1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "AMDGPUTargetMachine.h" 24 #include "R600MachineFunctionInfo.h" 25 #include "SIInstrInfo.h" 26 #include "SIMachineFunctionInfo.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/Support/KnownBits.h" 35 using namespace llvm; 36 37 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 38 CCValAssign::LocInfo LocInfo, 39 ISD::ArgFlagsTy ArgFlags, CCState &State) { 40 MachineFunction &MF = State.getMachineFunction(); 41 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 42 43 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 44 ArgFlags.getOrigAlign()); 45 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 46 return true; 47 } 48 49 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 50 CCValAssign::LocInfo LocInfo, 51 ISD::ArgFlagsTy ArgFlags, CCState &State, 52 const TargetRegisterClass *RC, 53 unsigned NumRegs) { 54 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 55 unsigned RegResult = State.AllocateReg(RegList); 56 if (RegResult == AMDGPU::NoRegister) 57 return false; 58 59 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 60 return true; 61 } 62 63 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 64 CCValAssign::LocInfo LocInfo, 65 ISD::ArgFlagsTy ArgFlags, CCState &State) { 66 switch (LocVT.SimpleTy) { 67 case MVT::i64: 68 case MVT::f64: 69 case MVT::v2i32: 70 case MVT::v2f32: { 71 // Up to SGPR0-SGPR39 72 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 73 &AMDGPU::SGPR_64RegClass, 20); 74 } 75 default: 76 return false; 77 } 78 } 79 80 // Allocate up to VGPR31. 81 // 82 // TODO: Since there are no VGPR alignent requirements would it be better to 83 // split into individual scalar registers? 84 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 85 CCValAssign::LocInfo LocInfo, 86 ISD::ArgFlagsTy ArgFlags, CCState &State) { 87 switch (LocVT.SimpleTy) { 88 case MVT::i64: 89 case MVT::f64: 90 case MVT::v2i32: 91 case MVT::v2f32: { 92 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 93 &AMDGPU::VReg_64RegClass, 31); 94 } 95 case MVT::v4i32: 96 case MVT::v4f32: 97 case MVT::v2i64: 98 case MVT::v2f64: { 99 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 100 &AMDGPU::VReg_128RegClass, 29); 101 } 102 case MVT::v8i32: 103 case MVT::v8f32: { 104 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 105 &AMDGPU::VReg_256RegClass, 25); 106 107 } 108 case MVT::v16i32: 109 case MVT::v16f32: { 110 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 111 &AMDGPU::VReg_512RegClass, 17); 112 113 } 114 default: 115 return false; 116 } 117 } 118 119 #include "AMDGPUGenCallingConv.inc" 120 121 // Find a larger type to do a load / store of a vector with. 122 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 123 unsigned StoreSize = VT.getStoreSizeInBits(); 124 if (StoreSize <= 32) 125 return EVT::getIntegerVT(Ctx, StoreSize); 126 127 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 128 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 129 } 130 131 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 132 KnownBits Known; 133 EVT VT = Op.getValueType(); 134 DAG.computeKnownBits(Op, Known); 135 136 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 137 } 138 139 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 140 EVT VT = Op.getValueType(); 141 142 // In order for this to be a signed 24-bit value, bit 23, must 143 // be a sign bit. 144 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 145 } 146 147 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 148 const AMDGPUSubtarget &STI) 149 : TargetLowering(TM), Subtarget(&STI) { 150 AMDGPUASI = AMDGPU::getAMDGPUAS(TM); 151 // Lower floating point store/load to integer store/load to reduce the number 152 // of patterns in tablegen. 153 setOperationAction(ISD::LOAD, MVT::f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 155 156 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 158 159 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 161 162 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 164 165 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 167 168 setOperationAction(ISD::LOAD, MVT::i64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 170 171 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 172 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 173 174 setOperationAction(ISD::LOAD, MVT::f64, Promote); 175 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 176 177 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 178 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 179 180 // There are no 64-bit extloads. These should be done as a 32-bit extload and 181 // an extension to 64-bit. 182 for (MVT VT : MVT::integer_valuetypes()) { 183 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 184 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 185 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 186 } 187 188 for (MVT VT : MVT::integer_valuetypes()) { 189 if (VT == MVT::i64) 190 continue; 191 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 193 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 194 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 195 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 196 197 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 198 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 199 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 200 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 201 202 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 203 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 204 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 205 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 206 } 207 208 for (MVT VT : MVT::integer_vector_valuetypes()) { 209 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 210 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 211 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 212 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 213 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 214 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 215 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 216 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 217 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 218 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 219 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 220 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 221 } 222 223 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 226 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 227 228 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 231 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 232 233 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 234 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 235 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 236 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 237 238 setOperationAction(ISD::STORE, MVT::f32, Promote); 239 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 240 241 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 242 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 243 244 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 245 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 246 247 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 248 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 249 250 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 251 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 252 253 setOperationAction(ISD::STORE, MVT::i64, Promote); 254 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 255 256 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 257 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 258 259 setOperationAction(ISD::STORE, MVT::f64, Promote); 260 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 261 262 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 263 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 264 265 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 266 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 267 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 268 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 269 270 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 271 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 272 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 273 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 274 275 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 276 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 277 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 278 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 279 280 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 281 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 282 283 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 284 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 285 286 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 287 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 288 289 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 290 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 291 292 293 setOperationAction(ISD::Constant, MVT::i32, Legal); 294 setOperationAction(ISD::Constant, MVT::i64, Legal); 295 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 296 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 297 298 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 299 setOperationAction(ISD::BRIND, MVT::Other, Expand); 300 301 // This is totally unsupported, just custom lower to produce an error. 302 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 303 304 // Library functions. These default to Expand, but we have instructions 305 // for them. 306 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 307 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 308 setOperationAction(ISD::FPOW, MVT::f32, Legal); 309 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 310 setOperationAction(ISD::FABS, MVT::f32, Legal); 311 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 312 setOperationAction(ISD::FRINT, MVT::f32, Legal); 313 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 314 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 315 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 316 317 setOperationAction(ISD::FROUND, MVT::f32, Custom); 318 setOperationAction(ISD::FROUND, MVT::f64, Custom); 319 320 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 321 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 322 323 setOperationAction(ISD::FREM, MVT::f32, Custom); 324 setOperationAction(ISD::FREM, MVT::f64, Custom); 325 326 // v_mad_f32 does not support denormals according to some sources. 327 if (!Subtarget->hasFP32Denormals()) 328 setOperationAction(ISD::FMAD, MVT::f32, Legal); 329 330 // Expand to fneg + fadd. 331 setOperationAction(ISD::FSUB, MVT::f64, Expand); 332 333 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 334 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 335 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 336 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 337 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 338 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 339 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 340 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 341 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 342 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 343 344 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 345 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 346 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 347 setOperationAction(ISD::FRINT, MVT::f64, Custom); 348 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 349 } 350 351 if (!Subtarget->hasBFI()) { 352 // fcopysign can be done in a single instruction with BFI. 353 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 354 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 355 } 356 357 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 358 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 359 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 360 361 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 362 for (MVT VT : ScalarIntVTs) { 363 // These should use [SU]DIVREM, so set them to expand 364 setOperationAction(ISD::SDIV, VT, Expand); 365 setOperationAction(ISD::UDIV, VT, Expand); 366 setOperationAction(ISD::SREM, VT, Expand); 367 setOperationAction(ISD::UREM, VT, Expand); 368 369 // GPU does not have divrem function for signed or unsigned. 370 setOperationAction(ISD::SDIVREM, VT, Custom); 371 setOperationAction(ISD::UDIVREM, VT, Custom); 372 373 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 374 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 375 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 376 377 setOperationAction(ISD::BSWAP, VT, Expand); 378 setOperationAction(ISD::CTTZ, VT, Expand); 379 setOperationAction(ISD::CTLZ, VT, Expand); 380 } 381 382 if (!Subtarget->hasBCNT(32)) 383 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 384 385 if (!Subtarget->hasBCNT(64)) 386 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 387 388 // The hardware supports 32-bit ROTR, but not ROTL. 389 setOperationAction(ISD::ROTL, MVT::i32, Expand); 390 setOperationAction(ISD::ROTL, MVT::i64, Expand); 391 setOperationAction(ISD::ROTR, MVT::i64, Expand); 392 393 setOperationAction(ISD::MUL, MVT::i64, Expand); 394 setOperationAction(ISD::MULHU, MVT::i64, Expand); 395 setOperationAction(ISD::MULHS, MVT::i64, Expand); 396 setOperationAction(ISD::UDIV, MVT::i32, Expand); 397 setOperationAction(ISD::UREM, MVT::i32, Expand); 398 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 399 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 400 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 401 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 402 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 403 404 setOperationAction(ISD::SMIN, MVT::i32, Legal); 405 setOperationAction(ISD::UMIN, MVT::i32, Legal); 406 setOperationAction(ISD::SMAX, MVT::i32, Legal); 407 setOperationAction(ISD::UMAX, MVT::i32, Legal); 408 409 if (Subtarget->hasFFBH()) 410 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 411 412 if (Subtarget->hasFFBL()) 413 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 414 415 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 416 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 417 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 418 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 419 420 // We only really have 32-bit BFE instructions (and 16-bit on VI). 421 // 422 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 423 // effort to match them now. We want this to be false for i64 cases when the 424 // extraction isn't restricted to the upper or lower half. Ideally we would 425 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 426 // span the midpoint are probably relatively rare, so don't worry about them 427 // for now. 428 if (Subtarget->hasBFE()) 429 setHasExtractBitsInsn(true); 430 431 static const MVT::SimpleValueType VectorIntTypes[] = { 432 MVT::v2i32, MVT::v4i32 433 }; 434 435 for (MVT VT : VectorIntTypes) { 436 // Expand the following operations for the current type by default. 437 setOperationAction(ISD::ADD, VT, Expand); 438 setOperationAction(ISD::AND, VT, Expand); 439 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 440 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 441 setOperationAction(ISD::MUL, VT, Expand); 442 setOperationAction(ISD::MULHU, VT, Expand); 443 setOperationAction(ISD::MULHS, VT, Expand); 444 setOperationAction(ISD::OR, VT, Expand); 445 setOperationAction(ISD::SHL, VT, Expand); 446 setOperationAction(ISD::SRA, VT, Expand); 447 setOperationAction(ISD::SRL, VT, Expand); 448 setOperationAction(ISD::ROTL, VT, Expand); 449 setOperationAction(ISD::ROTR, VT, Expand); 450 setOperationAction(ISD::SUB, VT, Expand); 451 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 452 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 453 setOperationAction(ISD::SDIV, VT, Expand); 454 setOperationAction(ISD::UDIV, VT, Expand); 455 setOperationAction(ISD::SREM, VT, Expand); 456 setOperationAction(ISD::UREM, VT, Expand); 457 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 458 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 459 setOperationAction(ISD::SDIVREM, VT, Custom); 460 setOperationAction(ISD::UDIVREM, VT, Expand); 461 setOperationAction(ISD::ADDC, VT, Expand); 462 setOperationAction(ISD::SUBC, VT, Expand); 463 setOperationAction(ISD::ADDE, VT, Expand); 464 setOperationAction(ISD::SUBE, VT, Expand); 465 setOperationAction(ISD::SELECT, VT, Expand); 466 setOperationAction(ISD::VSELECT, VT, Expand); 467 setOperationAction(ISD::SELECT_CC, VT, Expand); 468 setOperationAction(ISD::XOR, VT, Expand); 469 setOperationAction(ISD::BSWAP, VT, Expand); 470 setOperationAction(ISD::CTPOP, VT, Expand); 471 setOperationAction(ISD::CTTZ, VT, Expand); 472 setOperationAction(ISD::CTLZ, VT, Expand); 473 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 474 setOperationAction(ISD::SETCC, VT, Expand); 475 } 476 477 static const MVT::SimpleValueType FloatVectorTypes[] = { 478 MVT::v2f32, MVT::v4f32 479 }; 480 481 for (MVT VT : FloatVectorTypes) { 482 setOperationAction(ISD::FABS, VT, Expand); 483 setOperationAction(ISD::FMINNUM, VT, Expand); 484 setOperationAction(ISD::FMAXNUM, VT, Expand); 485 setOperationAction(ISD::FADD, VT, Expand); 486 setOperationAction(ISD::FCEIL, VT, Expand); 487 setOperationAction(ISD::FCOS, VT, Expand); 488 setOperationAction(ISD::FDIV, VT, Expand); 489 setOperationAction(ISD::FEXP2, VT, Expand); 490 setOperationAction(ISD::FLOG2, VT, Expand); 491 setOperationAction(ISD::FREM, VT, Expand); 492 setOperationAction(ISD::FPOW, VT, Expand); 493 setOperationAction(ISD::FFLOOR, VT, Expand); 494 setOperationAction(ISD::FTRUNC, VT, Expand); 495 setOperationAction(ISD::FMUL, VT, Expand); 496 setOperationAction(ISD::FMA, VT, Expand); 497 setOperationAction(ISD::FRINT, VT, Expand); 498 setOperationAction(ISD::FNEARBYINT, VT, Expand); 499 setOperationAction(ISD::FSQRT, VT, Expand); 500 setOperationAction(ISD::FSIN, VT, Expand); 501 setOperationAction(ISD::FSUB, VT, Expand); 502 setOperationAction(ISD::FNEG, VT, Expand); 503 setOperationAction(ISD::VSELECT, VT, Expand); 504 setOperationAction(ISD::SELECT_CC, VT, Expand); 505 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 506 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 507 setOperationAction(ISD::SETCC, VT, Expand); 508 } 509 510 // This causes using an unrolled select operation rather than expansion with 511 // bit operations. This is in general better, but the alternative using BFI 512 // instructions may be better if the select sources are SGPRs. 