValue(); 3990 3991 switch (N0.getOpcode()) { 3992 case ISD::FP16_TO_FP: { 3993 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3994 SDLoc SL(N); 3995 SDValue Src = N0.getOperand(0); 3996 EVT SrcVT = Src.getValueType(); 3997 3998 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3999 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 4000 DAG.getConstant(0x7fff, SL, SrcVT)); 4001 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 4002 } 4003 default: 4004 return SDValue(); 4005 } 4006 } 4007 4008 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 4009 DAGCombinerInfo &DCI) const { 4010 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 4011 if (!CFP) 4012 return SDValue(); 4013 4014 // XXX - Should this flush denormals? 4015 const APFloat &Val = CFP->getValueAPF(); 4016 APFloat One(Val.getSemantics(), "1.0"); 4017 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 4018 } 4019 4020 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 4021 DAGCombinerInfo &DCI) const { 4022 SelectionDAG &DAG = DCI.DAG; 4023 SDLoc DL(N); 4024 4025 switch(N->getOpcode()) { 4026 default: 4027 break; 4028 case ISD::BITCAST: { 4029 EVT DestVT = N->getValueType(0); 4030 4031 // Push casts through vector builds. This helps avoid emitting a large 4032 // number of copies when materializing floating point vector constants. 4033 // 4034 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 4035 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 4036 if (DestVT.isVector()) { 4037 SDValue Src = N->getOperand(0); 4038 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 4039 EVT SrcVT = Src.getValueType(); 4040 unsigned NElts = DestVT.getVectorNumElements(); 4041 4042 if (SrcVT.getVectorNumElements() == NElts) { 4043 EVT DestEltVT = DestVT.getVectorElementType(); 4044 4045 SmallVector<SDValue, 8> CastedElts; 4046 SDLoc SL(N); 4047 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 4048 SDValue Elt = Src.getOperand(I); 4049 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 4050 } 4051 4052 return DAG.getBuildVector(DestVT, SL, CastedElts); 4053 } 4054 } 4055 } 4056 4057 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 4058 break; 4059 4060 // Fold bitcasts of constants. 4061 // 4062 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 4063 // TODO: Generalize and move to DAGCombiner 4064 SDValue Src = N->getOperand(0); 4065 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 4066 SDLoc SL(N); 4067 uint64_t CVal = C->getZExtValue(); 4068 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4069 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4070 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4071 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 4072 } 4073 4074 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 4075 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 4076 SDLoc SL(N); 4077 uint64_t CVal = Val.getZExtValue(); 4078 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4079 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4080 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4081 4082 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 4083 } 4084 4085 break; 4086 } 4087 case ISD::SHL: { 4088 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4089 break; 4090 4091 return performShlCombine(N, DCI); 4092 } 4093 case ISD::SRL: { 4094 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4095 break; 4096 4097 return performSrlCombine(N, DCI); 4098 } 4099 case ISD::SRA: { 4100 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4101 break; 4102 4103 return performSraCombine(N, DCI); 4104 } 4105 case ISD::TRUNCATE: 4106 return performTruncateCombine(N, DCI); 4107 case ISD::MUL: 4108 return performMulCombine(N, DCI); 4109 case ISD::MULHS: 4110 return performMulhsCombine(N, DCI); 4111 case ISD::MULHU: 4112 return performMulhuCombine(N, DCI); 4113 case AMDGPUISD::MUL_I24: 4114 case AMDGPUISD::MUL_U24: 4115 case AMDGPUISD::MULHI_I24: 4116 case AMDGPUISD::MULHI_U24: 4117 return