1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPURegisterInfo.h" 20 #include "AMDGPUSubtarget.h" 21 #include "AMDGPUTargetMachine.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIInstrInfo.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/CallingConvLower.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 using namespace llvm; 38 39 #include "AMDGPUGenCallingConv.inc" 40 41 // Find a larger type to do a load / store of a vector with. 42 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 43 unsigned StoreSize = VT.getStoreSizeInBits(); 44 if (StoreSize <= 32) 45 return EVT::getIntegerVT(Ctx, StoreSize); 46 47 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 48 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 49 } 50 51 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 52 EVT VT = Op.getValueType(); 53 KnownBits Known = DAG.computeKnownBits(Op); 54 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 55 } 56 57 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 58 EVT VT = Op.getValueType(); 59 60 // In order for this to be a signed 24-bit value, bit 23, must 61 // be a sign bit. 62 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 // Lower floating point store/load to integer store/load to reduce the number 69 // of patterns in tablegen. 70 setOperationAction(ISD::LOAD, MVT::f32, Promote); 71 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 72 73 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 75 76 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 78 79 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 81 82 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 84 85 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 87 88 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 90 91 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 92 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 93 94 setOperationAction(ISD::LOAD, MVT::i64, Promote); 95 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 96 97 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 98 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 99 100 setOperationAction(ISD::LOAD, MVT::f64, Promote); 101 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 102 103 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 104 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 105 106 // There are no 64-bit extloads. These should be done as a 32-bit extload and 107 // an extension to 64-bit. 108 for (MVT VT : MVT::integer_valuetypes()) { 109 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 110 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 111 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 112 } 113 114 for (MVT VT : MVT::integer_valuetypes()) { 115 if (VT == MVT::i64) 116 continue; 117 118 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 119 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 120 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 122 123 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 124 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 126 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 127 128 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 129 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 130 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 131 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 132 } 133 134 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 135 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 138 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 139 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 141 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 148 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 150 } 151 152 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 153 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 154 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 155 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 156 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 157 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 158 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 159 160 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 161 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 162 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 163 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 164 165 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 167 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 168 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 169 170 setOperationAction(ISD::STORE, MVT::f32, Promote); 171 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 172 173 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 174 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 175 176 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 177 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 178 179 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 180 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 181 182 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 183 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 184 185 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 186 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 187 188 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 189 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 190 191 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 192 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 193 194 setOperationAction(ISD::STORE, MVT::i64, Promote); 195 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 196 197 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 199 200 setOperationAction(ISD::STORE, MVT::f64, Promote); 201 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 202 203 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 205 206 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 207 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 208 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 209 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 210 211 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 212 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 213 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 214 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 215 216 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 217 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 218 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 219 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 220 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 221 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 222 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 223 224 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 225 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 226 227 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 228 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 229 230 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 231 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 232 233 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 234 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 235 236 237 setOperationAction(ISD::Constant, MVT::i32, Legal); 238 setOperationAction(ISD::Constant, MVT::i64, Legal); 239 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 240 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 241 242 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 243 setOperationAction(ISD::BRIND, MVT::Other, Expand); 244 245 // This is totally unsupported, just custom lower to produce an error. 246 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 247 248 // Library functions. These default to Expand, but we have instructions 249 // for them. 250 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 251 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 252 setOperationAction(ISD::FPOW, MVT::f32, Legal); 253 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 254 setOperationAction(ISD::FABS, MVT::f32, Legal); 255 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 256 setOperationAction(ISD::FRINT, MVT::f32, Legal); 257 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 258 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 259 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 260 261 setOperationAction(ISD::FROUND, MVT::f32, Custom); 262 setOperationAction(ISD::FROUND, MVT::f64, Custom); 263 264 setOperationAction(ISD::FLOG, MVT::f32, Custom); 265 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 266 setOperationAction(ISD::FEXP, MVT::f32, Custom); 267 268 269 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 270 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 271 272 setOperationAction(ISD::FREM, MVT::f32, Custom); 273 setOperationAction(ISD::FREM, MVT::f64, Custom); 274 275 // Expand to fneg + fadd. 276 setOperationAction(ISD::FSUB, MVT::f64, Expand); 277 278 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 279 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 280 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 281 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 282 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 283 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 284 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 285 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 286 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 287 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 288 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 289 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 290 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 291 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 292 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 293 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 294 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 295 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 296 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 297 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 298 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 299 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 300 301 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 302 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 303 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 304 305 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 306 for (MVT VT : ScalarIntVTs) { 307 // These should use [SU]DIVREM, so set them to expand 308 setOperationAction(ISD::SDIV, VT, Expand); 309 setOperationAction(ISD::UDIV, VT, Expand); 310 setOperationAction(ISD::SREM, VT, Expand); 311 setOperationAction(ISD::UREM, VT, Expand); 312 313 // GPU does not have divrem function for signed or unsigned. 314 setOperationAction(ISD::SDIVREM, VT, Custom); 315 setOperationAction(ISD::UDIVREM, VT, Custom); 316 317 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 318 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 319 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 320 321 setOperationAction(ISD::BSWAP, VT, Expand); 322 setOperationAction(ISD::CTTZ, VT, Expand); 323 setOperationAction(ISD::CTLZ, VT, Expand); 324 325 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 326 setOperationAction(ISD::ADDC, VT, Legal); 327 setOperationAction(ISD::SUBC, VT, Legal); 328 setOperationAction(ISD::ADDE, VT, Legal); 329 setOperationAction(ISD::SUBE, VT, Legal); 330 } 331 332 // The hardware supports 32-bit ROTR, but not ROTL. 333 setOperationAction(ISD::ROTL, MVT::i32, Expand); 334 setOperationAction(ISD::ROTL, MVT::i64, Expand); 335 setOperationAction(ISD::ROTR, MVT::i64, Expand); 336 337 setOperationAction(ISD::MUL, MVT::i64, Expand); 338 setOperationAction(ISD::MULHU, MVT::i64, Expand); 339 setOperationAction(ISD::MULHS, MVT::i64, Expand); 340 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 341 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 342 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 343 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 344 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 345 346 setOperationAction(ISD::SMIN, MVT::i32, Legal); 347 setOperationAction(ISD::UMIN, MVT::i32, Legal); 348 setOperationAction(ISD::SMAX, MVT::i32, Legal); 349 setOperationAction(ISD::UMAX, MVT::i32, Legal); 350 351 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 352 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 353 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 354 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 355 356 static const MVT::SimpleValueType VectorIntTypes[] = { 357 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 358 }; 359 360 for (MVT VT : VectorIntTypes) { 361 // Expand the following operations for the current type by default. 362 setOperationAction(ISD::ADD, VT, Expand); 363 setOperationAction(ISD::AND, VT, Expand); 364 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 365 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 366 setOperationAction(ISD::MUL, VT, Expand); 367 setOperationAction(ISD::MULHU, VT, Expand); 368 setOperationAction(ISD::MULHS, VT, Expand); 369 setOperationAction(ISD::OR, VT, Expand); 370 setOperationAction(ISD::SHL, VT, Expand); 371 setOperationAction(ISD::SRA, VT, Expand); 372 setOperationAction(ISD::SRL, VT, Expand); 373 setOperationAction(ISD::ROTL, VT, Expand); 374 setOperationAction(ISD::ROTR, VT, Expand); 375 setOperationAction(ISD::SUB, VT, Expand); 376 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 377 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 378 setOperationAction(ISD::SDIV, VT, Expand); 379 setOperationAction(ISD::UDIV, VT, Expand); 380 setOperationAction(ISD::SREM, VT, Expand); 381 setOperationAction(ISD::UREM, VT, Expand); 382 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 383 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 384 setOperationAction(ISD::SDIVREM, VT, Custom); 385 setOperationAction(ISD::UDIVREM, VT, Expand); 386 setOperationAction(ISD::SELECT, VT, Expand); 387 setOperationAction(ISD::VSELECT, VT, Expand); 388 setOperationAction(ISD::SELECT_CC, VT, Expand); 389 setOperationAction(ISD::XOR, VT, Expand); 390 setOperationAction(ISD::BSWAP, VT, Expand); 391 setOperationAction(ISD::CTPOP, VT, Expand); 392 setOperationAction(ISD::CTTZ, VT, Expand); 393 setOperationAction(ISD::CTLZ, VT, Expand); 394 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 395 setOperationAction(ISD::SETCC, VT, Expand); 396 } 397 398 static const MVT::SimpleValueType FloatVectorTypes[] = { 399 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 400 }; 401 402 for (MVT VT : FloatVectorTypes) { 403 setOperationAction(ISD::FABS, VT, Expand); 404 setOperationAction(ISD::FMINNUM, VT, Expand); 405 setOperationAction(ISD::FMAXNUM, VT, Expand); 406 setOperationAction(ISD::FADD, VT, Expand); 407 setOperationAction(ISD::FCEIL, VT, Expand); 408 setOperationAction(ISD::FCOS, VT, Expand); 409 setOperationAction(ISD::FDIV, VT, Expand); 410 setOperationAction(ISD::FEXP2, VT, Expand); 411 setOperationAction(ISD::FEXP, VT, Expand); 412 setOperationAction(ISD::FLOG2, VT, Expand); 413 setOperationAction(ISD::FREM, VT, Expand); 414 setOperationAction(ISD::FLOG, VT, Expand); 415 setOperationAction(ISD::FLOG10, VT, Expand); 416 setOperationAction(ISD::FPOW, VT, Expand); 417 setOperationAction(ISD::FFLOOR, VT, Expand); 418 setOperationAction(ISD::FTRUNC, VT, Expand); 419 setOperationAction(ISD::FMUL, VT, Expand); 420 setOperationAction(ISD::FMA, VT, Expand); 421 setOperationAction(ISD::FRINT, VT, Expand); 422 setOperationAction(ISD::FNEARBYINT, VT, Expand); 423 setOperationAction(ISD::FSQRT, VT, Expand); 424 setOperationAction(ISD::FSIN, VT, Expand); 425 setOperationAction(ISD::FSUB, VT, Expand); 426 setOperationAction(ISD::FNEG, VT, Expand); 427 setOperationAction(ISD::VSELECT, VT, Expand); 428 setOperationAction(ISD::SELECT_CC, VT, Expand); 429 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 430 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 431 setOperationAction(ISD::SETCC, VT, Expand); 432 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 433 } 434 435 // This causes using an unrolled select operation rather than expansion with 436 // bit operations. This is in general better, but the alternative using BFI 437 // instructions may be better if the select sources are SGPRs. 438 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 439 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 440 441 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 442 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 443 444 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 445 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 446 447 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 448 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 449 450 // There are no libcalls of any kind. 451 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 452 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 453 454 setSchedulingPreference(Sched::RegPressure); 455 setJumpIsExpensive(true); 456 457 // FIXME: This is only partially true. If we have to do vector compares, any 458 // SGPR pair can be a condition register. If we have a uniform condition, we 459 // are better off doing SALU operations, where there is only one SCC. For now, 460 // we don't have a way of knowing during instruction selection if a condition 461 // will be uniform and we always use vector compares. Assume we are using 462 // vector compares until that is fixed. 463 setHasMultipleConditionRegisters(true); 464 465 setMinCmpXchgSizeInBits(32); 466 setSupportsUnalignedAtomics(false); 467 468 PredictableSelectIsExpensive = false; 469 470 // We want to find all load dependencies for long chains of stores to enable 471 // merging into very wide vectors. The problem is with vectors with > 4 472 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 473 // vectors are a legal type, even though we have to split the loads 474 // usually. When we can more precisely specify load legality per address 475 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 476 // smarter so that they can figure out what to do in 2 iterations without all 477 // N > 4 stores on the same chain. 478 GatherAllAliasesMaxDepth = 16; 479 480 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 481 // about these during lowering. 482 MaxStoresPerMemcpy = 0xffffffff; 483 MaxStoresPerMemmove = 0xffffffff; 484 MaxStoresPerMemset = 0xffffffff; 485 486 setTargetDAGCombine(ISD::BITCAST); 487 setTargetDAGCombine(ISD::SHL); 488 setTargetDAGCombine(ISD::SRA); 489 setTargetDAGCombine(ISD::SRL); 490 setTargetDAGCombine(ISD::TRUNCATE); 491 setTargetDAGCombine(ISD::MUL); 492 setTargetDAGCombine(ISD::MULHU); 493 setTargetDAGCombine(ISD::MULHS); 494 setTargetDAGCombine(ISD::SELECT); 495 setTargetDAGCombine(ISD::SELECT_CC); 496 setTargetDAGCombine(ISD::STORE); 497 setTargetDAGCombine(ISD::FADD); 498 setTargetDAGCombine(ISD::FSUB); 499 setTargetDAGCombine(ISD::FNEG); 500 setTargetDAGCombine(ISD::FABS); 501 setTargetDAGCombine(ISD::AssertZext); 502 setTargetDAGCombine(ISD::AssertSext); 503 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 504 } 505 506 //===----------------------------------------------------------------------===// 507 // Target Information 508 //===----------------------------------------------------------------------===// 509 510 LLVM_READNONE 511 static bool fnegFoldsIntoOp(unsigned Opc) { 512 switch (Opc) { 513 case ISD::FADD: 514 case ISD::FSUB: 515 case ISD::FMUL: 516 case ISD::FMA: 517 case ISD::FMAD: 518 case ISD::FMINNUM: 519 case ISD::FMAXNUM: 520 case ISD::FMINNUM_IEEE: 521 case ISD::FMAXNUM_IEEE: 522 case ISD::FSIN: 523 case ISD::FTRUNC: 524 case ISD::FRINT: 525 case ISD::FNEARBYINT: 526 case ISD::FCANONICALIZE: 527 case AMDGPUISD::RCP: 528 case AMDGPUISD::RCP_LEGACY: 529 case AMDGPUISD::RCP_IFLAG: 530 case AMDGPUISD::SIN_HW: 531 case AMDGPUISD::FMUL_LEGACY: 532 case AMDGPUISD::FMIN_LEGACY: 533 case AMDGPUISD::FMAX_LEGACY: 534 case AMDGPUISD::FMED3: 535 return true; 536 default: 537 return false; 538 } 539 } 540 541 /// \p returns true if the operation will definitely need to use a 64-bit 542 /// encoding, and thus will use a VOP3 encoding regardless of the source 543 /// modifiers. 