1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "SIInstrInfo.h" 32 using namespace llvm; 33 34 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), 38 ArgFlags.getOrigAlign()); 39 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 40 41 return true; 42 } 43 44 #include "AMDGPUGenCallingConv.inc" 45 46 // Find a larger type to do a load / store of a vector with. 47 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 48 unsigned StoreSize = VT.getStoreSizeInBits(); 49 if (StoreSize <= 32) 50 return EVT::getIntegerVT(Ctx, StoreSize); 51 52 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 53 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 54 } 55 56 // Type for a vector that will be loaded to. 57 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 58 unsigned StoreSize = VT.getStoreSizeInBits(); 59 if (StoreSize <= 32) 60 return EVT::getIntegerVT(Ctx, 32); 61 62 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 setOperationAction(ISD::Constant, MVT::i32, Legal); 69 setOperationAction(ISD::Constant, MVT::i64, Legal); 70 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 71 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 72 73 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 74 setOperationAction(ISD::BRIND, MVT::Other, Expand); 75 76 // This is totally unsupported, just custom lower to produce an error. 77 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 78 79 // We need to custom lower some of the intrinsics 80 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 81 82 // Library functions. These default to Expand, but we have instructions 83 // for them. 84 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 85 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 86 setOperationAction(ISD::FPOW, MVT::f32, Legal); 87 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 88 setOperationAction(ISD::FABS, MVT::f32, Legal); 89 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 90 setOperationAction(ISD::FRINT, MVT::f32, Legal); 91 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 92 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 93 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 94 95 setOperationAction(ISD::FROUND, MVT::f32, Custom); 96 setOperationAction(ISD::FROUND, MVT::f64, Custom); 97 98 setOperationAction(ISD::FREM, MVT::f32, Custom); 99 setOperationAction(ISD::FREM, MVT::f64, Custom); 100 101 // v_mad_f32 does not support denormals according to some sources. 102 if (!Subtarget->hasFP32Denormals()) 103 setOperationAction(ISD::FMAD, MVT::f32, Legal); 104 105 // Expand to fneg + fadd. 106 setOperationAction(ISD::FSUB, MVT::f64, Expand); 107 108 // Lower floating point store/load to integer store/load to reduce the number 109 // of patterns in tablegen. 110 setOperationAction(ISD::STORE, MVT::f32, Promote); 111 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 112 113 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 114 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 115 116 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 117 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 118 119 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 120 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 121 122 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 123 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 124 125 setOperationAction(ISD::STORE, MVT::f64, Promote); 126 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64); 127 128 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 129 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64); 130 131 // Custom lowering of vector stores is required for local address space 132 // stores. 133 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 134 135 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 136 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 137 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 138 139 // XXX: This can be change to Custom, once ExpandVectorStores can 140 // handle 64-bit stores. 141 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 142 143 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 144 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 145 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 146 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 147 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand); 148 149 150 setOperationAction(ISD::LOAD, MVT::f32, Promote); 151 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 152 153 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 155 156 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 158 159 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 161 162 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 164 165 setOperationAction(ISD::LOAD, MVT::f64, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64); 167 168 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64); 170 171 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 172 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 173 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 174 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 175 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 176 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 177 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 178 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 179 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 180 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 181 182 // There are no 64-bit extloads. These should be done as a 32-bit extload and 183 // an extension to 64-bit. 184 for (MVT VT : MVT::integer_valuetypes()) { 185 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 186 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 187 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 188 } 189 190 for (MVT VT : MVT::integer_vector_valuetypes()) { 191 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 193 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 194 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 195 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 196 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 197 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 198 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 199 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 200 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 201 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 202 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 203 } 204 205 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 206 207 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 208 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 209 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 210 setOperationAction(ISD::FRINT, MVT::f64, Custom); 211 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 212 } 213 214 if (!Subtarget->hasBFI()) { 215 // fcopysign can be done in a single instruction with BFI. 216 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 217 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 218 } 219 220 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 221 222 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 223 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 226 227 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 228 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 231 232 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 233 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 234 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 235 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 236 237 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 238 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 239 240 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 241 for (MVT VT : ScalarIntVTs) { 242 setOperationAction(ISD::SREM, VT, Expand); 243 setOperationAction(ISD::SDIV, VT, Expand); 244 245 // GPU does not have divrem function for signed or unsigned. 246 setOperationAction(ISD::SDIVREM, VT, Custom); 247 setOperationAction(ISD::UDIVREM, VT, Custom); 248 249 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 250 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 251 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 252 253 setOperationAction(ISD::BSWAP, VT, Expand); 254 setOperationAction(ISD::CTTZ, VT, Expand); 255 setOperationAction(ISD::CTLZ, VT, Expand); 256 } 257 258 if (!Subtarget->hasBCNT(32)) 259 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 260 261 if (!Subtarget->hasBCNT(64)) 262 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 263 264 // The hardware supports 32-bit ROTR, but not ROTL. 265 setOperationAction(ISD::ROTL, MVT::i32, Expand); 266 setOperationAction(ISD::ROTL, MVT::i64, Expand); 267 setOperationAction(ISD::ROTR, MVT::i64, Expand); 268 269 setOperationAction(ISD::MUL, MVT::i64, Expand); 270 setOperationAction(ISD::MULHU, MVT::i64, Expand); 271 setOperationAction(ISD::MULHS, MVT::i64, Expand); 272 setOperationAction(ISD::UDIV, MVT::i32, Expand); 273 setOperationAction(ISD::UREM, MVT::i32, Expand); 274 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 275 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 276 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 277 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 278 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 279 280 setOperationAction(ISD::SMIN, MVT::i32, Legal); 281 setOperationAction(ISD::UMIN, MVT::i32, Legal); 282 setOperationAction(ISD::SMAX, MVT::i32, Legal); 283 setOperationAction(ISD::UMAX, MVT::i32, Legal); 284 285 if (Subtarget->hasFFBH()) 286 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 287 else 288 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 289 290 if (!Subtarget->hasFFBL()) 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 292 293 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 294 295 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 296 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 297 298 static const MVT::SimpleValueType VectorIntTypes[] = { 299 MVT::v2i32, MVT::v4i32 300 }; 301 302 for (MVT VT : VectorIntTypes) { 303 // Expand the following operations for the current type by default. 304 setOperationAction(ISD::ADD, VT, Expand); 305 setOperationAction(ISD::AND, VT, Expand); 306 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 307 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 308 setOperationAction(ISD::MUL, VT, Expand); 309 setOperationAction(ISD::OR, VT, Expand); 310 setOperationAction(ISD::SHL, VT, Expand); 311 setOperationAction(ISD::SRA, VT, Expand); 312 setOperationAction(ISD::SRL, VT, Expand); 313 setOperationAction(ISD::ROTL, VT, Expand); 314 setOperationAction(ISD::ROTR, VT, Expand); 315 setOperationAction(ISD::SUB, VT, Expand); 316 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 317 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 318 setOperationAction(ISD::SDIV, VT, Expand); 319 setOperationAction(ISD::UDIV, VT, Expand); 320 setOperationAction(ISD::SREM, VT, Expand); 321 setOperationAction(ISD::UREM, VT, Expand); 322 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 323 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 324 setOperationAction(ISD::SDIVREM, VT, Custom); 325 setOperationAction(ISD::UDIVREM, VT, Expand); 326 setOperationAction(ISD::ADDC, VT, Expand); 327 setOperationAction(ISD::SUBC, VT, Expand); 328 setOperationAction(ISD::ADDE, VT, Expand); 329 setOperationAction(ISD::SUBE, VT, Expand); 330 setOperationAction(ISD::SELECT, VT, Expand); 331 setOperationAction(ISD::VSELECT, VT, Expand); 332 setOperationAction(ISD::SELECT_CC, VT, Expand); 333 setOperationAction(ISD::XOR, VT, Expand); 334 setOperationAction(ISD::BSWAP, VT, Expand); 335 setOperationAction(ISD::CTPOP, VT, Expand); 336 setOperationAction(ISD::CTTZ, VT, Expand); 337 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 338 setOperationAction(ISD::CTLZ, VT, Expand); 339 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 340 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 341 } 342 343 static const MVT::SimpleValueType FloatVectorTypes[] = { 344 MVT::v2f32, MVT::v4f32 345 }; 346 347 for (MVT VT : FloatVectorTypes) { 348 setOperationAction(ISD::FABS, VT, Expand); 349 setOperationAction(ISD::FMINNUM, VT, Expand); 350 setOperationAction(ISD::FMAXNUM, VT, Expand); 351 setOperationAction(ISD::FADD, VT, Expand); 352 setOperationAction(ISD::FCEIL, VT, Expand); 353 setOperationAction(ISD::FCOS, VT, Expand); 354 setOperationAction(ISD::FDIV, VT, Expand); 355 setOperationAction(ISD::FEXP2, VT, Expand); 356 setOperationAction(ISD::FLOG2, VT, Expand); 357 setOperationAction(ISD::FREM, VT, Expand); 358 setOperationAction(ISD::FPOW, VT, Expand); 359 setOperationAction(ISD::FFLOOR, VT, Expand); 360 setOperationAction(ISD::FTRUNC, VT, Expand); 361 setOperationAction(ISD::FMUL, VT, Expand); 362 setOperationAction(ISD::FMA, VT, Expand); 363 