simplifyMul24(N, DCI); 4118 case ISD::SELECT: 4119 return performSelectCombine(N, DCI); 4120 case ISD::FNEG: 4121 return performFNegCombine(N, DCI); 4122 case ISD::FABS: 4123 return performFAbsCombine(N, DCI); 4124 case AMDGPUISD::BFE_I32: 4125 case AMDGPUISD::BFE_U32: { 4126 assert(!N->getValueType(0).isVector() && 4127 "Vector handling of BFE not implemented"); 4128 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4129 if (!Width) 4130 break; 4131 4132 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4133 if (WidthVal == 0) 4134 return DAG.getConstant(0, DL, MVT::i32); 4135 4136 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4137 if (!Offset) 4138 break; 4139 4140 SDValue BitsFrom = N->getOperand(0); 4141 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4142 4143 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4144 4145 if (OffsetVal == 0) { 4146 // This is already sign / zero extended, so try to fold away extra BFEs. 4147 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4148 4149 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4150 if (OpSignBits >= SignBits) 4151 return BitsFrom; 4152 4153 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4154 if (Signed) { 4155 // This is a sign_extend_inreg. Replace it to take advantage of existing 4156 // DAG Combines. If not eliminated, we will match back to BFE during 4157 // selection. 4158 4159 // TODO: The sext_inreg of extended types ends, although we can could 4160 // handle them in a single BFE. 4161 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4162 DAG.getValueType(SmallVT)); 4163 } 4164 4165 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4166 } 4167 4168 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4169 if (Signed) { 4170 return constantFoldBFE<int32_t>(DAG, 4171 CVal->getSExtValue(), 4172 OffsetVal, 4173 WidthVal, 4174 DL); 4175 } 4176 4177 return constantFoldBFE<uint32_t>(DAG, 4178 CVal->getZExtValue(), 4179 OffsetVal, 4180 WidthVal, 4181 DL); 4182 } 4183 4184 if ((OffsetVal + WidthVal) >= 32 && 4185 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4186 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4187 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4188 BitsFrom, ShiftVal); 4189 } 4190 4191 if (BitsFrom.hasOneUse()) { 4192 APInt Demanded = APInt::getBitsSet(32, 4193 OffsetVal, 4194 OffsetVal + WidthVal); 4195 4196 KnownBits Known; 4197 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4198 !DCI.isBeforeLegalizeOps()); 4199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4200 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4201 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4202 DCI.CommitTargetLoweringOpt(TLO); 4203 } 4204 } 4205 4206 break; 4207 } 4208 case ISD::LOAD: 4209 return performLoadCombine(N, DCI); 4210 case ISD::STORE: 4211 return performStoreCombine(N, DCI); 4212 case AMDGPUISD::RCP: 4213 case AMDGPUISD::RCP_IFLAG: 4214 return performRcpCombine(N, DCI); 4215 case ISD::AssertZext: 4216 case ISD::AssertSext: 4217 return performAssertSZExtCombine(N, DCI); 4218 case ISD::INTRINSIC_WO_CHAIN: 4219 return performIntrinsicWOChainCombine(N, DCI); 4220 } 4221 return SDValue(); 4222 } 4223 4224 //===----------------------------------------------------------------------===// 4225 // Helper functions 4226 //===----------------------------------------------------------------------===// 4227 4228 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4229 const TargetRegisterClass *RC, 4230 Register Reg, EVT VT, 4231 const SDLoc &SL, 4232 bool RawReg) const { 4233 MachineFunction &MF = DAG.getMachineFunction(); 4234 MachineRegisterInfo &MRI = MF.getRegInfo(); 4235 Register VReg; 4236 4237 if (!MRI.isLiveIn(Reg)) { 4238 VReg = MRI.createVirtualRegister(RC); 4239 MRI.addLiveIn(Reg, VReg); 4240 } else { 4241 VReg = MRI.getLiveInVirtReg(Reg); 4242 } 4243 4244 if (RawReg) 4245 return DAG.getRegister(VReg, VT); 4246 4247 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4248 } 4249 4250 // This may be called multiple times, and nothing prevents creating multiple 4251 // objects at the same offset. See if we already defined this object. 