544 LLVM_READONLY 545 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 546 return N->getNumOperands() > 2 || VT == MVT::f64; 547 } 548 549 // Most FP instructions support source modifiers, but this could be refined 550 // slightly. 551 LLVM_READONLY 552 static bool hasSourceMods(const SDNode *N) { 553 if (isa<MemSDNode>(N)) 554 return false; 555 556 switch (N->getOpcode()) { 557 case ISD::CopyToReg: 558 case ISD::SELECT: 559 case ISD::FDIV: 560 case ISD::FREM: 561 case ISD::INLINEASM: 562 case ISD::INLINEASM_BR: 563 case AMDGPUISD::DIV_SCALE: 564 case ISD::INTRINSIC_W_CHAIN: 565 566 // TODO: Should really be looking at the users of the bitcast. These are 567 // problematic because bitcasts are used to legalize all stores to integer 568 // types. 569 case ISD::BITCAST: 570 return false; 571 case ISD::INTRINSIC_WO_CHAIN: { 572 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 573 case Intrinsic::amdgcn_interp_p1: 574 case Intrinsic::amdgcn_interp_p2: 575 case Intrinsic::amdgcn_interp_mov: 576 case Intrinsic::amdgcn_interp_p1_f16: 577 case Intrinsic::amdgcn_interp_p2_f16: 578 return false; 579 default: 580 return true; 581 } 582 } 583 default: 584 return true; 585 } 586 } 587 588 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 589 unsigned CostThreshold) { 590 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 591 // it is truly free to use a source modifier in all cases. If there are 592 // multiple users but for each one will necessitate using VOP3, there will be 593 // a code size increase. Try to avoid increasing code size unless we know it 594 // will save on the instruction count. 595 unsigned NumMayIncreaseSize = 0; 596 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 597 598 // XXX - Should this limit number of uses to check? 599 for (const SDNode *U : N->uses()) { 600 if (!hasSourceMods(U)) 601 return false; 602 603 if (!opMustUseVOP3Encoding(U, VT)) { 604 if (++NumMayIncreaseSize > CostThreshold) 605 return false; 606 } 607 } 608 609 return true; 610 } 611 612 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 613 return MVT::i32; 614 } 615 616 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 617 return true; 618 } 619 620 // The backend supports 32 and 64 bit floating point immediates. 621 // FIXME: Why are we reporting vectors of FP immediates as legal? 622 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 623 bool ForCodeSize) const { 624 EVT ScalarVT = VT.getScalarType(); 625 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 626 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 627 } 628 629 // We don't want to shrink f64 / f32 constants. 630 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 631 EVT ScalarVT = VT.getScalarType(); 632 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 633 } 634 635 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 636 ISD::LoadExtType ExtTy, 637 EVT NewVT) const { 638 // TODO: This may be worth removing. Check regression tests for diffs. 639 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 640 return false; 641 642 unsigned NewSize = NewVT.getStoreSizeInBits(); 643 644 // If we are reducing to a 32-bit load, this is always better. 645 if (NewSize == 32) 646 return true; 647 648 EVT OldVT = N->getValueType(0); 649 unsigned OldSize = OldVT.getStoreSizeInBits(); 650 651 MemSDNode *MN = cast<MemSDNode>(N); 652 unsigned AS = MN->getAddressSpace(); 653 // Do not shrink an aligned scalar load to sub-dword. 654 // Scalar engine cannot do sub-dword loads. 655 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 656 (AS == AMDGPUAS::CONSTANT_ADDRESS || 657 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 658 (isa<LoadSDNode>(N) && 659 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 660 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 661 return false; 662 663 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 664 // extloads, so doing one requires using a buffer_load. In cases where we 665 // still couldn't use a scalar load, using the wider load shouldn't really 666 // hurt anything. 667 668 // If the old size already had to be an extload, there's no harm in continuing 669 // to reduce the width. 670 return (OldSize < 32); 671 } 672 673 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 674 const SelectionDAG &DAG, 675 const MachineMemOperand &MMO) const { 676 677 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 678 679 if (LoadTy.getScalarType() == MVT::i32) 680 return false; 681 682 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 683 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 684 685 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 686 return false; 687 688 bool Fast = false; 689 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 690 CastTy, MMO, &Fast) && 691 Fast; 692 } 693 694 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 695 // profitable with the expansion for 64-bit since it's generally good to 696 // speculate things. 697 // FIXME: These should really have the size as a parameter. 698 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 699 return true; 700 } 701 702 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 703 return true; 704 } 705 706 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 707 switch (N->getOpcode()) { 708 default: 709 return false; 710 case ISD::EntryToken: 711 case ISD::TokenFactor: 712 return true; 713 case ISD::INTRINSIC_WO_CHAIN: 714 { 715 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 716 switch (IntrID) { 717 default: 718 return false; 719 case Intrinsic::amdgcn_readfirstlane: 720 case Intrinsic::amdgcn_readlane: 721 return true; 722 } 723 } 724 break; 725 case ISD::LOAD: 726 { 727 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 728 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 729 return true; 730 return false; 731 } 732 break; 733 } 734 } 735 736 //===---------------------------------------------------------------------===// 737 // Target Properties 738 //===---------------------------------------------------------------------===// 739 740 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 741 assert(VT.isFloatingPoint()); 742 743 // Packed operations do not have a fabs modifier. 744 return VT == MVT::f32 || VT == MVT::f64 || 745 (Subtarget->has16BitInsts() && VT == MVT::f16); 746 } 747 748 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 749 assert(VT.isFloatingPoint()); 750 return VT == MVT::f32 || VT == MVT::f64 || 751 (Subtarget->has16BitInsts() && VT == MVT::f16) || 752 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 753 } 754 755 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 756 unsigned NumElem, 757 unsigned AS) const { 758 return true; 759 } 760 761 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 762 // There are few operations which truly have vector input operands. Any vector 763 // operation is going to involve operations on each component, and a 764 // build_vector will be a copy per element, so it always makes sense to use a 765 // build_vector input in place of the extracted element to avoid a copy into a 766 // super register. 767 // 768 // We should probably only do this if all users are extracts only, but this 769 // should be the common case. 770 return true; 771 } 772 773 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 774 // Truncate is just accessing a subregister. 775 776 unsigned SrcSize = Source.getSizeInBits(); 777 unsigned DestSize = Dest.getSizeInBits(); 778 779 return DestSize < SrcSize && DestSize % 32 == 0 ; 780 } 781 782 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 783 // Truncate is just accessing a subregister. 784 785 unsigned SrcSize = Source->getScalarSizeInBits(); 786 unsigned DestSize = Dest->getScalarSizeInBits(); 787 788 if (DestSize== 16 && Subtarget->has16BitInsts()) 789 return SrcSize >= 32; 790 791 return DestSize < SrcSize && DestSize % 32 == 0; 792 } 793 794 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 795 unsigned SrcSize = Src->getScalarSizeInBits(); 796 unsigned DestSize = Dest->getScalarSizeInBits(); 797 798 if (SrcSize == 16 && Subtarget->has16BitInsts()) 799 return DestSize >= 32; 800 801 return SrcSize == 32 && DestSize == 64; 802 } 803 804 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 805 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 806 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 807 // this will enable reducing 64-bit operations the 32-bit, which is always 808 // good. 809 810 if (Src == MVT::i16) 811 return Dest == MVT::i32 ||Dest == MVT::i64 ; 812 813 return Src == MVT::i32 && Dest == MVT::i64; 814 } 815 816 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 817 return isZExtFree(Val.getValueType(), VT2); 818 } 819 820 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 821 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 822 // limited number of native 64-bit operations. Shrinking an operation to fit 823 // in a single 32-bit register should always be helpful. As currently used, 824 // this is much less general than the name suggests, and is only used in 825 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 826 // not profitable, and may actually be harmful. 827 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 828 } 829 830 //===---------------------------------------------------------------------===// 831 // TargetLowering Callbacks 832 //===---------------------------------------------------------------------===// 833 834 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 835 bool IsVarArg) { 836 switch (CC) { 837 case CallingConv::AMDGPU_VS: 838 case CallingConv::AMDGPU_GS: 839 case CallingConv::AMDGPU_PS: 840 case CallingConv::AMDGPU_CS: 841 case CallingConv::AMDGPU_HS: 842 case CallingConv::AMDGPU_ES: 843 case CallingConv::AMDGPU_LS: 844 return CC_AMDGPU; 845 case CallingConv::C: 846 case CallingConv::Fast: 847 case CallingConv::Cold: 848 return CC_AMDGPU_Func; 849 case CallingConv::AMDGPU_KERNEL: 850 case CallingConv::SPIR_KERNEL: 851 default: 852 report_fatal_error("Unsupported calling convention for call"); 853 } 854 } 855 856 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 857 bool IsVarArg) { 858 switch (CC) { 859 case CallingConv::AMDGPU_KERNEL: 860 case CallingConv::SPIR_KERNEL: 861 llvm_unreachable("kernels should not be handled here"); 862 case CallingConv::AMDGPU_VS: 863 case CallingConv::AMDGPU_GS: 864 case CallingConv::AMDGPU_PS: 865 case CallingConv::AMDGPU_CS: 866 case CallingConv::AMDGPU_HS: 867 case CallingConv::AMDGPU_ES: 868 case CallingConv::AMDGPU_LS: 869 return RetCC_SI_Shader; 870 case CallingConv::C: 871 case CallingConv::Fast: 872 case CallingConv::Cold: 873 return RetCC_AMDGPU_Func; 874 default: 875 report_fatal_error("Unsupported calling convention."); 876 } 877 } 878 879 /// The SelectionDAGBuilder will automatically promote function arguments 880 /// with illegal types. However, this does not work for the AMDGPU targets 881 /// since the function arguments are stored in memory as these illegal types. 882 /// In order to handle this properly we need to get the original types sizes 883 /// from the LLVM IR Function and fixup the ISD:InputArg values before 884 /// passing them to AnalyzeFormalArguments() 885 886 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 887 /// input values across multiple registers. Each item in the Ins array 888 /// represents a single value that will be stored in registers. Ins[x].VT is 889 /// the value type of the value that will be stored in the register, so 890 /// whatever SDNode we lower the argument to needs to be this type. 891 /// 892 /// In order to correctly lower the arguments we need to know the size of each 893 /// argument. Since Ins[x].VT gives us the size of the register that will 894 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 895 /// for the orignal function argument so that we can deduce the correct memory 896 /// type to use for Ins[x]. In most cases the correct memory type will be 897 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 898 /// we have a kernel argument of type v8i8, this argument will be split into 899 /// 8 parts and each part will be represented by its own item in the Ins array. 900 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 901 /// the argument before it was split. From this, we deduce that the memory type 902 /// for each individual part is i8. We pass the memory type as LocVT to the 903 /// calling convention analysis function and the register type (Ins[x].VT) as 904 /// the ValVT. 905 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 906 CCState &State, 907 const SmallVectorImpl<ISD::InputArg> &Ins) const { 908 const MachineFunction &MF = State.getMachineFunction(); 909 const Function &Fn = MF.getFunction(); 910 LLVMContext &Ctx = Fn.getParent()->getContext(); 911 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 912 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 913 CallingConv::ID CC = Fn.getCallingConv(); 914 915 unsigned MaxAlign = 1; 916 uint64_t ExplicitArgOffset = 0; 917 const DataLayout &DL = Fn.getParent()->getDataLayout(); 918 919 unsigned InIndex = 0; 920 921 for (const Argument &Arg : Fn.args()) { 922 Type *BaseArgTy = Arg.getType(); 923 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 924 MaxAlign = std::max(Align, MaxAlign); 925 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 926 927 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 928 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 929 930 // We're basically throwing away everything passed into us and starting over 931 // to get accurate in-memory offsets. The "PartOffset" is completely useless 932 // to us as computed in Ins. 933 // 934 // We also need to figure out what type legalization is trying to do to get 935 // the correct memory offsets. 936 937 SmallVector<EVT, 16> ValueVTs; 938 SmallVector<uint64_t, 16> Offsets; 939 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 940 941 for (unsigned Value = 0, NumValues = ValueVTs.size(); 942 Value != NumValues; ++Value) { 943 uint64_t BasePartOffset = Offsets[Value]; 944 945 EVT ArgVT = ValueVTs[Value]; 946 EVT MemVT = ArgVT; 947 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 948 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 949 950 if (NumRegs == 1) { 951 // This argument is not split, so the IR type is the memory type. 952 if (ArgVT.isExtended()) { 953 // We have an extended type, like i24, so we should just use the 954 // register type. 955 MemVT = RegisterVT; 956 } else { 957 MemVT = ArgVT; 958 } 959 } else if (ArgVT.isVector() && RegisterVT.isVector() && 960 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 961 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 962 // We have a vector value which has been split into a vector with 963 // the same scalar type, but fewer elements. This should handle 964 // all the floating-point vector types. 965 MemVT = RegisterVT; 966 } else if (ArgVT.isVector() && 967 ArgVT.getVectorNumElements() == NumRegs) { 968 // This arg has been split so that each element is stored in a separate 969 // register. 970 MemVT = ArgVT.getScalarType(); 971 } else if (ArgVT.isExtended()) { 972 // We have an extended type, like i65. 973 MemVT = RegisterVT; 974 } else { 975 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 976 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 977 if (RegisterVT.isInteger()) { 978 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 979 } else if (RegisterVT.isVector()) { 980 assert(!RegisterVT.getScalarType().isFloatingPoint()); 981 unsigned NumElements = RegisterVT.getVectorNumElements(); 982 assert(MemoryBits % NumElements == 0); 983 // This vector type has been split into another vector type with 984 // a different elements size. 985 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 986 MemoryBits / NumElements); 987 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 988 } else { 989 llvm_unreachable("cannot deduce memory type."); 990 } 991 } 992 993 // Convert one element vectors to scalar. 994 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 995 MemVT = MemVT.getScalarType(); 996 997 // Round up vec3/vec5 argument. 998 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 999 assert(MemVT.getVectorNumElements() == 3 || 1000 MemVT.getVectorNumElements() == 5); 1001 MemVT = MemVT.getPow2VectorType(State.getContext()); 1002 } 1003 1004 unsigned PartOffset = 0; 1005 for (unsigned i = 0; i != NumRegs; ++i) { 1006 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1007 BasePartOffset + PartOffset, 1008 MemVT.getSimpleVT(), 1009 CCValAssign::Full)); 1010 PartOffset += MemVT.getStoreSize(); 1011 } 1012 } 1013 } 1014 } 1015 1016 SDValue AMDGPUTargetLowering::LowerReturn( 1017 SDValue Chain, CallingConv::ID CallConv, 1018 bool isVarArg, 1019 const SmallVectorImpl<ISD::OutputArg> &Outs, 1020 const SmallVectorImpl<SDValue> &OutVals, 1021 const SDLoc &DL, SelectionDAG &DAG) const { 1022 // FIXME: Fails for r600 tests 1023 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1024 // "wave terminate should not have return values"); 1025 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1026 } 1027 1028 //===---------------------------------------------------------------------===// 1029 // Target specific lowering 1030 //===---------------------------------------------------------------------===// 1031 1032 /// Selects the correct CCAssignFn for a given CallingConvention value. 1033 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1034 bool IsVarArg) { 1035 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1036 } 1037 1038 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1039 bool IsVarArg) { 1040 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1041 } 1042 1043 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1044 SelectionDAG &DAG, 1045 MachineFrameInfo &MFI, 1046 int ClobberedFI) const { 1047 SmallVector<SDValue, 8> ArgChains; 1048 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1049 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1050 1051 // Include the original chain at the beginning of the list. When this is 1052 // used by target LowerCall hooks, this helps legalize find the 1053 // CALLSEQ_BEGIN node. 1054 ArgChains.push_back(Chain); 1055 1056 // Add a chain value for each stack argument corresponding 1057 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1058 UE = DAG.getEntryNode().getNode()->use_end(); 1059 U != UE; ++U) { 1060 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1061 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1062 if (FI->getIndex() < 0) { 1063 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1064 int64_t InLastByte = InFirstByte; 1065 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1066 1067 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1068 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1069 ArgChains.push_back(SDValue(L, 1)); 1070 } 1071 } 1072 } 1073 } 1074 1075 // Build a tokenfactor for all the chains. 