1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define AMDGPU_LOG2E_F     1.44269504088896340735992468100189214f
16 #define AMDGPU_LN2_F       0.693147180559945309417232121458176568f
17 #define AMDGPU_LN10_F      2.30258509299404568401799145468436421f
18 
19 #include "AMDGPUISelLowering.h"
20 #include "AMDGPU.h"
21 #include "AMDGPUCallLowering.h"
22 #include "AMDGPUFrameLowering.h"
23 #include "AMDGPURegisterInfo.h"
24 #include "AMDGPUSubtarget.h"
25 #include "AMDGPUTargetMachine.h"
26 #include "Utils/AMDGPUBaseInfo.h"
27 #include "R600MachineFunctionInfo.h"
28 #include "SIInstrInfo.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/Support/KnownBits.h"
40 using namespace llvm;
41 
42 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
43                            CCValAssign::LocInfo LocInfo,
44                            ISD::ArgFlagsTy ArgFlags, CCState &State,
45                            const TargetRegisterClass *RC,
46                            unsigned NumRegs) {
47   ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs);
48   unsigned RegResult = State.AllocateReg(RegList);
49   if (RegResult == AMDGPU::NoRegister)
50     return false;
51 
52   State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo));
53   return true;
54 }
55 
56 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
57                               CCValAssign::LocInfo LocInfo,
58                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
59   switch (LocVT.SimpleTy) {
60   case MVT::i64:
61   case MVT::f64:
62   case MVT::v2i32:
63   case MVT::v2f32:
64   case MVT::v4i16:
65   case MVT::v4f16: {
66     // Up to SGPR0-SGPR105
67     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
68                           &AMDGPU::SGPR_64RegClass, 53);
69   }
70   default:
71     return false;
72   }
73 }
74 
75 // Allocate up to VGPR31.
76 //
77 // TODO: Since there are no VGPR alignent requirements would it be better to
78 // split into individual scalar registers?
79 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
80                               CCValAssign::LocInfo LocInfo,
81                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
82   switch (LocVT.SimpleTy) {
83   case MVT::i64:
84   case MVT::f64:
85   case MVT::v2i32:
86   case MVT::v2f32:
87   case MVT::v4i16:
88   case MVT::v4f16: {
89     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
90                           &AMDGPU::VReg_64RegClass, 31);
91   }
92   case MVT::v4i32:
93   case MVT::v4f32:
94   case MVT::v2i64:
95   case MVT::v2f64: {
96     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
97                           &AMDGPU::VReg_128RegClass, 29);
98   }
99   case MVT::v8i32:
100   case MVT::v8f32: {
101     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
102                           &AMDGPU::VReg_256RegClass, 25);
103 
104   }
105   case MVT::v16i32:
106   case MVT::v16f32: {
107     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
108                           &AMDGPU::VReg_512RegClass, 17);
109 
110   }
111   default:
112     return false;
113   }
114 }
115 
116 #include "AMDGPUGenCallingConv.inc"
117 
118 // Find a larger type to do a load / store of a vector with.
119 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
120   unsigned StoreSize = VT.getStoreSizeInBits();
121   if (StoreSize <= 32)
122     return EVT::getIntegerVT(Ctx, StoreSize);
123 
124   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
125   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
126 }
127 
128 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
129   EVT VT = Op.getValueType();
130   KnownBits Known = DAG.computeKnownBits(Op);
131   return VT.getSizeInBits() - Known.countMinLeadingZeros();
132 }
133 
134 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
135   EVT VT = Op.getValueType();
136 
137   // In order for this to be a signed 24-bit value, bit 23, must
138   // be a sign bit.
139   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
140 }
141 
142 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
143                                            const AMDGPUSubtarget &STI)
144     : TargetLowering(TM), Subtarget(&STI) {
145   // Lower floating point store/load to integer store/load to reduce the number
146   // of patterns in tablegen.
147   setOperationAction(ISD::LOAD, MVT::f32, Promote);
148   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
149 
150   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
151   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
152 
153   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
154   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
155 
156   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
157   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
158 
159   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
160   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
161 
162   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
163   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
164 
165   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
166   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
167 
168   setOperationAction(ISD::LOAD, MVT::i64, Promote);
169   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
170 
171   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
172   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
173 
174   setOperationAction(ISD::LOAD, MVT::f64, Promote);
175   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
176 
177   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
178   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
179 
180   // There are no 64-bit extloads. These should be done as a 32-bit extload and
181   // an extension to 64-bit.
182   for (MVT VT : MVT::integer_valuetypes()) {
183     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
184     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
185     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
186   }
187 
188   for (MVT VT : MVT::integer_valuetypes()) {
189     if (VT == MVT::i64)
190       continue;
191 
192     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
193     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
194     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
195     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
196 
197     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
198     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
199     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
200     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
201 
202     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
203     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
204     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
205     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
206   }
207 
208   for (MVT VT : MVT::integer_vector_valuetypes()) {
209     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
210     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
211     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
212     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
213     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
214     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
215     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
216     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
217     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
218     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
219     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
220     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
221   }
222 
223   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
224   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
225   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
226   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
227 
228   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
229   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
230   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
231   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
232 
233   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
234   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
235   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
236   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
237 
238   setOperationAction(ISD::STORE, MVT::f32, Promote);
239   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
240 
241   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
242   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
243 
244   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
245   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
246 
247   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
248   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
249 
250   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
251   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
252 
253   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
254   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
255 
256   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
257   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
258 
259   setOperationAction(ISD::STORE, MVT::i64, Promote);
260   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
261 
262   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
263   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
264 
265   setOperationAction(ISD::STORE, MVT::f64, Promote);
266   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
267 
268   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
269   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
270 
271   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
272   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
273   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
274   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
275 
276   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
277   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
278   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
279   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
280 
281   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
282   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
283   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
284   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
285 
286   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
287   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
288 
289   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
290   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
291 
292   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
293   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
294 
295   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
296   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
297 
298 
299   setOperationAction(ISD::Constant, MVT::i32, Legal);
300   setOperationAction(ISD::Constant, MVT::i64, Legal);
301   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
302   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
303 
304   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
305   setOperationAction(ISD::BRIND, MVT::Other, Expand);
306 
307   // This is totally unsupported, just custom lower to produce an error.
308   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
309 
310   // Library functions.  These default to Expand, but we have instructions
311   // for them.
312   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
313   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
314   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
315   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
316   setOperationAction(ISD::FABS,   MVT::f32, Legal);
317   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
318   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
319   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
320   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
321   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
322 
323   setOperationAction(ISD::FROUND, MVT::f32, Custom);
324   setOperationAction(ISD::FROUND, MVT::f64, Custom);
325 
326   setOperationAction(ISD::FLOG, MVT::f32, Custom);
327   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
328   setOperationAction(ISD::FEXP, MVT::f32, Custom);
329 
330 
331   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
332   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
333 
334   setOperationAction(ISD::FREM, MVT::f32, Custom);
335   setOperationAction(ISD::FREM, MVT::f64, Custom);
336 
337   // Expand to fneg + fadd.
338   setOperationAction(ISD::FSUB, MVT::f64, Expand);
339 
340   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
341   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
342   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
343   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
344   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
345   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
346   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
347   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
348   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
349   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
350   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
351   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
352   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
353   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
354   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
355   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
356   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
357   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
358 
359   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
360   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
361   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
362 
363   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
364   for (MVT VT : ScalarIntVTs) {
365     // These should use [SU]DIVREM, so set them to expand
366     setOperationAction(ISD::SDIV, VT, Expand);
367     setOperationAction(ISD::UDIV, VT, Expand);
368     setOperationAction(ISD::SREM, VT, Expand);
369     setOperationAction(ISD::UREM, VT, Expand);
370 
371     // GPU does not have divrem function for signed or unsigned.
372     setOperationAction(ISD::SDIVREM, VT, Custom);
373     setOperationAction(ISD::UDIVREM, VT, Custom);
374 
375     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
376     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
377     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
378 
379     setOperationAction(ISD::BSWAP, VT, Expand);
380     setOperationAction(ISD::CTTZ, VT, Expand);
381     setOperationAction(ISD::CTLZ, VT, Expand);
382 
383     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
384     setOperationAction(ISD::ADDC, VT, Legal);
385     setOperationAction(ISD::SUBC, VT, Legal);
386     setOperationAction(ISD::ADDE, VT, Legal);
387     setOperationAction(ISD::SUBE, VT, Legal);
388   }
389 
390   // The hardware supports 32-bit ROTR, but not ROTL.
391   setOperationAction(ISD::ROTL, MVT::i32, Expand);
392   setOperationAction(ISD::ROTL, MVT::i64, Expand);
393   setOperationAction(ISD::ROTR, MVT::i64, Expand);
394 
395   setOperationAction(ISD::MUL, MVT::i64, Expand);
396   setOperationAction(ISD::MULHU, MVT::i64, Expand);
397   setOperationAction(ISD::MULHS, MVT::i64, Expand);
398   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
399   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
400   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
401   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
402   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
403 
404   setOperationAction(ISD::SMIN, MVT::i32, Legal);
405   setOperationAction(ISD::UMIN, MVT::i32, Legal);
406   setOperationAction(ISD::SMAX, MVT::i32, Legal);
407   setOperationAction(ISD::UMAX, MVT::i32, Legal);
408 
409   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
410   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
411   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
412   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
413 
414   static const MVT::SimpleValueType VectorIntTypes[] = {
415     MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
416   };
417 
418   for (MVT VT : VectorIntTypes) {
419     // Expand the following operations for the current type by default.
420     setOperationAction(ISD::ADD,  VT, Expand);
421     setOperationAction(ISD::AND,  VT, Expand);
422     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
423     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
424     setOperationAction(ISD::MUL,  VT, Expand);
425     setOperationAction(ISD::MULHU, VT, Expand);
426     setOperationAction(ISD::MULHS, VT, Expand);
427     setOperationAction(ISD::OR,   VT, Expand);
428     setOperationAction(ISD::SHL,  VT, Expand);
429     setOperationAction(ISD::SRA,  VT, Expand);
430     setOperationAction(ISD::SRL,  VT, Expand);
431     setOperationAction(ISD::ROTL, VT, Expand);
432     setOperationAction(ISD::ROTR, VT, Expand);
433     setOperationAction(ISD::SUB,  VT, Expand);
434     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
435     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
436     setOperationAction(ISD::SDIV, VT, Expand);
437     setOperationAction(ISD::UDIV, VT, Expand);
438     setOperationAction(ISD::SREM, VT, Expand);
439     setOperationAction(ISD::UREM, VT, Expand);
440     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
441     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
442     setOperationAction(ISD::SDIVREM, VT, Custom);
443     setOperationAction(ISD::UDIVREM, VT, Expand);
444     setOperationAction(ISD::SELECT, VT, Expand);
445     setOperationAction(ISD::VSELECT, VT, Expand);
446     setOperationAction(ISD::SELECT_CC, VT, Expand);
447     setOperationAction(ISD::XOR,  VT, Expand);
448     setOperationAction(ISD::BSWAP, VT, Expand);
449     setOperationAction(ISD::CTPOP, VT, Expand);
450     setOperationAction(ISD::CTTZ, VT, Expand);
451     setOperationAction(ISD::CTLZ, VT, Expand);
452     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
453     setOperationAction(ISD::SETCC, VT, Expand);
454   }
455 
456   static const MVT::SimpleValueType FloatVectorTypes[] = {
457      MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
458   };
459 
460   for (MVT VT : FloatVectorTypes) {
461     setOperationAction(ISD::FABS, VT, Expand);
462     setOperationAction(ISD::FMINNUM, VT, Expand);
463     setOperationAction(ISD::FMAXNUM, VT, Expand);
464     setOperationAction(ISD::FADD, VT, Expand);
465     setOperationAction(ISD::FCEIL, VT, Expand);
466     setOperationAction(ISD::FCOS, VT, Expand);
467     setOperationAction(ISD::FDIV, VT, Expand);
468     setOperationAction(ISD::FEXP2, VT, Expand);
469     setOperationAction(ISD::FEXP, VT, Expand);
470     setOperationAction(ISD::FLOG2, VT, Expand);
471     setOperationAction(ISD::FREM, VT, Expand);
472     setOperationAction(ISD::FLOG, VT, Expand);
473     setOperationAction(ISD::FLOG10, VT, Expand);
474     setOperationAction(ISD::FPOW, VT, Expand);
475     setOperationAction(ISD::FFLOOR, VT, Expand);
476     setOperationAction(ISD::FTRUNC, VT, Expand);
477     setOperationAction(ISD::FMUL, VT, Expand);
478     setOperationAction(ISD::FMA, VT, Expand);
479     setOperationAction(ISD::FRINT, VT, Expand);
480     setOperationAction(ISD::FNEARBYINT, VT, Expand);
481     setOperationAction(ISD::FSQRT, VT, Expand);
482     setOperationAction(ISD::FSIN, VT, Expand);
483     setOperationAction(ISD::FSUB, VT, Expand);
484     setOperationAction(ISD::FNEG, VT, Expand);
485     setOperationAction(ISD::VSELECT, VT, Expand);
486     setOperationAction(ISD::SELECT_CC, VT, Expand);
487     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
488     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
489     setOperationAction(ISD::SETCC, VT, Expand);
490     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
491   }
492 
493   // This causes using an unrolled select operation rather than expansion with
494   // bit operations. This is in general better, but the alternative using BFI
495   // instructions may be better if the select sources are SGPRs.
496   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
497   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
498 
499   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
500   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
501 
502   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
503   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
504 
505   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
506   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
507 
508   // There are no libcalls of any kind.
509   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
510     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
511 
512   setBooleanContents(ZeroOrNegativeOneBooleanContent);
513   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
514 
515   setSchedulingPreference(Sched::RegPressure);
516   setJumpIsExpensive(true);
517 
518   // FIXME: This is only partially true. If we have to do vector compares, any
519   // SGPR pair can be a condition register. If we have a uniform condition, we
520   // are better off doing SALU operations, where there is only one SCC. For now,
521   // we don't have a way of knowing during instruction selection if a condition
522   // will be uniform and we always use vector compares. Assume we are using
523   // vector compares until that is fixed.
524   setHasMultipleConditionRegisters(true);
525 
526   setMinCmpXchgSizeInBits(32);
527   setSupportsUnalignedAtomics(false);
528 
529   PredictableSelectIsExpensive = false;
530 
531   // We want to find all load dependencies for long chains of stores to enable
532   // merging into very wide vectors. The problem is with vectors with > 4
533   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
534   // vectors are a legal type, even though we have to split the loads
535   // usually. When we can more precisely specify load legality per address
536   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
537   // smarter so that they can figure out what to do in 2 iterations without all
538   // N > 4 stores on the same chain.
539   GatherAllAliasesMaxDepth = 16;
540 
541   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
542   // about these during lowering.
543   MaxStoresPerMemcpy  = 0xffffffff;
544   MaxStoresPerMemmove = 0xffffffff;
545   MaxStoresPerMemset  = 0xffffffff;
546 
547   setTargetDAGCombine(ISD::BITCAST);
548   setTargetDAGCombine(ISD::SHL);
549   setTargetDAGCombine(ISD::SRA);
550   setTargetDAGCombine(ISD::SRL);
551   setTargetDAGCombine(ISD::TRUNCATE);
552   setTargetDAGCombine(ISD::MUL);
553   setTargetDAGCombine(ISD::MULHU);
554   setTargetDAGCombine(ISD::MULHS);
555   setTargetDAGCombine(ISD::SELECT);
556   setTargetDAGCombine(ISD::SELECT_CC);
557   setTargetDAGCombine(ISD::STORE);
558   setTargetDAGCombine(ISD::FADD);
559   setTargetDAGCombine(ISD::FSUB);
560   setTargetDAGCombine(ISD::FNEG);
561   setTargetDAGCombine(ISD::FABS);
562   setTargetDAGCombine(ISD::AssertZext);
563   setTargetDAGCombine(ISD::AssertSext);
564 }
565 
566 //===----------------------------------------------------------------------===//
567 // Target Information
568 //===----------------------------------------------------------------------===//
569 
570 LLVM_READNONE
571 static bool fnegFoldsIntoOp(unsigned Opc) {
572   switch (Opc) {
573   case ISD::FADD:
574   case ISD::FSUB:
575   case ISD::FMUL:
576   case ISD::FMA:
577   case ISD::FMAD:
578   case ISD::FMINNUM:
579   case ISD::FMAXNUM:
580   case ISD::FMINNUM_IEEE:
581   case ISD::FMAXNUM_IEEE:
582   case ISD::FSIN:
583   case ISD::FTRUNC:
584   case ISD::FRINT:
585   case ISD::FNEARBYINT:
586   case ISD::FCANONICALIZE:
587   case AMDGPUISD::RCP:
588   case AMDGPUISD::RCP_LEGACY:
589   case AMDGPUISD::RCP_IFLAG:
590   case AMDGPUISD::SIN_HW:
591   case AMDGPUISD::FMUL_LEGACY:
592   case AMDGPUISD::FMIN_LEGACY:
593   case AMDGPUISD::FMAX_LEGACY:
594   case AMDGPUISD::FMED3:
595     return true;
596   default:
597     return false;
598   }
599 }
600 
601 /// \p returns true if the operation will definitely need to use a 64-bit
602 /// encoding, and thus will use a VOP3 encoding regardless of the source
603 /// modifiers.
