1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "SIInstrInfo.h" 33 using namespace llvm; 34 35 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 36 CCValAssign::LocInfo LocInfo, 37 ISD::ArgFlagsTy ArgFlags, CCState &State) { 38 MachineFunction &MF = State.getMachineFunction(); 39 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 40 41 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 42 ArgFlags.getOrigAlign()); 43 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 44 return true; 45 } 46 47 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 48 CCValAssign::LocInfo LocInfo, 49 ISD::ArgFlagsTy ArgFlags, CCState &State, 50 const TargetRegisterClass *RC, 51 unsigned NumRegs) { 52 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 53 unsigned RegResult = State.AllocateReg(RegList); 54 if (RegResult == AMDGPU::NoRegister) 55 return false; 56 57 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 58 return true; 59 } 60 61 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 62 CCValAssign::LocInfo LocInfo, 63 ISD::ArgFlagsTy ArgFlags, CCState &State) { 64 switch (LocVT.SimpleTy) { 65 case MVT::i64: 66 case MVT::f64: 67 case MVT::v2i32: 68 case MVT::v2f32: { 69 // Up to SGPR0-SGPR39 70 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 71 &AMDGPU::SGPR_64RegClass, 20); 72 } 73 default: 74 return false; 75 } 76 } 77 78 #include "AMDGPUGenCallingConv.inc" 79 80 // Find a larger type to do a load / store of a vector with. 81 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 82 unsigned StoreSize = VT.getStoreSizeInBits(); 83 if (StoreSize <= 32) 84 return EVT::getIntegerVT(Ctx, StoreSize); 85 86 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 87 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 88 } 89 90 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 91 const AMDGPUSubtarget &STI) 92 : TargetLowering(TM), Subtarget(&STI) { 93 AMDGPUASI = AMDGPU::getAMDGPUAS(TM); 94 // Lower floating point store/load to integer store/load to reduce the number 95 // of patterns in tablegen. 96 setOperationAction(ISD::LOAD, MVT::f32, Promote); 97 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 98 99 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 100 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 101 102 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 103 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 104 105 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 106 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 107 108 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 109 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 110 111 setOperationAction(ISD::LOAD, MVT::i64, Promote); 112 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 113 114 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 115 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 116 117 setOperationAction(ISD::LOAD, MVT::f64, Promote); 118 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 119 120 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 121 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 122 123 // There are no 64-bit extloads. These should be done as a 32-bit extload and 124 // an extension to 64-bit. 125 for (MVT VT : MVT::integer_valuetypes()) { 126 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 127 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 128 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 129 } 130 131 for (MVT VT : MVT::integer_valuetypes()) { 132 if (VT == MVT::i64) 133 continue; 134 135 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 137 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 138 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 139 140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 142 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 144 145 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 146 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 148 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 149 } 150 151 for (MVT VT : MVT::integer_vector_valuetypes()) { 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 153 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 154 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 155 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 156 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 157 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 158 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 160 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 161 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 162 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 163 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 164 } 165 166 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 167 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 168 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 170 171 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 172 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 173 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 174 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 175 176 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 180 181 setOperationAction(ISD::STORE, MVT::f32, Promote); 182 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 183 184 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 185 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 186 187 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 188 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 189 190 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 191 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 192 193 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 194 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 195 196 setOperationAction(ISD::STORE, MVT::i64, Promote); 197 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 198 199 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 200 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 201 202 setOperationAction(ISD::STORE, MVT::f64, Promote); 203 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 204 205 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 206 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 207 208 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 209 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 210 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 211 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 212 213 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 214 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 215 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 216 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 217 218 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 219 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 220 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 221 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 222 223 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 224 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 225 226 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 227 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 228 229 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 230 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 231 232 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 233 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 234 235 236 setOperationAction(ISD::Constant, MVT::i32, Legal); 237 setOperationAction(ISD::Constant, MVT::i64, Legal); 238 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 239 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 240 241 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 242 setOperationAction(ISD::BRIND, MVT::Other, Expand); 243 244 // This is totally unsupported, just custom lower to produce an error. 245 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 246 247 // Library functions. These default to Expand, but we have instructions 248 // for them. 249 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 250 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 251 setOperationAction(ISD::FPOW, MVT::f32, Legal); 252 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 253 setOperationAction(ISD::FABS, MVT::f32, Legal); 254 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 255 setOperationAction(ISD::FRINT, MVT::f32, Legal); 256 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 257 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 258 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 259 260 setOperationAction(ISD::FROUND, MVT::f32, Custom); 261 setOperationAction(ISD::FROUND, MVT::f64, Custom); 262 263 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 264 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 265 266 setOperationAction(ISD::FREM, MVT::f32, Custom); 267 setOperationAction(ISD::FREM, MVT::f64, Custom); 268 269 // v_mad_f32 does not support denormals according to some sources. 270 if (!Subtarget->hasFP32Denormals()) 271 setOperationAction(ISD::FMAD, MVT::f32, Legal); 272 273 // Expand to fneg + fadd. 274 setOperationAction(ISD::FSUB, MVT::f64, Expand); 275 276 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 277 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 278 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 279 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 280 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 281 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 282 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 283 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 284 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 285 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 286 287 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 288 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 289 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 290 setOperationAction(ISD::FRINT, MVT::f64, Custom); 291 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 292 } 293 294 if (!Subtarget->hasBFI()) { 295 // fcopysign can be done in a single instruction with BFI. 296 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 297 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 298 } 299 300 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 301 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 302 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 303 304 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 305 for (MVT VT : ScalarIntVTs) { 306 // These should use [SU]DIVREM, so set them to expand 307 setOperationAction(ISD::SDIV, VT, Expand); 308 setOperationAction(ISD::UDIV, VT, Expand); 309 setOperationAction(ISD::SREM, VT, Expand); 310 setOperationAction(ISD::UREM, VT, Expand); 311 312 // GPU does not have divrem function for signed or unsigned. 313 setOperationAction(ISD::SDIVREM, VT, Custom); 314 setOperationAction(ISD::UDIVREM, VT, Custom); 315 316 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 317 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 318 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 319 320 setOperationAction(ISD::BSWAP, VT, Expand); 321 setOperationAction(ISD::CTTZ, VT, Expand); 322 setOperationAction(ISD::CTLZ, VT, Expand); 323 } 324 325 if (!Subtarget->hasBCNT(32)) 326 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 327 328 if (!Subtarget->hasBCNT(64)) 329 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 330 331 // The hardware supports 32-bit ROTR, but not ROTL. 332 setOperationAction(ISD::ROTL, MVT::i32, Expand); 333 setOperationAction(ISD::ROTL, MVT::i64, Expand); 334 setOperationAction(ISD::ROTR, MVT::i64, Expand); 335 336 setOperationAction(ISD::MUL, MVT::i64, Expand); 337 setOperationAction(ISD::MULHU, MVT::i64, Expand); 338 setOperationAction(ISD::MULHS, MVT::i64, Expand); 339 setOperationAction(ISD::UDIV, MVT::i32, Expand); 340 setOperationAction(ISD::UREM, MVT::i32, Expand); 341 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 342 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 343 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 344 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 345 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 346 347 setOperationAction(ISD::SMIN, MVT::i32, Legal); 348 setOperationAction(ISD::UMIN, MVT::i32, Legal); 349 setOperationAction(ISD::SMAX, MVT::i32, Legal); 350 setOperationAction(ISD::UMAX, MVT::i32, Legal); 351 352 if (Subtarget->hasFFBH()) 353 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 354 355 if (Subtarget->hasFFBL()) 356 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 357 358 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 359 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 360 361 // We only really have 32-bit BFE instructions (and 16-bit on VI). 362 // 363 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 364 // effort to match them now. We want this to be false for i64 cases when the 365 // extraction isn't restricted to the upper or lower half. Ideally we would 366 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 367 // span the midpoint are probably relatively rare, so don't worry about them 368 // for now. 369 if (Subtarget->hasBFE()) 370 setHasExtractBitsInsn(true); 371 372 static const MVT::SimpleValueType VectorIntTypes[] = { 373 MVT::v2i32, MVT::v4i32 374 }; 375 376 for (MVT VT : VectorIntTypes) { 377 // Expand the following operations for the current type by default. 378 setOperationAction(ISD::ADD, VT, Expand); 379 setOperationAction(ISD::AND, VT, Expand); 380 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 381 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 382 setOperationAction(ISD::MUL, VT, Expand); 383 setOperationAction(ISD::MULHU, VT, Expand); 384 setOperationAction(ISD::MULHS, VT, Expand); 385 setOperationAction(ISD::OR, VT, Expand); 386 setOperationAction(ISD::SHL, VT, Expand); 387 setOperationAction(ISD::SRA, VT, Expand); 388 setOperationAction(ISD::SRL, VT, Expand); 389 setOperationAction(ISD::ROTL, VT, Expand); 390 setOperationAction(ISD::ROTR, VT, Expand); 391 setOperationAction(ISD::SUB, VT, Expand); 392 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 393 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 394 setOperationAction(ISD::SDIV, VT, Expand); 395 setOperationAction(ISD::UDIV, VT, Expand); 396 setOperationAction(ISD::SREM, VT, Expand); 397 setOperationAction(ISD::UREM, VT, Expand); 398 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 399 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 400 setOperationAction(ISD::SDIVREM, VT, Custom); 401 setOperationAction(ISD::UDIVREM, VT, Expand); 402 setOperationAction(ISD::ADDC, VT, Expand); 403 setOperationAction(ISD::SUBC, VT, Expand); 404 setOperationAction(ISD::ADDE, VT, Expand); 405 setOperationAction(ISD::SUBE, VT, Expand); 406 setOperationAction(ISD::SELECT, VT, Expand); 407 setOperationAction(ISD::VSELECT, VT, Expand); 408 setOperationAction(ISD::SELECT_CC, VT, Expand); 409 setOperationAction(ISD::XOR, VT, Expand); 410 setOperationAction(ISD::BSWAP, VT, Expand); 411 setOperationAction(ISD::CTPOP, VT, Expand); 412 setOperationAction(ISD::CTTZ, VT, Expand); 413 setOperationAction(ISD::CTLZ, VT, Expand); 414 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 415 } 416 417 static const MVT::SimpleValueType FloatVectorTypes[] = { 418 MVT::v2f32, MVT::v4f32 419 }; 420 421 for (MVT VT : FloatVectorTypes) { 422 setOperationAction(ISD::FABS, VT, Expand); 423 setOperationAction(ISD::FMINNUM, VT, Expand); 424 setOperationAction(ISD::FMAXNUM, VT, Expand); 425 setOperationAction(ISD::FADD, VT, Expand); 426 setOperationAction(ISD::FCEIL, VT, Expand); 427 setOperationAction(ISD::FCOS, VT, Expand); 428 setOperationAction(ISD::FDIV, VT, Expand); 429 setOperationAction(ISD::FEXP2, VT, Expand); 430 setOperationAction(ISD::FLOG2, VT, Expand); 431 setOperationAction(ISD::FREM, VT, Expand); 432 setOperationAction(ISD::FPOW, VT, Expand); 433 setOperationAction(ISD::FFLOOR, VT, Expand); 434 setOperationAction(ISD::FTRUNC, VT, Expand); 435 setOperationAction(ISD::FMUL, VT, Expand); 436 setOperationAction(ISD::FMA, VT, Expand); 437 setOperationAction(ISD::FRINT, VT, Expand); 438 setOperationAction(ISD::FNEARBYINT, VT, Expand); 439 setOperationAction(ISD::FSQRT, VT, Expand); 440 setOperationAction(ISD::FSIN, VT, Expand); 441 setOperationAction(ISD::FSUB, VT, Expand); 442 setOperationAction(ISD::FNEG, VT, Expand); 443 setOperationAction(ISD::VSELECT, VT, Expand); 444 setOperationAction(ISD::SELECT_CC, VT, Expand); 445 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 446 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 447 } 448 449 // This causes using an unrolled select operation rather than expansion with 450 // bit operations. This is in general better, but the alternative using BFI 451 // instructions may be better if the select sources are SGPRs. 