setOperationAction(ISD::FRINT, VT, Expand); 364 setOperationAction(ISD::FNEARBYINT, VT, Expand); 365 setOperationAction(ISD::FSQRT, VT, Expand); 366 setOperationAction(ISD::FSIN, VT, Expand); 367 setOperationAction(ISD::FSUB, VT, Expand); 368 setOperationAction(ISD::FNEG, VT, Expand); 369 setOperationAction(ISD::SELECT, VT, Expand); 370 setOperationAction(ISD::VSELECT, VT, Expand); 371 setOperationAction(ISD::SELECT_CC, VT, Expand); 372 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 373 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 374 } 375 376 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 377 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 378 379 setTargetDAGCombine(ISD::AND); 380 setTargetDAGCombine(ISD::SHL); 381 setTargetDAGCombine(ISD::SRA); 382 setTargetDAGCombine(ISD::SRL); 383 setTargetDAGCombine(ISD::MUL); 384 setTargetDAGCombine(ISD::SELECT); 385 setTargetDAGCombine(ISD::SELECT_CC); 386 setTargetDAGCombine(ISD::STORE); 387 388 setTargetDAGCombine(ISD::FADD); 389 setTargetDAGCombine(ISD::FSUB); 390 391 setBooleanContents(ZeroOrNegativeOneBooleanContent); 392 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 393 394 setSchedulingPreference(Sched::RegPressure); 395 setJumpIsExpensive(true); 396 397 // SI at least has hardware support for floating point exceptions, but no way 398 // of using or handling them is implemented. They are also optional in OpenCL 399 // (Section 7.3) 400 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 401 402 setSelectIsExpensive(false); 403 PredictableSelectIsExpensive = false; 404 405 setFsqrtIsCheap(true); 406 407 // We want to find all load dependencies for long chains of stores to enable 408 // merging into very wide vectors. The problem is with vectors with > 4 409 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 410 // vectors are a legal type, even though we have to split the loads 411 // usually. When we can more precisely specify load legality per address 412 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 413 // smarter so that they can figure out what to do in 2 iterations without all 414 // N > 4 stores on the same chain. 415 GatherAllAliasesMaxDepth = 16; 416 417 // FIXME: Need to really handle these. 418 MaxStoresPerMemcpy = 4096; 419 MaxStoresPerMemmove = 4096; 420 MaxStoresPerMemset = 4096; 421 } 422 423 //===----------------------------------------------------------------------===// 424 // Target Information 425 //===----------------------------------------------------------------------===// 426 427 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 428 return MVT::i32; 429 } 430 431 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 432 return true; 433 } 434 435 // The backend supports 32 and 64 bit floating point immediates. 436 // FIXME: Why are we reporting vectors of FP immediates as legal? 437 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 438 EVT ScalarVT = VT.getScalarType(); 439 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 440 } 441 442 // We don't want to shrink f64 / f32 constants. 443 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 444 EVT ScalarVT = VT.getScalarType(); 445 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 446 } 447 448 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 449 ISD::LoadExtType, 450 EVT NewVT) const { 451 452 unsigned NewSize = NewVT.getStoreSizeInBits(); 453 454 // If we are reducing to a 32-bit load, this is always better. 455 if (NewSize == 32) 456 return true; 457 458 EVT OldVT = N->getValueType(0); 459 unsigned OldSize = OldVT.getStoreSizeInBits(); 460 461 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 462 // extloads, so doing one requires using a buffer_load. In cases where we 463 // still couldn't use a scalar load, using the wider load shouldn't really 464 // hurt anything. 465 466 // If the old size already had to be an extload, there's no harm in continuing 467 // to reduce the width. 468 return (OldSize < 32); 469 } 470 471 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 472 EVT CastTy) const { 473 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 474 return true; 475 476 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 477 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 478 479 return ((LScalarSize <= CastScalarSize) || 480 (CastScalarSize >= 32) || 481 (LScalarSize < 32)); 482 } 483 484 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 485 // profitable with the expansion for 64-bit since it's generally good to 486 // speculate things. 487 // FIXME: These should really have the size as a parameter. 488 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 489 return true; 490 } 491 492 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 493 return true; 494 } 495 496 //===---------------------------------------------------------------------===// 497 // Target Properties 498 //===---------------------------------------------------------------------===// 499 500 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 501 assert(VT.isFloatingPoint()); 502 return VT == MVT::f32 || VT == MVT::f64; 503 } 504 505 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 506 assert(VT.isFloatingPoint()); 507 return VT == MVT::f32 || VT == MVT::f64; 508 } 509 510 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 511 unsigned NumElem, 512 unsigned AS) const { 513 return true; 514 } 515 516 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 517 // There are few operations which truly have vector input operands. Any vector 518 // operation is going to involve operations on each component, and a 519 // build_vector will be a copy per element, so it always makes sense to use a 520 // build_vector input in place of the extracted element to avoid a copy into a 521 // super register. 522 // 523 // We should probably only do this if all users are extracts only, but this 524 // should be the common case. 525 return true; 526 } 527 528 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 529 // Truncate is just accessing a subregister. 530 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 531 } 532 533 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 534 // Truncate is just accessing a subregister. 535 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 536 (Dest->getPrimitiveSizeInBits() % 32 == 0); 537 } 538 539 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 540 unsigned SrcSize = Src->getScalarSizeInBits(); 541 unsigned DestSize = Dest->getScalarSizeInBits(); 542 543 return SrcSize == 32 && DestSize == 64; 544 } 545 546 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 547 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 548 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 549 // this will enable reducing 64-bit operations the 32-bit, which is always 550 // good. 551 return Src == MVT::i32 && Dest == MVT::i64; 552 } 553 554 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 555 return isZExtFree(Val.getValueType(), VT2); 556 } 557 558 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 559 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 560 // limited number of native 64-bit operations. Shrinking an operation to fit 561 // in a single 32-bit register should always be helpful. As currently used, 562 // this is much less general than the name suggests, and is only used in 563 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 564 // not profitable, and may actually be harmful. 565 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 566 } 567 568 //===---------------------------------------------------------------------===// 569 // TargetLowering Callbacks 570 //===---------------------------------------------------------------------===// 571 572 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 573 const SmallVectorImpl<ISD::InputArg> &Ins) const { 574 575 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 576 } 577 578 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 579 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 580 581 State.AnalyzeReturn(Outs, RetCC_SI); 582 } 583 584 SDValue AMDGPUTargetLowering::LowerReturn( 585 SDValue Chain, 586 CallingConv::ID CallConv, 587 bool isVarArg, 588 const SmallVectorImpl<ISD::OutputArg> &Outs, 589 const SmallVectorImpl<SDValue> &OutVals, 590 SDLoc DL, SelectionDAG &DAG) const { 591 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 592 } 593 594 //===---------------------------------------------------------------------===// 595 // Target specific lowering 596 //===---------------------------------------------------------------------===// 597 598 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 599 SmallVectorImpl<SDValue> &InVals) const { 600 SDValue Callee = CLI.Callee; 601 SelectionDAG &DAG = CLI.DAG; 602 603 const Function &Fn = *DAG.getMachineFunction().getFunction(); 604 605 StringRef FuncName("<unknown>"); 606 607 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 608 FuncName = G->getSymbol(); 609 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 610 FuncName = G->getGlobal()->getName(); 611 612 DiagnosticInfoUnsupported NoCalls( 613 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 614 DAG.getContext()->diagnose(NoCalls); 615 return SDValue(); 616 } 617 618 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 619 SelectionDAG &DAG) const { 620 const Function &Fn = *DAG.getMachineFunction().getFunction(); 621 622 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 623 SDLoc(Op).getDebugLoc()); 624 DAG.getContext()->diagnose(NoDynamicAlloca); 625 return SDValue(); 626 } 627 628 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 629 SelectionDAG &DAG) const { 630 switch (Op.getOpcode()) { 631 default: 632 Op.getNode()->dump(); 633 llvm_unreachable("Custom lowering code for this" 634 "instruction is not implemented yet!"); 635 break; 636 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 637 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 638 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 639 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); 640 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 641 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 642 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 643 case ISD::FREM: return LowerFREM(Op, DAG); 644 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 645 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 646 case ISD::FRINT: return LowerFRINT(Op, DAG); 647 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 648 case ISD::FROUND: return LowerFROUND(Op, DAG); 649 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 650 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 651 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 652 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 653 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 654 case ISD::CTLZ: 655 case ISD::CTLZ_ZERO_UNDEF: 656 return LowerCTLZ(Op, DAG); 657 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 658 } 659 return Op; 660 } 661 662 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 663 SmallVectorImpl<SDValue> &Results, 664 SelectionDAG &DAG) const { 665 switch (N->getOpcode()) { 666 case ISD::SIGN_EXTEND_INREG: 667 // Different parts of legalization seem to interpret which type of 668 // sign_extend_inreg is the one to check for custom lowering. The extended 669 // from type is what really matters, but some places check for custom 670 // lowering of the result type. This results in trying to use 671 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 672 // nothing here and let the illegal result integer be handled normally. 