1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "SIInstrInfo.h" 32 using namespace llvm; 33 34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 MachineFunction &MF = State.getMachineFunction(); 38 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 39 40 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 41 ArgFlags.getOrigAlign()); 42 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 43 return true; 44 } 45 46 #include "AMDGPUGenCallingConv.inc" 47 48 // Find a larger type to do a load / store of a vector with. 49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 50 unsigned StoreSize = VT.getStoreSizeInBits(); 51 if (StoreSize <= 32) 52 return EVT::getIntegerVT(Ctx, StoreSize); 53 54 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 55 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 56 } 57 58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 59 const AMDGPUSubtarget &STI) 60 : TargetLowering(TM), Subtarget(&STI) { 61 // Lower floating point store/load to integer store/load to reduce the number 62 // of patterns in tablegen. 63 setOperationAction(ISD::LOAD, MVT::f32, Promote); 64 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 65 66 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 67 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 68 69 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 70 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 71 72 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 73 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 74 75 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 76 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 77 78 setOperationAction(ISD::LOAD, MVT::i64, Promote); 79 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 80 81 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 82 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 83 84 setOperationAction(ISD::LOAD, MVT::f64, Promote); 85 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 86 87 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 88 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 89 90 // There are no 64-bit extloads. These should be done as a 32-bit extload and 91 // an extension to 64-bit. 92 for (MVT VT : MVT::integer_valuetypes()) { 93 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 94 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 95 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 96 } 97 98 for (MVT VT : MVT::integer_valuetypes()) { 99 if (VT == MVT::i64) 100 continue; 101 102 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 103 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 104 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 105 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 106 107 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 108 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 109 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 110 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 111 112 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 113 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 114 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 115 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 116 } 117 118 for (MVT VT : MVT::integer_vector_valuetypes()) { 119 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 120 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 121 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 122 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 123 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 124 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 125 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 128 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 129 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 130 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 131 } 132 133 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 134 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 135 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 136 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 137 138 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 139 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 140 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 141 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 142 143 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 145 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 146 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 147 148 setOperationAction(ISD::STORE, MVT::f32, Promote); 149 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 150 151 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 152 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 153 154 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 155 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 156 157 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 158 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 159 160 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 161 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 162 163 setOperationAction(ISD::STORE, MVT::i64, Promote); 164 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 165 166 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 167 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 168 169 setOperationAction(ISD::STORE, MVT::f64, Promote); 170 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 171 172 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 173 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 174 175 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 176 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 177 178 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 179 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 180 181 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 182 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 183 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 184 185 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 186 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 187 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 188 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 189 190 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 191 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 192 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 193 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 194 195 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 196 