1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f 16 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f 17 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f 18 19 #include "AMDGPUISelLowering.h" 20 #include "AMDGPU.h" 21 #include "AMDGPUCallLowering.h" 22 #include "AMDGPUFrameLowering.h" 23 #include "AMDGPURegisterInfo.h" 24 #include "AMDGPUSubtarget.h" 25 #include "AMDGPUTargetMachine.h" 26 #include "Utils/AMDGPUBaseInfo.h" 27 #include "R600MachineFunctionInfo.h" 28 #include "SIInstrInfo.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/CallingConvLower.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DiagnosticInfo.h" 39 #include "llvm/Support/KnownBits.h" 40 using namespace llvm; 41 42 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 43 CCValAssign::LocInfo LocInfo, 44 ISD::ArgFlagsTy ArgFlags, CCState &State, 45 const TargetRegisterClass *RC, 46 unsigned NumRegs) { 47 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 48 unsigned RegResult = State.AllocateReg(RegList); 49 if (RegResult == AMDGPU::NoRegister) 50 return false; 51 52 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 53 return true; 54 } 55 56 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 57 CCValAssign::LocInfo LocInfo, 58 ISD::ArgFlagsTy ArgFlags, CCState &State) { 59 switch (LocVT.SimpleTy) { 60 case MVT::i64: 61 case MVT::f64: 62 case MVT::v2i32: 63 case MVT::v2f32: 64 case MVT::v4i16: 65 case MVT::v4f16: { 66 // Up to SGPR0-SGPR105 67 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 68 &AMDGPU::SGPR_64RegClass, 53); 69 } 70 default: 71 return false; 72 } 73 } 74 75 // Allocate up to VGPR31. 76 // 77 // TODO: Since there are no VGPR alignent requirements would it be better to 78 // split into individual scalar registers? 79 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 80 CCValAssign::LocInfo LocInfo, 81 ISD::ArgFlagsTy ArgFlags, CCState &State) { 82 switch (LocVT.SimpleTy) { 83 case MVT::i64: 84 case MVT::f64: 85 case MVT::v2i32: 86 case MVT::v2f32: 87 case MVT::v4i16: 88 case MVT::v4f16: { 89 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 90 &AMDGPU::VReg_64RegClass, 31); 91 } 92 case MVT::v4i32: 93 case MVT::v4f32: 94 case MVT::v2i64: 95 case MVT::v2f64: { 96 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 97 &AMDGPU::VReg_128RegClass, 29); 98 } 99 case MVT::v8i32: 100 case MVT::v8f32: { 101 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 102 &AMDGPU::VReg_256RegClass, 25); 103 104 } 105 case MVT::v16i32: 106 case MVT::v16f32: { 107 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 108 &AMDGPU::VReg_512RegClass, 17); 109 110 } 111 default: 112 return false; 113 } 114 } 115 116 #include "AMDGPUGenCallingConv.inc" 117 118 // Find a larger type to do a load / store of a vector with. 119 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 120 unsigned StoreSize = VT.getStoreSizeInBits(); 121 if (StoreSize <= 32) 122 return EVT::getIntegerVT(Ctx, StoreSize); 123 124 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 125 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 126 } 127 128 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 129 EVT VT = Op.getValueType(); 130 KnownBits Known = DAG.computeKnownBits(Op); 131 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 132 } 133 134 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 135 EVT VT = Op.getValueType(); 136 137 // In order for this to be a signed 24-bit value, bit 23, must 138 // be a sign bit. 139 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 140 } 141 142 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 143 const AMDGPUSubtarget &STI) 144 : TargetLowering(TM), Subtarget(&STI) { 145 // Lower floating point store/load to integer store/load to reduce the number 146 // of patterns in tablegen. 147 setOperationAction(ISD::LOAD, MVT::f32, Promote); 148 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 149 150 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 151 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 152 153 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 155 156 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 158 159 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 161 162 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 164 165 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 167 168 setOperationAction(ISD::LOAD, MVT::i64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 170 171 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 172 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 173 174 setOperationAction(ISD::LOAD, MVT::f64, Promote); 175 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 176 177 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 178 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 179 180 // There are no 64-bit extloads. These should be done as a 32-bit extload and 181 // an extension to 64-bit. 182 for (MVT VT : MVT::integer_valuetypes()) { 183 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 184 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 185 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 186 } 187 188 for (MVT VT : MVT::integer_valuetypes()) { 189 if (VT == MVT::i64) 190 continue; 191 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 193 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 194 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 195 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 196 197 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 198 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 199 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 200 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 201 202 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 203 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 204 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 205 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 206 } 207 208 for (MVT VT : MVT::integer_vector_valuetypes()) { 209 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 210 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 211 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 212 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 213 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 214 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 215 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 216 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 217 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 218 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 219 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 220 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 221 } 222 223 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 226 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 227 228 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 231 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 232 233 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 234 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 235 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 236 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 237 238 setOperationAction(ISD::STORE, MVT::f32, Promote); 239 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 240 241 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 242 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 243 244 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 245 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 246 247 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 248 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 249 250 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 251 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 252 253 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 254 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 255 256 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 257 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 258 259 setOperationAction(ISD::STORE, MVT::i64, Promote); 260 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 261 262 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 263 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 264 265 setOperationAction(ISD::STORE, MVT::f64, Promote); 266 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 267 268 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 269 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 270 271 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 272 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 273 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 274 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 275 276 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 277 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 278 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 279 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 280 281 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 282 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 283 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 284 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 285 286 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 287 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 288 289 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 290 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 291 292 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 293 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 294 295 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 296 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 297 298 299 setOperationAction(ISD::Constant, MVT::i32, Legal); 300 setOperationAction(ISD::Constant, MVT::i64, Legal); 301 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 302 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 303 304 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 305 setOperationAction(ISD::BRIND, MVT::Other, Expand); 306 307 // This is totally unsupported, just custom lower to produce an error. 308 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 309 310 // Library functions. These default to Expand, but we have instructions 311 // for them. 312 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 313 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 314 setOperationAction(ISD::FPOW, MVT::f32, Legal); 315 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 316 setOperationAction(ISD::FABS, MVT::f32, Legal); 317 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 318 setOperationAction(ISD::FRINT, MVT::f32, Legal); 319 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 320 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 321 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 322 323 setOperationAction(ISD::FROUND, MVT::f32, Custom); 324 setOperationAction(ISD::FROUND, MVT::f64, Custom); 325 326 setOperationAction(ISD::FLOG, MVT::f32, Custom); 327 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 328 setOperationAction(ISD::FEXP, MVT::f32, Custom); 329 330 331 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 332 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 333 334 setOperationAction(ISD::FREM, MVT::f32, Custom); 335 setOperationAction(ISD::FREM, MVT::f64, Custom); 336 337 // Expand to fneg + fadd. 338 setOperationAction(ISD::FSUB, MVT::f64, Expand); 339 340 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 341 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 342 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 343 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 344 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 345 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 346 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 347 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 350 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 352 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 353 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 354 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 355 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 356 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 357 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 358 359 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 360 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 361 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 362 363 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 364 for (MVT VT : ScalarIntVTs) { 365 // These should use [SU]DIVREM, so set them to expand 366 setOperationAction(ISD::SDIV, VT, Expand); 367 setOperationAction(ISD::UDIV, VT, Expand); 368 setOperationAction(ISD::SREM, VT, Expand); 369 setOperationAction(ISD::UREM, VT, Expand); 370 371 // GPU does not have divrem function for signed or unsigned. 372 setOperationAction(ISD::SDIVREM, VT, Custom); 373 setOperationAction(ISD::UDIVREM, VT, Custom); 374 375 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 376 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 377 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 378 379 setOperationAction(ISD::BSWAP, VT, Expand); 380 setOperationAction(ISD::CTTZ, VT, Expand); 381 setOperationAction(ISD::CTLZ, VT, Expand); 382 383 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 384 setOperationAction(ISD::ADDC, VT, Legal); 385 setOperationAction(ISD::SUBC, VT, Legal); 386 setOperationAction(ISD::ADDE, VT, Legal); 387 setOperationAction(ISD::SUBE, VT, Legal); 388 } 389 390 // The hardware supports 32-bit ROTR, but not ROTL. 391 setOperationAction(ISD::ROTL, MVT::i32, Expand); 392 setOperationAction(ISD::ROTL, MVT::i64, Expand); 393 setOperationAction(ISD::ROTR, MVT::i64, Expand); 394 395 setOperationAction(ISD::MUL, MVT::i64, Expand); 396 setOperationAction(ISD::MULHU, MVT::i64, Expand); 397 setOperationAction(ISD::MULHS, MVT::i64, Expand); 398 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 399 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 400 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 401 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 402 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 403 404 setOperationAction(ISD::SMIN, MVT::i32, Legal); 405 setOperationAction(ISD::UMIN, MVT::i32, Legal); 406 setOperationAction(ISD::SMAX, MVT::i32, Legal); 407 setOperationAction(ISD::UMAX, MVT::i32, Legal); 408 409 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 410 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 411 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 412 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 413 414 static const MVT::SimpleValueType VectorIntTypes[] = { 415 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 416 }; 417 418 for (MVT VT : VectorIntTypes) { 419 // Expand the following operations for the current type by default. 420 setOperationAction(ISD::ADD, VT, Expand); 421 setOperationAction(ISD::AND, VT, Expand); 422 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 423 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 424 setOperationAction(ISD::MUL, VT, Expand); 425 setOperationAction(ISD::MULHU, VT, Expand); 426 setOperationAction(ISD::MULHS, VT, Expand); 427 setOperationAction(ISD::OR, VT, Expand); 428 setOperationAction(ISD::SHL, VT, Expand); 429 setOperationAction(ISD::SRA, VT, Expand); 430 setOperationAction(ISD::SRL, VT, Expand); 431 setOperationAction(ISD::ROTL, VT, Expand); 432 setOperationAction(ISD::ROTR, VT, Expand); 433 setOperationAction(ISD::SUB, VT, Expand); 434 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 435 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 436 setOperationAction(ISD::SDIV, VT, Expand); 437 setOperationAction(ISD::UDIV, VT, Expand); 438 setOperationAction(ISD::SREM, VT, Expand); 439 setOperationAction(ISD::UREM, VT, Expand); 440 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 441 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 442 setOperationAction(ISD::SDIVREM, VT, Custom); 443 setOperationAction(ISD::UDIVREM, VT, Expand); 444 setOperationAction(ISD::SELECT, VT, Expand); 445 setOperationAction(ISD::VSELECT, VT, Expand); 446 setOperationAction(ISD::SELECT_CC, VT, Expand); 447 setOperationAction(ISD::XOR, VT, Expand); 448 setOperationAction(ISD::BSWAP, VT, Expand); 449 setOperationAction(ISD::CTPOP, VT, Expand); 450 setOperationAction(ISD::CTTZ, VT, Expand); 451 setOperationAction(ISD::CTLZ, VT, Expand); 452 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 453 setOperationAction(ISD::SETCC, VT, Expand); 454 } 455 456 static const MVT::SimpleValueType FloatVectorTypes[] = { 457 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 458 }; 459 460 for (MVT VT : FloatVectorTypes) { 461 setOperationAction(ISD::FABS, VT, Expand); 462 setOperationAction(ISD::FMINNUM, VT, Expand); 463 setOperationAction(ISD::FMAXNUM, VT, Expand); 464 setOperationAction(ISD::FADD, VT, Expand); 465 setOperationAction(ISD::FCEIL, VT, Expand); 466 setOperationAction(ISD::FCOS, VT, Expand); 467 setOperationAction(ISD::FDIV, VT, Expand); 468 setOperationAction(ISD::FEXP2, VT, Expand); 469 setOperationAction(ISD::FEXP, VT, Expand); 470 setOperationAction(ISD::FLOG2, VT, Expand); 471 setOperationAction(ISD::FREM, VT, Expand); 472 setOperationAction(ISD::FLOG, VT, Expand); 473 setOperationAction(ISD::FLOG10, VT, Expand); 474 setOperationAction(ISD::FPOW, VT, Expand); 475 setOperationAction(ISD::FFLOOR, VT, Expand); 476 setOperationAction(ISD::FTRUNC, VT, Expand); 477 setOperationAction(ISD::FMUL, VT, Expand); 478 setOperationAction(ISD::FMA, VT, Expand); 479 setOperationAction(ISD::FRINT, VT, Expand); 480 setOperationAction(ISD::FNEARBYINT, VT, Expand); 481 setOperationAction(ISD::FSQRT, VT, Expand); 482 setOperationAction(ISD::FSIN, VT, Expand); 483 setOperationAction(ISD::FSUB, VT, Expand); 484 setOperationAction(ISD::FNEG, VT, Expand); 485 setOperationAction(ISD::VSELECT, VT, Expand); 486 setOperationAction(ISD::SELECT_CC, VT, Expand); 487 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 488 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 489 setOperationAction(ISD::SETCC, VT, Expand); 490 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 491 } 492 493 // This causes using an unrolled select operation rather than expansion with 494 // bit operations. This is in general better, but the alternative using BFI 495 // instructions may be better if the select sources are SGPRs. 496 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 497 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 498 499 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 500 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 501 502 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 503 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 504 505 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 506 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 507 508 // There are no libcalls of any kind. 509 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 510 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 511 512 setBooleanContents(ZeroOrNegativeOneBooleanContent); 513 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 514 515 setSchedulingPreference(Sched::RegPressure); 516 setJumpIsExpensive(true); 517 518 // FIXME: This is only partially true. If we have to do vector compares, any 519 // SGPR pair can be a condition register. If we have a uniform condition, we 520 // are better off doing SALU operations, where there is only one SCC. For now, 521 // we don't have a way of knowing during instruction selection if a condition 522 // will be uniform and we always use vector compares. Assume we are using 523 // vector compares until that is fixed. 524 setHasMultipleConditionRegisters(true); 525 526 setMinCmpXchgSizeInBits(32); 527 setSupportsUnalignedAtomics(false); 528 529 PredictableSelectIsExpensive = false; 530 531 // We want to find all load dependencies for long chains of stores to enable 532 // merging into very wide vectors. The problem is with vectors with > 4 533 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 534 // vectors are a legal type, even though we have to split the loads 535 // usually. When we can more precisely specify load legality per address 536 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 537 // smarter so that they can figure out what to do in 2 iterations without all 538 // N > 4 stores on the same chain. 