673 return; 674 case ISD::LOAD: { 675 SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode(); 676 if (!Node) 677 return; 678 679 Results.push_back(SDValue(Node, 0)); 680 Results.push_back(SDValue(Node, 1)); 681 // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode 682 // function 683 DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1)); 684 return; 685 } 686 case ISD::STORE: { 687 SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG); 688 if (Lowered.getNode()) 689 Results.push_back(Lowered); 690 return; 691 } 692 default: 693 return; 694 } 695 } 696 697 // FIXME: This implements accesses to initialized globals in the constant 698 // address space by copying them to private and accessing that. It does not 699 // properly handle illegal types or vectors. The private vector loads are not 700 // scalarized, and the illegal scalars hit an assertion. This technique will not 701 // work well with large initializers, and this should eventually be 702 // removed. Initialized globals should be placed into a data section that the 703 // runtime will load into a buffer before the kernel is executed. Uses of the 704 // global need to be replaced with a pointer loaded from an implicit kernel 705 // argument into this buffer holding the copy of the data, which will remove the 706 // need for any of this. 707 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 708 const GlobalValue *GV, 709 const SDValue &InitPtr, 710 SDValue Chain, 711 SelectionDAG &DAG) const { 712 const DataLayout &TD = DAG.getDataLayout(); 713 SDLoc DL(InitPtr); 714 Type *InitTy = Init->getType(); 715 716 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 717 EVT VT = EVT::getEVT(InitTy); 718 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 719 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 720 MachinePointerInfo(UndefValue::get(PtrTy)), false, 721 false, TD.getPrefTypeAlignment(InitTy)); 722 } 723 724 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 725 EVT VT = EVT::getEVT(CFP->getType()); 726 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 727 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 728 MachinePointerInfo(UndefValue::get(PtrTy)), false, 729 false, TD.getPrefTypeAlignment(CFP->getType())); 730 } 731 732 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 733 const StructLayout *SL = TD.getStructLayout(ST); 734 735 EVT PtrVT = InitPtr.getValueType(); 736 SmallVector<SDValue, 8> Chains; 737 738 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 739 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 740 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 741 742 Constant *Elt = Init->getAggregateElement(I); 743 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 744 } 745 746 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 747 } 748 749 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 750 EVT PtrVT = InitPtr.getValueType(); 751 752 unsigned NumElements; 753 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 754 NumElements = AT->getNumElements(); 755 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 756 NumElements = VT->getNumElements(); 757 else 758 llvm_unreachable("Unexpected type"); 759 760 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 761 SmallVector<SDValue, 8> Chains; 762 for (unsigned i = 0; i < NumElements; ++i) { 763 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 764 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 765 766 Constant *Elt = Init->getAggregateElement(i); 767 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 768 } 769 770 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 771 } 772 773 if (isa<UndefValue>(Init)) { 774 EVT VT = EVT::getEVT(InitTy); 775 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 776 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 777 MachinePointerInfo(UndefValue::get(PtrTy)), false, 778 false, TD.getPrefTypeAlignment(InitTy)); 779 } 780 781 Init->dump(); 782 llvm_unreachable("Unhandled constant initializer"); 783 } 784 785 static bool hasDefinedInitializer(const GlobalValue *GV) { 786 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 787 if (!GVar || !GVar->hasInitializer()) 788 return false; 789 790 if (isa<UndefValue>(GVar->getInitializer())) 791 return false; 792 793 return true; 794 } 795 796 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 797 SDValue Op, 798 SelectionDAG &DAG) const { 799 800 const DataLayout &DL = DAG.getDataLayout(); 801 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 802 const GlobalValue *GV = G->getGlobal(); 803 804 switch (G->getAddressSpace()) { 805 case AMDGPUAS::LOCAL_ADDRESS: { 806 // XXX: What does the value of G->getOffset() mean? 807 assert(G->getOffset() == 0 && 808 "Do not know what to do with an non-zero offset"); 809 810 // TODO: We could emit code to handle the initialization somewhere. 811 if (hasDefinedInitializer(GV)) 812 break; 813 814 unsigned Offset; 815 if (MFI->LocalMemoryObjects.count(GV) == 0) { 816 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 817 Offset = MFI->LDSSize; 818 MFI->LocalMemoryObjects[GV] = Offset; 819 // XXX: Account for alignment? 820 MFI->LDSSize += Size; 821 } else { 822 Offset = MFI->LocalMemoryObjects[GV]; 823 } 824 825 return DAG.getConstant(Offset, SDLoc(Op), 826 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 827 } 828 case AMDGPUAS::CONSTANT_ADDRESS: { 829 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 830 Type *EltType = GV->getValueType(); 831 unsigned Size = DL.getTypeAllocSize(EltType); 832 unsigned Alignment = DL.getPrefTypeAlignment(EltType); 833 834 MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS); 835 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 836 837 int FI = FrameInfo->CreateStackObject(Size, Alignment, false); 838 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT); 839 840 const GlobalVariable *Var = cast<GlobalVariable>(GV); 841 if (!Var->hasInitializer()) { 842 // This has no use, but bugpoint will hit it. 843 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 844 } 845 846 const Constant *Init = Var->getInitializer(); 847 SmallVector<SDNode*, 8> WorkList; 848 849 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(), 850 E = DAG.getEntryNode()->use_end(); I != E; ++I) { 851 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD) 852 continue; 853 WorkList.push_back(*I); 854 } 855 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG); 856 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(), 857 E = WorkList.end(); I != E; ++I) { 858 SmallVector<SDValue, 8> Ops; 859 Ops.push_back(Chain); 860 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) { 861 Ops.push_back((*I)->getOperand(i)); 862 } 863 DAG.UpdateNodeOperands(*I, Ops); 864 } 865 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 866 } 867 } 868 869 const Function &Fn = *DAG.getMachineFunction().getFunction(); 870 DiagnosticInfoUnsupported BadInit( 871 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 872 DAG.getContext()->diagnose(BadInit); 873 return SDValue(); 874 } 875 876 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 877 SelectionDAG &DAG) const { 878 SmallVector<SDValue, 8> Args; 879 880 for (const SDUse &U : Op->ops()) 881 DAG.ExtractVectorElements(U.get(), Args); 882 883 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 884 } 885 886 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 887 SelectionDAG &DAG) const { 888 889 SmallVector<SDValue, 8> Args; 890 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 891 EVT VT = Op.getValueType(); 892 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 893 VT.getVectorNumElements()); 894 895 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 896 } 897 898 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op, 899 SelectionDAG &DAG) const { 900 901 MachineFunction &MF = DAG.getMachineFunction(); 902 const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering(); 903 904 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 905 906 unsigned FrameIndex = FIN->getIndex(); 907 unsigned IgnoredFrameReg; 908 unsigned Offset = 909 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); 910 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), 911 Op.getValueType()); 912 } 913 914 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 915 SelectionDAG &DAG) const { 916 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 917 SDLoc DL(Op); 918 EVT VT = Op.getValueType(); 919 920 switch (IntrinsicID) { 921 default: return Op; 922 case AMDGPUIntrinsic::AMDGPU_clamp: 923 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 924 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 925 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 926 927 case Intrinsic::AMDGPU_ldexp: // Legacy name 928 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 929 Op.getOperand(2)); 930 931 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 932 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 933 Op.getOperand(1), 934 Op.getOperand(2), 935 Op.getOperand(3)); 936 937 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 938 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 939 Op.getOperand(1), 940 Op.getOperand(2), 941 Op.getOperand(3)); 942 943 case AMDGPUIntrinsic::AMDGPU_bfi: 944 return DAG.getNode(AMDGPUISD::BFI, DL, VT, 945 Op.getOperand(1), 946 Op.getOperand(2), 947 Op.getOperand(3)); 948 949 case AMDGPUIntrinsic::AMDGPU_bfm: 950 return DAG.getNode(AMDGPUISD::BFM, DL, VT, 951 Op.getOperand(1), 952 Op.getOperand(2)); 953 954 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 955 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 956 957 case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name 958 return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1)); 959 } 960 } 961 962 /// \brief Generate Min/Max node 963 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, 964 EVT VT, 965 SDValue LHS, 966 SDValue RHS, 967 SDValue True, 968 SDValue False, 969 SDValue CC, 970 DAGCombinerInfo &DCI) const { 971 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 972 return SDValue(); 973 974 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 975 return SDValue(); 976 977 SelectionDAG &DAG = DCI.DAG; 978 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 979 switch (CCOpcode) { 980 case ISD::SETOEQ: 981 case ISD::SETONE: 982 case ISD::SETUNE: 983 case ISD::SETNE: 984 case ISD::SETUEQ: 985 case ISD::SETEQ: 986 case ISD::SETFALSE: 987 case ISD::SETFALSE2: 988 case ISD::SETTRUE: 989 case ISD::SETTRUE2: 990 case ISD::SETUO: 991 case ISD::SETO: 992 break; 993 case ISD::SETULE: 994 case ISD::SETULT: { 995 if (LHS == True) 996 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 997 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 998 } 999 case ISD::SETOLE: 1000 case ISD::SETOLT: 1001 case ISD::SETLE: 1002 case ISD::SETLT: { 1003 // Ordered. Assume ordered for undefined. 1004 1005 // Only do this after legalization to avoid interfering with other combines 1006 // which might occur. 1007 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1008 !DCI.isCalledByLegalizer()) 1009 return SDValue(); 1010 1011 // We need to permute the operands to get the correct NaN behavior. The 1012 // selected operand is the second one based on the failing compare with NaN, 1013 // so permute it based on the compare type the hardware uses. 1014 if (LHS == True) 1015 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1016 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1017 } 1018 case ISD::SETUGE: 1019 case ISD::SETUGT: { 1020 if (LHS == True) 1021 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1022 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1023 } 1024 case ISD::SETGT: 1025 case ISD::SETGE: 1026 case ISD::SETOGE: 1027 case ISD::SETOGT: { 1028 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1029 !DCI.isCalledByLegalizer()) 1030 return SDValue(); 1031 1032 if (LHS == True) 1033 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1034 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1035 } 1036 case ISD::SETCC_INVALID: 1037 llvm_unreachable("Invalid setcc condcode!"); 1038 } 1039 return SDValue(); 1040 } 1041 1042 std::pair<SDValue, SDValue> 1043 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1044 SDLoc SL(Op); 1045 1046 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1047 1048 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1049 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1050 1051 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1052 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1053 1054 return std::make_pair(Lo, Hi); 1055 } 1056 1057 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1058 SDLoc SL(Op); 1059 1060 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1061 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1062 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1063 } 1064 1065 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1066 SDLoc SL(Op); 1067 1068 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1069 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1070 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1071 } 1072 1073 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op, 1074 SelectionDAG &DAG) const { 1075 LoadSDNode *Load = cast<LoadSDNode>(Op); 1076 EVT MemVT = Load->getMemoryVT(); 1077 EVT MemEltVT = MemVT.getVectorElementType(); 1078 1079 EVT LoadVT = Op.getValueType(); 1080 EVT EltVT = LoadVT.getVectorElementType(); 1081 EVT PtrVT = Load->getBasePtr().getValueType(); 1082 1083 unsigned NumElts = Load->getMemoryVT().getVectorNumElements(); 1084 SmallVector<SDValue, 8> Loads; 1085 SmallVector<SDValue, 8> Chains; 1086 1087 SDLoc SL(Op); 1088 unsigned MemEltSize = MemEltVT.getStoreSize(); 1089 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1090 1091 for (unsigned i = 0; i < NumElts; ++i) { 1092 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(), 1093 DAG.getConstant(i * MemEltSize, SL, PtrVT)); 1094 1095 SDValue NewLoad 1096 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT, 1097 Load->getChain(), Ptr, 1098 SrcValue.getWithOffset(i * MemEltSize), 1099 MemEltVT, Load->isVolatile(), Load->isNonTemporal(), 1100 Load->isInvariant(), Load->getAlignment()); 1101 Loads.push_back(NewLoad.getValue(0)); 1102 Chains.push_back(NewLoad.getValue(1)); 1103 } 1104 1105 SDValue Ops[] = { 1106 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads), 1107 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains) 1108 }; 1109 1110 return DAG.getMergeValues(Ops, SL); 1111 } 1112 1113 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1114 SelectionDAG &DAG) const { 1115 EVT VT = Op.getValueType(); 1116 1117 // If this is a 2 element vector, we really want to scalarize and not create 1118 // weird 1 element vectors. 