4252 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4253 int64_t Offset) { 4254 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4255 if (MFI.getObjectOffset(I) == Offset) { 4256 assert(MFI.getObjectSize(I) == Size); 4257 return I; 4258 } 4259 } 4260 4261 return MFI.CreateFixedObject(Size, Offset, true); 4262 } 4263 4264 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4265 EVT VT, 4266 const SDLoc &SL, 4267 int64_t Offset) const { 4268 MachineFunction &MF = DAG.getMachineFunction(); 4269 MachineFrameInfo &MFI = MF.getFrameInfo(); 4270 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4271 4272 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4273 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4274 4275 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4276 MachineMemOperand::MODereferenceable | 4277 MachineMemOperand::MOInvariant); 4278 } 4279 4280 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4281 const SDLoc &SL, 4282 SDValue Chain, 4283 SDValue ArgVal, 4284 int64_t Offset) const { 4285 MachineFunction &MF = DAG.getMachineFunction(); 4286 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4287 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4288 4289 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4290 // Stores to the argument stack area are relative to the stack pointer. 4291 SDValue SP = 4292 DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32); 4293 Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr); 4294 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4295 MachineMemOperand::MODereferenceable); 4296 return Store; 4297 } 4298 4299 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4300 const TargetRegisterClass *RC, 4301 EVT VT, const SDLoc &SL, 4302 const ArgDescriptor &Arg) const { 4303 assert(Arg && "Attempting to load missing argument"); 4304 4305 SDValue V = Arg.isRegister() ? 4306 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4307 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4308 4309 if (!Arg.isMasked()) 4310 return V; 4311 4312 unsigned Mask = Arg.getMask(); 4313 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4314 V = DAG.getNode(ISD::SRL, SL, VT, V, 4315 DAG.getShiftAmountConstant(Shift, VT, SL)); 4316 return DAG.getNode(ISD::AND, SL, VT, V, 4317 DAG.getConstant(Mask >> Shift, SL, VT)); 4318 } 4319 4320 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4321 const MachineFunction &MF, const ImplicitParameter Param) const { 4322 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4323 const AMDGPUSubtarget &ST = 4324 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4325 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4326 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4327 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4328 ExplicitArgOffset; 4329 switch (Param) { 4330 case GRID_DIM: 4331 return ArgOffset; 4332 case GRID_OFFSET: 4333 return ArgOffset + 4; 4334 } 4335 llvm_unreachable("unexpected implicit parameter type"); 4336 } 4337 4338 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4339 4340 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4341 switch ((AMDGPUISD::NodeType)Opcode) { 4342 case AMDGPUISD::FIRST_NUMBER: break; 4343 // AMDIL DAG nodes 4344 NODE_NAME_CASE(UMUL); 4345 NODE_NAME_CASE(BRANCH_COND); 4346 4347 // AMDGPU DAG nodes 4348 NODE_NAME_CASE(IF) 4349 NODE_NAME_CASE(ELSE) 4350 NODE_NAME_CASE(LOOP) 4351 NODE_NAME_CASE(CALL) 4352 NODE_NAME_CASE(TC_RETURN) 4353 NODE_NAME_CASE(TRAP) 4354 NODE_NAME_CASE(RET_FLAG) 4355 NODE_NAME_CASE(RETURN_TO_EPILOG) 4356 NODE_NAME_CASE(ENDPGM) 4357 NODE_NAME_CASE(DWORDADDR) 4358 NODE_NAME_CASE(FRACT) 4359 NODE_NAME_CASE(SETCC) 4360 NODE_NAME_CASE(SETREG) 4361 NODE_NAME_CASE(DENORM_MODE) 4362 NODE_NAME_CASE(FMA_W_CHAIN) 4363 NODE_NAME_CASE(FMUL_W_CHAIN) 4364 NODE_NAME_CASE(CLAMP) 4365 NODE_NAME_CASE(COS_HW) 4366 