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 197 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 198 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 199 200 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 201 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 202 203 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 204 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 205 206 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 207 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 208 209 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 210 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 211 212 213 setOperationAction(ISD::Constant, MVT::i32, Legal); 214 setOperationAction(ISD::Constant, MVT::i64, Legal); 215 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 216 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 217 218 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 219 setOperationAction(ISD::BRIND, MVT::Other, Expand); 220 221 // This is totally unsupported, just custom lower to produce an error. 222 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 223 224 // We need to custom lower some of the intrinsics 225 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 226 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 227 228 // Library functions. These default to Expand, but we have instructions 229 // for them. 230 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 231 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 232 setOperationAction(ISD::FPOW, MVT::f32, Legal); 233 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 234 setOperationAction(ISD::FABS, MVT::f32, Legal); 235 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 236 setOperationAction(ISD::FRINT, MVT::f32, Legal); 237 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 238 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 239 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 240 241 setOperationAction(ISD::FROUND, MVT::f32, Custom); 242 setOperationAction(ISD::FROUND, MVT::f64, Custom); 243 244 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 245 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 246 247 setOperationAction(ISD::FREM, MVT::f32, Custom); 248 setOperationAction(ISD::FREM, MVT::f64, Custom); 249 250 // v_mad_f32 does not support denormals according to some sources. 251 if (!Subtarget->hasFP32Denormals()) 252 setOperationAction(ISD::FMAD, MVT::f32, Legal); 253 254 // Expand to fneg + fadd. 255 setOperationAction(ISD::FSUB, MVT::f64, Expand); 256 257 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 258 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 259 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 260 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 261 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 262 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 263 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 264 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 265 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 266 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 267 268 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 269 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 270 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 271 setOperationAction(ISD::FRINT, MVT::f64, Custom); 272 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 273 } 274 275 if (!Subtarget->hasBFI()) { 276 // fcopysign can be done in a single instruction with BFI. 277 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 278 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 279 } 280 281 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 282 283 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 284 for (MVT VT : ScalarIntVTs) { 285 // These should use [SU]DIVREM, so set them to expand 286 setOperationAction(ISD::SDIV, VT, Expand); 287 setOperationAction(ISD::UDIV, VT, Expand); 288 setOperationAction(ISD::SREM, VT, Expand); 289 setOperationAction(ISD::UREM, VT, Expand); 290 291 // GPU does not have divrem function for signed or unsigned. 292 setOperationAction(ISD::SDIVREM, VT, Custom); 293 setOperationAction(ISD::UDIVREM, VT, Custom); 294 295 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 296 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 297 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 298 299 setOperationAction(ISD::BSWAP, VT, Expand); 300 setOperationAction(ISD::CTTZ, VT, Expand); 301 setOperationAction(ISD::CTLZ, VT, Expand); 302 } 303 304 if (!Subtarget->hasBCNT(32)) 305 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 306 307 if (!Subtarget->hasBCNT(64)) 308 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 309 310 // The hardware supports 32-bit ROTR, but not ROTL. 311 setOperationAction(ISD::ROTL, MVT::i32, Expand); 312 setOperationAction(ISD::ROTL, MVT::i64, Expand); 313 setOperationAction(ISD::ROTR, MVT::i64, Expand); 314 315 setOperationAction(ISD::MUL, MVT::i64, Expand); 316 setOperationAction(ISD::MULHU, MVT::i64, Expand); 317 setOperationAction(ISD::MULHS, MVT::i64, Expand); 318 setOperationAction(ISD::UDIV, MVT::i32, Expand); 319 setOperationAction(ISD::UREM, MVT::i32, Expand); 320 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 321 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 322 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 323 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 324 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 325 326 setOperationAction(ISD::SMIN, MVT::i32, Legal); 327 setOperationAction(ISD::UMIN, MVT::i32, Legal); 328 setOperationAction(ISD::SMAX, MVT::i32, Legal); 329 setOperationAction(ISD::UMAX, MVT::i32, Legal); 330 331 if (Subtarget->hasFFBH()) 332 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 333 334 if (Subtarget->hasFFBL()) 335 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 336 337 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 338 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 339 340 // We only really have 32-bit BFE instructions (and 16-bit on VI). 341 // 342 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 343 // effort to match them now. We want this to be false for i64 cases when the 344 // extraction isn't restricted to the upper or lower half. Ideally we would 345 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 346 // span the midpoint are probably relatively rare, so don't worry about them 347 // for now. 348 if (Subtarget->hasBFE()) 349 setHasExtractBitsInsn(true); 350 351 static const MVT::SimpleValueType VectorIntTypes[] = { 352 MVT::v2i32, MVT::v4i32 353 }; 354 355 for (MVT VT : VectorIntTypes) { 356 // Expand the following operations for the current type by default. 