604 LLVM_READONLY
605 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
606   return N->getNumOperands() > 2 || VT == MVT::f64;
607 }
608 
609 // Most FP instructions support source modifiers, but this could be refined
610 // slightly.
611 LLVM_READONLY
612 static bool hasSourceMods(const SDNode *N) {
613   if (isa<MemSDNode>(N))
614     return false;
615 
616   switch (N->getOpcode()) {
617   case ISD::CopyToReg:
618   case ISD::SELECT:
619   case ISD::FDIV:
620   case ISD::FREM:
621   case ISD::INLINEASM:
622   case ISD::INLINEASM_BR:
623   case AMDGPUISD::INTERP_P1:
624   case AMDGPUISD::INTERP_P2:
625   case AMDGPUISD::DIV_SCALE:
626 
627   // TODO: Should really be looking at the users of the bitcast. These are
628   // problematic because bitcasts are used to legalize all stores to integer
629   // types.
630   case ISD::BITCAST:
631     return false;
632   default:
633     return true;
634   }
635 }
636 
637 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
638                                                  unsigned CostThreshold) {
639   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
640   // it is truly free to use a source modifier in all cases. If there are
641   // multiple users but for each one will necessitate using VOP3, there will be
642   // a code size increase. Try to avoid increasing code size unless we know it
643   // will save on the instruction count.
644   unsigned NumMayIncreaseSize = 0;
645   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
646 
647   // XXX - Should this limit number of uses to check?
648   for (const SDNode *U : N->uses()) {
649     if (!hasSourceMods(U))
650       return false;
651 
652     if (!opMustUseVOP3Encoding(U, VT)) {
653       if (++NumMayIncreaseSize > CostThreshold)
654         return false;
655     }
656   }
657 
658   return true;
659 }
660 
661 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
662   return MVT::i32;
663 }
664 
665 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
666   return true;
667 }
668 
669 // The backend supports 32 and 64 bit floating point immediates.
670 // FIXME: Why are we reporting vectors of FP immediates as legal?
671 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
672                                         bool ForCodeSize) const {
673   EVT ScalarVT = VT.getScalarType();
674   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
675          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
676 }
677 
678 // We don't want to shrink f64 / f32 constants.
679 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
680   EVT ScalarVT = VT.getScalarType();
681   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
682 }
683 
684 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
685                                                  ISD::LoadExtType ExtTy,
686                                                  EVT NewVT) const {
687   // TODO: This may be worth removing. Check regression tests for diffs.
688   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
689     return false;
690 
691   unsigned NewSize = NewVT.getStoreSizeInBits();
692 
693   // If we are reducing to a 32-bit load, this is always better.
694   if (NewSize == 32)
695     return true;
696 
697   EVT OldVT = N->getValueType(0);
698   unsigned OldSize = OldVT.getStoreSizeInBits();
699 
700   MemSDNode *MN = cast<MemSDNode>(N);
701   unsigned AS = MN->getAddressSpace();
702   // Do not shrink an aligned scalar load to sub-dword.
703   // Scalar engine cannot do sub-dword loads.
704   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
705       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
706        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
707        (isa<LoadSDNode>(N) &&
708         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
709       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
710     return false;
711 
712   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
713   // extloads, so doing one requires using a buffer_load. In cases where we
714   // still couldn't use a scalar load, using the wider load shouldn't really
715   // hurt anything.
716 
717   // If the old size already had to be an extload, there's no harm in continuing
718   // to reduce the width.
719   return (OldSize < 32);
720 }
721 
722 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
723                                                    EVT CastTy) const {
724 
725   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
726 
727   if (LoadTy.getScalarType() == MVT::i32)
728     return false;
729 
730   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
731   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
732 
733   return (LScalarSize < CastScalarSize) ||
734          (CastScalarSize >= 32);
735 }
736 
737 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
738 // profitable with the expansion for 64-bit since it's generally good to
739 // speculate things.
740 // FIXME: These should really have the size as a parameter.
741 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
742   return true;
743 }
744 
745 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
746   return true;
747 }
748 
749 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
750   switch (N->getOpcode()) {
751     default:
752     return false;
753     case ISD::EntryToken:
754     case ISD::TokenFactor:
755       return true;
756     case ISD::INTRINSIC_WO_CHAIN:
757     {
758       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
759       switch (IntrID) {
760         default:
761         return false;
762         case Intrinsic::amdgcn_readfirstlane:
763         case Intrinsic::amdgcn_readlane:
764           return true;
765       }
766     }
767     break;
768     case ISD::LOAD:
769     {
770       const LoadSDNode * L = dyn_cast<LoadSDNode>(N);
771       if (L->getMemOperand()->getAddrSpace()
772       == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
773         return true;
774       return false;
775     }
776     break;
777   }
778 }
779 
780 //===---------------------------------------------------------------------===//
781 // Target Properties
782 //===---------------------------------------------------------------------===//
783 
784 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
785   assert(VT.isFloatingPoint());
786 
787   // Packed operations do not have a fabs modifier.
788   return VT == MVT::f32 || VT == MVT::f64 ||
789          (Subtarget->has16BitInsts() && VT == MVT::f16);
790 }
791 
792 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
793   assert(VT.isFloatingPoint());
794   return VT == MVT::f32 || VT == MVT::f64 ||
795          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
796          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
797 }
798 
799 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
800                                                          unsigned NumElem,
801                                                          unsigned AS) const {
802   return true;
803 }
804 
805 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
806   // There are few operations which truly have vector input operands. Any vector
807   // operation is going to involve operations on each component, and a
808   // build_vector will be a copy per element, so it always makes sense to use a
809   // build_vector input in place of the extracted element to avoid a copy into a
810   // super register.
811   //
812   // We should probably only do this if all users are extracts only, but this
813   // should be the common case.
814   return true;
815 }
816 
817 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
818   // Truncate is just accessing a subregister.
819 
820   unsigned SrcSize = Source.getSizeInBits();
821   unsigned DestSize = Dest.getSizeInBits();
822 
823   return DestSize < SrcSize && DestSize % 32 == 0 ;
824 }
825 
826 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
827   // Truncate is just accessing a subregister.
828 
829   unsigned SrcSize = Source->getScalarSizeInBits();
830   unsigned DestSize = Dest->getScalarSizeInBits();
831 
832   if (DestSize== 16 && Subtarget->has16BitInsts())
833     return SrcSize >= 32;
834 
835   return DestSize < SrcSize && DestSize % 32 == 0;
836 }
837 
838 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
839   unsigned SrcSize = Src->getScalarSizeInBits();
840   unsigned DestSize = Dest->getScalarSizeInBits();
841 
842   if (SrcSize == 16 && Subtarget->has16BitInsts())
843     return DestSize >= 32;
844 
845   return SrcSize == 32 && DestSize == 64;
846 }
847 
848 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
849   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
850   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
851   // this will enable reducing 64-bit operations the 32-bit, which is always
852   // good.
853 
854   if (Src == MVT::i16)
855     return Dest == MVT::i32 ||Dest == MVT::i64 ;
856 
857   return Src == MVT::i32 && Dest == MVT::i64;
858 }
859 
860 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
861   return isZExtFree(Val.getValueType(), VT2);
862 }
863 
864 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
865   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
866   // limited number of native 64-bit operations. Shrinking an operation to fit
867   // in a single 32-bit register should always be helpful. As currently used,
868   // this is much less general than the name suggests, and is only used in
869   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
870   // not profitable, and may actually be harmful.
871   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
872 }
873 
874 //===---------------------------------------------------------------------===//
875 // TargetLowering Callbacks
876 //===---------------------------------------------------------------------===//
877 
878 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
879                                                   bool IsVarArg) {
880   switch (CC) {
881   case CallingConv::AMDGPU_VS:
882   case CallingConv::AMDGPU_GS:
883   case CallingConv::AMDGPU_PS:
884   case CallingConv::AMDGPU_CS:
885   case CallingConv::AMDGPU_HS:
886   case CallingConv::AMDGPU_ES:
887   case CallingConv::AMDGPU_LS:
888     return CC_AMDGPU;
889   case CallingConv::C:
890   case CallingConv::Fast:
891   case CallingConv::Cold:
892     return CC_AMDGPU_Func;
893   case CallingConv::AMDGPU_KERNEL:
894   case CallingConv::SPIR_KERNEL:
895   default:
896     report_fatal_error("Unsupported calling convention for call");
897   }
898 }
899 
900 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
901                                                     bool IsVarArg) {
902   switch (CC) {
903   case CallingConv::AMDGPU_KERNEL:
904   case CallingConv::SPIR_KERNEL:
905     llvm_unreachable("kernels should not be handled here");
906   case CallingConv::AMDGPU_VS:
907   case CallingConv::AMDGPU_GS:
908   case CallingConv::AMDGPU_PS:
909   case CallingConv::AMDGPU_CS:
910   case CallingConv::AMDGPU_HS:
911   case CallingConv::AMDGPU_ES:
912   case CallingConv::AMDGPU_LS:
913     return RetCC_SI_Shader;
914   case CallingConv::C:
915   case CallingConv::Fast:
916   case CallingConv::Cold:
917     return RetCC_AMDGPU_Func;
918   default:
919     report_fatal_error("Unsupported calling convention.");
920   }
921 }
922 
923 /// The SelectionDAGBuilder will automatically promote function arguments
924 /// with illegal types.  However, this does not work for the AMDGPU targets
925 /// since the function arguments are stored in memory as these illegal types.
926 /// In order to handle this properly we need to get the original types sizes
927 /// from the LLVM IR Function and fixup the ISD:InputArg values before
928 /// passing them to AnalyzeFormalArguments()
929 
930 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
931 /// input values across multiple registers.  Each item in the Ins array
932 /// represents a single value that will be stored in registers.  Ins[x].VT is
933 /// the value type of the value that will be stored in the register, so
934 /// whatever SDNode we lower the argument to needs to be this type.
935 ///
936 /// In order to correctly lower the arguments we need to know the size of each
937 /// argument.  Since Ins[x].VT gives us the size of the register that will
938 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
939 /// for the orignal function argument so that we can deduce the correct memory
940 /// type to use for Ins[x].  In most cases the correct memory type will be
941 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
942 /// we have a kernel argument of type v8i8, this argument will be split into
943 /// 8 parts and each part will be represented by its own item in the Ins array.
944 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
945 /// the argument before it was split.  From this, we deduce that the memory type
946 /// for each individual part is i8.  We pass the memory type as LocVT to the
947 /// calling convention analysis function and the register type (Ins[x].VT) as
948 /// the ValVT.
949 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
950   CCState &State,
951   const SmallVectorImpl<ISD::InputArg> &Ins) const {
952   const MachineFunction &MF = State.getMachineFunction();
953   const Function &Fn = MF.getFunction();
954   LLVMContext &Ctx = Fn.getParent()->getContext();
955   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
956   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
957   CallingConv::ID CC = Fn.getCallingConv();
958 
959   unsigned MaxAlign = 1;
960   uint64_t ExplicitArgOffset = 0;
961   const DataLayout &DL = Fn.getParent()->getDataLayout();
962 
963   unsigned InIndex = 0;
964 
965   for (const Argument &Arg : Fn.args()) {
966     Type *BaseArgTy = Arg.getType();
967     unsigned Align = DL.getABITypeAlignment(BaseArgTy);
968     MaxAlign = std::max(Align, MaxAlign);
969     unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
970 
971     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
972     ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
973 
974     // We're basically throwing away everything passed into us and starting over
975     // to get accurate in-memory offsets. The "PartOffset" is completely useless
976     // to us as computed in Ins.
977     //
978     // We also need to figure out what type legalization is trying to do to get
979     // the correct memory offsets.
980 
981     SmallVector<EVT, 16> ValueVTs;
982     SmallVector<uint64_t, 16> Offsets;
983     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
984 
985     for (unsigned Value = 0, NumValues = ValueVTs.size();
986          Value != NumValues; ++Value) {
987       uint64_t BasePartOffset = Offsets[Value];
988 
989       EVT ArgVT = ValueVTs[Value];
990       EVT MemVT = ArgVT;
991       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
992       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
993 
994       if (NumRegs == 1) {
995         // This argument is not split, so the IR type is the memory type.
996         if (ArgVT.isExtended()) {
997           // We have an extended type, like i24, so we should just use the
998           // register type.
999           MemVT = RegisterVT;
1000         } else {
1001           MemVT = ArgVT;
1002         }
1003       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
1004                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
1005         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
1006         // We have a vector value which has been split into a vector with
1007         // the same scalar type, but fewer elements.  This should handle
1008         // all the floating-point vector types.
1009         MemVT = RegisterVT;
1010       } else if (ArgVT.isVector() &&
1011                  ArgVT.getVectorNumElements() == NumRegs) {
1012         // This arg has been split so that each element is stored in a separate
1013         // register.
1014         MemVT = ArgVT.getScalarType();
1015       } else if (ArgVT.isExtended()) {
1016         // We have an extended type, like i65.
1017         MemVT = RegisterVT;
1018       } else {
1019         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1020         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1021         if (RegisterVT.isInteger()) {
1022           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1023         } else if (RegisterVT.isVector()) {
1024           assert(!RegisterVT.getScalarType().isFloatingPoint());
1025           unsigned NumElements = RegisterVT.getVectorNumElements();
1026           assert(MemoryBits % NumElements == 0);
1027           // This vector type has been split into another vector type with
1028           // a different elements size.
1029           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1030                                            MemoryBits / NumElements);
1031           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1032         } else {
1033           llvm_unreachable("cannot deduce memory type.");
1034         }
1035       }
1036 
1037       // Convert one element vectors to scalar.
1038       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1039         MemVT = MemVT.getScalarType();
1040 
1041       // Round up vec3/vec5 argument.
1042       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1043         assert(MemVT.getVectorNumElements() == 3 ||
1044                MemVT.getVectorNumElements() == 5);
1045         MemVT = MemVT.getPow2VectorType(State.getContext());
1046       }
1047 
1048       unsigned PartOffset = 0;
1049       for (unsigned i = 0; i != NumRegs; ++i) {
1050         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1051                                                BasePartOffset + PartOffset,
1052                                                MemVT.getSimpleVT(),
1053                                                CCValAssign::Full));
1054         PartOffset += MemVT.getStoreSize();
1055       }
1056     }
1057   }
1058 }
1059 
1060 SDValue AMDGPUTargetLowering::LowerReturn(
1061   SDValue Chain, CallingConv::ID CallConv,
1062   bool isVarArg,
1063   const SmallVectorImpl<ISD::OutputArg> &Outs,
1064   const SmallVectorImpl<SDValue> &OutVals,
1065   const SDLoc &DL, SelectionDAG &DAG) const {
1066   // FIXME: Fails for r600 tests
1067   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1068   // "wave terminate should not have return values");
1069   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1070 }
1071 
1072 //===---------------------------------------------------------------------===//
1073 // Target specific lowering
1074 //===---------------------------------------------------------------------===//
1075 
1076 /// Selects the correct CCAssignFn for a given CallingConvention value.
1077 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1078                                                     bool IsVarArg) {
1079   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1080 }
1081 
1082 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1083                                                       bool IsVarArg) {
1084   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1085 }
1086 
1087 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1088                                                   SelectionDAG &DAG,
1089                                                   MachineFrameInfo &MFI,
1090                                                   int ClobberedFI) const {
1091   SmallVector<SDValue, 8> ArgChains;
1092   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1093   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1094 
1095   // Include the original chain at the beginning of the list. When this is
1096   // used by target LowerCall hooks, this helps legalize find the
1097   // CALLSEQ_BEGIN node.
1098   ArgChains.push_back(Chain);
1099 
1100   // Add a chain value for each stack argument corresponding
1101   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1102                             UE = DAG.getEntryNode().getNode()->use_end();
1103        U != UE; ++U) {
1104     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1105       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1106         if (FI->getIndex() < 0) {
1107           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1108           int64_t InLastByte = InFirstByte;
1109           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1110 
1111           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1112               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1113             ArgChains.push_back(SDValue(L, 1));
1114         }
1115       }
1116     }
1117   }
1118 
1119   // Build a tokenfactor for all the chains.