NODE_NAME_CASE(SIN_HW) 4367 NODE_NAME_CASE(FMAX_LEGACY) 4368 NODE_NAME_CASE(FMIN_LEGACY) 4369 NODE_NAME_CASE(FMAX3) 4370 NODE_NAME_CASE(SMAX3) 4371 NODE_NAME_CASE(UMAX3) 4372 NODE_NAME_CASE(FMIN3) 4373 NODE_NAME_CASE(SMIN3) 4374 NODE_NAME_CASE(UMIN3) 4375 NODE_NAME_CASE(FMED3) 4376 NODE_NAME_CASE(SMED3) 4377 NODE_NAME_CASE(UMED3) 4378 NODE_NAME_CASE(FDOT2) 4379 NODE_NAME_CASE(URECIP) 4380 NODE_NAME_CASE(DIV_SCALE) 4381 NODE_NAME_CASE(DIV_FMAS) 4382 NODE_NAME_CASE(DIV_FIXUP) 4383 NODE_NAME_CASE(FMAD_FTZ) 4384 NODE_NAME_CASE(RCP) 4385 NODE_NAME_CASE(RSQ) 4386 NODE_NAME_CASE(RCP_LEGACY) 4387 NODE_NAME_CASE(RCP_IFLAG) 4388 NODE_NAME_CASE(FMUL_LEGACY) 4389 NODE_NAME_CASE(RSQ_CLAMP) 4390 NODE_NAME_CASE(LDEXP) 4391 NODE_NAME_CASE(FP_CLASS) 4392 NODE_NAME_CASE(DOT4) 4393 NODE_NAME_CASE(CARRY) 4394 NODE_NAME_CASE(BORROW) 4395 NODE_NAME_CASE(BFE_U32) 4396 NODE_NAME_CASE(BFE_I32) 4397 NODE_NAME_CASE(BFI) 4398 NODE_NAME_CASE(BFM) 4399 NODE_NAME_CASE(FFBH_U32) 4400 NODE_NAME_CASE(FFBH_I32) 4401 NODE_NAME_CASE(FFBL_B32) 4402 NODE_NAME_CASE(MUL_U24) 4403 NODE_NAME_CASE(MUL_I24) 4404 NODE_NAME_CASE(MULHI_U24) 4405 NODE_NAME_CASE(MULHI_I24) 4406 NODE_NAME_CASE(MAD_U24) 4407 NODE_NAME_CASE(MAD_I24) 4408 NODE_NAME_CASE(MAD_I64_I32) 4409 NODE_NAME_CASE(MAD_U64_U32) 4410 NODE_NAME_CASE(PERM) 4411 NODE_NAME_CASE(TEXTURE_FETCH) 4412 NODE_NAME_CASE(R600_EXPORT) 4413 NODE_NAME_CASE(CONST_ADDRESS) 4414 NODE_NAME_CASE(REGISTER_LOAD) 4415 NODE_NAME_CASE(REGISTER_STORE) 4416 NODE_NAME_CASE(SAMPLE) 4417 NODE_NAME_CASE(SAMPLEB) 4418 NODE_NAME_CASE(SAMPLED) 4419 NODE_NAME_CASE(SAMPLEL) 4420 NODE_NAME_CASE(CVT_F32_UBYTE0) 4421 NODE_NAME_CASE(CVT_F32_UBYTE1) 4422 NODE_NAME_CASE(CVT_F32_UBYTE2) 4423 NODE_NAME_CASE(CVT_F32_UBYTE3) 4424 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4425 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4426 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4427 NODE_NAME_CASE(CVT_PK_I16_I32) 4428 NODE_NAME_CASE(CVT_PK_U16_U32) 4429 NODE_NAME_CASE(FP_TO_FP16) 4430 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4431 NODE_NAME_CASE(CONST_DATA_PTR) 4432 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4433 NODE_NAME_CASE(LDS) 4434 NODE_NAME_CASE(DUMMY_CHAIN) 4435 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4436 NODE_NAME_CASE(LOAD_D16_HI) 4437 NODE_NAME_CASE(LOAD_D16_LO) 4438 NODE_NAME_CASE(LOAD_D16_HI_I8) 4439 NODE_NAME_CASE(LOAD_D16_HI_U8) 4440 NODE_NAME_CASE(LOAD_D16_LO_I8) 4441 NODE_NAME_CASE(LOAD_D16_LO_U8) 4442 NODE_NAME_CASE(STORE_MSKOR) 4443 NODE_NAME_CASE(LOAD_CONSTANT) 4444 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4445 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4446 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4447 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4448 NODE_NAME_CASE(DS_ORDERED_COUNT) 4449 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4450 NODE_NAME_CASE(ATOMIC_INC) 4451 NODE_NAME_CASE(ATOMIC_DEC) 4452 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4453 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4454 NODE_NAME_CASE(BUFFER_LOAD) 4455 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4456 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4457 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4458 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4459 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4460 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4461 NODE_NAME_CASE(SBUFFER_LOAD) 4462 NODE_NAME_CASE(BUFFER_STORE) 4463 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4464 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4465 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4466 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4467 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4468 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4469 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4470 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4471 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4472 