513 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 514 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 515 516 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 517 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 518 519 // There are no libcalls of any kind. 520 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 521 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 522 523 setBooleanContents(ZeroOrNegativeOneBooleanContent); 524 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 525 526 setSchedulingPreference(Sched::RegPressure); 527 setJumpIsExpensive(true); 528 529 // FIXME: This is only partially true. If we have to do vector compares, any 530 // SGPR pair can be a condition register. If we have a uniform condition, we 531 // are better off doing SALU operations, where there is only one SCC. For now, 532 // we don't have a way of knowing during instruction selection if a condition 533 // will be uniform and we always use vector compares. Assume we are using 534 // vector compares until that is fixed. 535 setHasMultipleConditionRegisters(true); 536 537 // SI at least has hardware support for floating point exceptions, but no way 538 // of using or handling them is implemented. They are also optional in OpenCL 539 // (Section 7.3) 540 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 541 542 PredictableSelectIsExpensive = false; 543 544 // We want to find all load dependencies for long chains of stores to enable 545 // merging into very wide vectors. The problem is with vectors with > 4 546 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 547 // vectors are a legal type, even though we have to split the loads 548 // usually. When we can more precisely specify load legality per address 549 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 550 // smarter so that they can figure out what to do in 2 iterations without all 551 // N > 4 stores on the same chain. 552 GatherAllAliasesMaxDepth = 16; 553 554 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 555 // about these during lowering. 556 MaxStoresPerMemcpy = 0xffffffff; 557 MaxStoresPerMemmove = 0xffffffff; 558 MaxStoresPerMemset = 0xffffffff; 559 560 setTargetDAGCombine(ISD::BITCAST); 561 setTargetDAGCombine(ISD::SHL); 562 setTargetDAGCombine(ISD::SRA); 563 setTargetDAGCombine(ISD::SRL); 564 setTargetDAGCombine(ISD::MUL); 565 setTargetDAGCombine(ISD::MULHU); 566 setTargetDAGCombine(ISD::MULHS); 567 setTargetDAGCombine(ISD::SELECT); 568 setTargetDAGCombine(ISD::SELECT_CC); 569 setTargetDAGCombine(ISD::STORE); 570 setTargetDAGCombine(ISD::FADD); 571 setTargetDAGCombine(ISD::FSUB); 572 setTargetDAGCombine(ISD::FNEG); 573 setTargetDAGCombine(ISD::FABS); 574 setTargetDAGCombine(ISD::AssertZext); 575 setTargetDAGCombine(ISD::AssertSext); 576 } 577 578 //===----------------------------------------------------------------------===// 579 // Target Information 580 //===----------------------------------------------------------------------===// 581 582 LLVM_READNONE 583 static bool fnegFoldsIntoOp(unsigned Opc) { 584 switch (Opc) { 585 case ISD::FADD: 586 case ISD::FSUB: 587 case ISD::FMUL: 588 case ISD::FMA: 589 case ISD::FMAD: 590 case ISD::FMINNUM: 591 case ISD::FMAXNUM: 592 case ISD::FSIN: 593 case ISD::FTRUNC: 594 case ISD::FRINT: 595 case ISD::FNEARBYINT: 596 case AMDGPUISD::RCP: 597 case AMDGPUISD::RCP_LEGACY: 598 case AMDGPUISD::SIN_HW: 599 case AMDGPUISD::FMUL_LEGACY: 600 case AMDGPUISD::FMIN_LEGACY: 601 case AMDGPUISD::FMAX_LEGACY: 602 return true; 603 default: 604 return false; 605 } 606 } 607 608 /// \p returns true if the operation will definitely need to use a 64-bit 609 /// encoding, and thus will use a VOP3 encoding regardless of the source 610 /// modifiers. 611 LLVM_READONLY 612 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 613 return N->getNumOperands() > 2 || VT == MVT::f64; 614 } 615 616 // Most FP instructions support source modifiers, but this could be refined 617 // slightly. 618 LLVM_READONLY 619 static bool hasSourceMods(const SDNode *N) { 620 if (isa<MemSDNode>(N)) 621 return false; 622 623 switch (N->getOpcode()) { 624 case ISD::CopyToReg: 625 case ISD::SELECT: 626 case ISD::FDIV: 627 case ISD::FREM: 628 case ISD::INLINEASM: 629 case AMDGPUISD::INTERP_P1: 630 case AMDGPUISD::INTERP_P2: 631 case AMDGPUISD::DIV_SCALE: 632 633 // TODO: Should really be looking at the users of the bitcast. These are 634 // problematic because bitcasts are used to legalize all stores to integer 635 // types. 636 case ISD::BITCAST: 637 return false; 638 default: 639 return true; 640 } 641 } 642 643 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 644 unsigned CostThreshold) { 645 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 646 // it is truly free to use a source modifier in all cases. If there are 647 // multiple users but for each one will necessitate using VOP3, there will be 648 // a code size increase. Try to avoid increasing code size unless we know it 649 // will save on the instruction count. 650 unsigned NumMayIncreaseSize = 0; 651 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 652 653 // XXX - Should this limit number of uses to check? 654 for (const SDNode *U : N->uses()) { 655 if (!hasSourceMods(U)) 656 return false; 657 658 if (!opMustUseVOP3Encoding(U, VT)) { 659 if (++NumMayIncreaseSize > CostThreshold) 660 return false; 661 } 662 } 663 664 return true; 665 } 666 667 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 668 return MVT::i32; 669 } 670 671 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 672 return true; 673 } 674 675 // The backend supports 32 and 64 bit floating point immediates. 676 // FIXME: Why are we reporting vectors of FP immediates as legal? 677 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 678 EVT ScalarVT = VT.getScalarType(); 679 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 680 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 681 } 682 683 // We don't want to shrink f64 / f32 constants. 684 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 685 EVT ScalarVT = VT.getScalarType(); 686 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 687 } 688 689 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 690 ISD::LoadExtType, 691 EVT NewVT) const { 692 693 unsigned NewSize = NewVT.getStoreSizeInBits(); 694 695 // If we are reducing to a 32-bit load, this is always better. 696 if (NewSize == 32) 697 return true; 698 699 EVT OldVT = N->getValueType(0); 700 unsigned OldSize = OldVT.getStoreSizeInBits(); 701 702 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 703 // extloads, so doing one requires using a buffer_load. In cases where we 704 // still couldn't use a scalar load, using the wider load shouldn't really 705 // hurt anything. 706 707 // If the old size already had to be an extload, there's no harm in continuing 708 // to reduce the width. 709 return (OldSize < 32); 710 } 711 712 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 713 EVT CastTy) const { 714 715 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 716 717 if (LoadTy.getScalarType() == MVT::i32) 718 return false; 719 720 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 721 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 722 723 return (LScalarSize < CastScalarSize) || 724 (CastScalarSize >= 32); 725 } 726 727 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 728 // profitable with the expansion for 64-bit since it's generally good to 729 // speculate things. 730 // FIXME: These should really have the size as a parameter. 731 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 732 return true; 733 } 734 735 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 736 return true; 737 } 738 739 //===---------------------------------------------------------------------===// 740 // Target Properties 741 //===---------------------------------------------------------------------===// 742 743 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 744 assert(VT.isFloatingPoint()); 745 746 // Packed operations do not have a fabs modifier. 747 return VT == MVT::f32 || VT == MVT::f64 || 748 (Subtarget->has16BitInsts() && VT == MVT::f16); 749 } 750 751 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 752 assert(VT.isFloatingPoint()); 753 return VT == MVT::f32 || VT == MVT::f64 || 754 (Subtarget->has16BitInsts() && VT == MVT::f16) || 755 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 756 } 757 758 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 759 unsigned NumElem, 760 unsigned AS) const { 761 return true; 762 } 763 764 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 765 // There are few operations which truly have vector input operands. Any vector 766 // operation is going to involve operations on each component, and a 767 // build_vector will be a copy per element, so it always makes sense to use a 768 // build_vector input in place of the extracted element to avoid a copy into a 769 // super register. 770 // 771 // We should probably only do this if all users are extracts only, but this 772 // should be the common case. 773 return true; 774 } 775 776 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 777 // Truncate is just accessing a subregister. 778 779 unsigned SrcSize = Source.getSizeInBits(); 780 unsigned DestSize = Dest.getSizeInBits(); 781 782 return DestSize < SrcSize && DestSize % 32 == 0 ; 783 } 784 785 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 786 // Truncate is just accessing a subregister. 787 788 unsigned SrcSize = Source->getScalarSizeInBits(); 789 unsigned DestSize = Dest->getScalarSizeInBits(); 790 791 if (DestSize== 16 && Subtarget->has16BitInsts()) 792 return SrcSize >= 32; 793 794 return DestSize < SrcSize && DestSize % 32 == 0; 795 } 796 797 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 798 unsigned SrcSize = Src->getScalarSizeInBits(); 799 unsigned DestSize = Dest->getScalarSizeInBits(); 800 801 if (SrcSize == 16 && Subtarget->has16BitInsts()) 802 return DestSize >= 32; 803 804 return SrcSize == 32 && DestSize == 64; 805 } 806 807 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 808 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 809 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 810 // this will enable reducing 64-bit operations the 32-bit, which is always 811 // good. 812 813 if (Src == MVT::i16) 814 return Dest == MVT::i32 ||Dest == MVT::i64 ; 815 816 return Src == MVT::i32 && Dest == MVT::i64; 817 } 818 819 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 820 return isZExtFree(Val.getValueType(), VT2); 821 } 822 823 // v_mad_mix* support a conversion from f16 to f32. 824 // 825 // There is only one special case when denormals are enabled we don't currently, 826 // where this is OK to use. 827 bool AMDGPUTargetLowering::isFPExtFoldable(unsigned Opcode, 828 EVT DestVT, EVT SrcVT) const { 829 return Opcode == ISD::FMAD && Subtarget->hasMadMixInsts() && 830 DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() && 831 SrcVT.getScalarType() == MVT::f16; 832 } 833 834 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 835 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 836 // limited number of native 64-bit operations. Shrinking an operation to fit 837 // in a single 32-bit register should always be helpful. As currently used, 838 // this is much less general than the name suggests, and is only used in 839 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 840 // not profitable, and may actually be harmful. 841 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 842 } 843 844 //===---------------------------------------------------------------------===// 845 // TargetLowering Callbacks 846 //===---------------------------------------------------------------------===// 847 848 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 849 bool IsVarArg) { 850 switch (CC) { 851 case CallingConv::AMDGPU_KERNEL: 852 case CallingConv::SPIR_KERNEL: 853 return CC_AMDGPU_Kernel; 854 case CallingConv::AMDGPU_VS: 855 case CallingConv::AMDGPU_GS: 856 case CallingConv::AMDGPU_PS: 857 case CallingConv::AMDGPU_CS: 858 case CallingConv::AMDGPU_HS: 859 case CallingConv::AMDGPU_ES: 860 case CallingConv::AMDGPU_LS: 861 return CC_AMDGPU; 862 case CallingConv::C: 863 case CallingConv::Fast: 864 case CallingConv::Cold: 865 return CC_AMDGPU_Func; 866 default: 867 report_fatal_error("Unsupported calling convention."); 868 } 869 } 870 871 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 872 bool IsVarArg) { 873 switch (CC) { 874 case CallingConv::AMDGPU_KERNEL: 875 case CallingConv::SPIR_KERNEL: 876 return CC_AMDGPU_Kernel; 877 case CallingConv::AMDGPU_VS: 878 case CallingConv::AMDGPU_GS: 879 case CallingConv::AMDGPU_PS: 880 case CallingConv::AMDGPU_CS: 881 case CallingConv::AMDGPU_HS: 882 case CallingConv::AMDGPU_ES: 883 case CallingConv::AMDGPU_LS: 884 return RetCC_SI_Shader; 885 case CallingConv::C: 886 case CallingConv::Fast: 887 case CallingConv::Cold: 888 return RetCC_AMDGPU_Func; 889 default: 890 report_fatal_error("Unsupported calling convention."); 891 } 892 } 893 894 /// The SelectionDAGBuilder will automatically promote function arguments 895 /// with illegal types. However, this does not work for the AMDGPU targets 896 /// since the function arguments are stored in memory as these illegal types. 897 /// In order to handle this properly we need to get the original types sizes 898 /// from the LLVM IR Function and fixup the ISD:InputArg values before 899 /// passing them to AnalyzeFormalArguments() 900 901 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 902 /// input values across multiple registers. Each item in the Ins array 903 /// represents a single value that will be stored in registers. Ins[x].VT is 904 /// the value type of the value that will be stored in the register, so 905 /// whatever SDNode we lower the argument to needs to be this type. 906 /// 907 /// In order to correctly lower the arguments we need to know the size of each 908 /// argument. Since Ins[x].VT gives us the size of the register that will 909 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 910 /// for the orignal function argument so that we can deduce the correct memory 911 /// type to use for Ins[x]. In most cases the correct memory type will be 912 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 913 /// we have a kernel argument of type v8i8, this argument will be split into 914 /// 8 parts and each part will be represented by its own item in the Ins array. 915 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 916 /// the argument before it was split. From this, we deduce that the memory type 917 /// for each individual part is i8. We pass the memory type as LocVT to the 918 /// calling convention analysis function and the register type (Ins[x].VT) as 919 /// the ValVT. 920 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 921 const SmallVectorImpl<ISD::InputArg> &Ins) const { 922 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 923 const ISD::InputArg &In = Ins[i]; 924 EVT MemVT; 925 926 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 927 928 if (!Subtarget->isAmdHsaOS() && 929 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 930 // The ABI says the caller will extend these values to 32-bits. 931 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 932 } else if (NumRegs == 1) { 933 // This argument is not split, so the IR type is the memory type. 934 assert(!In.Flags.isSplit()); 935 if (In.ArgVT.isExtended()) { 936 // We have an extended type, like i24, so we should just use the register type 937 MemVT = In.VT; 938 } else { 939 MemVT = In.ArgVT; 940 } 941 } else if (In.ArgVT.isVector() && In.VT.isVector() && 942 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 943 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 944 // We have a vector value which has been split into a vector with 945 // the same scalar type, but fewer elements. This should handle 946 // all the floating-point vector types. 947 MemVT = In.VT; 948 } else if (In.ArgVT.isVector() && 949 In.ArgVT.getVectorNumElements() == NumRegs) { 950 // This arg has been split so that each element is stored in a separate 951 // register. 952 MemVT = In.ArgVT.getScalarType(); 953 } else if (In.ArgVT.isExtended()) { 954 // We have an extended type, like i65. 