1076 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1077 } 1078 1079 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1080 SmallVectorImpl<SDValue> &InVals, 1081 StringRef Reason) const { 1082 SDValue Callee = CLI.Callee; 1083 SelectionDAG &DAG = CLI.DAG; 1084 1085 const Function &Fn = DAG.getMachineFunction().getFunction(); 1086 1087 StringRef FuncName("<unknown>"); 1088 1089 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1090 FuncName = G->getSymbol(); 1091 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1092 FuncName = G->getGlobal()->getName(); 1093 1094 DiagnosticInfoUnsupported NoCalls( 1095 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1096 DAG.getContext()->diagnose(NoCalls); 1097 1098 if (!CLI.IsTailCall) { 1099 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1100 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1101 } 1102 1103 return DAG.getEntryNode(); 1104 } 1105 1106 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1107 SmallVectorImpl<SDValue> &InVals) const { 1108 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1109 } 1110 1111 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1112 SelectionDAG &DAG) const { 1113 const Function &Fn = DAG.getMachineFunction().getFunction(); 1114 1115 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1116 SDLoc(Op).getDebugLoc()); 1117 DAG.getContext()->diagnose(NoDynamicAlloca); 1118 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1119 return DAG.getMergeValues(Ops, SDLoc()); 1120 } 1121 1122 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1123 SelectionDAG &DAG) const { 1124 switch (Op.getOpcode()) { 1125 default: 1126 Op->print(errs(), &DAG); 1127 llvm_unreachable("Custom lowering code for this" 1128 "instruction is not implemented yet!"); 1129 break; 1130 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1131 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1132 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1133 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1134 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1135 case ISD::FREM: return LowerFREM(Op, DAG); 1136 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1137 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1138 case ISD::FRINT: return LowerFRINT(Op, DAG); 1139 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1140 case ISD::FROUND: return LowerFROUND(Op, DAG); 1141 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1142 case ISD::FLOG: 1143 return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef); 1144 case ISD::FLOG10: 1145 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1146 case ISD::FEXP: 1147 return lowerFEXP(Op, DAG); 1148 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1149 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1150 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1151 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1152 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1153 case ISD::CTTZ: 1154 case ISD::CTTZ_ZERO_UNDEF: 1155 case ISD::CTLZ: 1156 case ISD::CTLZ_ZERO_UNDEF: 1157 return LowerCTLZ_CTTZ(Op, DAG); 1158 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1159 } 1160 return Op; 1161 } 1162 1163 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1164 SmallVectorImpl<SDValue> &Results, 1165 SelectionDAG &DAG) const { 1166 switch (N->getOpcode()) { 1167 case ISD::SIGN_EXTEND_INREG: 1168 // Different parts of legalization seem to interpret which type of 1169 // sign_extend_inreg is the one to check for custom lowering. The extended 1170 // from type is what really matters, but some places check for custom 1171 // lowering of the result type. This results in trying to use 1172 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1173 // nothing here and let the illegal result integer be handled normally. 1174 return; 1175 default: 1176 return; 1177 } 1178 } 1179 1180 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1181 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1182 if (!GVar || !GVar->hasInitializer()) 1183 return false; 1184 1185 return !isa<UndefValue>(GVar->getInitializer()); 1186 } 1187 1188 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1189 SDValue Op, 1190 SelectionDAG &DAG) const { 1191 1192 const DataLayout &DL = DAG.getDataLayout(); 1193 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1194 const GlobalValue *GV = G->getGlobal(); 1195 1196 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1197 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1198 if (!MFI->isEntryFunction()) { 1199 const Function &Fn = DAG.getMachineFunction().getFunction(); 1200 DiagnosticInfoUnsupported BadLDSDecl( 1201 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1202 DAG.getContext()->diagnose(BadLDSDecl); 1203 } 1204 1205 // XXX: What does the value of G->getOffset() mean? 1206 assert(G->getOffset() == 0 && 1207 "Do not know what to do with an non-zero offset"); 1208 1209 // TODO: We could emit code to handle the initialization somewhere. 1210 if (!hasDefinedInitializer(GV)) { 1211 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1212 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1213 } 1214 } 1215 1216 const Function &Fn = DAG.getMachineFunction().getFunction(); 1217 DiagnosticInfoUnsupported BadInit( 1218 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1219 DAG.getContext()->diagnose(BadInit); 1220 return SDValue(); 1221 } 1222 1223 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1224 SelectionDAG &DAG) const { 1225 SmallVector<SDValue, 8> Args; 1226 1227 EVT VT = Op.getValueType(); 1228 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1229 SDLoc SL(Op); 1230 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1231 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1232 1233 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1234 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1235 } 1236 1237 for (const SDUse &U : Op->ops()) 1238 DAG.ExtractVectorElements(U.get(), Args); 1239 1240 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1241 } 1242 1243 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1244 SelectionDAG &DAG) const { 1245 1246 SmallVector<SDValue, 8> Args; 1247 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1248 EVT VT = Op.getValueType(); 1249 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1250 VT.getVectorNumElements()); 1251 1252 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1253 } 1254 1255 /// Generate Min/Max node 1256 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1257 SDValue LHS, SDValue RHS, 1258 SDValue True, SDValue False, 1259 SDValue CC, 1260 DAGCombinerInfo &DCI) const { 1261 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1262 return SDValue(); 1263 1264 SelectionDAG &DAG = DCI.DAG; 1265 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1266 switch (CCOpcode) { 1267 case ISD::SETOEQ: 1268 case ISD::SETONE: 1269 case ISD::SETUNE: 1270 case ISD::SETNE: 1271 case ISD::SETUEQ: 1272 case ISD::SETEQ: 1273 case ISD::SETFALSE: 1274 case ISD::SETFALSE2: 1275 case ISD::SETTRUE: 1276 case ISD::SETTRUE2: 1277 case ISD::SETUO: 1278 case ISD::SETO: 1279 break; 1280 case ISD::SETULE: 1281 case ISD::SETULT: { 1282 if (LHS == True) 1283 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1284 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1285 } 1286 case ISD::SETOLE: 1287 case ISD::SETOLT: 1288 case ISD::SETLE: 1289 case ISD::SETLT: { 1290 // Ordered. Assume ordered for undefined. 1291 1292 // Only do this after legalization to avoid interfering with other combines 1293 // which might occur. 1294 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1295 !DCI.isCalledByLegalizer()) 1296 return SDValue(); 1297 1298 // We need to permute the operands to get the correct NaN behavior. The 1299 // selected operand is the second one based on the failing compare with NaN, 1300 // so permute it based on the compare type the hardware uses. 1301 if (LHS == True) 1302 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1303 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1304 } 1305 case ISD::SETUGE: 1306 case ISD::SETUGT: { 1307 if (LHS == True) 1308 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1309 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1310 } 1311 case ISD::SETGT: 1312 case ISD::SETGE: 1313 case ISD::SETOGE: 1314 case ISD::SETOGT: { 1315 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1316 !DCI.isCalledByLegalizer()) 1317 return SDValue(); 1318 1319 if (LHS == True) 1320 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1321 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1322 } 1323 case ISD::SETCC_INVALID: 1324 llvm_unreachable("Invalid setcc condcode!"); 1325 } 1326 return SDValue(); 1327 } 1328 1329 std::pair<SDValue, SDValue> 1330 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1331 SDLoc SL(Op); 1332 1333 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1334 1335 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1336 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1337 1338 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1339 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1340 1341 return std::make_pair(Lo, Hi); 1342 } 1343 1344 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1345 SDLoc SL(Op); 1346 1347 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1348 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1349 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1350 } 1351 1352 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1353 SDLoc SL(Op); 1354 1355 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1356 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1357 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1358 } 1359 1360 // Split a vector type into two parts. The first part is a power of two vector. 1361 // The second part is whatever is left over, and is a scalar if it would 1362 // otherwise be a 1-vector. 1363 std::pair<EVT, EVT> 1364 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1365 EVT LoVT, HiVT; 1366 EVT EltVT = VT.getVectorElementType(); 1367 unsigned NumElts = VT.getVectorNumElements(); 1368 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1369 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1370 HiVT = NumElts - LoNumElts == 1 1371 ? EltVT 1372 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1373 return std::make_pair(LoVT, HiVT); 1374 } 1375 1376 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1377 // scalar. 1378 std::pair<SDValue, SDValue> 1379 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1380 const EVT &LoVT, const EVT &HiVT, 1381 SelectionDAG &DAG) const { 1382 assert(LoVT.getVectorNumElements() + 1383 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1384 N.getValueType().getVectorNumElements() && 1385 "More vector elements requested than available!"); 1386 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1387 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1388 DAG.getConstant(0, DL, IdxTy)); 1389 SDValue Hi = DAG.getNode( 1390 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1391 HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy)); 1392 return std::make_pair(Lo, Hi); 1393 } 1394 1395 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1396 SelectionDAG &DAG) const { 1397 LoadSDNode *Load = cast<LoadSDNode>(Op); 1398 EVT VT = Op.getValueType(); 1399 SDLoc SL(Op); 1400 1401 1402 // If this is a 2 element vector, we really want to scalarize and not create 1403 // weird 1 element vectors. 1404 if (VT.getVectorNumElements() == 2) { 1405 SDValue Ops[2]; 1406 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1407 return DAG.getMergeValues(Ops, SL); 1408 } 1409 1410 SDValue BasePtr = Load->getBasePtr(); 1411 EVT MemVT = Load->getMemoryVT(); 1412 1413 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1414 1415 EVT LoVT, HiVT; 1416 EVT LoMemVT, HiMemVT; 1417 SDValue Lo, Hi; 1418 1419 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1420 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1421 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1422 1423 unsigned Size = LoMemVT.getStoreSize(); 1424 unsigned BaseAlign = Load->getAlignment(); 1425 unsigned HiAlign = MinAlign(BaseAlign, Size); 1426 1427 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1428 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1429 BaseAlign, Load->getMemOperand()->getFlags()); 1430 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1431 SDValue HiLoad = 1432 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1433 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1434 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1435 1436 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1437 SDValue Join; 1438 if (LoVT == HiVT) { 1439 // This is the case that the vector is power of two so was evenly split. 1440 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1441 } else { 1442 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1443 DAG.getConstant(0, SL, IdxTy)); 1444 Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR 1445 : ISD::INSERT_VECTOR_ELT, 1446 SL, VT, Join, HiLoad, 1447 DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy)); 1448 } 1449 1450 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1451 LoLoad.getValue(1), HiLoad.getValue(1))}; 1452 1453 return DAG.getMergeValues(Ops, SL); 1454 } 1455 1456 // Widen a vector load from vec3 to vec4. 1457 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1458 SelectionDAG &DAG) const { 1459 LoadSDNode *Load = cast<LoadSDNode>(Op); 1460 EVT VT = Op.getValueType(); 1461 assert(VT.getVectorNumElements() == 3); 1462 SDValue BasePtr = Load->getBasePtr(); 1463 EVT MemVT = Load->getMemoryVT(); 1464 SDLoc SL(Op); 1465 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1466 unsigned BaseAlign = Load->getAlignment(); 1467 1468 EVT WideVT = 1469 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1470 EVT WideMemVT = 1471 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1472 SDValue WideLoad = DAG.getExtLoad( 1473 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1474 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1475 return DAG.getMergeValues( 1476 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1477 DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))), 1478 WideLoad.getValue(1)}, 1479 SL); 1480 } 1481 1482 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1483 SelectionDAG &DAG) const { 1484 StoreSDNode *Store = cast<StoreSDNode>(Op); 1485 SDValue Val = Store->getValue(); 1486 EVT VT = Val.getValueType(); 1487 1488 // If this is a 2 element vector, we really want to scalarize and not create 1489 // weird 1 element vectors. 1490 if (VT.getVectorNumElements() == 2) 1491 return scalarizeVectorStore(Store, DAG); 1492 1493 EVT MemVT = Store->getMemoryVT(); 1494 SDValue Chain = Store->getChain(); 1495 SDValue BasePtr = Store->getBasePtr(); 1496 SDLoc SL(Op); 1497 1498 EVT LoVT, HiVT; 1499 EVT LoMemVT, HiMemVT; 1500 SDValue Lo, Hi; 1501 1502 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1503 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1504 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1505 1506 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1507 1508 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1509 unsigned BaseAlign = Store->getAlignment(); 1510 unsigned Size = LoMemVT.getStoreSize(); 1511 unsigned HiAlign = MinAlign(BaseAlign, Size); 1512 1513 SDValue LoStore = 1514 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1515 Store->getMemOperand()->getFlags()); 1516 SDValue HiStore = 1517 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1518 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1519 1520 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1521 } 1522 1523 // This is a shortcut for integer division because we have fast i32<->f32 1524 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1525 // float is enough to accurately represent up to a 24-bit signed integer. 1526 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1527 bool Sign) const { 1528 SDLoc DL(Op); 1529 EVT VT = Op.getValueType(); 1530 SDValue LHS = Op.getOperand(0); 1531 SDValue RHS = Op.getOperand(1); 1532 MVT IntVT = MVT::i32; 1533 MVT FltVT = MVT::f32; 1534 1535 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1536 if (LHSSignBits < 9) 1537 return SDValue(); 1538 1539 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1540 if (RHSSignBits < 9) 1541 return SDValue(); 1542 1543 unsigned BitSize = VT.getSizeInBits(); 1544 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1545 unsigned DivBits = BitSize - SignBits; 1546 if (Sign) 1547 ++DivBits; 1548 1549 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1550 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1551 1552 SDValue jq = DAG.getConstant(1, DL, IntVT); 1553 1554 if (Sign) { 1555 // char|short jq = ia ^ ib; 1556 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1557 1558 // jq = jq >> (bitsize - 2) 1559 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1560 DAG.getConstant(BitSize - 2, DL, VT)); 1561 1562 // jq = jq | 0x1 1563 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1564 } 1565 1566 // int ia = (int)LHS; 1567 SDValue ia = LHS; 1568 1569 // int ib, (int)RHS; 1570 SDValue ib = RHS; 1571 1572 // float fa = (float)ia; 1573 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1574 1575 // float fb = (float)ib; 1576 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1577 1578 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1579 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1580 1581 // fq = trunc(fq); 1582 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1583 1584 // float fqneg = -fq; 1585 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1586 1587 MachineFunction &MF = DAG.getMachineFunction(); 1588 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1589 1590 // float fr = mad(fqneg, fb, fa); 1591 unsigned OpCode = MFI->getMode().FP32Denormals ? 1592 (unsigned)AMDGPUISD::FMAD_FTZ : 1593 (unsigned)ISD::FMAD; 1594 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1595 1596 // int iq = (int)fq; 1597 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1598 1599 // fr = fabs(fr); 1600 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1601 1602 // fb = fabs(fb); 1603 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1604 1605 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1606 1607 // int cv = fr >= fb; 1608 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1609 1610 // jq = (cv ? jq : 0); 1611 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1612 1613 // dst = iq + jq; 1614 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1615 1616 // Rem needs compensation, it's easier to recompute it 1617 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1618 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1619 1620 // Truncate to number of bits this divide really is. 1621 if (Sign) { 1622 SDValue InRegSize 1623 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1624 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1625 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1626 } else { 1627 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1628 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1629 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1630 } 1631 1632 return DAG.getMergeValues({ Div, Rem }, DL); 1633 } 1634 1635 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1636 SelectionDAG &DAG, 1637 SmallVectorImpl<SDValue> &Results) const { 1638 SDLoc DL(Op); 1639 EVT VT = Op.getValueType(); 1640 1641 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1642 1643 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1644 1645 SDValue One = DAG.getConstant(1, DL, HalfVT); 1646 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1647 1648 //HiLo split 1649 SDValue LHS = Op.getOperand(0); 1650 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1651 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1652 1653 SDValue RHS = Op.getOperand(1); 1654 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1655 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1656 1657 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1658 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1659 1660 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1661 LHS_Lo, RHS_Lo); 1662 1663 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1664 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1665 1666 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1667 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1668 return; 1669 } 1670 1671 if (isTypeLegal(MVT::i64)) { 1672 MachineFunction &MF = DAG.getMachineFunction(); 1673 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1674 1675 // Compute denominator reciprocal. 1676 unsigned FMAD = MFI->getMode().FP32Denormals ? 