1120   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1121 }
1122 
1123 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1124                                                  SmallVectorImpl<SDValue> &InVals,
1125                                                  StringRef Reason) const {
1126   SDValue Callee = CLI.Callee;
1127   SelectionDAG &DAG = CLI.DAG;
1128 
1129   const Function &Fn = DAG.getMachineFunction().getFunction();
1130 
1131   StringRef FuncName("<unknown>");
1132 
1133   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1134     FuncName = G->getSymbol();
1135   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1136     FuncName = G->getGlobal()->getName();
1137 
1138   DiagnosticInfoUnsupported NoCalls(
1139     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1140   DAG.getContext()->diagnose(NoCalls);
1141 
1142   if (!CLI.IsTailCall) {
1143     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1144       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1145   }
1146 
1147   return DAG.getEntryNode();
1148 }
1149 
1150 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1151                                         SmallVectorImpl<SDValue> &InVals) const {
1152   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1153 }
1154 
1155 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1156                                                       SelectionDAG &DAG) const {
1157   const Function &Fn = DAG.getMachineFunction().getFunction();
1158 
1159   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1160                                             SDLoc(Op).getDebugLoc());
1161   DAG.getContext()->diagnose(NoDynamicAlloca);
1162   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1163   return DAG.getMergeValues(Ops, SDLoc());
1164 }
1165 
1166 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1167                                              SelectionDAG &DAG) const {
1168   switch (Op.getOpcode()) {
1169   default:
1170     Op->print(errs(), &DAG);
1171     llvm_unreachable("Custom lowering code for this"
1172                      "instruction is not implemented yet!");
1173     break;
1174   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1175   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1176   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1177   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1178   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1179   case ISD::FREM: return LowerFREM(Op, DAG);
1180   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1181   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1182   case ISD::FRINT: return LowerFRINT(Op, DAG);
1183   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1184   case ISD::FROUND: return LowerFROUND(Op, DAG);
1185   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1186   case ISD::FLOG:
1187     return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
1188   case ISD::FLOG10:
1189     return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
1190   case ISD::FEXP:
1191     return lowerFEXP(Op, DAG);
1192   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1193   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1194   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1195   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1196   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1197   case ISD::CTTZ:
1198   case ISD::CTTZ_ZERO_UNDEF:
1199   case ISD::CTLZ:
1200   case ISD::CTLZ_ZERO_UNDEF:
1201     return LowerCTLZ_CTTZ(Op, DAG);
1202   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1203   }
1204   return Op;
1205 }
1206 
1207 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1208                                               SmallVectorImpl<SDValue> &Results,
1209                                               SelectionDAG &DAG) const {
1210   switch (N->getOpcode()) {
1211   case ISD::SIGN_EXTEND_INREG:
1212     // Different parts of legalization seem to interpret which type of
1213     // sign_extend_inreg is the one to check for custom lowering. The extended
1214     // from type is what really matters, but some places check for custom
1215     // lowering of the result type. This results in trying to use
1216     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1217     // nothing here and let the illegal result integer be handled normally.
1218     return;
1219   default:
1220     return;
1221   }
1222 }
1223 
1224 static bool hasDefinedInitializer(const GlobalValue *GV) {
1225   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1226   if (!GVar || !GVar->hasInitializer())
1227     return false;
1228 
1229   return !isa<UndefValue>(GVar->getInitializer());
1230 }
1231 
1232 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1233                                                  SDValue Op,
1234                                                  SelectionDAG &DAG) const {
1235 
1236   const DataLayout &DL = DAG.getDataLayout();
1237   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1238   const GlobalValue *GV = G->getGlobal();
1239 
1240   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1241       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1242     if (!MFI->isEntryFunction()) {
1243       const Function &Fn = DAG.getMachineFunction().getFunction();
1244       DiagnosticInfoUnsupported BadLDSDecl(
1245         Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1246       DAG.getContext()->diagnose(BadLDSDecl);
1247     }
1248 
1249     // XXX: What does the value of G->getOffset() mean?
1250     assert(G->getOffset() == 0 &&
1251          "Do not know what to do with an non-zero offset");
1252 
1253     // TODO: We could emit code to handle the initialization somewhere.
1254     if (!hasDefinedInitializer(GV)) {
1255       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1256       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1257     }
1258   }
1259 
1260   const Function &Fn = DAG.getMachineFunction().getFunction();
1261   DiagnosticInfoUnsupported BadInit(
1262       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1263   DAG.getContext()->diagnose(BadInit);
1264   return SDValue();
1265 }
1266 
1267 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1268                                                   SelectionDAG &DAG) const {
1269   SmallVector<SDValue, 8> Args;
1270 
1271   EVT VT = Op.getValueType();
1272   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1273     SDLoc SL(Op);
1274     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1275     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1276 
1277     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1278     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1279   }
1280 
1281   for (const SDUse &U : Op->ops())
1282     DAG.ExtractVectorElements(U.get(), Args);
1283 
1284   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1285 }
1286 
1287 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1288                                                      SelectionDAG &DAG) const {
1289 
1290   SmallVector<SDValue, 8> Args;
1291   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1292   EVT VT = Op.getValueType();
1293   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1294                             VT.getVectorNumElements());
1295 
1296   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1297 }
1298 
1299 /// Generate Min/Max node
1300 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1301                                                    SDValue LHS, SDValue RHS,
1302                                                    SDValue True, SDValue False,
1303                                                    SDValue CC,
1304                                                    DAGCombinerInfo &DCI) const {
1305   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1306     return SDValue();
1307 
1308   SelectionDAG &DAG = DCI.DAG;
1309   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1310   switch (CCOpcode) {
1311   case ISD::SETOEQ:
1312   case ISD::SETONE:
1313   case ISD::SETUNE:
1314   case ISD::SETNE:
1315   case ISD::SETUEQ:
1316   case ISD::SETEQ:
1317   case ISD::SETFALSE:
1318   case ISD::SETFALSE2:
1319   case ISD::SETTRUE:
1320   case ISD::SETTRUE2:
1321   case ISD::SETUO:
1322   case ISD::SETO:
1323     break;
1324   case ISD::SETULE:
1325   case ISD::SETULT: {
1326     if (LHS == True)
1327       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1328     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1329   }
1330   case ISD::SETOLE:
1331   case ISD::SETOLT:
1332   case ISD::SETLE:
1333   case ISD::SETLT: {
1334     // Ordered. Assume ordered for undefined.
1335 
1336     // Only do this after legalization to avoid interfering with other combines
1337     // which might occur.
1338     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1339         !DCI.isCalledByLegalizer())
1340       return SDValue();
1341 
1342     // We need to permute the operands to get the correct NaN behavior. The
1343     // selected operand is the second one based on the failing compare with NaN,
1344     // so permute it based on the compare type the hardware uses.
1345     if (LHS == True)
1346       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1347     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1348   }
1349   case ISD::SETUGE:
1350   case ISD::SETUGT: {
1351     if (LHS == True)
1352       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1353     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1354   }
1355   case ISD::SETGT:
1356   case ISD::SETGE:
1357   case ISD::SETOGE:
1358   case ISD::SETOGT: {
1359     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1360         !DCI.isCalledByLegalizer())
1361       return SDValue();
1362 
1363     if (LHS == True)
1364       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1365     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1366   }
1367   case ISD::SETCC_INVALID:
1368     llvm_unreachable("Invalid setcc condcode!");
1369   }
1370   return SDValue();
1371 }
1372 
1373 std::pair<SDValue, SDValue>
1374 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1375   SDLoc SL(Op);
1376 
1377   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1378 
1379   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1380   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1381 
1382   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1383   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1384 
1385   return std::make_pair(Lo, Hi);
1386 }
1387 
1388 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1389   SDLoc SL(Op);
1390 
1391   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1392   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1393   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1394 }
1395 
1396 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1397   SDLoc SL(Op);
1398 
1399   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1400   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1401   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1402 }
1403 
1404 // Split a vector type into two parts. The first part is a power of two vector.
1405 // The second part is whatever is left over, and is a scalar if it would
1406 // otherwise be a 1-vector.
1407 std::pair<EVT, EVT>
1408 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1409   EVT LoVT, HiVT;
1410   EVT EltVT = VT.getVectorElementType();
1411   unsigned NumElts = VT.getVectorNumElements();
1412   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1413   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1414   HiVT = NumElts - LoNumElts == 1
1415              ? EltVT
1416              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1417   return std::make_pair(LoVT, HiVT);
1418 }
1419 
1420 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1421 // scalar.
1422 std::pair<SDValue, SDValue>
1423 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1424                                   const EVT &LoVT, const EVT &HiVT,
1425                                   SelectionDAG &DAG) const {
1426   assert(LoVT.getVectorNumElements() +
1427                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1428              N.getValueType().getVectorNumElements() &&
1429          "More vector elements requested than available!");
1430   auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1431   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1432                            DAG.getConstant(0, DL, IdxTy));
1433   SDValue Hi = DAG.getNode(
1434       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1435       HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy));
1436   return std::make_pair(Lo, Hi);
1437 }
1438 
1439 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1440                                               SelectionDAG &DAG) const {
1441   LoadSDNode *Load = cast<LoadSDNode>(Op);
1442   EVT VT = Op.getValueType();
1443 
1444 
1445   // If this is a 2 element vector, we really want to scalarize and not create
1446   // weird 1 element vectors.
1447   if (VT.getVectorNumElements() == 2)
1448     return scalarizeVectorLoad(Load, DAG);
1449 
1450   SDValue BasePtr = Load->getBasePtr();
1451   EVT MemVT = Load->getMemoryVT();
1452   SDLoc SL(Op);
1453 
1454   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1455 
1456   EVT LoVT, HiVT;
1457   EVT LoMemVT, HiMemVT;
1458   SDValue Lo, Hi;
1459 
1460   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1461   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1462   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1463 
1464   unsigned Size = LoMemVT.getStoreSize();
1465   unsigned BaseAlign = Load->getAlignment();
1466   unsigned HiAlign = MinAlign(BaseAlign, Size);
1467 
1468   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1469                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1470                                   BaseAlign, Load->getMemOperand()->getFlags());
1471   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1472   SDValue HiLoad =
1473       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1474                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1475                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1476 
1477   auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1478   SDValue Join;
1479   if (LoVT == HiVT) {
1480     // This is the case that the vector is power of two so was evenly split.
1481     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1482   } else {
1483     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1484                        DAG.getConstant(0, SL, IdxTy));
1485     Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR
1486                                        : ISD::INSERT_VECTOR_ELT,
1487                        SL, VT, Join, HiLoad,
1488                        DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy));
1489   }
1490 
1491   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1492                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1493 
1494   return DAG.getMergeValues(Ops, SL);
1495 }
1496 
1497 // Widen a vector load from vec3 to vec4.
1498 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1499                                               SelectionDAG &DAG) const {
1500   LoadSDNode *Load = cast<LoadSDNode>(Op);
1501   EVT VT = Op.getValueType();
1502   assert(VT.getVectorNumElements() == 3);
1503   SDValue BasePtr = Load->getBasePtr();
1504   EVT MemVT = Load->getMemoryVT();
1505   SDLoc SL(Op);
1506   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1507   unsigned BaseAlign = Load->getAlignment();
1508 
1509   EVT WideVT =
1510       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1511   EVT WideMemVT =
1512       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1513   SDValue WideLoad = DAG.getExtLoad(
1514       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1515       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1516   return DAG.getMergeValues(
1517       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1518                    DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))),
1519        WideLoad.getValue(1)},
1520       SL);
1521 }
1522 
1523 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1524                                                SelectionDAG &DAG) const {
1525   StoreSDNode *Store = cast<StoreSDNode>(Op);
1526   SDValue Val = Store->getValue();
1527   EVT VT = Val.getValueType();
1528 
1529   // If this is a 2 element vector, we really want to scalarize and not create
1530   // weird 1 element vectors.
1531   if (VT.getVectorNumElements() == 2)
1532     return scalarizeVectorStore(Store, DAG);
1533 
1534   EVT MemVT = Store->getMemoryVT();
1535   SDValue Chain = Store->getChain();
1536   SDValue BasePtr = Store->getBasePtr();
1537   SDLoc SL(Op);
1538 
1539   EVT LoVT, HiVT;
1540   EVT LoMemVT, HiMemVT;
1541   SDValue Lo, Hi;
1542 
1543   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1544   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1545   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1546 
1547   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1548 
1549   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1550   unsigned BaseAlign = Store->getAlignment();
1551   unsigned Size = LoMemVT.getStoreSize();
1552   unsigned HiAlign = MinAlign(BaseAlign, Size);
1553 
1554   SDValue LoStore =
1555       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1556                         Store->getMemOperand()->getFlags());
1557   SDValue HiStore =
1558       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1559                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1560 
1561   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1562 }
1563 
1564 // This is a shortcut for integer division because we have fast i32<->f32
1565 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1566 // float is enough to accurately represent up to a 24-bit signed integer.
1567 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1568                                             bool Sign) const {
1569   SDLoc DL(Op);
1570   EVT VT = Op.getValueType();
1571   SDValue LHS = Op.getOperand(0);
1572   SDValue RHS = Op.getOperand(1);
1573   MVT IntVT = MVT::i32;
1574   MVT FltVT = MVT::f32;
1575 
1576   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1577   if (LHSSignBits < 9)
1578     return SDValue();
1579 
1580   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1581   if (RHSSignBits < 9)
1582     return SDValue();
1583 
1584   unsigned BitSize = VT.getSizeInBits();
1585   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1586   unsigned DivBits = BitSize - SignBits;
1587   if (Sign)
1588     ++DivBits;
1589 
1590   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1591   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1592 
1593   SDValue jq = DAG.getConstant(1, DL, IntVT);
1594 
1595   if (Sign) {
1596     // char|short jq = ia ^ ib;
1597     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1598 
1599     // jq = jq >> (bitsize - 2)
1600     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1601                      DAG.getConstant(BitSize - 2, DL, VT));
1602 
1603     // jq = jq | 0x1
1604     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1605   }
1606 
1607   // int ia = (int)LHS;
1608   SDValue ia = LHS;
1609 
1610   // int ib, (int)RHS;
1611   SDValue ib = RHS;
1612 
1613   // float fa = (float)ia;
1614   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1615 
1616   // float fb = (float)ib;
1617   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1618 
1619   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1620                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1621 
1622   // fq = trunc(fq);
1623   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1624 
1625   // float fqneg = -fq;
1626   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1627 
1628   // float fr = mad(fqneg, fb, fa);
1629   unsigned OpCode = Subtarget->hasFP32Denormals() ?
1630                     (unsigned)AMDGPUISD::FMAD_FTZ :
1631                     (unsigned)ISD::FMAD;
1632   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1633 
1634   // int iq = (int)fq;
1635   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1636 
1637   // fr = fabs(fr);
1638   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1639 
1640   // fb = fabs(fb);
1641   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1642 
1643   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1644 
1645   // int cv = fr >= fb;
1646   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1647 
1648   // jq = (cv ? jq : 0);
1649   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1650 
1651   // dst = iq + jq;
1652   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1653 
1654   // Rem needs compensation, it's easier to recompute it
1655   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1656   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1657 
1658   // Truncate to number of bits this divide really is.
1659   if (Sign) {
1660     SDValue InRegSize
1661       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1662     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1663     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1664   } else {
1665     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1666     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1667     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1668   }
1669 
1670   return DAG.getMergeValues({ Div, Rem }, DL);
1671 }
1672 
1673 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1674                                       SelectionDAG &DAG,
1675                                       SmallVectorImpl<SDValue> &Results) const {
1676   SDLoc DL(Op);
1677   EVT VT = Op.getValueType();
1678 
1679   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1680 
1681   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1682 
1683   SDValue One = DAG.getConstant(1, DL, HalfVT);
1684   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1685 
1686   //HiLo split
1687   SDValue LHS = Op.getOperand(0);
1688   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1689   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1690 
1691   SDValue RHS = Op.getOperand(1);
1692   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1693   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1694 
1695   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1696       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1697 
1698     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1699                               LHS_Lo, RHS_Lo);
1700 
1701     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1702     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1703 
1704     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1705     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1706     return;
1707   }
1708 
1709   if (isTypeLegal(MVT::i64)) {
1710     // Compute denominator reciprocal.
1711     unsigned FMAD = Subtarget->hasFP32Denormals() ?