357 setOperationAction(ISD::ADD, VT, Expand); 358 setOperationAction(ISD::AND, VT, Expand); 359 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 360 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 361 setOperationAction(ISD::MUL, VT, Expand); 362 setOperationAction(ISD::MULHU, VT, Expand); 363 setOperationAction(ISD::MULHS, VT, Expand); 364 setOperationAction(ISD::OR, VT, Expand); 365 setOperationAction(ISD::SHL, VT, Expand); 366 setOperationAction(ISD::SRA, VT, Expand); 367 setOperationAction(ISD::SRL, VT, Expand); 368 setOperationAction(ISD::ROTL, VT, Expand); 369 setOperationAction(ISD::ROTR, VT, Expand); 370 setOperationAction(ISD::SUB, VT, Expand); 371 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 372 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 373 setOperationAction(ISD::SDIV, VT, Expand); 374 setOperationAction(ISD::UDIV, VT, Expand); 375 setOperationAction(ISD::SREM, VT, Expand); 376 setOperationAction(ISD::UREM, VT, Expand); 377 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 378 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 379 setOperationAction(ISD::SDIVREM, VT, Custom); 380 setOperationAction(ISD::UDIVREM, VT, Expand); 381 setOperationAction(ISD::ADDC, VT, Expand); 382 setOperationAction(ISD::SUBC, VT, Expand); 383 setOperationAction(ISD::ADDE, VT, Expand); 384 setOperationAction(ISD::SUBE, VT, Expand); 385 setOperationAction(ISD::SELECT, VT, Expand); 386 setOperationAction(ISD::VSELECT, VT, Expand); 387 setOperationAction(ISD::SELECT_CC, VT, Expand); 388 setOperationAction(ISD::XOR, VT, Expand); 389 setOperationAction(ISD::BSWAP, VT, Expand); 390 setOperationAction(ISD::CTPOP, VT, Expand); 391 setOperationAction(ISD::CTTZ, VT, Expand); 392 setOperationAction(ISD::CTLZ, VT, Expand); 393 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 394 } 395 396 static const MVT::SimpleValueType FloatVectorTypes[] = { 397 MVT::v2f32, MVT::v4f32 398 }; 399 400 for (MVT VT : FloatVectorTypes) { 401 setOperationAction(ISD::FABS, VT, Expand); 402 setOperationAction(ISD::FMINNUM, VT, Expand); 403 setOperationAction(ISD::FMAXNUM, VT, Expand); 404 setOperationAction(ISD::FADD, VT, Expand); 405 setOperationAction(ISD::FCEIL, VT, Expand); 406 setOperationAction(ISD::FCOS, VT, Expand); 407 setOperationAction(ISD::FDIV, VT, Expand); 408 setOperationAction(ISD::FEXP2, VT, Expand); 409 setOperationAction(ISD::FLOG2, VT, Expand); 410 setOperationAction(ISD::FREM, VT, Expand); 411 setOperationAction(ISD::FPOW, VT, Expand); 412 setOperationAction(ISD::FFLOOR, VT, Expand); 413 setOperationAction(ISD::FTRUNC, VT, Expand); 414 setOperationAction(ISD::FMUL, VT, Expand); 415 setOperationAction(ISD::FMA, VT, Expand); 416 setOperationAction(ISD::FRINT, VT, Expand); 417 setOperationAction(ISD::FNEARBYINT, VT, Expand); 418 setOperationAction(ISD::FSQRT, VT, Expand); 419 setOperationAction(ISD::FSIN, VT, Expand); 420 setOperationAction(ISD::FSUB, VT, Expand); 421 setOperationAction(ISD::FNEG, VT, Expand); 422 setOperationAction(ISD::VSELECT, VT, Expand); 423 setOperationAction(ISD::SELECT_CC, VT, Expand); 424 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 425 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 426 } 427 428 // This causes using an unrolled select operation rather than expansion with 429 // bit operations. This is in general better, but the alternative using BFI 430 // instructions may be better if the select sources are SGPRs. 431 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 432 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 433 434 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 435 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 436 437 setBooleanContents(ZeroOrNegativeOneBooleanContent); 438 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 439 440 setSchedulingPreference(Sched::RegPressure); 441 setJumpIsExpensive(true); 442 443 // SI at least has hardware support for floating point exceptions, but no way 444 // of using or handling them is implemented. They are also optional in OpenCL 445 // (Section 7.3) 446 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 447 448 PredictableSelectIsExpensive = false; 449 450 // We want to find all load dependencies for long chains of stores to enable 451 // merging into very wide vectors. The problem is with vectors with > 4 452 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 453 // vectors are a legal type, even though we have to split the loads 454 // usually. When we can more precisely specify load legality per address 455 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 456 // smarter so that they can figure out what to do in 2 iterations without all 457 // N > 4 stores on the same chain. 458 GatherAllAliasesMaxDepth = 16; 459 460 // FIXME: Need to really handle these. 461 MaxStoresPerMemcpy = 4096; 462 MaxStoresPerMemmove = 4096; 463 MaxStoresPerMemset = 4096; 464 465 setTargetDAGCombine(ISD::BITCAST); 466 setTargetDAGCombine(ISD::SHL); 467 setTargetDAGCombine(ISD::SRA); 468 setTargetDAGCombine(ISD::SRL); 469 setTargetDAGCombine(ISD::MUL); 470 setTargetDAGCombine(ISD::MULHU); 471 setTargetDAGCombine(ISD::MULHS); 472 setTargetDAGCombine(ISD::SELECT); 473 setTargetDAGCombine(ISD::SELECT_CC); 474 setTargetDAGCombine(ISD::STORE); 475 setTargetDAGCombine(ISD::FADD); 476 setTargetDAGCombine(ISD::FSUB); 477 } 478 479 //===----------------------------------------------------------------------===// 480 // Target Information 481 //===----------------------------------------------------------------------===// 482 483 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 484 return MVT::i32; 485 } 486 487 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 488 return true; 489 } 490 491 // The backend supports 32 and 64 bit floating point immediates. 492 // FIXME: Why are we reporting vectors of FP immediates as legal? 493 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 494 EVT ScalarVT = VT.getScalarType(); 495 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 496 } 497 498 // We don't want to shrink f64 / f32 constants. 499 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 500 EVT ScalarVT = VT.getScalarType(); 501 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 502 } 503 504 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 505 ISD::LoadExtType, 506 EVT NewVT) const { 507 508 unsigned NewSize = NewVT.getStoreSizeInBits(); 509 510 // If we are reducing to a 32-bit load, this is always better. 