539 GatherAllAliasesMaxDepth = 16; 540 541 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 542 // about these during lowering. 543 MaxStoresPerMemcpy = 0xffffffff; 544 MaxStoresPerMemmove = 0xffffffff; 545 MaxStoresPerMemset = 0xffffffff; 546 547 setTargetDAGCombine(ISD::BITCAST); 548 setTargetDAGCombine(ISD::SHL); 549 setTargetDAGCombine(ISD::SRA); 550 setTargetDAGCombine(ISD::SRL); 551 setTargetDAGCombine(ISD::TRUNCATE); 552 setTargetDAGCombine(ISD::MUL); 553 setTargetDAGCombine(ISD::MULHU); 554 setTargetDAGCombine(ISD::MULHS); 555 setTargetDAGCombine(ISD::SELECT); 556 setTargetDAGCombine(ISD::SELECT_CC); 557 setTargetDAGCombine(ISD::STORE); 558 setTargetDAGCombine(ISD::FADD); 559 setTargetDAGCombine(ISD::FSUB); 560 setTargetDAGCombine(ISD::FNEG); 561 setTargetDAGCombine(ISD::FABS); 562 setTargetDAGCombine(ISD::AssertZext); 563 setTargetDAGCombine(ISD::AssertSext); 564 } 565 566 //===----------------------------------------------------------------------===// 567 // Target Information 568 //===----------------------------------------------------------------------===// 569 570 LLVM_READNONE 571 static bool fnegFoldsIntoOp(unsigned Opc) { 572 switch (Opc) { 573 case ISD::FADD: 574 case ISD::FSUB: 575 case ISD::FMUL: 576 case ISD::FMA: 577 case ISD::FMAD: 578 case ISD::FMINNUM: 579 case ISD::FMAXNUM: 580 case ISD::FMINNUM_IEEE: 581 case ISD::FMAXNUM_IEEE: 582 case ISD::FSIN: 583 case ISD::FTRUNC: 584 case ISD::FRINT: 585 case ISD::FNEARBYINT: 586 case ISD::FCANONICALIZE: 587 case AMDGPUISD::RCP: 588 case AMDGPUISD::RCP_LEGACY: 589 case AMDGPUISD::RCP_IFLAG: 590 case AMDGPUISD::SIN_HW: 591 case AMDGPUISD::FMUL_LEGACY: 592 case AMDGPUISD::FMIN_LEGACY: 593 case AMDGPUISD::FMAX_LEGACY: 594 case AMDGPUISD::FMED3: 595 return true; 596 default: 597 return false; 598 } 599 } 600 601 /// \p returns true if the operation will definitely need to use a 64-bit 602 /// encoding, and thus will use a VOP3 encoding regardless of the source 603 /// modifiers. 604 LLVM_READONLY 605 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 606 return N->getNumOperands() > 2 || VT == MVT::f64; 607 } 608 609 // Most FP instructions support source modifiers, but this could be refined 610 // slightly. 611 LLVM_READONLY 612 static bool hasSourceMods(const SDNode *N) { 613 if (isa<MemSDNode>(N)) 614 return false; 615 616 switch (N->getOpcode()) { 617 case ISD::CopyToReg: 618 case ISD::SELECT: 619 case ISD::FDIV: 620 case ISD::FREM: 621 case ISD::INLINEASM: 622 case ISD::INLINEASM_BR: 623 case AMDGPUISD::INTERP_P1: 624 case AMDGPUISD::INTERP_P2: 625 case AMDGPUISD::DIV_SCALE: 626 627 // TODO: Should really be looking at the users of the bitcast. These are 628 // problematic because bitcasts are used to legalize all stores to integer 629 // types. 630 case ISD::BITCAST: 631 return false; 632 default: 633 return true; 634 } 635 } 636 637 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 638 unsigned CostThreshold) { 639 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 640 // it is truly free to use a source modifier in all cases. If there are 641 // multiple users but for each one will necessitate using VOP3, there will be 642 // a code size increase. Try to avoid increasing code size unless we know it 643 // will save on the instruction count. 644 unsigned NumMayIncreaseSize = 0; 645 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 646 647 // XXX - Should this limit number of uses to check? 648 for (const SDNode *U : N->uses()) { 649 if (!hasSourceMods(U)) 650 return false; 651 652 if (!opMustUseVOP3Encoding(U, VT)) { 653 if (++NumMayIncreaseSize > CostThreshold) 654 return false; 655 } 656 } 657 658 return true; 659 } 660 661 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 662 return MVT::i32; 663 } 664 665 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 666 return true; 667 } 668 669 // The backend supports 32 and 64 bit floating point immediates. 670 // FIXME: Why are we reporting vectors of FP immediates as legal? 671 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 672 bool ForCodeSize) const { 673 EVT ScalarVT = VT.getScalarType(); 674 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 675 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 676 } 677 678 // We don't want to shrink f64 / f32 constants. 679 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 680 EVT ScalarVT = VT.getScalarType(); 681 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 682 } 683 684 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 685 ISD::LoadExtType ExtTy, 686 EVT NewVT) const { 687 // TODO: This may be worth removing. Check regression tests for diffs. 688 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 689 return false; 690 691 unsigned NewSize = NewVT.getStoreSizeInBits(); 692 693 // If we are reducing to a 32-bit load, this is always better. 694 if (NewSize == 32) 695 return true; 696 697 EVT OldVT = N->getValueType(0); 698 unsigned OldSize = OldVT.getStoreSizeInBits(); 699 700 MemSDNode *MN = cast<MemSDNode>(N); 701 unsigned AS = MN->getAddressSpace(); 702 // Do not shrink an aligned scalar load to sub-dword. 703 // Scalar engine cannot do sub-dword loads. 704 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 705 (AS == AMDGPUAS::CONSTANT_ADDRESS || 706 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 707 (isa<LoadSDNode>(N) && 708 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 709 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 710 return false; 711 712 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 713 // extloads, so doing one requires using a buffer_load. In cases where we 714 // still couldn't use a scalar load, using the wider load shouldn't really 715 // hurt anything. 716 717 // If the old size already had to be an extload, there's no harm in continuing 718 // to reduce the width. 719 return (OldSize < 32); 720 } 721 722 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 723 EVT CastTy) const { 724 725 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 726 727 if (LoadTy.getScalarType() == MVT::i32) 728 return false; 729 730 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 731 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 732 733 return (LScalarSize < CastScalarSize) || 734 (CastScalarSize >= 32); 735 } 736 737 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 738 // profitable with the expansion for 64-bit since it's generally good to 739 // speculate things. 740 // FIXME: These should really have the size as a parameter. 741 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 742 return true; 743 } 744 745 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 746 return true; 747 } 748 749 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 750 switch (N->getOpcode()) { 751 default: 752 return false; 753 case ISD::EntryToken: 754 case ISD::TokenFactor: 755 return true; 756 case ISD::INTRINSIC_WO_CHAIN: 757 { 758 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 759 switch (IntrID) { 760 default: 761 return false; 762 case Intrinsic::amdgcn_readfirstlane: 763 case Intrinsic::amdgcn_readlane: 764 return true; 765 } 766 } 767 break; 768 case ISD::LOAD: 769 { 770 const LoadSDNode * L = dyn_cast<LoadSDNode>(N); 771 if (L->getMemOperand()->getAddrSpace() 772 == AMDGPUAS::CONSTANT_ADDRESS_32BIT) 773 return true; 774 return false; 775 } 776 break; 777 } 778 } 779 780 //===---------------------------------------------------------------------===// 781 // Target Properties 782 //===---------------------------------------------------------------------===// 783 784 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 785 assert(VT.isFloatingPoint()); 786 787 // Packed operations do not have a fabs modifier. 788 return VT == MVT::f32 || VT == MVT::f64 || 789 (Subtarget->has16BitInsts() && VT == MVT::f16); 790 } 791 792 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 793 assert(VT.isFloatingPoint()); 794 return VT == MVT::f32 || VT == MVT::f64 || 795 (Subtarget->has16BitInsts() && VT == MVT::f16) || 796 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 797 } 798 799 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 800 unsigned NumElem, 801 unsigned AS) const { 802 return true; 803 } 804 805 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 806 // There are few operations which truly have vector input operands. Any vector 807 // operation is going to involve operations on each component, and a 808 // build_vector will be a copy per element, so it always makes sense to use a 809 // build_vector input in place of the extracted element to avoid a copy into a 810 // super register. 811 // 812 // We should probably only do this if all users are extracts only, but this 813 // should be the common case. 814 return true; 815 } 816 817 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 818 // Truncate is just accessing a subregister. 819 820 unsigned SrcSize = Source.getSizeInBits(); 821 unsigned DestSize = Dest.getSizeInBits(); 822 823 return DestSize < SrcSize && DestSize % 32 == 0 ; 824 } 825 826 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 827 // Truncate is just accessing a subregister. 828 829 unsigned SrcSize = Source->getScalarSizeInBits(); 830 unsigned DestSize = Dest->getScalarSizeInBits(); 831 832 if (DestSize== 16 && Subtarget->has16BitInsts()) 833 return SrcSize >= 32; 834 835 return DestSize < SrcSize && DestSize % 32 == 0; 836 } 837 838 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 839 unsigned SrcSize = Src->getScalarSizeInBits(); 840 unsigned DestSize = Dest->getScalarSizeInBits(); 841 842 if (SrcSize == 16 && Subtarget->has16BitInsts()) 843 return DestSize >= 32; 844 845 return SrcSize == 32 && DestSize == 64; 846 } 847 848 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 849 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 850 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 851 // this will enable reducing 64-bit operations the 32-bit, which is always 852 // good. 853 854 if (Src == MVT::i16) 855 return Dest == MVT::i32 ||Dest == MVT::i64 ; 856 857 return Src == MVT::i32 && Dest == MVT::i64; 858 } 859 860 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 861 return isZExtFree(Val.getValueType(), VT2); 862 } 863 864 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 865 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 866 // limited number of native 64-bit operations. Shrinking an operation to fit 867 // in a single 32-bit register should always be helpful. As currently used, 868 // this is much less general than the name suggests, and is only used in 869 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 870 // not profitable, and may actually be harmful. 871 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 872 } 873 874 //===---------------------------------------------------------------------===// 875 // TargetLowering Callbacks 876 //===---------------------------------------------------------------------===// 877 878 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 879 bool IsVarArg) { 880 switch (CC) { 881 case CallingConv::AMDGPU_VS: 882 case CallingConv::AMDGPU_GS: 883 case CallingConv::AMDGPU_PS: 884 case CallingConv::AMDGPU_CS: 885 case CallingConv::AMDGPU_HS: 886 case CallingConv::AMDGPU_ES: 887 case CallingConv::AMDGPU_LS: 888 return CC_AMDGPU; 889 case CallingConv::C: 890 case CallingConv::Fast: 891 case CallingConv::Cold: 892 return CC_AMDGPU_Func; 893 case CallingConv::AMDGPU_KERNEL: 894 case CallingConv::SPIR_KERNEL: 895 default: 896 report_fatal_error("Unsupported calling convention for call"); 897 } 898 } 899 900 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 901 bool IsVarArg) { 902 switch (CC) { 903 case CallingConv::AMDGPU_KERNEL: 904 case CallingConv::SPIR_KERNEL: 905 llvm_unreachable("kernels should not be handled here"); 906 case CallingConv::AMDGPU_VS: 907 case CallingConv::AMDGPU_GS: 908 case CallingConv::AMDGPU_PS: 909 case CallingConv::AMDGPU_CS: 910 case CallingConv::AMDGPU_HS: 911 case CallingConv::AMDGPU_ES: 912 case CallingConv::AMDGPU_LS: 913 return RetCC_SI_Shader; 914 case CallingConv::C: 915 case CallingConv::Fast: 916 case CallingConv::Cold: 917 return RetCC_AMDGPU_Func; 918 default: 919 report_fatal_error("Unsupported calling convention."); 920 } 921 } 922 923 /// The SelectionDAGBuilder will automatically promote function arguments 924 /// with illegal types. However, this does not work for the AMDGPU targets 925 /// since the function arguments are stored in memory as these illegal types. 926 /// In order to handle this properly we need to get the original types sizes 927 /// from the LLVM IR Function and fixup the ISD:InputArg values before 928 /// passing them to AnalyzeFormalArguments() 929 930 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 931 /// input values across multiple registers. Each item in the Ins array 932 /// represents a single value that will be stored in registers. Ins[x].VT is 933 /// the value type of the value that will be stored in the register, so 934 /// whatever SDNode we lower the argument to needs to be this type. 935 /// 936 /// In order to correctly lower the arguments we need to know the size of each 937 /// argument. Since Ins[x].VT gives us the size of the register that will 938 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 939 /// for the orignal function argument so that we can deduce the correct memory 940 /// type to use for Ins[x]. In most cases the correct memory type will be 941 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 942 /// we have a kernel argument of type v8i8, this argument will be split into 943 /// 8 parts and each part will be represented by its own item in the Ins array. 944 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 945 /// the argument before it was split. From this, we deduce that the memory type 946 /// for each individual part is i8. We pass the memory type as LocVT to the 947 /// calling convention analysis function and the register type (Ins[x].VT) as 948 /// the ValVT. 949 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 950 CCState &State, 951 const SmallVectorImpl<ISD::InputArg> &Ins) const { 952 const MachineFunction &MF = State.getMachineFunction(); 953 const Function &Fn = MF.getFunction(); 954 LLVMContext &Ctx = Fn.getParent()->getContext(); 955 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 956 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 957 CallingConv::ID CC = Fn.getCallingConv(); 958 959 unsigned MaxAlign = 1; 960 uint64_t ExplicitArgOffset = 0; 961 const DataLayout &DL = Fn.getParent()->getDataLayout(); 962 963 unsigned InIndex = 0; 964 965 for (const Argument &Arg : Fn.args()) { 966 Type *BaseArgTy = Arg.getType(); 967 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 968 MaxAlign = std::max(Align, MaxAlign); 969 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 970 971 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 972 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 973 974 // We're basically throwing away everything passed into us and starting over 975 // to get accurate in-memory offsets. The "PartOffset" is completely useless 976 // to us as computed in Ins. 977 // 978 // We also need to figure out what type legalization is trying to do to get 979 // the correct memory offsets. 980 981 SmallVector<EVT, 16> ValueVTs; 982 SmallVector<uint64_t, 16> Offsets; 983 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 984 985 for (unsigned Value = 0, NumValues = ValueVTs.size(); 986 Value != NumValues; ++Value) { 987 uint64_t BasePartOffset = Offsets[Value]; 988 989 EVT ArgVT = ValueVTs[Value]; 990 EVT MemVT = ArgVT; 991 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 992 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 993 994 if (NumRegs == 1) { 995 // This argument is not split, so the IR type is the memory type. 996 if (ArgVT.isExtended()) { 997 // We have an extended type, like i24, so we should just use the 998 // register type. 999 MemVT = RegisterVT; 1000 } else { 1001 MemVT = ArgVT; 1002 } 1003 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1004 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1005 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1006 // We have a vector value which has been split into a vector with 1007 // the same scalar type, but fewer elements. This should handle 1008 // all the floating-point vector types. 1009 MemVT = RegisterVT; 1010 } else if (ArgVT.isVector() && 1011 ArgVT.getVectorNumElements() == NumRegs) { 1012 // This arg has been split so that each element is stored in a separate 1013 // register. 1014 MemVT = ArgVT.getScalarType(); 1015 } else if (ArgVT.isExtended()) { 1016 // We have an extended type, like i65. 1017 MemVT = RegisterVT; 1018 } else { 1019 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1020 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1021 if (RegisterVT.isInteger()) { 1022 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1023 } else if (RegisterVT.isVector()) { 1024 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1025 unsigned NumElements = RegisterVT.getVectorNumElements(); 1026 assert(MemoryBits % NumElements == 0); 1027 // This vector type has been split into another vector type with 1028 // a different elements size. 1029 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1030 MemoryBits / NumElements); 1031 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1032 } else { 1033 llvm_unreachable("cannot deduce memory type."); 1034 } 1035 } 1036 1037 // Convert one element vectors to scalar. 1038 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1039 MemVT = MemVT.getScalarType(); 1040 1041 // Round up vec3/vec5 argument. 1042 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1043 assert(MemVT.getVectorNumElements() == 3 || 1044 MemVT.getVectorNumElements() == 5); 1045 MemVT = MemVT.getPow2VectorType(State.getContext()); 1046 } 1047 1048 unsigned PartOffset = 0; 1049 for (unsigned i = 0; i != NumRegs; ++i) { 1050 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1051 BasePartOffset + PartOffset, 1052 MemVT.getSimpleVT(), 1053 CCValAssign::Full)); 1054 PartOffset += MemVT.getStoreSize(); 1055 } 1056 } 1057 } 1058 } 1059 1060 SDValue AMDGPUTargetLowering::LowerReturn( 1061 SDValue Chain, CallingConv::ID CallConv, 1062 bool isVarArg, 1063 const SmallVectorImpl<ISD::OutputArg> &Outs, 1064 const SmallVectorImpl<SDValue> &OutVals, 1065 const SDLoc &DL, SelectionDAG &DAG) const { 1066 // FIXME: Fails for r600 tests 1067 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1068 // "wave terminate should not have return values"); 1069 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1070 } 1071 1072 //===---------------------------------------------------------------------===// 1073 // Target specific lowering 1074 //===---------------------------------------------------------------------===// 1075 1076 /// Selects the correct CCAssignFn for a given CallingConvention value. 1077 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1078 bool IsVarArg) { 1079 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1080 } 1081 1082 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1083 bool IsVarArg) { 1084 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1085 } 1086 1087 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1088 SelectionDAG &DAG, 1089 MachineFrameInfo &MFI, 1090 int ClobberedFI) const { 1091 SmallVector<SDValue, 8> ArgChains; 1092 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1093 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1094 1095 // Include the original chain at the beginning of the list. When this is 1096 // used by target LowerCall hooks, this helps legalize find the 1097 // CALLSEQ_BEGIN node. 1098 ArgChains.push_back(Chain); 1099 1100 // Add a chain value for each stack argument corresponding 1101 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1102 UE = DAG.getEntryNode().getNode()->use_end(); 1103 U != UE; ++U) { 1104 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1105 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1106 if (FI->getIndex() < 0) { 1107 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1108 int64_t InLastByte = InFirstByte; 1109 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1110 1111 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1112 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1113 ArgChains.push_back(SDValue(L, 1)); 1114 } 1115 } 1116 } 1117 } 1118 1119 // Build a tokenfactor for all the chains. 