1712                     (unsigned)AMDGPUISD::FMAD_FTZ :
1713                     (unsigned)ISD::FMAD;
1714 
1715     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1716     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1717     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1718       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1719       Cvt_Lo);
1720     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1721     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1722       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1723     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1724       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1725     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1726     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1727       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1728       Mul1);
1729     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1730     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1731     SDValue Rcp64 = DAG.getBitcast(VT,
1732                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1733 
1734     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1735     SDValue One64  = DAG.getConstant(1, DL, VT);
1736     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1737     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1738 
1739     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1740     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1741     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1742     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1743                                     Zero);
1744     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1745                                     One);
1746 
1747     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1748                                   Mulhi1_Lo, Zero1);
1749     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1750                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1751     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1752     SDValue Add1 = DAG.getBitcast(VT,
1753                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1754 
1755     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1756     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1757     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1758                                     Zero);
1759     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1760                                     One);
1761 
1762     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1763                                   Mulhi2_Lo, Zero1);
1764     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1765                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1766     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1767                                   Zero, Add2_Lo.getValue(1));
1768     SDValue Add2 = DAG.getBitcast(VT,
1769                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1770     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1771 
1772     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1773 
1774     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1775     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1776     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1777                                   Mul3_Lo, Zero1);
1778     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1779                                   Mul3_Hi, Sub1_Lo.getValue(1));
1780     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1781     SDValue Sub1 = DAG.getBitcast(VT,
1782                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1783 
1784     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1785     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1786                                  ISD::SETUGE);
1787     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1788                                  ISD::SETUGE);
1789     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1790 
1791     // TODO: Here and below portions of the code can be enclosed into if/endif.
1792     // Currently control flow is unconditional and we have 4 selects after
1793     // potential endif to substitute PHIs.
1794 
1795     // if C3 != 0 ...
1796     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1797                                   RHS_Lo, Zero1);
1798     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1799                                   RHS_Hi, Sub1_Lo.getValue(1));
1800     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1801                                   Zero, Sub2_Lo.getValue(1));
1802     SDValue Sub2 = DAG.getBitcast(VT,
1803                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1804 
1805     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1806 
1807     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1808                                  ISD::SETUGE);
1809     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1810                                  ISD::SETUGE);
1811     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1812 
1813     // if (C6 != 0)
1814     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1815 
1816     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1817                                   RHS_Lo, Zero1);
1818     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1819                                   RHS_Hi, Sub2_Lo.getValue(1));
1820     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1821                                   Zero, Sub3_Lo.getValue(1));
1822     SDValue Sub3 = DAG.getBitcast(VT,
1823                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1824 
1825     // endif C6
1826     // endif C3
1827 
1828     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1829     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1830 
1831     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1832     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1833 
1834     Results.push_back(Div);
1835     Results.push_back(Rem);
1836 
1837     return;
1838   }
1839 
1840   // r600 expandion.
1841   // Get Speculative values
1842   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1843   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1844 
1845   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1846   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1847   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1848 
1849   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1850   SDValue DIV_Lo = Zero;
1851 
1852   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1853 
1854   for (unsigned i = 0; i < halfBitWidth; ++i) {
1855     const unsigned bitPos = halfBitWidth - i - 1;
1856     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1857     // Get value of high bit
1858     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1859     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1860     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1861 
1862     // Shift
1863     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1864     // Add LHS high bit
1865     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1866 
1867     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1868     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1869 
1870     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1871 
1872     // Update REM
1873     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1874     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1875   }
1876 
1877   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1878   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1879   Results.push_back(DIV);
1880   Results.push_back(REM);
1881 }
1882 
1883 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1884                                            SelectionDAG &DAG) const {
1885   SDLoc DL(Op);
1886   EVT VT = Op.getValueType();
1887 
1888   if (VT == MVT::i64) {
1889     SmallVector<SDValue, 2> Results;
1890     LowerUDIVREM64(Op, DAG, Results);
1891     return DAG.getMergeValues(Results, DL);
1892   }
1893 
1894   if (VT == MVT::i32) {
1895     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1896       return Res;
1897   }
1898 
1899   SDValue Num = Op.getOperand(0);
1900   SDValue Den = Op.getOperand(1);
1901 
1902   // RCP =  URECIP(Den) = 2^32 / Den + e
1903   // e is rounding error.
1904   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1905 
1906   // RCP_LO = mul(RCP, Den) */
1907   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1908 
1909   // RCP_HI = mulhu (RCP, Den) */
1910   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1911 
1912   // NEG_RCP_LO = -RCP_LO
1913   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1914                                                      RCP_LO);
1915 
1916   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1917   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1918                                            NEG_RCP_LO, RCP_LO,
1919                                            ISD::SETEQ);
1920   // Calculate the rounding error from the URECIP instruction
1921   // E = mulhu(ABS_RCP_LO, RCP)
1922   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1923 
1924   // RCP_A_E = RCP + E
1925   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1926 
1927   // RCP_S_E = RCP - E
1928   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1929 
1930   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1931   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1932                                      RCP_A_E, RCP_S_E,
1933                                      ISD::SETEQ);
1934   // Quotient = mulhu(Tmp0, Num)
1935   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1936 
1937   // Num_S_Remainder = Quotient * Den
1938   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1939 
1940   // Remainder = Num - Num_S_Remainder
1941   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1942 
1943   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1944   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1945                                                  DAG.getConstant(-1, DL, VT),
1946                                                  DAG.getConstant(0, DL, VT),
1947                                                  ISD::SETUGE);
1948   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1949   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1950                                                   Num_S_Remainder,
1951                                                   DAG.getConstant(-1, DL, VT),
1952                                                   DAG.getConstant(0, DL, VT),
1953                                                   ISD::SETUGE);
1954   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1955   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1956                                                Remainder_GE_Zero);
1957 
1958   // Calculate Division result:
1959 
1960   // Quotient_A_One = Quotient + 1
1961   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1962                                        DAG.getConstant(1, DL, VT));
1963 
1964   // Quotient_S_One = Quotient - 1
1965   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1966                                        DAG.getConstant(1, DL, VT));
1967 
1968   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1969   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1970                                      Quotient, Quotient_A_One, ISD::SETEQ);
1971 
1972   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1973   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1974                             Quotient_S_One, Div, ISD::SETEQ);
1975 
1976   // Calculate Rem result:
1977 
1978   // Remainder_S_Den = Remainder - Den
1979   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1980 
1981   // Remainder_A_Den = Remainder + Den
1982   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1983 
1984   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1985   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1986                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1987 
1988   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1989   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1990                             Remainder_A_Den, Rem, ISD::SETEQ);
1991   SDValue Ops[2] = {
1992     Div,
1993     Rem
1994   };
1995   return DAG.getMergeValues(Ops, DL);
1996 }
1997 
1998 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1999                                            SelectionDAG &DAG) const {
2000   SDLoc DL(Op);
2001   EVT VT = Op.getValueType();
2002 
2003   SDValue LHS = Op.getOperand(0);
2004   SDValue RHS = Op.getOperand(1);
2005 
2006   SDValue Zero = DAG.getConstant(0, DL, VT);
2007   SDValue NegOne = DAG.getConstant(-1, DL, VT);
2008 
2009   if (VT == MVT::i32) {
2010     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2011       return Res;
2012   }
2013 
2014   if (VT == MVT::i64 &&
2015       DAG.ComputeNumSignBits(LHS) > 32 &&
2016       DAG.ComputeNumSignBits(RHS) > 32) {
2017     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2018 
2019     //HiLo split
2020     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2021     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2022     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2023                                  LHS_Lo, RHS_Lo);
2024     SDValue Res[2] = {
2025       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2026       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2027     };
2028     return DAG.getMergeValues(Res, DL);
2029   }
2030 
2031   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2032   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2033   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2034   SDValue RSign = LHSign; // Remainder sign is the same as LHS
2035 
2036   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2037   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2038 
2039   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2040   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2041 
2042   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2043   SDValue Rem = Div.getValue(1);
2044 
2045   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2046   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2047 
2048   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2049   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2050 
2051   SDValue Res[2] = {
2052     Div,
2053     Rem
2054   };
2055   return DAG.getMergeValues(Res, DL);
2056 }
2057 
2058 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2059 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2060   SDLoc SL(Op);
2061   EVT VT = Op.getValueType();
2062   SDValue X = Op.getOperand(0);
2063   SDValue Y = Op.getOperand(1);
2064 
2065   // TODO: Should this propagate fast-math-flags?
2066 
2067   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2068   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2069   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2070 
2071   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2072 }
2073 
2074 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2075   SDLoc SL(Op);
2076   SDValue Src = Op.getOperand(0);
2077 
2078   // result = trunc(src)
2079   // if (src > 0.0 && src != result)
2080   //   result += 1.0
2081 
2082   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2083 
2084   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2085   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2086 
2087   EVT SetCCVT =
2088       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2089 
2090   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2091   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2092   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2093 
2094   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2095   // TODO: Should this propagate fast-math-flags?
2096   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2097 }
2098 
2099 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2100                                   SelectionDAG &DAG) {
2101   const unsigned FractBits = 52;
2102   const unsigned ExpBits = 11;
2103 
2104   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2105                                 Hi,
2106                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2107                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2108   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2109                             DAG.getConstant(1023, SL, MVT::i32));
2110 
2111   return Exp;
2112 }
2113 
2114 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2115   SDLoc SL(Op);
2116   SDValue Src = Op.getOperand(0);
2117 
2118   assert(Op.getValueType() == MVT::f64);
2119 
2120   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2121   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2122 
2123   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2124 
2125   // Extract the upper half, since this is where we will find the sign and
2126   // exponent.
2127   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2128 
2129   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2130 
2131   const unsigned FractBits = 52;
2132 
2133   // Extract the sign bit.
2134   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2135   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2136 
2137   // Extend back to 64-bits.
2138   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2139   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2140 
2141   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2142   const SDValue FractMask
2143     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2144 
2145   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2146   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2147   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2148 
2149   EVT SetCCVT =
2150       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2151 
2152   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2153 
2154   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2155   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2156 
2157   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2158   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2159 
2160   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2161 }
2162 
2163 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2164   SDLoc SL(Op);
2165   SDValue Src = Op.getOperand(0);
2166 
2167   assert(Op.getValueType() == MVT::f64);
2168 
2169   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2170   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2171   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2172 
2173   // TODO: Should this propagate fast-math-flags?
2174 
2175   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2176   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2177 
2178   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2179 
2180   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2181   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2182 
2183   EVT SetCCVT =
2184       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2185   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2186 
2187   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2188 }
2189 
2190 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2191   // FNEARBYINT and FRINT are the same, except in their handling of FP
2192   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2193   // rint, so just treat them as equivalent.
2194   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2195 }
2196 
2197 // XXX - May require not supporting f32 denormals?
2198 
2199 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2200 // compare and vselect end up producing worse code than scalarizing the whole
2201 // operation.
2202 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2203   SDLoc SL(Op);
2204   SDValue X = Op.getOperand(0);
2205   EVT VT = Op.getValueType();
2206 
2207   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2208 
2209   // TODO: Should this propagate fast-math-flags?
2210 
2211   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2212 
2213   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2214 
2215   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2216   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2217   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2218 
2219   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2220 
2221   EVT SetCCVT =
2222       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2223 
2224   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2225 
2226   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2227 
2228   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2229 }
2230 
2231 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2232   SDLoc SL(Op);
2233   SDValue X = Op.getOperand(0);
2234 
2235   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2236 
2237   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2238   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2239   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2240   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2241   EVT SetCCVT =
2242       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2243 
2244   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2245 
2246   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2247 
2248   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2249 
2250   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2251                                        MVT::i64);
2252 
2253   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2254   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2255                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2256                                           MVT::i64),
2257                           Exp);
2258 
2259   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2260   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2261                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2262                               ISD::SETNE);
2263 
2264   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2265                              D, DAG.getConstant(0, SL, MVT::i64));
2266   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2267 
2268   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2269   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2270 
2271   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2272   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2273   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2274 
2275   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2276                             ExpEqNegOne,
2277                             DAG.getConstantFP(1.0, SL, MVT::f64),
2278                             DAG.getConstantFP(0.0, SL, MVT::f64));
2279 
2280   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2281 
2282   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2283   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2284 
2285   return K;
2286 }
2287 
2288 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2289   EVT VT = Op.getValueType();
2290 
2291   if (VT == MVT::f32 || VT == MVT::f16)
2292     return LowerFROUND32_16(Op, DAG);
2293 
2294   if (VT == MVT::f64)
2295     return LowerFROUND64(Op, DAG);
2296 
2297   llvm_unreachable("unhandled type");
2298 }
2299 
2300 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2301   SDLoc SL(Op);
2302   SDValue Src = Op.getOperand(0);
2303 
2304   // result = trunc(src);
2305   // if (src < 0.0 && src != result)
2306   //   result += -1.0.
2307 
2308   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2309 
2310   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2311   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2312 
2313   EVT SetCCVT =
2314       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2315 
2316   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2317   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2318   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2319 
2320   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2321   // TODO: Should this propagate fast-math-flags?
2322   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2323 }
2324 
2325 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2326                                         double Log2BaseInverted) const {
2327   EVT VT = Op.getValueType();
2328 
2329   SDLoc SL(Op);
2330   SDValue Operand = Op.getOperand(0);
2331   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2332   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2333 
2334   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2335 }
2336 
2337 // Return M_LOG2E of appropriate type
2338 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) {
2339   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
2340   case MVT::f32:
2341     return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT);
2342   case MVT::f16:
2343     return DAG.getConstantFP(
2344       APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"),
2345       SL, VT);
2346   case MVT::f64:
2347     return DAG.getConstantFP(
2348       APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT);
2349   default:
2350     llvm_unreachable("unsupported fp type");
2351   }
2352 }
2353 
2354 // exp2(M_LOG2E_F * f);
2355 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2356   EVT VT = Op.getValueType();
2357   SDLoc SL(Op);
2358   SDValue Src = Op.getOperand(0);
2359 
2360   const SDValue K = getLog2EVal(DAG, SL, VT);
2361   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2362   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2363 }
2364 
2365 static bool isCtlzOpc(unsigned Opc) {
2366   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2367 }
2368 
2369 static bool isCttzOpc(unsigned Opc) {
2370   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2371 }
2372 
2373 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2374   SDLoc SL(Op);
2375   SDValue Src = Op.getOperand(0);
2376   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2377                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2378 
2379   unsigned ISDOpc, NewOpc;
2380   if (isCtlzOpc(Op.getOpcode())) {
2381     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2382     NewOpc = AMDGPUISD::FFBH_U32;
2383   } else if (isCttzOpc(Op.getOpcode())) {
2384     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2385     NewOpc = AMDGPUISD::FFBL_B32;
2386   } else
2387     llvm_unreachable("Unexpected OPCode!!!");
2388 
2389 
2390   if (ZeroUndef && Src.getValueType() == MVT::i32)
2391     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2392 
2393   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2394 
2395   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2396   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2397 
2398   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2399   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2400 
2401   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2402                                    *DAG.getContext(), MVT::i32);
2403 
2404   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2405   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2406 
2407   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2408   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2409 
2410   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2411   SDValue Add, NewOpr;
2412   if (isCtlzOpc(Op.getOpcode())) {
2413     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2414     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2415     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2416   } else {
2417     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2418     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2419     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2420   }
2421 
2422   if (!ZeroUndef) {
2423     // Test if the full 64-bit input is zero.
2424 
2425     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2426     // which we probably don't want.
2427     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2428     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2429     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2430 
2431     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2432     // with the same cycles, otherwise it is slower.
2433     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2434     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2435 
2436     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2437 
2438     // The instruction returns -1 for 0 input, but the defined intrinsic
2439     // behavior is to return the number of bits.
2440     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2441                          SrcIsZero, Bits32, NewOpr);
2442   }
2443 
2444   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2445 }
2446 
2447 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2448                                                bool Signed) const {
2449   // Unsigned
2450   // cul2f(ulong u)
2451   //{
2452   //  uint lz = clz(u);
2453   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2454   //  u = (u << lz) & 0x7fffffffffffffffUL;
2455   //  ulong t = u & 0xffffffffffUL;
2456   //  uint v = (e << 23) | (uint)(u >> 40);
2457   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2458   //  return as_float(v + r);
2459   //}
2460   // Signed
2461   // cl2f(long l)
2462   //{
2463   //  long s = l >> 63;
2464   //  float r = cul2f((l + s) ^ s);
2465   //  return s ? -r : r;
2466   //}
2467 
2468   SDLoc SL(Op);
2469   SDValue Src = Op.getOperand(0);
2470   SDValue L = Src;
2471 
2472   SDValue S;
2473   if (Signed) {
2474     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2475     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2476 
2477     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2478     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2479   }
2480 
2481   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2482                                    *DAG.getContext(), MVT::f32);
2483 
2484 
2485   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2486   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2487   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2488   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2489 
2490   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2491   SDValue E = DAG.getSelect(SL, MVT::i32,
2492     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2493     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2494     ZeroI32);
2495 
2496   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2497     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2498     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2499 
2500   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2501                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2502 
2503   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2504                              U, DAG.getConstant(40, SL, MVT::i64));
2505 
2506   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2507     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2508     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2509 
2510   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2511   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2512   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2513 
2514   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2515 
2516   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2517 
2518   SDValue R = DAG.getSelect(SL, MVT::i32,
2519     RCmp,
2520     One,
2521     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2522   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2523   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2524 
2525   if (!Signed)
2526     return R;
2527 
2528   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2529   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2530 }
2531 
2532 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2533                                                bool Signed) const {
2534   SDLoc SL(Op);
2535   SDValue Src = Op.getOperand(0);
2536 
2537   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2538 
2539   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2540                            DAG.getConstant(0, SL, MVT::i32));
2541   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2542                            DAG.getConstant(1, SL, MVT::i32));
2543 
2544   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2545                               SL, MVT::f64, Hi);
2546 
2547   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2548 
2549   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2550                               DAG.getConstant(32, SL, MVT::i32));
2551   // TODO: Should this propagate fast-math-flags?