955 MemVT = In.VT; 956 } else { 957 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 958 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 959 if (In.VT.isInteger()) { 960 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 961 } else if (In.VT.isVector()) { 962 assert(!In.VT.getScalarType().isFloatingPoint()); 963 unsigned NumElements = In.VT.getVectorNumElements(); 964 assert(MemoryBits % NumElements == 0); 965 // This vector type has been split into another vector type with 966 // a different elements size. 967 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 968 MemoryBits / NumElements); 969 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 970 } else { 971 llvm_unreachable("cannot deduce memory type."); 972 } 973 } 974 975 // Convert one element vectors to scalar. 976 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 977 MemVT = MemVT.getScalarType(); 978 979 if (MemVT.isExtended()) { 980 // This should really only happen if we have vec3 arguments 981 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 982 MemVT = MemVT.getPow2VectorType(State.getContext()); 983 } 984 985 assert(MemVT.isSimple()); 986 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 987 State); 988 } 989 } 990 991 SDValue AMDGPUTargetLowering::LowerReturn( 992 SDValue Chain, CallingConv::ID CallConv, 993 bool isVarArg, 994 const SmallVectorImpl<ISD::OutputArg> &Outs, 995 const SmallVectorImpl<SDValue> &OutVals, 996 const SDLoc &DL, SelectionDAG &DAG) const { 997 // FIXME: Fails for r600 tests 998 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 999 // "wave terminate should not have return values"); 1000 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1001 } 1002 1003 //===---------------------------------------------------------------------===// 1004 // Target specific lowering 1005 //===---------------------------------------------------------------------===// 1006 1007 /// Selects the correct CCAssignFn for a given CallingConvention value. 1008 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1009 bool IsVarArg) { 1010 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1011 } 1012 1013 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1014 bool IsVarArg) { 1015 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1016 } 1017 1018 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1019 SelectionDAG &DAG, 1020 MachineFrameInfo &MFI, 1021 int ClobberedFI) const { 1022 SmallVector<SDValue, 8> ArgChains; 1023 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1024 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1025 1026 // Include the original chain at the beginning of the list. When this is 1027 // used by target LowerCall hooks, this helps legalize find the 1028 // CALLSEQ_BEGIN node. 1029 ArgChains.push_back(Chain); 1030 1031 // Add a chain value for each stack argument corresponding 1032 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1033 UE = DAG.getEntryNode().getNode()->use_end(); 1034 U != UE; ++U) { 1035 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1036 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1037 if (FI->getIndex() < 0) { 1038 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1039 int64_t InLastByte = InFirstByte; 1040 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1041 1042 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1043 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1044 ArgChains.push_back(SDValue(L, 1)); 1045 } 1046 } 1047 } 1048 } 1049 1050 // Build a tokenfactor for all the chains. 1051 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1052 } 1053 1054 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1055 SmallVectorImpl<SDValue> &InVals, 1056 StringRef Reason) const { 1057 SDValue Callee = CLI.Callee; 1058 SelectionDAG &DAG = CLI.DAG; 1059 1060 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1061 1062 StringRef FuncName("<unknown>"); 1063 1064 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1065 FuncName = G->getSymbol(); 1066 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1067 FuncName = G->getGlobal()->getName(); 1068 1069 DiagnosticInfoUnsupported NoCalls( 1070 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1071 DAG.getContext()->diagnose(NoCalls); 1072 1073 if (!CLI.IsTailCall) { 1074 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1075 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1076 } 1077 1078 return DAG.getEntryNode(); 1079 } 1080 1081 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1082 SmallVectorImpl<SDValue> &InVals) const { 1083 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1084 } 1085 1086 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1087 SelectionDAG &DAG) const { 1088 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1089 1090 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1091 SDLoc(Op).getDebugLoc()); 1092 DAG.getContext()->diagnose(NoDynamicAlloca); 1093 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1094 return DAG.getMergeValues(Ops, SDLoc()); 1095 } 1096 1097 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1098 SelectionDAG &DAG) const { 1099 switch (Op.getOpcode()) { 1100 default: 1101 Op->print(errs(), &DAG); 1102 llvm_unreachable("Custom lowering code for this" 1103 "instruction is not implemented yet!"); 1104 break; 1105 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1106 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1107 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1108 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1109 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1110 case ISD::FREM: return LowerFREM(Op, DAG); 1111 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1112 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1113 case ISD::FRINT: return LowerFRINT(Op, DAG); 1114 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1115 case ISD::FROUND: return LowerFROUND(Op, DAG); 1116 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1117 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1118 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1119 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1120 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1121 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1122 case ISD::CTTZ: 1123 case ISD::CTTZ_ZERO_UNDEF: 1124 case ISD::CTLZ: 1125 case ISD::CTLZ_ZERO_UNDEF: 1126 return LowerCTLZ_CTTZ(Op, DAG); 1127 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1128 } 1129 return Op; 1130 } 1131 1132 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1133 SmallVectorImpl<SDValue> &Results, 1134 SelectionDAG &DAG) const { 1135 switch (N->getOpcode()) { 1136 case ISD::SIGN_EXTEND_INREG: 1137 // Different parts of legalization seem to interpret which type of 1138 // sign_extend_inreg is the one to check for custom lowering. The extended 1139 // from type is what really matters, but some places check for custom 1140 // lowering of the result type. This results in trying to use 1141 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1142 // nothing here and let the illegal result integer be handled normally. 1143 return; 1144 default: 1145 return; 1146 } 1147 } 1148 1149 static bool hasDefinedInitializer(const GlobalValue *GV) { 1150 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1151 if (!GVar || !GVar->hasInitializer()) 1152 return false; 1153 1154 return !isa<UndefValue>(GVar->getInitializer()); 1155 } 1156 1157 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1158 SDValue Op, 1159 SelectionDAG &DAG) const { 1160 1161 const DataLayout &DL = DAG.getDataLayout(); 1162 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1163 const GlobalValue *GV = G->getGlobal(); 1164 1165 if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) { 1166 // XXX: What does the value of G->getOffset() mean? 1167 assert(G->getOffset() == 0 && 1168 "Do not know what to do with an non-zero offset"); 1169 1170 // TODO: We could emit code to handle the initialization somewhere. 1171 if (!hasDefinedInitializer(GV)) { 1172 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1173 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1174 } 1175 } 1176 1177 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1178 DiagnosticInfoUnsupported BadInit( 1179 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1180 DAG.getContext()->diagnose(BadInit); 1181 return SDValue(); 1182 } 1183 1184 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1185 SelectionDAG &DAG) const { 1186 SmallVector<SDValue, 8> Args; 1187 1188 for (const SDUse &U : Op->ops()) 1189 DAG.ExtractVectorElements(U.get(), Args); 1190 1191 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1192 } 1193 1194 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1195 SelectionDAG &DAG) const { 1196 1197 SmallVector<SDValue, 8> Args; 1198 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1199 EVT VT = Op.getValueType(); 1200 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1201 VT.getVectorNumElements()); 1202 1203 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1204 } 1205 1206 /// \brief Generate Min/Max node 1207 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1208 SDValue LHS, SDValue RHS, 1209 SDValue True, SDValue False, 1210 SDValue CC, 1211 DAGCombinerInfo &DCI) const { 1212 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1213 return SDValue(); 1214 1215 SelectionDAG &DAG = DCI.DAG; 1216 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1217 switch (CCOpcode) { 1218 case ISD::SETOEQ: 1219 case ISD::SETONE: 1220 case ISD::SETUNE: 1221 case ISD::SETNE: 1222 case ISD::SETUEQ: 1223 case ISD::SETEQ: 1224 case ISD::SETFALSE: 1225 case ISD::SETFALSE2: 1226 case ISD::SETTRUE: 1227 case ISD::SETTRUE2: 1228 case ISD::SETUO: 1229 case ISD::SETO: 1230 break; 1231 case ISD::SETULE: 1232 case ISD::SETULT: { 1233 if (LHS == True) 1234 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1235 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1236 } 1237 case ISD::SETOLE: 1238 case ISD::SETOLT: 1239 case ISD::SETLE: 1240 case ISD::SETLT: { 1241 // Ordered. Assume ordered for undefined. 1242 1243 // Only do this after legalization to avoid interfering with other combines 1244 // which might occur. 1245 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1246 !DCI.isCalledByLegalizer()) 1247 return SDValue(); 1248 1249 // We need to permute the operands to get the correct NaN behavior. The 1250 // selected operand is the second one based on the failing compare with NaN, 1251 // so permute it based on the compare type the hardware uses. 1252 if (LHS == True) 1253 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1254 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1255 } 1256 case ISD::SETUGE: 1257 case ISD::SETUGT: { 1258 if (LHS == True) 1259 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1260 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1261 } 1262 case ISD::SETGT: 1263 case ISD::SETGE: 1264 case ISD::SETOGE: 1265 case ISD::SETOGT: { 1266 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1267 !DCI.isCalledByLegalizer()) 1268 return SDValue(); 1269 1270 if (LHS == True) 1271 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1272 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1273 } 1274 case ISD::SETCC_INVALID: 1275 llvm_unreachable("Invalid setcc condcode!"); 1276 } 1277 return SDValue(); 1278 } 1279 1280 std::pair<SDValue, SDValue> 1281 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1282 SDLoc SL(Op); 1283 1284 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1285 1286 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1287 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1288 1289 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1290 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1291 1292 return std::make_pair(Lo, Hi); 1293 } 1294 1295 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1296 SDLoc SL(Op); 1297 1298 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1299 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1300 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1301 } 1302 1303 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1304 SDLoc SL(Op); 1305 1306 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1307 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1308 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1309 } 1310 1311 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1312 SelectionDAG &DAG) const { 1313 LoadSDNode *Load = cast<LoadSDNode>(Op); 1314 EVT VT = Op.getValueType(); 1315 1316 1317 // If this is a 2 element vector, we really want to scalarize and not create 1318 // weird 1 element vectors. 1319 if (VT.getVectorNumElements() == 2) 1320 return scalarizeVectorLoad(Load, DAG); 1321 1322 SDValue BasePtr = Load->getBasePtr(); 1323 EVT PtrVT = BasePtr.getValueType(); 1324 EVT MemVT = Load->getMemoryVT(); 1325 SDLoc SL(Op); 1326 1327 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1328 1329 EVT LoVT, HiVT; 1330 EVT LoMemVT, HiMemVT; 1331 SDValue Lo, Hi; 1332 1333 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1334 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1335 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1336 1337 unsigned Size = LoMemVT.getStoreSize(); 1338 unsigned BaseAlign = Load->getAlignment(); 1339 unsigned HiAlign = MinAlign(BaseAlign, Size); 1340 1341 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1342 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1343 BaseAlign, Load->getMemOperand()->getFlags()); 1344 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1345 DAG.getConstant(Size, SL, PtrVT)); 1346 SDValue HiLoad = 1347 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1348 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1349 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1350 1351 SDValue Ops[] = { 1352 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1353 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1354 LoLoad.getValue(1), HiLoad.getValue(1)) 1355 }; 1356 1357 return DAG.getMergeValues(Ops, SL); 1358 } 1359 1360 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1361 SelectionDAG &DAG) const { 1362 StoreSDNode *Store = cast<StoreSDNode>(Op); 1363 SDValue Val = Store->getValue(); 1364 EVT VT = Val.getValueType(); 1365 1366 // If this is a 2 element vector, we really want to scalarize and not create 1367 // weird 1 element vectors. 1368 if (VT.getVectorNumElements() == 2) 1369 return scalarizeVectorStore(Store, DAG); 1370 1371 EVT MemVT = Store->getMemoryVT(); 1372 SDValue Chain = Store->getChain(); 1373 SDValue BasePtr = Store->getBasePtr(); 1374 SDLoc SL(Op); 1375 1376 EVT LoVT, HiVT; 1377 EVT LoMemVT, HiMemVT; 1378 SDValue Lo, Hi; 1379 1380 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1381 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1382 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1383 1384 EVT PtrVT = BasePtr.getValueType(); 1385 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1386 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1387 PtrVT)); 1388 1389 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1390 unsigned BaseAlign = Store->getAlignment(); 1391 unsigned Size = LoMemVT.getStoreSize(); 1392 unsigned HiAlign = MinAlign(BaseAlign, Size); 1393 1394 SDValue LoStore = 1395 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1396 Store->getMemOperand()->getFlags()); 1397 SDValue HiStore = 1398 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1399 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1400 1401 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1402 } 1403 1404 // This is a shortcut for integer division because we have fast i32<->f32 1405 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1406 // float is enough to accurately represent up to a 24-bit signed integer. 