1120 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1121 } 1122 1123 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1124 SmallVectorImpl<SDValue> &InVals, 1125 StringRef Reason) const { 1126 SDValue Callee = CLI.Callee; 1127 SelectionDAG &DAG = CLI.DAG; 1128 1129 const Function &Fn = DAG.getMachineFunction().getFunction(); 1130 1131 StringRef FuncName("<unknown>"); 1132 1133 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1134 FuncName = G->getSymbol(); 1135 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1136 FuncName = G->getGlobal()->getName(); 1137 1138 DiagnosticInfoUnsupported NoCalls( 1139 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1140 DAG.getContext()->diagnose(NoCalls); 1141 1142 if (!CLI.IsTailCall) { 1143 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1144 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1145 } 1146 1147 return DAG.getEntryNode(); 1148 } 1149 1150 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1151 SmallVectorImpl<SDValue> &InVals) const { 1152 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1153 } 1154 1155 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1156 SelectionDAG &DAG) const { 1157 const Function &Fn = DAG.getMachineFunction().getFunction(); 1158 1159 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1160 SDLoc(Op).getDebugLoc()); 1161 DAG.getContext()->diagnose(NoDynamicAlloca); 1162 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1163 return DAG.getMergeValues(Ops, SDLoc()); 1164 } 1165 1166 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1167 SelectionDAG &DAG) const { 1168 switch (Op.getOpcode()) { 1169 default: 1170 Op->print(errs(), &DAG); 1171 llvm_unreachable("Custom lowering code for this" 1172 "instruction is not implemented yet!"); 1173 break; 1174 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1175 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1176 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1177 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1178 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1179 case ISD::FREM: return LowerFREM(Op, DAG); 1180 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1181 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1182 case ISD::FRINT: return LowerFRINT(Op, DAG); 1183 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1184 case ISD::FROUND: return LowerFROUND(Op, DAG); 1185 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1186 case ISD::FLOG: 1187 return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F); 1188 case ISD::FLOG10: 1189 return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F); 1190 case ISD::FEXP: 1191 return lowerFEXP(Op, DAG); 1192 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1193 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1194 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1195 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1196 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1197 case ISD::CTTZ: 1198 case ISD::CTTZ_ZERO_UNDEF: 1199 case ISD::CTLZ: 1200 case ISD::CTLZ_ZERO_UNDEF: 1201 return LowerCTLZ_CTTZ(Op, DAG); 1202 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1203 } 1204 return Op; 1205 } 1206 1207 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1208 SmallVectorImpl<SDValue> &Results, 1209 SelectionDAG &DAG) const { 1210 switch (N->getOpcode()) { 1211 case ISD::SIGN_EXTEND_INREG: 1212 // Different parts of legalization seem to interpret which type of 1213 // sign_extend_inreg is the one to check for custom lowering. The extended 1214 // from type is what really matters, but some places check for custom 1215 // lowering of the result type. This results in trying to use 1216 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1217 // nothing here and let the illegal result integer be handled normally. 1218 return; 1219 default: 1220 return; 1221 } 1222 } 1223 1224 static bool hasDefinedInitializer(const GlobalValue *GV) { 1225 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1226 if (!GVar || !GVar->hasInitializer()) 1227 return false; 1228 1229 return !isa<UndefValue>(GVar->getInitializer()); 1230 } 1231 1232 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1233 SDValue Op, 1234 SelectionDAG &DAG) const { 1235 1236 const DataLayout &DL = DAG.getDataLayout(); 1237 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1238 const GlobalValue *GV = G->getGlobal(); 1239 1240 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1241 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1242 if (!MFI->isEntryFunction()) { 1243 const Function &Fn = DAG.getMachineFunction().getFunction(); 1244 DiagnosticInfoUnsupported BadLDSDecl( 1245 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1246 DAG.getContext()->diagnose(BadLDSDecl); 1247 } 1248 1249 // XXX: What does the value of G->getOffset() mean? 1250 assert(G->getOffset() == 0 && 1251 "Do not know what to do with an non-zero offset"); 1252 1253 // TODO: We could emit code to handle the initialization somewhere. 1254 if (!hasDefinedInitializer(GV)) { 1255 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1256 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1257 } 1258 } 1259 1260 const Function &Fn = DAG.getMachineFunction().getFunction(); 1261 DiagnosticInfoUnsupported BadInit( 1262 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1263 DAG.getContext()->diagnose(BadInit); 1264 return SDValue(); 1265 } 1266 1267 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1268 SelectionDAG &DAG) const { 1269 SmallVector<SDValue, 8> Args; 1270 1271 EVT VT = Op.getValueType(); 1272 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1273 SDLoc SL(Op); 1274 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1275 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1276 1277 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1278 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1279 } 1280 1281 for (const SDUse &U : Op->ops()) 1282 DAG.ExtractVectorElements(U.get(), Args); 1283 1284 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1285 } 1286 1287 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1288 SelectionDAG &DAG) const { 1289 1290 SmallVector<SDValue, 8> Args; 1291 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1292 EVT VT = Op.getValueType(); 1293 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1294 VT.getVectorNumElements()); 1295 1296 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1297 } 1298 1299 /// Generate Min/Max node 1300 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1301 SDValue LHS, SDValue RHS, 1302 SDValue True, SDValue False, 1303 SDValue CC, 1304 DAGCombinerInfo &DCI) const { 1305 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1306 return SDValue(); 1307 1308 SelectionDAG &DAG = DCI.DAG; 1309 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1310 switch (CCOpcode) { 1311 case ISD::SETOEQ: 1312 case ISD::SETONE: 1313 case ISD::SETUNE: 1314 case ISD::SETNE: 1315 case ISD::SETUEQ: 1316 case ISD::SETEQ: 1317 case ISD::SETFALSE: 1318 case ISD::SETFALSE2: 1319 case ISD::SETTRUE: 1320 case ISD::SETTRUE2: 1321 case ISD::SETUO: 1322 case ISD::SETO: 1323 break; 1324 case ISD::SETULE: 1325 case ISD::SETULT: { 1326 if (LHS == True) 1327 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1328 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1329 } 1330 case ISD::SETOLE: 1331 case ISD::SETOLT: 1332 case ISD::SETLE: 1333 case ISD::SETLT: { 1334 // Ordered. Assume ordered for undefined. 1335 1336 // Only do this after legalization to avoid interfering with other combines 1337 // which might occur. 1338 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1339 !DCI.isCalledByLegalizer()) 1340 return SDValue(); 1341 1342 // We need to permute the operands to get the correct NaN behavior. The 1343 // selected operand is the second one based on the failing compare with NaN, 1344 // so permute it based on the compare type the hardware uses. 1345 if (LHS == True) 1346 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1347 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1348 } 1349 case ISD::SETUGE: 1350 case ISD::SETUGT: { 1351 if (LHS == True) 1352 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1353 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1354 } 1355 case ISD::SETGT: 1356 case ISD::SETGE: 1357 case ISD::SETOGE: 1358 case ISD::SETOGT: { 1359 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1360 !DCI.isCalledByLegalizer()) 1361 return SDValue(); 1362 1363 if (LHS == True) 1364 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1365 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1366 } 1367 case ISD::SETCC_INVALID: 1368 llvm_unreachable("Invalid setcc condcode!"); 1369 } 1370 return SDValue(); 1371 } 1372 1373 std::pair<SDValue, SDValue> 1374 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1375 SDLoc SL(Op); 1376 1377 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1378 1379 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1380 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1381 1382 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1383 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1384 1385 return std::make_pair(Lo, Hi); 1386 } 1387 1388 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1389 SDLoc SL(Op); 1390 1391 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1392 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1393 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1394 } 1395 1396 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1397 SDLoc SL(Op); 1398 1399 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1400 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1401 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1402 } 1403 1404 // Split a vector type into two parts. The first part is a power of two vector. 1405 // The second part is whatever is left over, and is a scalar if it would 1406 // otherwise be a 1-vector. 1407 std::pair<EVT, EVT> 1408 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1409 EVT LoVT, HiVT; 1410 EVT EltVT = VT.getVectorElementType(); 1411 unsigned NumElts = VT.getVectorNumElements(); 1412 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1413 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1414 HiVT = NumElts - LoNumElts == 1 1415 ? EltVT 1416 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1417 return std::make_pair(LoVT, HiVT); 1418 } 1419 1420 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1421 // scalar. 1422 std::pair<SDValue, SDValue> 1423 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1424 const EVT &LoVT, const EVT &HiVT, 1425 SelectionDAG &DAG) const { 1426 assert(LoVT.getVectorNumElements() + 1427 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1428 N.getValueType().getVectorNumElements() && 1429 "More vector elements requested than available!"); 1430 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1431 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1432 DAG.getConstant(0, DL, IdxTy)); 1433 SDValue Hi = DAG.getNode( 1434 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1435 HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy)); 1436 return std::make_pair(Lo, Hi); 1437 } 1438 1439 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1440 SelectionDAG &DAG) const { 1441 LoadSDNode *Load = cast<LoadSDNode>(Op); 1442 EVT VT = Op.getValueType(); 1443 1444 1445 // If this is a 2 element vector, we really want to scalarize and not create 1446 // weird 1 element vectors. 1447 if (VT.getVectorNumElements() == 2) 1448 return scalarizeVectorLoad(Load, DAG); 1449 1450 SDValue BasePtr = Load->getBasePtr(); 1451 EVT MemVT = Load->getMemoryVT(); 1452 SDLoc SL(Op); 1453 1454 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1455 1456 EVT LoVT, HiVT; 1457 EVT LoMemVT, HiMemVT; 1458 SDValue Lo, Hi; 1459 1460 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1461 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1462 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1463 1464 unsigned Size = LoMemVT.getStoreSize(); 1465 unsigned BaseAlign = Load->getAlignment(); 1466 unsigned HiAlign = MinAlign(BaseAlign, Size); 1467 1468 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1469 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1470 BaseAlign, Load->getMemOperand()->getFlags()); 1471 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1472 SDValue HiLoad = 1473 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1474 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1475 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1476 1477 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1478 SDValue Join; 1479 if (LoVT == HiVT) { 1480 // This is the case that the vector is power of two so was evenly split. 1481 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1482 } else { 1483 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1484 DAG.getConstant(0, SL, IdxTy)); 1485 Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR 1486 : ISD::INSERT_VECTOR_ELT, 1487 SL, VT, Join, HiLoad, 1488 DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy)); 1489 } 1490 1491 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1492 LoLoad.getValue(1), HiLoad.getValue(1))}; 1493 1494 return DAG.getMergeValues(Ops, SL); 1495 } 1496 1497 // Widen a vector load from vec3 to vec4. 1498 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1499 SelectionDAG &DAG) const { 1500 LoadSDNode *Load = cast<LoadSDNode>(Op); 1501 EVT VT = Op.getValueType(); 1502 assert(VT.getVectorNumElements() == 3); 1503 SDValue BasePtr = Load->getBasePtr(); 1504 EVT MemVT = Load->getMemoryVT(); 1505 SDLoc SL(Op); 1506 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1507 unsigned BaseAlign = Load->getAlignment(); 1508 1509 EVT WideVT = 1510 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1511 EVT WideMemVT = 1512 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1513 SDValue WideLoad = DAG.getExtLoad( 1514 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1515 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1516 return DAG.getMergeValues( 1517 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1518 DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))), 1519 WideLoad.getValue(1)}, 1520 SL); 1521 } 1522 1523 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1524 SelectionDAG &DAG) const { 1525 StoreSDNode *Store = cast<StoreSDNode>(Op); 1526 SDValue Val = Store->getValue(); 1527 EVT VT = Val.getValueType(); 1528 1529 // If this is a 2 element vector, we really want to scalarize and not create 1530 // weird 1 element vectors. 1531 if (VT.getVectorNumElements() == 2) 1532 return scalarizeVectorStore(Store, DAG); 1533 1534 EVT MemVT = Store->getMemoryVT(); 1535 SDValue Chain = Store->getChain(); 1536 SDValue BasePtr = Store->getBasePtr(); 1537 SDLoc SL(Op); 1538 1539 EVT LoVT, HiVT; 1540 EVT LoMemVT, HiMemVT; 1541 SDValue Lo, Hi; 1542 1543 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1544 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1545 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1546 1547 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1548 1549 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1550 unsigned BaseAlign = Store->getAlignment(); 1551 unsigned Size = LoMemVT.getStoreSize(); 1552 unsigned HiAlign = MinAlign(BaseAlign, Size); 1553 1554 SDValue LoStore = 1555 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1556 Store->getMemOperand()->getFlags()); 1557 SDValue HiStore = 1558 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1559 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1560 1561 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1562 } 1563 1564 // This is a shortcut for integer division because we have fast i32<->f32 1565 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1566 // float is enough to accurately represent up to a 24-bit signed integer. 1567 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1568 bool Sign) const { 1569 SDLoc DL(Op); 1570 EVT VT = Op.getValueType(); 1571 SDValue LHS = Op.getOperand(0); 1572 SDValue RHS = Op.getOperand(1); 1573 MVT IntVT = MVT::i32; 1574 MVT FltVT = MVT::f32; 1575 1576 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1577 if (LHSSignBits < 9) 1578 return SDValue(); 1579 1580 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1581 if (RHSSignBits < 9) 1582 return SDValue(); 1583 1584 unsigned BitSize = VT.getSizeInBits(); 1585 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1586 unsigned DivBits = BitSize - SignBits; 1587 if (Sign) 1588 ++DivBits; 1589 1590 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1591 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1592 1593 SDValue jq = DAG.getConstant(1, DL, IntVT); 1594 1595 if (Sign) { 1596 // char|short jq = ia ^ ib; 1597 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1598 1599 // jq = jq >> (bitsize - 2) 1600 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1601 DAG.getConstant(BitSize - 2, DL, VT)); 1602 1603 // jq = jq | 0x1 1604 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1605 } 1606 1607 // int ia = (int)LHS; 1608 SDValue ia = LHS; 1609 1610 // int ib, (int)RHS; 1611 SDValue ib = RHS; 1612 1613 // float fa = (float)ia; 1614 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1615 1616 // float fb = (float)ib; 1617 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1618 1619 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1620 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1621 1622 // fq = trunc(fq); 1623 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1624 1625 // float fqneg = -fq; 1626 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1627 1628 // float fr = mad(fqneg, fb, fa); 1629 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1630 (unsigned)AMDGPUISD::FMAD_FTZ : 1631 (unsigned)ISD::FMAD; 1632 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1633 1634 // int iq = (int)fq; 1635 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1636 1637 // fr = fabs(fr); 1638 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1639 1640 // fb = fabs(fb); 1641 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1642 1643 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1644 1645 // int cv = fr >= fb; 1646 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1647 1648 // jq = (cv ? jq : 0); 1649 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1650 1651 // dst = iq + jq; 1652 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1653 1654 // Rem needs compensation, it's easier to recompute it 1655 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1656 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1657 1658 // Truncate to number of bits this divide really is. 1659 if (Sign) { 1660 SDValue InRegSize 1661 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1662 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1663 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1664 } else { 1665 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1666 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1667 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1668 } 1669 1670 return DAG.getMergeValues({ Div, Rem }, DL); 1671 } 1672 1673 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1674 SelectionDAG &DAG, 1675 SmallVectorImpl<SDValue> &Results) const { 1676 SDLoc DL(Op); 1677 EVT VT = Op.getValueType(); 1678 1679 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1680 1681 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1682 1683 SDValue One = DAG.getConstant(1, DL, HalfVT); 1684 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1685 1686 //HiLo split 1687 SDValue LHS = Op.getOperand(0); 1688 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1689 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1690 1691 SDValue RHS = Op.getOperand(1); 1692 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1693 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1694 1695 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1696 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1697 1698 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1699 LHS_Lo, RHS_Lo); 1700 1701 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1702 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1703 1704 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1705 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1706 return; 1707 } 1708 1709 if (isTypeLegal(MVT::i64)) { 1710 // Compute denominator reciprocal. 