1677 (unsigned)AMDGPUISD::FMAD_FTZ : 1678 (unsigned)ISD::FMAD; 1679 1680 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1681 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1682 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1683 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1684 Cvt_Lo); 1685 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1686 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1687 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1688 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1689 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1690 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1691 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1692 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1693 Mul1); 1694 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1695 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1696 SDValue Rcp64 = DAG.getBitcast(VT, 1697 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1698 1699 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1700 SDValue One64 = DAG.getConstant(1, DL, VT); 1701 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1702 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1703 1704 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1705 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1706 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1707 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1708 Zero); 1709 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1710 One); 1711 1712 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1713 Mulhi1_Lo, Zero1); 1714 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1715 Mulhi1_Hi, Add1_Lo.getValue(1)); 1716 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1717 SDValue Add1 = DAG.getBitcast(VT, 1718 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1719 1720 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1721 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1722 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1723 Zero); 1724 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1725 One); 1726 1727 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1728 Mulhi2_Lo, Zero1); 1729 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1730 Mulhi2_Hi, Add1_Lo.getValue(1)); 1731 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1732 Zero, Add2_Lo.getValue(1)); 1733 SDValue Add2 = DAG.getBitcast(VT, 1734 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1735 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1736 1737 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1738 1739 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1740 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1741 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1742 Mul3_Lo, Zero1); 1743 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1744 Mul3_Hi, Sub1_Lo.getValue(1)); 1745 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1746 SDValue Sub1 = DAG.getBitcast(VT, 1747 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1748 1749 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1750 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1751 ISD::SETUGE); 1752 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1753 ISD::SETUGE); 1754 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1755 1756 // TODO: Here and below portions of the code can be enclosed into if/endif. 1757 // Currently control flow is unconditional and we have 4 selects after 1758 // potential endif to substitute PHIs. 1759 1760 // if C3 != 0 ... 1761 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1762 RHS_Lo, Zero1); 1763 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1764 RHS_Hi, Sub1_Lo.getValue(1)); 1765 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1766 Zero, Sub2_Lo.getValue(1)); 1767 SDValue Sub2 = DAG.getBitcast(VT, 1768 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1769 1770 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1771 1772 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1773 ISD::SETUGE); 1774 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1775 ISD::SETUGE); 1776 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1777 1778 // if (C6 != 0) 1779 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1780 1781 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1782 RHS_Lo, Zero1); 1783 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1784 RHS_Hi, Sub2_Lo.getValue(1)); 1785 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1786 Zero, Sub3_Lo.getValue(1)); 1787 SDValue Sub3 = DAG.getBitcast(VT, 1788 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1789 1790 // endif C6 1791 // endif C3 1792 1793 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1794 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1795 1796 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1797 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1798 1799 Results.push_back(Div); 1800 Results.push_back(Rem); 1801 1802 return; 1803 } 1804 1805 // r600 expandion. 1806 // Get Speculative values 1807 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1808 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1809 1810 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1811 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1812 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1813 1814 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1815 SDValue DIV_Lo = Zero; 1816 1817 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1818 1819 for (unsigned i = 0; i < halfBitWidth; ++i) { 1820 const unsigned bitPos = halfBitWidth - i - 1; 1821 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1822 // Get value of high bit 1823 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1824 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1825 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1826 1827 // Shift 1828 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1829 // Add LHS high bit 1830 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1831 1832 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1833 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1834 1835 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1836 1837 // Update REM 1838 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1839 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1840 } 1841 1842 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1843 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1844 Results.push_back(DIV); 1845 Results.push_back(REM); 1846 } 1847 1848 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1849 SelectionDAG &DAG) const { 1850 SDLoc DL(Op); 1851 EVT VT = Op.getValueType(); 1852 1853 if (VT == MVT::i64) { 1854 SmallVector<SDValue, 2> Results; 1855 LowerUDIVREM64(Op, DAG, Results); 1856 return DAG.getMergeValues(Results, DL); 1857 } 1858 1859 if (VT == MVT::i32) { 1860 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1861 return Res; 1862 } 1863 1864 SDValue Num = Op.getOperand(0); 1865 SDValue Den = Op.getOperand(1); 1866 1867 // RCP = URECIP(Den) = 2^32 / Den + e 1868 // e is rounding error. 1869 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1870 1871 // RCP_LO = mul(RCP, Den) */ 1872 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1873 1874 // RCP_HI = mulhu (RCP, Den) */ 1875 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1876 1877 // NEG_RCP_LO = -RCP_LO 1878 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1879 RCP_LO); 1880 1881 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1882 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1883 NEG_RCP_LO, RCP_LO, 1884 ISD::SETEQ); 1885 // Calculate the rounding error from the URECIP instruction 1886 // E = mulhu(ABS_RCP_LO, RCP) 1887 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1888 1889 // RCP_A_E = RCP + E 1890 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1891 1892 // RCP_S_E = RCP - E 1893 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1894 1895 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1896 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1897 RCP_A_E, RCP_S_E, 1898 ISD::SETEQ); 1899 // Quotient = mulhu(Tmp0, Num) 1900 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1901 1902 // Num_S_Remainder = Quotient * Den 1903 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1904 1905 // Remainder = Num - Num_S_Remainder 1906 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1907 1908 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1909 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1910 DAG.getConstant(-1, DL, VT), 1911 DAG.getConstant(0, DL, VT), 1912 ISD::SETUGE); 1913 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1914 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1915 Num_S_Remainder, 1916 DAG.getConstant(-1, DL, VT), 1917 DAG.getConstant(0, DL, VT), 1918 ISD::SETUGE); 1919 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1920 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1921 Remainder_GE_Zero); 1922 1923 // Calculate Division result: 1924 1925 // Quotient_A_One = Quotient + 1 1926 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1927 DAG.getConstant(1, DL, VT)); 1928 1929 // Quotient_S_One = Quotient - 1 1930 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1931 DAG.getConstant(1, DL, VT)); 1932 1933 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1934 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1935 Quotient, Quotient_A_One, ISD::SETEQ); 1936 1937 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1938 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1939 Quotient_S_One, Div, ISD::SETEQ); 1940 1941 // Calculate Rem result: 1942 1943 // Remainder_S_Den = Remainder - Den 1944 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1945 1946 // Remainder_A_Den = Remainder + Den 1947 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1948 1949 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1950 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1951 Remainder, Remainder_S_Den, ISD::SETEQ); 1952 1953 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1954 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1955 Remainder_A_Den, Rem, ISD::SETEQ); 1956 SDValue Ops[2] = { 1957 Div, 1958 Rem 1959 }; 1960 return DAG.getMergeValues(Ops, DL); 1961 } 1962 1963 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1964 SelectionDAG &DAG) const { 1965 SDLoc DL(Op); 1966 EVT VT = Op.getValueType(); 1967 1968 SDValue LHS = Op.getOperand(0); 1969 SDValue RHS = Op.getOperand(1); 1970 1971 SDValue Zero = DAG.getConstant(0, DL, VT); 1972 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1973 1974 if (VT == MVT::i32) { 1975 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1976 return Res; 1977 } 1978 1979 if (VT == MVT::i64 && 1980 DAG.ComputeNumSignBits(LHS) > 32 && 1981 DAG.ComputeNumSignBits(RHS) > 32) { 1982 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1983 1984 //HiLo split 1985 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1986 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1987 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1988 LHS_Lo, RHS_Lo); 1989 SDValue Res[2] = { 1990 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1991 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1992 }; 1993 return DAG.getMergeValues(Res, DL); 1994 } 1995 1996 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1997 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1998 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1999 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2000 2001 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2002 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2003 2004 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2005 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2006 2007 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2008 SDValue Rem = Div.getValue(1); 2009 2010 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2011 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2012 2013 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2014 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2015 2016 SDValue Res[2] = { 2017 Div, 2018 Rem 2019 }; 2020 return DAG.getMergeValues(Res, DL); 2021 } 2022 2023 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2024 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2025 SDLoc SL(Op); 2026 EVT VT = Op.getValueType(); 2027 SDValue X = Op.getOperand(0); 2028 SDValue Y = Op.getOperand(1); 2029 2030 // TODO: Should this propagate fast-math-flags? 2031 2032 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2033 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2034 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2035 2036 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2037 } 2038 2039 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2040 SDLoc SL(Op); 2041 SDValue Src = Op.getOperand(0); 2042 2043 // result = trunc(src) 2044 // if (src > 0.0 && src != result) 2045 // result += 1.0 2046 2047 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2048 2049 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2050 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2051 2052 EVT SetCCVT = 2053 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2054 2055 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2056 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2057 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2058 2059 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2060 // TODO: Should this propagate fast-math-flags? 2061 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2062 } 2063 2064 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2065 SelectionDAG &DAG) { 2066 const unsigned FractBits = 52; 2067 const unsigned ExpBits = 11; 2068 2069 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2070 Hi, 2071 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2072 DAG.getConstant(ExpBits, SL, MVT::i32)); 2073 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2074 DAG.getConstant(1023, SL, MVT::i32)); 2075 2076 return Exp; 2077 } 2078 2079 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2080 SDLoc SL(Op); 2081 SDValue Src = Op.getOperand(0); 2082 2083 assert(Op.getValueType() == MVT::f64); 2084 2085 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2086 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2087 2088 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2089 2090 // Extract the upper half, since this is where we will find the sign and 2091 // exponent. 2092 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2093 2094 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2095 2096 const unsigned FractBits = 52; 2097 2098 // Extract the sign bit. 2099 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2100 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2101 2102 // Extend back to 64-bits. 2103 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2104 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2105 2106 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2107 const SDValue FractMask 2108 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2109 2110 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2111 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2112 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2113 2114 EVT SetCCVT = 2115 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2116 2117 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2118 2119 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2120 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2121 2122 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2123 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2124 2125 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2126 } 2127 2128 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2129 SDLoc SL(Op); 2130 SDValue Src = Op.getOperand(0); 2131 2132 assert(Op.getValueType() == MVT::f64); 2133 2134 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2135 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2136 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2137 2138 // TODO: Should this propagate fast-math-flags? 2139 2140 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2141 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2142 2143 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2144 2145 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2146 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2147 2148 EVT SetCCVT = 2149 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2150 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2151 2152 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2153 } 2154 2155 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2156 // FNEARBYINT and FRINT are the same, except in their handling of FP 2157 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2158 // rint, so just treat them as equivalent. 2159 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2160 } 2161 2162 // XXX - May require not supporting f32 denormals? 2163 2164 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2165 // compare and vselect end up producing worse code than scalarizing the whole 2166 // operation. 2167 SDValue AMDGPUTargetLowering::LowerFROUND_LegalFTRUNC(SDValue Op, 2168 SelectionDAG &DAG) const { 2169 SDLoc SL(Op); 2170 SDValue X = Op.getOperand(0); 2171 EVT VT = Op.getValueType(); 2172 2173 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2174 2175 // TODO: Should this propagate fast-math-flags? 2176 2177 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2178 2179 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2180 2181 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2182 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2183 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2184 2185 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2186 2187 EVT SetCCVT = 2188 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2189 2190 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2191 2192 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2193 2194 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2195 } 2196 2197 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2198 SDLoc SL(Op); 2199 SDValue X = Op.getOperand(0); 2200 2201 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2202 2203 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2204 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2205 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2206 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2207 EVT SetCCVT = 2208 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2209 2210 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2211 2212 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2213 2214 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2215 2216 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2217 MVT::i64); 2218 2219 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2220 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2221 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2222 MVT::i64), 2223 Exp); 2224 2225 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2226 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2227 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2228 ISD::SETNE); 2229 2230 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2231 D, DAG.getConstant(0, SL, MVT::i64)); 2232 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2233 2234 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2235 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2236 2237 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2238 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2239 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2240 2241 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2242 ExpEqNegOne, 2243 DAG.getConstantFP(1.0, SL, MVT::f64), 2244 DAG.getConstantFP(0.0, SL, MVT::f64)); 2245 2246 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2247 2248 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2249 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2250 2251 return K; 2252 } 2253 2254 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2255 EVT VT = Op.getValueType(); 2256 2257 if (isOperationLegal(ISD::FTRUNC, VT)) 2258 return LowerFROUND_LegalFTRUNC(Op, DAG); 2259 2260 if (VT == MVT::f64) 2261 return LowerFROUND64(Op, DAG); 2262 2263 llvm_unreachable("unhandled type"); 2264 } 2265 2266 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2267 SDLoc SL(Op); 2268 SDValue Src = Op.getOperand(0); 2269 2270 // result = trunc(src); 2271 // if (src < 0.0 && src != result) 2272 // result += -1.0. 