1407 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1408 bool Sign) const { 1409 SDLoc DL(Op); 1410 EVT VT = Op.getValueType(); 1411 SDValue LHS = Op.getOperand(0); 1412 SDValue RHS = Op.getOperand(1); 1413 MVT IntVT = MVT::i32; 1414 MVT FltVT = MVT::f32; 1415 1416 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1417 if (LHSSignBits < 9) 1418 return SDValue(); 1419 1420 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1421 if (RHSSignBits < 9) 1422 return SDValue(); 1423 1424 unsigned BitSize = VT.getSizeInBits(); 1425 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1426 unsigned DivBits = BitSize - SignBits; 1427 if (Sign) 1428 ++DivBits; 1429 1430 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1431 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1432 1433 SDValue jq = DAG.getConstant(1, DL, IntVT); 1434 1435 if (Sign) { 1436 // char|short jq = ia ^ ib; 1437 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1438 1439 // jq = jq >> (bitsize - 2) 1440 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1441 DAG.getConstant(BitSize - 2, DL, VT)); 1442 1443 // jq = jq | 0x1 1444 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1445 } 1446 1447 // int ia = (int)LHS; 1448 SDValue ia = LHS; 1449 1450 // int ib, (int)RHS; 1451 SDValue ib = RHS; 1452 1453 // float fa = (float)ia; 1454 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1455 1456 // float fb = (float)ib; 1457 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1458 1459 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1460 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1461 1462 // fq = trunc(fq); 1463 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1464 1465 // float fqneg = -fq; 1466 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1467 1468 // float fr = mad(fqneg, fb, fa); 1469 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1470 (unsigned)AMDGPUISD::FMAD_FTZ : 1471 (unsigned)ISD::FMAD; 1472 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1473 1474 // int iq = (int)fq; 1475 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1476 1477 // fr = fabs(fr); 1478 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1479 1480 // fb = fabs(fb); 1481 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1482 1483 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1484 1485 // int cv = fr >= fb; 1486 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1487 1488 // jq = (cv ? jq : 0); 1489 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1490 1491 // dst = iq + jq; 1492 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1493 1494 // Rem needs compensation, it's easier to recompute it 1495 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1496 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1497 1498 // Truncate to number of bits this divide really is. 1499 if (Sign) { 1500 SDValue InRegSize 1501 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1502 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1503 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1504 } else { 1505 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1506 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1507 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1508 } 1509 1510 return DAG.getMergeValues({ Div, Rem }, DL); 1511 } 1512 1513 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1514 SelectionDAG &DAG, 1515 SmallVectorImpl<SDValue> &Results) const { 1516 SDLoc DL(Op); 1517 EVT VT = Op.getValueType(); 1518 1519 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1520 1521 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1522 1523 SDValue One = DAG.getConstant(1, DL, HalfVT); 1524 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1525 1526 //HiLo split 1527 SDValue LHS = Op.getOperand(0); 1528 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1529 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1530 1531 SDValue RHS = Op.getOperand(1); 1532 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1533 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1534 1535 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1536 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1537 1538 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1539 LHS_Lo, RHS_Lo); 1540 1541 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1542 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1543 1544 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1545 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1546 return; 1547 } 1548 1549 if (isTypeLegal(MVT::i64)) { 1550 // Compute denominator reciprocal. 1551 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1552 (unsigned)AMDGPUISD::FMAD_FTZ : 1553 (unsigned)ISD::FMAD; 1554 1555 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1556 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1557 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1558 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1559 Cvt_Lo); 1560 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1561 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1562 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1563 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1564 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1565 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1566 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1567 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1568 Mul1); 1569 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1570 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1571 SDValue Rcp64 = DAG.getBitcast(VT, 1572 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1573 1574 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1575 SDValue One64 = DAG.getConstant(1, DL, VT); 1576 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1577 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1578 1579 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1580 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1581 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1582 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1583 Zero); 1584 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1585 One); 1586 1587 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1588 Mulhi1_Lo, Zero1); 1589 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1590 Mulhi1_Hi, Add1_Lo.getValue(1)); 1591 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1592 SDValue Add1 = DAG.getBitcast(VT, 1593 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1594 1595 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1596 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1597 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1598 Zero); 1599 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1600 One); 1601 1602 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1603 Mulhi2_Lo, Zero1); 1604 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1605 Mulhi2_Hi, Add1_Lo.getValue(1)); 1606 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1607 Zero, Add2_Lo.getValue(1)); 1608 SDValue Add2 = DAG.getBitcast(VT, 1609 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1610 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1611 1612 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1613 1614 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1615 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1616 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1617 Mul3_Lo, Zero1); 1618 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1619 Mul3_Hi, Sub1_Lo.getValue(1)); 1620 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1621 SDValue Sub1 = DAG.getBitcast(VT, 1622 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1623 1624 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1625 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1626 ISD::SETUGE); 1627 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1628 ISD::SETUGE); 1629 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1630 1631 // TODO: Here and below portions of the code can be enclosed into if/endif. 1632 // Currently control flow is unconditional and we have 4 selects after 1633 // potential endif to substitute PHIs. 1634 1635 // if C3 != 0 ... 1636 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1637 RHS_Lo, Zero1); 1638 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1639 RHS_Hi, Sub1_Lo.getValue(1)); 1640 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1641 Zero, Sub2_Lo.getValue(1)); 1642 SDValue Sub2 = DAG.getBitcast(VT, 1643 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1644 1645 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1646 1647 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1648 ISD::SETUGE); 1649 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1650 ISD::SETUGE); 1651 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1652 1653 // if (C6 != 0) 1654 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1655 1656 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1657 RHS_Lo, Zero1); 1658 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1659 RHS_Hi, Sub2_Lo.getValue(1)); 1660 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1661 Zero, Sub3_Lo.getValue(1)); 1662 SDValue Sub3 = DAG.getBitcast(VT, 1663 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1664 1665 // endif C6 1666 // endif C3 1667 1668 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1669 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1670 1671 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1672 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1673 1674 Results.push_back(Div); 1675 Results.push_back(Rem); 1676 1677 return; 1678 } 1679 1680 // r600 expandion. 1681 // Get Speculative values 1682 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1683 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1684 1685 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1686 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1687 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1688 1689 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1690 SDValue DIV_Lo = Zero; 1691 1692 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1693 1694 for (unsigned i = 0; i < halfBitWidth; ++i) { 1695 const unsigned bitPos = halfBitWidth - i - 1; 1696 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1697 // Get value of high bit 1698 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1699 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1700 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1701 1702 // Shift 1703 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1704 // Add LHS high bit 1705 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1706 1707 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1708 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1709 1710 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1711 1712 // Update REM 1713 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1714 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1715 } 1716 1717 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1718 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1719 Results.push_back(DIV); 1720 Results.push_back(REM); 1721 } 1722 1723 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1724 SelectionDAG &DAG) const { 1725 SDLoc DL(Op); 1726 EVT VT = Op.getValueType(); 1727 1728 if (VT == MVT::i64) { 1729 SmallVector<SDValue, 2> Results; 1730 LowerUDIVREM64(Op, DAG, Results); 1731 return DAG.getMergeValues(Results, DL); 1732 } 1733 1734 if (VT == MVT::i32) { 1735 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1736 return Res; 1737 } 1738 1739 SDValue Num = Op.getOperand(0); 1740 SDValue Den = Op.getOperand(1); 1741 1742 // RCP = URECIP(Den) = 2^32 / Den + e 1743 // e is rounding error. 1744 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1745 1746 // RCP_LO = mul(RCP, Den) */ 1747 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1748 1749 // RCP_HI = mulhu (RCP, Den) */ 1750 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1751 1752 // NEG_RCP_LO = -RCP_LO 1753 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1754 RCP_LO); 1755 1756 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1757 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1758 NEG_RCP_LO, RCP_LO, 1759 ISD::SETEQ); 1760 // Calculate the rounding error from the URECIP instruction 1761 // E = mulhu(ABS_RCP_LO, RCP) 1762 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1763 1764 // RCP_A_E = RCP + E 1765 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1766 1767 // RCP_S_E = RCP - E 1768 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1769 1770 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1771 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1772 RCP_A_E, RCP_S_E, 1773 ISD::SETEQ); 1774 // Quotient = mulhu(Tmp0, Num) 1775 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1776 1777 // Num_S_Remainder = Quotient * Den 1778 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1779 1780 // Remainder = Num - Num_S_Remainder 1781 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1782 1783 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1784 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1785 DAG.getConstant(-1, DL, VT), 1786 DAG.getConstant(0, DL, VT), 1787 ISD::SETUGE); 1788 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1789 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1790 Num_S_Remainder, 1791 DAG.getConstant(-1, DL, VT), 1792 DAG.getConstant(0, DL, VT), 1793 ISD::SETUGE); 1794 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1795 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1796 Remainder_GE_Zero); 1797 1798 // Calculate Division result: 1799 1800 // Quotient_A_One = Quotient + 1 1801 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1802 DAG.getConstant(1, DL, VT)); 1803 1804 // Quotient_S_One = Quotient - 1 1805 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1806 DAG.getConstant(1, DL, VT)); 1807 1808 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1809 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1810 Quotient, Quotient_A_One, ISD::SETEQ); 1811 1812 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1813 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1814 Quotient_S_One, Div, ISD::SETEQ); 1815 1816 // Calculate Rem result: 1817 1818 // Remainder_S_Den = Remainder - Den 1819 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1820 1821 // Remainder_A_Den = Remainder + Den 1822 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1823 1824 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1825 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1826 Remainder, Remainder_S_Den, ISD::SETEQ); 1827 1828 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1829 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1830 Remainder_A_Den, Rem, ISD::SETEQ); 1831 SDValue Ops[2] = { 1832 Div, 1833 Rem 1834 }; 1835 return DAG.getMergeValues(Ops, DL); 1836 } 1837 1838 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1839 SelectionDAG &DAG) const { 1840 SDLoc DL(Op); 1841 EVT VT = Op.getValueType(); 1842 1843 SDValue LHS = Op.getOperand(0); 1844 SDValue RHS = Op.getOperand(1); 1845 1846 SDValue Zero = DAG.getConstant(0, DL, VT); 1847 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1848 1849 if (VT == MVT::i32) { 1850 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1851 return Res; 1852 } 1853 1854 if (VT == MVT::i64 && 1855 DAG.ComputeNumSignBits(LHS) > 32 && 1856 DAG.ComputeNumSignBits(RHS) > 32) { 1857 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1858 1859 //HiLo split 1860 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1861 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1862 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1863 LHS_Lo, RHS_Lo); 1864 SDValue Res[2] = { 1865 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1866 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1867 }; 1868 return DAG.getMergeValues(Res, DL); 1869 } 1870 1871 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1872 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1873 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1874 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1875 1876 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1877 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1878 1879 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1880 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1881 1882 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1883 SDValue Rem = Div.getValue(1); 1884 1885 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1886 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1887 1888 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1889 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1890 1891 SDValue Res[2] = { 1892 Div, 1893 Rem 1894 }; 1895 return DAG.getMergeValues(Res, DL); 1896 } 1897 1898 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1899 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1900 SDLoc SL(Op); 1901 EVT VT = Op.getValueType(); 1902 SDValue X = Op.getOperand(0); 1903 SDValue Y = Op.getOperand(1); 1904 1905 // TODO: Should this propagate fast-math-flags? 1906 1907 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1908 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1909 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1910 1911 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1912 } 1913 1914 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1915 SDLoc SL(Op); 1916 SDValue Src = Op.getOperand(0); 1917 1918 // result = trunc(src) 1919 // if (src > 0.0 && src != result) 1920 // result += 1.0 1921 1922 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1923 1924 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1925 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1926 1927 EVT SetCCVT = 1928 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1929 1930 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1931 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1932 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1933 1934 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1935 // TODO: Should this propagate fast-math-flags? 1936 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1937 } 1938 1939 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1940 SelectionDAG &DAG) { 1941 const unsigned FractBits = 52; 1942 const unsigned ExpBits = 11; 1943 1944 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1945 Hi, 1946 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1947 DAG.getConstant(ExpBits, SL, MVT::i32)); 1948 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1949 DAG.getConstant(1023, SL, MVT::i32)); 1950 1951 return Exp; 1952 } 1953 1954 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1955 SDLoc SL(Op); 1956 SDValue Src = Op.getOperand(0); 1957 1958 assert(Op.getValueType() == MVT::f64); 1959 1960 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1961 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1962 1963 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1964 1965 // Extract the upper half, since this is where we will find the sign and 1966 // exponent. 