1711 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1712 (unsigned)AMDGPUISD::FMAD_FTZ : 1713 (unsigned)ISD::FMAD; 1714 1715 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1716 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1717 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1718 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1719 Cvt_Lo); 1720 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1721 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1722 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1723 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1724 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1725 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1726 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1727 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1728 Mul1); 1729 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1730 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1731 SDValue Rcp64 = DAG.getBitcast(VT, 1732 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1733 1734 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1735 SDValue One64 = DAG.getConstant(1, DL, VT); 1736 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1737 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1738 1739 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1740 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1741 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1742 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1743 Zero); 1744 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1745 One); 1746 1747 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1748 Mulhi1_Lo, Zero1); 1749 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1750 Mulhi1_Hi, Add1_Lo.getValue(1)); 1751 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1752 SDValue Add1 = DAG.getBitcast(VT, 1753 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1754 1755 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1756 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1757 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1758 Zero); 1759 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1760 One); 1761 1762 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1763 Mulhi2_Lo, Zero1); 1764 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1765 Mulhi2_Hi, Add1_Lo.getValue(1)); 1766 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1767 Zero, Add2_Lo.getValue(1)); 1768 SDValue Add2 = DAG.getBitcast(VT, 1769 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1770 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1771 1772 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1773 1774 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1775 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1776 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1777 Mul3_Lo, Zero1); 1778 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1779 Mul3_Hi, Sub1_Lo.getValue(1)); 1780 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1781 SDValue Sub1 = DAG.getBitcast(VT, 1782 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1783 1784 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1785 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1786 ISD::SETUGE); 1787 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1788 ISD::SETUGE); 1789 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1790 1791 // TODO: Here and below portions of the code can be enclosed into if/endif. 1792 // Currently control flow is unconditional and we have 4 selects after 1793 // potential endif to substitute PHIs. 1794 1795 // if C3 != 0 ... 1796 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1797 RHS_Lo, Zero1); 1798 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1799 RHS_Hi, Sub1_Lo.getValue(1)); 1800 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1801 Zero, Sub2_Lo.getValue(1)); 1802 SDValue Sub2 = DAG.getBitcast(VT, 1803 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1804 1805 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1806 1807 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1808 ISD::SETUGE); 1809 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1810 ISD::SETUGE); 1811 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1812 1813 // if (C6 != 0) 1814 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1815 1816 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1817 RHS_Lo, Zero1); 1818 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1819 RHS_Hi, Sub2_Lo.getValue(1)); 1820 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1821 Zero, Sub3_Lo.getValue(1)); 1822 SDValue Sub3 = DAG.getBitcast(VT, 1823 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1824 1825 // endif C6 1826 // endif C3 1827 1828 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1829 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1830 1831 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1832 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1833 1834 Results.push_back(Div); 1835 Results.push_back(Rem); 1836 1837 return; 1838 } 1839 1840 // r600 expandion. 1841 // Get Speculative values 1842 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1843 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1844 1845 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1846 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1847 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1848 1849 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1850 SDValue DIV_Lo = Zero; 1851 1852 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1853 1854 for (unsigned i = 0; i < halfBitWidth; ++i) { 1855 const unsigned bitPos = halfBitWidth - i - 1; 1856 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1857 // Get value of high bit 1858 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1859 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1860 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1861 1862 // Shift 1863 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1864 // Add LHS high bit 1865 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1866 1867 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1868 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1869 1870 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1871 1872 // Update REM 1873 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1874 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1875 } 1876 1877 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1878 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1879 Results.push_back(DIV); 1880 Results.push_back(REM); 1881 } 1882 1883 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1884 SelectionDAG &DAG) const { 1885 SDLoc DL(Op); 1886 EVT VT = Op.getValueType(); 1887 1888 if (VT == MVT::i64) { 1889 SmallVector<SDValue, 2> Results; 1890 LowerUDIVREM64(Op, DAG, Results); 1891 return DAG.getMergeValues(Results, DL); 1892 } 1893 1894 if (VT == MVT::i32) { 1895 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1896 return Res; 1897 } 1898 1899 SDValue Num = Op.getOperand(0); 1900 SDValue Den = Op.getOperand(1); 1901 1902 // RCP = URECIP(Den) = 2^32 / Den + e 1903 // e is rounding error. 1904 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1905 1906 // RCP_LO = mul(RCP, Den) */ 1907 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1908 1909 // RCP_HI = mulhu (RCP, Den) */ 1910 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1911 1912 // NEG_RCP_LO = -RCP_LO 1913 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1914 RCP_LO); 1915 1916 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1917 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1918 NEG_RCP_LO, RCP_LO, 1919 ISD::SETEQ); 1920 // Calculate the rounding error from the URECIP instruction 1921 // E = mulhu(ABS_RCP_LO, RCP) 1922 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1923 1924 // RCP_A_E = RCP + E 1925 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1926 1927 // RCP_S_E = RCP - E 1928 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1929 1930 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1931 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1932 RCP_A_E, RCP_S_E, 1933 ISD::SETEQ); 1934 // Quotient = mulhu(Tmp0, Num) 1935 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1936 1937 // Num_S_Remainder = Quotient * Den 1938 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1939 1940 // Remainder = Num - Num_S_Remainder 1941 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1942 1943 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1944 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1945 DAG.getConstant(-1, DL, VT), 1946 DAG.getConstant(0, DL, VT), 1947 ISD::SETUGE); 1948 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1949 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1950 Num_S_Remainder, 1951 DAG.getConstant(-1, DL, VT), 1952 DAG.getConstant(0, DL, VT), 1953 ISD::SETUGE); 1954 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1955 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1956 Remainder_GE_Zero); 1957 1958 // Calculate Division result: 1959 1960 // Quotient_A_One = Quotient + 1 1961 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1962 DAG.getConstant(1, DL, VT)); 1963 1964 // Quotient_S_One = Quotient - 1 1965 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1966 DAG.getConstant(1, DL, VT)); 1967 1968 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1969 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1970 Quotient, Quotient_A_One, ISD::SETEQ); 1971 1972 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1973 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1974 Quotient_S_One, Div, ISD::SETEQ); 1975 1976 // Calculate Rem result: 1977 1978 // Remainder_S_Den = Remainder - Den 1979 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1980 1981 // Remainder_A_Den = Remainder + Den 1982 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1983 1984 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1985 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1986 Remainder, Remainder_S_Den, ISD::SETEQ); 1987 1988 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1989 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1990 Remainder_A_Den, Rem, ISD::SETEQ); 1991 SDValue Ops[2] = { 1992 Div, 1993 Rem 1994 }; 1995 return DAG.getMergeValues(Ops, DL); 1996 } 1997 1998 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1999 SelectionDAG &DAG) const { 2000 SDLoc DL(Op); 2001 EVT VT = Op.getValueType(); 2002 2003 SDValue LHS = Op.getOperand(0); 2004 SDValue RHS = Op.getOperand(1); 2005 2006 SDValue Zero = DAG.getConstant(0, DL, VT); 2007 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2008 2009 if (VT == MVT::i32) { 2010 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2011 return Res; 2012 } 2013 2014 if (VT == MVT::i64 && 2015 DAG.ComputeNumSignBits(LHS) > 32 && 2016 DAG.ComputeNumSignBits(RHS) > 32) { 2017 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2018 2019 //HiLo split 2020 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2021 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2022 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2023 LHS_Lo, RHS_Lo); 2024 SDValue Res[2] = { 2025 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2026 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2027 }; 2028 return DAG.getMergeValues(Res, DL); 2029 } 2030 2031 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2032 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2033 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2034 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2035 2036 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2037 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2038 2039 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2040 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2041 2042 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2043 SDValue Rem = Div.getValue(1); 2044 2045 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2046 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2047 2048 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2049 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2050 2051 SDValue Res[2] = { 2052 Div, 2053 Rem 2054 }; 2055 return DAG.getMergeValues(Res, DL); 2056 } 2057 2058 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2059 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2060 SDLoc SL(Op); 2061 EVT VT = Op.getValueType(); 2062 SDValue X = Op.getOperand(0); 2063 SDValue Y = Op.getOperand(1); 2064 2065 // TODO: Should this propagate fast-math-flags? 2066 2067 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2068 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2069 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2070 2071 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2072 } 2073 2074 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2075 SDLoc SL(Op); 2076 SDValue Src = Op.getOperand(0); 2077 2078 // result = trunc(src) 2079 // if (src > 0.0 && src != result) 2080 // result += 1.0 2081 2082 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2083 2084 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2085 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2086 2087 EVT SetCCVT = 2088 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2089 2090 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2091 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2092 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2093 2094 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2095 // TODO: Should this propagate fast-math-flags? 2096 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2097 } 2098 2099 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2100 SelectionDAG &DAG) { 2101 const unsigned FractBits = 52; 2102 const unsigned ExpBits = 11; 2103 2104 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2105 Hi, 2106 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2107 DAG.getConstant(ExpBits, SL, MVT::i32)); 2108 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2109 DAG.getConstant(1023, SL, MVT::i32)); 2110 2111 return Exp; 2112 } 2113 2114 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2115 SDLoc SL(Op); 2116 SDValue Src = Op.getOperand(0); 2117 2118 assert(Op.getValueType() == MVT::f64); 2119 2120 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2121 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2122 2123 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2124 2125 // Extract the upper half, since this is where we will find the sign and 2126 // exponent. 2127 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2128 2129 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2130 2131 const unsigned FractBits = 52; 2132 2133 // Extract the sign bit. 2134 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2135 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2136 2137 // Extend back to 64-bits. 2138 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2139 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2140 2141 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2142 const SDValue FractMask 2143 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2144 2145 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2146 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2147 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2148 2149 EVT SetCCVT = 2150 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2151 2152 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2153 2154 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2155 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2156 2157 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2158 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2159 2160 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2161 } 2162 2163 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2164 SDLoc SL(Op); 2165 SDValue Src = Op.getOperand(0); 2166 2167 assert(Op.getValueType() == MVT::f64); 2168 2169 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2170 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2171 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2172 2173 // TODO: Should this propagate fast-math-flags? 2174 2175 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2176 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2177 2178 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2179 2180 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2181 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2182 2183 EVT SetCCVT = 2184 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2185 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2186 2187 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2188 } 2189 2190 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2191 // FNEARBYINT and FRINT are the same, except in their handling of FP 2192 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2193 // rint, so just treat them as equivalent. 2194 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2195 } 2196 2197 // XXX - May require not supporting f32 denormals? 2198 2199 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2200 // compare and vselect end up producing worse code than scalarizing the whole 2201 // operation. 2202 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2203 SDLoc SL(Op); 2204 SDValue X = Op.getOperand(0); 2205 EVT VT = Op.getValueType(); 2206 2207 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2208 2209 // TODO: Should this propagate fast-math-flags? 2210 2211 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2212 2213 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2214 2215 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2216 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2217 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2218 2219 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2220 2221 EVT SetCCVT = 2222 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2223 2224 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2225 2226 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2227 2228 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2229 } 2230 2231 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2232 SDLoc SL(Op); 2233 SDValue X = Op.getOperand(0); 2234 2235 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2236 2237 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2238 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2239 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2240 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2241 EVT SetCCVT = 2242 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2243 2244 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2245 2246 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2247 2248 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2249 2250 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2251 MVT::i64); 2252 2253 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2254 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2255 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2256 MVT::i64), 2257 Exp); 2258 2259 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2260 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2261 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2262 ISD::SETNE); 2263 2264 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2265 D, DAG.getConstant(0, SL, MVT::i64)); 2266 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2267 2268 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2269 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2270 2271 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2272 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2273 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2274 2275 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2276 ExpEqNegOne, 2277 DAG.getConstantFP(1.0, SL, MVT::f64), 2278 DAG.getConstantFP(0.0, SL, MVT::f64)); 2279 2280 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2281 2282 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2283 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2284 2285 return K; 2286 } 2287 2288 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2289 EVT VT = Op.getValueType(); 2290 2291 if (VT == MVT::f32 || VT == MVT::f16) 2292 return LowerFROUND32_16(Op, DAG); 2293 2294 if (VT == MVT::f64) 2295 return LowerFROUND64(Op, DAG); 2296 2297 llvm_unreachable("unhandled type"); 2298 } 2299 2300 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2301 SDLoc SL(Op); 2302 SDValue Src = Op.getOperand(0); 2303 2304 // result = trunc(src); 2305 // if (src < 0.0 && src != result) 2306 // result += -1.0. 