1119 if (VT.getVectorNumElements() == 2) 1120 return ScalarizeVectorLoad(Op, DAG); 1121 1122 LoadSDNode *Load = cast<LoadSDNode>(Op); 1123 SDValue BasePtr = Load->getBasePtr(); 1124 EVT PtrVT = BasePtr.getValueType(); 1125 EVT MemVT = Load->getMemoryVT(); 1126 SDLoc SL(Op); 1127 1128 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1129 1130 EVT LoVT, HiVT; 1131 EVT LoMemVT, HiMemVT; 1132 SDValue Lo, Hi; 1133 1134 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1135 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1136 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1137 1138 unsigned Size = LoMemVT.getStoreSize(); 1139 unsigned BaseAlign = Load->getAlignment(); 1140 unsigned HiAlign = MinAlign(BaseAlign, Size); 1141 1142 SDValue LoLoad 1143 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1144 Load->getChain(), BasePtr, 1145 SrcValue, 1146 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1147 Load->isInvariant(), BaseAlign); 1148 1149 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1150 DAG.getConstant(Size, SL, PtrVT)); 1151 1152 SDValue HiLoad 1153 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1154 Load->getChain(), HiPtr, 1155 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1156 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1157 Load->isInvariant(), HiAlign); 1158 1159 SDValue Ops[] = { 1160 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1161 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1162 LoLoad.getValue(1), HiLoad.getValue(1)) 1163 }; 1164 1165 return DAG.getMergeValues(Ops, SL); 1166 } 1167 1168 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1169 SelectionDAG &DAG) const { 1170 StoreSDNode *Store = cast<StoreSDNode>(Op); 1171 EVT MemVT = Store->getMemoryVT(); 1172 unsigned MemBits = MemVT.getSizeInBits(); 1173 1174 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1175 // truncating store into an i32 store. 1176 // XXX: We could also handle optimize other vector bitwidths. 1177 if (!MemVT.isVector() || MemBits > 32) { 1178 return SDValue(); 1179 } 1180 1181 SDLoc DL(Op); 1182 SDValue Value = Store->getValue(); 1183 EVT VT = Value.getValueType(); 1184 EVT ElemVT = VT.getVectorElementType(); 1185 SDValue Ptr = Store->getBasePtr(); 1186 EVT MemEltVT = MemVT.getVectorElementType(); 1187 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1188 unsigned MemNumElements = MemVT.getVectorNumElements(); 1189 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1190 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1191 1192 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1193 1194 SDValue PackedValue; 1195 for (unsigned i = 0; i < MemNumElements; ++i) { 1196 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1197 DAG.getConstant(i, DL, MVT::i32)); 1198 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1199 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1200 1201 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1202 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1203 1204 if (i == 0) { 1205 PackedValue = Elt; 1206 } else { 1207 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1208 } 1209 } 1210 1211 if (PackedSize < 32) { 1212 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1213 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1214 Store->getMemOperand()->getPointerInfo(), 1215 PackedVT, 1216 Store->isNonTemporal(), Store->isVolatile(), 1217 Store->getAlignment()); 1218 } 1219 1220 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1221 Store->getMemOperand()->getPointerInfo(), 1222 Store->isVolatile(), Store->isNonTemporal(), 1223 Store->getAlignment()); 1224 } 1225 1226 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op, 1227 SelectionDAG &DAG) const { 1228 StoreSDNode *Store = cast<StoreSDNode>(Op); 1229 EVT MemEltVT = Store->getMemoryVT().getVectorElementType(); 1230 EVT EltVT = Store->getValue().getValueType().getVectorElementType(); 1231 EVT PtrVT = Store->getBasePtr().getValueType(); 1232 unsigned NumElts = Store->getMemoryVT().getVectorNumElements(); 1233 SDLoc SL(Op); 1234 1235 SmallVector<SDValue, 8> Chains; 1236 1237 unsigned EltSize = MemEltVT.getStoreSize(); 1238 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1239 1240 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1241 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 1242 Store->getValue(), 1243 DAG.getConstant(i, SL, MVT::i32)); 1244 1245 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT); 1246 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset); 1247 SDValue NewStore = 1248 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr, 1249 SrcValue.getWithOffset(i * EltSize), 1250 MemEltVT, Store->isNonTemporal(), Store->isVolatile(), 1251 Store->getAlignment()); 1252 Chains.push_back(NewStore); 1253 } 1254 1255 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains); 1256 } 1257 1258 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1259 SelectionDAG &DAG) const { 1260 StoreSDNode *Store = cast<StoreSDNode>(Op); 1261 SDValue Val = Store->getValue(); 1262 EVT VT = Val.getValueType(); 1263 1264 // If this is a 2 element vector, we really want to scalarize and not create 1265 // weird 1 element vectors. 1266 if (VT.getVectorNumElements() == 2) 1267 return ScalarizeVectorStore(Op, DAG); 1268 1269 EVT MemVT = Store->getMemoryVT(); 1270 SDValue Chain = Store->getChain(); 1271 SDValue BasePtr = Store->getBasePtr(); 1272 SDLoc SL(Op); 1273 1274 EVT LoVT, HiVT; 1275 EVT LoMemVT, HiMemVT; 1276 SDValue Lo, Hi; 1277 1278 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1279 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1280 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1281 1282 EVT PtrVT = BasePtr.getValueType(); 1283 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1284 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1285 PtrVT)); 1286 1287 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1288 unsigned BaseAlign = Store->getAlignment(); 1289 unsigned Size = LoMemVT.getStoreSize(); 1290 unsigned HiAlign = MinAlign(BaseAlign, Size); 1291 1292 SDValue LoStore 1293 = DAG.getTruncStore(Chain, SL, Lo, 1294 BasePtr, 1295 SrcValue, 1296 LoMemVT, 1297 Store->isNonTemporal(), 1298 Store->isVolatile(), 1299 BaseAlign); 1300 SDValue HiStore 1301 = DAG.getTruncStore(Chain, SL, Hi, 1302 HiPtr, 1303 SrcValue.getWithOffset(Size), 1304 HiMemVT, 1305 Store->isNonTemporal(), 1306 Store->isVolatile(), 1307 HiAlign); 1308 1309 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1310 } 1311 1312 1313 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1314 SDLoc DL(Op); 1315 LoadSDNode *Load = cast<LoadSDNode>(Op); 1316 ISD::LoadExtType ExtType = Load->getExtensionType(); 1317 EVT VT = Op.getValueType(); 1318 EVT MemVT = Load->getMemoryVT(); 1319 1320 if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) { 1321 assert(VT == MVT::i1 && "Only i1 non-extloads expected"); 1322 // FIXME: Copied from PPC 1323 // First, load into 32 bits, then truncate to 1 bit. 1324 1325 SDValue Chain = Load->getChain(); 1326 SDValue BasePtr = Load->getBasePtr(); 1327 MachineMemOperand *MMO = Load->getMemOperand(); 1328 1329 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 1330 BasePtr, MVT::i8, MMO); 1331 1332 SDValue Ops[] = { 1333 DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD), 1334 NewLD.getValue(1) 1335 }; 1336 1337 return DAG.getMergeValues(Ops, DL); 1338 } 1339 1340 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS || 1341 Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS || 1342 ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32)) 1343 return SDValue(); 1344 1345 // <SI && AS=PRIVATE && EXTLOAD && size < 32bit, 1346 // register (2-)byte extract. 1347 1348 // Get Register holding the target. 1349 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(), 1350 DAG.getConstant(2, DL, MVT::i32)); 1351 // Load the Register. 1352 SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(), 1353 Load->getChain(), Ptr, 1354 DAG.getTargetConstant(0, DL, MVT::i32), 1355 Op.getOperand(2)); 1356 1357 // Get offset within the register. 1358 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, 1359 Load->getBasePtr(), 1360 DAG.getConstant(0x3, DL, MVT::i32)); 1361 1362 // Bit offset of target byte (byteIdx * 8). 1363 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1364 DAG.getConstant(3, DL, MVT::i32)); 1365 1366 // Shift to the right. 1367 Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt); 1368 1369 // Eliminate the upper bits by setting them to ... 1370 EVT MemEltVT = MemVT.getScalarType(); 1371 1372 // ... ones. 1373 if (ExtType == ISD::SEXTLOAD) { 1374 SDValue MemEltVTNode = DAG.getValueType(MemEltVT); 1375 1376 SDValue Ops[] = { 1377 DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode), 1378 Load->getChain() 1379 }; 1380 1381 return DAG.getMergeValues(Ops, DL); 1382 } 1383 1384 // ... or zeros. 1385 SDValue Ops[] = { 1386 DAG.getZeroExtendInReg(Ret, DL, MemEltVT), 1387 Load->getChain() 1388 }; 1389 1390 return DAG.getMergeValues(Ops, DL); 1391 } 1392 1393 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1394 SDLoc DL(Op); 1395 SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG); 1396 if (Result.getNode()) { 1397 return Result; 1398 } 1399 1400 StoreSDNode *Store = cast<StoreSDNode>(Op); 1401 SDValue Chain = Store->getChain(); 1402 if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1403 Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && 1404 Store->getValue().getValueType().isVector()) { 1405 return SplitVectorStore(Op, DAG); 1406 } 1407 1408 EVT MemVT = Store->getMemoryVT(); 1409 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS && 1410 MemVT.bitsLT(MVT::i32)) { 1411 unsigned Mask = 0; 1412 if (Store->getMemoryVT() == MVT::i8) { 1413 Mask = 0xff; 1414 } else if (Store->getMemoryVT() == MVT::i16) { 1415 Mask = 0xffff; 1416 } 1417 SDValue BasePtr = Store->getBasePtr(); 1418 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr, 1419 DAG.getConstant(2, DL, MVT::i32)); 1420 SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32, 1421 Chain, Ptr, 1422 DAG.getTargetConstant(0, DL, MVT::i32)); 1423 1424 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr, 1425 DAG.getConstant(0x3, DL, MVT::i32)); 1426 1427 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1428 DAG.getConstant(3, DL, MVT::i32)); 1429 1430 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, 1431 Store->getValue()); 1432 1433 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); 1434 1435 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, 1436 MaskedValue, ShiftAmt); 1437 1438 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, 1439 DAG.getConstant(Mask, DL, MVT::i32), 1440 ShiftAmt); 1441 DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask, 1442 DAG.getConstant(0xffffffff, DL, MVT::i32)); 1443 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); 1444 1445 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); 1446 return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, 1447 Chain, Value, Ptr, 1448 DAG.getTargetConstant(0, DL, MVT::i32)); 1449 } 1450 return SDValue(); 1451 } 1452 1453 // This is a shortcut for integer division because we have fast i32<->f32 1454 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1455 // float is enough to accurately represent up to a 24-bit integer. 1456 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const { 1457 SDLoc DL(Op); 1458 EVT VT = Op.getValueType(); 1459 SDValue LHS = Op.getOperand(0); 1460 SDValue RHS = Op.getOperand(1); 1461 MVT IntVT = MVT::i32; 1462 MVT FltVT = MVT::f32; 1463 1464 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1465 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1466 1467 if (VT.isVector()) { 1468 unsigned NElts = VT.getVectorNumElements(); 1469 IntVT = MVT::getVectorVT(MVT::i32, NElts); 1470 FltVT = MVT::getVectorVT(MVT::f32, NElts); 1471 } 1472 1473 unsigned BitSize = VT.getScalarType().getSizeInBits(); 1474 1475 SDValue jq = DAG.getConstant(1, DL, IntVT); 1476 1477 if (sign) { 1478 // char|short jq = ia ^ ib; 1479 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1480 1481 // jq = jq >> (bitsize - 2) 1482 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1483 DAG.getConstant(BitSize - 2, DL, VT)); 1484 1485 // jq = jq | 0x1 1486 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1487 1488 // jq = (int)jq 1489 jq = DAG.getSExtOrTrunc(jq, DL, IntVT); 1490 } 1491 1492 // int ia = (int)LHS; 1493 SDValue ia = sign ? 1494 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT); 1495 1496 // int ib, (int)RHS; 1497 SDValue ib = sign ? 