1967 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1968 1969 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1970 1971 const unsigned FractBits = 52; 1972 1973 // Extract the sign bit. 1974 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1975 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1976 1977 // Extend back to to 64-bits. 1978 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1979 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1980 1981 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1982 const SDValue FractMask 1983 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1984 1985 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1986 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1987 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1988 1989 EVT SetCCVT = 1990 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1991 1992 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1993 1994 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1995 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1996 1997 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1998 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1999 2000 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2001 } 2002 2003 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2004 SDLoc SL(Op); 2005 SDValue Src = Op.getOperand(0); 2006 2007 assert(Op.getValueType() == MVT::f64); 2008 2009 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2010 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2011 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2012 2013 // TODO: Should this propagate fast-math-flags? 2014 2015 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2016 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2017 2018 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2019 2020 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2021 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2022 2023 EVT SetCCVT = 2024 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2025 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2026 2027 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2028 } 2029 2030 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2031 // FNEARBYINT and FRINT are the same, except in their handling of FP 2032 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2033 // rint, so just treat them as equivalent. 2034 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2035 } 2036 2037 // XXX - May require not supporting f32 denormals? 2038 2039 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2040 // compare and vselect end up producing worse code than scalarizing the whole 2041 // operation. 2042 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2043 SDLoc SL(Op); 2044 SDValue X = Op.getOperand(0); 2045 EVT VT = Op.getValueType(); 2046 2047 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2048 2049 // TODO: Should this propagate fast-math-flags? 2050 2051 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2052 2053 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2054 2055 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2056 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2057 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2058 2059 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2060 2061 EVT SetCCVT = 2062 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2063 2064 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2065 2066 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2067 2068 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2069 } 2070 2071 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2072 SDLoc SL(Op); 2073 SDValue X = Op.getOperand(0); 2074 2075 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2076 2077 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2078 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2079 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2080 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2081 EVT SetCCVT = 2082 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2083 2084 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2085 2086 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2087 2088 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2089 2090 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2091 MVT::i64); 2092 2093 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2094 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2095 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2096 MVT::i64), 2097 Exp); 2098 2099 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2100 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2101 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2102 ISD::SETNE); 2103 2104 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2105 D, DAG.getConstant(0, SL, MVT::i64)); 2106 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2107 2108 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2109 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2110 2111 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2112 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2113 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2114 2115 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2116 ExpEqNegOne, 2117 DAG.getConstantFP(1.0, SL, MVT::f64), 2118 DAG.getConstantFP(0.0, SL, MVT::f64)); 2119 2120 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2121 2122 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2123 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2124 2125 return K; 2126 } 2127 2128 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2129 EVT VT = Op.getValueType(); 2130 2131 if (VT == MVT::f32 || VT == MVT::f16) 2132 return LowerFROUND32_16(Op, DAG); 2133 2134 if (VT == MVT::f64) 2135 return LowerFROUND64(Op, DAG); 2136 2137 llvm_unreachable("unhandled type"); 2138 } 2139 2140 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2141 SDLoc SL(Op); 2142 SDValue Src = Op.getOperand(0); 2143 2144 // result = trunc(src); 2145 // if (src < 0.0 && src != result) 2146 // result += -1.0. 2147 2148 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2149 2150 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2151 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2152 2153 EVT SetCCVT = 2154 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2155 2156 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2157 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2158 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2159 2160 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2161 // TODO: Should this propagate fast-math-flags? 2162 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2163 } 2164 2165 static bool isCtlzOpc(unsigned Opc) { 2166 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2167 } 2168 2169 static bool isCttzOpc(unsigned Opc) { 2170 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2171 } 2172 2173 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2174 SDLoc SL(Op); 2175 SDValue Src = Op.getOperand(0); 2176 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2177 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2178 2179 unsigned ISDOpc, NewOpc; 2180 if (isCtlzOpc(Op.getOpcode())) { 2181 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2182 NewOpc = AMDGPUISD::FFBH_U32; 2183 } else if (isCttzOpc(Op.getOpcode())) { 2184 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2185 NewOpc = AMDGPUISD::FFBL_B32; 2186 } else 2187 llvm_unreachable("Unexpected OPCode!!!"); 2188 2189 2190 if (ZeroUndef && Src.getValueType() == MVT::i32) 2191 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2192 2193 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2194 2195 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2196 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2197 2198 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2199 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2200 2201 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2202 *DAG.getContext(), MVT::i32); 2203 2204 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2205 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2206 2207 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2208 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2209 2210 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2211 SDValue Add, NewOpr; 2212 if (isCtlzOpc(Op.getOpcode())) { 2213 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2214 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2215 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2216 } else { 2217 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2218 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2219 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2220 } 2221 2222 if (!ZeroUndef) { 2223 // Test if the full 64-bit input is zero. 2224 2225 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2226 // which we probably don't want. 2227 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2228 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2229 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2230 2231 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2232 // with the same cycles, otherwise it is slower. 2233 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2234 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2235 2236 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2237 2238 // The instruction returns -1 for 0 input, but the defined intrinsic 2239 // behavior is to return the number of bits. 2240 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2241 SrcIsZero, Bits32, NewOpr); 2242 } 2243 2244 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2245 } 2246 2247 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2248 bool Signed) const { 2249 // Unsigned 2250 // cul2f(ulong u) 2251 //{ 2252 // uint lz = clz(u); 2253 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2254 // u = (u << lz) & 0x7fffffffffffffffUL; 2255 // ulong t = u & 0xffffffffffUL; 2256 // uint v = (e << 23) | (uint)(u >> 40); 2257 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2258 // return as_float(v + r); 2259 //} 2260 // Signed 2261 // cl2f(long l) 2262 //{ 2263 // long s = l >> 63; 2264 // float r = cul2f((l + s) ^ s); 2265 // return s ? -r : r; 2266 //} 2267 2268 SDLoc SL(Op); 2269 SDValue Src = Op.getOperand(0); 2270 SDValue L = Src; 2271 2272 SDValue S; 2273 if (Signed) { 2274 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2275 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2276 2277 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2278 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2279 } 2280 2281 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2282 *DAG.getContext(), MVT::f32); 2283 2284 2285 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2286 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2287 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2288 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2289 2290 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2291 SDValue E = DAG.getSelect(SL, MVT::i32, 2292 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2293 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2294 ZeroI32); 2295 2296 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2297 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2298 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2299 2300 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2301 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2302 2303 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2304 U, DAG.getConstant(40, SL, MVT::i64)); 2305 2306 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2307 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2308 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2309 2310 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2311 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2312 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2313 2314 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2315 2316 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2317 2318 SDValue R = DAG.getSelect(SL, MVT::i32, 2319 RCmp, 2320 One, 2321 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2322 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2323 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2324 2325 if (!Signed) 2326 return R; 2327 2328 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2329 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2330 } 2331 2332 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2333 bool Signed) const { 2334 SDLoc SL(Op); 2335 SDValue Src = Op.getOperand(0); 2336 2337 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2338 2339 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2340 DAG.getConstant(0, SL, MVT::i32)); 2341 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2342 DAG.getConstant(1, SL, MVT::i32)); 2343 2344 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2345 SL, MVT::f64, Hi); 2346 2347 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2348 2349 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2350 DAG.getConstant(32, SL, MVT::i32)); 2351 // TODO: Should this propagate fast-math-flags? 2352 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2353 } 2354 2355 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2356 SelectionDAG &DAG) const { 2357 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2358 "operation should be legal"); 2359 2360 // TODO: Factor out code common with LowerSINT_TO_FP. 2361 2362 EVT DestVT = Op.getValueType(); 2363 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2364 SDLoc DL(Op); 2365 SDValue Src = Op.getOperand(0); 2366 2367 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2368 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2369 SDValue FPRound = 2370 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2371 2372 return FPRound; 2373 } 2374 2375 if (DestVT == MVT::f32) 2376 return LowerINT_TO_FP32(Op, DAG, false); 2377 2378 assert(DestVT == MVT::f64); 2379 return LowerINT_TO_FP64(Op, DAG, false); 2380 } 2381 2382 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2383 SelectionDAG &DAG) const { 2384 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2385 "operation should be legal"); 2386 2387 // TODO: Factor out code common with LowerUINT_TO_FP. 2388 2389 EVT DestVT = Op.getValueType(); 2390 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2391 SDLoc DL(Op); 2392 SDValue Src = Op.getOperand(0); 2393 2394 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2395 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2396 SDValue FPRound = 2397 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2398 2399 return FPRound; 2400 } 2401 2402 if (DestVT == MVT::f32) 2403 return LowerINT_TO_FP32(Op, DAG, true); 2404 2405 assert(DestVT == MVT::f64); 2406 return LowerINT_TO_FP64(Op, DAG, true); 2407 } 2408 2409 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2410 bool Signed) const { 2411 SDLoc SL(Op); 2412 2413 SDValue Src = Op.getOperand(0); 2414 2415 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2416 2417 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2418 MVT::f64); 2419 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2420 MVT::f64); 2421 // TODO: Should this propagate fast-math-flags? 2422 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2423 2424 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2425 2426 2427 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2428 2429 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2430 MVT::i32, FloorMul); 2431 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2432 2433 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2434 2435 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2436 } 2437 2438 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2439 SDLoc DL(Op); 2440 SDValue N0 = Op.getOperand(0); 2441 2442 // Convert to target node to get known bits 2443 if (N0.getValueType() == MVT::f32) 2444 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2445 2446 if (getTargetMachine().Options.UnsafeFPMath) { 2447 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2448 return SDValue(); 2449 } 2450 2451 assert(N0.getSimpleValueType() == MVT::f64); 2452 2453 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2454 const unsigned ExpMask = 0x7ff; 2455 const unsigned ExpBiasf64 = 1023; 2456 const unsigned ExpBiasf16 = 15; 2457 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2458 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2459 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2460 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2461 DAG.getConstant(32, DL, MVT::i64)); 2462 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2463 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2464 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2465 DAG.getConstant(20, DL, MVT::i64)); 2466 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2467 DAG.getConstant(ExpMask, DL, MVT::i32)); 2468 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2469 // add the f16 bias (15) to get the biased exponent for the f16 format. 