2307 2308 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2309 2310 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2311 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2312 2313 EVT SetCCVT = 2314 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2315 2316 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2317 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2318 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2319 2320 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2321 // TODO: Should this propagate fast-math-flags? 2322 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2323 } 2324 2325 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2326 double Log2BaseInverted) const { 2327 EVT VT = Op.getValueType(); 2328 2329 SDLoc SL(Op); 2330 SDValue Operand = Op.getOperand(0); 2331 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2332 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2333 2334 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2335 } 2336 2337 // Return M_LOG2E of appropriate type 2338 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) { 2339 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 2340 case MVT::f32: 2341 return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT); 2342 case MVT::f16: 2343 return DAG.getConstantFP( 2344 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"), 2345 SL, VT); 2346 case MVT::f64: 2347 return DAG.getConstantFP( 2348 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT); 2349 default: 2350 llvm_unreachable("unsupported fp type"); 2351 } 2352 } 2353 2354 // exp2(M_LOG2E_F * f); 2355 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2356 EVT VT = Op.getValueType(); 2357 SDLoc SL(Op); 2358 SDValue Src = Op.getOperand(0); 2359 2360 const SDValue K = getLog2EVal(DAG, SL, VT); 2361 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2362 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2363 } 2364 2365 static bool isCtlzOpc(unsigned Opc) { 2366 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2367 } 2368 2369 static bool isCttzOpc(unsigned Opc) { 2370 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2371 } 2372 2373 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2374 SDLoc SL(Op); 2375 SDValue Src = Op.getOperand(0); 2376 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2377 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2378 2379 unsigned ISDOpc, NewOpc; 2380 if (isCtlzOpc(Op.getOpcode())) { 2381 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2382 NewOpc = AMDGPUISD::FFBH_U32; 2383 } else if (isCttzOpc(Op.getOpcode())) { 2384 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2385 NewOpc = AMDGPUISD::FFBL_B32; 2386 } else 2387 llvm_unreachable("Unexpected OPCode!!!"); 2388 2389 2390 if (ZeroUndef && Src.getValueType() == MVT::i32) 2391 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2392 2393 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2394 2395 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2396 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2397 2398 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2399 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2400 2401 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2402 *DAG.getContext(), MVT::i32); 2403 2404 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2405 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2406 2407 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2408 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2409 2410 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2411 SDValue Add, NewOpr; 2412 if (isCtlzOpc(Op.getOpcode())) { 2413 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2414 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2415 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2416 } else { 2417 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2418 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2419 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2420 } 2421 2422 if (!ZeroUndef) { 2423 // Test if the full 64-bit input is zero. 2424 2425 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2426 // which we probably don't want. 2427 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2428 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2429 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2430 2431 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2432 // with the same cycles, otherwise it is slower. 2433 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2434 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2435 2436 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2437 2438 // The instruction returns -1 for 0 input, but the defined intrinsic 2439 // behavior is to return the number of bits. 2440 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2441 SrcIsZero, Bits32, NewOpr); 2442 } 2443 2444 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2445 } 2446 2447 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2448 bool Signed) const { 2449 // Unsigned 2450 // cul2f(ulong u) 2451 //{ 2452 // uint lz = clz(u); 2453 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2454 // u = (u << lz) & 0x7fffffffffffffffUL; 2455 // ulong t = u & 0xffffffffffUL; 2456 // uint v = (e << 23) | (uint)(u >> 40); 2457 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2458 // return as_float(v + r); 2459 //} 2460 // Signed 2461 // cl2f(long l) 2462 //{ 2463 // long s = l >> 63; 2464 // float r = cul2f((l + s) ^ s); 2465 // return s ? -r : r; 2466 //} 2467 2468 SDLoc SL(Op); 2469 SDValue Src = Op.getOperand(0); 2470 SDValue L = Src; 2471 2472 SDValue S; 2473 if (Signed) { 2474 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2475 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2476 2477 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2478 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2479 } 2480 2481 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2482 *DAG.getContext(), MVT::f32); 2483 2484 2485 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2486 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2487 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2488 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2489 2490 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2491 SDValue E = DAG.getSelect(SL, MVT::i32, 2492 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2493 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2494 ZeroI32); 2495 2496 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2497 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2498 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2499 2500 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2501 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2502 2503 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2504 U, DAG.getConstant(40, SL, MVT::i64)); 2505 2506 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2507 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2508 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2509 2510 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2511 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2512 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2513 2514 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2515 2516 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2517 2518 SDValue R = DAG.getSelect(SL, MVT::i32, 2519 RCmp, 2520 One, 2521 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2522 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2523 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2524 2525 if (!Signed) 2526 return R; 2527 2528 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2529 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2530 } 2531 2532 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2533 bool Signed) const { 2534 SDLoc SL(Op); 2535 SDValue Src = Op.getOperand(0); 2536 2537 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2538 2539 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2540 DAG.getConstant(0, SL, MVT::i32)); 2541 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2542 DAG.getConstant(1, SL, MVT::i32)); 2543 2544 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2545 SL, MVT::f64, Hi); 2546 2547 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2548 2549 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2550 DAG.getConstant(32, SL, MVT::i32)); 2551 // TODO: Should this propagate fast-math-flags? 2552 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2553 } 2554 2555 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2556 SelectionDAG &DAG) const { 2557 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2558 "operation should be legal"); 2559 2560 // TODO: Factor out code common with LowerSINT_TO_FP. 2561 2562 EVT DestVT = Op.getValueType(); 2563 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2564 SDLoc DL(Op); 2565 SDValue Src = Op.getOperand(0); 2566 2567 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2568 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2569 SDValue FPRound = 2570 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2571 2572 return FPRound; 2573 } 2574 2575 if (DestVT == MVT::f32) 2576 return LowerINT_TO_FP32(Op, DAG, false); 2577 2578 assert(DestVT == MVT::f64); 2579 return LowerINT_TO_FP64(Op, DAG, false); 2580 } 2581 2582 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2583 SelectionDAG &DAG) const { 2584 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2585 "operation should be legal"); 2586 2587 // TODO: Factor out code common with LowerUINT_TO_FP. 2588 2589 EVT DestVT = Op.getValueType(); 2590 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2591 SDLoc DL(Op); 2592 SDValue Src = Op.getOperand(0); 2593 2594 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2595 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2596 SDValue FPRound = 2597 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2598 2599 return FPRound; 2600 } 2601 2602 if (DestVT == MVT::f32) 2603 return LowerINT_TO_FP32(Op, DAG, true); 2604 2605 assert(DestVT == MVT::f64); 2606 return LowerINT_TO_FP64(Op, DAG, true); 2607 } 2608 2609 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2610 bool Signed) const { 2611 SDLoc SL(Op); 2612 2613 SDValue Src = Op.getOperand(0); 2614 2615 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2616 2617 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2618 MVT::f64); 2619 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2620 MVT::f64); 2621 // TODO: Should this propagate fast-math-flags? 2622 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2623 2624 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2625 2626 2627 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2628 2629 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2630 MVT::i32, FloorMul); 2631 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2632 2633 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2634 2635 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2636 } 2637 2638 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2639 SDLoc DL(Op); 2640 SDValue N0 = Op.getOperand(0); 2641 2642 // Convert to target node to get known bits 2643 if (N0.getValueType() == MVT::f32) 2644 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2645 2646 if (getTargetMachine().Options.UnsafeFPMath) { 2647 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2648 return SDValue(); 2649 } 2650 2651 assert(N0.getSimpleValueType() == MVT::f64); 2652 2653 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2654 const unsigned ExpMask = 0x7ff; 2655 const unsigned ExpBiasf64 = 1023; 2656 const unsigned ExpBiasf16 = 15; 2657 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2658 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2659 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2660 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2661 DAG.getConstant(32, DL, MVT::i64)); 2662 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2663 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2664 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2665 DAG.getConstant(20, DL, MVT::i64)); 2666 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2667 DAG.getConstant(ExpMask, DL, MVT::i32)); 2668 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2669 // add the f16 bias (15) to get the biased exponent for the f16 format. 2670 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2671 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2672 2673 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2674 DAG.getConstant(8, DL, MVT::i32)); 2675 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2676 DAG.getConstant(0xffe, DL, MVT::i32)); 2677 2678 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2679 DAG.getConstant(0x1ff, DL, MVT::i32)); 2680 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2681 2682 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2683 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2684 2685 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2686 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2687 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2688 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2689 2690 // N = M | (E << 12); 2691 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2692 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2693 DAG.getConstant(12, DL, MVT::i32))); 2694 2695 // B = clamp(1-E, 0, 13); 2696 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2697 One, E); 2698 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2699 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2700 DAG.getConstant(13, DL, MVT::i32)); 2701 2702 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2703 DAG.getConstant(0x1000, DL, MVT::i32)); 2704 2705 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2706 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2707 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2708 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2709 2710 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2711 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2712 DAG.getConstant(0x7, DL, MVT::i32)); 2713 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2714 DAG.getConstant(2, DL, MVT::i32)); 2715 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2716 One, Zero, ISD::SETEQ); 2717 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2718 One, Zero, ISD::SETGT); 2719 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2720 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2721 2722 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2723 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2724 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2725 I, V, ISD::SETEQ); 2726 2727 // Extract the sign bit. 2728 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2729 DAG.getConstant(16, DL, MVT::i32)); 2730 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2731 DAG.getConstant(0x8000, DL, MVT::i32)); 2732 2733 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2734 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2735 } 2736 2737 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2738 SelectionDAG &DAG) const { 2739 SDValue Src = Op.getOperand(0); 2740 2741 // TODO: Factor out code common with LowerFP_TO_UINT. 2742 2743 EVT SrcVT = Src.getValueType(); 2744 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2745 SDLoc DL(Op); 2746 2747 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2748 SDValue FpToInt32 = 2749 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2750 2751 return FpToInt32; 2752 } 2753 2754 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2755 return LowerFP64_TO_INT(Op, DAG, true); 2756 2757 return SDValue(); 2758 } 2759 2760 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2761 SelectionDAG &DAG) const { 2762 SDValue Src = Op.getOperand(0); 2763 2764 // TODO: Factor out code common with LowerFP_TO_SINT. 2765 2766 EVT SrcVT = Src.getValueType(); 2767 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2768 SDLoc DL(Op); 2769 2770 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2771 SDValue FpToInt32 = 2772 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2773 2774 return FpToInt32; 2775 } 2776 2777 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2778 return LowerFP64_TO_INT(Op, DAG, false); 2779 2780 return SDValue(); 2781 } 2782 2783 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2784 SelectionDAG &DAG) const { 2785 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2786 MVT VT = Op.getSimpleValueType(); 2787 MVT ScalarVT = VT.getScalarType(); 2788 2789 assert(VT.isVector()); 2790 2791 SDValue Src = Op.getOperand(0); 2792 SDLoc DL(Op); 2793 2794 // TODO: Don't scalarize on Evergreen? 2795 unsigned NElts = VT.getVectorNumElements(); 2796 SmallVector<SDValue, 8> Args; 2797 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2798 2799 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2800 for (unsigned I = 0; I < NElts; ++I) 2801 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2802 2803 return DAG.getBuildVector(VT, DL, Args); 2804 } 2805 2806 //===----------------------------------------------------------------------===// 2807 // Custom DAG optimizations 2808 //===----------------------------------------------------------------------===// 2809 2810 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2811 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2812 } 2813 2814 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2815 EVT VT = Op.getValueType(); 2816 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2817 // as unsigned 24-bit values. 2818 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2819 } 2820 2821 static SDValue simplifyI24(SDNode *Node24, 2822 TargetLowering::DAGCombinerInfo &DCI) { 2823 SelectionDAG &DAG = DCI.DAG; 2824 SDValue LHS = Node24->getOperand(0); 2825 SDValue RHS = Node24->getOperand(1); 2826 2827 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2828 2829 // First try to simplify using GetDemandedBits which allows the operands to 2830 // have other uses, but will only perform simplifications that involve 2831 // bypassing some nodes for this user. 2832 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2833 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2834 if (DemandedLHS || DemandedRHS) 2835 return DAG.getNode(Node24->getOpcode(), SDLoc(Node24), Node24->getVTList(), 2836 DemandedLHS ? DemandedLHS : LHS, 2837 DemandedRHS ? DemandedRHS : RHS); 2838 2839 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2840 // operands if this node is the only user. 2841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2842 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2843 return SDValue(Node24, 0); 2844 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2845 return SDValue(Node24, 0); 2846 2847 return SDValue(); 2848 } 2849 2850 template <typename IntTy> 2851 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2852 uint32_t Width, const SDLoc &DL) { 2853 if (Width + Offset < 32) { 2854 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2855 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2856 return DAG.getConstant(Result, DL, MVT::i32); 2857 } 2858 2859 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2860 } 2861 2862 static bool hasVolatileUser(SDNode *Val) { 2863 for (SDNode *U : Val->uses()) { 2864 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2865 if (M->isVolatile()) 2866 return true; 2867 } 2868 } 2869 2870 return false; 2871 } 2872 2873 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2874 // i32 vectors are the canonical memory type. 2875 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2876 return false; 2877 2878 if (!VT.isByteSized()) 2879 return false; 2880 2881 unsigned Size = VT.getStoreSize(); 2882 2883 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2884 return false; 2885 2886 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2887 return false; 2888 2889 return true; 2890 } 2891 2892 // Find a load or store from corresponding pattern root. 2893 // Roots may be build_vector, bitconvert or their combinations. 