1498 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT); 1499 1500 // float fa = (float)ia; 1501 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1502 1503 // float fb = (float)ib; 1504 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1505 1506 // TODO: Should this propagate fast-math-flags? 1507 // float fq = native_divide(fa, fb); 1508 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1509 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1510 1511 // fq = trunc(fq); 1512 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1513 1514 // float fqneg = -fq; 1515 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1516 1517 // float fr = mad(fqneg, fb, fa); 1518 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT, 1519 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa); 1520 1521 // int iq = (int)fq; 1522 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1523 1524 // fr = fabs(fr); 1525 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1526 1527 // fb = fabs(fb); 1528 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1529 1530 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1531 1532 // int cv = fr >= fb; 1533 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1534 1535 // jq = (cv ? jq : 0); 1536 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1537 1538 // dst = trunc/extend to legal type 1539 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT); 1540 1541 // dst = iq + jq; 1542 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1543 1544 // Rem needs compensation, it's easier to recompute it 1545 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1546 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1547 1548 SDValue Res[2] = { 1549 Div, 1550 Rem 1551 }; 1552 return DAG.getMergeValues(Res, DL); 1553 } 1554 1555 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1556 SelectionDAG &DAG, 1557 SmallVectorImpl<SDValue> &Results) const { 1558 assert(Op.getValueType() == MVT::i64); 1559 1560 SDLoc DL(Op); 1561 EVT VT = Op.getValueType(); 1562 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1563 1564 SDValue one = DAG.getConstant(1, DL, HalfVT); 1565 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1566 1567 //HiLo split 1568 SDValue LHS = Op.getOperand(0); 1569 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1570 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1571 1572 SDValue RHS = Op.getOperand(1); 1573 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1574 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1575 1576 if (VT == MVT::i64 && 1577 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1578 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1579 1580 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1581 LHS_Lo, RHS_Lo); 1582 1583 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero); 1584 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero); 1585 Results.push_back(DIV); 1586 Results.push_back(REM); 1587 return; 1588 } 1589 1590 // Get Speculative values 1591 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1592 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1593 1594 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1595 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero); 1596 1597 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1598 SDValue DIV_Lo = zero; 1599 1600 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1601 1602 for (unsigned i = 0; i < halfBitWidth; ++i) { 1603 const unsigned bitPos = halfBitWidth - i - 1; 1604 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1605 // Get value of high bit 1606 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1607 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1608 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1609 1610 // Shift 1611 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1612 // Add LHS high bit 1613 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1614 1615 SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT); 1616 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1617 1618 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1619 1620 // Update REM 1621 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1622 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1623 } 1624 1625 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi); 1626 Results.push_back(DIV); 1627 Results.push_back(REM); 1628 } 1629 1630 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1631 SelectionDAG &DAG) const { 1632 SDLoc DL(Op); 1633 EVT VT = Op.getValueType(); 1634 1635 if (VT == MVT::i64) { 1636 SmallVector<SDValue, 2> Results; 1637 LowerUDIVREM64(Op, DAG, Results); 1638 return DAG.getMergeValues(Results, DL); 1639 } 1640 1641 SDValue Num = Op.getOperand(0); 1642 SDValue Den = Op.getOperand(1); 1643 1644 if (VT == MVT::i32) { 1645 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) && 1646 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) { 1647 // TODO: We technically could do this for i64, but shouldn't that just be 1648 // handled by something generally reducing 64-bit division on 32-bit 1649 // values to 32-bit? 1650 return LowerDIVREM24(Op, DAG, false); 1651 } 1652 } 1653 1654 // RCP = URECIP(Den) = 2^32 / Den + e 1655 // e is rounding error. 1656 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1657 1658 // RCP_LO = mul(RCP, Den) */ 1659 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1660 1661 // RCP_HI = mulhu (RCP, Den) */ 1662 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1663 1664 // NEG_RCP_LO = -RCP_LO 1665 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1666 RCP_LO); 1667 1668 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1669 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1670 NEG_RCP_LO, RCP_LO, 1671 ISD::SETEQ); 1672 // Calculate the rounding error from the URECIP instruction 1673 // E = mulhu(ABS_RCP_LO, RCP) 1674 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1675 1676 // RCP_A_E = RCP + E 1677 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1678 1679 // RCP_S_E = RCP - E 1680 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1681 1682 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1683 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1684 RCP_A_E, RCP_S_E, 1685 ISD::SETEQ); 1686 // Quotient = mulhu(Tmp0, Num) 1687 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1688 1689 // Num_S_Remainder = Quotient * Den 1690 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1691 1692 // Remainder = Num - Num_S_Remainder 1693 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1694 1695 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1696 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1697 DAG.getConstant(-1, DL, VT), 1698 DAG.getConstant(0, DL, VT), 1699 ISD::SETUGE); 1700 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1701 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1702 Num_S_Remainder, 1703 DAG.getConstant(-1, DL, VT), 1704 DAG.getConstant(0, DL, VT), 1705 ISD::SETUGE); 1706 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1707 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1708 Remainder_GE_Zero); 1709 1710 // Calculate Division result: 1711 1712 // Quotient_A_One = Quotient + 1 1713 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1714 DAG.getConstant(1, DL, VT)); 1715 1716 // Quotient_S_One = Quotient - 1 1717 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1718 DAG.getConstant(1, DL, VT)); 1719 1720 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1721 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1722 Quotient, Quotient_A_One, ISD::SETEQ); 1723 1724 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1725 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1726 Quotient_S_One, Div, ISD::SETEQ); 1727 1728 // Calculate Rem result: 1729 1730 // Remainder_S_Den = Remainder - Den 1731 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1732 1733 // Remainder_A_Den = Remainder + Den 1734 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1735 1736 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1737 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1738 Remainder, Remainder_S_Den, ISD::SETEQ); 1739 1740 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1741 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1742 Remainder_A_Den, Rem, ISD::SETEQ); 1743 SDValue Ops[2] = { 1744 Div, 1745 Rem 1746 }; 1747 return DAG.getMergeValues(Ops, DL); 1748 } 1749 1750 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1751 SelectionDAG &DAG) const { 1752 SDLoc DL(Op); 1753 EVT VT = Op.getValueType(); 1754 1755 SDValue LHS = Op.getOperand(0); 1756 SDValue RHS = Op.getOperand(1); 1757 1758 SDValue Zero = DAG.getConstant(0, DL, VT); 1759 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1760 1761 if (VT == MVT::i32 && 1762 DAG.ComputeNumSignBits(LHS) > 8 && 1763 DAG.ComputeNumSignBits(RHS) > 8) { 1764 return LowerDIVREM24(Op, DAG, true); 1765 } 1766 if (VT == MVT::i64 && 1767 DAG.ComputeNumSignBits(LHS) > 32 && 1768 DAG.ComputeNumSignBits(RHS) > 32) { 1769 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1770 1771 //HiLo split 1772 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1773 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1774 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1775 LHS_Lo, RHS_Lo); 1776 SDValue Res[2] = { 1777 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1778 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1779 }; 1780 return DAG.getMergeValues(Res, DL); 1781 } 1782 1783 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1784 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1785 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1786 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1787 1788 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1789 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1790 1791 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1792 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1793 1794 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1795 SDValue Rem = Div.getValue(1); 1796 1797 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1798 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1799 1800 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1801 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1802 1803 SDValue Res[2] = { 1804 Div, 1805 Rem 1806 }; 1807 return DAG.getMergeValues(Res, DL); 1808 } 1809 1810 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1811 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1812 SDLoc SL(Op); 1813 EVT VT = Op.getValueType(); 1814 SDValue X = Op.getOperand(0); 1815 SDValue Y = Op.getOperand(1); 1816 1817 // TODO: Should this propagate fast-math-flags? 1818 1819 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1820 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1821 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1822 1823 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1824 } 1825 1826 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1827 SDLoc SL(Op); 1828 SDValue Src = Op.getOperand(0); 1829 1830 // result = trunc(src) 1831 // if (src > 0.0 && src != result) 1832 // result += 1.0 1833 1834 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1835 1836 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1837 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1838 1839 EVT SetCCVT = 1840 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1841 1842 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1843 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1844 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1845 1846 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1847 // TODO: Should this propagate fast-math-flags? 1848 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1849 } 1850 1851 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { 1852 const unsigned FractBits = 52; 1853 const unsigned ExpBits = 11; 1854 1855 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1856 Hi, 1857 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1858 DAG.getConstant(ExpBits, SL, MVT::i32)); 1859 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1860 DAG.getConstant(1023, SL, MVT::i32)); 1861 1862 return Exp; 1863 } 1864 1865 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1866 SDLoc SL(Op); 1867 SDValue Src = Op.getOperand(0); 1868 1869 assert(Op.getValueType() == MVT::f64); 1870 1871 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1872 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1873 1874 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1875 1876 // Extract the upper half, since this is where we will find the sign and 1877 // exponent. 