2470 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2471 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2472 2473 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2474 DAG.getConstant(8, DL, MVT::i32)); 2475 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2476 DAG.getConstant(0xffe, DL, MVT::i32)); 2477 2478 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2479 DAG.getConstant(0x1ff, DL, MVT::i32)); 2480 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2481 2482 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2483 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2484 2485 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2486 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2487 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2488 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2489 2490 // N = M | (E << 12); 2491 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2492 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2493 DAG.getConstant(12, DL, MVT::i32))); 2494 2495 // B = clamp(1-E, 0, 13); 2496 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2497 One, E); 2498 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2499 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2500 DAG.getConstant(13, DL, MVT::i32)); 2501 2502 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2503 DAG.getConstant(0x1000, DL, MVT::i32)); 2504 2505 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2506 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2507 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2508 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2509 2510 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2511 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2512 DAG.getConstant(0x7, DL, MVT::i32)); 2513 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2514 DAG.getConstant(2, DL, MVT::i32)); 2515 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2516 One, Zero, ISD::SETEQ); 2517 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2518 One, Zero, ISD::SETGT); 2519 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2520 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2521 2522 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2523 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2524 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2525 I, V, ISD::SETEQ); 2526 2527 // Extract the sign bit. 2528 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2529 DAG.getConstant(16, DL, MVT::i32)); 2530 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2531 DAG.getConstant(0x8000, DL, MVT::i32)); 2532 2533 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2534 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2535 } 2536 2537 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2538 SelectionDAG &DAG) const { 2539 SDValue Src = Op.getOperand(0); 2540 2541 // TODO: Factor out code common with LowerFP_TO_UINT. 2542 2543 EVT SrcVT = Src.getValueType(); 2544 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2545 SDLoc DL(Op); 2546 2547 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2548 SDValue FpToInt32 = 2549 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2550 2551 return FpToInt32; 2552 } 2553 2554 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2555 return LowerFP64_TO_INT(Op, DAG, true); 2556 2557 return SDValue(); 2558 } 2559 2560 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2561 SelectionDAG &DAG) const { 2562 SDValue Src = Op.getOperand(0); 2563 2564 // TODO: Factor out code common with LowerFP_TO_SINT. 2565 2566 EVT SrcVT = Src.getValueType(); 2567 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2568 SDLoc DL(Op); 2569 2570 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2571 SDValue FpToInt32 = 2572 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2573 2574 return FpToInt32; 2575 } 2576 2577 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2578 return LowerFP64_TO_INT(Op, DAG, false); 2579 2580 return SDValue(); 2581 } 2582 2583 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2584 SelectionDAG &DAG) const { 2585 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2586 MVT VT = Op.getSimpleValueType(); 2587 MVT ScalarVT = VT.getScalarType(); 2588 2589 assert(VT.isVector()); 2590 2591 SDValue Src = Op.getOperand(0); 2592 SDLoc DL(Op); 2593 2594 // TODO: Don't scalarize on Evergreen? 2595 unsigned NElts = VT.getVectorNumElements(); 2596 SmallVector<SDValue, 8> Args; 2597 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2598 2599 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2600 for (unsigned I = 0; I < NElts; ++I) 2601 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2602 2603 return DAG.getBuildVector(VT, DL, Args); 2604 } 2605 2606 //===----------------------------------------------------------------------===// 2607 // Custom DAG optimizations 2608 //===----------------------------------------------------------------------===// 2609 2610 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2611 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2612 } 2613 2614 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2615 EVT VT = Op.getValueType(); 2616 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2617 // as unsigned 24-bit values. 2618 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2619 } 2620 2621 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2622 TargetLowering::DAGCombinerInfo &DCI) { 2623 2624 SelectionDAG &DAG = DCI.DAG; 2625 SDValue Op = Node24->getOperand(OpIdx); 2626 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2627 EVT VT = Op.getValueType(); 2628 2629 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2630 APInt KnownZero, KnownOne; 2631 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2632 if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO)) 2633 return true; 2634 2635 return false; 2636 } 2637 2638 template <typename IntTy> 2639 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2640 uint32_t Width, const SDLoc &DL) { 2641 if (Width + Offset < 32) { 2642 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2643 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2644 return DAG.getConstant(Result, DL, MVT::i32); 2645 } 2646 2647 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2648 } 2649 2650 static bool hasVolatileUser(SDNode *Val) { 2651 for (SDNode *U : Val->uses()) { 2652 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2653 if (M->isVolatile()) 2654 return true; 2655 } 2656 } 2657 2658 return false; 2659 } 2660 2661 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2662 // i32 vectors are the canonical memory type. 2663 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2664 return false; 2665 2666 if (!VT.isByteSized()) 2667 return false; 2668 2669 unsigned Size = VT.getStoreSize(); 2670 2671 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2672 return false; 2673 2674 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2675 return false; 2676 2677 return true; 2678 } 2679 2680 // Replace load of an illegal type with a store of a bitcast to a friendlier 2681 // type. 2682 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2683 DAGCombinerInfo &DCI) const { 2684 if (!DCI.isBeforeLegalize()) 2685 return SDValue(); 2686 2687 LoadSDNode *LN = cast<LoadSDNode>(N); 2688 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2689 return SDValue(); 2690 2691 SDLoc SL(N); 2692 SelectionDAG &DAG = DCI.DAG; 2693 EVT VT = LN->getMemoryVT(); 2694 2695 unsigned Size = VT.getStoreSize(); 2696 unsigned Align = LN->getAlignment(); 2697 if (Align < Size && isTypeLegal(VT)) { 2698 bool IsFast; 2699 unsigned AS = LN->getAddressSpace(); 2700 2701 // Expand unaligned loads earlier than legalization. Due to visitation order 2702 // problems during legalization, the emitted instructions to pack and unpack 2703 // the bytes again are not eliminated in the case of an unaligned copy. 2704 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2705 if (VT.isVector()) 2706 return scalarizeVectorLoad(LN, DAG); 2707 2708 SDValue Ops[2]; 2709 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2710 return DAG.getMergeValues(Ops, SDLoc(N)); 2711 } 2712 2713 if (!IsFast) 2714 return SDValue(); 2715 } 2716 2717 if (!shouldCombineMemoryType(VT)) 2718 return SDValue(); 2719 2720 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2721 2722 SDValue NewLoad 2723 = DAG.getLoad(NewVT, SL, LN->getChain(), 2724 LN->getBasePtr(), LN->getMemOperand()); 2725 2726 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2727 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2728 return SDValue(N, 0); 2729 } 2730 2731 // Replace store of an illegal type with a store of a bitcast to a friendlier 2732 // type. 2733 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2734 DAGCombinerInfo &DCI) const { 2735 if (!DCI.isBeforeLegalize()) 2736 return SDValue(); 2737 2738 StoreSDNode *SN = cast<StoreSDNode>(N); 2739 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2740 return SDValue(); 2741 2742 EVT VT = SN->getMemoryVT(); 2743 unsigned Size = VT.getStoreSize(); 2744 2745 SDLoc SL(N); 2746 SelectionDAG &DAG = DCI.DAG; 2747 unsigned Align = SN->getAlignment(); 2748 if (Align < Size && isTypeLegal(VT)) { 2749 bool IsFast; 2750 unsigned AS = SN->getAddressSpace(); 2751 2752 // Expand unaligned stores earlier than legalization. Due to visitation 2753 // order problems during legalization, the emitted instructions to pack and 2754 // unpack the bytes again are not eliminated in the case of an unaligned 2755 // copy. 2756 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2757 if (VT.isVector()) 2758 return scalarizeVectorStore(SN, DAG); 2759 2760 return expandUnalignedStore(SN, DAG); 2761 } 2762 2763 if (!IsFast) 2764 return SDValue(); 2765 } 2766 2767 if (!shouldCombineMemoryType(VT)) 2768 return SDValue(); 2769 2770 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2771 SDValue Val = SN->getValue(); 2772 2773 //DCI.AddToWorklist(Val.getNode()); 2774 2775 bool OtherUses = !Val.hasOneUse(); 2776 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2777 if (OtherUses) { 2778 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2779 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2780 } 2781 2782 return DAG.getStore(SN->getChain(), SL, CastVal, 2783 SN->getBasePtr(), SN->getMemOperand()); 2784 } 2785 2786 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, 2787 DAGCombinerInfo &DCI) const { 2788 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 2789 if (!CSrc) 2790 return SDValue(); 2791 2792 const APFloat &F = CSrc->getValueAPF(); 2793 APFloat Zero = APFloat::getZero(F.getSemantics()); 2794 APFloat::cmpResult Cmp0 = F.compare(Zero); 2795 if (Cmp0 == APFloat::cmpLessThan || 2796 (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { 2797 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 2798 } 2799 2800 APFloat One(F.getSemantics(), "1.0"); 2801 APFloat::cmpResult Cmp1 = F.compare(One); 2802 if (Cmp1 == APFloat::cmpGreaterThan) 2803 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 2804 2805 return SDValue(CSrc, 0); 2806 } 2807 2808 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2809 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2810 // issues. 2811 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2812 DAGCombinerInfo &DCI) const { 2813 SelectionDAG &DAG = DCI.DAG; 2814 SDValue N0 = N->getOperand(0); 2815 2816 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2817 // (vt2 (truncate (assertzext vt0:x, vt1))) 2818 if (N0.getOpcode() == ISD::TRUNCATE) { 2819 SDValue N1 = N->getOperand(1); 2820 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2821 SDLoc SL(N); 2822 2823 SDValue Src = N0.getOperand(0); 2824 EVT SrcVT = Src.getValueType(); 2825 if (SrcVT.bitsGE(ExtVT)) { 2826 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2827 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2828 } 2829 } 2830 2831 return SDValue(); 2832 } 2833 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2834 /// binary operation \p Opc to it with the corresponding constant operands. 2835 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2836 DAGCombinerInfo &DCI, const SDLoc &SL, 2837 unsigned Opc, SDValue LHS, 2838 uint32_t ValLo, uint32_t ValHi) const { 2839 SelectionDAG &DAG = DCI.DAG; 2840 SDValue Lo, Hi; 2841 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2842 2843 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2844 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2845 2846 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2847 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2848 2849 // Re-visit the ands. It's possible we eliminated one of them and it could 2850 // simplify the vector. 2851 DCI.AddToWorklist(Lo.getNode()); 2852 DCI.AddToWorklist(Hi.getNode()); 2853 2854 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2855 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2856 } 2857 2858 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2859 DAGCombinerInfo &DCI) const { 2860 EVT VT = N->getValueType(0); 2861 2862 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2863 if (!RHS) 2864 return SDValue(); 2865 2866 SDValue LHS = N->getOperand(0); 2867 unsigned RHSVal = RHS->getZExtValue(); 2868 if (!RHSVal) 2869 return LHS; 2870 2871 SDLoc SL(N); 2872 SelectionDAG &DAG = DCI.DAG; 2873 2874 switch (LHS->getOpcode()) { 2875 default: 2876 break; 2877 case ISD::ZERO_EXTEND: 2878 case ISD::SIGN_EXTEND: 2879 case ISD::ANY_EXTEND: { 2880 SDValue X = LHS->getOperand(0); 2881 2882 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 2883 isTypeLegal(MVT::v2i16)) { 2884 // Prefer build_vector as the canonical form if packed types are legal. 2885 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 2886 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 2887 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 2888 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 2889 } 2890 2891 // shl (ext x) => zext (shl x), if shift does not overflow int 2892 if (VT != MVT::i64) 2893 break; 2894 KnownBits Known; 2895 DAG.computeKnownBits(X, Known); 2896 unsigned LZ = Known.countMinLeadingZeros(); 2897 if (LZ < RHSVal) 2898 break; 2899 EVT XVT = X.getValueType(); 2900 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 2901 return DAG.getZExtOrTrunc(Shl, SL, VT); 2902 } 2903 } 2904 2905 if (VT != MVT::i64) 2906 return SDValue(); 2907 2908 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2909 2910 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2911 // common case, splitting this into a move and a 32-bit shift is faster and 2912 // the same code size. 2913 if (RHSVal < 32) 2914 return SDValue(); 2915 2916 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2917 2918 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2919 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2920 2921 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2922 2923 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2924 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2925 } 2926 2927 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2928 DAGCombinerInfo &DCI) const { 2929 if (N->getValueType(0) != MVT::i64) 2930 return SDValue(); 2931 2932 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2933 if (!RHS) 2934 return SDValue(); 2935 2936 SelectionDAG &DAG = DCI.DAG; 2937 SDLoc SL(N); 2938 unsigned RHSVal = RHS->getZExtValue(); 2939 2940 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2941 if (RHSVal == 32) { 2942 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2943 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2944 DAG.getConstant(31, SL, MVT::i32)); 2945 2946 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2947 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2948 } 2949 2950 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2951 if (RHSVal == 63) { 2952 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2953 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2954 DAG.getConstant(31, SL, MVT::i32)); 2955 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2956 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2957 } 2958 2959 return SDValue(); 2960 } 2961 2962 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2963 DAGCombinerInfo &DCI) const { 2964 if (N->getValueType(0) != MVT::i64) 2965 return SDValue(); 2966 2967 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2968 if (!RHS) 2969 return SDValue(); 2970 2971 unsigned ShiftAmt = RHS->getZExtValue(); 2972 if (ShiftAmt < 32) 2973 return SDValue(); 2974 2975 // srl i64:x, C for C >= 32 2976 // => 2977 // build_pair (srl hi_32(x), C - 32), 0 2978 2979 SelectionDAG &DAG = DCI.DAG; 2980 SDLoc SL(N); 2981 2982 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2983 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2984 2985 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2986 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2987 VecOp, One); 2988 2989 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2990 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2991 2992 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2993 2994 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2995 } 2996 2997 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2998 // instructions. If we only match on the legalized i64 mul expansion, 2999 // SimplifyDemandedBits will be unable to remove them because there will be 3000 // multiple uses due to the separate mul + mulh[su]. 