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4473 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4474 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4475 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4476 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4477 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4478 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4479 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4480 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4481 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4482 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN) 4483 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX) 4484 4485 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4486 } 4487 return nullptr; 4488 } 4489 4490 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4491 SelectionDAG &DAG, int Enabled, 4492 int &RefinementSteps, 4493 bool &UseOneConstNR, 4494 bool Reciprocal) const { 4495 EVT VT = Operand.getValueType(); 4496 4497 if (VT == MVT::f32) { 4498 RefinementSteps = 0; 4499 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4500 } 4501 4502 // TODO: There is also f64 rsq instruction, but the documentation is less 4503 // clear on its precision. 4504 4505 return SDValue(); 4506 } 4507 4508 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4509 SelectionDAG &DAG, int Enabled, 4510 int &RefinementSteps) const { 4511 EVT VT = Operand.getValueType(); 4512 4513 if (VT == MVT::f32) { 4514 // Reciprocal, < 1 ulp error. 4515 // 4516 // This reciprocal approximation converges to < 0.5 ulp error with one 4517 // newton rhapson performed with two fused multiple adds (FMAs). 4518 4519 RefinementSteps = 0; 4520 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4521 } 4522 4523 // TODO: There is also f64 rcp instruction, but the documentation is less 4524 // clear on its precision. 4525 4526 return SDValue(); 4527 } 4528 4529 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4530 const SDValue Op, KnownBits &Known, 4531 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4532 4533 Known.resetAll(); // Don't know anything. 4534 4535 unsigned Opc = Op.getOpcode(); 4536 4537 switch (Opc) { 4538 default: 4539 break; 4540 case AMDGPUISD::CARRY: 4541 case AMDGPUISD::BORROW: { 4542 Known.Zero = APInt::getHighBitsSet(32, 31); 4543 break; 4544 } 4545 4546 case AMDGPUISD::BFE_I32: 4547 case AMDGPUISD::BFE_U32: { 4548 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4549 if (!CWidth) 4550 return; 4551 4552 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4553 4554 if (Opc == AMDGPUISD::BFE_U32) 4555 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4556 4557 break; 4558 } 4559 case AMDGPUISD::FP_TO_FP16: { 4560 unsigned BitWidth = Known.getBitWidth(); 4561 4562 // High bits are zero. 4563 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4564 break; 4565 } 4566 case AMDGPUISD::MUL_U24: 4567 case AMDGPUISD::MUL_I24: { 4568 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4569 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4570 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4571 RHSKnown.countMinTrailingZeros(); 4572 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4573 // Skip extra check if all bits are known zeros. 4574 if (TrailZ >= 32) 4575 break; 4576 4577 // Truncate to 24 bits. 4578 LHSKnown = LHSKnown.trunc(24); 4579 RHSKnown = RHSKnown.trunc(24); 4580 4581 if (Opc == AMDGPUISD::MUL_I24) { 4582 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4583 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4584 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4585 if (MaxValBits >= 32) 4586 break; 4587 bool LHSNegative = LHSKnown.isNegative(); 4588 bool LHSNonNegative = LHSKnown.isNonNegative(); 4589 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4590 bool RHSNegative = RHSKnown.isNegative(); 4591 bool RHSNonNegative = RHSKnown.isNonNegative(); 4592 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4593 