452 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 453 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 454 455 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 456 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 457 458 // There are no libcalls of any kind. 459 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 460 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 461 462 setBooleanContents(ZeroOrNegativeOneBooleanContent); 463 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 464 465 setSchedulingPreference(Sched::RegPressure); 466 setJumpIsExpensive(true); 467 468 // FIXME: This is only partially true. If we have to do vector compares, any 469 // SGPR pair can be a condition register. If we have a uniform condition, we 470 // are better off doing SALU operations, where there is only one SCC. For now, 471 // we don't have a way of knowing during instruction selection if a condition 472 // will be uniform and we always use vector compares. Assume we are using 473 // vector compares until that is fixed. 474 setHasMultipleConditionRegisters(true); 475 476 // SI at least has hardware support for floating point exceptions, but no way 477 // of using or handling them is implemented. They are also optional in OpenCL 478 // (Section 7.3) 479 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 480 481 PredictableSelectIsExpensive = false; 482 483 // We want to find all load dependencies for long chains of stores to enable 484 // merging into very wide vectors. The problem is with vectors with > 4 485 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 486 // vectors are a legal type, even though we have to split the loads 487 // usually. When we can more precisely specify load legality per address 488 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 489 // smarter so that they can figure out what to do in 2 iterations without all 490 // N > 4 stores on the same chain. 491 GatherAllAliasesMaxDepth = 16; 492 493 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 494 // about these during lowering. 495 MaxStoresPerMemcpy = 0xffffffff; 496 MaxStoresPerMemmove = 0xffffffff; 497 MaxStoresPerMemset = 0xffffffff; 498 499 setTargetDAGCombine(ISD::BITCAST); 500 setTargetDAGCombine(ISD::SHL); 501 setTargetDAGCombine(ISD::SRA); 502 setTargetDAGCombine(ISD::SRL); 503 setTargetDAGCombine(ISD::MUL); 504 setTargetDAGCombine(ISD::MULHU); 505 setTargetDAGCombine(ISD::MULHS); 506 setTargetDAGCombine(ISD::SELECT); 507 setTargetDAGCombine(ISD::SELECT_CC); 508 setTargetDAGCombine(ISD::STORE); 509 setTargetDAGCombine(ISD::FADD); 510 setTargetDAGCombine(ISD::FSUB); 511 setTargetDAGCombine(ISD::FNEG); 512 setTargetDAGCombine(ISD::FABS); 513 } 514 515 //===----------------------------------------------------------------------===// 516 // Target Information 517 //===----------------------------------------------------------------------===// 518 519 LLVM_READNONE 520 static bool fnegFoldsIntoOp(unsigned Opc) { 521 switch (Opc) { 522 case ISD::FADD: 523 case ISD::FSUB: 524 case ISD::FMUL: 525 case ISD::FMA: 526 case ISD::FMAD: 527 case ISD::FMINNUM: 528 case ISD::FMAXNUM: 529 case ISD::FSIN: 530 case ISD::FTRUNC: 531 case ISD::FRINT: 532 case ISD::FNEARBYINT: 533 case AMDGPUISD::RCP: 534 case AMDGPUISD::RCP_LEGACY: 535 case AMDGPUISD::SIN_HW: 536 case AMDGPUISD::FMUL_LEGACY: 537 case AMDGPUISD::FMIN_LEGACY: 538 case AMDGPUISD::FMAX_LEGACY: 539 return true; 540 default: 541 return false; 542 } 543 } 544 545 /// \p returns true if the operation will definitely need to use a 64-bit 546 /// encoding, and thus will use a VOP3 encoding regardless of the source 547 /// modifiers. 548 LLVM_READONLY 549 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 550 return N->getNumOperands() > 2 || VT == MVT::f64; 551 } 552 553 // Most FP instructions support source modifiers, but this could be refined 554 // slightly. 555 LLVM_READONLY 556 static bool hasSourceMods(const SDNode *N) { 557 if (isa<MemSDNode>(N)) 558 return false; 559 560 switch (N->getOpcode()) { 561 case ISD::CopyToReg: 562 case ISD::SELECT: 563 case ISD::FDIV: 564 case ISD::FREM: 565 case ISD::INLINEASM: 566 case AMDGPUISD::INTERP_P1: 567 case AMDGPUISD::INTERP_P2: 568 case AMDGPUISD::DIV_SCALE: 569 return false; 570 default: 571 return true; 572 } 573 } 574 575 static bool allUsesHaveSourceMods(const SDNode *N, unsigned CostThreshold = 4) { 576 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 577 // it is truly free to use a source modifier in all cases. If there are 578 // multiple users but for each one will necessitate using VOP3, there will be 579 // a code size increase. Try to avoid increasing code size unless we know it 580 // will save on the instruction count. 581 unsigned NumMayIncreaseSize = 0; 582 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 583 584 // XXX - Should this limit number of uses to check? 585 for (const SDNode *U : N->uses()) { 586 if (!hasSourceMods(U)) 587 return false; 588 589 if (!opMustUseVOP3Encoding(U, VT)) { 590 if (++NumMayIncreaseSize > CostThreshold) 591 return false; 592 } 593 } 594 595 return true; 596 } 597 598 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 599 return MVT::i32; 600 } 601 602 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 603 return true; 604 } 605 606 // The backend supports 32 and 64 bit floating point immediates. 607 // FIXME: Why are we reporting vectors of FP immediates as legal? 608 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 609 EVT ScalarVT = VT.getScalarType(); 610 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 611 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 612 } 613 614 // We don't want to shrink f64 / f32 constants. 615 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 616 EVT ScalarVT = VT.getScalarType(); 617 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 618 } 619 620 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 621 ISD::LoadExtType, 622 EVT NewVT) const { 623 624 unsigned NewSize = NewVT.getStoreSizeInBits(); 625 626 // If we are reducing to a 32-bit load, this is always better. 627 if (NewSize == 32) 628 return true; 629 630 EVT OldVT = N->getValueType(0); 631 unsigned OldSize = OldVT.getStoreSizeInBits(); 632 633 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 634 // extloads, so doing one requires using a buffer_load. In cases where we 635 // still couldn't use a scalar load, using the wider load shouldn't really 636 // hurt anything. 637 638 // If the old size already had to be an extload, there's no harm in continuing 639 // to reduce the width. 640 return (OldSize < 32); 641 } 642 643 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 644 EVT CastTy) const { 645 646 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 647 648 if (LoadTy.getScalarType() == MVT::i32) 649 return false; 650 651 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 652 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 653 654 return (LScalarSize < CastScalarSize) || 655 (CastScalarSize >= 32); 656 } 657 658 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 659 // profitable with the expansion for 64-bit since it's generally good to 660 // speculate things. 661 // FIXME: These should really have the size as a parameter. 662 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 663 return true; 664 } 665 666 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 667 return true; 668 } 669 670 //===---------------------------------------------------------------------===// 671 // Target Properties 672 //===---------------------------------------------------------------------===// 673 674 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 675 assert(VT.isFloatingPoint()); 676 677 // Packed operations do not have a fabs modifier. 678 return VT == MVT::f32 || VT == MVT::f64 || 679 (Subtarget->has16BitInsts() && VT == MVT::f16); 680 } 681 682 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 683 assert(VT.isFloatingPoint()); 684 return VT == MVT::f32 || VT == MVT::f64 || 685 (Subtarget->has16BitInsts() && VT == MVT::f16) || 686 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 687 } 688 689 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 690 unsigned NumElem, 691 unsigned AS) const { 692 return true; 693 } 694 695 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 696 // There are few operations which truly have vector input operands. Any vector 697 // operation is going to involve operations on each component, and a 698 // build_vector will be a copy per element, so it always makes sense to use a 699 // build_vector input in place of the extracted element to avoid a copy into a 700 // super register. 701 // 702 // We should probably only do this if all users are extracts only, but this 703 // should be the common case. 704 return true; 705 } 706 707 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 708 // Truncate is just accessing a subregister. 709 710 unsigned SrcSize = Source.getSizeInBits(); 711 unsigned DestSize = Dest.getSizeInBits(); 712 713 return DestSize < SrcSize && DestSize % 32 == 0 ; 714 } 715 716 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 717 // Truncate is just accessing a subregister. 718 719 unsigned SrcSize = Source->getScalarSizeInBits(); 720 unsigned DestSize = Dest->getScalarSizeInBits(); 721 722 if (DestSize== 16 && Subtarget->has16BitInsts()) 723 return SrcSize >= 32; 724 725 return DestSize < SrcSize && DestSize % 32 == 0; 726 } 727 728 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 729 unsigned SrcSize = Src->getScalarSizeInBits(); 730 unsigned DestSize = Dest->getScalarSizeInBits(); 731 732 if (SrcSize == 16 && Subtarget->has16BitInsts()) 733 return DestSize >= 32; 734 735 return SrcSize == 32 && DestSize == 64; 736 } 737 738 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 739 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 740 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 741 // this will enable reducing 64-bit operations the 32-bit, which is always 742 // good. 743 744 if (Src == MVT::i16) 745 return Dest == MVT::i32 ||Dest == MVT::i64 ; 746 747 return Src == MVT::i32 && Dest == MVT::i64; 748 } 749 750 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 751 return isZExtFree(Val.getValueType(), VT2); 752 } 753 754 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 755 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 756 // limited number of native 64-bit operations. Shrinking an operation to fit 757 // in a single 32-bit register should always be helpful. As currently used, 758 // this is much less general than the name suggests, and is only used in 759 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 760 // not profitable, and may actually be harmful. 761 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 762 } 763 764 //===---------------------------------------------------------------------===// 765 // TargetLowering Callbacks 766 //===---------------------------------------------------------------------===// 767 768 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 769 bool IsVarArg) const { 770 return CC_AMDGPU; 771 } 772 773 /// The SelectionDAGBuilder will automatically promote function arguments 774 /// with illegal types. However, this does not work for the AMDGPU targets 775 /// since the function arguments are stored in memory as these illegal types. 776 /// In order to handle this properly we need to get the original types sizes 777 /// from the LLVM IR Function and fixup the ISD:InputArg values before 778 /// passing them to AnalyzeFormalArguments() 779 780 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 781 /// input values across multiple registers. Each item in the Ins array 782 /// represents a single value that will be stored in regsters. Ins[x].VT is 783 /// the value type of the value that will be stored in the register, so 784 /// whatever SDNode we lower the argument to needs to be this type. 785 /// 786 /// In order to correctly lower the arguments we need to know the size of each 787 /// argument. Since Ins[x].VT gives us the size of the register that will 788 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 789 /// for the orignal function argument so that we can deduce the correct memory 790 /// type to use for Ins[x]. In most cases the correct memory type will be 791 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 792 /// we have a kernel argument of type v8i8, this argument will be split into 793 /// 8 parts and each part will be represented by its own item in the Ins array. 794 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 795 /// the argument before it was split. From this, we deduce that the memory type 796 /// for each individual part is i8. We pass the memory type as LocVT to the 797 /// calling convention analysis function and the register type (Ins[x].VT) as 798 /// the ValVT. 799 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 800 const SmallVectorImpl<ISD::InputArg> &Ins) const { 801 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 802 const ISD::InputArg &In = Ins[i]; 803 EVT MemVT; 804 805 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 806 807 if (!Subtarget->isAmdHsaOS() && 808 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 809 // The ABI says the caller will extend these values to 32-bits. 810 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 811 } else if (NumRegs == 1) { 812 // This argument is not split, so the IR type is the memory type. 813 assert(!In.Flags.isSplit()); 814 if (In.ArgVT.isExtended()) { 815 // We have an extended type, like i24, so we should just use the register type 816 MemVT = In.VT; 817 } else { 818 MemVT = In.ArgVT; 819 } 820 } else if (In.ArgVT.isVector() && In.VT.isVector() && 821 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 822 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 823 // We have a vector value which has been split into a vector with 824 // the same scalar type, but fewer elements. This should handle 825 // all the floating-point vector types. 