2552   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2553 }
2554 
2555 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2556                                                SelectionDAG &DAG) const {
2557   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2558          "operation should be legal");
2559 
2560   // TODO: Factor out code common with LowerSINT_TO_FP.
2561 
2562   EVT DestVT = Op.getValueType();
2563   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2564     SDLoc DL(Op);
2565     SDValue Src = Op.getOperand(0);
2566 
2567     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2568     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2569     SDValue FPRound =
2570         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2571 
2572     return FPRound;
2573   }
2574 
2575   if (DestVT == MVT::f32)
2576     return LowerINT_TO_FP32(Op, DAG, false);
2577 
2578   assert(DestVT == MVT::f64);
2579   return LowerINT_TO_FP64(Op, DAG, false);
2580 }
2581 
2582 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2583                                               SelectionDAG &DAG) const {
2584   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2585          "operation should be legal");
2586 
2587   // TODO: Factor out code common with LowerUINT_TO_FP.
2588 
2589   EVT DestVT = Op.getValueType();
2590   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2591     SDLoc DL(Op);
2592     SDValue Src = Op.getOperand(0);
2593 
2594     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2595     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2596     SDValue FPRound =
2597         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2598 
2599     return FPRound;
2600   }
2601 
2602   if (DestVT == MVT::f32)
2603     return LowerINT_TO_FP32(Op, DAG, true);
2604 
2605   assert(DestVT == MVT::f64);
2606   return LowerINT_TO_FP64(Op, DAG, true);
2607 }
2608 
2609 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2610                                                bool Signed) const {
2611   SDLoc SL(Op);
2612 
2613   SDValue Src = Op.getOperand(0);
2614 
2615   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2616 
2617   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2618                                  MVT::f64);
2619   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2620                                  MVT::f64);
2621   // TODO: Should this propagate fast-math-flags?
2622   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2623 
2624   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2625 
2626 
2627   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2628 
2629   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2630                            MVT::i32, FloorMul);
2631   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2632 
2633   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2634 
2635   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2636 }
2637 
2638 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2639   SDLoc DL(Op);
2640   SDValue N0 = Op.getOperand(0);
2641 
2642   // Convert to target node to get known bits
2643   if (N0.getValueType() == MVT::f32)
2644     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2645 
2646   if (getTargetMachine().Options.UnsafeFPMath) {
2647     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2648     return SDValue();
2649   }
2650 
2651   assert(N0.getSimpleValueType() == MVT::f64);
2652 
2653   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2654   const unsigned ExpMask = 0x7ff;
2655   const unsigned ExpBiasf64 = 1023;
2656   const unsigned ExpBiasf16 = 15;
2657   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2658   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2659   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2660   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2661                            DAG.getConstant(32, DL, MVT::i64));
2662   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2663   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2664   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2665                           DAG.getConstant(20, DL, MVT::i64));
2666   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2667                   DAG.getConstant(ExpMask, DL, MVT::i32));
2668   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2669   // add the f16 bias (15) to get the biased exponent for the f16 format.
2670   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2671                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2672 
2673   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2674                           DAG.getConstant(8, DL, MVT::i32));
2675   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2676                   DAG.getConstant(0xffe, DL, MVT::i32));
2677 
2678   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2679                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2680   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2681 
2682   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2683   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2684 
2685   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2686   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2687       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2688                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2689 
2690   // N = M | (E << 12);
2691   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2692       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2693                   DAG.getConstant(12, DL, MVT::i32)));
2694 
2695   // B = clamp(1-E, 0, 13);
2696   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2697                                   One, E);
2698   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2699   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2700                   DAG.getConstant(13, DL, MVT::i32));
2701 
2702   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2703                                    DAG.getConstant(0x1000, DL, MVT::i32));
2704 
2705   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2706   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2707   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2708   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2709 
2710   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2711   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2712                               DAG.getConstant(0x7, DL, MVT::i32));
2713   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2714                   DAG.getConstant(2, DL, MVT::i32));
2715   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2716                                One, Zero, ISD::SETEQ);
2717   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2718                                One, Zero, ISD::SETGT);
2719   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2720   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2721 
2722   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2723                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2724   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2725                       I, V, ISD::SETEQ);
2726 
2727   // Extract the sign bit.
2728   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2729                             DAG.getConstant(16, DL, MVT::i32));
2730   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2731                      DAG.getConstant(0x8000, DL, MVT::i32));
2732 
2733   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2734   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2735 }
2736 
2737 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2738                                               SelectionDAG &DAG) const {
2739   SDValue Src = Op.getOperand(0);
2740 
2741   // TODO: Factor out code common with LowerFP_TO_UINT.
2742 
2743   EVT SrcVT = Src.getValueType();
2744   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2745     SDLoc DL(Op);
2746 
2747     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2748     SDValue FpToInt32 =
2749         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2750 
2751     return FpToInt32;
2752   }
2753 
2754   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2755     return LowerFP64_TO_INT(Op, DAG, true);
2756 
2757   return SDValue();
2758 }
2759 
2760 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2761                                               SelectionDAG &DAG) const {
2762   SDValue Src = Op.getOperand(0);
2763 
2764   // TODO: Factor out code common with LowerFP_TO_SINT.
2765 
2766   EVT SrcVT = Src.getValueType();
2767   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2768     SDLoc DL(Op);
2769 
2770     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2771     SDValue FpToInt32 =
2772         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2773 
2774     return FpToInt32;
2775   }
2776 
2777   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2778     return LowerFP64_TO_INT(Op, DAG, false);
2779 
2780   return SDValue();
2781 }
2782 
2783 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2784                                                      SelectionDAG &DAG) const {
2785   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2786   MVT VT = Op.getSimpleValueType();
2787   MVT ScalarVT = VT.getScalarType();
2788 
2789   assert(VT.isVector());
2790 
2791   SDValue Src = Op.getOperand(0);
2792   SDLoc DL(Op);
2793 
2794   // TODO: Don't scalarize on Evergreen?
2795   unsigned NElts = VT.getVectorNumElements();
2796   SmallVector<SDValue, 8> Args;
2797   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2798 
2799   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2800   for (unsigned I = 0; I < NElts; ++I)
2801     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2802 
2803   return DAG.getBuildVector(VT, DL, Args);
2804 }
2805 
2806 //===----------------------------------------------------------------------===//
2807 // Custom DAG optimizations
2808 //===----------------------------------------------------------------------===//
2809 
2810 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2811   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2812 }
2813 
2814 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2815   EVT VT = Op.getValueType();
2816   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2817                                      // as unsigned 24-bit values.
2818     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2819 }
2820 
2821 static SDValue simplifyI24(SDNode *Node24,
2822                            TargetLowering::DAGCombinerInfo &DCI) {
2823   SelectionDAG &DAG = DCI.DAG;
2824   SDValue LHS = Node24->getOperand(0);
2825   SDValue RHS = Node24->getOperand(1);
2826 
2827   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2828 
2829   // First try to simplify using GetDemandedBits which allows the operands to
2830   // have other uses, but will only perform simplifications that involve
2831   // bypassing some nodes for this user.
2832   SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded);
2833   SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded);
2834   if (DemandedLHS || DemandedRHS)
2835     return DAG.getNode(Node24->getOpcode(), SDLoc(Node24), Node24->getVTList(),
2836                        DemandedLHS ? DemandedLHS : LHS,
2837                        DemandedRHS ? DemandedRHS : RHS);
2838 
2839   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2840   // operands if this node is the only user.
2841   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2842   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2843     return SDValue(Node24, 0);
2844   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2845     return SDValue(Node24, 0);
2846 
2847   return SDValue();
2848 }
2849 
2850 template <typename IntTy>
2851 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2852                                uint32_t Width, const SDLoc &DL) {
2853   if (Width + Offset < 32) {
2854     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2855     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2856     return DAG.getConstant(Result, DL, MVT::i32);
2857   }
2858 
2859   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2860 }
2861 
2862 static bool hasVolatileUser(SDNode *Val) {
2863   for (SDNode *U : Val->uses()) {
2864     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2865       if (M->isVolatile())
2866         return true;
2867     }
2868   }
2869 
2870   return false;
2871 }
2872 
2873 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2874   // i32 vectors are the canonical memory type.
2875   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2876     return false;
2877 
2878   if (!VT.isByteSized())
2879     return false;
2880 
2881   unsigned Size = VT.getStoreSize();
2882 
2883   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2884     return false;
2885 
2886   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2887     return false;
2888 
2889   return true;
2890 }
2891 
2892 // Find a load or store from corresponding pattern root.
2893 // Roots may be build_vector, bitconvert or their combinations.
2894 static MemSDNode* findMemSDNode(SDNode *N) {
2895   N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
2896   if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
2897     return MN;
2898   assert(isa<BuildVectorSDNode>(N));
2899   for (SDValue V : N->op_values())
2900     if (MemSDNode *MN =
2901           dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
2902       return MN;
2903   llvm_unreachable("cannot find MemSDNode in the pattern!");
2904 }
2905 
2906 bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned,
2907                                             SelectionDAG &DAG,
2908                                             SDNode *N,
2909                                             SDValue Addr,
2910                                             SDValue &VAddr,
2911                                             SDValue &Offset,
2912                                             SDValue &SLC) const {
2913   const GCNSubtarget &ST =
2914         DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
2915   int64_t OffsetVal = 0;
2916 
2917   if (ST.hasFlatInstOffsets() &&
2918       (!ST.hasFlatSegmentOffsetBug() ||
2919        findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) &&
2920       DAG.isBaseWithConstantOffset(Addr)) {
2921     SDValue N0 = Addr.getOperand(0);
2922     SDValue N1 = Addr.getOperand(1);
2923     int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
2924 
2925     if (ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
2926       if ((IsSigned && isInt<12>(COffsetVal)) ||
2927           (!IsSigned && isUInt<11>(COffsetVal))) {
2928         Addr = N0;
2929         OffsetVal = COffsetVal;
2930       }
2931     } else {
2932       if ((IsSigned && isInt<13>(COffsetVal)) ||
2933           (!IsSigned && isUInt<12>(COffsetVal))) {
2934         Addr = N0;
2935         OffsetVal = COffsetVal;
2936       }
2937     }
2938   }
2939 
2940   VAddr = Addr;
2941   Offset = DAG.getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
2942   SLC = DAG.getTargetConstant(0, SDLoc(), MVT::i1);
2943 
2944   return true;
2945 }
2946 
2947 // Replace load of an illegal type with a store of a bitcast to a friendlier
2948 // type.
2949 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2950                                                  DAGCombinerInfo &DCI) const {
2951   if (!DCI.isBeforeLegalize())
2952     return SDValue();
2953 
2954   LoadSDNode *LN = cast<LoadSDNode>(N);
2955   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2956     return SDValue();
2957 
2958   SDLoc SL(N);
2959   SelectionDAG &DAG = DCI.DAG;
2960   EVT VT = LN->getMemoryVT();
2961 
2962   unsigned Size = VT.getStoreSize();
2963   unsigned Align = LN->getAlignment();
2964   if (Align < Size && isTypeLegal(VT)) {
2965     bool IsFast;
2966     unsigned AS = LN->getAddressSpace();
2967 
2968     // Expand unaligned loads earlier than legalization. Due to visitation order
2969     // problems during legalization, the emitted instructions to pack and unpack
2970     // the bytes again are not eliminated in the case of an unaligned copy.
2971     if (!allowsMisalignedMemoryAccesses(
2972             VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) {
2973       if (VT.isVector())
2974         return scalarizeVectorLoad(LN, DAG);
2975 
2976       SDValue Ops[2];
2977       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2978       return DAG.getMergeValues(Ops, SDLoc(N));
2979     }
2980 
2981     if (!IsFast)
2982       return SDValue();
2983   }
2984 
2985   if (!shouldCombineMemoryType(VT))
2986     return SDValue();
2987 
2988   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2989 
2990   SDValue NewLoad
2991     = DAG.getLoad(NewVT, SL, LN->getChain(),
2992                   LN->getBasePtr(), LN->getMemOperand());
2993 
2994   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2995   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2996   return SDValue(N, 0);
2997 }
2998 
2999 // Replace store of an illegal type with a store of a bitcast to a friendlier
3000 // type.
3001 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
3002                                                   DAGCombinerInfo &DCI) const {
3003   if (!DCI.isBeforeLegalize())
3004     return SDValue();
3005 
3006   StoreSDNode *SN = cast<StoreSDNode>(N);
3007   if (SN->isVolatile() || !ISD::isNormalStore(SN))
3008     return SDValue();
3009 
3010   EVT VT = SN->getMemoryVT();
3011   unsigned Size = VT.getStoreSize();
3012 
3013   SDLoc SL(N);
3014   SelectionDAG &DAG = DCI.DAG;
3015   unsigned Align = SN->getAlignment();
3016   if (Align < Size && isTypeLegal(VT)) {
3017     bool IsFast;
3018     unsigned AS = SN->getAddressSpace();
3019 
3020     // Expand unaligned stores earlier than legalization. Due to visitation
3021     // order problems during legalization, the emitted instructions to pack and
3022     // unpack the bytes again are not eliminated in the case of an unaligned
3023     // copy.
3024     if (!allowsMisalignedMemoryAccesses(
3025             VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) {
3026       if (VT.isVector())
3027         return scalarizeVectorStore(SN, DAG);
3028 
3029       return expandUnalignedStore(SN, DAG);
3030     }
3031 
3032     if (!IsFast)
3033       return SDValue();
3034   }
3035 
3036   if (!shouldCombineMemoryType(VT))
3037     return SDValue();
3038 
3039   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3040   SDValue Val = SN->getValue();
3041 
3042   //DCI.AddToWorklist(Val.getNode());
3043 
3044   bool OtherUses = !Val.hasOneUse();
3045   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
3046   if (OtherUses) {
3047     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
3048     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
3049   }
3050 
3051   return DAG.getStore(SN->getChain(), SL, CastVal,
3052                       SN->getBasePtr(), SN->getMemOperand());
3053 }
3054 
3055 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3056 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3057 // issues.
3058 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3059                                                         DAGCombinerInfo &DCI) const {
3060   SelectionDAG &DAG = DCI.DAG;
3061   SDValue N0 = N->getOperand(0);
3062 
3063   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3064   //     (vt2 (truncate (assertzext vt0:x, vt1)))
3065   if (N0.getOpcode() == ISD::TRUNCATE) {
3066     SDValue N1 = N->getOperand(1);
3067     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3068     SDLoc SL(N);
3069 
3070     SDValue Src = N0.getOperand(0);
3071     EVT SrcVT = Src.getValueType();
3072     if (SrcVT.bitsGE(ExtVT)) {
3073       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3074       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3075     }
3076   }
3077 
3078   return SDValue();
3079 }
3080 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3081 /// binary operation \p Opc to it with the corresponding constant operands.
3082 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3083   DAGCombinerInfo &DCI, const SDLoc &SL,
3084   unsigned Opc, SDValue LHS,
3085   uint32_t ValLo, uint32_t ValHi) const {
3086   SelectionDAG &DAG = DCI.DAG;
3087   SDValue Lo, Hi;
3088   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3089 
3090   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3091   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3092 
3093   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3094   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3095 
3096   // Re-visit the ands. It's possible we eliminated one of them and it could
3097   // simplify the vector.
3098   DCI.AddToWorklist(Lo.getNode());
3099   DCI.AddToWorklist(Hi.getNode());
3100 
3101   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3102   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3103 }
3104 
3105 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3106                                                 DAGCombinerInfo &DCI) const {
3107   EVT VT = N->getValueType(0);
3108 
3109   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3110   if (!RHS)
3111     return SDValue();
3112 
3113   SDValue LHS = N->getOperand(0);
3114   unsigned RHSVal = RHS->getZExtValue();
3115   if (!RHSVal)
3116     return LHS;
3117 
3118   SDLoc SL(N);
3119   SelectionDAG &DAG = DCI.DAG;
3120 
3121   switch (LHS->getOpcode()) {
3122   default:
3123     break;
3124   case ISD::ZERO_EXTEND:
3125   case ISD::SIGN_EXTEND:
3126   case ISD::ANY_EXTEND: {
3127     SDValue X = LHS->getOperand(0);
3128 
3129     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3130         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3131       // Prefer build_vector as the canonical form if packed types are legal.