4594 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4595 Known.Zero.setHighBits(32 - MaxValBits); 4596 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4597 Known.One.setHighBits(32 - MaxValBits); 4598 } else { 4599 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4600 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4601 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4602 if (MaxValBits >= 32) 4603 break; 4604 Known.Zero.setHighBits(32 - MaxValBits); 4605 } 4606 break; 4607 } 4608 case AMDGPUISD::PERM: { 4609 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4610 if (!CMask) 4611 return; 4612 4613 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4614 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4615 unsigned Sel = CMask->getZExtValue(); 4616 4617 for (unsigned I = 0; I < 32; I += 8) { 4618 unsigned SelBits = Sel & 0xff; 4619 if (SelBits < 4) { 4620 SelBits *= 8; 4621 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4622 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4623 } else if (SelBits < 7) { 4624 SelBits = (SelBits & 3) * 8; 4625 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4626 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4627 } else if (SelBits == 0x0c) { 4628 Known.Zero |= 0xFFull << I; 4629 } else if (SelBits > 0x0c) { 4630 Known.One |= 0xFFull << I; 4631 } 4632 Sel >>= 8; 4633 } 4634 break; 4635 } 4636 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4637 Known.Zero.setHighBits(24); 4638 break; 4639 } 4640 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4641 Known.Zero.setHighBits(16); 4642 break; 4643 } 4644 case AMDGPUISD::LDS: { 4645 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4646 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4647 4648 Known.Zero.setHighBits(16); 4649 Known.Zero.setLowBits(Log2(Alignment)); 4650 break; 4651 } 4652 case ISD::INTRINSIC_WO_CHAIN: { 4653 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4654 switch (IID) { 4655 case Intrinsic::amdgcn_mbcnt_lo: 4656 case Intrinsic::amdgcn_mbcnt_hi: { 4657 const GCNSubtarget &ST = 4658 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4659 // These return at most the wavefront size - 1. 4660 unsigned Size = Op.getValueType().getSizeInBits(); 4661 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4662 break; 4663 } 4664 default: 4665 break; 4666 } 4667 } 4668 } 4669 } 4670 4671 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4672 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4673 unsigned Depth) const { 4674 switch (Op.getOpcode()) { 4675 case AMDGPUISD::BFE_I32: { 4676 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4677 if (!Width) 4678 return 1; 4679 4680 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4681 if (!isNullConstant(Op.getOperand(1))) 4682 return SignBits; 4683 4684 // TODO: Could probably figure something out with non-0 offsets. 4685 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4686 return std::max(SignBits, Op0SignBits); 4687 } 4688 4689 case AMDGPUISD::BFE_U32: { 4690 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4691 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4692 } 4693 4694 case AMDGPUISD::CARRY: 4695 case AMDGPUISD::BORROW: 4696 return 31; 4697 case AMDGPUISD::BUFFER_LOAD_BYTE: 4698 return 25; 4699 case AMDGPUISD::BUFFER_LOAD_SHORT: 4700 return 17; 4701 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4702 return 24; 4703 case AMDGPUISD::BUFFER_LOAD_USHORT: 4704 return 16; 4705 case AMDGPUISD::FP_TO_FP16: 4706 return 16; 4707 default: 4708 return 1; 4709 } 4710 } 4711 4712 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4713 GISelKnownBits &Analysis, Register R, 4714 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4715 unsigned Depth) const { 4716 const MachineInstr *MI = MRI.getVRegDef(R); 4717 if (!MI) 4718 return 1; 4719 4720 // TODO: Check range metadata on MMO. 4721 switch (MI->getOpcode()) { 4722 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4723 return 