826 MemVT = In.VT; 827 } else if (In.ArgVT.isVector() && 828 In.ArgVT.getVectorNumElements() == NumRegs) { 829 // This arg has been split so that each element is stored in a separate 830 // register. 831 MemVT = In.ArgVT.getScalarType(); 832 } else if (In.ArgVT.isExtended()) { 833 // We have an extended type, like i65. 834 MemVT = In.VT; 835 } else { 836 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 837 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 838 if (In.VT.isInteger()) { 839 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 840 } else if (In.VT.isVector()) { 841 assert(!In.VT.getScalarType().isFloatingPoint()); 842 unsigned NumElements = In.VT.getVectorNumElements(); 843 assert(MemoryBits % NumElements == 0); 844 // This vector type has been split into another vector type with 845 // a different elements size. 846 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 847 MemoryBits / NumElements); 848 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 849 } else { 850 llvm_unreachable("cannot deduce memory type."); 851 } 852 } 853 854 // Convert one element vectors to scalar. 855 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 856 MemVT = MemVT.getScalarType(); 857 858 if (MemVT.isExtended()) { 859 // This should really only happen if we have vec3 arguments 860 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 861 MemVT = MemVT.getPow2VectorType(State.getContext()); 862 } 863 864 assert(MemVT.isSimple()); 865 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 866 State); 867 } 868 } 869 870 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 871 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 872 873 State.AnalyzeReturn(Outs, RetCC_SI); 874 } 875 876 SDValue 877 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 878 bool isVarArg, 879 const SmallVectorImpl<ISD::OutputArg> &Outs, 880 const SmallVectorImpl<SDValue> &OutVals, 881 const SDLoc &DL, SelectionDAG &DAG) const { 882 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 883 } 884 885 //===---------------------------------------------------------------------===// 886 // Target specific lowering 887 //===---------------------------------------------------------------------===// 888 889 /// Selects the correct CCAssignFn for a given CallingConvention value. 890 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 891 bool IsVarArg) { 892 switch (CC) { 893 case CallingConv::C: 894 case CallingConv::AMDGPU_KERNEL: 895 case CallingConv::SPIR_KERNEL: 896 return CC_AMDGPU_Kernel; 897 case CallingConv::AMDGPU_VS: 898 case CallingConv::AMDGPU_GS: 899 case CallingConv::AMDGPU_PS: 900 case CallingConv::AMDGPU_CS: 901 return CC_AMDGPU; 902 default: 903 report_fatal_error("Unsupported calling convention."); 904 } 905 } 906 907 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 908 SmallVectorImpl<SDValue> &InVals) const { 909 SDValue Callee = CLI.Callee; 910 SelectionDAG &DAG = CLI.DAG; 911 912 const Function &Fn = *DAG.getMachineFunction().getFunction(); 913 914 StringRef FuncName("<unknown>"); 915 916 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 917 FuncName = G->getSymbol(); 918 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 919 FuncName = G->getGlobal()->getName(); 920 921 DiagnosticInfoUnsupported NoCalls( 922 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 923 DAG.getContext()->diagnose(NoCalls); 924 925 if (!CLI.IsTailCall) { 926 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 927 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 928 } 929 930 return DAG.getEntryNode(); 931 } 932 933 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 934 SelectionDAG &DAG) const { 935 const Function &Fn = *DAG.getMachineFunction().getFunction(); 936 937 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 938 SDLoc(Op).getDebugLoc()); 939 DAG.getContext()->diagnose(NoDynamicAlloca); 940 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 941 return DAG.getMergeValues(Ops, SDLoc()); 942 } 943 944 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 945 SelectionDAG &DAG) const { 946 switch (Op.getOpcode()) { 947 default: 948 Op->print(errs(), &DAG); 949 llvm_unreachable("Custom lowering code for this" 950 "instruction is not implemented yet!"); 951 break; 952 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 953 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 954 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 955 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 956 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 957 case ISD::FREM: return LowerFREM(Op, DAG); 958 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 959 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 960 case ISD::FRINT: return LowerFRINT(Op, DAG); 961 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 962 case ISD::FROUND: return LowerFROUND(Op, DAG); 963 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 964 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 965 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 966 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 967 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 968 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 969 case ISD::CTLZ: 970 case ISD::CTLZ_ZERO_UNDEF: 971 return LowerCTLZ(Op, DAG); 972 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 973 } 974 return Op; 975 } 976 977 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 978 SmallVectorImpl<SDValue> &Results, 979 SelectionDAG &DAG) const { 980 switch (N->getOpcode()) { 981 case ISD::SIGN_EXTEND_INREG: 982 // Different parts of legalization seem to interpret which type of 983 // sign_extend_inreg is the one to check for custom lowering. The extended 984 // from type is what really matters, but some places check for custom 985 // lowering of the result type. This results in trying to use 986 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 987 // nothing here and let the illegal result integer be handled normally. 988 return; 989 default: 990 return; 991 } 992 } 993 994 static bool hasDefinedInitializer(const GlobalValue *GV) { 995 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 996 if (!GVar || !GVar->hasInitializer()) 997 return false; 998 999 return !isa<UndefValue>(GVar->getInitializer()); 1000 } 1001 1002 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1003 SDValue Op, 1004 SelectionDAG &DAG) const { 1005 1006 const DataLayout &DL = DAG.getDataLayout(); 1007 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1008 const GlobalValue *GV = G->getGlobal(); 1009 1010 if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) { 1011 // XXX: What does the value of G->getOffset() mean? 1012 assert(G->getOffset() == 0 && 1013 "Do not know what to do with an non-zero offset"); 1014 1015 // TODO: We could emit code to handle the initialization somewhere. 1016 if (!hasDefinedInitializer(GV)) { 1017 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1018 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1019 } 1020 } 1021 1022 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1023 DiagnosticInfoUnsupported BadInit( 1024 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1025 DAG.getContext()->diagnose(BadInit); 1026 return SDValue(); 1027 } 1028 1029 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1030 SelectionDAG &DAG) const { 1031 SmallVector<SDValue, 8> Args; 1032 1033 for (const SDUse &U : Op->ops()) 1034 DAG.ExtractVectorElements(U.get(), Args); 1035 1036 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1037 } 1038 1039 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1040 SelectionDAG &DAG) const { 1041 1042 SmallVector<SDValue, 8> Args; 1043 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1044 EVT VT = Op.getValueType(); 1045 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1046 VT.getVectorNumElements()); 1047 1048 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1049 } 1050 1051 /// \brief Generate Min/Max node 1052 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1053 SDValue LHS, SDValue RHS, 1054 SDValue True, SDValue False, 1055 SDValue CC, 1056 DAGCombinerInfo &DCI) const { 1057 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1058 return SDValue(); 1059 1060 SelectionDAG &DAG = DCI.DAG; 1061 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1062 switch (CCOpcode) { 1063 case ISD::SETOEQ: 1064 case ISD::SETONE: 1065 case ISD::SETUNE: 1066 case ISD::SETNE: 1067 case ISD::SETUEQ: 1068 case ISD::SETEQ: 1069 case ISD::SETFALSE: 1070 case ISD::SETFALSE2: 1071 case ISD::SETTRUE: 1072 case ISD::SETTRUE2: 1073 case ISD::SETUO: 1074 case ISD::SETO: 1075 break; 1076 case ISD::SETULE: 1077 case ISD::SETULT: { 1078 if (LHS == True) 1079 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1080 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1081 } 1082 case ISD::SETOLE: 1083 case ISD::SETOLT: 1084 case ISD::SETLE: 1085 case ISD::SETLT: { 1086 // Ordered. Assume ordered for undefined. 1087 1088 // Only do this after legalization to avoid interfering with other combines 1089 // which might occur. 1090 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1091 !DCI.isCalledByLegalizer()) 1092 return SDValue(); 1093 1094 // We need to permute the operands to get the correct NaN behavior. The 1095 // selected operand is the second one based on the failing compare with NaN, 1096 // so permute it based on the compare type the hardware uses. 1097 if (LHS == True) 1098 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1099 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1100 } 1101 case ISD::SETUGE: 1102 case ISD::SETUGT: { 1103 if (LHS == True) 1104 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1105 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1106 } 1107 case ISD::SETGT: 1108 case ISD::SETGE: 1109 case ISD::SETOGE: 1110 case ISD::SETOGT: { 1111 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1112 !DCI.isCalledByLegalizer()) 1113 return SDValue(); 1114 1115 if (LHS == True) 1116 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1117 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1118 } 1119 case ISD::SETCC_INVALID: 1120 llvm_unreachable("Invalid setcc condcode!"); 1121 } 1122 return SDValue(); 1123 } 1124 1125 std::pair<SDValue, SDValue> 1126 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1127 SDLoc SL(Op); 1128 1129 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1130 1131 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1132 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1133 1134 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1135 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1136 1137 return std::make_pair(Lo, Hi); 1138 } 1139 1140 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1141 SDLoc SL(Op); 1142 1143 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1144 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1145 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1146 } 1147 1148 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1149 SDLoc SL(Op); 1150 1151 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1152 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1153 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1154 } 1155 1156 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1157 SelectionDAG &DAG) const { 1158 LoadSDNode *Load = cast<LoadSDNode>(Op); 1159 EVT VT = Op.getValueType(); 1160 1161 1162 // If this is a 2 element vector, we really want to scalarize and not create 1163 // weird 1 element vectors. 1164 if (VT.getVectorNumElements() == 2) 1165 return scalarizeVectorLoad(Load, DAG); 1166 1167 SDValue BasePtr = Load->getBasePtr(); 1168 EVT PtrVT = BasePtr.getValueType(); 1169 EVT MemVT = Load->getMemoryVT(); 1170 SDLoc SL(Op); 1171 1172 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1173 1174 EVT LoVT, HiVT; 1175 EVT LoMemVT, HiMemVT; 1176 SDValue Lo, Hi; 1177 1178 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1179 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1180 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1181 1182 unsigned Size = LoMemVT.getStoreSize(); 1183 unsigned BaseAlign = Load->getAlignment(); 1184 unsigned HiAlign = MinAlign(BaseAlign, Size); 1185 1186 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1187 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1188 BaseAlign, Load->getMemOperand()->getFlags()); 1189 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1190 DAG.getConstant(Size, SL, PtrVT)); 1191 SDValue HiLoad = 1192 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1193 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1194 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1195 1196 SDValue Ops[] = { 1197 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1198 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1199 LoLoad.getValue(1), HiLoad.getValue(1)) 1200 }; 1201 1202 return DAG.getMergeValues(Ops, SL); 1203 } 1204 1205 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1206 SelectionDAG &DAG) const { 1207 StoreSDNode *Store = cast<StoreSDNode>(Op); 1208 SDValue Val = Store->getValue(); 1209 EVT VT = Val.getValueType(); 1210 1211 // If this is a 2 element vector, we really want to scalarize and not create 1212 // weird 1 element vectors. 1213 if (VT.getVectorNumElements() == 2) 1214 return scalarizeVectorStore(Store, DAG); 1215 1216 EVT MemVT = Store->getMemoryVT(); 1217 SDValue Chain = Store->getChain(); 1218 SDValue BasePtr = Store->getBasePtr(); 1219 SDLoc SL(Op); 1220 1221 EVT LoVT, HiVT; 1222 EVT LoMemVT, HiMemVT; 1223 SDValue Lo, Hi; 1224 1225 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1226 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1227 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1228 1229 EVT PtrVT = BasePtr.getValueType(); 1230 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1231 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1232 PtrVT)); 1233 1234 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1235 unsigned BaseAlign = Store->getAlignment(); 1236 unsigned Size = LoMemVT.getStoreSize(); 1237 unsigned HiAlign = MinAlign(BaseAlign, Size); 1238 1239 SDValue LoStore = 1240 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1241 Store->getMemOperand()->getFlags()); 1242 SDValue HiStore = 1243 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1244 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1245 1246 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1247 } 1248 1249 // This is a shortcut for integer division because we have fast i32<->f32 1250 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1251 // float is enough to accurately represent up to a 24-bit signed integer. 