3001 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3002 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3003 if (Size <= 32) { 3004 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3005 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3006 } 3007 3008 // Because we want to eliminate extension instructions before the 3009 // operation, we need to create a single user here (i.e. not the separate 3010 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3011 3012 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3013 3014 SDValue Mul = DAG.getNode(MulOpc, SL, 3015 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3016 3017 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3018 Mul.getValue(0), Mul.getValue(1)); 3019 } 3020 3021 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3022 DAGCombinerInfo &DCI) const { 3023 EVT VT = N->getValueType(0); 3024 3025 unsigned Size = VT.getSizeInBits(); 3026 if (VT.isVector() || Size > 64) 3027 return SDValue(); 3028 3029 // There are i16 integer mul/mad. 3030 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3031 return SDValue(); 3032 3033 SelectionDAG &DAG = DCI.DAG; 3034 SDLoc DL(N); 3035 3036 SDValue N0 = N->getOperand(0); 3037 SDValue N1 = N->getOperand(1); 3038 SDValue Mul; 3039 3040 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3041 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3042 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3043 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3044 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3045 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3046 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3047 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3048 } else { 3049 return SDValue(); 3050 } 3051 3052 // We need to use sext even for MUL_U24, because MUL_U24 is used 3053 // for signed multiply of 8 and 16-bit types. 3054 return DAG.getSExtOrTrunc(Mul, DL, VT); 3055 } 3056 3057 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3058 DAGCombinerInfo &DCI) const { 3059 EVT VT = N->getValueType(0); 3060 3061 if (!Subtarget->hasMulI24() || VT.isVector()) 3062 return SDValue(); 3063 3064 SelectionDAG &DAG = DCI.DAG; 3065 SDLoc DL(N); 3066 3067 SDValue N0 = N->getOperand(0); 3068 SDValue N1 = N->getOperand(1); 3069 3070 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3071 return SDValue(); 3072 3073 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3074 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3075 3076 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3077 DCI.AddToWorklist(Mulhi.getNode()); 3078 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3079 } 3080 3081 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3082 DAGCombinerInfo &DCI) const { 3083 EVT VT = N->getValueType(0); 3084 3085 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3086 return SDValue(); 3087 3088 SelectionDAG &DAG = DCI.DAG; 3089 SDLoc DL(N); 3090 3091 SDValue N0 = N->getOperand(0); 3092 SDValue N1 = N->getOperand(1); 3093 3094 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3095 return SDValue(); 3096 3097 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3098 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3099 3100 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3101 DCI.AddToWorklist(Mulhi.getNode()); 3102 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3103 } 3104 3105 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3106 SDNode *N, DAGCombinerInfo &DCI) const { 3107 SelectionDAG &DAG = DCI.DAG; 3108 3109 // Simplify demanded bits before splitting into multiple users. 3110 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 3111 return SDValue(); 3112 3113 SDValue N0 = N->getOperand(0); 3114 SDValue N1 = N->getOperand(1); 3115 3116 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3117 3118 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3119 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3120 3121 SDLoc SL(N); 3122 3123 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3124 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3125 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3126 } 3127 3128 static bool isNegativeOne(SDValue Val) { 3129 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3130 return C->isAllOnesValue(); 3131 return false; 3132 } 3133 3134 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3135 SDValue Op, 3136 const SDLoc &DL, 3137 unsigned Opc) const { 3138 EVT VT = Op.getValueType(); 3139 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3140 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3141 LegalVT != MVT::i16)) 3142 return SDValue(); 3143 3144 if (VT != MVT::i32) 3145 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3146 3147 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3148 if (VT != MVT::i32) 3149 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3150 3151 return FFBX; 3152 } 3153 3154 // The native instructions return -1 on 0 input. Optimize out a select that 3155 // produces -1 on 0. 3156 // 3157 // TODO: If zero is not undef, we could also do this if the output is compared 3158 // against the bitwidth. 3159 // 3160 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3161 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3162 SDValue LHS, SDValue RHS, 3163 DAGCombinerInfo &DCI) const { 3164 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3165 if (!CmpRhs || !CmpRhs->isNullValue()) 3166 return SDValue(); 3167 3168 SelectionDAG &DAG = DCI.DAG; 3169 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3170 SDValue CmpLHS = Cond.getOperand(0); 3171 3172 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3173 AMDGPUISD::FFBH_U32; 3174 3175 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3176 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3177 if (CCOpcode == ISD::SETEQ && 3178 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3179 RHS.getOperand(0) == CmpLHS && 3180 isNegativeOne(LHS)) { 3181 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3182 } 3183 3184 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3185 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3186 if (CCOpcode == ISD::SETNE && 3187 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3188 LHS.getOperand(0) == CmpLHS && 3189 isNegativeOne(RHS)) { 3190 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3191 } 3192 3193 return SDValue(); 3194 } 3195 3196 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3197 unsigned Op, 3198 const SDLoc &SL, 3199 SDValue Cond, 3200 SDValue N1, 3201 SDValue N2) { 3202 SelectionDAG &DAG = DCI.DAG; 3203 EVT VT = N1.getValueType(); 3204 3205 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3206 N1.getOperand(0), N2.getOperand(0)); 3207 DCI.AddToWorklist(NewSelect.getNode()); 3208 return DAG.getNode(Op, SL, VT, NewSelect); 3209 } 3210 3211 // Pull a free FP operation out of a select so it may fold into uses. 3212 // 3213 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3214 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3215 // 3216 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3217 // select c, (fabs x), +k -> fabs (select c, x, k) 3218 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3219 SDValue N) { 3220 SelectionDAG &DAG = DCI.DAG; 3221 SDValue Cond = N.getOperand(0); 3222 SDValue LHS = N.getOperand(1); 3223 SDValue RHS = N.getOperand(2); 3224 3225 EVT VT = N.getValueType(); 3226 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3227 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3228 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3229 SDLoc(N), Cond, LHS, RHS); 3230 } 3231 3232 bool Inv = false; 3233 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3234 std::swap(LHS, RHS); 3235 Inv = true; 3236 } 3237 3238 // TODO: Support vector constants. 3239 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3240 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3241 SDLoc SL(N); 3242 // If one side is an fneg/fabs and the other is a constant, we can push the 3243 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3244 SDValue NewLHS = LHS.getOperand(0); 3245 SDValue NewRHS = RHS; 3246 3247 // Careful: if the neg can be folded up, don't try to pull it back down. 3248 bool ShouldFoldNeg = true; 3249 3250 if (NewLHS.hasOneUse()) { 3251 unsigned Opc = NewLHS.getOpcode(); 3252 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3253 ShouldFoldNeg = false; 3254 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3255 ShouldFoldNeg = false; 3256 } 3257 3258 if (ShouldFoldNeg) { 3259 if (LHS.getOpcode() == ISD::FNEG) 3260 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3261 else if (CRHS->isNegative()) 3262 return SDValue(); 3263 3264 if (Inv) 3265 std::swap(NewLHS, NewRHS); 3266 3267 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3268 Cond, NewLHS, NewRHS); 3269 DCI.AddToWorklist(NewSelect.getNode()); 3270 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3271 } 3272 } 3273 3274 return SDValue(); 3275 } 3276 3277 3278 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3279 DAGCombinerInfo &DCI) const { 3280 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3281 return Folded; 3282 3283 SDValue Cond = N->getOperand(0); 3284 if (Cond.getOpcode() != ISD::SETCC) 3285 return SDValue(); 3286 3287 EVT VT = N->getValueType(0); 3288 SDValue LHS = Cond.getOperand(0); 3289 SDValue RHS = Cond.getOperand(1); 3290 SDValue CC = Cond.getOperand(2); 3291 3292 SDValue True = N->getOperand(1); 3293 SDValue False = N->getOperand(2); 3294 3295 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3296 SelectionDAG &DAG = DCI.DAG; 3297 if ((DAG.isConstantValueOfAnyType(True) || 3298 DAG.isConstantValueOfAnyType(True)) && 3299 (!DAG.isConstantValueOfAnyType(False) && 3300 !DAG.isConstantValueOfAnyType(False))) { 3301 // Swap cmp + select pair to move constant to false input. 3302 // This will allow using VOPC cndmasks more often. 3303 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3304 3305 SDLoc SL(N); 3306 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3307 LHS.getValueType().isInteger()); 3308 3309 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3310 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3311 } 3312 3313 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3314 SDValue MinMax 3315 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3316 // Revisit this node so we can catch min3/max3/med3 patterns. 3317 //DCI.AddToWorklist(MinMax.getNode()); 3318 return MinMax; 3319 } 3320 } 3321 3322 // There's no reason to not do this if the condition has other uses. 3323 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3324 } 3325 3326 static bool isConstantFPZero(SDValue N) { 3327 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) 3328 return C->isZero() && !C->isNegative(); 3329 return false; 3330 } 3331 3332 static unsigned inverseMinMax(unsigned Opc) { 3333 switch (Opc) { 3334 case ISD::FMAXNUM: 3335 return ISD::FMINNUM; 3336 case ISD::FMINNUM: 3337 return ISD::FMAXNUM; 3338 case AMDGPUISD::FMAX_LEGACY: 3339 return AMDGPUISD::FMIN_LEGACY; 3340 case AMDGPUISD::FMIN_LEGACY: 3341 return AMDGPUISD::FMAX_LEGACY; 3342 default: 3343 llvm_unreachable("invalid min/max opcode"); 3344 } 3345 } 3346 3347 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3348 DAGCombinerInfo &DCI) const { 3349 SelectionDAG &DAG = DCI.DAG; 3350 SDValue N0 = N->getOperand(0); 3351 EVT VT = N->getValueType(0); 3352 3353 unsigned Opc = N0.getOpcode(); 3354 3355 // If the input has multiple uses and we can either fold the negate down, or 3356 // the other uses cannot, give up. This both prevents unprofitable 3357 // transformations and infinite loops: we won't repeatedly try to fold around 3358 // a negate that has no 'good' form. 3359 if (N0.hasOneUse()) { 3360 // This may be able to fold into the source, but at a code size cost. Don't 3361 // fold if the fold into the user is free. 3362 if (allUsesHaveSourceMods(N, 0)) 3363 return SDValue(); 3364 } else { 3365 if (fnegFoldsIntoOp(Opc) && 3366 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3367 return SDValue(); 3368 } 3369 3370 SDLoc SL(N); 3371 switch (Opc) { 3372 case ISD::FADD: { 3373 if (!mayIgnoreSignedZero(N0)) 3374 return SDValue(); 3375 3376 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3377 SDValue LHS = N0.getOperand(0); 3378 SDValue RHS = N0.getOperand(1); 3379 3380 if (LHS.getOpcode() != ISD::FNEG) 3381 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3382 else 3383 LHS = LHS.getOperand(0); 3384 3385 if (RHS.getOpcode() != ISD::FNEG) 3386 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3387 else 3388 RHS = RHS.getOperand(0); 3389 3390 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3391 if (!N0.hasOneUse()) 3392 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3393 return Res; 3394 } 3395 case ISD::FMUL: 3396 case AMDGPUISD::FMUL_LEGACY: { 3397 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3398 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3399 SDValue LHS = N0.getOperand(0); 3400 SDValue RHS = N0.getOperand(1); 3401 3402 if (LHS.getOpcode() == ISD::FNEG) 3403 LHS = LHS.getOperand(0); 3404 else if (RHS.getOpcode() == ISD::FNEG) 3405 RHS = RHS.getOperand(0); 3406 else 3407 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3408 3409 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3410 if (!N0.hasOneUse()) 3411 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3412 return Res; 3413 } 3414 case ISD::FMA: 3415 case ISD::FMAD: { 3416 if (!mayIgnoreSignedZero(N0)) 3417 return SDValue(); 3418 3419 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3420 SDValue LHS = N0.getOperand(0); 3421 SDValue MHS = N0.getOperand(1); 3422 SDValue RHS = N0.getOperand(2); 3423 3424 if (LHS.getOpcode() == ISD::FNEG) 3425 LHS = LHS.getOperand(0); 3426 else if (MHS.getOpcode() == ISD::FNEG) 3427 MHS = MHS.getOperand(0); 3428 else 3429 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3430 3431 if (RHS.getOpcode() != ISD::FNEG) 3432 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3433 else 3434 RHS = RHS.getOperand(0); 3435 3436 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3437 if (!N0.hasOneUse()) 3438 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3439 return Res; 3440 } 3441 case ISD::FMAXNUM: 3442 case ISD::FMINNUM: 3443 case AMDGPUISD::FMAX_LEGACY: 3444 case AMDGPUISD::FMIN_LEGACY: { 3445 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3446 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3447 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3448 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3449 3450 SDValue LHS = N0.getOperand(0); 3451 SDValue RHS = N0.getOperand(1); 3452 3453 // 0 doesn't have a negated inline immediate. 3454 // TODO: Shouldn't fold 1/2pi either, and should be generalized to other 3455 // operations. 3456 if (isConstantFPZero(RHS)) 3457 return SDValue(); 3458 3459 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3460 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3461 unsigned Opposite = inverseMinMax(Opc); 3462 3463 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3464 if (!N0.hasOneUse()) 3465 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3466 return Res; 3467 } 3468 case ISD::FP_EXTEND: 3469 case ISD::FTRUNC: 3470 case ISD::FRINT: 3471 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3472 case ISD::FSIN: 3473 case AMDGPUISD::RCP: 3474 case AMDGPUISD::RCP_LEGACY: 3475 case AMDGPUISD::SIN_HW: { 3476 SDValue CvtSrc = N0.getOperand(0); 3477 if (CvtSrc.getOpcode() == ISD::FNEG) { 3478 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3479 // (fneg (rcp (fneg x))) -> (rcp x) 3480 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3481 } 3482 3483 if (!N0.hasOneUse()) 3484 return SDValue(); 3485 3486 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3487 // (fneg (rcp x)) -> (rcp (fneg x)) 3488 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3489 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3490 } 3491 case ISD::FP_ROUND: { 3492 SDValue CvtSrc = N0.getOperand(0); 3493 3494 if (CvtSrc.getOpcode() == ISD::FNEG) { 3495 // (fneg (fp_round (fneg x))) -> (fp_round x) 3496 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3497 CvtSrc.getOperand(0), N0.getOperand(1)); 3498 } 3499 3500 if (!N0.hasOneUse()) 3501 return SDValue(); 3502 3503 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3504 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3505 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3506 } 3507 case ISD::FP16_TO_FP: { 3508 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3509 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3510 // Put the fneg back as a legal source operation that can be matched later. 3511 SDLoc SL(N); 3512 3513 SDValue Src = N0.getOperand(0); 3514 EVT SrcVT = Src.getValueType(); 3515 3516 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3517 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3518 DAG.getConstant(0x8000, SL, SrcVT)); 3519 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3520 } 3521 default: 3522 return SDValue(); 3523 } 3524 } 3525 3526 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3527 DAGCombinerInfo &DCI) const { 3528 SelectionDAG &DAG = DCI.DAG; 3529 SDValue N0 = N->getOperand(0); 3530 3531 if (!N0.hasOneUse()) 3532 return SDValue(); 3533 3534 switch (N0.getOpcode()) { 3535 case ISD::FP16_TO_FP: { 3536 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3537 SDLoc SL(N); 3538 SDValue Src = N0.getOperand(0); 3539 EVT SrcVT = Src.getValueType(); 3540 3541 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3542 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3543 DAG.getConstant(0x7fff, SL, SrcVT)); 3544 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3545 } 3546 default: 3547 return SDValue(); 3548 } 3549 } 3550 3551 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3552 DAGCombinerInfo &DCI) const { 3553 SelectionDAG &DAG = DCI.DAG; 3554 SDLoc DL(N); 3555 3556 switch(N->getOpcode()) { 3557 default: 3558 break; 3559 case ISD::BITCAST: { 3560 EVT DestVT = N->getValueType(0); 3561 3562 // Push casts through vector builds. This helps avoid emitting a large 3563 // number of copies when materializing floating point vector constants. 