2894 static MemSDNode* findMemSDNode(SDNode *N) { 2895 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 2896 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 2897 return MN; 2898 assert(isa<BuildVectorSDNode>(N)); 2899 for (SDValue V : N->op_values()) 2900 if (MemSDNode *MN = 2901 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 2902 return MN; 2903 llvm_unreachable("cannot find MemSDNode in the pattern!"); 2904 } 2905 2906 bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned, 2907 SelectionDAG &DAG, 2908 SDNode *N, 2909 SDValue Addr, 2910 SDValue &VAddr, 2911 SDValue &Offset, 2912 SDValue &SLC) const { 2913 const GCNSubtarget &ST = 2914 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 2915 int64_t OffsetVal = 0; 2916 2917 if (ST.hasFlatInstOffsets() && 2918 (!ST.hasFlatSegmentOffsetBug() || 2919 findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) && 2920 DAG.isBaseWithConstantOffset(Addr)) { 2921 SDValue N0 = Addr.getOperand(0); 2922 SDValue N1 = Addr.getOperand(1); 2923 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 2924 2925 if (ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 2926 if ((IsSigned && isInt<12>(COffsetVal)) || 2927 (!IsSigned && isUInt<11>(COffsetVal))) { 2928 Addr = N0; 2929 OffsetVal = COffsetVal; 2930 } 2931 } else { 2932 if ((IsSigned && isInt<13>(COffsetVal)) || 2933 (!IsSigned && isUInt<12>(COffsetVal))) { 2934 Addr = N0; 2935 OffsetVal = COffsetVal; 2936 } 2937 } 2938 } 2939 2940 VAddr = Addr; 2941 Offset = DAG.getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 2942 SLC = DAG.getTargetConstant(0, SDLoc(), MVT::i1); 2943 2944 return true; 2945 } 2946 2947 // Replace load of an illegal type with a store of a bitcast to a friendlier 2948 // type. 2949 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2950 DAGCombinerInfo &DCI) const { 2951 if (!DCI.isBeforeLegalize()) 2952 return SDValue(); 2953 2954 LoadSDNode *LN = cast<LoadSDNode>(N); 2955 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2956 return SDValue(); 2957 2958 SDLoc SL(N); 2959 SelectionDAG &DAG = DCI.DAG; 2960 EVT VT = LN->getMemoryVT(); 2961 2962 unsigned Size = VT.getStoreSize(); 2963 unsigned Align = LN->getAlignment(); 2964 if (Align < Size && isTypeLegal(VT)) { 2965 bool IsFast; 2966 unsigned AS = LN->getAddressSpace(); 2967 2968 // Expand unaligned loads earlier than legalization. Due to visitation order 2969 // problems during legalization, the emitted instructions to pack and unpack 2970 // the bytes again are not eliminated in the case of an unaligned copy. 2971 if (!allowsMisalignedMemoryAccesses( 2972 VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { 2973 if (VT.isVector()) 2974 return scalarizeVectorLoad(LN, DAG); 2975 2976 SDValue Ops[2]; 2977 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2978 return DAG.getMergeValues(Ops, SDLoc(N)); 2979 } 2980 2981 if (!IsFast) 2982 return SDValue(); 2983 } 2984 2985 if (!shouldCombineMemoryType(VT)) 2986 return SDValue(); 2987 2988 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2989 2990 SDValue NewLoad 2991 = DAG.getLoad(NewVT, SL, LN->getChain(), 2992 LN->getBasePtr(), LN->getMemOperand()); 2993 2994 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2995 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2996 return SDValue(N, 0); 2997 } 2998 2999 // Replace store of an illegal type with a store of a bitcast to a friendlier 3000 // type. 3001 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 3002 DAGCombinerInfo &DCI) const { 3003 if (!DCI.isBeforeLegalize()) 3004 return SDValue(); 3005 3006 StoreSDNode *SN = cast<StoreSDNode>(N); 3007 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 3008 return SDValue(); 3009 3010 EVT VT = SN->getMemoryVT(); 3011 unsigned Size = VT.getStoreSize(); 3012 3013 SDLoc SL(N); 3014 SelectionDAG &DAG = DCI.DAG; 3015 unsigned Align = SN->getAlignment(); 3016 if (Align < Size && isTypeLegal(VT)) { 3017 bool IsFast; 3018 unsigned AS = SN->getAddressSpace(); 3019 3020 // Expand unaligned stores earlier than legalization. Due to visitation 3021 // order problems during legalization, the emitted instructions to pack and 3022 // unpack the bytes again are not eliminated in the case of an unaligned 3023 // copy. 3024 if (!allowsMisalignedMemoryAccesses( 3025 VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { 3026 if (VT.isVector()) 3027 return scalarizeVectorStore(SN, DAG); 3028 3029 return expandUnalignedStore(SN, DAG); 3030 } 3031 3032 if (!IsFast) 3033 return SDValue(); 3034 } 3035 3036 if (!shouldCombineMemoryType(VT)) 3037 return SDValue(); 3038 3039 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3040 SDValue Val = SN->getValue(); 3041 3042 //DCI.AddToWorklist(Val.getNode()); 3043 3044 bool OtherUses = !Val.hasOneUse(); 3045 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 3046 if (OtherUses) { 3047 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3048 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3049 } 3050 3051 return DAG.getStore(SN->getChain(), SL, CastVal, 3052 SN->getBasePtr(), SN->getMemOperand()); 3053 } 3054 3055 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3056 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3057 // issues. 3058 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3059 DAGCombinerInfo &DCI) const { 3060 SelectionDAG &DAG = DCI.DAG; 3061 SDValue N0 = N->getOperand(0); 3062 3063 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3064 // (vt2 (truncate (assertzext vt0:x, vt1))) 3065 if (N0.getOpcode() == ISD::TRUNCATE) { 3066 SDValue N1 = N->getOperand(1); 3067 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3068 SDLoc SL(N); 3069 3070 SDValue Src = N0.getOperand(0); 3071 EVT SrcVT = Src.getValueType(); 3072 if (SrcVT.bitsGE(ExtVT)) { 3073 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3074 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3075 } 3076 } 3077 3078 return SDValue(); 3079 } 3080 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3081 /// binary operation \p Opc to it with the corresponding constant operands. 3082 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3083 DAGCombinerInfo &DCI, const SDLoc &SL, 3084 unsigned Opc, SDValue LHS, 3085 uint32_t ValLo, uint32_t ValHi) const { 3086 SelectionDAG &DAG = DCI.DAG; 3087 SDValue Lo, Hi; 3088 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3089 3090 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3091 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3092 3093 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3094 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3095 3096 // Re-visit the ands. It's possible we eliminated one of them and it could 3097 // simplify the vector. 3098 DCI.AddToWorklist(Lo.getNode()); 3099 DCI.AddToWorklist(Hi.getNode()); 3100 3101 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3102 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3103 } 3104 3105 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3106 DAGCombinerInfo &DCI) const { 3107 EVT VT = N->getValueType(0); 3108 3109 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3110 if (!RHS) 3111 return SDValue(); 3112 3113 SDValue LHS = N->getOperand(0); 3114 unsigned RHSVal = RHS->getZExtValue(); 3115 if (!RHSVal) 3116 return LHS; 3117 3118 SDLoc SL(N); 3119 SelectionDAG &DAG = DCI.DAG; 3120 3121 switch (LHS->getOpcode()) { 3122 default: 3123 break; 3124 case ISD::ZERO_EXTEND: 3125 case ISD::SIGN_EXTEND: 3126 case ISD::ANY_EXTEND: { 3127 SDValue X = LHS->getOperand(0); 3128 3129 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3130 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3131 // Prefer build_vector as the canonical form if packed types are legal. 3132 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3133 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3134 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3135 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3136 } 3137 3138 // shl (ext x) => zext (shl x), if shift does not overflow int 3139 if (VT != MVT::i64) 3140 break; 3141 KnownBits Known = DAG.computeKnownBits(X); 3142 unsigned LZ = Known.countMinLeadingZeros(); 3143 if (LZ < RHSVal) 3144 break; 3145 EVT XVT = X.getValueType(); 3146 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3147 return DAG.getZExtOrTrunc(Shl, SL, VT); 3148 } 3149 } 3150 3151 if (VT != MVT::i64) 3152 return SDValue(); 3153 3154 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3155 3156 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3157 // common case, splitting this into a move and a 32-bit shift is faster and 3158 // the same code size. 3159 if (RHSVal < 32) 3160 return SDValue(); 3161 3162 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3163 3164 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3165 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3166 3167 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3168 3169 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3170 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3171 } 3172 3173 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3174 DAGCombinerInfo &DCI) const { 3175 if (N->getValueType(0) != MVT::i64) 3176 return SDValue(); 3177 3178 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3179 if (!RHS) 3180 return SDValue(); 3181 3182 SelectionDAG &DAG = DCI.DAG; 3183 SDLoc SL(N); 3184 unsigned RHSVal = RHS->getZExtValue(); 3185 3186 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3187 if (RHSVal == 32) { 3188 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3189 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3190 DAG.getConstant(31, SL, MVT::i32)); 3191 3192 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3193 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3194 } 3195 3196 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3197 if (RHSVal == 63) { 3198 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3199 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3200 DAG.getConstant(31, SL, MVT::i32)); 3201 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3202 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3203 } 3204 3205 return SDValue(); 3206 } 3207 3208 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3209 DAGCombinerInfo &DCI) const { 3210 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3211 if (!RHS) 3212 return SDValue(); 3213 3214 EVT VT = N->getValueType(0); 3215 SDValue LHS = N->getOperand(0); 3216 unsigned ShiftAmt = RHS->getZExtValue(); 3217 SelectionDAG &DAG = DCI.DAG; 3218 SDLoc SL(N); 3219 3220 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3221 // this improves the ability to match BFE patterns in isel. 3222 if (LHS.getOpcode() == ISD::AND) { 3223 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3224 if (Mask->getAPIntValue().isShiftedMask() && 3225 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3226 return DAG.getNode( 3227 ISD::AND, SL, VT, 3228 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3229 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3230 } 3231 } 3232 } 3233 3234 if (VT != MVT::i64) 3235 return SDValue(); 3236 3237 if (ShiftAmt < 32) 3238 return SDValue(); 3239 3240 // srl i64:x, C for C >= 32 3241 // => 3242 // build_pair (srl hi_32(x), C - 32), 0 3243 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3244 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3245 3246 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3247 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3248 3249 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3250 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3251 3252 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3253 3254 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3255 } 3256 3257 SDValue AMDGPUTargetLowering::performTruncateCombine( 3258 SDNode *N, DAGCombinerInfo &DCI) const { 3259 SDLoc SL(N); 3260 SelectionDAG &DAG = DCI.DAG; 3261 EVT VT = N->getValueType(0); 3262 SDValue Src = N->getOperand(0); 3263 3264 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3265 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3266 SDValue Vec = Src.getOperand(0); 3267 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3268 SDValue Elt0 = Vec.getOperand(0); 3269 EVT EltVT = Elt0.getValueType(); 3270 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3271 if (EltVT.isFloatingPoint()) { 3272 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3273 EltVT.changeTypeToInteger(), Elt0); 3274 } 3275 3276 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3277 } 3278 } 3279 } 3280 3281 // Equivalent of above for accessing the high element of a vector as an 3282 // integer operation. 3283 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3284 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3285 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3286 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3287 SDValue BV = stripBitcast(Src.getOperand(0)); 3288 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3289 BV.getValueType().getVectorNumElements() == 2) { 3290 SDValue SrcElt = BV.getOperand(1); 3291 EVT SrcEltVT = SrcElt.getValueType(); 3292 if (SrcEltVT.isFloatingPoint()) { 3293 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3294 SrcEltVT.changeTypeToInteger(), SrcElt); 3295 } 3296 3297 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3298 } 3299 } 3300 } 3301 } 3302 3303 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3304 // 3305 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3306 // i16 (trunc (srl (i32 (trunc x), K))) 3307 if (VT.getScalarSizeInBits() < 32) { 3308 EVT SrcVT = Src.getValueType(); 3309 if (SrcVT.getScalarSizeInBits() > 32 && 3310 (Src.getOpcode() == ISD::SRL || 3311 Src.getOpcode() == ISD::SRA || 3312 Src.getOpcode() == ISD::SHL)) { 3313 SDValue Amt = Src.getOperand(1); 3314 KnownBits Known = DAG.computeKnownBits(Amt); 3315 unsigned Size = VT.getScalarSizeInBits(); 3316 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3317 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3318 EVT MidVT = VT.isVector() ? 3319 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3320 VT.getVectorNumElements()) : MVT::i32; 3321 3322 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3323 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3324 Src.getOperand(0)); 3325 DCI.AddToWorklist(Trunc.getNode()); 3326 3327 if (Amt.getValueType() != NewShiftVT) { 3328 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3329 DCI.AddToWorklist(Amt.getNode()); 3330 } 3331 3332 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3333 Trunc, Amt); 3334 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3335 } 3336 } 3337 } 3338 3339 return SDValue(); 3340 } 3341 3342 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3343 // instructions. If we only match on the legalized i64 mul expansion, 3344 // SimplifyDemandedBits will be unable to remove them because there will be 3345 // multiple uses due to the separate mul + mulh[su]. 3346 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3347 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3348 if (Size <= 32) { 3349 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3350 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3351 } 3352 3353 // Because we want to eliminate extension instructions before the 3354 // operation, we need to create a single user here (i.e. not the separate 3355 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3356 3357 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3358 3359 SDValue Mul = DAG.getNode(MulOpc, SL, 3360 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3361 3362 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3363 Mul.getValue(0), Mul.getValue(1)); 3364 } 3365 3366 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3367 DAGCombinerInfo &DCI) const { 3368 EVT VT = N->getValueType(0); 3369 3370 unsigned Size = VT.getSizeInBits(); 3371 if (VT.isVector() || Size > 64) 3372 return SDValue(); 3373 3374 // There are i16 integer mul/mad. 3375 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3376 return SDValue(); 3377 3378 SelectionDAG &DAG = DCI.DAG; 3379 SDLoc DL(N); 3380 3381 SDValue N0 = N->getOperand(0); 3382 SDValue N1 = N->getOperand(1); 3383 3384 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3385 // in the source into any_extends if the result of the mul is truncated. Since 3386 // we can assume the high bits are whatever we want, use the underlying value 3387 // to avoid the unknown high bits from interfering. 3388 if (N0.getOpcode() == ISD::ANY_EXTEND) 3389 N0 = N0.getOperand(0); 3390 3391 if (N1.getOpcode() == ISD::ANY_EXTEND) 3392 N1 = N1.getOperand(0); 3393 3394 SDValue Mul; 3395 3396 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3397 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3398 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3399 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3400 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3401 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3402 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3403 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3404 } else { 3405 return SDValue(); 3406 } 3407 3408 // We need to use sext even for MUL_U24, because MUL_U24 is used 3409 // for signed multiply of 8 and 16-bit types. 3410 return DAG.getSExtOrTrunc(Mul, DL, VT); 3411 } 3412 3413 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3414 DAGCombinerInfo &DCI) const { 3415 EVT VT = N->getValueType(0); 3416 3417 if (!Subtarget->hasMulI24() || VT.isVector()) 3418 return SDValue(); 3419 3420 SelectionDAG &DAG = DCI.DAG; 3421 SDLoc DL(N); 3422 3423 SDValue N0 = N->getOperand(0); 3424 SDValue N1 = N->getOperand(1); 3425 3426 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3427 return SDValue(); 3428 3429 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3430 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3431 3432 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3433 DCI.AddToWorklist(Mulhi.getNode()); 3434 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3435 } 3436 3437 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3438 DAGCombinerInfo &DCI) const { 3439 EVT VT = N->getValueType(0); 3440 3441 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3442 return SDValue(); 3443 3444 SelectionDAG &DAG = DCI.DAG; 3445 SDLoc DL(N); 3446 3447 SDValue N0 = N->getOperand(0); 3448 SDValue N1 = N->getOperand(1); 3449 3450 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3451 return SDValue(); 3452 3453 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3454 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3455 3456 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3457 DCI.AddToWorklist(Mulhi.getNode()); 3458 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3459 } 3460 3461 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3462 SDNode *N, DAGCombinerInfo &DCI) const { 3463 SelectionDAG &DAG = DCI.DAG; 3464 3465 // Simplify demanded bits before splitting into multiple users. 