1252 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1253 bool Sign) const { 1254 SDLoc DL(Op); 1255 EVT VT = Op.getValueType(); 1256 SDValue LHS = Op.getOperand(0); 1257 SDValue RHS = Op.getOperand(1); 1258 MVT IntVT = MVT::i32; 1259 MVT FltVT = MVT::f32; 1260 1261 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1262 if (LHSSignBits < 9) 1263 return SDValue(); 1264 1265 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1266 if (RHSSignBits < 9) 1267 return SDValue(); 1268 1269 unsigned BitSize = VT.getSizeInBits(); 1270 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1271 unsigned DivBits = BitSize - SignBits; 1272 if (Sign) 1273 ++DivBits; 1274 1275 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1276 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1277 1278 SDValue jq = DAG.getConstant(1, DL, IntVT); 1279 1280 if (Sign) { 1281 // char|short jq = ia ^ ib; 1282 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1283 1284 // jq = jq >> (bitsize - 2) 1285 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1286 DAG.getConstant(BitSize - 2, DL, VT)); 1287 1288 // jq = jq | 0x1 1289 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1290 } 1291 1292 // int ia = (int)LHS; 1293 SDValue ia = LHS; 1294 1295 // int ib, (int)RHS; 1296 SDValue ib = RHS; 1297 1298 // float fa = (float)ia; 1299 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1300 1301 // float fb = (float)ib; 1302 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1303 1304 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1305 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1306 1307 // fq = trunc(fq); 1308 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1309 1310 // float fqneg = -fq; 1311 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1312 1313 // float fr = mad(fqneg, fb, fa); 1314 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1315 (unsigned)AMDGPUISD::FMAD_FTZ : 1316 (unsigned)ISD::FMAD; 1317 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1318 1319 // int iq = (int)fq; 1320 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1321 1322 // fr = fabs(fr); 1323 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1324 1325 // fb = fabs(fb); 1326 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1327 1328 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1329 1330 // int cv = fr >= fb; 1331 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1332 1333 // jq = (cv ? jq : 0); 1334 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1335 1336 // dst = iq + jq; 1337 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1338 1339 // Rem needs compensation, it's easier to recompute it 1340 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1341 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1342 1343 // Truncate to number of bits this divide really is. 1344 if (Sign) { 1345 SDValue InRegSize 1346 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1347 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1348 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1349 } else { 1350 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1351 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1352 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1353 } 1354 1355 return DAG.getMergeValues({ Div, Rem }, DL); 1356 } 1357 1358 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1359 SelectionDAG &DAG, 1360 SmallVectorImpl<SDValue> &Results) const { 1361 assert(Op.getValueType() == MVT::i64); 1362 1363 SDLoc DL(Op); 1364 EVT VT = Op.getValueType(); 1365 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1366 1367 SDValue one = DAG.getConstant(1, DL, HalfVT); 1368 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1369 1370 //HiLo split 1371 SDValue LHS = Op.getOperand(0); 1372 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1373 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1374 1375 SDValue RHS = Op.getOperand(1); 1376 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1377 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1378 1379 if (VT == MVT::i64 && 1380 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1381 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1382 1383 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1384 LHS_Lo, RHS_Lo); 1385 1386 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1387 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1388 1389 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1390 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1391 return; 1392 } 1393 1394 // Get Speculative values 1395 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1396 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1397 1398 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1399 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1400 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1401 1402 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1403 SDValue DIV_Lo = zero; 1404 1405 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1406 1407 for (unsigned i = 0; i < halfBitWidth; ++i) { 1408 const unsigned bitPos = halfBitWidth - i - 1; 1409 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1410 // Get value of high bit 1411 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1412 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1413 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1414 1415 // Shift 1416 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1417 // Add LHS high bit 1418 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1419 1420 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1421 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1422 1423 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1424 1425 // Update REM 1426 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1427 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1428 } 1429 1430 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1431 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1432 Results.push_back(DIV); 1433 Results.push_back(REM); 1434 } 1435 1436 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1437 SelectionDAG &DAG) const { 1438 SDLoc DL(Op); 1439 EVT VT = Op.getValueType(); 1440 1441 if (VT == MVT::i64) { 1442 SmallVector<SDValue, 2> Results; 1443 LowerUDIVREM64(Op, DAG, Results); 1444 return DAG.getMergeValues(Results, DL); 1445 } 1446 1447 if (VT == MVT::i32) { 1448 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1449 return Res; 1450 } 1451 1452 SDValue Num = Op.getOperand(0); 1453 SDValue Den = Op.getOperand(1); 1454 1455 // RCP = URECIP(Den) = 2^32 / Den + e 1456 // e is rounding error. 1457 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1458 1459 // RCP_LO = mul(RCP, Den) */ 1460 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1461 1462 // RCP_HI = mulhu (RCP, Den) */ 1463 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1464 1465 // NEG_RCP_LO = -RCP_LO 1466 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1467 RCP_LO); 1468 1469 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1470 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1471 NEG_RCP_LO, RCP_LO, 1472 ISD::SETEQ); 1473 // Calculate the rounding error from the URECIP instruction 1474 // E = mulhu(ABS_RCP_LO, RCP) 1475 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1476 1477 // RCP_A_E = RCP + E 1478 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1479 1480 // RCP_S_E = RCP - E 1481 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1482 1483 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1484 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1485 RCP_A_E, RCP_S_E, 1486 ISD::SETEQ); 1487 // Quotient = mulhu(Tmp0, Num) 1488 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1489 1490 // Num_S_Remainder = Quotient * Den 1491 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1492 1493 // Remainder = Num - Num_S_Remainder 1494 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1495 1496 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1497 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1498 DAG.getConstant(-1, DL, VT), 1499 DAG.getConstant(0, DL, VT), 1500 ISD::SETUGE); 1501 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1502 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1503 Num_S_Remainder, 1504 DAG.getConstant(-1, DL, VT), 1505 DAG.getConstant(0, DL, VT), 1506 ISD::SETUGE); 1507 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1508 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1509 Remainder_GE_Zero); 1510 1511 // Calculate Division result: 1512 1513 // Quotient_A_One = Quotient + 1 1514 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1515 DAG.getConstant(1, DL, VT)); 1516 1517 // Quotient_S_One = Quotient - 1 1518 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1519 DAG.getConstant(1, DL, VT)); 1520 1521 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1522 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1523 Quotient, Quotient_A_One, ISD::SETEQ); 1524 1525 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1526 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1527 Quotient_S_One, Div, ISD::SETEQ); 1528 1529 // Calculate Rem result: 1530 1531 // Remainder_S_Den = Remainder - Den 1532 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1533 1534 // Remainder_A_Den = Remainder + Den 1535 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1536 1537 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1538 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1539 Remainder, Remainder_S_Den, ISD::SETEQ); 1540 1541 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1542 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1543 Remainder_A_Den, Rem, ISD::SETEQ); 1544 SDValue Ops[2] = { 1545 Div, 1546 Rem 1547 }; 1548 return DAG.getMergeValues(Ops, DL); 1549 } 1550 1551 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1552 SelectionDAG &DAG) const { 1553 SDLoc DL(Op); 1554 EVT VT = Op.getValueType(); 1555 1556 SDValue LHS = Op.getOperand(0); 1557 SDValue RHS = Op.getOperand(1); 1558 1559 SDValue Zero = DAG.getConstant(0, DL, VT); 1560 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1561 1562 if (VT == MVT::i32) { 1563 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1564 return Res; 1565 } 1566 1567 if (VT == MVT::i64 && 1568 DAG.ComputeNumSignBits(LHS) > 32 && 1569 DAG.ComputeNumSignBits(RHS) > 32) { 1570 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1571 1572 //HiLo split 1573 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1574 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1575 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1576 LHS_Lo, RHS_Lo); 1577 SDValue Res[2] = { 1578 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1579 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1580 }; 1581 return DAG.getMergeValues(Res, DL); 1582 } 1583 1584 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1585 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1586 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1587 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1588 1589 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1590 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1591 1592 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1593 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1594 1595 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1596 SDValue Rem = Div.getValue(1); 1597 1598 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1599 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1600 1601 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1602 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1603 1604 SDValue Res[2] = { 1605 Div, 1606 Rem 1607 }; 1608 return DAG.getMergeValues(Res, DL); 1609 } 1610 1611 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1612 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1613 SDLoc SL(Op); 1614 EVT VT = Op.getValueType(); 1615 SDValue X = Op.getOperand(0); 1616 SDValue Y = Op.getOperand(1); 1617 1618 // TODO: Should this propagate fast-math-flags? 1619 1620 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1621 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1622 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1623 1624 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1625 } 1626 1627 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1628 SDLoc SL(Op); 1629 SDValue Src = Op.getOperand(0); 1630 1631 // result = trunc(src) 1632 // if (src > 0.0 && src != result) 1633 // result += 1.0 1634 1635 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1636 1637 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1638 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1639 1640 EVT SetCCVT = 1641 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1642 1643 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1644 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1645 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1646 1647 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1648 // TODO: Should this propagate fast-math-flags? 1649 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1650 } 1651 1652 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1653 SelectionDAG &DAG) { 1654 const unsigned FractBits = 52; 1655 const unsigned ExpBits = 11; 1656 1657 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1658 Hi, 1659 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1660 DAG.getConstant(ExpBits, SL, MVT::i32)); 1661 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1662 DAG.getConstant(1023, SL, MVT::i32)); 1663 1664 return Exp; 1665 } 1666 1667 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1668 SDLoc SL(Op); 1669 SDValue Src = Op.getOperand(0); 1670 1671 assert(Op.getValueType() == MVT::f64); 1672 1673 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1674 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1675 1676 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1677 1678 // Extract the upper half, since this is where we will find the sign and 1679 // exponent. 1680 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1681 1682 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1683 1684 const unsigned FractBits = 52; 1685 1686 // Extract the sign bit. 1687 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1688 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1689 1690 // Extend back to to 64-bits. 1691 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1692 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1693 1694 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1695 const SDValue FractMask 1696 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1697 1698 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1699 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1700 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1701 1702 EVT SetCCVT = 1703 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1704 1705 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1706 1707 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1708 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1709 1710 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1711 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1712 1713 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1714 } 1715 1716 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1717 SDLoc SL(Op); 1718 SDValue Src = Op.getOperand(0); 1719 1720 assert(Op.getValueType() == MVT::f64); 1721 1722 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1723 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1724 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1725 1726 // TODO: Should this propagate fast-math-flags? 1727 1728 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1729 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1730 1731 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1732 1733 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1734 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1735 1736 EVT SetCCVT = 1737 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1738 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1739 1740 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1741 } 1742 1743 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1744 // FNEARBYINT and FRINT are the same, except in their handling of FP 1745 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1746 // rint, so just treat them as equivalent. 