3132       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3133       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3134        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3135       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3136     }
3137 
3138     // shl (ext x) => zext (shl x), if shift does not overflow int
3139     if (VT != MVT::i64)
3140       break;
3141     KnownBits Known = DAG.computeKnownBits(X);
3142     unsigned LZ = Known.countMinLeadingZeros();
3143     if (LZ < RHSVal)
3144       break;
3145     EVT XVT = X.getValueType();
3146     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3147     return DAG.getZExtOrTrunc(Shl, SL, VT);
3148   }
3149   }
3150 
3151   if (VT != MVT::i64)
3152     return SDValue();
3153 
3154   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3155 
3156   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3157   // common case, splitting this into a move and a 32-bit shift is faster and
3158   // the same code size.
3159   if (RHSVal < 32)
3160     return SDValue();
3161 
3162   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3163 
3164   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3165   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3166 
3167   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3168 
3169   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3170   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3171 }
3172 
3173 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3174                                                 DAGCombinerInfo &DCI) const {
3175   if (N->getValueType(0) != MVT::i64)
3176     return SDValue();
3177 
3178   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3179   if (!RHS)
3180     return SDValue();
3181 
3182   SelectionDAG &DAG = DCI.DAG;
3183   SDLoc SL(N);
3184   unsigned RHSVal = RHS->getZExtValue();
3185 
3186   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3187   if (RHSVal == 32) {
3188     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3189     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3190                                    DAG.getConstant(31, SL, MVT::i32));
3191 
3192     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3193     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3194   }
3195 
3196   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3197   if (RHSVal == 63) {
3198     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3199     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3200                                    DAG.getConstant(31, SL, MVT::i32));
3201     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3202     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3203   }
3204 
3205   return SDValue();
3206 }
3207 
3208 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3209                                                 DAGCombinerInfo &DCI) const {
3210   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3211   if (!RHS)
3212     return SDValue();
3213 
3214   EVT VT = N->getValueType(0);
3215   SDValue LHS = N->getOperand(0);
3216   unsigned ShiftAmt = RHS->getZExtValue();
3217   SelectionDAG &DAG = DCI.DAG;
3218   SDLoc SL(N);
3219 
3220   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3221   // this improves the ability to match BFE patterns in isel.
3222   if (LHS.getOpcode() == ISD::AND) {
3223     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3224       if (Mask->getAPIntValue().isShiftedMask() &&
3225           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3226         return DAG.getNode(
3227             ISD::AND, SL, VT,
3228             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3229             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3230       }
3231     }
3232   }
3233 
3234   if (VT != MVT::i64)
3235     return SDValue();
3236 
3237   if (ShiftAmt < 32)
3238     return SDValue();
3239 
3240   // srl i64:x, C for C >= 32
3241   // =>
3242   //   build_pair (srl hi_32(x), C - 32), 0
3243   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3244   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3245 
3246   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3247   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3248 
3249   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3250   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3251 
3252   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3253 
3254   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3255 }
3256 
3257 SDValue AMDGPUTargetLowering::performTruncateCombine(
3258   SDNode *N, DAGCombinerInfo &DCI) const {
3259   SDLoc SL(N);
3260   SelectionDAG &DAG = DCI.DAG;
3261   EVT VT = N->getValueType(0);
3262   SDValue Src = N->getOperand(0);
3263 
3264   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3265   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3266     SDValue Vec = Src.getOperand(0);
3267     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3268       SDValue Elt0 = Vec.getOperand(0);
3269       EVT EltVT = Elt0.getValueType();
3270       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3271         if (EltVT.isFloatingPoint()) {
3272           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3273                              EltVT.changeTypeToInteger(), Elt0);
3274         }
3275 
3276         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3277       }
3278     }
3279   }
3280 
3281   // Equivalent of above for accessing the high element of a vector as an
3282   // integer operation.
3283   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3284   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3285     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3286       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3287         SDValue BV = stripBitcast(Src.getOperand(0));
3288         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3289             BV.getValueType().getVectorNumElements() == 2) {
3290           SDValue SrcElt = BV.getOperand(1);
3291           EVT SrcEltVT = SrcElt.getValueType();
3292           if (SrcEltVT.isFloatingPoint()) {
3293             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3294                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3295           }
3296 
3297           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3298         }
3299       }
3300     }
3301   }
3302 
3303   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3304   //
3305   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3306   //     i16 (trunc (srl (i32 (trunc x), K)))
3307   if (VT.getScalarSizeInBits() < 32) {
3308     EVT SrcVT = Src.getValueType();
3309     if (SrcVT.getScalarSizeInBits() > 32 &&
3310         (Src.getOpcode() == ISD::SRL ||
3311          Src.getOpcode() == ISD::SRA ||
3312          Src.getOpcode() == ISD::SHL)) {
3313       SDValue Amt = Src.getOperand(1);
3314       KnownBits Known = DAG.computeKnownBits(Amt);
3315       unsigned Size = VT.getScalarSizeInBits();
3316       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3317           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3318         EVT MidVT = VT.isVector() ?
3319           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3320                            VT.getVectorNumElements()) : MVT::i32;
3321 
3322         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3323         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3324                                     Src.getOperand(0));
3325         DCI.AddToWorklist(Trunc.getNode());
3326 
3327         if (Amt.getValueType() != NewShiftVT) {
3328           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3329           DCI.AddToWorklist(Amt.getNode());
3330         }
3331 
3332         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3333                                           Trunc, Amt);
3334         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3335       }
3336     }
3337   }
3338 
3339   return SDValue();
3340 }
3341 
3342 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3343 // instructions. If we only match on the legalized i64 mul expansion,
3344 // SimplifyDemandedBits will be unable to remove them because there will be
3345 // multiple uses due to the separate mul + mulh[su].
3346 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3347                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3348   if (Size <= 32) {
3349     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3350     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3351   }
3352 
3353   // Because we want to eliminate extension instructions before the
3354   // operation, we need to create a single user here (i.e. not the separate
3355   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3356 
3357   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3358 
3359   SDValue Mul = DAG.getNode(MulOpc, SL,
3360                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3361 
3362   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3363                      Mul.getValue(0), Mul.getValue(1));
3364 }
3365 
3366 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3367                                                 DAGCombinerInfo &DCI) const {
3368   EVT VT = N->getValueType(0);
3369 
3370   unsigned Size = VT.getSizeInBits();
3371   if (VT.isVector() || Size > 64)
3372     return SDValue();
3373 
3374   // There are i16 integer mul/mad.
3375   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3376     return SDValue();
3377 
3378   SelectionDAG &DAG = DCI.DAG;
3379   SDLoc DL(N);
3380 
3381   SDValue N0 = N->getOperand(0);
3382   SDValue N1 = N->getOperand(1);
3383 
3384   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3385   // in the source into any_extends if the result of the mul is truncated. Since
3386   // we can assume the high bits are whatever we want, use the underlying value
3387   // to avoid the unknown high bits from interfering.
3388   if (N0.getOpcode() == ISD::ANY_EXTEND)
3389     N0 = N0.getOperand(0);
3390 
3391   if (N1.getOpcode() == ISD::ANY_EXTEND)
3392     N1 = N1.getOperand(0);
3393 
3394   SDValue Mul;
3395 
3396   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3397     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3398     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3399     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3400   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3401     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3402     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3403     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3404   } else {
3405     return SDValue();
3406   }
3407 
3408   // We need to use sext even for MUL_U24, because MUL_U24 is used
3409   // for signed multiply of 8 and 16-bit types.
3410   return DAG.getSExtOrTrunc(Mul, DL, VT);
3411 }
3412 
3413 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3414                                                   DAGCombinerInfo &DCI) const {
3415   EVT VT = N->getValueType(0);
3416 
3417   if (!Subtarget->hasMulI24() || VT.isVector())
3418     return SDValue();
3419 
3420   SelectionDAG &DAG = DCI.DAG;
3421   SDLoc DL(N);
3422 
3423   SDValue N0 = N->getOperand(0);
3424   SDValue N1 = N->getOperand(1);
3425 
3426   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3427     return SDValue();
3428 
3429   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3430   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3431 
3432   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3433   DCI.AddToWorklist(Mulhi.getNode());
3434   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3435 }
3436 
3437 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3438                                                   DAGCombinerInfo &DCI) const {
3439   EVT VT = N->getValueType(0);
3440 
3441   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3442     return SDValue();
3443 
3444   SelectionDAG &DAG = DCI.DAG;
3445   SDLoc DL(N);
3446 
3447   SDValue N0 = N->getOperand(0);
3448   SDValue N1 = N->getOperand(1);
3449 
3450   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3451     return SDValue();
3452 
3453   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3454   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3455 
3456   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3457   DCI.AddToWorklist(Mulhi.getNode());
3458   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3459 }
3460 
3461 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3462   SDNode *N, DAGCombinerInfo &DCI) const {
3463   SelectionDAG &DAG = DCI.DAG;
3464 
3465   // Simplify demanded bits before splitting into multiple users.
3466   if (SDValue V = simplifyI24(N, DCI))
3467     return V;
3468 
3469   SDValue N0 = N->getOperand(0);
3470   SDValue N1 = N->getOperand(1);
3471 
3472   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3473 
3474   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3475   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3476 
3477   SDLoc SL(N);
3478 
3479   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3480   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3481   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3482 }
3483 
3484 static bool isNegativeOne(SDValue Val) {
3485   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3486     return C->isAllOnesValue();
3487   return false;
3488 }
3489 
3490 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3491                                           SDValue Op,
3492                                           const SDLoc &DL,
3493                                           unsigned Opc) const {
3494   EVT VT = Op.getValueType();
3495   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3496   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3497                               LegalVT != MVT::i16))
3498     return SDValue();
3499 
3500   if (VT != MVT::i32)
3501     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3502 
3503   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3504   if (VT != MVT::i32)
3505     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3506 
3507   return FFBX;
3508 }
3509 
3510 // The native instructions return -1 on 0 input. Optimize out a select that
3511 // produces -1 on 0.
3512 //
3513 // TODO: If zero is not undef, we could also do this if the output is compared
3514 // against the bitwidth.
3515 //
3516 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3517 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3518                                                  SDValue LHS, SDValue RHS,
3519                                                  DAGCombinerInfo &DCI) const {
3520   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3521   if (!CmpRhs || !CmpRhs->isNullValue())
3522     return SDValue();
3523 
3524   SelectionDAG &DAG = DCI.DAG;
3525   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3526   SDValue CmpLHS = Cond.getOperand(0);
3527 
3528   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3529                                            AMDGPUISD::FFBH_U32;
3530 
3531   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3532   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3533   if (CCOpcode == ISD::SETEQ &&
3534       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3535       RHS.getOperand(0) == CmpLHS &&
3536       isNegativeOne(LHS)) {
3537     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3538   }
3539 
3540   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3541   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3542   if (CCOpcode == ISD::SETNE &&
3543       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3544       LHS.getOperand(0) == CmpLHS &&
3545       isNegativeOne(RHS)) {
3546     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3547   }
3548 
3549   return SDValue();
3550 }
3551 
3552 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3553                                          unsigned Op,
3554                                          const SDLoc &SL,
3555                                          SDValue Cond,
3556                                          SDValue N1,
3557                                          SDValue N2) {
3558   SelectionDAG &DAG = DCI.DAG;
3559   EVT VT = N1.getValueType();
3560 
3561   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3562                                   N1.getOperand(0), N2.getOperand(0));
3563   DCI.AddToWorklist(NewSelect.getNode());
3564   return DAG.getNode(Op, SL, VT, NewSelect);
3565 }
3566 
3567 // Pull a free FP operation out of a select so it may fold into uses.
3568 //
3569 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3570 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3571 //
3572 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3573 // select c, (fabs x), +k -> fabs (select c, x, k)
3574 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3575                                     SDValue N) {
3576   SelectionDAG &DAG = DCI.DAG;
3577   SDValue Cond = N.getOperand(0);
3578   SDValue LHS = N.getOperand(1);
3579   SDValue RHS = N.getOperand(2);
3580 
3581   EVT VT = N.getValueType();
3582   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3583       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3584     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3585                                      SDLoc(N), Cond, LHS, RHS);
3586   }
3587 
3588   bool Inv = false;
3589   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3590     std::swap(LHS, RHS);
3591     Inv = true;
3592   }
3593 
3594   // TODO: Support vector constants.
3595   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3596   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3597     SDLoc SL(N);
3598     // If one side is an fneg/fabs and the other is a constant, we can push the
3599     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3600     SDValue NewLHS = LHS.getOperand(0);
3601     SDValue NewRHS = RHS;
3602 
3603     // Careful: if the neg can be folded up, don't try to pull it back down.
3604     bool ShouldFoldNeg = true;
3605 
3606     if (NewLHS.hasOneUse()) {
3607       unsigned Opc = NewLHS.getOpcode();
3608       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3609         ShouldFoldNeg = false;
3610       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3611         ShouldFoldNeg = false;
3612     }
3613 
3614     if (ShouldFoldNeg) {
3615       if (LHS.getOpcode() == ISD::FNEG)
3616         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3617       else if (CRHS->isNegative())
3618         return SDValue();
3619 
3620       if (Inv)
3621         std::swap(NewLHS, NewRHS);
3622 
3623       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3624                                       Cond, NewLHS, NewRHS);
3625       DCI.AddToWorklist(NewSelect.getNode());
3626       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3627     }
3628   }
3629 
3630   return SDValue();
3631 }
3632 
3633 
3634 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3635                                                    DAGCombinerInfo &DCI) const {
3636   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3637     return Folded;
3638 
3639   SDValue Cond = N->getOperand(0);
3640   if (Cond.getOpcode() != ISD::SETCC)
3641     return SDValue();
3642 
3643   EVT VT = N->getValueType(0);
3644   SDValue LHS = Cond.getOperand(0);
3645   SDValue RHS = Cond.getOperand(1);
3646   SDValue CC = Cond.getOperand(2);
3647 
3648   SDValue True = N->getOperand(1);
3649   SDValue False = N->getOperand(2);
3650 
3651   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3652     SelectionDAG &DAG = DCI.DAG;
3653     if ((DAG.isConstantValueOfAnyType(True) ||
3654          DAG.isConstantValueOfAnyType(True)) &&
3655         (!DAG.isConstantValueOfAnyType(False) &&
3656          !DAG.isConstantValueOfAnyType(False))) {
3657       // Swap cmp + select pair to move constant to false input.
3658       // This will allow using VOPC cndmasks more often.
3659       // select (setcc x, y), k, x -> select (setcc y, x) x, x
3660 
3661       SDLoc SL(N);
3662       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3663                                             LHS.getValueType().isInteger());
3664 
3665       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3666       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3667     }
3668 
3669     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3670       SDValue MinMax
3671         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3672       // Revisit this node so we can catch min3/max3/med3 patterns.
3673       //DCI.AddToWorklist(MinMax.getNode());
3674       return MinMax;
3675     }
3676   }
3677 
3678   // There's no reason to not do this if the condition has other uses.
3679   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3680 }
3681 
3682 static bool isInv2Pi(const APFloat &APF) {
3683   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3684   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3685   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3686 
3687   return APF.bitwiseIsEqual(KF16) ||
3688          APF.bitwiseIsEqual(KF32) ||
3689          APF.bitwiseIsEqual(KF64);
3690 }
3691 
3692 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3693 // additional cost to negate them.
3694 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3695   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3696     if (C->isZero() && !C->isNegative())
3697       return true;
3698 
3699     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3700       return true;
3701   }
3702 
3703   return false;
3704 }
3705 
3706 static unsigned inverseMinMax(unsigned Opc) {
3707   switch (Opc) {
3708   case ISD::FMAXNUM:
3709     return ISD::FMINNUM;
3710   case ISD::FMINNUM:
3711     return ISD::FMAXNUM;
3712   case ISD::FMAXNUM_IEEE:
3713     return ISD::FMINNUM_IEEE;
3714   case ISD::FMINNUM_IEEE:
3715     return ISD::FMAXNUM_IEEE;
3716   case AMDGPUISD::FMAX_LEGACY:
3717     return AMDGPUISD::FMIN_LEGACY;
3718   case AMDGPUISD::FMIN_LEGACY:
3719     return  AMDGPUISD::FMAX_LEGACY;
3720   default:
3721     llvm_unreachable("invalid min/max opcode");
3722   }
3723 }
3724 
3725 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3726                                                  DAGCombinerInfo &DCI) const {
3727   SelectionDAG &DAG = DCI.DAG;
3728   SDValue N0 = N->getOperand(0);
3729   EVT VT = N->getValueType(0);
3730 
3731   unsigned Opc = N0.getOpcode();
3732 
3733   // If the input has multiple uses and we can either fold the negate down, or
3734   // the other uses cannot, give up. This both prevents unprofitable
3735   // transformations and infinite loops: we won't repeatedly try to fold around
3736   // a negate that has no 'good' form.