1878 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1879 1880 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1881 1882 const unsigned FractBits = 52; 1883 1884 // Extract the sign bit. 1885 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1886 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1887 1888 // Extend back to to 64-bits. 1889 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 1890 Zero, SignBit); 1891 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1892 1893 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1894 const SDValue FractMask 1895 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1896 1897 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1898 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1899 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1900 1901 EVT SetCCVT = 1902 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1903 1904 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1905 1906 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1907 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1908 1909 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1910 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1911 1912 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1913 } 1914 1915 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1916 SDLoc SL(Op); 1917 SDValue Src = Op.getOperand(0); 1918 1919 assert(Op.getValueType() == MVT::f64); 1920 1921 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 1922 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1923 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1924 1925 // TODO: Should this propagate fast-math-flags? 1926 1927 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1928 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1929 1930 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1931 1932 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 1933 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1934 1935 EVT SetCCVT = 1936 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1937 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1938 1939 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1940 } 1941 1942 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1943 // FNEARBYINT and FRINT are the same, except in their handling of FP 1944 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1945 // rint, so just treat them as equivalent. 1946 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1947 } 1948 1949 // XXX - May require not supporting f32 denormals? 1950 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1951 SDLoc SL(Op); 1952 SDValue X = Op.getOperand(0); 1953 1954 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1955 1956 // TODO: Should this propagate fast-math-flags? 1957 1958 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1959 1960 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1961 1962 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1963 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1964 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1965 1966 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1967 1968 EVT SetCCVT = 1969 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1970 1971 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1972 1973 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1974 1975 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1976 } 1977 1978 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1979 SDLoc SL(Op); 1980 SDValue X = Op.getOperand(0); 1981 1982 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1983 1984 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1985 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1986 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1987 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1988 EVT SetCCVT = 1989 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1990 1991 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1992 1993 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1994 1995 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1996 1997 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1998 MVT::i64); 1999 2000 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2001 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2002 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2003 MVT::i64), 2004 Exp); 2005 2006 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2007 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2008 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2009 ISD::SETNE); 2010 2011 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2012 D, DAG.getConstant(0, SL, MVT::i64)); 2013 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2014 2015 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2016 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2017 2018 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2019 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2020 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2021 2022 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2023 ExpEqNegOne, 2024 DAG.getConstantFP(1.0, SL, MVT::f64), 2025 DAG.getConstantFP(0.0, SL, MVT::f64)); 2026 2027 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2028 2029 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2030 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2031 2032 return K; 2033 } 2034 2035 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2036 EVT VT = Op.getValueType(); 2037 2038 if (VT == MVT::f32) 2039 return LowerFROUND32(Op, DAG); 2040 2041 if (VT == MVT::f64) 2042 return LowerFROUND64(Op, DAG); 2043 2044 llvm_unreachable("unhandled type"); 2045 } 2046 2047 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2048 SDLoc SL(Op); 2049 SDValue Src = Op.getOperand(0); 2050 2051 // result = trunc(src); 2052 // if (src < 0.0 && src != result) 2053 // result += -1.0. 2054 2055 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2056 2057 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2058 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2059 2060 EVT SetCCVT = 2061 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2062 2063 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2064 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2065 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2066 2067 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2068 // TODO: Should this propagate fast-math-flags? 2069 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2070 } 2071 2072 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 2073 SDLoc SL(Op); 2074 SDValue Src = Op.getOperand(0); 2075 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2076 2077 if (ZeroUndef && Src.getValueType() == MVT::i32) 2078 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 2079 2080 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2081 2082 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2083 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2084 2085 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2086 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2087 2088 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2089 *DAG.getContext(), MVT::i32); 2090 2091 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 2092 2093 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 2094 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 2095 2096 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2097 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 2098 2099 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2100 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 2101 2102 if (!ZeroUndef) { 2103 // Test if the full 64-bit input is zero. 2104 2105 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2106 // which we probably don't want. 2107 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 2108 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 2109 2110 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2111 // with the same cycles, otherwise it is slower. 2112 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2113 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2114 2115 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2116 2117 // The instruction returns -1 for 0 input, but the defined intrinsic 2118 // behavior is to return the number of bits. 2119 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2120 SrcIsZero, Bits32, NewCtlz); 2121 } 2122 2123 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 2124 } 2125 2126 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2127 bool Signed) const { 2128 // Unsigned 2129 // cul2f(ulong u) 2130 //{ 2131 // uint lz = clz(u); 2132 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2133 // u = (u << lz) & 0x7fffffffffffffffUL; 2134 // ulong t = u & 0xffffffffffUL; 2135 // uint v = (e << 23) | (uint)(u >> 40); 2136 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2137 // return as_float(v + r); 2138 //} 2139 // Signed 2140 // cl2f(long l) 2141 //{ 2142 // long s = l >> 63; 2143 // float r = cul2f((l + s) ^ s); 2144 // return s ? -r : r; 2145 //} 2146 2147 SDLoc SL(Op); 2148 SDValue Src = Op.getOperand(0); 2149 SDValue L = Src; 2150 2151 SDValue S; 2152 if (Signed) { 2153 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2154 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2155 2156 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2157 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2158 } 2159 2160 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2161 *DAG.getContext(), MVT::f32); 2162 2163 2164 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2165 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2166 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2167 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2168 2169 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2170 SDValue E = DAG.getSelect(SL, MVT::i32, 2171 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2172 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2173 ZeroI32); 2174 2175 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2176 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2177 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2178 2179 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2180 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2181 2182 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2183 U, DAG.getConstant(40, SL, MVT::i64)); 2184 2185 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2186 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2187 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2188 2189 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2190 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2191 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2192 2193 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2194 2195 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2196 2197 SDValue R = DAG.getSelect(SL, MVT::i32, 2198 RCmp, 2199 One, 2200 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2201 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2202 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2203 2204 if (!Signed) 2205 return R; 2206 2207 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2208 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2209 } 2210 2211 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2212 bool Signed) const { 2213 SDLoc SL(Op); 2214 SDValue Src = Op.getOperand(0); 2215 2216 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2217 2218 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2219 DAG.getConstant(0, SL, MVT::i32)); 2220 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2221 DAG.getConstant(1, SL, MVT::i32)); 2222 2223 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2224 SL, MVT::f64, Hi); 2225 2226 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2227 2228 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2229 DAG.getConstant(32, SL, MVT::i32)); 2230 // TODO: Should this propagate fast-math-flags? 2231 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2232 } 2233 2234 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2235 SelectionDAG &DAG) const { 2236 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2237 "operation should be legal"); 2238 2239 EVT DestVT = Op.getValueType(); 2240 if (DestVT == MVT::f64) 2241 return LowerINT_TO_FP64(Op, DAG, false); 2242 2243 if (DestVT == MVT::f32) 2244 return LowerINT_TO_FP32(Op, DAG, false); 2245 2246 return SDValue(); 2247 } 2248 2249 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2250 SelectionDAG &DAG) const { 2251 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2252 "operation should be legal"); 2253 2254 EVT DestVT = Op.getValueType(); 2255 if (DestVT == MVT::f32) 2256 return LowerINT_TO_FP32(Op, DAG, true); 2257 2258 if (DestVT == MVT::f64) 2259 return LowerINT_TO_FP64(Op, DAG, true); 2260 2261 return SDValue(); 2262 } 2263 2264 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2265 bool Signed) const { 2266 SDLoc SL(Op); 2267 2268 SDValue Src = Op.getOperand(0); 2269 2270 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2271 2272 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2273 MVT::f64); 2274 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2275 MVT::f64); 2276 // TODO: Should this propagate fast-math-flags? 