1747 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1748 } 1749 1750 // XXX - May require not supporting f32 denormals? 1751 1752 // Don't handle v2f16. The extra instructions to scalarize and repack around the 1753 // compare and vselect end up producing worse code than scalarizing the whole 1754 // operation. 1755 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 1756 SDLoc SL(Op); 1757 SDValue X = Op.getOperand(0); 1758 EVT VT = Op.getValueType(); 1759 1760 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 1761 1762 // TODO: Should this propagate fast-math-flags? 1763 1764 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 1765 1766 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 1767 1768 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 1769 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 1770 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 1771 1772 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 1773 1774 EVT SetCCVT = 1775 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1776 1777 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1778 1779 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 1780 1781 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 1782 } 1783 1784 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1785 SDLoc SL(Op); 1786 SDValue X = Op.getOperand(0); 1787 1788 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1789 1790 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1791 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1792 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1793 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1794 EVT SetCCVT = 1795 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1796 1797 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1798 1799 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1800 1801 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1802 1803 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1804 MVT::i64); 1805 1806 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1807 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1808 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1809 MVT::i64), 1810 Exp); 1811 1812 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1813 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1814 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1815 ISD::SETNE); 1816 1817 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1818 D, DAG.getConstant(0, SL, MVT::i64)); 1819 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1820 1821 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1822 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1823 1824 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1825 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1826 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1827 1828 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1829 ExpEqNegOne, 1830 DAG.getConstantFP(1.0, SL, MVT::f64), 1831 DAG.getConstantFP(0.0, SL, MVT::f64)); 1832 1833 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1834 1835 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1836 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1837 1838 return K; 1839 } 1840 1841 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1842 EVT VT = Op.getValueType(); 1843 1844 if (VT == MVT::f32 || VT == MVT::f16) 1845 return LowerFROUND32_16(Op, DAG); 1846 1847 if (VT == MVT::f64) 1848 return LowerFROUND64(Op, DAG); 1849 1850 llvm_unreachable("unhandled type"); 1851 } 1852 1853 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1854 SDLoc SL(Op); 1855 SDValue Src = Op.getOperand(0); 1856 1857 // result = trunc(src); 1858 // if (src < 0.0 && src != result) 1859 // result += -1.0. 1860 1861 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1862 1863 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1864 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1865 1866 EVT SetCCVT = 1867 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1868 1869 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1870 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1871 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1872 1873 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1874 // TODO: Should this propagate fast-math-flags? 1875 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1876 } 1877 1878 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1879 SDLoc SL(Op); 1880 SDValue Src = Op.getOperand(0); 1881 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1882 1883 if (ZeroUndef && Src.getValueType() == MVT::i32) 1884 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1885 1886 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1887 1888 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1889 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1890 1891 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1892 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1893 1894 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1895 *DAG.getContext(), MVT::i32); 1896 1897 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1898 1899 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1900 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1901 1902 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1903 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1904 1905 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1906 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1907 1908 if (!ZeroUndef) { 1909 // Test if the full 64-bit input is zero. 1910 1911 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1912 // which we probably don't want. 1913 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1914 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1915 1916 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1917 // with the same cycles, otherwise it is slower. 1918 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1919 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1920 1921 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1922 1923 // The instruction returns -1 for 0 input, but the defined intrinsic 1924 // behavior is to return the number of bits. 1925 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1926 SrcIsZero, Bits32, NewCtlz); 1927 } 1928 1929 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1930 } 1931 1932 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1933 bool Signed) const { 1934 // Unsigned 1935 // cul2f(ulong u) 1936 //{ 1937 // uint lz = clz(u); 1938 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1939 // u = (u << lz) & 0x7fffffffffffffffUL; 1940 // ulong t = u & 0xffffffffffUL; 1941 // uint v = (e << 23) | (uint)(u >> 40); 1942 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1943 // return as_float(v + r); 1944 //} 1945 // Signed 1946 // cl2f(long l) 1947 //{ 1948 // long s = l >> 63; 1949 // float r = cul2f((l + s) ^ s); 1950 // return s ? -r : r; 1951 //} 1952 1953 SDLoc SL(Op); 1954 SDValue Src = Op.getOperand(0); 1955 SDValue L = Src; 1956 1957 SDValue S; 1958 if (Signed) { 1959 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1960 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1961 1962 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1963 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1964 } 1965 1966 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1967 *DAG.getContext(), MVT::f32); 1968 1969 1970 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1971 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1972 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1973 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1974 1975 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1976 SDValue E = DAG.getSelect(SL, MVT::i32, 1977 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1978 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1979 ZeroI32); 1980 1981 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1982 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1983 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1984 1985 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1986 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1987 1988 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1989 U, DAG.getConstant(40, SL, MVT::i64)); 1990 1991 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1992 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1993 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1994 1995 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1996 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1997 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 1998 1999 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2000 2001 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2002 2003 SDValue R = DAG.getSelect(SL, MVT::i32, 2004 RCmp, 2005 One, 2006 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2007 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2008 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2009 2010 if (!Signed) 2011 return R; 2012 2013 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2014 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2015 } 2016 2017 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2018 bool Signed) const { 2019 SDLoc SL(Op); 2020 SDValue Src = Op.getOperand(0); 2021 2022 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2023 2024 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2025 DAG.getConstant(0, SL, MVT::i32)); 2026 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2027 DAG.getConstant(1, SL, MVT::i32)); 2028 2029 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2030 SL, MVT::f64, Hi); 2031 2032 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2033 2034 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2035 DAG.getConstant(32, SL, MVT::i32)); 2036 // TODO: Should this propagate fast-math-flags? 2037 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2038 } 2039 2040 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2041 SelectionDAG &DAG) const { 2042 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2043 "operation should be legal"); 2044 2045 // TODO: Factor out code common with LowerSINT_TO_FP. 2046 2047 EVT DestVT = Op.getValueType(); 2048 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2049 SDLoc DL(Op); 2050 SDValue Src = Op.getOperand(0); 2051 2052 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2053 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2054 SDValue FPRound = 2055 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2056 2057 return FPRound; 2058 } 2059 2060 if (DestVT == MVT::f32) 2061 return LowerINT_TO_FP32(Op, DAG, false); 2062 2063 assert(DestVT == MVT::f64); 2064 return LowerINT_TO_FP64(Op, DAG, false); 2065 } 2066 2067 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2068 SelectionDAG &DAG) const { 2069 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2070 "operation should be legal"); 2071 2072 // TODO: Factor out code common with LowerUINT_TO_FP. 2073 2074 EVT DestVT = Op.getValueType(); 2075 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2076 SDLoc DL(Op); 2077 SDValue Src = Op.getOperand(0); 2078 2079 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2080 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2081 SDValue FPRound = 2082 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2083 2084 return FPRound; 2085 } 2086 2087 if (DestVT == MVT::f32) 2088 return LowerINT_TO_FP32(Op, DAG, true); 2089 2090 assert(DestVT == MVT::f64); 2091 return LowerINT_TO_FP64(Op, DAG, true); 2092 } 2093 2094 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2095 bool Signed) const { 2096 SDLoc SL(Op); 2097 2098 SDValue Src = Op.getOperand(0); 2099 2100 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2101 2102 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2103 MVT::f64); 2104 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2105 MVT::f64); 2106 // TODO: Should this propagate fast-math-flags? 2107 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2108 2109 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2110 2111 2112 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2113 2114 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2115 MVT::i32, FloorMul); 2116 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2117 2118 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2119 2120 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2121 } 2122 2123 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2124 SDLoc DL(Op); 2125 SDValue N0 = Op.getOperand(0); 2126 2127 // Convert to target node to get known bits 2128 if (N0.getValueType() == MVT::f32) 2129 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2130 2131 if (getTargetMachine().Options.UnsafeFPMath) { 2132 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2133 return SDValue(); 2134 } 2135 2136 assert(N0.getSimpleValueType() == MVT::f64); 2137 2138 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2139 const unsigned ExpMask = 0x7ff; 2140 const unsigned ExpBiasf64 = 1023; 2141 const unsigned ExpBiasf16 = 15; 2142 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2143 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2144 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2145 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2146 DAG.getConstant(32, DL, MVT::i64)); 2147 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2148 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2149 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2150 DAG.getConstant(20, DL, MVT::i64)); 2151 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2152 DAG.getConstant(ExpMask, DL, MVT::i32)); 2153 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2154 // add the f16 bias (15) to get the biased exponent for the f16 format. 