3737   if (N0.hasOneUse()) {
3738     // This may be able to fold into the source, but at a code size cost. Don't
3739     // fold if the fold into the user is free.
3740     if (allUsesHaveSourceMods(N, 0))
3741       return SDValue();
3742   } else {
3743     if (fnegFoldsIntoOp(Opc) &&
3744         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3745       return SDValue();
3746   }
3747 
3748   SDLoc SL(N);
3749   switch (Opc) {
3750   case ISD::FADD: {
3751     if (!mayIgnoreSignedZero(N0))
3752       return SDValue();
3753 
3754     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3755     SDValue LHS = N0.getOperand(0);
3756     SDValue RHS = N0.getOperand(1);
3757 
3758     if (LHS.getOpcode() != ISD::FNEG)
3759       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3760     else
3761       LHS = LHS.getOperand(0);
3762 
3763     if (RHS.getOpcode() != ISD::FNEG)
3764       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3765     else
3766       RHS = RHS.getOperand(0);
3767 
3768     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3769     if (Res.getOpcode() != ISD::FADD)
3770       return SDValue(); // Op got folded away.
3771     if (!N0.hasOneUse())
3772       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3773     return Res;
3774   }
3775   case ISD::FMUL:
3776   case AMDGPUISD::FMUL_LEGACY: {
3777     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3778     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3779     SDValue LHS = N0.getOperand(0);
3780     SDValue RHS = N0.getOperand(1);
3781 
3782     if (LHS.getOpcode() == ISD::FNEG)
3783       LHS = LHS.getOperand(0);
3784     else if (RHS.getOpcode() == ISD::FNEG)
3785       RHS = RHS.getOperand(0);
3786     else
3787       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3788 
3789     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3790     if (Res.getOpcode() != Opc)
3791       return SDValue(); // Op got folded away.
3792     if (!N0.hasOneUse())
3793       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3794     return Res;
3795   }
3796   case ISD::FMA:
3797   case ISD::FMAD: {
3798     if (!mayIgnoreSignedZero(N0))
3799       return SDValue();
3800 
3801     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3802     SDValue LHS = N0.getOperand(0);
3803     SDValue MHS = N0.getOperand(1);
3804     SDValue RHS = N0.getOperand(2);
3805 
3806     if (LHS.getOpcode() == ISD::FNEG)
3807       LHS = LHS.getOperand(0);
3808     else if (MHS.getOpcode() == ISD::FNEG)
3809       MHS = MHS.getOperand(0);
3810     else
3811       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3812 
3813     if (RHS.getOpcode() != ISD::FNEG)
3814       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3815     else
3816       RHS = RHS.getOperand(0);
3817 
3818     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3819     if (Res.getOpcode() != Opc)
3820       return SDValue(); // Op got folded away.
3821     if (!N0.hasOneUse())
3822       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3823     return Res;
3824   }
3825   case ISD::FMAXNUM:
3826   case ISD::FMINNUM:
3827   case ISD::FMAXNUM_IEEE:
3828   case ISD::FMINNUM_IEEE:
3829   case AMDGPUISD::FMAX_LEGACY:
3830   case AMDGPUISD::FMIN_LEGACY: {
3831     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3832     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3833     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3834     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3835 
3836     SDValue LHS = N0.getOperand(0);
3837     SDValue RHS = N0.getOperand(1);
3838 
3839     // 0 doesn't have a negated inline immediate.
3840     // TODO: This constant check should be generalized to other operations.
3841     if (isConstantCostlierToNegate(RHS))
3842       return SDValue();
3843 
3844     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3845     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3846     unsigned Opposite = inverseMinMax(Opc);
3847 
3848     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3849     if (Res.getOpcode() != Opposite)
3850       return SDValue(); // Op got folded away.
3851     if (!N0.hasOneUse())
3852       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3853     return Res;
3854   }
3855   case AMDGPUISD::FMED3: {
3856     SDValue Ops[3];
3857     for (unsigned I = 0; I < 3; ++I)
3858       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3859 
3860     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3861     if (Res.getOpcode() != AMDGPUISD::FMED3)
3862       return SDValue(); // Op got folded away.
3863     if (!N0.hasOneUse())
3864       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3865     return Res;
3866   }
3867   case ISD::FP_EXTEND:
3868   case ISD::FTRUNC:
3869   case ISD::FRINT:
3870   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3871   case ISD::FSIN:
3872   case ISD::FCANONICALIZE:
3873   case AMDGPUISD::RCP:
3874   case AMDGPUISD::RCP_LEGACY:
3875   case AMDGPUISD::RCP_IFLAG:
3876   case AMDGPUISD::SIN_HW: {
3877     SDValue CvtSrc = N0.getOperand(0);
3878     if (CvtSrc.getOpcode() == ISD::FNEG) {
3879       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3880       // (fneg (rcp (fneg x))) -> (rcp x)
3881       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3882     }
3883 
3884     if (!N0.hasOneUse())
3885       return SDValue();
3886 
3887     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3888     // (fneg (rcp x)) -> (rcp (fneg x))
3889     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3890     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3891   }
3892   case ISD::FP_ROUND: {
3893     SDValue CvtSrc = N0.getOperand(0);
3894 
3895     if (CvtSrc.getOpcode() == ISD::FNEG) {
3896       // (fneg (fp_round (fneg x))) -> (fp_round x)
3897       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3898                          CvtSrc.getOperand(0), N0.getOperand(1));
3899     }
3900 
3901     if (!N0.hasOneUse())
3902       return SDValue();
3903 
3904     // (fneg (fp_round x)) -> (fp_round (fneg x))
3905     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3906     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3907   }
3908   case ISD::FP16_TO_FP: {
3909     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3910     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3911     // Put the fneg back as a legal source operation that can be matched later.
3912     SDLoc SL(N);
3913 
3914     SDValue Src = N0.getOperand(0);
3915     EVT SrcVT = Src.getValueType();
3916 
3917     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3918     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3919                                   DAG.getConstant(0x8000, SL, SrcVT));
3920     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3921   }
3922   default:
3923     return SDValue();
3924   }
3925 }
3926 
3927 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3928                                                  DAGCombinerInfo &DCI) const {
3929   SelectionDAG &DAG = DCI.DAG;
3930   SDValue N0 = N->getOperand(0);
3931 
3932   if (!N0.hasOneUse())
3933     return SDValue();
3934 
3935   switch (N0.getOpcode()) {
3936   case ISD::FP16_TO_FP: {
3937     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3938     SDLoc SL(N);
3939     SDValue Src = N0.getOperand(0);
3940     EVT SrcVT = Src.getValueType();
3941 
3942     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3943     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3944                                   DAG.getConstant(0x7fff, SL, SrcVT));
3945     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3946   }
3947   default:
3948     return SDValue();
3949   }
3950 }
3951 
3952 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3953                                                 DAGCombinerInfo &DCI) const {
3954   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3955   if (!CFP)
3956     return SDValue();
3957 
3958   // XXX - Should this flush denormals?
3959   const APFloat &Val = CFP->getValueAPF();
3960   APFloat One(Val.getSemantics(), "1.0");
3961   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3962 }
3963 
3964 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3965                                                 DAGCombinerInfo &DCI) const {
3966   SelectionDAG &DAG = DCI.DAG;
3967   SDLoc DL(N);
3968 
3969   switch(N->getOpcode()) {
3970   default:
3971     break;
3972   case ISD::BITCAST: {
3973     EVT DestVT = N->getValueType(0);
3974 
3975     // Push casts through vector builds. This helps avoid emitting a large
3976     // number of copies when materializing floating point vector constants.
3977     //
3978     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3979     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3980     if (DestVT.isVector()) {
3981       SDValue Src = N->getOperand(0);
3982       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3983         EVT SrcVT = Src.getValueType();
3984         unsigned NElts = DestVT.getVectorNumElements();
3985 
3986         if (SrcVT.getVectorNumElements() == NElts) {
3987           EVT DestEltVT = DestVT.getVectorElementType();
3988 
3989           SmallVector<SDValue, 8> CastedElts;
3990           SDLoc SL(N);
3991           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3992             SDValue Elt = Src.getOperand(I);
3993             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3994           }
3995 
3996           return DAG.getBuildVector(DestVT, SL, CastedElts);
3997         }
3998       }
3999     }
4000 
4001     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
4002       break;
4003 
4004     // Fold bitcasts of constants.
4005     //
4006     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
4007     // TODO: Generalize and move to DAGCombiner
4008     SDValue Src = N->getOperand(0);
4009     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
4010       if (Src.getValueType() == MVT::i64) {
4011         SDLoc SL(N);
4012         uint64_t CVal = C->getZExtValue();
4013         SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4014                                  DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4015                                  DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4016         return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
4017       }
4018     }
4019 
4020     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
4021       const APInt &Val = C->getValueAPF().bitcastToAPInt();
4022       SDLoc SL(N);
4023       uint64_t CVal = Val.getZExtValue();
4024       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4025                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4026                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4027 
4028       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
4029     }
4030 
4031     break;
4032   }
4033   case ISD::SHL: {
4034     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4035       break;
4036 
4037     return performShlCombine(N, DCI);
4038   }
4039   case ISD::SRL: {
4040     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4041       break;
4042 
4043     return performSrlCombine(N, DCI);
4044   }
4045   case ISD::SRA: {
4046     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4047       break;
4048 
4049     return performSraCombine(N, DCI);
4050   }
4051   case ISD::TRUNCATE:
4052     return performTruncateCombine(N, DCI);
4053   case ISD::MUL:
4054     return performMulCombine(N, DCI);
4055   case ISD::MULHS:
4056     return performMulhsCombine(N, DCI);
4057   case ISD::MULHU:
4058     return performMulhuCombine(N, DCI);
4059   case AMDGPUISD::MUL_I24:
4060   case AMDGPUISD::MUL_U24:
4061   case AMDGPUISD::MULHI_I24:
4062   case AMDGPUISD::MULHI_U24: {
4063     if (SDValue V = simplifyI24(N, DCI))
4064       return V;
4065     return SDValue();
4066   }
4067   case AMDGPUISD::MUL_LOHI_I24:
4068   case AMDGPUISD::MUL_LOHI_U24:
4069     return performMulLoHi24Combine(N, DCI);
4070   case ISD::SELECT:
4071     return performSelectCombine(N, DCI);
4072   case ISD::FNEG:
4073     return performFNegCombine(N, DCI);
4074   case ISD::FABS:
4075     return performFAbsCombine(N, DCI);
4076   case AMDGPUISD::BFE_I32:
4077   case AMDGPUISD::BFE_U32: {
4078     assert(!N->getValueType(0).isVector() &&
4079            "Vector handling of BFE not implemented");
4080     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4081     if (!Width)
4082       break;
4083 
4084     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4085     if (WidthVal == 0)
4086       return DAG.getConstant(0, DL, MVT::i32);
4087 
4088     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4089     if (!Offset)
4090       break;
4091 
4092     SDValue BitsFrom = N->getOperand(0);
4093     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4094 
4095     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4096 
4097     if (OffsetVal == 0) {
4098       // This is already sign / zero extended, so try to fold away extra BFEs.
4099       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4100 
4101       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4102       if (OpSignBits >= SignBits)
4103         return BitsFrom;
4104 
4105       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4106       if (Signed) {
4107         // This is a sign_extend_inreg. Replace it to take advantage of existing
4108         // DAG Combines. If not eliminated, we will match back to BFE during
4109         // selection.
4110 
4111         // TODO: The sext_inreg of extended types ends, although we can could
4112         // handle them in a single BFE.