3466 if (SDValue V = simplifyI24(N, DCI)) 3467 return V; 3468 3469 SDValue N0 = N->getOperand(0); 3470 SDValue N1 = N->getOperand(1); 3471 3472 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3473 3474 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3475 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3476 3477 SDLoc SL(N); 3478 3479 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3480 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3481 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3482 } 3483 3484 static bool isNegativeOne(SDValue Val) { 3485 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3486 return C->isAllOnesValue(); 3487 return false; 3488 } 3489 3490 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3491 SDValue Op, 3492 const SDLoc &DL, 3493 unsigned Opc) const { 3494 EVT VT = Op.getValueType(); 3495 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3496 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3497 LegalVT != MVT::i16)) 3498 return SDValue(); 3499 3500 if (VT != MVT::i32) 3501 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3502 3503 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3504 if (VT != MVT::i32) 3505 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3506 3507 return FFBX; 3508 } 3509 3510 // The native instructions return -1 on 0 input. Optimize out a select that 3511 // produces -1 on 0. 3512 // 3513 // TODO: If zero is not undef, we could also do this if the output is compared 3514 // against the bitwidth. 3515 // 3516 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3517 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3518 SDValue LHS, SDValue RHS, 3519 DAGCombinerInfo &DCI) const { 3520 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3521 if (!CmpRhs || !CmpRhs->isNullValue()) 3522 return SDValue(); 3523 3524 SelectionDAG &DAG = DCI.DAG; 3525 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3526 SDValue CmpLHS = Cond.getOperand(0); 3527 3528 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3529 AMDGPUISD::FFBH_U32; 3530 3531 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3532 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3533 if (CCOpcode == ISD::SETEQ && 3534 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3535 RHS.getOperand(0) == CmpLHS && 3536 isNegativeOne(LHS)) { 3537 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3538 } 3539 3540 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3541 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3542 if (CCOpcode == ISD::SETNE && 3543 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3544 LHS.getOperand(0) == CmpLHS && 3545 isNegativeOne(RHS)) { 3546 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3547 } 3548 3549 return SDValue(); 3550 } 3551 3552 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3553 unsigned Op, 3554 const SDLoc &SL, 3555 SDValue Cond, 3556 SDValue N1, 3557 SDValue N2) { 3558 SelectionDAG &DAG = DCI.DAG; 3559 EVT VT = N1.getValueType(); 3560 3561 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3562 N1.getOperand(0), N2.getOperand(0)); 3563 DCI.AddToWorklist(NewSelect.getNode()); 3564 return DAG.getNode(Op, SL, VT, NewSelect); 3565 } 3566 3567 // Pull a free FP operation out of a select so it may fold into uses. 3568 // 3569 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3570 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3571 // 3572 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3573 // select c, (fabs x), +k -> fabs (select c, x, k) 3574 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3575 SDValue N) { 3576 SelectionDAG &DAG = DCI.DAG; 3577 SDValue Cond = N.getOperand(0); 3578 SDValue LHS = N.getOperand(1); 3579 SDValue RHS = N.getOperand(2); 3580 3581 EVT VT = N.getValueType(); 3582 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3583 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3584 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3585 SDLoc(N), Cond, LHS, RHS); 3586 } 3587 3588 bool Inv = false; 3589 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3590 std::swap(LHS, RHS); 3591 Inv = true; 3592 } 3593 3594 // TODO: Support vector constants. 3595 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3596 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3597 SDLoc SL(N); 3598 // If one side is an fneg/fabs and the other is a constant, we can push the 3599 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3600 SDValue NewLHS = LHS.getOperand(0); 3601 SDValue NewRHS = RHS; 3602 3603 // Careful: if the neg can be folded up, don't try to pull it back down. 3604 bool ShouldFoldNeg = true; 3605 3606 if (NewLHS.hasOneUse()) { 3607 unsigned Opc = NewLHS.getOpcode(); 3608 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3609 ShouldFoldNeg = false; 3610 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3611 ShouldFoldNeg = false; 3612 } 3613 3614 if (ShouldFoldNeg) { 3615 if (LHS.getOpcode() == ISD::FNEG) 3616 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3617 else if (CRHS->isNegative()) 3618 return SDValue(); 3619 3620 if (Inv) 3621 std::swap(NewLHS, NewRHS); 3622 3623 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3624 Cond, NewLHS, NewRHS); 3625 DCI.AddToWorklist(NewSelect.getNode()); 3626 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3627 } 3628 } 3629 3630 return SDValue(); 3631 } 3632 3633 3634 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3635 DAGCombinerInfo &DCI) const { 3636 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3637 return Folded; 3638 3639 SDValue Cond = N->getOperand(0); 3640 if (Cond.getOpcode() != ISD::SETCC) 3641 return SDValue(); 3642 3643 EVT VT = N->getValueType(0); 3644 SDValue LHS = Cond.getOperand(0); 3645 SDValue RHS = Cond.getOperand(1); 3646 SDValue CC = Cond.getOperand(2); 3647 3648 SDValue True = N->getOperand(1); 3649 SDValue False = N->getOperand(2); 3650 3651 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3652 SelectionDAG &DAG = DCI.DAG; 3653 if ((DAG.isConstantValueOfAnyType(True) || 3654 DAG.isConstantValueOfAnyType(True)) && 3655 (!DAG.isConstantValueOfAnyType(False) && 3656 !DAG.isConstantValueOfAnyType(False))) { 3657 // Swap cmp + select pair to move constant to false input. 3658 // This will allow using VOPC cndmasks more often. 3659 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3660 3661 SDLoc SL(N); 3662 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3663 LHS.getValueType().isInteger()); 3664 3665 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3666 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3667 } 3668 3669 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3670 SDValue MinMax 3671 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3672 // Revisit this node so we can catch min3/max3/med3 patterns. 3673 //DCI.AddToWorklist(MinMax.getNode()); 3674 return MinMax; 3675 } 3676 } 3677 3678 // There's no reason to not do this if the condition has other uses. 3679 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3680 } 3681 3682 static bool isInv2Pi(const APFloat &APF) { 3683 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3684 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3685 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3686 3687 return APF.bitwiseIsEqual(KF16) || 3688 APF.bitwiseIsEqual(KF32) || 3689 APF.bitwiseIsEqual(KF64); 3690 } 3691 3692 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3693 // additional cost to negate them. 3694 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3695 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3696 if (C->isZero() && !C->isNegative()) 3697 return true; 3698 3699 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3700 return true; 3701 } 3702 3703 return false; 3704 } 3705 3706 static unsigned inverseMinMax(unsigned Opc) { 3707 switch (Opc) { 3708 case ISD::FMAXNUM: 3709 return ISD::FMINNUM; 3710 case ISD::FMINNUM: 3711 return ISD::FMAXNUM; 3712 case ISD::FMAXNUM_IEEE: 3713 return ISD::FMINNUM_IEEE; 3714 case ISD::FMINNUM_IEEE: 3715 return ISD::FMAXNUM_IEEE; 3716 case AMDGPUISD::FMAX_LEGACY: 3717 return AMDGPUISD::FMIN_LEGACY; 3718 case AMDGPUISD::FMIN_LEGACY: 3719 return AMDGPUISD::FMAX_LEGACY; 3720 default: 3721 llvm_unreachable("invalid min/max opcode"); 3722 } 3723 } 3724 3725 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3726 DAGCombinerInfo &DCI) const { 3727 SelectionDAG &DAG = DCI.DAG; 3728 SDValue N0 = N->getOperand(0); 3729 EVT VT = N->getValueType(0); 3730 3731 unsigned Opc = N0.getOpcode(); 3732 3733 // If the input has multiple uses and we can either fold the negate down, or 3734 // the other uses cannot, give up. This both prevents unprofitable 3735 // transformations and infinite loops: we won't repeatedly try to fold around 3736 // a negate that has no 'good' form. 3737 if (N0.hasOneUse()) { 3738 // This may be able to fold into the source, but at a code size cost. Don't 3739 // fold if the fold into the user is free. 3740 if (allUsesHaveSourceMods(N, 0)) 3741 return SDValue(); 3742 } else { 3743 if (fnegFoldsIntoOp(Opc) && 3744 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3745 return SDValue(); 3746 } 3747 3748 SDLoc SL(N); 3749 switch (Opc) { 3750 case ISD::FADD: { 3751 if (!mayIgnoreSignedZero(N0)) 3752 return SDValue(); 3753 3754 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3755 SDValue LHS = N0.getOperand(0); 3756 SDValue RHS = N0.getOperand(1); 3757 3758 if (LHS.getOpcode() != ISD::FNEG) 3759 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3760 else 3761 LHS = LHS.getOperand(0); 3762 3763 if (RHS.getOpcode() != ISD::FNEG) 3764 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3765 else 3766 RHS = RHS.getOperand(0); 3767 3768 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3769 if (Res.getOpcode() != ISD::FADD) 3770 return SDValue(); // Op got folded away. 3771 if (!N0.hasOneUse()) 3772 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3773 return Res; 3774 } 3775 case ISD::FMUL: 3776 case AMDGPUISD::FMUL_LEGACY: { 3777 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3778 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3779 SDValue LHS = N0.getOperand(0); 3780 SDValue RHS = N0.getOperand(1); 3781 3782 if (LHS.getOpcode() == ISD::FNEG) 3783 LHS = LHS.getOperand(0); 3784 else if (RHS.getOpcode() == ISD::FNEG) 3785 RHS = RHS.getOperand(0); 3786 else 3787 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3788 3789 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3790 if (Res.getOpcode() != Opc) 3791 return SDValue(); // Op got folded away. 3792 if (!N0.hasOneUse()) 3793 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3794 return Res; 3795 } 3796 case ISD::FMA: 3797 case ISD::FMAD: { 3798 if (!mayIgnoreSignedZero(N0)) 3799 return SDValue(); 3800 3801 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3802 SDValue LHS = N0.getOperand(0); 3803 SDValue MHS = N0.getOperand(1); 3804 SDValue RHS = N0.getOperand(2); 3805 3806 if (LHS.getOpcode() == ISD::FNEG) 3807 LHS = LHS.getOperand(0); 3808 else if (MHS.getOpcode() == ISD::FNEG) 3809 MHS = MHS.getOperand(0); 3810 else 3811 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3812 3813 if (RHS.getOpcode() != ISD::FNEG) 3814 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3815 else 3816 RHS = RHS.getOperand(0); 3817 3818 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3819 if (Res.getOpcode() != Opc) 3820 return SDValue(); // Op got folded away. 3821 if (!N0.hasOneUse()) 3822 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3823 return Res; 3824 } 3825 case ISD::FMAXNUM: 3826 case ISD::FMINNUM: 3827 case ISD::FMAXNUM_IEEE: 3828 case ISD::FMINNUM_IEEE: 3829 case AMDGPUISD::FMAX_LEGACY: 3830 case AMDGPUISD::FMIN_LEGACY: { 3831 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3832 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3833 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3834 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3835 3836 SDValue LHS = N0.getOperand(0); 3837 SDValue RHS = N0.getOperand(1); 3838 3839 // 0 doesn't have a negated inline immediate. 3840 // TODO: This constant check should be generalized to other operations. 3841 if (isConstantCostlierToNegate(RHS)) 3842 return SDValue(); 3843 3844 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3845 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3846 unsigned Opposite = inverseMinMax(Opc); 3847 3848 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3849 if (Res.getOpcode() != Opposite) 3850 return SDValue(); // Op got folded away. 3851 if (!N0.hasOneUse()) 3852 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3853 return Res; 3854 } 3855 case AMDGPUISD::FMED3: { 3856 SDValue Ops[3]; 3857 for (unsigned I = 0; I < 3; ++I) 3858 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3859 3860 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3861 if (Res.getOpcode() != AMDGPUISD::FMED3) 3862 return SDValue(); // Op got folded away. 3863 if (!N0.hasOneUse()) 3864 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3865 return Res; 3866 } 3867 case ISD::FP_EXTEND: 3868 case ISD::FTRUNC: 3869 case ISD::FRINT: 3870 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3871 case ISD::FSIN: 3872 case ISD::FCANONICALIZE: 3873 case AMDGPUISD::RCP: 3874 case AMDGPUISD::RCP_LEGACY: 3875 case AMDGPUISD::RCP_IFLAG: 3876 case AMDGPUISD::SIN_HW: { 3877 SDValue CvtSrc = N0.getOperand(0); 3878 if (CvtSrc.getOpcode() == ISD::FNEG) { 3879 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3880 // (fneg (rcp (fneg x))) -> (rcp x) 3881 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3882 } 3883 3884 if (!N0.hasOneUse()) 3885 return SDValue(); 3886 3887 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3888 // (fneg (rcp x)) -> (rcp (fneg x)) 3889 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3890 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3891 } 3892 case ISD::FP_ROUND: { 3893 SDValue CvtSrc = N0.getOperand(0); 3894 3895 if (CvtSrc.getOpcode() == ISD::FNEG) { 3896 // (fneg (fp_round (fneg x))) -> (fp_round x) 3897 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3898 CvtSrc.getOperand(0), N0.getOperand(1)); 3899 } 3900 3901 if (!N0.hasOneUse()) 3902 return SDValue(); 3903 3904 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3905 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3906 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3907 } 3908 case ISD::FP16_TO_FP: { 3909 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3910 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3911 // Put the fneg back as a legal source operation that can be matched later. 3912 SDLoc SL(N); 3913 3914 SDValue Src = N0.getOperand(0); 3915 EVT SrcVT = Src.getValueType(); 3916 3917 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3918 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3919 DAG.getConstant(0x8000, SL, SrcVT)); 3920 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3921 } 3922 default: 3923 return SDValue(); 3924 } 3925 } 3926 3927 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3928 DAGCombinerInfo &DCI) const { 3929 SelectionDAG &DAG = DCI.DAG; 3930 SDValue N0 = N->getOperand(0); 3931 3932 if (!N0.hasOneUse()) 3933 return SDValue(); 3934 3935 switch (N0.getOpcode()) { 3936 case ISD::FP16_TO_FP: { 3937 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3938 SDLoc SL(N); 3939 SDValue Src = N0.getOperand(0); 3940 EVT SrcVT = Src.getValueType(); 3941 3942 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3943 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3944 DAG.getConstant(0x7fff, SL, SrcVT)); 3945 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3946 } 3947 default: 3948 return SDValue(); 3949 } 3950 } 3951 3952 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3953 DAGCombinerInfo &DCI) const { 3954 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3955 if (!CFP) 3956 return SDValue(); 3957 3958 // XXX - Should this flush denormals? 3959 const APFloat &Val = CFP->getValueAPF(); 3960 APFloat One(Val.getSemantics(), "1.0"); 3961 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3962 } 3963 3964 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3965 DAGCombinerInfo &DCI) const { 3966 SelectionDAG &DAG = DCI.DAG; 3967 SDLoc DL(N); 3968 3969 switch(N->getOpcode()) { 3970 default: 3971 break; 3972 case ISD::BITCAST: { 3973 EVT DestVT = N->getValueType(0); 3974 3975 // Push casts through vector builds. This helps avoid emitting a large 3976 // number of copies when materializing floating point vector constants. 3977 // 3978 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3979 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3980 if (DestVT.isVector()) { 3981 SDValue Src = N->getOperand(0); 3982 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3983 EVT SrcVT = Src.getValueType(); 3984 unsigned NElts = DestVT.getVectorNumElements(); 3985 3986 if (SrcVT.getVectorNumElements() == NElts) { 3987 EVT DestEltVT = DestVT.getVectorElementType(); 3988 3989 SmallVector<SDValue, 8> CastedElts; 3990 SDLoc SL(N); 3991 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3992 SDValue Elt = Src.getOperand(I); 3993 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3994 } 3995 3996 return DAG.getBuildVector(DestVT, SL, CastedElts); 3997 } 3998 } 3999 } 4000 4001 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 4002 break; 4003 4004 // Fold bitcasts of constants. 4005 // 4006 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 4007 // TODO: Generalize and move to DAGCombiner 4008 SDValue Src = N->getOperand(0); 4009 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 4010 if (Src.getValueType() == MVT::i64) { 4011 SDLoc SL(N); 4012 uint64_t CVal = C->getZExtValue(); 4013 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4014 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4015 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4016 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 4017 } 4018 } 4019 4020 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 4021 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 4022 SDLoc SL(N); 4023 uint64_t CVal = Val.getZExtValue(); 4024 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4025 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4026 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4027 4028 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 4029 } 4030 4031 break; 4032 } 4033 case ISD::SHL: { 4034 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4035 break; 4036 4037 return performShlCombine(N, DCI); 4038 } 4039 case ISD::SRL: { 4040 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4041 break; 4042 4043 return performSrlCombine(N, DCI); 4044 } 4045 case ISD::SRA: { 4046 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4047 break; 4048 4049 return performSraCombine(N, DCI); 4050 } 4051 case ISD::TRUNCATE: 4052 return performTruncateCombine(N, DCI); 4053 case ISD::MUL: 4054 return performMulCombine(N, DCI); 4055 case ISD::MULHS: 4056 return performMulhsCombine(N, DCI); 4057 case ISD::MULHU: 4058 return performMulhuCombine(N, DCI); 4059 case AMDGPUISD::MUL_I24: 4060 case AMDGPUISD::MUL_U24: 4061 case AMDGPUISD::MULHI_I24: 4062 case AMDGPUISD::MULHI_U24: { 4063 if (SDValue V = simplifyI24(N, DCI)) 4064 return V; 4065 return SDValue(); 4066 } 4067 case AMDGPUISD::MUL_LOHI_I24: 4068 case AMDGPUISD::MUL_LOHI_U24: 4069 return performMulLoHi24Combine(N, DCI); 4070 case ISD::SELECT: 4071 return performSelectCombine(N, DCI); 4072 case ISD::FNEG: 4073 return performFNegCombine(N, DCI); 4074 case ISD::FABS: 4075 return performFAbsCombine(N, DCI); 4076 case AMDGPUISD::BFE_I32: 4077 case AMDGPUISD::BFE_U32: { 4078 assert(!N->getValueType(0).isVector() && 4079 "Vector handling of BFE not implemented"); 4080 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4081 if (!Width) 4082 break; 4083 4084 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4085 if (WidthVal == 0) 4086 return DAG.getConstant(0, DL, MVT::i32); 4087 4088 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4089 if (!Offset) 4090 break; 4091 4092 SDValue BitsFrom = N->getOperand(0); 4093 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4094 4095 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4096 4097 if (OffsetVal == 0) { 4098 // This is already sign / zero extended, so try to fold away extra BFEs. 4099 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4100 4101 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4102 if (OpSignBits >= SignBits) 4103 return BitsFrom; 4104 4105 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4106 if (Signed) { 4107 // This is a sign_extend_inreg. Replace it to take advantage of existing 4108 // DAG Combines. If not eliminated, we will match back to BFE during 4109 // selection. 