2155 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2156 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2157 2158 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2159 DAG.getConstant(8, DL, MVT::i32)); 2160 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2161 DAG.getConstant(0xffe, DL, MVT::i32)); 2162 2163 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2164 DAG.getConstant(0x1ff, DL, MVT::i32)); 2165 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2166 2167 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2168 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2169 2170 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2171 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2172 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2173 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2174 2175 // N = M | (E << 12); 2176 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2177 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2178 DAG.getConstant(12, DL, MVT::i32))); 2179 2180 // B = clamp(1-E, 0, 13); 2181 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2182 One, E); 2183 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2184 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2185 DAG.getConstant(13, DL, MVT::i32)); 2186 2187 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2188 DAG.getConstant(0x1000, DL, MVT::i32)); 2189 2190 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2191 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2192 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2193 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2194 2195 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2196 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2197 DAG.getConstant(0x7, DL, MVT::i32)); 2198 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2199 DAG.getConstant(2, DL, MVT::i32)); 2200 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2201 One, Zero, ISD::SETEQ); 2202 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2203 One, Zero, ISD::SETGT); 2204 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2205 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2206 2207 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2208 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2209 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2210 I, V, ISD::SETEQ); 2211 2212 // Extract the sign bit. 2213 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2214 DAG.getConstant(16, DL, MVT::i32)); 2215 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2216 DAG.getConstant(0x8000, DL, MVT::i32)); 2217 2218 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2219 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2220 } 2221 2222 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2223 SelectionDAG &DAG) const { 2224 SDValue Src = Op.getOperand(0); 2225 2226 // TODO: Factor out code common with LowerFP_TO_UINT. 2227 2228 EVT SrcVT = Src.getValueType(); 2229 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2230 SDLoc DL(Op); 2231 2232 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2233 SDValue FpToInt32 = 2234 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2235 2236 return FpToInt32; 2237 } 2238 2239 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2240 return LowerFP64_TO_INT(Op, DAG, true); 2241 2242 return SDValue(); 2243 } 2244 2245 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2246 SelectionDAG &DAG) const { 2247 SDValue Src = Op.getOperand(0); 2248 2249 // TODO: Factor out code common with LowerFP_TO_SINT. 2250 2251 EVT SrcVT = Src.getValueType(); 2252 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2253 SDLoc DL(Op); 2254 2255 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2256 SDValue FpToInt32 = 2257 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2258 2259 return FpToInt32; 2260 } 2261 2262 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2263 return LowerFP64_TO_INT(Op, DAG, false); 2264 2265 return SDValue(); 2266 } 2267 2268 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2269 SelectionDAG &DAG) const { 2270 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2271 MVT VT = Op.getSimpleValueType(); 2272 MVT ScalarVT = VT.getScalarType(); 2273 2274 assert(VT.isVector()); 2275 2276 SDValue Src = Op.getOperand(0); 2277 SDLoc DL(Op); 2278 2279 // TODO: Don't scalarize on Evergreen? 2280 unsigned NElts = VT.getVectorNumElements(); 2281 SmallVector<SDValue, 8> Args; 2282 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2283 2284 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2285 for (unsigned I = 0; I < NElts; ++I) 2286 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2287 2288 return DAG.getBuildVector(VT, DL, Args); 2289 } 2290 2291 //===----------------------------------------------------------------------===// 2292 // Custom DAG optimizations 2293 //===----------------------------------------------------------------------===// 2294 2295 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2296 APInt KnownZero, KnownOne; 2297 EVT VT = Op.getValueType(); 2298 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2299 2300 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2301 } 2302 2303 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2304 EVT VT = Op.getValueType(); 2305 2306 // In order for this to be a signed 24-bit value, bit 23, must 2307 // be a sign bit. 2308 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2309 // as unsigned 24-bit values. 2310 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2311 } 2312 2313 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2314 TargetLowering::DAGCombinerInfo &DCI) { 2315 2316 SelectionDAG &DAG = DCI.DAG; 2317 SDValue Op = Node24->getOperand(OpIdx); 2318 EVT VT = Op.getValueType(); 2319 2320 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2321 APInt KnownZero, KnownOne; 2322 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2323 if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI)) 2324 return true; 2325 2326 return false; 2327 } 2328 2329 template <typename IntTy> 2330 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2331 uint32_t Width, const SDLoc &DL) { 2332 if (Width + Offset < 32) { 2333 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2334 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2335 return DAG.getConstant(Result, DL, MVT::i32); 2336 } 2337 2338 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2339 } 2340 2341 static bool hasVolatileUser(SDNode *Val) { 2342 for (SDNode *U : Val->uses()) { 2343 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2344 if (M->isVolatile()) 2345 return true; 2346 } 2347 } 2348 2349 return false; 2350 } 2351 2352 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2353 // i32 vectors are the canonical memory type. 2354 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2355 return false; 2356 2357 if (!VT.isByteSized()) 2358 return false; 2359 2360 unsigned Size = VT.getStoreSize(); 2361 2362 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2363 return false; 2364 2365 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2366 return false; 2367 2368 return true; 2369 } 2370 2371 // Replace load of an illegal type with a store of a bitcast to a friendlier 2372 // type. 2373 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2374 DAGCombinerInfo &DCI) const { 2375 if (!DCI.isBeforeLegalize()) 2376 return SDValue(); 2377 2378 LoadSDNode *LN = cast<LoadSDNode>(N); 2379 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2380 return SDValue(); 2381 2382 SDLoc SL(N); 2383 SelectionDAG &DAG = DCI.DAG; 2384 EVT VT = LN->getMemoryVT(); 2385 2386 unsigned Size = VT.getStoreSize(); 2387 unsigned Align = LN->getAlignment(); 2388 if (Align < Size && isTypeLegal(VT)) { 2389 bool IsFast; 2390 unsigned AS = LN->getAddressSpace(); 2391 2392 // Expand unaligned loads earlier than legalization. Due to visitation order 2393 // problems during legalization, the emitted instructions to pack and unpack 2394 // the bytes again are not eliminated in the case of an unaligned copy. 2395 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2396 if (VT.isVector()) 2397 return scalarizeVectorLoad(LN, DAG); 2398 2399 SDValue Ops[2]; 2400 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2401 return DAG.getMergeValues(Ops, SDLoc(N)); 2402 } 2403 2404 if (!IsFast) 2405 return SDValue(); 2406 } 2407 2408 if (!shouldCombineMemoryType(VT)) 2409 return SDValue(); 2410 2411 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2412 2413 SDValue NewLoad 2414 = DAG.getLoad(NewVT, SL, LN->getChain(), 2415 LN->getBasePtr(), LN->getMemOperand()); 2416 2417 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2418 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2419 return SDValue(N, 0); 2420 } 2421 2422 // Replace store of an illegal type with a store of a bitcast to a friendlier 2423 // type. 2424 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2425 DAGCombinerInfo &DCI) const { 2426 if (!DCI.isBeforeLegalize()) 2427 return SDValue(); 2428 2429 StoreSDNode *SN = cast<StoreSDNode>(N); 2430 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2431 return SDValue(); 2432 2433 EVT VT = SN->getMemoryVT(); 2434 unsigned Size = VT.getStoreSize(); 2435 2436 SDLoc SL(N); 2437 SelectionDAG &DAG = DCI.DAG; 2438 unsigned Align = SN->getAlignment(); 2439 if (Align < Size && isTypeLegal(VT)) { 2440 bool IsFast; 2441 unsigned AS = SN->getAddressSpace(); 2442 2443 // Expand unaligned stores earlier than legalization. Due to visitation 2444 // order problems during legalization, the emitted instructions to pack and 2445 // unpack the bytes again are not eliminated in the case of an unaligned 2446 // copy. 2447 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2448 if (VT.isVector()) 2449 return scalarizeVectorStore(SN, DAG); 2450 2451 return expandUnalignedStore(SN, DAG); 2452 } 2453 2454 if (!IsFast) 2455 return SDValue(); 2456 } 2457 2458 if (!shouldCombineMemoryType(VT)) 2459 return SDValue(); 2460 2461 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2462 SDValue Val = SN->getValue(); 2463 2464 //DCI.AddToWorklist(Val.getNode()); 2465 2466 bool OtherUses = !Val.hasOneUse(); 2467 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2468 if (OtherUses) { 2469 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2470 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2471 } 2472 2473 return DAG.getStore(SN->getChain(), SL, CastVal, 2474 SN->getBasePtr(), SN->getMemOperand()); 2475 } 2476 2477 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, 2478 DAGCombinerInfo &DCI) const { 2479 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 2480 if (!CSrc) 2481 return SDValue(); 2482 2483 const APFloat &F = CSrc->getValueAPF(); 2484 APFloat Zero = APFloat::getZero(F.getSemantics()); 2485 APFloat::cmpResult Cmp0 = F.compare(Zero); 2486 if (Cmp0 == APFloat::cmpLessThan || 2487 (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { 2488 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 2489 } 2490 2491 APFloat One(F.getSemantics(), "1.0"); 2492 APFloat::cmpResult Cmp1 = F.compare(One); 2493 if (Cmp1 == APFloat::cmpGreaterThan) 2494 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 2495 2496 return SDValue(CSrc, 0); 2497 } 2498 2499 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2500 /// binary operation \p Opc to it with the corresponding constant operands. 2501 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2502 DAGCombinerInfo &DCI, const SDLoc &SL, 2503 unsigned Opc, SDValue LHS, 2504 uint32_t ValLo, uint32_t ValHi) const { 2505 SelectionDAG &DAG = DCI.DAG; 2506 SDValue Lo, Hi; 2507 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2508 2509 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2510 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2511 2512 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2513 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2514 2515 // Re-visit the ands. It's possible we eliminated one of them and it could 2516 // simplify the vector. 2517 DCI.AddToWorklist(Lo.getNode()); 2518 DCI.AddToWorklist(Hi.getNode()); 2519 2520 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2521 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2522 } 2523 2524 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2525 DAGCombinerInfo &DCI) const { 2526 if (N->getValueType(0) != MVT::i64) 2527 return SDValue(); 2528 2529 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2530 2531 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2532 // common case, splitting this into a move and a 32-bit shift is faster and 2533 // the same code size. 2534 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2535 if (!RHS) 2536 return SDValue(); 2537 2538 unsigned RHSVal = RHS->getZExtValue(); 2539 if (RHSVal < 32) 2540 return SDValue(); 2541 2542 SDValue LHS = N->getOperand(0); 2543 2544 SDLoc SL(N); 2545 SelectionDAG &DAG = DCI.DAG; 2546 2547 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2548 2549 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2550 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2551 2552 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2553 2554 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2555 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2556 } 2557 2558 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2559 DAGCombinerInfo &DCI) const { 2560 if (N->getValueType(0) != MVT::i64) 2561 return SDValue(); 2562 2563 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2564 if (!RHS) 2565 return SDValue(); 2566 2567 SelectionDAG &DAG = DCI.DAG; 2568 SDLoc SL(N); 2569 unsigned RHSVal = RHS->getZExtValue(); 2570 2571 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2572 if (RHSVal == 32) { 2573 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2574 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2575 DAG.getConstant(31, SL, MVT::i32)); 2576 2577 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2578 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2579 } 2580 2581 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2582 if (RHSVal == 63) { 2583 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2584 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2585 DAG.getConstant(31, SL, MVT::i32)); 2586 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2587 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2588 } 2589 2590 return SDValue(); 2591 } 2592 2593 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2594 DAGCombinerInfo &DCI) const { 2595 if (N->getValueType(0) != MVT::i64) 2596 return SDValue(); 2597 2598 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2599 if (!RHS) 2600 return SDValue(); 2601 2602 unsigned ShiftAmt = RHS->getZExtValue(); 2603 if (ShiftAmt < 32) 2604 return SDValue(); 2605 2606 // srl i64:x, C for C >= 32 2607 // => 2608 // build_pair (srl hi_32(x), C - 32), 0 2609 2610 SelectionDAG &DAG = DCI.DAG; 2611 SDLoc SL(N); 2612 2613 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2614 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2615 2616 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2617 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2618 VecOp, One); 2619 2620 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2621 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2622 2623 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2624 2625 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2626 } 2627 2628 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2629 // instructions. If we only match on the legalized i64 mul expansion, 2630 // SimplifyDemandedBits will be unable to remove them because there will be 2631 // multiple uses due to the separate mul + mulh[su]. 2632 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2633 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2634 if (Size <= 32) { 2635 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2636 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2637 } 2638 2639 // Because we want to eliminate extension instructions before the 2640 // operation, we need to create a single user here (i.e. not the separate 2641 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2642 2643 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2644 2645 SDValue Mul = DAG.getNode(MulOpc, SL, 2646 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 2647 2648 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 2649 Mul.getValue(0), Mul.getValue(1)); 2650 } 2651 2652 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2653 DAGCombinerInfo &DCI) const { 2654 EVT VT = N->getValueType(0); 2655 2656 unsigned Size = VT.getSizeInBits(); 2657 if (VT.isVector() || Size > 64) 2658 return SDValue(); 2659 2660 // There are i16 integer mul/mad. 2661 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 2662 return SDValue(); 2663 2664 SelectionDAG &DAG = DCI.DAG; 2665 SDLoc DL(N); 2666 2667 SDValue N0 = N->getOperand(0); 2668 SDValue N1 = N->getOperand(1); 2669 SDValue Mul; 2670 2671 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2672 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2673 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2674 Mul = getMul24(DAG, DL, N0, N1, Size, false); 2675 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2676 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2677 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2678 Mul = getMul24(DAG, DL, N0, N1, Size, true); 2679 } else { 2680 return SDValue(); 2681 } 2682 2683 // We need to use sext even for MUL_U24, because MUL_U24 is used 2684 // for signed multiply of 8 and 16-bit types. 