4113         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4114                            DAG.getValueType(SmallVT));
4115       }
4116 
4117       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4118     }
4119 
4120     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4121       if (Signed) {
4122         return constantFoldBFE<int32_t>(DAG,
4123                                         CVal->getSExtValue(),
4124                                         OffsetVal,
4125                                         WidthVal,
4126                                         DL);
4127       }
4128 
4129       return constantFoldBFE<uint32_t>(DAG,
4130                                        CVal->getZExtValue(),
4131                                        OffsetVal,
4132                                        WidthVal,
4133                                        DL);
4134     }
4135 
4136     if ((OffsetVal + WidthVal) >= 32 &&
4137         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4138       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4139       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4140                          BitsFrom, ShiftVal);
4141     }
4142 
4143     if (BitsFrom.hasOneUse()) {
4144       APInt Demanded = APInt::getBitsSet(32,
4145                                          OffsetVal,
4146                                          OffsetVal + WidthVal);
4147 
4148       KnownBits Known;
4149       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4150                                             !DCI.isBeforeLegalizeOps());
4151       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4152       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4153           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4154         DCI.CommitTargetLoweringOpt(TLO);
4155       }
4156     }
4157 
4158     break;
4159   }
4160   case ISD::LOAD:
4161     return performLoadCombine(N, DCI);
4162   case ISD::STORE:
4163     return performStoreCombine(N, DCI);
4164   case AMDGPUISD::RCP:
4165   case AMDGPUISD::RCP_IFLAG:
4166     return performRcpCombine(N, DCI);
4167   case ISD::AssertZext:
4168   case ISD::AssertSext:
4169     return performAssertSZExtCombine(N, DCI);
4170   }
4171   return SDValue();
4172 }
4173 
4174 //===----------------------------------------------------------------------===//
4175 // Helper functions
4176 //===----------------------------------------------------------------------===//
4177 
4178 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4179                                                    const TargetRegisterClass *RC,
4180                                                    unsigned Reg, EVT VT,
4181                                                    const SDLoc &SL,
4182                                                    bool RawReg) const {
4183   MachineFunction &MF = DAG.getMachineFunction();
4184   MachineRegisterInfo &MRI = MF.getRegInfo();
4185   unsigned VReg;
4186 
4187   if (!MRI.isLiveIn(Reg)) {
4188     VReg = MRI.createVirtualRegister(RC);
4189     MRI.addLiveIn(Reg, VReg);
4190   } else {
4191     VReg = MRI.getLiveInVirtReg(Reg);
4192   }
4193 
4194   if (RawReg)
4195     return DAG.getRegister(VReg, VT);
4196 
4197   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4198 }
4199 
4200 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4201                                                   EVT VT,
4202                                                   const SDLoc &SL,
4203                                                   int64_t Offset) const {
4204   MachineFunction &MF = DAG.getMachineFunction();
4205   MachineFrameInfo &MFI = MF.getFrameInfo();
4206 
4207   int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
4208   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4209   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4210 
4211   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4212                      MachineMemOperand::MODereferenceable |
4213                      MachineMemOperand::MOInvariant);
4214 }
4215 
4216 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4217                                                    const SDLoc &SL,
4218                                                    SDValue Chain,
4219                                                    SDValue ArgVal,
4220                                                    int64_t Offset) const {
4221   MachineFunction &MF = DAG.getMachineFunction();
4222   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4223 
4224   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4225   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4226                                MachineMemOperand::MODereferenceable);
4227   return Store;
4228 }
4229 
4230 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4231                                              const TargetRegisterClass *RC,
4232                                              EVT VT, const SDLoc &SL,
4233                                              const ArgDescriptor &Arg) const {
4234   assert(Arg && "Attempting to load missing argument");
4235 
4236   if (Arg.isRegister())
4237     return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL);
4238   return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4239 }
4240 
4241 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4242     const MachineFunction &MF, const ImplicitParameter Param) const {
4243   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4244   const AMDGPUSubtarget &ST =
4245       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4246   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4247   unsigned Alignment = ST.getAlignmentForImplicitArgPtr();
4248   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4249                        ExplicitArgOffset;
4250   switch (Param) {
4251   case GRID_DIM:
4252     return ArgOffset;
4253   case GRID_OFFSET:
4254     return ArgOffset + 4;
4255   }
4256   llvm_unreachable("unexpected implicit parameter type");
4257 }
4258 
4259 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4260 
4261 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4262   switch ((AMDGPUISD::NodeType)Opcode) {
4263   case AMDGPUISD::FIRST_NUMBER: break;
4264   // AMDIL DAG nodes
4265   NODE_NAME_CASE(UMUL);
4266   NODE_NAME_CASE(BRANCH_COND);
4267 
4268   // AMDGPU DAG nodes
4269   NODE_NAME_CASE(IF)
4270   NODE_NAME_CASE(ELSE)
4271   NODE_NAME_CASE(LOOP)
4272   NODE_NAME_CASE(CALL)
4273   NODE_NAME_CASE(TC_RETURN)
4274   NODE_NAME_CASE(TRAP)
4275   NODE_NAME_CASE(RET_FLAG)
4276   NODE_NAME_CASE(RETURN_TO_EPILOG)
4277   NODE_NAME_CASE(ENDPGM)
4278   NODE_NAME_CASE(DWORDADDR)
4279   NODE_NAME_CASE(FRACT)
4280   NODE_NAME_CASE(SETCC)
4281   NODE_NAME_CASE(SETREG)
4282   NODE_NAME_CASE(FMA_W_CHAIN)
4283   NODE_NAME_CASE(FMUL_W_CHAIN)
4284   NODE_NAME_CASE(CLAMP)
4285   NODE_NAME_CASE(COS_HW)
4286   NODE_NAME_CASE(SIN_HW)
4287   NODE_NAME_CASE(FMAX_LEGACY)
4288   NODE_NAME_CASE(FMIN_LEGACY)
4289   NODE_NAME_CASE(FMAX3)
4290   NODE_NAME_CASE(SMAX3)
4291   NODE_NAME_CASE(UMAX3)
4292   NODE_NAME_CASE(FMIN3)
4293   NODE_NAME_CASE(SMIN3)
4294   NODE_NAME_CASE(UMIN3)
4295   NODE_NAME_CASE(FMED3)
4296   NODE_NAME_CASE(SMED3)
4297   NODE_NAME_CASE(UMED3)
4298   NODE_NAME_CASE(FDOT2)
4299   NODE_NAME_CASE(URECIP)
4300   NODE_NAME_CASE(DIV_SCALE)
4301   NODE_NAME_CASE(DIV_FMAS)
4302   NODE_NAME_CASE(DIV_FIXUP)
4303   NODE_NAME_CASE(FMAD_FTZ)
4304   NODE_NAME_CASE(TRIG_PREOP)
4305   NODE_NAME_CASE(RCP)
4306   NODE_NAME_CASE(RSQ)
4307   NODE_NAME_CASE(RCP_LEGACY)
4308   NODE_NAME_CASE(RSQ_LEGACY)
4309   NODE_NAME_CASE(RCP_IFLAG)
4310   NODE_NAME_CASE(FMUL_LEGACY)
4311   NODE_NAME_CASE(RSQ_CLAMP)
4312   NODE_NAME_CASE(LDEXP)
4313   NODE_NAME_CASE(FP_CLASS)
4314   NODE_NAME_CASE(DOT4)
4315   NODE_NAME_CASE(CARRY)
4316   NODE_NAME_CASE(BORROW)
4317   NODE_NAME_CASE(BFE_U32)
4318   NODE_NAME_CASE(BFE_I32)
4319   NODE_NAME_CASE(BFI)
4320   NODE_NAME_CASE(BFM)
4321   NODE_NAME_CASE(FFBH_U32)
4322   NODE_NAME_CASE(FFBH_I32)
4323   NODE_NAME_CASE(FFBL_B32)
4324   NODE_NAME_CASE(MUL_U24)
4325   NODE_NAME_CASE(MUL_I24)
4326   NODE_NAME_CASE(MULHI_U24)
4327   NODE_NAME_CASE(MULHI_I24)
4328   NODE_NAME_CASE(MUL_LOHI_U24)
4329   NODE_NAME_CASE(MUL_LOHI_I24)
4330   NODE_NAME_CASE(MAD_U24)
4331   NODE_NAME_CASE(MAD_I24)
4332   NODE_NAME_CASE(MAD_I64_I32)
4333   NODE_NAME_CASE(MAD_U64_U32)
4334   NODE_NAME_CASE(PERM)
4335   NODE_NAME_CASE(TEXTURE_FETCH)
4336   NODE_NAME_CASE(EXPORT)
4337   NODE_NAME_CASE(EXPORT_DONE)
4338   NODE_NAME_CASE(R600_EXPORT)
4339   NODE_NAME_CASE(CONST_ADDRESS)
4340   NODE_NAME_CASE(REGISTER_LOAD)
4341   NODE_NAME_CASE(REGISTER_STORE)
4342   NODE_NAME_CASE(SAMPLE)
4343   NODE_NAME_CASE(SAMPLEB)
4344   NODE_NAME_CASE(SAMPLED)
4345   NODE_NAME_CASE(SAMPLEL)
4346   NODE_NAME_CASE(CVT_F32_UBYTE0)
4347   NODE_NAME_CASE(CVT_F32_UBYTE1)
4348   NODE_NAME_CASE(CVT_F32_UBYTE2)
4349   NODE_NAME_CASE(CVT_F32_UBYTE3)
4350   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4351   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4352   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4353   NODE_NAME_CASE(CVT_PK_I16_I32)
4354   NODE_NAME_CASE(CVT_PK_U16_U32)
4355   NODE_NAME_CASE(FP_TO_FP16)
4356   NODE_NAME_CASE(FP16_ZEXT)
4357   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4358   NODE_NAME_CASE(CONST_DATA_PTR)
4359   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4360   NODE_NAME_CASE(LDS)
4361   NODE_NAME_CASE(KILL)
4362   NODE_NAME_CASE(DUMMY_CHAIN)
4363   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4364   NODE_NAME_CASE(INIT_EXEC)
4365   NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
4366   NODE_NAME_CASE(SENDMSG)
4367   NODE_NAME_CASE(SENDMSGHALT)
4368   NODE_NAME_CASE(INTERP_MOV)
4369   NODE_NAME_CASE(INTERP_P1)
4370   NODE_NAME_CASE(INTERP_P2)
4371   NODE_NAME_CASE(INTERP_P1LL_F16)
4372   NODE_NAME_CASE(INTERP_P1LV_F16)
4373   NODE_NAME_CASE(INTERP_P2_F16)
4374   NODE_NAME_CASE(LOAD_D16_HI)
4375   NODE_NAME_CASE(LOAD_D16_LO)
4376   NODE_NAME_CASE(LOAD_D16_HI_I8)
4377   NODE_NAME_CASE(LOAD_D16_HI_U8)
4378   NODE_NAME_CASE(LOAD_D16_LO_I8)
4379   NODE_NAME_CASE(LOAD_D16_LO_U8)
4380   NODE_NAME_CASE(STORE_MSKOR)
4381   NODE_NAME_CASE(LOAD_CONSTANT)
4382   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4383   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4384   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4385   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4386   NODE_NAME_CASE(DS_ORDERED_COUNT)
4387   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4388   NODE_NAME_CASE(ATOMIC_INC)
4389   NODE_NAME_CASE(ATOMIC_DEC)
4390   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4391   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4392   NODE_NAME_CASE(BUFFER_LOAD)
4393   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4394   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4395   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4396   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4397   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4398   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4399   NODE_NAME_CASE(SBUFFER_LOAD)
4400   NODE_NAME_CASE(BUFFER_STORE)
4401   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4402   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4403   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4404   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4405   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4406   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4407   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4408   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4409   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4410   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4411   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4412   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4413   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4414   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4415   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4416 
4417   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4418   }
4419   return nullptr;
4420 }
4421 
4422 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4423                                               SelectionDAG &DAG, int Enabled,
4424                                               int &RefinementSteps,
4425                                               bool &UseOneConstNR,
4426                                               bool Reciprocal) const {
4427   EVT VT = Operand.getValueType();
4428 
4429   if (VT == MVT::f32) {
4430     RefinementSteps = 0;
4431     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4432   }
4433 
4434   // TODO: There is also f64 rsq instruction, but the documentation is less
4435   // clear on its precision.
4436 
4437   return SDValue();
4438 }
4439 
4440 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4441                                                SelectionDAG &DAG, int Enabled,
4442                                                int &RefinementSteps) const {
4443   EVT VT = Operand.getValueType();
4444 
4445   if (VT == MVT::f32) {
4446     // Reciprocal, < 1 ulp error.
4447     //
4448     // This reciprocal approximation converges to < 0.5 ulp error with one
4449     // newton rhapson performed with two fused multiple adds (FMAs).
4450 
4451     RefinementSteps = 0;
4452     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4453   }
4454 
4455   // TODO: There is also f64 rcp instruction, but the documentation is less
4456   // clear on its precision.
4457 
4458   return SDValue();
4459 }
4460 
4461 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4462     const SDValue Op, KnownBits &Known,
4463     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4464 
4465   Known.resetAll(); // Don't know anything.
4466 
4467   unsigned Opc = Op.getOpcode();
4468 
4469   switch (Opc) {
4470   default:
4471     break;
4472   case AMDGPUISD::CARRY:
4473   case AMDGPUISD::BORROW: {
4474     Known.Zero = APInt::getHighBitsSet(32, 31);
4475     break;
4476   }
4477 
4478   case AMDGPUISD::BFE_I32:
4479   case AMDGPUISD::BFE_U32: {
4480     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4481     if (!CWidth)
4482       return;
4483 
4484     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4485 
4486     if (Opc == AMDGPUISD::BFE_U32)
4487       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4488 
4489     break;
4490   }
4491   case AMDGPUISD::FP_TO_FP16:
4492   case AMDGPUISD::FP16_ZEXT: {
4493     unsigned BitWidth = Known.getBitWidth();
4494 
4495     // High bits are zero.
4496     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4497     break;
4498   }
4499   case AMDGPUISD::MUL_U24:
4500   case AMDGPUISD::MUL_I24: {
4501     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4502     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4503     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4504                       RHSKnown.countMinTrailingZeros();
4505     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4506 
4507     // Truncate to 24 bits.
4508     LHSKnown = LHSKnown.trunc(24);
4509     RHSKnown = RHSKnown.trunc(24);
4510 
4511     bool Negative = false;
4512     if (Opc == AMDGPUISD::MUL_I24) {
4513       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4514       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4515       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4516       if (MaxValBits >= 32)
4517         break;
4518       bool LHSNegative = LHSKnown.isNegative();
4519       bool LHSPositive = LHSKnown.isNonNegative();
4520       bool RHSNegative = RHSKnown.isNegative();
4521       bool RHSPositive = RHSKnown.isNonNegative();
4522       if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4523         break;
4524       Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4525       if (Negative)
4526         Known.One.setHighBits(32 - MaxValBits);
4527       else
4528         Known.Zero.setHighBits(32 - MaxValBits);
4529     } else {
4530       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4531       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4532       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4533       if (MaxValBits >= 32)
4534         break;
4535       Known.Zero.setHighBits(32 - MaxValBits);
4536     }
4537     break;
4538   }
4539   case AMDGPUISD::PERM: {
4540     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4541     if (!CMask)
4542       return;
4543 
4544     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4545     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4546     unsigned Sel = CMask->getZExtValue();
4547 
4548     for (unsigned I = 0; I < 32; I += 8) {
4549       unsigned SelBits = Sel & 0xff;
4550       if (SelBits < 4) {
4551         SelBits *= 8;
4552         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4553         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4554       } else if (SelBits < 7) {
4555         SelBits = (SelBits & 3) * 8;
4556         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4557         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4558       } else if (SelBits == 0x0c) {
4559         Known.Zero |= 0xff << I;
4560       } else if (SelBits > 0x0c) {
4561         Known.One |= 0xff << I;
4562       }
4563       Sel >>= 8;
4564     }
4565     break;
4566   }
4567   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4568     Known.Zero.setHighBits(24);
4569     break;
4570   }
4571   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4572     Known.Zero.setHighBits(16);
4573     break;
4574   }
4575   case AMDGPUISD::LDS: {
4576     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4577     unsigned Align = GA->getGlobal()->getAlignment();
4578 
4579     Known.Zero.setHighBits(16);
4580     if (Align)
4581       Known.Zero.setLowBits(Log2_32(Align));
4582     break;
4583   }
4584   case ISD::INTRINSIC_WO_CHAIN: {
4585     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4586     switch (IID) {
4587     case Intrinsic::amdgcn_mbcnt_lo:
4588     case Intrinsic::amdgcn_mbcnt_hi: {
4589       const GCNSubtarget &ST =
4590           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4591       // These return at most the wavefront size - 1.
4592       unsigned Size = Op.getValueType().getSizeInBits();
4593       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4594       break;
4595     }
4596     default:
4597       break;
4598     }
4599   }
4600   }
4601 }
4602 
4603 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4604     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4605     unsigned Depth) const {
4606   switch (Op.getOpcode()) {
4607   case AMDGPUISD::BFE_I32: {
4608     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4609     if (!Width)
4610       return 1;
4611 
4612     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4613     if (!isNullConstant(Op.getOperand(1)))
4614       return SignBits;
4615 
4616     // TODO: Could probably figure something out with non-0 offsets.
4617     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4618     return std::max(SignBits, Op0SignBits);
4619   }
4620 
4621   case AMDGPUISD::BFE_U32: {
4622     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4623     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4624   }
4625 
4626   case AMDGPUISD::CARRY:
4627   case AMDGPUISD::BORROW:
4628     return 31;
4629   case AMDGPUISD::BUFFER_LOAD_BYTE:
4630     return 25;
4631   case AMDGPUISD::BUFFER_LOAD_SHORT:
4632     return 17;
4633   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4634     return 24;
4635   case AMDGPUISD::BUFFER_LOAD_USHORT:
4636     return 16;
4637   case AMDGPUISD::FP_TO_FP16:
4638   case AMDGPUISD::FP16_ZEXT:
4639     return 16;
4640   default:
4641     return 1;
4642   }
4643 }
4644 
4645 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4646                                                         const SelectionDAG &DAG,
4647                                                         bool SNaN,
4648                                                         unsigned Depth) const {
4649   unsigned Opcode = Op.getOpcode();
4650   switch (Opcode) {
4651   case AMDGPUISD::FMIN_LEGACY:
4652   case AMDGPUISD::FMAX_LEGACY: {
4653     if (SNaN)
4654       return true;
4655 
4656     // TODO: Can check no nans on one of the operands for each one, but which
4657     // one?
4658     return false;
4659   }
4660   case AMDGPUISD::FMUL_LEGACY:
4661   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4662     if (SNaN)
4663       return true;
4664     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4665            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4666   }
4667   case AMDGPUISD::FMED3:
4668   case AMDGPUISD::FMIN3:
4669   case AMDGPUISD::FMAX3:
4670   case AMDGPUISD::FMAD_FTZ: {
4671     if (SNaN)
4672       return true;
4673     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4674            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4675            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4676   }
4677   case AMDGPUISD::CVT_F32_UBYTE0:
4678   case AMDGPUISD::CVT_F32_UBYTE1:
4679   case AMDGPUISD::CVT_F32_UBYTE2:
4680   case AMDGPUISD::CVT_F32_UBYTE3:
4681     return true;
4682 
4683   case AMDGPUISD::RCP:
4684   case AMDGPUISD::RSQ:
4685   case AMDGPUISD::RCP_LEGACY:
4686   case AMDGPUISD::RSQ_LEGACY:
4687   case AMDGPUISD::RSQ_CLAMP: {
4688     if (SNaN)
4689       return true;
4690 
4691     // TODO: Need is known positive check.
4692     return false;
4693   }
4694   case AMDGPUISD::LDEXP:
4695   case AMDGPUISD::FRACT: {
4696     if (SNaN)
4697       return true;
4698     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4699   }
4700   case AMDGPUISD::DIV_SCALE:
4701   case AMDGPUISD::DIV_FMAS:
4702   case AMDGPUISD::DIV_FIXUP:
4703   case AMDGPUISD::TRIG_PREOP:
4704     // TODO: Refine on operands.
4705     return SNaN;
4706   case AMDGPUISD::SIN_HW:
4707   case AMDGPUISD::COS_HW: {
4708     // TODO: Need check for infinity
4709     return SNaN;
4710   }
4711   case ISD::INTRINSIC_WO_CHAIN: {
4712     unsigned IntrinsicID
4713       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4714     // TODO: Handle more intrinsics
4715     switch (IntrinsicID) {
4716     case Intrinsic::amdgcn_cubeid:
4717       return true;
4718 
4719     case Intrinsic::amdgcn_frexp_mant: {
4720       if (SNaN)
4721         return true;
4722       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4723     }
4724     case Intrinsic::amdgcn_cvt_pkrtz: {
4725       if (SNaN)
4726         return true;
4727       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4728              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4729     }
4730     case Intrinsic::amdgcn_fdot2:
4731       // TODO: Refine on operand
4732       return SNaN;
4733     default:
4734       return false;
4735     }
4736   }
4737   default:
4738     return false;
4739   }
4740 }
4741 
4742 TargetLowering::AtomicExpansionKind
4743 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4744   switch (RMW->getOperation()) {
4745   case AtomicRMWInst::Nand:
4746   case AtomicRMWInst::FAdd:
4747   case AtomicRMWInst::FSub:
4748     return AtomicExpansionKind::CmpXChg;
4749   default:
4750     return AtomicExpansionKind::None;
4751   }
4752 }
4753