2273 2274 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2275 2276 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2277 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2278 2279 EVT SetCCVT = 2280 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2281 2282 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2283 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2284 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2285 2286 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2287 // TODO: Should this propagate fast-math-flags? 2288 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2289 } 2290 2291 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2292 double Log2BaseInverted) const { 2293 EVT VT = Op.getValueType(); 2294 2295 SDLoc SL(Op); 2296 SDValue Operand = Op.getOperand(0); 2297 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2298 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2299 2300 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2301 } 2302 2303 // exp2(M_LOG2E_F * f); 2304 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2305 EVT VT = Op.getValueType(); 2306 SDLoc SL(Op); 2307 SDValue Src = Op.getOperand(0); 2308 2309 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2310 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2311 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2312 } 2313 2314 static bool isCtlzOpc(unsigned Opc) { 2315 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2316 } 2317 2318 static bool isCttzOpc(unsigned Opc) { 2319 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2320 } 2321 2322 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2323 SDLoc SL(Op); 2324 SDValue Src = Op.getOperand(0); 2325 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2326 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2327 2328 unsigned ISDOpc, NewOpc; 2329 if (isCtlzOpc(Op.getOpcode())) { 2330 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2331 NewOpc = AMDGPUISD::FFBH_U32; 2332 } else if (isCttzOpc(Op.getOpcode())) { 2333 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2334 NewOpc = AMDGPUISD::FFBL_B32; 2335 } else 2336 llvm_unreachable("Unexpected OPCode!!!"); 2337 2338 2339 if (ZeroUndef && Src.getValueType() == MVT::i32) 2340 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2341 2342 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2343 2344 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2345 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2346 2347 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2348 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2349 2350 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2351 *DAG.getContext(), MVT::i32); 2352 2353 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2354 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2355 2356 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2357 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2358 2359 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2360 SDValue Add, NewOpr; 2361 if (isCtlzOpc(Op.getOpcode())) { 2362 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2363 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2364 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2365 } else { 2366 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2367 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2368 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2369 } 2370 2371 if (!ZeroUndef) { 2372 // Test if the full 64-bit input is zero. 2373 2374 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2375 // which we probably don't want. 2376 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2377 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2378 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2379 2380 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2381 // with the same cycles, otherwise it is slower. 2382 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2383 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2384 2385 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2386 2387 // The instruction returns -1 for 0 input, but the defined intrinsic 2388 // behavior is to return the number of bits. 2389 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2390 SrcIsZero, Bits32, NewOpr); 2391 } 2392 2393 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2394 } 2395 2396 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2397 bool Signed) const { 2398 // Unsigned 2399 // cul2f(ulong u) 2400 //{ 2401 // uint lz = clz(u); 2402 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2403 // u = (u << lz) & 0x7fffffffffffffffUL; 2404 // ulong t = u & 0xffffffffffUL; 2405 // uint v = (e << 23) | (uint)(u >> 40); 2406 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2407 // return as_float(v + r); 2408 //} 2409 // Signed 2410 // cl2f(long l) 2411 //{ 2412 // long s = l >> 63; 2413 // float r = cul2f((l + s) ^ s); 2414 // return s ? -r : r; 2415 //} 2416 2417 SDLoc SL(Op); 2418 SDValue Src = Op.getOperand(0); 2419 SDValue L = Src; 2420 2421 SDValue S; 2422 if (Signed) { 2423 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2424 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2425 2426 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2427 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2428 } 2429 2430 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2431 *DAG.getContext(), MVT::f32); 2432 2433 2434 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2435 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2436 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2437 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2438 2439 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2440 SDValue E = DAG.getSelect(SL, MVT::i32, 2441 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2442 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2443 ZeroI32); 2444 2445 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2446 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2447 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2448 2449 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2450 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2451 2452 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2453 U, DAG.getConstant(40, SL, MVT::i64)); 2454 2455 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2456 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2457 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2458 2459 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2460 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2461 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2462 2463 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2464 2465 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2466 2467 SDValue R = DAG.getSelect(SL, MVT::i32, 2468 RCmp, 2469 One, 2470 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2471 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2472 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2473 2474 if (!Signed) 2475 return R; 2476 2477 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2478 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2479 } 2480 2481 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2482 bool Signed) const { 2483 SDLoc SL(Op); 2484 SDValue Src = Op.getOperand(0); 2485 2486 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2487 2488 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2489 DAG.getConstant(0, SL, MVT::i32)); 2490 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2491 DAG.getConstant(1, SL, MVT::i32)); 2492 2493 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2494 SL, MVT::f64, Hi); 2495 2496 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2497 2498 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2499 DAG.getConstant(32, SL, MVT::i32)); 2500 // TODO: Should this propagate fast-math-flags? 2501 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2502 } 2503 2504 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2505 SelectionDAG &DAG) const { 2506 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2507 "operation should be legal"); 2508 2509 // TODO: Factor out code common with LowerSINT_TO_FP. 2510 2511 EVT DestVT = Op.getValueType(); 2512 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2513 SDLoc DL(Op); 2514 SDValue Src = Op.getOperand(0); 2515 2516 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2517 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2518 SDValue FPRound = 2519 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2520 2521 return FPRound; 2522 } 2523 2524 if (DestVT == MVT::f32) 2525 return LowerINT_TO_FP32(Op, DAG, false); 2526 2527 assert(DestVT == MVT::f64); 2528 return LowerINT_TO_FP64(Op, DAG, false); 2529 } 2530 2531 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2532 SelectionDAG &DAG) const { 2533 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2534 "operation should be legal"); 2535 2536 // TODO: Factor out code common with LowerUINT_TO_FP. 2537 2538 EVT DestVT = Op.getValueType(); 2539 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2540 SDLoc DL(Op); 2541 SDValue Src = Op.getOperand(0); 2542 2543 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2544 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2545 SDValue FPRound = 2546 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2547 2548 return FPRound; 2549 } 2550 2551 if (DestVT == MVT::f32) 2552 return LowerINT_TO_FP32(Op, DAG, true); 2553 2554 assert(DestVT == MVT::f64); 2555 return LowerINT_TO_FP64(Op, DAG, true); 2556 } 2557 2558 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2559 bool Signed) const { 2560 SDLoc SL(Op); 2561 2562 SDValue Src = Op.getOperand(0); 2563 2564 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2565 2566 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2567 MVT::f64); 2568 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2569 MVT::f64); 2570 // TODO: Should this propagate fast-math-flags? 2571 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2572 2573 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2574 2575 2576 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2577 2578 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2579 MVT::i32, FloorMul); 2580 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2581 2582 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2583 2584 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2585 } 2586 2587 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2588 SDLoc DL(Op); 2589 SDValue N0 = Op.getOperand(0); 2590 2591 // Convert to target node to get known bits 2592 if (N0.getValueType() == MVT::f32) 2593 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2594 2595 if (getTargetMachine().Options.UnsafeFPMath) { 2596 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2597 return SDValue(); 2598 } 2599 2600 assert(N0.getSimpleValueType() == MVT::f64); 2601 2602 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2603 const unsigned ExpMask = 0x7ff; 2604 const unsigned ExpBiasf64 = 1023; 2605 const unsigned ExpBiasf16 = 15; 2606 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2607 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2608 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2609 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2610 DAG.getConstant(32, DL, MVT::i64)); 2611 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2612 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2613 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2614 DAG.getConstant(20, DL, MVT::i64)); 2615 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2616 DAG.getConstant(ExpMask, DL, MVT::i32)); 2617 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2618 // add the f16 bias (15) to get the biased exponent for the f16 format. 2619 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2620 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2621 2622 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2623 DAG.getConstant(8, DL, MVT::i32)); 2624 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2625 DAG.getConstant(0xffe, DL, MVT::i32)); 2626 2627 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2628 DAG.getConstant(0x1ff, DL, MVT::i32)); 2629 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2630 2631 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2632 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2633 2634 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2635 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2636 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2637 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2638 2639 // N = M | (E << 12); 2640 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2641 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2642 DAG.getConstant(12, DL, MVT::i32))); 2643 2644 // B = clamp(1-E, 0, 13); 2645 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2646 One, E); 2647 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2648 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2649 DAG.getConstant(13, DL, MVT::i32)); 2650 2651 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2652 DAG.getConstant(0x1000, DL, MVT::i32)); 2653 2654 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2655 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2656 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2657 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2658 2659 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2660 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2661 DAG.getConstant(0x7, DL, MVT::i32)); 2662 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2663 DAG.getConstant(2, DL, MVT::i32)); 2664 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2665 One, Zero, ISD::SETEQ); 2666 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2667 One, Zero, ISD::SETGT); 2668 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2669 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2670 2671 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2672 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2673 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2674 I, V, ISD::SETEQ); 2675 2676 // Extract the sign bit. 2677 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2678 DAG.getConstant(16, DL, MVT::i32)); 2679 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2680 DAG.getConstant(0x8000, DL, MVT::i32)); 2681 2682 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2683 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2684 } 2685 2686 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2687 SelectionDAG &DAG) const { 2688 SDValue Src = Op.getOperand(0); 2689 2690 // TODO: Factor out code common with LowerFP_TO_UINT. 2691 2692 EVT SrcVT = Src.getValueType(); 2693 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2694 SDLoc DL(Op); 2695 2696 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2697 SDValue FpToInt32 = 2698 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2699 2700 return FpToInt32; 2701 } 2702 2703 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2704 return LowerFP64_TO_INT(Op, DAG, true); 2705 2706 return SDValue(); 2707 } 2708 2709 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2710 SelectionDAG &DAG) const { 2711 SDValue Src = Op.getOperand(0); 2712 2713 // TODO: Factor out code common with LowerFP_TO_SINT. 2714 2715 EVT SrcVT = Src.getValueType(); 2716 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2717 SDLoc DL(Op); 2718 2719 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2720 SDValue FpToInt32 = 2721 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2722 2723 return FpToInt32; 2724 } 2725 2726 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2727 return LowerFP64_TO_INT(Op, DAG, false); 2728 2729 return SDValue(); 2730 } 2731 2732 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2733 SelectionDAG &DAG) const { 2734 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2735 MVT VT = Op.getSimpleValueType(); 2736 MVT ScalarVT = VT.getScalarType(); 2737 2738 assert(VT.isVector()); 2739 2740 SDValue Src = Op.getOperand(0); 2741 SDLoc DL(Op); 2742 2743 // TODO: Don't scalarize on Evergreen? 2744 unsigned NElts = VT.getVectorNumElements(); 2745 SmallVector<SDValue, 8> Args; 2746 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2747 2748 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2749 for (unsigned I = 0; I < NElts; ++I) 2750 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2751 2752 return DAG.getBuildVector(VT, DL, Args); 2753 } 2754 2755 //===----------------------------------------------------------------------===// 2756 // Custom DAG optimizations 2757 //===----------------------------------------------------------------------===// 2758 2759 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2760 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2761 } 2762 2763 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2764 EVT VT = Op.getValueType(); 2765 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2766 // as unsigned 24-bit values. 