2685 return DAG.getSExtOrTrunc(Mul, DL, VT); 2686 } 2687 2688 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 2689 DAGCombinerInfo &DCI) const { 2690 EVT VT = N->getValueType(0); 2691 2692 if (!Subtarget->hasMulI24() || VT.isVector()) 2693 return SDValue(); 2694 2695 SelectionDAG &DAG = DCI.DAG; 2696 SDLoc DL(N); 2697 2698 SDValue N0 = N->getOperand(0); 2699 SDValue N1 = N->getOperand(1); 2700 2701 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 2702 return SDValue(); 2703 2704 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2705 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2706 2707 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 2708 DCI.AddToWorklist(Mulhi.getNode()); 2709 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 2710 } 2711 2712 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 2713 DAGCombinerInfo &DCI) const { 2714 EVT VT = N->getValueType(0); 2715 2716 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 2717 return SDValue(); 2718 2719 SelectionDAG &DAG = DCI.DAG; 2720 SDLoc DL(N); 2721 2722 SDValue N0 = N->getOperand(0); 2723 SDValue N1 = N->getOperand(1); 2724 2725 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 2726 return SDValue(); 2727 2728 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2729 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2730 2731 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 2732 DCI.AddToWorklist(Mulhi.getNode()); 2733 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 2734 } 2735 2736 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 2737 SDNode *N, DAGCombinerInfo &DCI) const { 2738 SelectionDAG &DAG = DCI.DAG; 2739 2740 // Simplify demanded bits before splitting into multiple users. 2741 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 2742 return SDValue(); 2743 2744 SDValue N0 = N->getOperand(0); 2745 SDValue N1 = N->getOperand(1); 2746 2747 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 2748 2749 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2750 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 2751 2752 SDLoc SL(N); 2753 2754 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 2755 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 2756 return DAG.getMergeValues({ MulLo, MulHi }, SL); 2757 } 2758 2759 static bool isNegativeOne(SDValue Val) { 2760 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2761 return C->isAllOnesValue(); 2762 return false; 2763 } 2764 2765 static bool isCtlzOpc(unsigned Opc) { 2766 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2767 } 2768 2769 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG, 2770 SDValue Op, 2771 const SDLoc &DL) const { 2772 EVT VT = Op.getValueType(); 2773 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 2774 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 2775 LegalVT != MVT::i16)) 2776 return SDValue(); 2777 2778 if (VT != MVT::i32) 2779 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 2780 2781 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op); 2782 if (VT != MVT::i32) 2783 FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH); 2784 2785 return FFBH; 2786 } 2787 2788 // The native instructions return -1 on 0 input. Optimize out a select that 2789 // produces -1 on 0. 2790 // 2791 // TODO: If zero is not undef, we could also do this if the output is compared 2792 // against the bitwidth. 2793 // 2794 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2795 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2796 SDValue LHS, SDValue RHS, 2797 DAGCombinerInfo &DCI) const { 2798 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2799 if (!CmpRhs || !CmpRhs->isNullValue()) 2800 return SDValue(); 2801 2802 SelectionDAG &DAG = DCI.DAG; 2803 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2804 SDValue CmpLHS = Cond.getOperand(0); 2805 2806 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2807 if (CCOpcode == ISD::SETEQ && 2808 isCtlzOpc(RHS.getOpcode()) && 2809 RHS.getOperand(0) == CmpLHS && 2810 isNegativeOne(LHS)) { 2811 return getFFBH_U32(DAG, CmpLHS, SL); 2812 } 2813 2814 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2815 if (CCOpcode == ISD::SETNE && 2816 isCtlzOpc(LHS.getOpcode()) && 2817 LHS.getOperand(0) == CmpLHS && 2818 isNegativeOne(RHS)) { 2819 return getFFBH_U32(DAG, CmpLHS, SL); 2820 } 2821 2822 return SDValue(); 2823 } 2824 2825 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 2826 unsigned Op, 2827 const SDLoc &SL, 2828 SDValue Cond, 2829 SDValue N1, 2830 SDValue N2) { 2831 SelectionDAG &DAG = DCI.DAG; 2832 EVT VT = N1.getValueType(); 2833 2834 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 2835 N1.getOperand(0), N2.getOperand(0)); 2836 DCI.AddToWorklist(NewSelect.getNode()); 2837 return DAG.getNode(Op, SL, VT, NewSelect); 2838 } 2839 2840 // Pull a free FP operation out of a select so it may fold into uses. 2841 // 2842 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 2843 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 2844 // 2845 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 2846 // select c, (fabs x), +k -> fabs (select c, x, k) 2847 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 2848 SDValue N) { 2849 SelectionDAG &DAG = DCI.DAG; 2850 SDValue Cond = N.getOperand(0); 2851 SDValue LHS = N.getOperand(1); 2852 SDValue RHS = N.getOperand(2); 2853 2854 EVT VT = N.getValueType(); 2855 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 2856 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 2857 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 2858 SDLoc(N), Cond, LHS, RHS); 2859 } 2860 2861 bool Inv = false; 2862 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 2863 std::swap(LHS, RHS); 2864 Inv = true; 2865 } 2866 2867 // TODO: Support vector constants. 2868 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 2869 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 2870 SDLoc SL(N); 2871 // If one side is an fneg/fabs and the other is a constant, we can push the 2872 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 2873 SDValue NewLHS = LHS.getOperand(0); 2874 SDValue NewRHS = RHS; 2875 2876 // Careful: if the neg can be folded up, don't try to pull it back down. 2877 bool ShouldFoldNeg = true; 2878 2879 if (NewLHS.hasOneUse()) { 2880 unsigned Opc = NewLHS.getOpcode(); 2881 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 2882 ShouldFoldNeg = false; 2883 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 2884 ShouldFoldNeg = false; 2885 } 2886 2887 if (ShouldFoldNeg) { 2888 if (LHS.getOpcode() == ISD::FNEG) 2889 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 2890 else if (CRHS->isNegative()) 2891 return SDValue(); 2892 2893 if (Inv) 2894 std::swap(NewLHS, NewRHS); 2895 2896 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 2897 Cond, NewLHS, NewRHS); 2898 DCI.AddToWorklist(NewSelect.getNode()); 2899 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 2900 } 2901 } 2902 2903 return SDValue(); 2904 } 2905 2906 2907 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2908 DAGCombinerInfo &DCI) const { 2909 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 2910 return Folded; 2911 2912 SDValue Cond = N->getOperand(0); 2913 if (Cond.getOpcode() != ISD::SETCC) 2914 return SDValue(); 2915 2916 EVT VT = N->getValueType(0); 2917 SDValue LHS = Cond.getOperand(0); 2918 SDValue RHS = Cond.getOperand(1); 2919 SDValue CC = Cond.getOperand(2); 2920 2921 SDValue True = N->getOperand(1); 2922 SDValue False = N->getOperand(2); 2923 2924 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 2925 SelectionDAG &DAG = DCI.DAG; 2926 if ((DAG.isConstantValueOfAnyType(True) || 2927 DAG.isConstantValueOfAnyType(True)) && 2928 (!DAG.isConstantValueOfAnyType(False) && 2929 !DAG.isConstantValueOfAnyType(False))) { 2930 // Swap cmp + select pair to move constant to false input. 2931 // This will allow using VOPC cndmasks more often. 2932 // select (setcc x, y), k, x -> select (setcc y, x) x, x 2933 2934 SDLoc SL(N); 2935 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 2936 LHS.getValueType().isInteger()); 2937 2938 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 2939 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 2940 } 2941 2942 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 2943 SDValue MinMax 2944 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2945 // Revisit this node so we can catch min3/max3/med3 patterns. 2946 //DCI.AddToWorklist(MinMax.getNode()); 2947 return MinMax; 2948 } 2949 } 2950 2951 // There's no reason to not do this if the condition has other uses. 2952 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2953 } 2954 2955 static bool isConstantFPZero(SDValue N) { 2956 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) 2957 return C->isZero() && !C->isNegative(); 2958 return false; 2959 } 2960 2961 static unsigned inverseMinMax(unsigned Opc) { 2962 switch (Opc) { 2963 case ISD::FMAXNUM: 2964 return ISD::FMINNUM; 2965 case ISD::FMINNUM: 2966 return ISD::FMAXNUM; 2967 case AMDGPUISD::FMAX_LEGACY: 2968 return AMDGPUISD::FMIN_LEGACY; 2969 case AMDGPUISD::FMIN_LEGACY: 2970 return AMDGPUISD::FMAX_LEGACY; 2971 default: 2972 llvm_unreachable("invalid min/max opcode"); 2973 } 2974 } 2975 2976 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 2977 DAGCombinerInfo &DCI) const { 2978 SelectionDAG &DAG = DCI.DAG; 2979 SDValue N0 = N->getOperand(0); 2980 EVT VT = N->getValueType(0); 2981 2982 unsigned Opc = N0.getOpcode(); 2983 2984 // If the input has multiple uses and we can either fold the negate down, or 2985 // the other uses cannot, give up. This both prevents unprofitable 2986 // transformations and infinite loops: we won't repeatedly try to fold around 2987 // a negate that has no 'good' form. 2988 if (N0.hasOneUse()) { 2989 // This may be able to fold into the source, but at a code size cost. Don't 2990 // fold if the fold into the user is free. 2991 if (allUsesHaveSourceMods(N, 0)) 2992 return SDValue(); 2993 } else { 2994 if (fnegFoldsIntoOp(Opc) && 2995 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 2996 return SDValue(); 2997 } 2998 2999 SDLoc SL(N); 3000 switch (Opc) { 3001 case ISD::FADD: { 3002 if (!mayIgnoreSignedZero(N0)) 3003 return SDValue(); 3004 3005 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3006 SDValue LHS = N0.getOperand(0); 3007 SDValue RHS = N0.getOperand(1); 3008 3009 if (LHS.getOpcode() != ISD::FNEG) 3010 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3011 else 3012 LHS = LHS.getOperand(0); 3013 3014 if (RHS.getOpcode() != ISD::FNEG) 3015 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3016 else 3017 RHS = RHS.getOperand(0); 3018 3019 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3020 if (!N0.hasOneUse()) 3021 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3022 return Res; 3023 } 3024 case ISD::FMUL: 3025 case AMDGPUISD::FMUL_LEGACY: { 3026 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3027 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3028 SDValue LHS = N0.getOperand(0); 3029 SDValue RHS = N0.getOperand(1); 3030 3031 if (LHS.getOpcode() == ISD::FNEG) 3032 LHS = LHS.getOperand(0); 3033 else if (RHS.getOpcode() == ISD::FNEG) 3034 RHS = RHS.getOperand(0); 3035 else 3036 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3037 3038 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3039 if (!N0.hasOneUse()) 3040 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3041 return Res; 3042 } 3043 case ISD::FMA: 3044 case ISD::FMAD: { 3045 if (!mayIgnoreSignedZero(N0)) 3046 return SDValue(); 3047 3048 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3049 SDValue LHS = N0.getOperand(0); 3050 SDValue MHS = N0.getOperand(1); 3051 SDValue RHS = N0.getOperand(2); 3052 3053 if (LHS.getOpcode() == ISD::FNEG) 3054 LHS = LHS.getOperand(0); 3055 else if (MHS.getOpcode() == ISD::FNEG) 3056 MHS = MHS.getOperand(0); 3057 else 3058 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3059 3060 if (RHS.getOpcode() != ISD::FNEG) 3061 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3062 else 3063 RHS = RHS.getOperand(0); 3064 3065 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3066 if (!N0.hasOneUse()) 3067 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3068 return Res; 3069 } 3070 case ISD::FMAXNUM: 3071 case ISD::FMINNUM: 3072 case AMDGPUISD::FMAX_LEGACY: 3073 case AMDGPUISD::FMIN_LEGACY: { 3074 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3075 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3076 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3077 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3078 3079 SDValue LHS = N0.getOperand(0); 3080 SDValue RHS = N0.getOperand(1); 3081 3082 // 0 doesn't have a negated inline immediate. 3083 // TODO: Shouldn't fold 1/2pi either, and should be generalized to other 3084 // operations. 3085 if (isConstantFPZero(RHS)) 3086 return SDValue(); 3087 3088 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3089 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3090 unsigned Opposite = inverseMinMax(Opc); 3091 3092 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3093 if (!N0.hasOneUse()) 3094 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3095 return Res; 3096 } 3097 case ISD::FP_EXTEND: 3098 case ISD::FTRUNC: 3099 case ISD::FRINT: 3100 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3101 case ISD::FSIN: 3102 case AMDGPUISD::RCP: 3103 case AMDGPUISD::RCP_LEGACY: 3104 case AMDGPUISD::SIN_HW: { 3105 SDValue CvtSrc = N0.getOperand(0); 3106 if (CvtSrc.getOpcode() == ISD::FNEG) { 3107 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3108 // (fneg (rcp (fneg x))) -> (rcp x) 3109 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3110 } 3111 3112 if (!N0.hasOneUse()) 3113 return SDValue(); 3114 3115 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3116 // (fneg (rcp x)) -> (rcp (fneg x)) 3117 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3118 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3119 } 3120 case ISD::FP_ROUND: { 3121 SDValue CvtSrc = N0.getOperand(0); 3122 3123 if (CvtSrc.getOpcode() == ISD::FNEG) { 3124 // (fneg (fp_round (fneg x))) -> (fp_round x) 3125 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3126 CvtSrc.getOperand(0), N0.getOperand(1)); 3127 } 3128 3129 if (!N0.hasOneUse()) 3130 return SDValue(); 3131 3132 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3133 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3134 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3135 } 3136 case ISD::FP16_TO_FP: { 3137 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3138 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3139 // Put the fneg back as a legal source operation that can be matched later. 