25; 4724 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4725 return 17; 4726 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4727 return 24; 4728 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4729 return 16; 4730 default: 4731 return 1; 4732 } 4733 } 4734 4735 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4736 const SelectionDAG &DAG, 4737 bool SNaN, 4738 unsigned Depth) const { 4739 unsigned Opcode = Op.getOpcode(); 4740 switch (Opcode) { 4741 case AMDGPUISD::FMIN_LEGACY: 4742 case AMDGPUISD::FMAX_LEGACY: { 4743 if (SNaN) 4744 return true; 4745 4746 // TODO: Can check no nans on one of the operands for each one, but which 4747 // one? 4748 return false; 4749 } 4750 case AMDGPUISD::FMUL_LEGACY: 4751 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4752 if (SNaN) 4753 return true; 4754 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4755 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4756 } 4757 case AMDGPUISD::FMED3: 4758 case AMDGPUISD::FMIN3: 4759 case AMDGPUISD::FMAX3: 4760 case AMDGPUISD::FMAD_FTZ: { 4761 if (SNaN) 4762 return true; 4763 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4764 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4765 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4766 } 4767 case AMDGPUISD::CVT_F32_UBYTE0: 4768 case AMDGPUISD::CVT_F32_UBYTE1: 4769 case AMDGPUISD::CVT_F32_UBYTE2: 4770 case AMDGPUISD::CVT_F32_UBYTE3: 4771 return true; 4772 4773 case AMDGPUISD::RCP: 4774 case AMDGPUISD::RSQ: 4775 case AMDGPUISD::RCP_LEGACY: 4776 case AMDGPUISD::RSQ_CLAMP: { 4777 if (SNaN) 4778 return true; 4779 4780 // TODO: Need is known positive check. 4781 return false; 4782 } 4783 case AMDGPUISD::LDEXP: 4784 case AMDGPUISD::FRACT: { 4785 if (SNaN) 4786 return true; 4787 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4788 } 4789 case AMDGPUISD::DIV_SCALE: 4790 case AMDGPUISD::DIV_FMAS: 4791 case AMDGPUISD::DIV_FIXUP: 4792 // TODO: Refine on operands. 4793 return SNaN; 4794 case AMDGPUISD::SIN_HW: 4795 case AMDGPUISD::COS_HW: { 4796 // TODO: Need check for infinity 4797 return SNaN; 4798 } 4799 case ISD::INTRINSIC_WO_CHAIN: { 4800 unsigned IntrinsicID 4801 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4802 // TODO: Handle more intrinsics 4803 switch (IntrinsicID) { 4804 case Intrinsic::amdgcn_cubeid: 4805 return true; 4806 4807 case Intrinsic::amdgcn_frexp_mant: { 4808 if (SNaN) 4809 return true; 4810 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4811 } 4812 case Intrinsic::amdgcn_cvt_pkrtz: { 4813 if (SNaN) 4814 return true; 4815 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4816 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4817 } 4818 case Intrinsic::amdgcn_rcp: 4819 case Intrinsic::amdgcn_rsq: 4820 case Intrinsic::amdgcn_rcp_legacy: 4821 case Intrinsic::amdgcn_rsq_legacy: 4822 case Intrinsic::amdgcn_rsq_clamp: { 4823 if (SNaN) 4824 return true; 4825 4826 // TODO: Need is known positive check. 4827 return false; 4828 } 4829 case Intrinsic::amdgcn_trig_preop: 4830 case Intrinsic::amdgcn_fdot2: 4831 // TODO: Refine on operand 4832 return SNaN; 4833 case Intrinsic::amdgcn_fma_legacy: 4834 if (SNaN) 4835 return true; 4836 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4837 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && 4838 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); 4839 default: 4840 return false; 4841 } 4842 } 4843 default: 4844 return false; 4845 } 4846 } 4847 4848 TargetLowering::AtomicExpansionKind 4849 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4850 switch (RMW->getOperation()) { 4851 case AtomicRMWInst::Nand: 4852 case AtomicRMWInst::FAdd: 4853 case AtomicRMWInst::FSub: 4854 return AtomicExpansionKind::CmpXChg; 4855 default: 4856 return AtomicExpansionKind::None; 4857 } 4858 } 4859 4860 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtactLegal( 4861 unsigned Opc, LLT Ty1, LLT Ty2) const { 4862 return Ty1 == Ty2 && (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64)); 4863 } 4864