2277 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2278 2279 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2280 2281 2282 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2283 2284 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2285 MVT::i32, FloorMul); 2286 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2287 2288 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi); 2289 2290 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2291 } 2292 2293 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2294 SelectionDAG &DAG) const { 2295 SDValue Src = Op.getOperand(0); 2296 2297 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2298 return LowerFP64_TO_INT(Op, DAG, true); 2299 2300 return SDValue(); 2301 } 2302 2303 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2304 SelectionDAG &DAG) const { 2305 SDValue Src = Op.getOperand(0); 2306 2307 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2308 return LowerFP64_TO_INT(Op, DAG, false); 2309 2310 return SDValue(); 2311 } 2312 2313 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2314 SelectionDAG &DAG) const { 2315 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2316 MVT VT = Op.getSimpleValueType(); 2317 MVT ScalarVT = VT.getScalarType(); 2318 2319 if (!VT.isVector()) 2320 return SDValue(); 2321 2322 SDValue Src = Op.getOperand(0); 2323 SDLoc DL(Op); 2324 2325 // TODO: Don't scalarize on Evergreen? 2326 unsigned NElts = VT.getVectorNumElements(); 2327 SmallVector<SDValue, 8> Args; 2328 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2329 2330 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2331 for (unsigned I = 0; I < NElts; ++I) 2332 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2333 2334 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args); 2335 } 2336 2337 //===----------------------------------------------------------------------===// 2338 // Custom DAG optimizations 2339 //===----------------------------------------------------------------------===// 2340 2341 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2342 APInt KnownZero, KnownOne; 2343 EVT VT = Op.getValueType(); 2344 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2345 2346 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2347 } 2348 2349 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2350 EVT VT = Op.getValueType(); 2351 2352 // In order for this to be a signed 24-bit value, bit 23, must 2353 // be a sign bit. 2354 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2355 // as unsigned 24-bit values. 2356 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2357 } 2358 2359 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2360 2361 SelectionDAG &DAG = DCI.DAG; 2362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2363 EVT VT = Op.getValueType(); 2364 2365 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2366 APInt KnownZero, KnownOne; 2367 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2368 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2369 DCI.CommitTargetLoweringOpt(TLO); 2370 } 2371 2372 template <typename IntTy> 2373 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, 2374 uint32_t Offset, uint32_t Width, SDLoc DL) { 2375 if (Width + Offset < 32) { 2376 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2377 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2378 return DAG.getConstant(Result, DL, MVT::i32); 2379 } 2380 2381 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2382 } 2383 2384 static bool usesAllNormalStores(SDNode *LoadVal) { 2385 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2386 if (!ISD::isNormalStore(*I)) 2387 return false; 2388 } 2389 2390 return true; 2391 } 2392 2393 // If we have a copy of an illegal type, replace it with a load / store of an 2394 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2395 // instructions emitted when handling extloads and truncstores. Ideally we could 2396 // recognize the pack / unpack pattern to eliminate it. 2397 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2398 DAGCombinerInfo &DCI) const { 2399 if (!DCI.isBeforeLegalize()) 2400 return SDValue(); 2401 2402 StoreSDNode *SN = cast<StoreSDNode>(N); 2403 SDValue Value = SN->getValue(); 2404 EVT VT = Value.getValueType(); 2405 2406 if (isTypeLegal(VT) || SN->isVolatile() || 2407 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2408 return SDValue(); 2409 2410 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2411 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2412 return SDValue(); 2413 2414 EVT MemVT = LoadVal->getMemoryVT(); 2415 2416 SDLoc SL(N); 2417 SelectionDAG &DAG = DCI.DAG; 2418 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2419 2420 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2421 LoadVT, SL, 2422 LoadVal->getChain(), 2423 LoadVal->getBasePtr(), 2424 LoadVal->getOffset(), 2425 LoadVT, 2426 LoadVal->getMemOperand()); 2427 2428 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2429 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2430 2431 return DAG.getStore(SN->getChain(), SL, NewLoad, 2432 SN->getBasePtr(), SN->getMemOperand()); 2433 } 2434 2435 // TODO: Should repeat for other bit ops. 2436 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N, 2437 DAGCombinerInfo &DCI) const { 2438 if (N->getValueType(0) != MVT::i64) 2439 return SDValue(); 2440 2441 // Break up 64-bit and of a constant into two 32-bit ands. This will typically 2442 // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer 2443 // combine opportunities since most 64-bit operations are decomposed this way. 2444 // TODO: We won't want this for SALU especially if it is an inline immediate. 2445 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2446 if (!RHS) 2447 return SDValue(); 2448 2449 uint64_t Val = RHS->getZExtValue(); 2450 if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) { 2451 // If either half of the constant is 0, this is really a 32-bit and, so 2452 // split it. If we can re-use the full materialized constant, keep it. 2453 return SDValue(); 2454 } 2455 2456 SDLoc SL(N); 2457 SelectionDAG &DAG = DCI.DAG; 2458 2459 SDValue Lo, Hi; 2460 std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG); 2461 2462 SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32); 2463 SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32); 2464 2465 SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS); 2466 SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS); 2467 2468 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, LoAnd, HiAnd); 2469 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2470 } 2471 2472 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2473 DAGCombinerInfo &DCI) const { 2474 if (N->getValueType(0) != MVT::i64) 2475 return SDValue(); 2476 2477 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2478 2479 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2480 // common case, splitting this into a move and a 32-bit shift is faster and 2481 // the same code size. 2482 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2483 if (!RHS) 2484 return SDValue(); 2485 2486 unsigned RHSVal = RHS->getZExtValue(); 2487 if (RHSVal < 32) 2488 return SDValue(); 2489 2490 SDValue LHS = N->getOperand(0); 2491 2492 SDLoc SL(N); 2493 SelectionDAG &DAG = DCI.DAG; 2494 2495 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2496 2497 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2498 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2499 2500 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2501 2502 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Zero, NewShift); 2503 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2504 } 2505 2506 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2507 DAGCombinerInfo &DCI) const { 2508 if (N->getValueType(0) != MVT::i64) 2509 return SDValue(); 2510 2511 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2512 if (!RHS) 2513 return SDValue(); 2514 2515 SelectionDAG &DAG = DCI.DAG; 2516 SDLoc SL(N); 2517 unsigned RHSVal = RHS->getZExtValue(); 2518 2519 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2520 if (RHSVal == 32) { 2521 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2522 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2523 DAG.getConstant(31, SL, MVT::i32)); 2524 2525 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2526 Hi, NewShift); 2527 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2528 } 2529 2530 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2531 if (RHSVal == 63) { 2532 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2533 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2534 DAG.getConstant(31, SL, MVT::i32)); 2535 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2536 NewShift, NewShift); 2537 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2538 } 2539 2540 return SDValue(); 2541 } 2542 2543 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2544 DAGCombinerInfo &DCI) const { 2545 if (N->getValueType(0) != MVT::i64) 2546 return SDValue(); 2547 2548 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2549 if (!RHS) 2550 return SDValue(); 2551 2552 unsigned ShiftAmt = RHS->getZExtValue(); 2553 if (ShiftAmt < 32) 2554 return SDValue(); 2555 2556 // srl i64:x, C for C >= 32 2557 // => 2558 // build_pair (srl hi_32(x), C - 32), 0 2559 2560 SelectionDAG &DAG = DCI.DAG; 2561 SDLoc SL(N); 2562 2563 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2564 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2565 2566 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2567 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2568 VecOp, One); 2569 2570 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2571 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2572 2573 SDValue BuildPair = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2574 NewShift, Zero); 2575 2576 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2577 } 2578 2579 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2580 DAGCombinerInfo &DCI) const { 2581 EVT VT = N->getValueType(0); 2582 2583 if (VT.isVector() || VT.getSizeInBits() > 32) 2584 return SDValue(); 2585 2586 SelectionDAG &DAG = DCI.DAG; 2587 SDLoc DL(N); 2588 2589 SDValue N0 = N->getOperand(0); 2590 SDValue N1 = N->getOperand(1); 2591 SDValue Mul; 2592 2593 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2594 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2595 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2596 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2597 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2598 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2599 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2600 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2601 } else { 2602 return SDValue(); 2603 } 2604 2605 // We need to use sext even for MUL_U24, because MUL_U24 is used 2606 // for signed multiply of 8 and 16-bit types. 2607 return DAG.getSExtOrTrunc(Mul, DL, VT); 2608 } 2609 2610 static bool isNegativeOne(SDValue Val) { 2611 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2612 return C->isAllOnesValue(); 2613 return false; 2614 } 2615 2616 static bool isCtlzOpc(unsigned Opc) { 2617 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2618 } 2619 2620 // Get FFBH node if the incoming op may have been type legalized from a smaller 2621 // type VT. 2622 // Need to match pre-legalized type because the generic legalization inserts the 2623 // add/sub between the select and compare. 2624 static SDValue getFFBH_U32(const TargetLowering &TLI, 2625 SelectionDAG &DAG, SDLoc SL, SDValue Op) { 2626 EVT VT = Op.getValueType(); 2627 EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2628 if (LegalVT != MVT::i32) 2629 return SDValue(); 2630 2631 if (VT != MVT::i32) 2632 Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op); 2633 2634 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op); 2635 if (VT != MVT::i32) 2636 FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH); 2637 2638 return FFBH; 2639 } 2640 2641 // The native instructions return -1 on 0 input. Optimize out a select that 2642 // produces -1 on 0. 2643 // 2644 // TODO: If zero is not undef, we could also do this if the output is compared 2645 // against the bitwidth. 