3564 // 3565 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3566 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3567 if (DestVT.isVector()) { 3568 SDValue Src = N->getOperand(0); 3569 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3570 EVT SrcVT = Src.getValueType(); 3571 unsigned NElts = DestVT.getVectorNumElements(); 3572 3573 if (SrcVT.getVectorNumElements() == NElts) { 3574 EVT DestEltVT = DestVT.getVectorElementType(); 3575 3576 SmallVector<SDValue, 8> CastedElts; 3577 SDLoc SL(N); 3578 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3579 SDValue Elt = Src.getOperand(I); 3580 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3581 } 3582 3583 return DAG.getBuildVector(DestVT, SL, CastedElts); 3584 } 3585 } 3586 } 3587 3588 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3589 break; 3590 3591 // Fold bitcasts of constants. 3592 // 3593 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3594 // TODO: Generalize and move to DAGCombiner 3595 SDValue Src = N->getOperand(0); 3596 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3597 assert(Src.getValueType() == MVT::i64); 3598 SDLoc SL(N); 3599 uint64_t CVal = C->getZExtValue(); 3600 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3601 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3602 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3603 } 3604 3605 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3606 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3607 SDLoc SL(N); 3608 uint64_t CVal = Val.getZExtValue(); 3609 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3610 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3611 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3612 3613 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3614 } 3615 3616 break; 3617 } 3618 case ISD::SHL: { 3619 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3620 break; 3621 3622 return performShlCombine(N, DCI); 3623 } 3624 case ISD::SRL: { 3625 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3626 break; 3627 3628 return performSrlCombine(N, DCI); 3629 } 3630 case ISD::SRA: { 3631 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3632 break; 3633 3634 return performSraCombine(N, DCI); 3635 } 3636 case ISD::MUL: 3637 return performMulCombine(N, DCI); 3638 case ISD::MULHS: 3639 return performMulhsCombine(N, DCI); 3640 case ISD::MULHU: 3641 return performMulhuCombine(N, DCI); 3642 case AMDGPUISD::MUL_I24: 3643 case AMDGPUISD::MUL_U24: 3644 case AMDGPUISD::MULHI_I24: 3645 case AMDGPUISD::MULHI_U24: { 3646 // If the first call to simplify is successfull, then N may end up being 3647 // deleted, so we shouldn't call simplifyI24 again. 3648 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3649 return SDValue(); 3650 } 3651 case AMDGPUISD::MUL_LOHI_I24: 3652 case AMDGPUISD::MUL_LOHI_U24: 3653 return performMulLoHi24Combine(N, DCI); 3654 case ISD::SELECT: 3655 return performSelectCombine(N, DCI); 3656 case ISD::FNEG: 3657 return performFNegCombine(N, DCI); 3658 case ISD::FABS: 3659 return performFAbsCombine(N, DCI); 3660 case AMDGPUISD::BFE_I32: 3661 case AMDGPUISD::BFE_U32: { 3662 assert(!N->getValueType(0).isVector() && 3663 "Vector handling of BFE not implemented"); 3664 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3665 if (!Width) 3666 break; 3667 3668 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3669 if (WidthVal == 0) 3670 return DAG.getConstant(0, DL, MVT::i32); 3671 3672 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3673 if (!Offset) 3674 break; 3675 3676 SDValue BitsFrom = N->getOperand(0); 3677 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3678 3679 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3680 3681 if (OffsetVal == 0) { 3682 // This is already sign / zero extended, so try to fold away extra BFEs. 3683 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3684 3685 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3686 if (OpSignBits >= SignBits) 3687 return BitsFrom; 3688 3689 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3690 if (Signed) { 3691 // This is a sign_extend_inreg. Replace it to take advantage of existing 3692 // DAG Combines. If not eliminated, we will match back to BFE during 3693 // selection. 3694 3695 // TODO: The sext_inreg of extended types ends, although we can could 3696 // handle them in a single BFE. 3697 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3698 DAG.getValueType(SmallVT)); 3699 } 3700 3701 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3702 } 3703 3704 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3705 if (Signed) { 3706 return constantFoldBFE<int32_t>(DAG, 3707 CVal->getSExtValue(), 3708 OffsetVal, 3709 WidthVal, 3710 DL); 3711 } 3712 3713 return constantFoldBFE<uint32_t>(DAG, 3714 CVal->getZExtValue(), 3715 OffsetVal, 3716 WidthVal, 3717 DL); 3718 } 3719 3720 if ((OffsetVal + WidthVal) >= 32 && 3721 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 3722 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3723 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3724 BitsFrom, ShiftVal); 3725 } 3726 3727 if (BitsFrom.hasOneUse()) { 3728 APInt Demanded = APInt::getBitsSet(32, 3729 OffsetVal, 3730 OffsetVal + WidthVal); 3731 3732 KnownBits Known; 3733 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3734 !DCI.isBeforeLegalizeOps()); 3735 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3736 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 3737 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 3738 DCI.CommitTargetLoweringOpt(TLO); 3739 } 3740 } 3741 3742 break; 3743 } 3744 case ISD::LOAD: 3745 return performLoadCombine(N, DCI); 3746 case ISD::STORE: 3747 return performStoreCombine(N, DCI); 3748 case AMDGPUISD::CLAMP: 3749 return performClampCombine(N, DCI); 3750 case AMDGPUISD::RCP: { 3751 if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 3752 // XXX - Should this flush denormals? 3753 const APFloat &Val = CFP->getValueAPF(); 3754 APFloat One(Val.getSemantics(), "1.0"); 3755 return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3756 } 3757 3758 break; 3759 } 3760 case ISD::AssertZext: 3761 case ISD::AssertSext: 3762 return performAssertSZExtCombine(N, DCI); 3763 } 3764 return SDValue(); 3765 } 3766 3767 //===----------------------------------------------------------------------===// 3768 // Helper functions 3769 //===----------------------------------------------------------------------===// 3770 3771 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3772 const TargetRegisterClass *RC, 3773 unsigned Reg, EVT VT, 3774 const SDLoc &SL, 3775 bool RawReg) const { 3776 MachineFunction &MF = DAG.getMachineFunction(); 3777 MachineRegisterInfo &MRI = MF.getRegInfo(); 3778 unsigned VReg; 3779 3780 if (!MRI.isLiveIn(Reg)) { 3781 VReg = MRI.createVirtualRegister(RC); 3782 MRI.addLiveIn(Reg, VReg); 3783 } else { 3784 VReg = MRI.getLiveInVirtReg(Reg); 3785 } 3786 3787 if (RawReg) 3788 return DAG.getRegister(VReg, VT); 3789 3790 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 3791 } 3792 3793 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 3794 EVT VT, 3795 const SDLoc &SL, 3796 int64_t Offset) const { 3797 MachineFunction &MF = DAG.getMachineFunction(); 3798 MachineFrameInfo &MFI = MF.getFrameInfo(); 3799 3800 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 3801 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 3802 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 3803 3804 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 3805 MachineMemOperand::MODereferenceable | 3806 MachineMemOperand::MOInvariant); 3807 } 3808 3809 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 3810 const SDLoc &SL, 3811 SDValue Chain, 3812 SDValue StackPtr, 3813 SDValue ArgVal, 3814 int64_t Offset) const { 3815 MachineFunction &MF = DAG.getMachineFunction(); 3816 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 3817 SDValue PtrOffset = DAG.getConstant(Offset, SL, MVT::i32); 3818 SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, StackPtr, PtrOffset); 3819 3820 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 3821 MachineMemOperand::MODereferenceable); 3822 return Store; 3823 } 3824 3825 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 3826 const TargetRegisterClass *RC, 3827 EVT VT, const SDLoc &SL, 3828 const ArgDescriptor &Arg) const { 3829 assert(Arg && "Attempting to load missing argument"); 3830 3831 if (Arg.isRegister()) 3832 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); 3833 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 3834 } 3835 3836 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 3837 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 3838 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 3839 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 3840 switch (Param) { 3841 case GRID_DIM: 3842 return ArgOffset; 3843 case GRID_OFFSET: 3844 return ArgOffset + 4; 3845 } 3846 llvm_unreachable("unexpected implicit parameter type"); 3847 } 3848 3849 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 3850 3851 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 3852 switch ((AMDGPUISD::NodeType)Opcode) { 3853 case AMDGPUISD::FIRST_NUMBER: break; 3854 // AMDIL DAG nodes 3855 NODE_NAME_CASE(UMUL); 3856 NODE_NAME_CASE(BRANCH_COND); 3857 3858 // AMDGPU DAG nodes 3859 NODE_NAME_CASE(IF) 3860 NODE_NAME_CASE(ELSE) 3861 NODE_NAME_CASE(LOOP) 3862 NODE_NAME_CASE(CALL) 3863 NODE_NAME_CASE(TC_RETURN) 3864 NODE_NAME_CASE(TRAP) 3865 NODE_NAME_CASE(RET_FLAG) 3866 NODE_NAME_CASE(RETURN_TO_EPILOG) 3867 NODE_NAME_CASE(ENDPGM) 3868 NODE_NAME_CASE(DWORDADDR) 3869 NODE_NAME_CASE(FRACT) 3870 NODE_NAME_CASE(SETCC) 3871 NODE_NAME_CASE(SETREG) 3872 NODE_NAME_CASE(FMA_W_CHAIN) 3873 NODE_NAME_CASE(FMUL_W_CHAIN) 3874 NODE_NAME_CASE(CLAMP) 3875 NODE_NAME_CASE(COS_HW) 3876 NODE_NAME_CASE(SIN_HW) 3877 NODE_NAME_CASE(FMAX_LEGACY) 3878 NODE_NAME_CASE(FMIN_LEGACY) 3879 NODE_NAME_CASE(FMAX3) 3880 NODE_NAME_CASE(SMAX3) 3881 NODE_NAME_CASE(UMAX3) 3882 NODE_NAME_CASE(FMIN3) 3883 NODE_NAME_CASE(SMIN3) 3884 NODE_NAME_CASE(UMIN3) 3885 NODE_NAME_CASE(FMED3) 3886 NODE_NAME_CASE(SMED3) 3887 NODE_NAME_CASE(UMED3) 3888 NODE_NAME_CASE(URECIP) 3889 NODE_NAME_CASE(DIV_SCALE) 3890 NODE_NAME_CASE(DIV_FMAS) 3891 NODE_NAME_CASE(DIV_FIXUP) 3892 NODE_NAME_CASE(FMAD_FTZ) 3893 NODE_NAME_CASE(TRIG_PREOP) 3894 NODE_NAME_CASE(RCP) 3895 NODE_NAME_CASE(RSQ) 3896 NODE_NAME_CASE(RCP_LEGACY) 3897 NODE_NAME_CASE(RSQ_LEGACY) 3898 NODE_NAME_CASE(FMUL_LEGACY) 3899 NODE_NAME_CASE(RSQ_CLAMP) 3900 NODE_NAME_CASE(LDEXP) 3901 NODE_NAME_CASE(FP_CLASS) 3902 NODE_NAME_CASE(DOT4) 3903 NODE_NAME_CASE(CARRY) 3904 NODE_NAME_CASE(BORROW) 3905 NODE_NAME_CASE(BFE_U32) 3906 NODE_NAME_CASE(BFE_I32) 3907 NODE_NAME_CASE(BFI) 3908 NODE_NAME_CASE(BFM) 3909 NODE_NAME_CASE(FFBH_U32) 3910 NODE_NAME_CASE(FFBH_I32) 3911 NODE_NAME_CASE(FFBL_B32) 3912 NODE_NAME_CASE(MUL_U24) 3913 NODE_NAME_CASE(MUL_I24) 3914 NODE_NAME_CASE(MULHI_U24) 3915 NODE_NAME_CASE(MULHI_I24) 3916 NODE_NAME_CASE(MUL_LOHI_U24) 3917 NODE_NAME_CASE(MUL_LOHI_I24) 3918 NODE_NAME_CASE(MAD_U24) 3919 NODE_NAME_CASE(MAD_I24) 3920 NODE_NAME_CASE(MAD_I64_I32) 3921 NODE_NAME_CASE(MAD_U64_U32) 3922 NODE_NAME_CASE(TEXTURE_FETCH) 3923 NODE_NAME_CASE(EXPORT) 3924 NODE_NAME_CASE(EXPORT_DONE) 3925 NODE_NAME_CASE(R600_EXPORT) 3926 NODE_NAME_CASE(CONST_ADDRESS) 3927 NODE_NAME_CASE(REGISTER_LOAD) 3928 NODE_NAME_CASE(REGISTER_STORE) 3929 NODE_NAME_CASE(SAMPLE) 3930 NODE_NAME_CASE(SAMPLEB) 3931 NODE_NAME_CASE(SAMPLED) 3932 NODE_NAME_CASE(SAMPLEL) 3933 NODE_NAME_CASE(CVT_F32_UBYTE0) 3934 NODE_NAME_CASE(CVT_F32_UBYTE1) 3935 NODE_NAME_CASE(CVT_F32_UBYTE2) 3936 NODE_NAME_CASE(CVT_F32_UBYTE3) 3937 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 3938 NODE_NAME_CASE(FP_TO_FP16) 3939 NODE_NAME_CASE(FP16_ZEXT) 3940 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3941 NODE_NAME_CASE(CONST_DATA_PTR) 3942 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3943 NODE_NAME_CASE(KILL) 3944 NODE_NAME_CASE(DUMMY_CHAIN) 3945 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3946 NODE_NAME_CASE(INIT_EXEC) 3947 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 3948 NODE_NAME_CASE(SENDMSG) 3949 NODE_NAME_CASE(SENDMSGHALT) 3950 NODE_NAME_CASE(INTERP_MOV) 3951 NODE_NAME_CASE(INTERP_P1) 3952 NODE_NAME_CASE(INTERP_P2) 3953 NODE_NAME_CASE(STORE_MSKOR) 3954 NODE_NAME_CASE(LOAD_CONSTANT) 3955 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3956 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3) 3957 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 3958 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3959 NODE_NAME_CASE(ATOMIC_INC) 3960 NODE_NAME_CASE(ATOMIC_DEC) 3961 NODE_NAME_CASE(BUFFER_LOAD) 3962 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 3963 NODE_NAME_CASE(BUFFER_STORE) 3964 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 3965 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 3966 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 3967 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 3968 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 3969 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 3970 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 3971 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 3972 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 3973 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 3974 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 3975 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 3976 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3977 } 3978 return nullptr; 3979 } 3980 3981 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3982 SelectionDAG &DAG, int Enabled, 3983 int &RefinementSteps, 3984 bool &UseOneConstNR, 3985 bool Reciprocal) const { 3986 EVT VT = Operand.getValueType(); 3987 3988 if (VT == MVT::f32) { 3989 RefinementSteps = 0; 3990 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3991 } 3992 3993 // TODO: There is also f64 rsq instruction, but the documentation is less 3994 // clear on its precision. 3995 3996 return SDValue(); 3997 } 3998 3999 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4000 SelectionDAG &DAG, int Enabled, 4001 int &RefinementSteps) const { 4002 EVT VT = Operand.getValueType(); 4003 4004 if (VT == MVT::f32) { 4005 // Reciprocal, < 1 ulp error. 4006 // 4007 // This reciprocal approximation converges to < 0.5 ulp error with one 4008 // newton rhapson performed with two fused multiple adds (FMAs). 4009 4010 RefinementSteps = 0; 4011 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4012 } 4013 4014 // TODO: There is also f64 rcp instruction, but the documentation is less 4015 // clear on its precision. 4016 4017 return SDValue(); 4018 } 4019 4020 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4021 const SDValue Op, KnownBits &Known, 4022 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4023 4024 Known.resetAll(); // Don't know anything. 4025 4026 unsigned Opc = Op.getOpcode(); 4027 4028 switch (Opc) { 4029 default: 4030 break; 4031 case AMDGPUISD::CARRY: 4032 case AMDGPUISD::BORROW: { 4033 Known.Zero = APInt::getHighBitsSet(32, 31); 4034 break; 4035 } 4036 4037 case AMDGPUISD::BFE_I32: 4038 case AMDGPUISD::BFE_U32: { 4039 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4040 if (!CWidth) 4041 return; 4042 4043 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4044 4045 if (Opc == AMDGPUISD::BFE_U32) 4046 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4047 4048 break; 4049 } 4050 case AMDGPUISD::FP_TO_FP16: 4051 case AMDGPUISD::FP16_ZEXT: { 4052 unsigned BitWidth = Known.getBitWidth(); 4053 4054 // High bits are zero. 4055 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4056 break; 4057 } 4058 case AMDGPUISD::MUL_U24: 4059 case AMDGPUISD::MUL_I24: { 4060 KnownBits LHSKnown, RHSKnown; 4061 DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1); 4062 DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1); 4063 4064 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4065 RHSKnown.countMinTrailingZeros(); 4066 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4067 4068 unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u); 4069 unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u); 4070 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4071 if (MaxValBits >= 32) 4072 break; 4073 bool Negative = false; 4074 if (Opc == AMDGPUISD::MUL_I24) { 4075 bool LHSNegative = !!(LHSKnown.One & (1 << 23)); 4076 bool LHSPositive = !!(LHSKnown.Zero & (1 << 23)); 4077 bool RHSNegative = !!(RHSKnown.One & (1 << 23)); 4078 bool RHSPositive = !!(RHSKnown.Zero & (1 << 23)); 4079 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4080 break; 4081 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4082 } 4083 if (Negative) 4084 Known.One.setHighBits(32 - MaxValBits); 4085 else 4086 Known.Zero.setHighBits(32 - MaxValBits); 4087 break; 4088 } 4089 } 4090 } 4091 4092 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4093 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4094 unsigned Depth) const { 4095 switch (Op.getOpcode()) { 4096 case AMDGPUISD::BFE_I32: { 4097 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4098 if (!Width) 4099 return 1; 4100 4101 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4102 if (!isNullConstant(Op.getOperand(1))) 4103 return SignBits; 4104 4105 // TODO: Could probably figure something out with non-0 offsets. 4106 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4107 return std::max(SignBits, Op0SignBits); 4108 } 4109 4110 case AMDGPUISD::BFE_U32: { 4111 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4112 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4113 } 4114 4115 case AMDGPUISD::CARRY: 4116 case AMDGPUISD::BORROW: 4117 return 31; 4118 case AMDGPUISD::FP_TO_FP16: 4119 case AMDGPUISD::FP16_ZEXT: 4120 return 16; 4121 default: 4122 return 1; 4123 } 4124 } 4125