3140 SDLoc SL(N); 3141 3142 SDValue Src = N0.getOperand(0); 3143 EVT SrcVT = Src.getValueType(); 3144 3145 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3146 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3147 DAG.getConstant(0x8000, SL, SrcVT)); 3148 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3149 } 3150 default: 3151 return SDValue(); 3152 } 3153 } 3154 3155 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3156 DAGCombinerInfo &DCI) const { 3157 SelectionDAG &DAG = DCI.DAG; 3158 SDValue N0 = N->getOperand(0); 3159 3160 if (!N0.hasOneUse()) 3161 return SDValue(); 3162 3163 switch (N0.getOpcode()) { 3164 case ISD::FP16_TO_FP: { 3165 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3166 SDLoc SL(N); 3167 SDValue Src = N0.getOperand(0); 3168 EVT SrcVT = Src.getValueType(); 3169 3170 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3171 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3172 DAG.getConstant(0x7fff, SL, SrcVT)); 3173 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3174 } 3175 default: 3176 return SDValue(); 3177 } 3178 } 3179 3180 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3181 DAGCombinerInfo &DCI) const { 3182 SelectionDAG &DAG = DCI.DAG; 3183 SDLoc DL(N); 3184 3185 switch(N->getOpcode()) { 3186 default: 3187 break; 3188 case ISD::BITCAST: { 3189 EVT DestVT = N->getValueType(0); 3190 3191 // Push casts through vector builds. This helps avoid emitting a large 3192 // number of copies when materializing floating point vector constants. 3193 // 3194 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3195 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3196 if (DestVT.isVector()) { 3197 SDValue Src = N->getOperand(0); 3198 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3199 EVT SrcVT = Src.getValueType(); 3200 unsigned NElts = DestVT.getVectorNumElements(); 3201 3202 if (SrcVT.getVectorNumElements() == NElts) { 3203 EVT DestEltVT = DestVT.getVectorElementType(); 3204 3205 SmallVector<SDValue, 8> CastedElts; 3206 SDLoc SL(N); 3207 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3208 SDValue Elt = Src.getOperand(I); 3209 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3210 } 3211 3212 return DAG.getBuildVector(DestVT, SL, CastedElts); 3213 } 3214 } 3215 } 3216 3217 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3218 break; 3219 3220 // Fold bitcasts of constants. 3221 // 3222 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3223 // TODO: Generalize and move to DAGCombiner 3224 SDValue Src = N->getOperand(0); 3225 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3226 assert(Src.getValueType() == MVT::i64); 3227 SDLoc SL(N); 3228 uint64_t CVal = C->getZExtValue(); 3229 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3230 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3231 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3232 } 3233 3234 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3235 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3236 SDLoc SL(N); 3237 uint64_t CVal = Val.getZExtValue(); 3238 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3239 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3240 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3241 3242 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3243 } 3244 3245 break; 3246 } 3247 case ISD::SHL: { 3248 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3249 break; 3250 3251 return performShlCombine(N, DCI); 3252 } 3253 case ISD::SRL: { 3254 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3255 break; 3256 3257 return performSrlCombine(N, DCI); 3258 } 3259 case ISD::SRA: { 3260 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3261 break; 3262 3263 return performSraCombine(N, DCI); 3264 } 3265 case ISD::MUL: 3266 return performMulCombine(N, DCI); 3267 case ISD::MULHS: 3268 return performMulhsCombine(N, DCI); 3269 case ISD::MULHU: 3270 return performMulhuCombine(N, DCI); 3271 case AMDGPUISD::MUL_I24: 3272 case AMDGPUISD::MUL_U24: 3273 case AMDGPUISD::MULHI_I24: 3274 case AMDGPUISD::MULHI_U24: { 3275 // If the first call to simplify is successfull, then N may end up being 3276 // deleted, so we shouldn't call simplifyI24 again. 3277 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3278 return SDValue(); 3279 } 3280 case AMDGPUISD::MUL_LOHI_I24: 3281 case AMDGPUISD::MUL_LOHI_U24: 3282 return performMulLoHi24Combine(N, DCI); 3283 case ISD::SELECT: 3284 return performSelectCombine(N, DCI); 3285 case ISD::FNEG: 3286 return performFNegCombine(N, DCI); 3287 case ISD::FABS: 3288 return performFAbsCombine(N, DCI); 3289 case AMDGPUISD::BFE_I32: 3290 case AMDGPUISD::BFE_U32: { 3291 assert(!N->getValueType(0).isVector() && 3292 "Vector handling of BFE not implemented"); 3293 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3294 if (!Width) 3295 break; 3296 3297 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3298 if (WidthVal == 0) 3299 return DAG.getConstant(0, DL, MVT::i32); 3300 3301 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3302 if (!Offset) 3303 break; 3304 3305 SDValue BitsFrom = N->getOperand(0); 3306 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3307 3308 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3309 3310 if (OffsetVal == 0) { 3311 // This is already sign / zero extended, so try to fold away extra BFEs. 3312 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3313 3314 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3315 if (OpSignBits >= SignBits) 3316 return BitsFrom; 3317 3318 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3319 if (Signed) { 3320 // This is a sign_extend_inreg. Replace it to take advantage of existing 3321 // DAG Combines. If not eliminated, we will match back to BFE during 3322 // selection. 3323 3324 // TODO: The sext_inreg of extended types ends, although we can could 3325 // handle them in a single BFE. 3326 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3327 DAG.getValueType(SmallVT)); 3328 } 3329 3330 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3331 } 3332 3333 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3334 if (Signed) { 3335 return constantFoldBFE<int32_t>(DAG, 3336 CVal->getSExtValue(), 3337 OffsetVal, 3338 WidthVal, 3339 DL); 3340 } 3341 3342 return constantFoldBFE<uint32_t>(DAG, 3343 CVal->getZExtValue(), 3344 OffsetVal, 3345 WidthVal, 3346 DL); 3347 } 3348 3349 if ((OffsetVal + WidthVal) >= 32) { 3350 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3351 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3352 BitsFrom, ShiftVal); 3353 } 3354 3355 if (BitsFrom.hasOneUse()) { 3356 APInt Demanded = APInt::getBitsSet(32, 3357 OffsetVal, 3358 OffsetVal + WidthVal); 3359 3360 APInt KnownZero, KnownOne; 3361 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3362 !DCI.isBeforeLegalizeOps()); 3363 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3364 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 3365 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 3366 KnownZero, KnownOne, TLO)) { 3367 DCI.CommitTargetLoweringOpt(TLO); 3368 } 3369 } 3370 3371 break; 3372 } 3373 case ISD::LOAD: 3374 return performLoadCombine(N, DCI); 3375 case ISD::STORE: 3376 return performStoreCombine(N, DCI); 3377 case AMDGPUISD::CLAMP: 3378 return performClampCombine(N, DCI); 3379 case AMDGPUISD::RCP: { 3380 if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 3381 // XXX - Should this flush denormals? 3382 const APFloat &Val = CFP->getValueAPF(); 3383 APFloat One(Val.getSemantics(), "1.0"); 3384 return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3385 } 3386 3387 break; 3388 } 3389 } 3390 return SDValue(); 3391 } 3392 3393 //===----------------------------------------------------------------------===// 3394 // Helper functions 3395 //===----------------------------------------------------------------------===// 3396 3397 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3398 const TargetRegisterClass *RC, 3399 unsigned Reg, EVT VT) const { 3400 MachineFunction &MF = DAG.getMachineFunction(); 3401 MachineRegisterInfo &MRI = MF.getRegInfo(); 3402 unsigned VirtualRegister; 3403 if (!MRI.isLiveIn(Reg)) { 3404 VirtualRegister = MRI.createVirtualRegister(RC); 3405 MRI.addLiveIn(Reg, VirtualRegister); 3406 } else { 3407 VirtualRegister = MRI.getLiveInVirtReg(Reg); 3408 } 3409 return DAG.getRegister(VirtualRegister, VT); 3410 } 3411 3412 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 3413 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 3414 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 3415 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 3416 switch (Param) { 3417 case GRID_DIM: 3418 return ArgOffset; 3419 case GRID_OFFSET: 3420 return ArgOffset + 4; 3421 } 3422 llvm_unreachable("unexpected implicit parameter type"); 3423 } 3424 3425 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 3426 3427 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 3428 switch ((AMDGPUISD::NodeType)Opcode) { 3429 case AMDGPUISD::FIRST_NUMBER: break; 3430 // AMDIL DAG nodes 3431 NODE_NAME_CASE(UMUL); 3432 NODE_NAME_CASE(BRANCH_COND); 3433 3434 // AMDGPU DAG nodes 3435 NODE_NAME_CASE(IF) 3436 NODE_NAME_CASE(ELSE) 3437 NODE_NAME_CASE(LOOP) 3438 NODE_NAME_CASE(CALL) 3439 NODE_NAME_CASE(RET_FLAG) 3440 NODE_NAME_CASE(RETURN_TO_EPILOG) 3441 NODE_NAME_CASE(ENDPGM) 3442 NODE_NAME_CASE(DWORDADDR) 3443 NODE_NAME_CASE(FRACT) 3444 NODE_NAME_CASE(SETCC) 3445 NODE_NAME_CASE(SETREG) 3446 NODE_NAME_CASE(FMA_W_CHAIN) 3447 NODE_NAME_CASE(FMUL_W_CHAIN) 3448 NODE_NAME_CASE(CLAMP) 3449 NODE_NAME_CASE(COS_HW) 3450 NODE_NAME_CASE(SIN_HW) 3451 NODE_NAME_CASE(FMAX_LEGACY) 3452 NODE_NAME_CASE(FMIN_LEGACY) 3453 NODE_NAME_CASE(FMAX3) 3454 NODE_NAME_CASE(SMAX3) 3455 NODE_NAME_CASE(UMAX3) 3456 NODE_NAME_CASE(FMIN3) 3457 NODE_NAME_CASE(SMIN3) 3458 NODE_NAME_CASE(UMIN3) 3459 NODE_NAME_CASE(FMED3) 3460 NODE_NAME_CASE(SMED3) 3461 NODE_NAME_CASE(UMED3) 3462 NODE_NAME_CASE(URECIP) 3463 NODE_NAME_CASE(DIV_SCALE) 3464 NODE_NAME_CASE(DIV_FMAS) 3465 NODE_NAME_CASE(DIV_FIXUP) 3466 NODE_NAME_CASE(FMAD_FTZ) 3467 NODE_NAME_CASE(TRIG_PREOP) 3468 NODE_NAME_CASE(RCP) 3469 NODE_NAME_CASE(RSQ) 3470 NODE_NAME_CASE(RCP_LEGACY) 3471 NODE_NAME_CASE(RSQ_LEGACY) 3472 NODE_NAME_CASE(FMUL_LEGACY) 3473 NODE_NAME_CASE(RSQ_CLAMP) 3474 NODE_NAME_CASE(LDEXP) 3475 NODE_NAME_CASE(FP_CLASS) 3476 NODE_NAME_CASE(DOT4) 3477 NODE_NAME_CASE(CARRY) 3478 NODE_NAME_CASE(BORROW) 3479 NODE_NAME_CASE(BFE_U32) 3480 NODE_NAME_CASE(BFE_I32) 3481 NODE_NAME_CASE(BFI) 3482 NODE_NAME_CASE(BFM) 3483 NODE_NAME_CASE(FFBH_U32) 3484 NODE_NAME_CASE(FFBH_I32) 3485 NODE_NAME_CASE(MUL_U24) 3486 NODE_NAME_CASE(MUL_I24) 3487 NODE_NAME_CASE(MULHI_U24) 3488 NODE_NAME_CASE(MULHI_I24) 3489 NODE_NAME_CASE(MUL_LOHI_U24) 3490 NODE_NAME_CASE(MUL_LOHI_I24) 3491 NODE_NAME_CASE(MAD_U24) 3492 NODE_NAME_CASE(MAD_I24) 3493 NODE_NAME_CASE(TEXTURE_FETCH) 3494 NODE_NAME_CASE(EXPORT) 3495 NODE_NAME_CASE(EXPORT_DONE) 3496 NODE_NAME_CASE(R600_EXPORT) 3497 NODE_NAME_CASE(CONST_ADDRESS) 3498 NODE_NAME_CASE(REGISTER_LOAD) 3499 NODE_NAME_CASE(REGISTER_STORE) 3500 NODE_NAME_CASE(SAMPLE) 3501 NODE_NAME_CASE(SAMPLEB) 3502 NODE_NAME_CASE(SAMPLED) 3503 NODE_NAME_CASE(SAMPLEL) 3504 NODE_NAME_CASE(CVT_F32_UBYTE0) 3505 NODE_NAME_CASE(CVT_F32_UBYTE1) 3506 NODE_NAME_CASE(CVT_F32_UBYTE2) 3507 NODE_NAME_CASE(CVT_F32_UBYTE3) 3508 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 3509 NODE_NAME_CASE(FP_TO_FP16) 3510 NODE_NAME_CASE(FP16_ZEXT) 3511 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3512 NODE_NAME_CASE(CONST_DATA_PTR) 3513 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3514 NODE_NAME_CASE(KILL) 3515 NODE_NAME_CASE(DUMMY_CHAIN) 3516 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3517 NODE_NAME_CASE(SENDMSG) 3518 NODE_NAME_CASE(SENDMSGHALT) 3519 NODE_NAME_CASE(INTERP_MOV) 3520 NODE_NAME_CASE(INTERP_P1) 3521 NODE_NAME_CASE(INTERP_P2) 3522 NODE_NAME_CASE(STORE_MSKOR) 3523 NODE_NAME_CASE(LOAD_CONSTANT) 3524 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3525 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3526 NODE_NAME_CASE(ATOMIC_INC) 3527 NODE_NAME_CASE(ATOMIC_DEC) 3528 NODE_NAME_CASE(BUFFER_LOAD) 3529 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 3530 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3531 } 3532 return nullptr; 3533 } 3534 3535 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3536 SelectionDAG &DAG, int Enabled, 3537 int &RefinementSteps, 3538 bool &UseOneConstNR, 3539 bool Reciprocal) const { 3540 EVT VT = Operand.getValueType(); 3541 3542 if (VT == MVT::f32) { 3543 RefinementSteps = 0; 3544 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3545 } 3546 3547 // TODO: There is also f64 rsq instruction, but the documentation is less 3548 // clear on its precision. 3549 3550 return SDValue(); 3551 } 3552 3553 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3554 SelectionDAG &DAG, int Enabled, 3555 int &RefinementSteps) const { 3556 EVT VT = Operand.getValueType(); 3557 3558 if (VT == MVT::f32) { 3559 // Reciprocal, < 1 ulp error. 3560 // 3561 // This reciprocal approximation converges to < 0.5 ulp error with one 3562 // newton rhapson performed with two fused multiple adds (FMAs). 3563 3564 RefinementSteps = 0; 3565 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3566 } 3567 3568 // TODO: There is also f64 rcp instruction, but the documentation is less 3569 // clear on its precision. 3570 3571 return SDValue(); 3572 } 3573 3574 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3575 const SDValue Op, APInt &KnownZero, APInt &KnownOne, 3576 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 3577 3578 unsigned BitWidth = KnownZero.getBitWidth(); 3579 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. 3580 3581 APInt KnownZero2; 3582 APInt KnownOne2; 3583 unsigned Opc = Op.getOpcode(); 3584 3585 switch (Opc) { 3586 default: 3587 break; 3588 case AMDGPUISD::CARRY: 3589 case AMDGPUISD::BORROW: { 3590 KnownZero = APInt::getHighBitsSet(32, 31); 3591 break; 3592 } 3593 3594 case AMDGPUISD::BFE_I32: 3595 case AMDGPUISD::BFE_U32: { 3596 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3597 if (!CWidth) 3598 return; 3599 3600 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3601 3602 if (Opc == AMDGPUISD::BFE_U32) 3603 KnownZero = APInt::getHighBitsSet(32, 32 - Width); 3604 3605 break; 3606 } 3607 case AMDGPUISD::FP_TO_FP16: 3608 case AMDGPUISD::FP16_ZEXT: { 3609 unsigned BitWidth = KnownZero.getBitWidth(); 3610 3611 // High bits are zero. 3612 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 3613 break; 3614 } 3615 } 3616 } 3617 3618 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3619 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3620 unsigned Depth) const { 3621 switch (Op.getOpcode()) { 3622 case AMDGPUISD::BFE_I32: { 3623 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3624 if (!Width) 3625 return 1; 3626 3627 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3628 if (!isNullConstant(Op.getOperand(1))) 3629 return SignBits; 3630 3631 // TODO: Could probably figure something out with non-0 offsets. 3632 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3633 return std::max(SignBits, Op0SignBits); 3634 } 3635 3636 case AMDGPUISD::BFE_U32: { 3637 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3638 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3639 } 3640 3641 case AMDGPUISD::CARRY: 3642 case AMDGPUISD::BORROW: 3643 return 31; 3644 case AMDGPUISD::FP_TO_FP16: 3645 case AMDGPUISD::FP16_ZEXT: 3646 return 16; 3647 default: 3648 return 1; 3649 } 3650 } 3651