4110 4111 // TODO: The sext_inreg of extended types ends, although we can could 4112 // handle them in a single BFE. 4113 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4114 DAG.getValueType(SmallVT)); 4115 } 4116 4117 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4118 } 4119 4120 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4121 if (Signed) { 4122 return constantFoldBFE<int32_t>(DAG, 4123 CVal->getSExtValue(), 4124 OffsetVal, 4125 WidthVal, 4126 DL); 4127 } 4128 4129 return constantFoldBFE<uint32_t>(DAG, 4130 CVal->getZExtValue(), 4131 OffsetVal, 4132 WidthVal, 4133 DL); 4134 } 4135 4136 if ((OffsetVal + WidthVal) >= 32 && 4137 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4138 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4139 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4140 BitsFrom, ShiftVal); 4141 } 4142 4143 if (BitsFrom.hasOneUse()) { 4144 APInt Demanded = APInt::getBitsSet(32, 4145 OffsetVal, 4146 OffsetVal + WidthVal); 4147 4148 KnownBits Known; 4149 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4150 !DCI.isBeforeLegalizeOps()); 4151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4152 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4153 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4154 DCI.CommitTargetLoweringOpt(TLO); 4155 } 4156 } 4157 4158 break; 4159 } 4160 case ISD::LOAD: 4161 return performLoadCombine(N, DCI); 4162 case ISD::STORE: 4163 return performStoreCombine(N, DCI); 4164 case AMDGPUISD::RCP: 4165 case AMDGPUISD::RCP_IFLAG: 4166 return performRcpCombine(N, DCI); 4167 case ISD::AssertZext: 4168 case ISD::AssertSext: 4169 return performAssertSZExtCombine(N, DCI); 4170 } 4171 return SDValue(); 4172 } 4173 4174 //===----------------------------------------------------------------------===// 4175 // Helper functions 4176 //===----------------------------------------------------------------------===// 4177 4178 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4179 const TargetRegisterClass *RC, 4180 unsigned Reg, EVT VT, 4181 const SDLoc &SL, 4182 bool RawReg) const { 4183 MachineFunction &MF = DAG.getMachineFunction(); 4184 MachineRegisterInfo &MRI = MF.getRegInfo(); 4185 unsigned VReg; 4186 4187 if (!MRI.isLiveIn(Reg)) { 4188 VReg = MRI.createVirtualRegister(RC); 4189 MRI.addLiveIn(Reg, VReg); 4190 } else { 4191 VReg = MRI.getLiveInVirtReg(Reg); 4192 } 4193 4194 if (RawReg) 4195 return DAG.getRegister(VReg, VT); 4196 4197 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4198 } 4199 4200 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4201 EVT VT, 4202 const SDLoc &SL, 4203 int64_t Offset) const { 4204 MachineFunction &MF = DAG.getMachineFunction(); 4205 MachineFrameInfo &MFI = MF.getFrameInfo(); 4206 4207 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 4208 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4209 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4210 4211 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4212 MachineMemOperand::MODereferenceable | 4213 MachineMemOperand::MOInvariant); 4214 } 4215 4216 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4217 const SDLoc &SL, 4218 SDValue Chain, 4219 SDValue ArgVal, 4220 int64_t Offset) const { 4221 MachineFunction &MF = DAG.getMachineFunction(); 4222 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4223 4224 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4225 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4226 MachineMemOperand::MODereferenceable); 4227 return Store; 4228 } 4229 4230 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4231 const TargetRegisterClass *RC, 4232 EVT VT, const SDLoc &SL, 4233 const ArgDescriptor &Arg) const { 4234 assert(Arg && "Attempting to load missing argument"); 4235 4236 if (Arg.isRegister()) 4237 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); 4238 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4239 } 4240 4241 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4242 const MachineFunction &MF, const ImplicitParameter Param) const { 4243 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4244 const AMDGPUSubtarget &ST = 4245 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4246 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4247 unsigned Alignment = ST.getAlignmentForImplicitArgPtr(); 4248 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4249 ExplicitArgOffset; 4250 switch (Param) { 4251 case GRID_DIM: 4252 return ArgOffset; 4253 case GRID_OFFSET: 4254 return ArgOffset + 4; 4255 } 4256 llvm_unreachable("unexpected implicit parameter type"); 4257 } 4258 4259 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4260 4261 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4262 switch ((AMDGPUISD::NodeType)Opcode) { 4263 case AMDGPUISD::FIRST_NUMBER: break; 4264 // AMDIL DAG nodes 4265 NODE_NAME_CASE(UMUL); 4266 NODE_NAME_CASE(BRANCH_COND); 4267 4268 // AMDGPU DAG nodes 4269 NODE_NAME_CASE(IF) 4270 NODE_NAME_CASE(ELSE) 4271 NODE_NAME_CASE(LOOP) 4272 NODE_NAME_CASE(CALL) 4273 NODE_NAME_CASE(TC_RETURN) 4274 NODE_NAME_CASE(TRAP) 4275 NODE_NAME_CASE(RET_FLAG) 4276 NODE_NAME_CASE(RETURN_TO_EPILOG) 4277 NODE_NAME_CASE(ENDPGM) 4278 NODE_NAME_CASE(DWORDADDR) 4279 NODE_NAME_CASE(FRACT) 4280 NODE_NAME_CASE(SETCC) 4281 NODE_NAME_CASE(SETREG) 4282 NODE_NAME_CASE(FMA_W_CHAIN) 4283 NODE_NAME_CASE(FMUL_W_CHAIN) 4284 NODE_NAME_CASE(CLAMP) 4285 NODE_NAME_CASE(COS_HW) 4286 NODE_NAME_CASE(SIN_HW) 4287 NODE_NAME_CASE(FMAX_LEGACY) 4288 NODE_NAME_CASE(FMIN_LEGACY) 4289 NODE_NAME_CASE(FMAX3) 4290 NODE_NAME_CASE(SMAX3) 4291 NODE_NAME_CASE(UMAX3) 4292 NODE_NAME_CASE(FMIN3) 4293 NODE_NAME_CASE(SMIN3) 4294 NODE_NAME_CASE(UMIN3) 4295 NODE_NAME_CASE(FMED3) 4296 NODE_NAME_CASE(SMED3) 4297 NODE_NAME_CASE(UMED3) 4298 NODE_NAME_CASE(FDOT2) 4299 NODE_NAME_CASE(URECIP) 4300 NODE_NAME_CASE(DIV_SCALE) 4301 NODE_NAME_CASE(DIV_FMAS) 4302 NODE_NAME_CASE(DIV_FIXUP) 4303 NODE_NAME_CASE(FMAD_FTZ) 4304 NODE_NAME_CASE(TRIG_PREOP) 4305 NODE_NAME_CASE(RCP) 4306 NODE_NAME_CASE(RSQ) 4307 NODE_NAME_CASE(RCP_LEGACY) 4308 NODE_NAME_CASE(RSQ_LEGACY) 4309 NODE_NAME_CASE(RCP_IFLAG) 4310 NODE_NAME_CASE(FMUL_LEGACY) 4311 NODE_NAME_CASE(RSQ_CLAMP) 4312 NODE_NAME_CASE(LDEXP) 4313 NODE_NAME_CASE(FP_CLASS) 4314 NODE_NAME_CASE(DOT4) 4315 NODE_NAME_CASE(CARRY) 4316 NODE_NAME_CASE(BORROW) 4317 NODE_NAME_CASE(BFE_U32) 4318 NODE_NAME_CASE(BFE_I32) 4319 NODE_NAME_CASE(BFI) 4320 NODE_NAME_CASE(BFM) 4321 NODE_NAME_CASE(FFBH_U32) 4322 NODE_NAME_CASE(FFBH_I32) 4323 NODE_NAME_CASE(FFBL_B32) 4324 NODE_NAME_CASE(MUL_U24) 4325 NODE_NAME_CASE(MUL_I24) 4326 NODE_NAME_CASE(MULHI_U24) 4327 NODE_NAME_CASE(MULHI_I24) 4328 NODE_NAME_CASE(MUL_LOHI_U24) 4329 NODE_NAME_CASE(MUL_LOHI_I24) 4330 NODE_NAME_CASE(MAD_U24) 4331 NODE_NAME_CASE(MAD_I24) 4332 NODE_NAME_CASE(MAD_I64_I32) 4333 NODE_NAME_CASE(MAD_U64_U32) 4334 NODE_NAME_CASE(PERM) 4335 NODE_NAME_CASE(TEXTURE_FETCH) 4336 NODE_NAME_CASE(EXPORT) 4337 NODE_NAME_CASE(EXPORT_DONE) 4338 NODE_NAME_CASE(R600_EXPORT) 4339 NODE_NAME_CASE(CONST_ADDRESS) 4340 NODE_NAME_CASE(REGISTER_LOAD) 4341 NODE_NAME_CASE(REGISTER_STORE) 4342 NODE_NAME_CASE(SAMPLE) 4343 NODE_NAME_CASE(SAMPLEB) 4344 NODE_NAME_CASE(SAMPLED) 4345 NODE_NAME_CASE(SAMPLEL) 4346 NODE_NAME_CASE(CVT_F32_UBYTE0) 4347 NODE_NAME_CASE(CVT_F32_UBYTE1) 4348 NODE_NAME_CASE(CVT_F32_UBYTE2) 4349 NODE_NAME_CASE(CVT_F32_UBYTE3) 4350 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4351 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4352 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4353 NODE_NAME_CASE(CVT_PK_I16_I32) 4354 NODE_NAME_CASE(CVT_PK_U16_U32) 4355 NODE_NAME_CASE(FP_TO_FP16) 4356 NODE_NAME_CASE(FP16_ZEXT) 4357 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4358 NODE_NAME_CASE(CONST_DATA_PTR) 4359 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4360 NODE_NAME_CASE(LDS) 4361 NODE_NAME_CASE(KILL) 4362 NODE_NAME_CASE(DUMMY_CHAIN) 4363 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4364 NODE_NAME_CASE(INIT_EXEC) 4365 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 4366 NODE_NAME_CASE(SENDMSG) 4367 NODE_NAME_CASE(SENDMSGHALT) 4368 NODE_NAME_CASE(INTERP_MOV) 4369 NODE_NAME_CASE(INTERP_P1) 4370 NODE_NAME_CASE(INTERP_P2) 4371 NODE_NAME_CASE(INTERP_P1LL_F16) 4372 NODE_NAME_CASE(INTERP_P1LV_F16) 4373 NODE_NAME_CASE(INTERP_P2_F16) 4374 NODE_NAME_CASE(LOAD_D16_HI) 4375 NODE_NAME_CASE(LOAD_D16_LO) 4376 NODE_NAME_CASE(LOAD_D16_HI_I8) 4377 NODE_NAME_CASE(LOAD_D16_HI_U8) 4378 NODE_NAME_CASE(LOAD_D16_LO_I8) 4379 NODE_NAME_CASE(LOAD_D16_LO_U8) 4380 NODE_NAME_CASE(STORE_MSKOR) 4381 NODE_NAME_CASE(LOAD_CONSTANT) 4382 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4383 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4384 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4385 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4386 NODE_NAME_CASE(DS_ORDERED_COUNT) 4387 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4388 NODE_NAME_CASE(ATOMIC_INC) 4389 NODE_NAME_CASE(ATOMIC_DEC) 4390 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4391 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4392 NODE_NAME_CASE(BUFFER_LOAD) 4393 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4394 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4395 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4396 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4397 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4398 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4399 NODE_NAME_CASE(SBUFFER_LOAD) 4400 NODE_NAME_CASE(BUFFER_STORE) 4401 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4402 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4403 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4404 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4405 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4406 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4407 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4408 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4409 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4410 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4411 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4412 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4413 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4414 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4415 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4416 4417 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4418 } 4419 return nullptr; 4420 } 4421 4422 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4423 SelectionDAG &DAG, int Enabled, 4424 int &RefinementSteps, 4425 bool &UseOneConstNR, 4426 bool Reciprocal) const { 4427 EVT VT = Operand.getValueType(); 4428 4429 if (VT == MVT::f32) { 4430 RefinementSteps = 0; 4431 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4432 } 4433 4434 // TODO: There is also f64 rsq instruction, but the documentation is less 4435 // clear on its precision. 4436 4437 return SDValue(); 4438 } 4439 4440 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4441 SelectionDAG &DAG, int Enabled, 4442 int &RefinementSteps) const { 4443 EVT VT = Operand.getValueType(); 4444 4445 if (VT == MVT::f32) { 4446 // Reciprocal, < 1 ulp error. 4447 // 4448 // This reciprocal approximation converges to < 0.5 ulp error with one 4449 // newton rhapson performed with two fused multiple adds (FMAs). 4450 4451 RefinementSteps = 0; 4452 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4453 } 4454 4455 // TODO: There is also f64 rcp instruction, but the documentation is less 4456 // clear on its precision. 4457 4458 return SDValue(); 4459 } 4460 4461 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4462 const SDValue Op, KnownBits &Known, 4463 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4464 4465 Known.resetAll(); // Don't know anything. 4466 4467 unsigned Opc = Op.getOpcode(); 4468 4469 switch (Opc) { 4470 default: 4471 break; 4472 case AMDGPUISD::CARRY: 4473 case AMDGPUISD::BORROW: { 4474 Known.Zero = APInt::getHighBitsSet(32, 31); 4475 break; 4476 } 4477 4478 case AMDGPUISD::BFE_I32: 4479 case AMDGPUISD::BFE_U32: { 4480 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4481 if (!CWidth) 4482 return; 4483 4484 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4485 4486 if (Opc == AMDGPUISD::BFE_U32) 4487 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4488 4489 break; 4490 } 4491 case AMDGPUISD::FP_TO_FP16: 4492 case AMDGPUISD::FP16_ZEXT: { 4493 unsigned BitWidth = Known.getBitWidth(); 4494 4495 // High bits are zero. 4496 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4497 break; 4498 } 4499 case AMDGPUISD::MUL_U24: 4500 case AMDGPUISD::MUL_I24: { 4501 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4502 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4503 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4504 RHSKnown.countMinTrailingZeros(); 4505 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4506 4507 // Truncate to 24 bits. 4508 LHSKnown = LHSKnown.trunc(24); 4509 RHSKnown = RHSKnown.trunc(24); 4510 4511 bool Negative = false; 4512 if (Opc == AMDGPUISD::MUL_I24) { 4513 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4514 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4515 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4516 if (MaxValBits >= 32) 4517 break; 4518 bool LHSNegative = LHSKnown.isNegative(); 4519 bool LHSPositive = LHSKnown.isNonNegative(); 4520 bool RHSNegative = RHSKnown.isNegative(); 4521 bool RHSPositive = RHSKnown.isNonNegative(); 4522 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4523 break; 4524 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4525 if (Negative) 4526 Known.One.setHighBits(32 - MaxValBits); 4527 else 4528 Known.Zero.setHighBits(32 - MaxValBits); 4529 } else { 4530 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4531 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4532 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4533 if (MaxValBits >= 32) 4534 break; 4535 Known.Zero.setHighBits(32 - MaxValBits); 4536 } 4537 break; 4538 } 4539 case AMDGPUISD::PERM: { 4540 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4541 if (!CMask) 4542 return; 4543 4544 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4545 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4546 unsigned Sel = CMask->getZExtValue(); 4547 4548 for (unsigned I = 0; I < 32; I += 8) { 4549 unsigned SelBits = Sel & 0xff; 4550 if (SelBits < 4) { 4551 SelBits *= 8; 4552 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4553 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4554 } else if (SelBits < 7) { 4555 SelBits = (SelBits & 3) * 8; 4556 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4557 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4558 } else if (SelBits == 0x0c) { 4559 Known.Zero |= 0xff << I; 4560 } else if (SelBits > 0x0c) { 4561 Known.One |= 0xff << I; 4562 } 4563 Sel >>= 8; 4564 } 4565 break; 4566 } 4567 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4568 Known.Zero.setHighBits(24); 4569 break; 4570 } 4571 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4572 Known.Zero.setHighBits(16); 4573 break; 4574 } 4575 case AMDGPUISD::LDS: { 4576 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4577 unsigned Align = GA->getGlobal()->getAlignment(); 4578 4579 Known.Zero.setHighBits(16); 4580 if (Align) 4581 Known.Zero.setLowBits(Log2_32(Align)); 4582 break; 4583 } 4584 case ISD::INTRINSIC_WO_CHAIN: { 4585 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4586 switch (IID) { 4587 case Intrinsic::amdgcn_mbcnt_lo: 4588 case Intrinsic::amdgcn_mbcnt_hi: { 4589 const GCNSubtarget &ST = 4590 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4591 // These return at most the wavefront size - 1. 4592 unsigned Size = Op.getValueType().getSizeInBits(); 4593 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4594 break; 4595 } 4596 default: 4597 break; 4598 } 4599 } 4600 } 4601 } 4602 4603 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4604 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4605 unsigned Depth) const { 4606 switch (Op.getOpcode()) { 4607 case AMDGPUISD::BFE_I32: { 4608 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4609 if (!Width) 4610 return 1; 4611 4612 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4613 if (!isNullConstant(Op.getOperand(1))) 4614 return SignBits; 4615 4616 // TODO: Could probably figure something out with non-0 offsets. 4617 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4618 return std::max(SignBits, Op0SignBits); 4619 } 4620 4621 case AMDGPUISD::BFE_U32: { 4622 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4623 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4624 } 4625 4626 case AMDGPUISD::CARRY: 4627 case AMDGPUISD::BORROW: 4628 return 31; 4629 case AMDGPUISD::BUFFER_LOAD_BYTE: 4630 return 25; 4631 case AMDGPUISD::BUFFER_LOAD_SHORT: 4632 return 17; 4633 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4634 return 24; 4635 case AMDGPUISD::BUFFER_LOAD_USHORT: 4636 return 16; 4637 case AMDGPUISD::FP_TO_FP16: 4638 case AMDGPUISD::FP16_ZEXT: 4639 return 16; 4640 default: 4641 return 1; 4642 } 4643 } 4644 4645 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4646 const SelectionDAG &DAG, 4647 bool SNaN, 4648 unsigned Depth) const { 4649 unsigned Opcode = Op.getOpcode(); 4650 switch (Opcode) { 4651 case AMDGPUISD::FMIN_LEGACY: 4652 case AMDGPUISD::FMAX_LEGACY: { 4653 if (SNaN) 4654 return true; 4655 4656 // TODO: Can check no nans on one of the operands for each one, but which 4657 // one? 4658 return false; 4659 } 4660 case AMDGPUISD::FMUL_LEGACY: 4661 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4662 if (SNaN) 4663 return true; 4664 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4665 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4666 } 4667 case AMDGPUISD::FMED3: 4668 case AMDGPUISD::FMIN3: 4669 case AMDGPUISD::FMAX3: 4670 case AMDGPUISD::FMAD_FTZ: { 4671 if (SNaN) 4672 return true; 4673 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4674 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4675 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4676 } 4677 case AMDGPUISD::CVT_F32_UBYTE0: 4678 case AMDGPUISD::CVT_F32_UBYTE1: 4679 case AMDGPUISD::CVT_F32_UBYTE2: 4680 case AMDGPUISD::CVT_F32_UBYTE3: 4681 return true; 4682 4683 case AMDGPUISD::RCP: 4684 case AMDGPUISD::RSQ: 4685 case AMDGPUISD::RCP_LEGACY: 4686 case AMDGPUISD::RSQ_LEGACY: 4687 case AMDGPUISD::RSQ_CLAMP: { 4688 if (SNaN) 4689 return true; 4690 4691 // TODO: Need is known positive check. 4692 return false; 4693 } 4694 case AMDGPUISD::LDEXP: 4695 case AMDGPUISD::FRACT: { 4696 if (SNaN) 4697 return true; 4698 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4699 } 4700 case AMDGPUISD::DIV_SCALE: 4701 case AMDGPUISD::DIV_FMAS: 4702 case AMDGPUISD::DIV_FIXUP: 4703 case AMDGPUISD::TRIG_PREOP: 4704 // TODO: Refine on operands. 4705 return SNaN; 4706 case AMDGPUISD::SIN_HW: 4707 case AMDGPUISD::COS_HW: { 4708 // TODO: Need check for infinity 4709 return SNaN; 4710 } 4711 case ISD::INTRINSIC_WO_CHAIN: { 4712 unsigned IntrinsicID 4713 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4714 // TODO: Handle more intrinsics 4715 switch (IntrinsicID) { 4716 case Intrinsic::amdgcn_cubeid: 4717 return true; 4718 4719 case Intrinsic::amdgcn_frexp_mant: { 4720 if (SNaN) 4721 return true; 4722 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4723 } 4724 case Intrinsic::amdgcn_cvt_pkrtz: { 4725 if (SNaN) 4726 return true; 4727 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4728 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4729 } 4730 case Intrinsic::amdgcn_fdot2: 4731 // TODO: Refine on operand 4732 return SNaN; 4733 default: 4734 return false; 4735 } 4736 } 4737 default: 4738 return false; 4739 } 4740 } 4741 4742 TargetLowering::AtomicExpansionKind 4743 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4744 switch (RMW->getOperation()) { 4745 case AtomicRMWInst::Nand: 4746 case AtomicRMWInst::FAdd: 4747 case AtomicRMWInst::FSub: 4748 return AtomicExpansionKind::CmpXChg; 4749 default: 4750 return AtomicExpansionKind::None; 4751 } 4752 } 4753