2767 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2768 } 2769 2770 static SDValue simplifyI24(SDNode *Node24, 2771 TargetLowering::DAGCombinerInfo &DCI) { 2772 SelectionDAG &DAG = DCI.DAG; 2773 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2774 2775 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2776 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2777 unsigned NewOpcode = Node24->getOpcode(); 2778 if (IsIntrin) { 2779 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2780 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2781 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2782 } 2783 2784 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2785 2786 // First try to simplify using GetDemandedBits which allows the operands to 2787 // have other uses, but will only perform simplifications that involve 2788 // bypassing some nodes for this user. 2789 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2790 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2791 if (DemandedLHS || DemandedRHS) 2792 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2793 DemandedLHS ? DemandedLHS : LHS, 2794 DemandedRHS ? DemandedRHS : RHS); 2795 2796 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2797 // operands if this node is the only user. 2798 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2799 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2800 return SDValue(Node24, 0); 2801 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2802 return SDValue(Node24, 0); 2803 2804 return SDValue(); 2805 } 2806 2807 template <typename IntTy> 2808 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2809 uint32_t Width, const SDLoc &DL) { 2810 if (Width + Offset < 32) { 2811 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2812 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2813 return DAG.getConstant(Result, DL, MVT::i32); 2814 } 2815 2816 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2817 } 2818 2819 static bool hasVolatileUser(SDNode *Val) { 2820 for (SDNode *U : Val->uses()) { 2821 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2822 if (M->isVolatile()) 2823 return true; 2824 } 2825 } 2826 2827 return false; 2828 } 2829 2830 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2831 // i32 vectors are the canonical memory type. 2832 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2833 return false; 2834 2835 if (!VT.isByteSized()) 2836 return false; 2837 2838 unsigned Size = VT.getStoreSize(); 2839 2840 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2841 return false; 2842 2843 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2844 return false; 2845 2846 return true; 2847 } 2848 2849 // Replace load of an illegal type with a store of a bitcast to a friendlier 2850 // type. 2851 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2852 DAGCombinerInfo &DCI) const { 2853 if (!DCI.isBeforeLegalize()) 2854 return SDValue(); 2855 2856 LoadSDNode *LN = cast<LoadSDNode>(N); 2857 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2858 return SDValue(); 2859 2860 SDLoc SL(N); 2861 SelectionDAG &DAG = DCI.DAG; 2862 EVT VT = LN->getMemoryVT(); 2863 2864 unsigned Size = VT.getStoreSize(); 2865 unsigned Align = LN->getAlignment(); 2866 if (Align < Size && isTypeLegal(VT)) { 2867 bool IsFast; 2868 unsigned AS = LN->getAddressSpace(); 2869 2870 // Expand unaligned loads earlier than legalization. Due to visitation order 2871 // problems during legalization, the emitted instructions to pack and unpack 2872 // the bytes again are not eliminated in the case of an unaligned copy. 2873 if (!allowsMisalignedMemoryAccesses( 2874 VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { 2875 SDValue Ops[2]; 2876 2877 if (VT.isVector()) 2878 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2879 else 2880 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2881 2882 return DAG.getMergeValues(Ops, SDLoc(N)); 2883 } 2884 2885 if (!IsFast) 2886 return SDValue(); 2887 } 2888 2889 if (!shouldCombineMemoryType(VT)) 2890 return SDValue(); 2891 2892 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2893 2894 SDValue NewLoad 2895 = DAG.getLoad(NewVT, SL, LN->getChain(), 2896 LN->getBasePtr(), LN->getMemOperand()); 2897 2898 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2899 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2900 return SDValue(N, 0); 2901 } 2902 2903 // Replace store of an illegal type with a store of a bitcast to a friendlier 2904 // type. 2905 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2906 DAGCombinerInfo &DCI) const { 2907 if (!DCI.isBeforeLegalize()) 2908 return SDValue(); 2909 2910 StoreSDNode *SN = cast<StoreSDNode>(N); 2911 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2912 return SDValue(); 2913 2914 EVT VT = SN->getMemoryVT(); 2915 unsigned Size = VT.getStoreSize(); 2916 2917 SDLoc SL(N); 2918 SelectionDAG &DAG = DCI.DAG; 2919 unsigned Align = SN->getAlignment(); 2920 if (Align < Size && isTypeLegal(VT)) { 2921 bool IsFast; 2922 unsigned AS = SN->getAddressSpace(); 2923 2924 // Expand unaligned stores earlier than legalization. Due to visitation 2925 // order problems during legalization, the emitted instructions to pack and 2926 // unpack the bytes again are not eliminated in the case of an unaligned 2927 // copy. 2928 if (!allowsMisalignedMemoryAccesses( 2929 VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { 2930 if (VT.isVector()) 2931 return scalarizeVectorStore(SN, DAG); 2932 2933 return expandUnalignedStore(SN, DAG); 2934 } 2935 2936 if (!IsFast) 2937 return SDValue(); 2938 } 2939 2940 if (!shouldCombineMemoryType(VT)) 2941 return SDValue(); 2942 2943 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2944 SDValue Val = SN->getValue(); 2945 2946 //DCI.AddToWorklist(Val.getNode()); 2947 2948 bool OtherUses = !Val.hasOneUse(); 2949 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2950 if (OtherUses) { 2951 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2952 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2953 } 2954 2955 return DAG.getStore(SN->getChain(), SL, CastVal, 2956 SN->getBasePtr(), SN->getMemOperand()); 2957 } 2958 2959 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2960 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2961 // issues. 2962 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2963 DAGCombinerInfo &DCI) const { 2964 SelectionDAG &DAG = DCI.DAG; 2965 SDValue N0 = N->getOperand(0); 2966 2967 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2968 // (vt2 (truncate (assertzext vt0:x, vt1))) 2969 if (N0.getOpcode() == ISD::TRUNCATE) { 2970 SDValue N1 = N->getOperand(1); 2971 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2972 SDLoc SL(N); 2973 2974 SDValue Src = N0.getOperand(0); 2975 EVT SrcVT = Src.getValueType(); 2976 if (SrcVT.bitsGE(ExtVT)) { 2977 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2978 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2979 } 2980 } 2981 2982 return SDValue(); 2983 } 2984 2985 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 2986 SDNode *N, DAGCombinerInfo &DCI) const { 2987 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2988 switch (IID) { 2989 case Intrinsic::amdgcn_mul_i24: 2990 case Intrinsic::amdgcn_mul_u24: 2991 return simplifyI24(N, DCI); 2992 default: 2993 return SDValue(); 2994 } 2995 } 2996 2997 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2998 /// binary operation \p Opc to it with the corresponding constant operands. 2999 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3000 DAGCombinerInfo &DCI, const SDLoc &SL, 3001 unsigned Opc, SDValue LHS, 3002 uint32_t ValLo, uint32_t ValHi) const { 3003 SelectionDAG &DAG = DCI.DAG; 3004 SDValue Lo, Hi; 3005 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3006 3007 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3008 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3009 3010 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3011 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3012 3013 // Re-visit the ands. It's possible we eliminated one of them and it could 3014 // simplify the vector. 3015 DCI.AddToWorklist(Lo.getNode()); 3016 DCI.AddToWorklist(Hi.getNode()); 3017 3018 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3019 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3020 } 3021 3022 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3023 DAGCombinerInfo &DCI) const { 3024 EVT VT = N->getValueType(0); 3025 3026 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3027 if (!RHS) 3028 return SDValue(); 3029 3030 SDValue LHS = N->getOperand(0); 3031 unsigned RHSVal = RHS->getZExtValue(); 3032 if (!RHSVal) 3033 return LHS; 3034 3035 SDLoc SL(N); 3036 SelectionDAG &DAG = DCI.DAG; 3037 3038 switch (LHS->getOpcode()) { 3039 default: 3040 break; 3041 case ISD::ZERO_EXTEND: 3042 case ISD::SIGN_EXTEND: 3043 case ISD::ANY_EXTEND: { 3044 SDValue X = LHS->getOperand(0); 3045 3046 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3047 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3048 // Prefer build_vector as the canonical form if packed types are legal. 3049 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3050 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3051 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3052 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3053 } 3054 3055 // shl (ext x) => zext (shl x), if shift does not overflow int 3056 if (VT != MVT::i64) 3057 break; 3058 KnownBits Known = DAG.computeKnownBits(X); 3059 unsigned LZ = Known.countMinLeadingZeros(); 3060 if (LZ < RHSVal) 3061 break; 3062 EVT XVT = X.getValueType(); 3063 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3064 return DAG.getZExtOrTrunc(Shl, SL, VT); 3065 } 3066 } 3067 3068 if (VT != MVT::i64) 3069 return SDValue(); 3070 3071 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3072 3073 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3074 // common case, splitting this into a move and a 32-bit shift is faster and 3075 // the same code size. 3076 if (RHSVal < 32) 3077 return SDValue(); 3078 3079 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3080 3081 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3082 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3083 3084 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3085 3086 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3087 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3088 } 3089 3090 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3091 DAGCombinerInfo &DCI) const { 3092 if (N->getValueType(0) != MVT::i64) 3093 return SDValue(); 3094 3095 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3096 if (!RHS) 3097 return SDValue(); 3098 3099 SelectionDAG &DAG = DCI.DAG; 3100 SDLoc SL(N); 3101 unsigned RHSVal = RHS->getZExtValue(); 3102 3103 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3104 if (RHSVal == 32) { 3105 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3106 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3107 DAG.getConstant(31, SL, MVT::i32)); 3108 3109 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3110 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3111 } 3112 3113 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3114 if (RHSVal == 63) { 3115 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3116 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3117 DAG.getConstant(31, SL, MVT::i32)); 3118 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3119 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3120 } 3121 3122 return SDValue(); 3123 } 3124 3125 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3126 DAGCombinerInfo &DCI) const { 3127 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3128 if (!RHS) 3129 return SDValue(); 3130 3131 EVT VT = N->getValueType(0); 3132 SDValue LHS = N->getOperand(0); 3133 unsigned ShiftAmt = RHS->getZExtValue(); 3134 SelectionDAG &DAG = DCI.DAG; 3135 SDLoc SL(N); 3136 3137 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3138 // this improves the ability to match BFE patterns in isel. 3139 if (LHS.getOpcode() == ISD::AND) { 3140 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3141 if (Mask->getAPIntValue().isShiftedMask() && 3142 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3143 return DAG.getNode( 3144 ISD::AND, SL, VT, 3145 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3146 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3147 } 3148 } 3149 } 3150 3151 if (VT != MVT::i64) 3152 return SDValue(); 3153 3154 if (ShiftAmt < 32) 3155 return SDValue(); 3156 3157 // srl i64:x, C for C >= 32 3158 // => 3159 // build_pair (srl hi_32(x), C - 32), 0 3160 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3161 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3162 3163 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3164 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3165 3166 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3167 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3168 3169 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3170 3171 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3172 } 3173 3174 SDValue AMDGPUTargetLowering::performTruncateCombine( 3175 SDNode *N, DAGCombinerInfo &DCI) const { 3176 SDLoc SL(N); 3177 SelectionDAG &DAG = DCI.DAG; 3178 EVT VT = N->getValueType(0); 3179 SDValue Src = N->getOperand(0); 3180 3181 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3182 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3183 SDValue Vec = Src.getOperand(0); 3184 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3185 SDValue Elt0 = Vec.getOperand(0); 3186 EVT EltVT = Elt0.getValueType(); 3187 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3188 if (EltVT.isFloatingPoint()) { 3189 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3190 EltVT.changeTypeToInteger(), Elt0); 3191 } 3192 3193 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3194 } 3195 } 3196 } 3197 3198 // Equivalent of above for accessing the high element of a vector as an 3199 // integer operation. 3200 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3201 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3202 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3203 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3204 SDValue BV = stripBitcast(Src.getOperand(0)); 3205 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3206 BV.getValueType().getVectorNumElements() == 2) { 3207 SDValue SrcElt = BV.getOperand(1); 3208 EVT SrcEltVT = SrcElt.getValueType(); 3209 if (SrcEltVT.isFloatingPoint()) { 3210 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3211 SrcEltVT.changeTypeToInteger(), SrcElt); 3212 } 3213 3214 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3215 } 3216 } 3217 } 3218 } 3219 3220 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3221 // 3222 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3223 // i16 (trunc (srl (i32 (trunc x), K))) 3224 if (VT.getScalarSizeInBits() < 32) { 3225 EVT SrcVT = Src.getValueType(); 3226 if (SrcVT.getScalarSizeInBits() > 32 && 3227 (Src.getOpcode() == ISD::SRL || 3228 Src.getOpcode() == ISD::SRA || 3229 Src.getOpcode() == ISD::SHL)) { 3230 SDValue Amt = Src.getOperand(1); 3231 KnownBits Known = DAG.computeKnownBits(Amt); 3232 unsigned Size = VT.getScalarSizeInBits(); 3233 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3234 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3235 EVT MidVT = VT.isVector() ? 3236 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3237 VT.getVectorNumElements()) : MVT::i32; 3238 3239 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3240 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3241 Src.getOperand(0)); 3242 DCI.AddToWorklist(Trunc.getNode()); 3243 3244 if (Amt.getValueType() != NewShiftVT) { 3245 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3246 DCI.AddToWorklist(Amt.getNode()); 3247 } 3248 3249 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3250 Trunc, Amt); 3251 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3252 } 3253 } 3254 } 3255 3256 return SDValue(); 3257 } 3258 3259 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3260 // instructions. If we only match on the legalized i64 mul expansion, 3261 // SimplifyDemandedBits will be unable to remove them because there will be 3262 // multiple uses due to the separate mul + mulh[su]. 3263 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3264 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3265 if (Size <= 32) { 3266 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3267 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3268 } 3269 3270 // Because we want to eliminate extension instructions before the 3271 // operation, we need to create a single user here (i.e. not the separate 3272 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3273 3274 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3275 3276 SDValue Mul = DAG.getNode(MulOpc, SL, 3277 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3278 3279 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3280 Mul.getValue(0), Mul.getValue(1)); 3281 } 3282 3283 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3284 DAGCombinerInfo &DCI) const { 3285 EVT VT = N->getValueType(0); 3286 3287 unsigned Size = VT.getSizeInBits(); 3288 if (VT.isVector() || Size > 64) 3289 return SDValue(); 3290 3291 // There are i16 integer mul/mad. 3292 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3293 return SDValue(); 3294 3295 SelectionDAG &DAG = DCI.DAG; 3296 SDLoc DL(N); 3297 3298 SDValue N0 = N->getOperand(0); 3299 SDValue N1 = N->getOperand(1); 3300 3301 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3302 // in the source into any_extends if the result of the mul is truncated. Since 3303 // we can assume the high bits are whatever we want, use the underlying value 3304 // to avoid the unknown high bits from interfering. 3305 if (N0.getOpcode() == ISD::ANY_EXTEND) 3306 N0 = N0.getOperand(0); 3307 3308 if (N1.getOpcode() == ISD::ANY_EXTEND) 3309 N1 = N1.getOperand(0); 3310 3311 SDValue Mul; 3312 3313 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3314 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3315 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3316 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3317 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3318 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3319 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3320 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3321 } else { 3322 return SDValue(); 3323 } 3324 3325 // We need to use sext even for MUL_U24, because MUL_U24 is used 3326 // for signed multiply of 8 and 16-bit types. 3327 return DAG.getSExtOrTrunc(Mul, DL, VT); 3328 } 3329 3330 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3331 DAGCombinerInfo &DCI) const { 3332 EVT VT = N->getValueType(0); 3333 3334 if (!Subtarget->hasMulI24() || VT.isVector()) 3335 return SDValue(); 3336 3337 SelectionDAG &DAG = DCI.DAG; 3338 SDLoc DL(N); 3339 3340 SDValue N0 = N->getOperand(0); 3341 SDValue N1 = N->getOperand(1); 3342 3343 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3344 return SDValue(); 3345 3346 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3347 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3348 3349 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3350 DCI.AddToWorklist(Mulhi.getNode()); 3351 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3352 } 3353 3354 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3355 DAGCombinerInfo &DCI) const { 3356 EVT VT = N->getValueType(0); 3357 3358 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3359 return SDValue(); 3360 3361 SelectionDAG &DAG = DCI.DAG; 3362 SDLoc DL(N); 3363 3364 SDValue N0 = N->getOperand(0); 3365 SDValue N1 = N->getOperand(1); 3366 3367 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3368 return SDValue(); 3369 3370 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3371 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3372 3373 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3374 DCI.AddToWorklist(Mulhi.getNode()); 3375 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3376 } 3377 3378 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3379 SDNode *N, DAGCombinerInfo &DCI) const { 3380 SelectionDAG &DAG = DCI.DAG; 3381 3382 // Simplify demanded bits before splitting into multiple users. 3383 if (SDValue V = simplifyI24(N, DCI)) 3384 return V; 3385 3386 SDValue N0 = N->getOperand(0); 3387 SDValue N1 = N->getOperand(1); 3388 3389 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3390 3391 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3392 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3393 3394 SDLoc SL(N); 3395 3396 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3397 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3398 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3399 } 3400 3401 static bool isNegativeOne(SDValue Val) { 3402 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3403 return C->isAllOnesValue(); 3404 return false; 3405 } 3406 3407 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3408 SDValue Op, 3409 const SDLoc &DL, 3410 unsigned Opc) const { 3411 EVT VT = Op.getValueType(); 3412 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3413 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3414 LegalVT != MVT::i16)) 3415 return SDValue(); 3416 3417 if (VT != MVT::i32) 3418 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3419 3420 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3421 if (VT != MVT::i32) 3422 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3423 3424 return FFBX; 3425 } 3426 3427 // The native instructions return -1 on 0 input. Optimize out a select that 3428 // produces -1 on 0. 3429 // 3430 // TODO: If zero is not undef, we could also do this if the output is compared 3431 // against the bitwidth. 