2646 // 2647 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2648 SDValue AMDGPUTargetLowering::performCtlzCombine(SDLoc SL, 2649 SDValue Cond, 2650 SDValue LHS, 2651 SDValue RHS, 2652 DAGCombinerInfo &DCI) const { 2653 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2654 if (!CmpRhs || !CmpRhs->isNullValue()) 2655 return SDValue(); 2656 2657 SelectionDAG &DAG = DCI.DAG; 2658 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2659 SDValue CmpLHS = Cond.getOperand(0); 2660 2661 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2662 if (CCOpcode == ISD::SETEQ && 2663 isCtlzOpc(RHS.getOpcode()) && 2664 RHS.getOperand(0) == CmpLHS && 2665 isNegativeOne(LHS)) { 2666 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2667 } 2668 2669 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2670 if (CCOpcode == ISD::SETNE && 2671 isCtlzOpc(LHS.getOpcode()) && 2672 LHS.getOperand(0) == CmpLHS && 2673 isNegativeOne(RHS)) { 2674 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2675 } 2676 2677 return SDValue(); 2678 } 2679 2680 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2681 DAGCombinerInfo &DCI) const { 2682 SDValue Cond = N->getOperand(0); 2683 if (Cond.getOpcode() != ISD::SETCC) 2684 return SDValue(); 2685 2686 EVT VT = N->getValueType(0); 2687 SDValue LHS = Cond.getOperand(0); 2688 SDValue RHS = Cond.getOperand(1); 2689 SDValue CC = Cond.getOperand(2); 2690 2691 SDValue True = N->getOperand(1); 2692 SDValue False = N->getOperand(2); 2693 2694 if (VT == MVT::f32 && Cond.hasOneUse()) { 2695 SDValue MinMax 2696 = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2697 // Revisit this node so we can catch min3/max3/med3 patterns. 2698 //DCI.AddToWorklist(MinMax.getNode()); 2699 return MinMax; 2700 } 2701 2702 // There's no reason to not do this if the condition has other uses. 2703 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2704 } 2705 2706 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2707 DAGCombinerInfo &DCI) const { 2708 SelectionDAG &DAG = DCI.DAG; 2709 SDLoc DL(N); 2710 2711 switch(N->getOpcode()) { 2712 default: 2713 break; 2714 case ISD::SHL: { 2715 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2716 break; 2717 2718 return performShlCombine(N, DCI); 2719 } 2720 case ISD::SRL: { 2721 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2722 break; 2723 2724 return performSrlCombine(N, DCI); 2725 } 2726 case ISD::SRA: { 2727 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2728 break; 2729 2730 return performSraCombine(N, DCI); 2731 } 2732 case ISD::AND: { 2733 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2734 break; 2735 2736 return performAndCombine(N, DCI); 2737 } 2738 case ISD::MUL: 2739 return performMulCombine(N, DCI); 2740 case AMDGPUISD::MUL_I24: 2741 case AMDGPUISD::MUL_U24: { 2742 SDValue N0 = N->getOperand(0); 2743 SDValue N1 = N->getOperand(1); 2744 simplifyI24(N0, DCI); 2745 simplifyI24(N1, DCI); 2746 return SDValue(); 2747 } 2748 case ISD::SELECT: 2749 return performSelectCombine(N, DCI); 2750 case AMDGPUISD::BFE_I32: 2751 case AMDGPUISD::BFE_U32: { 2752 assert(!N->getValueType(0).isVector() && 2753 "Vector handling of BFE not implemented"); 2754 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2755 if (!Width) 2756 break; 2757 2758 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2759 if (WidthVal == 0) 2760 return DAG.getConstant(0, DL, MVT::i32); 2761 2762 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2763 if (!Offset) 2764 break; 2765 2766 SDValue BitsFrom = N->getOperand(0); 2767 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2768 2769 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2770 2771 if (OffsetVal == 0) { 2772 // This is already sign / zero extended, so try to fold away extra BFEs. 2773 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2774 2775 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2776 if (OpSignBits >= SignBits) 2777 return BitsFrom; 2778 2779 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2780 if (Signed) { 2781 // This is a sign_extend_inreg. Replace it to take advantage of existing 2782 // DAG Combines. If not eliminated, we will match back to BFE during 2783 // selection. 2784 2785 // TODO: The sext_inreg of extended types ends, although we can could 2786 // handle them in a single BFE. 2787 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2788 DAG.getValueType(SmallVT)); 2789 } 2790 2791 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2792 } 2793 2794 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2795 if (Signed) { 2796 return constantFoldBFE<int32_t>(DAG, 2797 CVal->getSExtValue(), 2798 OffsetVal, 2799 WidthVal, 2800 DL); 2801 } 2802 2803 return constantFoldBFE<uint32_t>(DAG, 2804 CVal->getZExtValue(), 2805 OffsetVal, 2806 WidthVal, 2807 DL); 2808 } 2809 2810 if ((OffsetVal + WidthVal) >= 32) { 2811 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2812 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2813 BitsFrom, ShiftVal); 2814 } 2815 2816 if (BitsFrom.hasOneUse()) { 2817 APInt Demanded = APInt::getBitsSet(32, 2818 OffsetVal, 2819 OffsetVal + WidthVal); 2820 2821 APInt KnownZero, KnownOne; 2822 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2823 !DCI.isBeforeLegalizeOps()); 2824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2825 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2826 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2827 KnownZero, KnownOne, TLO)) { 2828 DCI.CommitTargetLoweringOpt(TLO); 2829 } 2830 } 2831 2832 break; 2833 } 2834 2835 case ISD::STORE: 2836 return performStoreCombine(N, DCI); 2837 } 2838 return SDValue(); 2839 } 2840 2841 //===----------------------------------------------------------------------===// 2842 // Helper functions 2843 //===----------------------------------------------------------------------===// 2844 2845 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2846 SelectionDAG &DAG, 2847 const Function *F, 2848 const SmallVectorImpl<ISD::InputArg> &Ins, 2849 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2850 2851 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2852 if (Ins[i].ArgVT == Ins[i].VT) { 2853 OrigIns.push_back(Ins[i]); 2854 continue; 2855 } 2856 2857 EVT VT; 2858 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2859 // Vector has been split into scalars. 2860 VT = Ins[i].ArgVT.getVectorElementType(); 2861 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2862 Ins[i].ArgVT.getVectorElementType() != 2863 Ins[i].VT.getVectorElementType()) { 2864 // Vector elements have been promoted 2865 VT = Ins[i].ArgVT; 2866 } else { 2867 // Vector has been spilt into smaller vectors. 2868 VT = Ins[i].VT; 2869 } 2870 2871 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2872 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2873 OrigIns.push_back(Arg); 2874 } 2875 } 2876 2877 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const { 2878 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2879 return CFP->isExactlyValue(1.0); 2880 } 2881 return isAllOnesConstant(Op); 2882 } 2883 2884 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const { 2885 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2886 return CFP->getValueAPF().isZero(); 2887 } 2888 return isNullConstant(Op); 2889 } 2890 2891 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2892 const TargetRegisterClass *RC, 2893 unsigned Reg, EVT VT) const { 2894 MachineFunction &MF = DAG.getMachineFunction(); 2895 MachineRegisterInfo &MRI = MF.getRegInfo(); 2896 unsigned VirtualRegister; 2897 if (!MRI.isLiveIn(Reg)) { 2898 VirtualRegister = MRI.createVirtualRegister(RC); 2899 MRI.addLiveIn(Reg, VirtualRegister); 2900 } else { 2901 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2902 } 2903 return DAG.getRegister(VirtualRegister, VT); 2904 } 2905 2906 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2907 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2908 uint64_t ArgOffset = MFI->ABIArgOffset; 2909 switch (Param) { 2910 case GRID_DIM: 2911 return ArgOffset; 2912 case GRID_OFFSET: 2913 return ArgOffset + 4; 2914 } 2915 llvm_unreachable("unexpected implicit parameter type"); 2916 } 2917 2918 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2919 2920 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2921 switch ((AMDGPUISD::NodeType)Opcode) { 2922 case AMDGPUISD::FIRST_NUMBER: break; 2923 // AMDIL DAG nodes 2924 NODE_NAME_CASE(CALL); 2925 NODE_NAME_CASE(UMUL); 2926 NODE_NAME_CASE(RET_FLAG); 2927 NODE_NAME_CASE(BRANCH_COND); 2928 2929 // AMDGPU DAG nodes 2930 NODE_NAME_CASE(DWORDADDR) 2931 NODE_NAME_CASE(FRACT) 2932 NODE_NAME_CASE(CLAMP) 2933 NODE_NAME_CASE(COS_HW) 2934 NODE_NAME_CASE(SIN_HW) 2935 NODE_NAME_CASE(FMAX_LEGACY) 2936 NODE_NAME_CASE(FMIN_LEGACY) 2937 NODE_NAME_CASE(FMAX3) 2938 NODE_NAME_CASE(SMAX3) 2939 NODE_NAME_CASE(UMAX3) 2940 NODE_NAME_CASE(FMIN3) 2941 NODE_NAME_CASE(SMIN3) 2942 NODE_NAME_CASE(UMIN3) 2943 NODE_NAME_CASE(FMED3) 2944 NODE_NAME_CASE(SMED3) 2945 NODE_NAME_CASE(UMED3) 2946 NODE_NAME_CASE(URECIP) 2947 NODE_NAME_CASE(DIV_SCALE) 2948 NODE_NAME_CASE(DIV_FMAS) 2949 NODE_NAME_CASE(DIV_FIXUP) 2950 NODE_NAME_CASE(TRIG_PREOP) 2951 NODE_NAME_CASE(RCP) 2952 NODE_NAME_CASE(RSQ) 2953 NODE_NAME_CASE(RSQ_LEGACY) 2954 NODE_NAME_CASE(RSQ_CLAMPED) 2955 NODE_NAME_CASE(LDEXP) 2956 NODE_NAME_CASE(FP_CLASS) 2957 NODE_NAME_CASE(DOT4) 2958 NODE_NAME_CASE(CARRY) 2959 NODE_NAME_CASE(BORROW) 2960 NODE_NAME_CASE(BFE_U32) 2961 NODE_NAME_CASE(BFE_I32) 2962 NODE_NAME_CASE(BFI) 2963 NODE_NAME_CASE(BFM) 2964 NODE_NAME_CASE(FFBH_U32) 2965 NODE_NAME_CASE(MUL_U24) 2966 NODE_NAME_CASE(MUL_I24) 2967 NODE_NAME_CASE(MAD_U24) 2968 NODE_NAME_CASE(MAD_I24) 2969 NODE_NAME_CASE(TEXTURE_FETCH) 2970 NODE_NAME_CASE(EXPORT) 2971 NODE_NAME_CASE(CONST_ADDRESS) 2972 NODE_NAME_CASE(REGISTER_LOAD) 2973 NODE_NAME_CASE(REGISTER_STORE) 2974 NODE_NAME_CASE(LOAD_CONSTANT) 2975 NODE_NAME_CASE(LOAD_INPUT) 2976 NODE_NAME_CASE(SAMPLE) 2977 NODE_NAME_CASE(SAMPLEB) 2978 NODE_NAME_CASE(SAMPLED) 2979 NODE_NAME_CASE(SAMPLEL) 2980 NODE_NAME_CASE(CVT_F32_UBYTE0) 2981 NODE_NAME_CASE(CVT_F32_UBYTE1) 2982 NODE_NAME_CASE(CVT_F32_UBYTE2) 2983 NODE_NAME_CASE(CVT_F32_UBYTE3) 2984 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2985 NODE_NAME_CASE(CONST_DATA_PTR) 2986 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2987 NODE_NAME_CASE(SENDMSG) 2988 NODE_NAME_CASE(INTERP_MOV) 2989 NODE_NAME_CASE(INTERP_P1) 2990 NODE_NAME_CASE(INTERP_P2) 2991 NODE_NAME_CASE(STORE_MSKOR) 2992 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2993 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2994 } 2995 return nullptr; 2996 } 2997 2998 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2999 DAGCombinerInfo &DCI, 3000 unsigned &RefinementSteps, 3001 bool &UseOneConstNR) const { 3002 SelectionDAG &DAG = DCI.DAG; 3003 EVT VT = Operand.getValueType(); 3004 3005 if (VT == MVT::f32) { 3006 RefinementSteps = 0; 3007 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3008 } 3009 3010 // TODO: There is also f64 rsq instruction, but the documentation is less 3011 // clear on its precision. 3012 3013 return SDValue(); 3014 } 3015 3016 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3017 DAGCombinerInfo &DCI, 3018 unsigned &RefinementSteps) const { 3019 SelectionDAG &DAG = DCI.DAG; 3020 EVT VT = Operand.getValueType(); 3021 3022 if (VT == MVT::f32) { 3023 // Reciprocal, < 1 ulp error. 3024 // 3025 // This reciprocal approximation converges to < 0.5 ulp error with one 3026 // newton rhapson performed with two fused multiple adds (FMAs). 3027 3028 RefinementSteps = 0; 3029 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3030 } 3031 3032 // TODO: There is also f64 rcp instruction, but the documentation is less 3033 // clear on its precision. 3034 3035 return SDValue(); 3036 } 3037 3038 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3039 const SDValue Op, 3040 APInt &KnownZero, 3041 APInt &KnownOne, 3042 const SelectionDAG &DAG, 3043 unsigned Depth) const { 3044 3045 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 3046 3047 APInt KnownZero2; 3048 APInt KnownOne2; 3049 unsigned Opc = Op.getOpcode(); 3050 3051 switch (Opc) { 3052 default: 3053 break; 3054 case AMDGPUISD::CARRY: 3055 case AMDGPUISD::BORROW: { 3056 KnownZero = APInt::getHighBitsSet(32, 31); 3057 break; 3058 } 3059 3060 case AMDGPUISD::BFE_I32: 3061 case AMDGPUISD::BFE_U32: { 3062 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3063 if (!CWidth) 3064 return; 3065 3066 unsigned BitWidth = 32; 3067 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3068 3069 if (Opc == AMDGPUISD::BFE_U32) 3070 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 3071 3072 break; 3073 } 3074 } 3075 } 3076 3077 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3078 SDValue Op, 3079 const SelectionDAG &DAG, 3080 unsigned Depth) const { 3081 switch (Op.getOpcode()) { 3082 case AMDGPUISD::BFE_I32: { 3083 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3084 if (!Width) 3085 return 1; 3086 3087 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3088 if (!isNullConstant(Op.getOperand(1))) 3089 return SignBits; 3090 3091 // TODO: Could probably figure something out with non-0 offsets. 3092 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3093 return std::max(SignBits, Op0SignBits); 3094 } 3095 3096 case AMDGPUISD::BFE_U32: { 3097 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3098 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3099 } 3100 3101 case AMDGPUISD::CARRY: 3102 case AMDGPUISD::BORROW: 3103 return 31; 3104 3105 default: 3106 return 1; 3107 } 3108 } 3109