3432 // 3433 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3434 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3435 SDValue LHS, SDValue RHS, 3436 DAGCombinerInfo &DCI) const { 3437 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3438 if (!CmpRhs || !CmpRhs->isNullValue()) 3439 return SDValue(); 3440 3441 SelectionDAG &DAG = DCI.DAG; 3442 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3443 SDValue CmpLHS = Cond.getOperand(0); 3444 3445 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3446 AMDGPUISD::FFBH_U32; 3447 3448 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3449 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3450 if (CCOpcode == ISD::SETEQ && 3451 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3452 RHS.getOperand(0) == CmpLHS && 3453 isNegativeOne(LHS)) { 3454 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3455 } 3456 3457 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3458 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3459 if (CCOpcode == ISD::SETNE && 3460 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3461 LHS.getOperand(0) == CmpLHS && 3462 isNegativeOne(RHS)) { 3463 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3464 } 3465 3466 return SDValue(); 3467 } 3468 3469 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3470 unsigned Op, 3471 const SDLoc &SL, 3472 SDValue Cond, 3473 SDValue N1, 3474 SDValue N2) { 3475 SelectionDAG &DAG = DCI.DAG; 3476 EVT VT = N1.getValueType(); 3477 3478 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3479 N1.getOperand(0), N2.getOperand(0)); 3480 DCI.AddToWorklist(NewSelect.getNode()); 3481 return DAG.getNode(Op, SL, VT, NewSelect); 3482 } 3483 3484 // Pull a free FP operation out of a select so it may fold into uses. 3485 // 3486 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3487 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3488 // 3489 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3490 // select c, (fabs x), +k -> fabs (select c, x, k) 3491 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3492 SDValue N) { 3493 SelectionDAG &DAG = DCI.DAG; 3494 SDValue Cond = N.getOperand(0); 3495 SDValue LHS = N.getOperand(1); 3496 SDValue RHS = N.getOperand(2); 3497 3498 EVT VT = N.getValueType(); 3499 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3500 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3501 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3502 SDLoc(N), Cond, LHS, RHS); 3503 } 3504 3505 bool Inv = false; 3506 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3507 std::swap(LHS, RHS); 3508 Inv = true; 3509 } 3510 3511 // TODO: Support vector constants. 3512 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3513 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3514 SDLoc SL(N); 3515 // If one side is an fneg/fabs and the other is a constant, we can push the 3516 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3517 SDValue NewLHS = LHS.getOperand(0); 3518 SDValue NewRHS = RHS; 3519 3520 // Careful: if the neg can be folded up, don't try to pull it back down. 3521 bool ShouldFoldNeg = true; 3522 3523 if (NewLHS.hasOneUse()) { 3524 unsigned Opc = NewLHS.getOpcode(); 3525 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3526 ShouldFoldNeg = false; 3527 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3528 ShouldFoldNeg = false; 3529 } 3530 3531 if (ShouldFoldNeg) { 3532 if (LHS.getOpcode() == ISD::FNEG) 3533 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3534 else if (CRHS->isNegative()) 3535 return SDValue(); 3536 3537 if (Inv) 3538 std::swap(NewLHS, NewRHS); 3539 3540 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3541 Cond, NewLHS, NewRHS); 3542 DCI.AddToWorklist(NewSelect.getNode()); 3543 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3544 } 3545 } 3546 3547 return SDValue(); 3548 } 3549 3550 3551 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3552 DAGCombinerInfo &DCI) const { 3553 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3554 return Folded; 3555 3556 SDValue Cond = N->getOperand(0); 3557 if (Cond.getOpcode() != ISD::SETCC) 3558 return SDValue(); 3559 3560 EVT VT = N->getValueType(0); 3561 SDValue LHS = Cond.getOperand(0); 3562 SDValue RHS = Cond.getOperand(1); 3563 SDValue CC = Cond.getOperand(2); 3564 3565 SDValue True = N->getOperand(1); 3566 SDValue False = N->getOperand(2); 3567 3568 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3569 SelectionDAG &DAG = DCI.DAG; 3570 if (DAG.isConstantValueOfAnyType(True) && 3571 !DAG.isConstantValueOfAnyType(False)) { 3572 // Swap cmp + select pair to move constant to false input. 3573 // This will allow using VOPC cndmasks more often. 3574 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3575 3576 SDLoc SL(N); 3577 ISD::CondCode NewCC = 3578 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3579 3580 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3581 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3582 } 3583 3584 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3585 SDValue MinMax 3586 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3587 // Revisit this node so we can catch min3/max3/med3 patterns. 3588 //DCI.AddToWorklist(MinMax.getNode()); 3589 return MinMax; 3590 } 3591 } 3592 3593 // There's no reason to not do this if the condition has other uses. 3594 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3595 } 3596 3597 static bool isInv2Pi(const APFloat &APF) { 3598 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3599 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3600 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3601 3602 return APF.bitwiseIsEqual(KF16) || 3603 APF.bitwiseIsEqual(KF32) || 3604 APF.bitwiseIsEqual(KF64); 3605 } 3606 3607 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3608 // additional cost to negate them. 3609 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3610 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3611 if (C->isZero() && !C->isNegative()) 3612 return true; 3613 3614 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3615 return true; 3616 } 3617 3618 return false; 3619 } 3620 3621 static unsigned inverseMinMax(unsigned Opc) { 3622 switch (Opc) { 3623 case ISD::FMAXNUM: 3624 return ISD::FMINNUM; 3625 case ISD::FMINNUM: 3626 return ISD::FMAXNUM; 3627 case ISD::FMAXNUM_IEEE: 3628 return ISD::FMINNUM_IEEE; 3629 case ISD::FMINNUM_IEEE: 3630 return ISD::FMAXNUM_IEEE; 3631 case AMDGPUISD::FMAX_LEGACY: 3632 return AMDGPUISD::FMIN_LEGACY; 3633 case AMDGPUISD::FMIN_LEGACY: 3634 return AMDGPUISD::FMAX_LEGACY; 3635 default: 3636 llvm_unreachable("invalid min/max opcode"); 3637 } 3638 } 3639 3640 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3641 DAGCombinerInfo &DCI) const { 3642 SelectionDAG &DAG = DCI.DAG; 3643 SDValue N0 = N->getOperand(0); 3644 EVT VT = N->getValueType(0); 3645 3646 unsigned Opc = N0.getOpcode(); 3647 3648 // If the input has multiple uses and we can either fold the negate down, or 3649 // the other uses cannot, give up. This both prevents unprofitable 3650 // transformations and infinite loops: we won't repeatedly try to fold around 3651 // a negate that has no 'good' form. 3652 if (N0.hasOneUse()) { 3653 // This may be able to fold into the source, but at a code size cost. Don't 3654 // fold if the fold into the user is free. 3655 if (allUsesHaveSourceMods(N, 0)) 3656 return SDValue(); 3657 } else { 3658 if (fnegFoldsIntoOp(Opc) && 3659 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3660 return SDValue(); 3661 } 3662 3663 SDLoc SL(N); 3664 switch (Opc) { 3665 case ISD::FADD: { 3666 if (!mayIgnoreSignedZero(N0)) 3667 return SDValue(); 3668 3669 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3670 SDValue LHS = N0.getOperand(0); 3671 SDValue RHS = N0.getOperand(1); 3672 3673 if (LHS.getOpcode() != ISD::FNEG) 3674 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3675 else 3676 LHS = LHS.getOperand(0); 3677 3678 if (RHS.getOpcode() != ISD::FNEG) 3679 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3680 else 3681 RHS = RHS.getOperand(0); 3682 3683 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3684 if (Res.getOpcode() != ISD::FADD) 3685 return SDValue(); // Op got folded away. 3686 if (!N0.hasOneUse()) 3687 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3688 return Res; 3689 } 3690 case ISD::FMUL: 3691 case AMDGPUISD::FMUL_LEGACY: { 3692 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3693 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3694 SDValue LHS = N0.getOperand(0); 3695 SDValue RHS = N0.getOperand(1); 3696 3697 if (LHS.getOpcode() == ISD::FNEG) 3698 LHS = LHS.getOperand(0); 3699 else if (RHS.getOpcode() == ISD::FNEG) 3700 RHS = RHS.getOperand(0); 3701 else 3702 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3703 3704 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3705 if (Res.getOpcode() != Opc) 3706 return SDValue(); // Op got folded away. 3707 if (!N0.hasOneUse()) 3708 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3709 return Res; 3710 } 3711 case ISD::FMA: 3712 case ISD::FMAD: { 3713 if (!mayIgnoreSignedZero(N0)) 3714 return SDValue(); 3715 3716 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3717 SDValue LHS = N0.getOperand(0); 3718 SDValue MHS = N0.getOperand(1); 3719 SDValue RHS = N0.getOperand(2); 3720 3721 if (LHS.getOpcode() == ISD::FNEG) 3722 LHS = LHS.getOperand(0); 3723 else if (MHS.getOpcode() == ISD::FNEG) 3724 MHS = MHS.getOperand(0); 3725 else 3726 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3727 3728 if (RHS.getOpcode() != ISD::FNEG) 3729 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3730 else 3731 RHS = RHS.getOperand(0); 3732 3733 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3734 if (Res.getOpcode() != Opc) 3735 return SDValue(); // Op got folded away. 3736 if (!N0.hasOneUse()) 3737 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3738 return Res; 3739 } 3740 case ISD::FMAXNUM: 3741 case ISD::FMINNUM: 3742 case ISD::FMAXNUM_IEEE: 3743 case ISD::FMINNUM_IEEE: 3744 case AMDGPUISD::FMAX_LEGACY: 3745 case AMDGPUISD::FMIN_LEGACY: { 3746 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3747 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3748 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3749 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3750 3751 SDValue LHS = N0.getOperand(0); 3752 SDValue RHS = N0.getOperand(1); 3753 3754 // 0 doesn't have a negated inline immediate. 3755 // TODO: This constant check should be generalized to other operations. 3756 if (isConstantCostlierToNegate(RHS)) 3757 return SDValue(); 3758 3759 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3760 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3761 unsigned Opposite = inverseMinMax(Opc); 3762 3763 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3764 if (Res.getOpcode() != Opposite) 3765 return SDValue(); // Op got folded away. 3766 if (!N0.hasOneUse()) 3767 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3768 return Res; 3769 } 3770 case AMDGPUISD::FMED3: { 3771 SDValue Ops[3]; 3772 for (unsigned I = 0; I < 3; ++I) 3773 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3774 3775 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3776 if (Res.getOpcode() != AMDGPUISD::FMED3) 3777 return SDValue(); // Op got folded away. 3778 if (!N0.hasOneUse()) 3779 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3780 return Res; 3781 } 3782 case ISD::FP_EXTEND: 3783 case ISD::FTRUNC: 3784 case ISD::FRINT: 3785 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3786 case ISD::FSIN: 3787 case ISD::FCANONICALIZE: 3788 case AMDGPUISD::RCP: 3789 case AMDGPUISD::RCP_LEGACY: 3790 case AMDGPUISD::RCP_IFLAG: 3791 case AMDGPUISD::SIN_HW: { 3792 SDValue CvtSrc = N0.getOperand(0); 3793 if (CvtSrc.getOpcode() == ISD::FNEG) { 3794 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3795 // (fneg (rcp (fneg x))) -> (rcp x) 3796 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3797 } 3798 3799 if (!N0.hasOneUse()) 3800 return SDValue(); 3801 3802 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3803 // (fneg (rcp x)) -> (rcp (fneg x)) 3804 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3805 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3806 } 3807 case ISD::FP_ROUND: { 3808 SDValue CvtSrc = N0.getOperand(0); 3809 3810 if (CvtSrc.getOpcode() == ISD::FNEG) { 3811 // (fneg (fp_round (fneg x))) -> (fp_round x) 3812 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3813 CvtSrc.getOperand(0), N0.getOperand(1)); 3814 } 3815 3816 if (!N0.hasOneUse()) 3817 return SDValue(); 3818 3819 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3820 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3821 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3822 } 3823 case ISD::FP16_TO_FP: { 3824 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3825 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3826 // Put the fneg back as a legal source operation that can be matched later. 3827 SDLoc SL(N); 3828 3829 SDValue Src = N0.getOperand(0); 3830 EVT SrcVT = Src.getValueType(); 3831 3832 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3833 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3834 DAG.getConstant(0x8000, SL, SrcVT)); 3835 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3836 } 3837 default: 3838 return SDValue(); 3839 } 3840 } 3841 3842 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3843 DAGCombinerInfo &DCI) const { 3844 SelectionDAG &DAG = DCI.DAG; 3845 SDValue N0 = N->getOperand(0); 3846 3847 if (!N0.hasOneUse()) 3848 return SDValue(); 3849 3850 switch (N0.getOpcode()) { 3851 case ISD::FP16_TO_FP: { 3852 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3853 SDLoc SL(N); 3854 SDValue Src = N0.getOperand(0); 3855 EVT SrcVT = Src.getValueType(); 3856 3857 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3858 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3859 DAG.getConstant(0x7fff, SL, SrcVT)); 3860 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3861 } 3862 default: 3863 return SDValue(); 3864 } 3865 } 3866 3867 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3868 DAGCombinerInfo &DCI) const { 3869 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3870 if (!CFP) 3871 return SDValue(); 3872 3873 // XXX - Should this flush denormals? 3874 const APFloat &Val = CFP->getValueAPF(); 3875 APFloat One(Val.getSemantics(), "1.0"); 3876 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3877 } 3878 3879 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3880 DAGCombinerInfo &DCI) const { 3881 SelectionDAG &DAG = DCI.DAG; 3882 SDLoc DL(N); 3883 3884 switch(N->getOpcode()) { 3885 default: 3886 break; 3887 case ISD::BITCAST: { 3888 EVT DestVT = N->getValueType(0); 3889 3890 // Push casts through vector builds. This helps avoid emitting a large 3891 // number of copies when materializing floating point vector constants. 3892 // 3893 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3894 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3895 if (DestVT.isVector()) { 3896 SDValue Src = N->getOperand(0); 3897 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3898 EVT SrcVT = Src.getValueType(); 3899 unsigned NElts = DestVT.getVectorNumElements(); 3900 3901 if (SrcVT.getVectorNumElements() == NElts) { 3902 EVT DestEltVT = DestVT.getVectorElementType(); 3903 3904 SmallVector<SDValue, 8> CastedElts; 3905 SDLoc SL(N); 3906 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3907 SDValue Elt = Src.getOperand(I); 3908 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3909 } 3910 3911 return DAG.getBuildVector(DestVT, SL, CastedElts); 3912 } 3913 } 3914 } 3915 3916 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3917 break; 3918 3919 // Fold bitcasts of constants. 3920 // 3921 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3922 // TODO: Generalize and move to DAGCombiner 3923 SDValue Src = N->getOperand(0); 3924 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3925 if (Src.getValueType() == MVT::i64) { 3926 SDLoc SL(N); 3927 uint64_t CVal = C->getZExtValue(); 3928 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3929 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3930 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3931 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3932 } 3933 } 3934 3935 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3936 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3937 SDLoc SL(N); 3938 uint64_t CVal = Val.getZExtValue(); 3939 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3940 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3941 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3942 3943 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3944 } 3945 3946 break; 3947 } 3948 case ISD::SHL: { 3949 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3950 break; 3951 3952 return performShlCombine(N, DCI); 3953 } 3954 case ISD::SRL: { 3955 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3956 break; 3957 3958 return performSrlCombine(N, DCI); 3959 } 3960 case ISD::SRA: { 3961 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3962 break; 3963 3964 return performSraCombine(N, DCI); 3965 } 3966 case ISD::TRUNCATE: 3967 return performTruncateCombine(N, DCI); 3968 case ISD::MUL: 3969 return performMulCombine(N, DCI); 3970 case ISD::MULHS: 3971 return performMulhsCombine(N, DCI); 3972 case ISD::MULHU: 3973 return performMulhuCombine(N, DCI); 3974 case AMDGPUISD::MUL_I24: 3975 case AMDGPUISD::MUL_U24: 3976 case AMDGPUISD::MULHI_I24: 3977 case AMDGPUISD::MULHI_U24: { 3978 if (SDValue V = simplifyI24(N, DCI)) 3979 return V; 3980 return SDValue(); 3981 } 3982 case AMDGPUISD::MUL_LOHI_I24: 3983 case AMDGPUISD::MUL_LOHI_U24: 3984 return performMulLoHi24Combine(N, DCI); 3985 case ISD::SELECT: 3986 return performSelectCombine(N, DCI); 3987 case ISD::FNEG: 3988 return performFNegCombine(N, DCI); 3989 case ISD::FABS: 3990 return performFAbsCombine(N, DCI); 3991 case AMDGPUISD::BFE_I32: 3992 case AMDGPUISD::BFE_U32: { 3993 assert(!N->getValueType(0).isVector() && 3994 "Vector handling of BFE not implemented"); 3995 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3996 if (!Width) 3997 break; 3998 3999 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4000 if (WidthVal == 0) 4001 return DAG.getConstant(0, DL, MVT::i32); 4002 4003 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4004 if (!Offset) 4005 break; 4006 4007 SDValue BitsFrom = N->getOperand(0); 4008 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4009 4010 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4011 4012 if (OffsetVal == 0) { 4013 // This is already sign / zero extended, so try to fold away extra BFEs. 4014 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4015 4016 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4017 if (OpSignBits >= SignBits) 4018 return BitsFrom; 4019 4020 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4021 if (Signed) { 4022 // This is a sign_extend_inreg. Replace it to take advantage of existing 4023 // DAG Combines. If not eliminated, we will match back to BFE during 4024 // selection. 4025 4026 // TODO: The sext_inreg of extended types ends, although we can could 4027 // handle them in a single BFE. 4028 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4029 DAG.getValueType(SmallVT)); 4030 } 4031 4032 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4033 } 4034 4035 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4036 if (Signed) { 4037 return constantFoldBFE<int32_t>(DAG, 4038 CVal->getSExtValue(), 4039 OffsetVal, 4040 WidthVal, 4041 DL); 4042 } 4043 4044 return constantFoldBFE<uint32_t>(DAG, 4045 CVal->getZExtValue(), 4046 OffsetVal, 4047 WidthVal, 4048 DL); 4049 } 4050 4051 if ((OffsetVal + WidthVal) >= 32 && 4052 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4053 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4054 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4055 BitsFrom, ShiftVal); 4056 } 4057 4058 if (BitsFrom.hasOneUse()) { 4059 APInt Demanded = APInt::getBitsSet(32, 4060 OffsetVal, 4061 OffsetVal + WidthVal); 4062 4063 KnownBits Known; 4064 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4065 !DCI.isBeforeLegalizeOps()); 4066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4067 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4068 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4069 DCI.CommitTargetLoweringOpt(TLO); 4070 } 4071 } 4072 4073 break; 4074 } 4075 case ISD::LOAD: 4076 return performLoadCombine(N, DCI); 4077 case ISD::STORE: 4078 return performStoreCombine(N, DCI); 4079 case AMDGPUISD::RCP: 4080 case AMDGPUISD::RCP_IFLAG: 4081 return performRcpCombine(N, DCI); 4082 case ISD::AssertZext: 4083 case ISD::AssertSext: 4084 return performAssertSZExtCombine(N, DCI); 4085 case ISD::INTRINSIC_WO_CHAIN: 4086 return performIntrinsicWOChainCombine(N, DCI); 4087 } 4088 return SDValue(); 4089 } 4090 4091 //===----------------------------------------------------------------------===// 4092 // Helper functions 4093 //===----------------------------------------------------------------------===// 4094 4095 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4096 const TargetRegisterClass *RC, 4097 unsigned Reg, EVT VT, 4098 const SDLoc &SL, 4099 bool RawReg) const { 4100 MachineFunction &MF = DAG.getMachineFunction(); 4101 MachineRegisterInfo &MRI = MF.getRegInfo(); 4102 unsigned VReg; 4103 4104 if (!MRI.isLiveIn(Reg)) { 4105 VReg = MRI.createVirtualRegister(RC); 4106 MRI.addLiveIn(Reg, VReg); 4107 } else { 4108 VReg = MRI.getLiveInVirtReg(Reg); 4109 } 4110 4111 if (RawReg) 4112 return DAG.getRegister(VReg, VT); 4113 4114 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4115 } 4116 4117 // This may be called multiple times, and nothing prevents creating multiple 4118 // objects at the same offset. See if we already defined this object. 4119 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4120 int64_t Offset) { 4121 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4122 if (MFI.getObjectOffset(I) == Offset) { 4123 assert(MFI.getObjectSize(I) == Size); 4124 return I; 4125 } 4126 } 4127 4128 return MFI.CreateFixedObject(Size, Offset, true); 4129 } 4130 4131 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4132 EVT VT, 4133 const SDLoc &SL, 4134 int64_t Offset) const { 4135 MachineFunction &MF = DAG.getMachineFunction(); 4136 MachineFrameInfo &MFI = MF.getFrameInfo(); 4137 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4138 4139 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4140 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4141 4142 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4143 MachineMemOperand::MODereferenceable | 4144 MachineMemOperand::MOInvariant); 4145 } 4146 4147 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4148 const SDLoc &SL, 4149 SDValue Chain, 4150 SDValue ArgVal, 4151 int64_t Offset) const { 4152 MachineFunction &MF = DAG.getMachineFunction(); 4153 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4154 4155 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4156 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4157 MachineMemOperand::MODereferenceable); 4158 return Store; 4159 } 4160 4161 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4162 const TargetRegisterClass *RC, 4163 EVT VT, const SDLoc &SL, 4164 const ArgDescriptor &Arg) const { 4165 assert(Arg && "Attempting to load missing argument"); 4166 4167 SDValue V = Arg.isRegister() ? 4168 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4169 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4170 4171 if (!Arg.isMasked()) 4172 return V; 4173 4174 unsigned Mask = Arg.getMask(); 4175 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4176 V = DAG.getNode(ISD::SRL, SL, VT, V, 4177 DAG.getShiftAmountConstant(Shift, VT, SL)); 4178 return DAG.getNode(ISD::AND, SL, VT, V, 4179 DAG.getConstant(Mask >> Shift, SL, VT)); 4180 } 4181 4182 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4183 const MachineFunction &MF, const ImplicitParameter Param) const { 4184 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4185 const AMDGPUSubtarget &ST = 4186 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4187 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4188 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4189 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4190 ExplicitArgOffset; 4191 switch (Param) { 4192 case GRID_DIM: 4193 return ArgOffset; 4194 case GRID_OFFSET: 4195 return ArgOffset + 4; 4196 } 4197 llvm_unreachable("unexpected implicit parameter type"); 4198 } 4199 4200 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4201 4202 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4203 switch ((AMDGPUISD::NodeType)Opcode) { 4204 case AMDGPUISD::FIRST_NUMBER: break; 4205 // AMDIL DAG nodes 4206 NODE_NAME_CASE(UMUL); 4207 NODE_NAME_CASE(BRANCH_COND); 4208 4209 // AMDGPU DAG nodes 4210 NODE_NAME_CASE(IF) 4211 NODE_NAME_CASE(ELSE) 4212 NODE_NAME_CASE(LOOP) 4213 NODE_NAME_CASE(CALL) 4214 NODE_NAME_CASE(TC_RETURN) 4215 NODE_NAME_CASE(TRAP) 4216 NODE_NAME_CASE(RET_FLAG) 4217 NODE_NAME_CASE(RETURN_TO_EPILOG) 4218 NODE_NAME_CASE(ENDPGM) 4219 NODE_NAME_CASE(DWORDADDR) 4220 NODE_NAME_CASE(FRACT) 4221 NODE_NAME_CASE(SETCC) 4222 NODE_NAME_CASE(SETREG) 4223 NODE_NAME_CASE(DENORM_MODE) 4224 NODE_NAME_CASE(FMA_W_CHAIN) 4225 NODE_NAME_CASE(FMUL_W_CHAIN) 4226 NODE_NAME_CASE(CLAMP) 4227 NODE_NAME_CASE(COS_HW) 4228 NODE_NAME_CASE(SIN_HW) 4229 NODE_NAME_CASE(FMAX_LEGACY) 4230 NODE_NAME_CASE(FMIN_LEGACY) 4231 NODE_NAME_CASE(FMAX3) 4232 NODE_NAME_CASE(SMAX3) 4233 NODE_NAME_CASE(UMAX3) 4234 NODE_NAME_CASE(FMIN3) 4235 NODE_NAME_CASE(SMIN3) 4236 NODE_NAME_CASE(UMIN3) 4237 NODE_NAME_CASE(FMED3) 4238 NODE_NAME_CASE(SMED3) 4239 NODE_NAME_CASE(UMED3) 4240 NODE_NAME_CASE(FDOT2) 4241 NODE_NAME_CASE(URECIP) 4242 NODE_NAME_CASE(DIV_SCALE) 4243 NODE_NAME_CASE(DIV_FMAS) 4244 NODE_NAME_CASE(DIV_FIXUP) 4245 NODE_NAME_CASE(FMAD_FTZ) 4246 NODE_NAME_CASE(TRIG_PREOP) 4247 NODE_NAME_CASE(RCP) 4248 NODE_NAME_CASE(RSQ) 4249 NODE_NAME_CASE(RCP_LEGACY) 4250 NODE_NAME_CASE(RSQ_LEGACY) 4251 NODE_NAME_CASE(RCP_IFLAG) 4252 NODE_NAME_CASE(FMUL_LEGACY) 4253 NODE_NAME_CASE(RSQ_CLAMP) 4254 NODE_NAME_CASE(LDEXP) 4255 NODE_NAME_CASE(FP_CLASS) 4256 NODE_NAME_CASE(DOT4) 4257 NODE_NAME_CASE(CARRY) 4258 NODE_NAME_CASE(BORROW) 4259 NODE_NAME_CASE(BFE_U32) 4260 NODE_NAME_CASE(BFE_I32) 4261 NODE_NAME_CASE(BFI) 4262 NODE_NAME_CASE(BFM) 4263 NODE_NAME_CASE(FFBH_U32) 4264 NODE_NAME_CASE(FFBH_I32) 4265 NODE_NAME_CASE(FFBL_B32) 4266 NODE_NAME_CASE(MUL_U24) 4267 NODE_NAME_CASE(MUL_I24) 4268 NODE_NAME_CASE(MULHI_U24) 4269 NODE_NAME_CASE(MULHI_I24) 4270 NODE_NAME_CASE(MUL_LOHI_U24) 4271 NODE_NAME_CASE(MUL_LOHI_I24) 4272 NODE_NAME_CASE(MAD_U24) 4273 NODE_NAME_CASE(MAD_I24) 4274 NODE_NAME_CASE(MAD_I64_I32) 4275 NODE_NAME_CASE(MAD_U64_U32) 4276 NODE_NAME_CASE(PERM) 4277 NODE_NAME_CASE(TEXTURE_FETCH) 4278 NODE_NAME_CASE(EXPORT) 4279 NODE_NAME_CASE(EXPORT_DONE) 4280 NODE_NAME_CASE(R600_EXPORT) 4281 NODE_NAME_CASE(CONST_ADDRESS) 4282 NODE_NAME_CASE(REGISTER_LOAD) 4283 NODE_NAME_CASE(REGISTER_STORE) 4284 NODE_NAME_CASE(SAMPLE) 4285 NODE_NAME_CASE(SAMPLEB) 4286 NODE_NAME_CASE(SAMPLED) 4287 NODE_NAME_CASE(SAMPLEL) 4288 NODE_NAME_CASE(CVT_F32_UBYTE0) 4289 NODE_NAME_CASE(CVT_F32_UBYTE1) 4290 NODE_NAME_CASE(CVT_F32_UBYTE2) 4291 NODE_NAME_CASE(CVT_F32_UBYTE3) 4292 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4293 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4294 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4295 NODE_NAME_CASE(CVT_PK_I16_I32) 4296 NODE_NAME_CASE(CVT_PK_U16_U32) 4297 NODE_NAME_CASE(FP_TO_FP16) 4298 NODE_NAME_CASE(FP16_ZEXT) 4299 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4300 NODE_NAME_CASE(CONST_DATA_PTR) 4301 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4302 NODE_NAME_CASE(LDS) 4303 NODE_NAME_CASE(KILL) 4304 NODE_NAME_CASE(DUMMY_CHAIN) 4305 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4306 NODE_NAME_CASE(INTERP_P1LL_F16) 4307 NODE_NAME_CASE(INTERP_P1LV_F16) 4308 NODE_NAME_CASE(INTERP_P2_F16) 4309 NODE_NAME_CASE(LOAD_D16_HI) 4310 NODE_NAME_CASE(LOAD_D16_LO) 4311 NODE_NAME_CASE(LOAD_D16_HI_I8) 4312 NODE_NAME_CASE(LOAD_D16_HI_U8) 4313 NODE_NAME_CASE(LOAD_D16_LO_I8) 4314 NODE_NAME_CASE(LOAD_D16_LO_U8) 4315 NODE_NAME_CASE(STORE_MSKOR) 4316 NODE_NAME_CASE(LOAD_CONSTANT) 4317 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4318 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4319 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4320 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4321 NODE_NAME_CASE(DS_ORDERED_COUNT) 4322 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4323 NODE_NAME_CASE(ATOMIC_INC) 4324 NODE_NAME_CASE(ATOMIC_DEC) 4325 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4326 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4327 NODE_NAME_CASE(BUFFER_LOAD) 4328 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4329 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4330 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4331 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4332 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4333 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4334 NODE_NAME_CASE(SBUFFER_LOAD) 4335 NODE_NAME_CASE(BUFFER_STORE) 4336 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4337 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4338 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4339 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4340 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4341 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4342 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4343 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4344 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4345 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4346 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4347 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4348 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4349 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4350 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4351 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4352 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4353 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4354 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) 4355 NODE_NAME_CASE(ATOMIC_PK_FADD) 4356 4357 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4358 } 4359 return nullptr; 4360 } 4361 4362 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4363 SelectionDAG &DAG, int Enabled, 4364 int &RefinementSteps, 4365 bool &UseOneConstNR, 4366 bool Reciprocal) const { 4367 EVT VT = Operand.getValueType(); 4368 4369 if (VT == MVT::f32) { 4370 RefinementSteps = 0; 4371 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4372 } 4373 4374 // TODO: There is also f64 rsq instruction, but the documentation is less 4375 // clear on its precision. 4376 4377 return SDValue(); 4378 } 4379 4380 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4381 SelectionDAG &DAG, int Enabled, 4382 int &RefinementSteps) const { 4383 EVT VT = Operand.getValueType(); 4384 4385 if (VT == MVT::f32) { 4386 // Reciprocal, < 1 ulp error. 4387 // 4388 // This reciprocal approximation converges to < 0.5 ulp error with one 4389 // newton rhapson performed with two fused multiple adds (FMAs). 4390 4391 RefinementSteps = 0; 4392 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4393 } 4394 4395 // TODO: There is also f64 rcp instruction, but the documentation is less 4396 // clear on its precision. 4397 4398 return SDValue(); 4399 } 4400 4401 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4402 const SDValue Op, KnownBits &Known, 4403 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4404 4405 Known.resetAll(); // Don't know anything. 4406 4407 unsigned Opc = Op.getOpcode(); 4408 4409 switch (Opc) { 4410 default: 4411 break; 4412 case AMDGPUISD::CARRY: 4413 case AMDGPUISD::BORROW: { 4414 Known.Zero = APInt::getHighBitsSet(32, 31); 4415 break; 4416 } 4417 4418 case AMDGPUISD::BFE_I32: 4419 case AMDGPUISD::BFE_U32: { 4420 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4421 if (!CWidth) 4422 return; 4423 4424 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4425 4426 if (Opc == AMDGPUISD::BFE_U32) 4427 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4428 4429 break; 4430 } 4431 case AMDGPUISD::FP_TO_FP16: 4432 case AMDGPUISD::FP16_ZEXT: { 4433 unsigned BitWidth = Known.getBitWidth(); 4434 4435 // High bits are zero. 4436 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4437 break; 4438 } 4439 case AMDGPUISD::MUL_U24: 4440 case AMDGPUISD::MUL_I24: { 4441 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4442 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4443 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4444 RHSKnown.countMinTrailingZeros(); 4445 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4446 // Skip extra check if all bits are known zeros. 4447 if (TrailZ >= 32) 4448 break; 4449 4450 // Truncate to 24 bits. 4451 LHSKnown = LHSKnown.trunc(24); 4452 RHSKnown = RHSKnown.trunc(24); 4453 4454 if (Opc == AMDGPUISD::MUL_I24) { 4455 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4456 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4457 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4458 if (MaxValBits >= 32) 4459 break; 4460 bool LHSNegative = LHSKnown.isNegative(); 4461 bool LHSNonNegative = LHSKnown.isNonNegative(); 4462 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4463 bool RHSNegative = RHSKnown.isNegative(); 4464 bool RHSNonNegative = RHSKnown.isNonNegative(); 4465 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4466 4467 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4468 Known.Zero.setHighBits(32 - MaxValBits); 4469 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4470 Known.One.setHighBits(32 - MaxValBits); 4471 } else { 4472 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4473 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4474 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4475 if (MaxValBits >= 32) 4476 break; 4477 Known.Zero.setHighBits(32 - MaxValBits); 4478 } 4479 break; 4480 } 4481 case AMDGPUISD::PERM: { 4482 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4483 if (!CMask) 4484 return; 4485 4486 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4487 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4488 unsigned Sel = CMask->getZExtValue(); 4489 4490 for (unsigned I = 0; I < 32; I += 8) { 4491 unsigned SelBits = Sel & 0xff; 4492 if (SelBits < 4) { 4493 SelBits *= 8; 4494 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4495 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4496 } else if (SelBits < 7) { 4497 SelBits = (SelBits & 3) * 8; 4498 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4499 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4500 } else if (SelBits == 0x0c) { 4501 Known.Zero |= 0xFFull << I; 4502 } else if (SelBits > 0x0c) { 4503 Known.One |= 0xFFull << I; 4504 } 4505 Sel >>= 8; 4506 } 4507 break; 4508 } 4509 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4510 Known.Zero.setHighBits(24); 4511 break; 4512 } 4513 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4514 Known.Zero.setHighBits(16); 4515 break; 4516 } 4517 case AMDGPUISD::LDS: { 4518 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4519 unsigned Align = GA->getGlobal()->getAlignment(); 4520 4521 Known.Zero.setHighBits(16); 4522 if (Align) 4523 Known.Zero.setLowBits(Log2_32(Align)); 4524 break; 4525 } 4526 case ISD::INTRINSIC_WO_CHAIN: { 4527 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4528 switch (IID) { 4529 case Intrinsic::amdgcn_mbcnt_lo: 4530 case Intrinsic::amdgcn_mbcnt_hi: { 4531 const GCNSubtarget &ST = 4532 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4533 // These return at most the wavefront size - 1. 4534 unsigned Size = Op.getValueType().getSizeInBits(); 4535 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4536 break; 4537 } 4538 default: 4539 break; 4540 } 4541 } 4542 } 4543 } 4544 4545 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4546 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4547 unsigned Depth) const { 4548 switch (Op.getOpcode()) { 4549 case AMDGPUISD::BFE_I32: { 4550 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4551 if (!Width) 4552 return 1; 4553 4554 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4555 if (!isNullConstant(Op.getOperand(1))) 4556 return SignBits; 4557 4558 // TODO: Could probably figure something out with non-0 offsets. 4559 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4560 return std::max(SignBits, Op0SignBits); 4561 } 4562 4563 case AMDGPUISD::BFE_U32: { 4564 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4565 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4566 } 4567 4568 case AMDGPUISD::CARRY: 4569 case AMDGPUISD::BORROW: 4570 return 31; 4571 case AMDGPUISD::BUFFER_LOAD_BYTE: 4572 return 25; 4573 case AMDGPUISD::BUFFER_LOAD_SHORT: 4574 return 17; 4575 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4576 return 24; 4577 case AMDGPUISD::BUFFER_LOAD_USHORT: 4578 return 16; 4579 case AMDGPUISD::FP_TO_FP16: 4580 case AMDGPUISD::FP16_ZEXT: 4581 return 16; 4582 default: 4583 return 1; 4584 } 4585 } 4586 4587 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4588 const SelectionDAG &DAG, 4589 bool SNaN, 4590 unsigned Depth) const { 4591 unsigned Opcode = Op.getOpcode(); 4592 switch (Opcode) { 4593 case AMDGPUISD::FMIN_LEGACY: 4594 case AMDGPUISD::FMAX_LEGACY: { 4595 if (SNaN) 4596 return true; 4597 4598 // TODO: Can check no nans on one of the operands for each one, but which 4599 // one? 4600 return false; 4601 } 4602 case AMDGPUISD::FMUL_LEGACY: 4603 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4604 if (SNaN) 4605 return true; 4606 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4607 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4608 } 4609 case AMDGPUISD::FMED3: 4610 case AMDGPUISD::FMIN3: 4611 case AMDGPUISD::FMAX3: 4612 case AMDGPUISD::FMAD_FTZ: { 4613 if (SNaN) 4614 return true; 4615 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4616 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4617 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4618 } 4619 case AMDGPUISD::CVT_F32_UBYTE0: 4620 case AMDGPUISD::CVT_F32_UBYTE1: 4621 case AMDGPUISD::CVT_F32_UBYTE2: 4622 case AMDGPUISD::CVT_F32_UBYTE3: 4623 return true; 4624 4625 case AMDGPUISD::RCP: 4626 case AMDGPUISD::RSQ: 4627 case AMDGPUISD::RCP_LEGACY: 4628 case AMDGPUISD::RSQ_LEGACY: 4629 case AMDGPUISD::RSQ_CLAMP: { 4630 if (SNaN) 4631 return true; 4632 4633 // TODO: Need is known positive check. 4634 return false; 4635 } 4636 case AMDGPUISD::LDEXP: 4637 case AMDGPUISD::FRACT: { 4638 if (SNaN) 4639 return true; 4640 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4641 } 4642 case AMDGPUISD::DIV_SCALE: 4643 case AMDGPUISD::DIV_FMAS: 4644 case AMDGPUISD::DIV_FIXUP: 4645 case AMDGPUISD::TRIG_PREOP: 4646 // TODO: Refine on operands. 4647 return SNaN; 4648 case AMDGPUISD::SIN_HW: 4649 case AMDGPUISD::COS_HW: { 4650 // TODO: Need check for infinity 4651 return SNaN; 4652 } 4653 case ISD::INTRINSIC_WO_CHAIN: { 4654 unsigned IntrinsicID 4655 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4656 // TODO: Handle more intrinsics 4657 switch (IntrinsicID) { 4658 case Intrinsic::amdgcn_cubeid: 4659 return true; 4660 4661 case Intrinsic::amdgcn_frexp_mant: { 4662 if (SNaN) 4663 return true; 4664 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4665 } 4666 case Intrinsic::amdgcn_cvt_pkrtz: { 4667 if (SNaN) 4668 return true; 4669 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4670 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4671 } 4672 case Intrinsic::amdgcn_fdot2: 4673 // TODO: Refine on operand 4674 return SNaN; 4675 default: 4676 return false; 4677 } 4678 } 4679 default: 4680 return false; 4681 } 4682 } 4683 4684 TargetLowering::AtomicExpansionKind 4685 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4686 switch (RMW->getOperation()) { 4687 case AtomicRMWInst::Nand: 4688 case AtomicRMWInst::FAdd: 4689 case AtomicRMWInst::FSub: 4690 return AtomicExpansionKind::CmpXChg; 4691 default: 4692 return AtomicExpansionKind::None; 4693 } 4694 } 4695