511 if (NewSize == 32) 512 return true; 513 514 EVT OldVT = N->getValueType(0); 515 unsigned OldSize = OldVT.getStoreSizeInBits(); 516 517 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 518 // extloads, so doing one requires using a buffer_load. In cases where we 519 // still couldn't use a scalar load, using the wider load shouldn't really 520 // hurt anything. 521 522 // If the old size already had to be an extload, there's no harm in continuing 523 // to reduce the width. 524 return (OldSize < 32); 525 } 526 527 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 528 EVT CastTy) const { 529 530 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 531 532 if (LoadTy.getScalarType() == MVT::i32) 533 return false; 534 535 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 536 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 537 538 return (LScalarSize < CastScalarSize) || 539 (CastScalarSize >= 32); 540 } 541 542 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 543 // profitable with the expansion for 64-bit since it's generally good to 544 // speculate things. 545 // FIXME: These should really have the size as a parameter. 546 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 547 return true; 548 } 549 550 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 551 return true; 552 } 553 554 //===---------------------------------------------------------------------===// 555 // Target Properties 556 //===---------------------------------------------------------------------===// 557 558 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 559 assert(VT.isFloatingPoint()); 560 return VT == MVT::f32 || VT == MVT::f64; 561 } 562 563 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 564 assert(VT.isFloatingPoint()); 565 return VT == MVT::f32 || VT == MVT::f64; 566 } 567 568 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 569 unsigned NumElem, 570 unsigned AS) const { 571 return true; 572 } 573 574 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 575 // There are few operations which truly have vector input operands. Any vector 576 // operation is going to involve operations on each component, and a 577 // build_vector will be a copy per element, so it always makes sense to use a 578 // build_vector input in place of the extracted element to avoid a copy into a 579 // super register. 580 // 581 // We should probably only do this if all users are extracts only, but this 582 // should be the common case. 583 return true; 584 } 585 586 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 587 // Truncate is just accessing a subregister. 588 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 589 } 590 591 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 592 // Truncate is just accessing a subregister. 593 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 594 (Dest->getPrimitiveSizeInBits() % 32 == 0); 595 } 596 597 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 598 unsigned SrcSize = Src->getScalarSizeInBits(); 599 unsigned DestSize = Dest->getScalarSizeInBits(); 600 601 return SrcSize == 32 && DestSize == 64; 602 } 603 604 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 605 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 606 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 607 // this will enable reducing 64-bit operations the 32-bit, which is always 608 // good. 609 return Src == MVT::i32 && Dest == MVT::i64; 610 } 611 612 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 613 return isZExtFree(Val.getValueType(), VT2); 614 } 615 616 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 617 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 618 // limited number of native 64-bit operations. Shrinking an operation to fit 619 // in a single 32-bit register should always be helpful. As currently used, 620 // this is much less general than the name suggests, and is only used in 621 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 622 // not profitable, and may actually be harmful. 623 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 624 } 625 626 //===---------------------------------------------------------------------===// 627 // TargetLowering Callbacks 628 //===---------------------------------------------------------------------===// 629 630 /// The SelectionDAGBuilder will automatically promote function arguments 631 /// with illegal types. However, this does not work for the AMDGPU targets 632 /// since the function arguments are stored in memory as these illegal types. 633 /// In order to handle this properly we need to get the original types sizes 634 /// from the LLVM IR Function and fixup the ISD:InputArg values before 635 /// passing them to AnalyzeFormalArguments() 636 637 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 638 /// input values across multiple registers. Each item in the Ins array 639 /// represents a single value that will be stored in regsters. Ins[x].VT is 640 /// the value type of the value that will be stored in the register, so 641 /// whatever SDNode we lower the argument to needs to be this type. 642 /// 643 /// In order to correctly lower the arguments we need to know the size of each 644 /// argument. Since Ins[x].VT gives us the size of the register that will 645 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 646 /// for the orignal function argument so that we can deduce the correct memory 647 /// type to use for Ins[x]. In most cases the correct memory type will be 648 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 649 /// we have a kernel argument of type v8i8, this argument will be split into 650 /// 8 parts and each part will be represented by its own item in the Ins array. 651 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 652 /// the argument before it was split. From this, we deduce that the memory type 653 /// for each individual part is i8. We pass the memory type as LocVT to the 654 /// calling convention analysis function and the register type (Ins[x].VT) as 655 /// the ValVT. 656 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 657 const SmallVectorImpl<ISD::InputArg> &Ins) const { 658 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 659 const ISD::InputArg &In = Ins[i]; 660 EVT MemVT; 661 662 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 663 664 if (!Subtarget->isAmdHsaOS() && 665 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 666 // The ABI says the caller will extend these values to 32-bits. 667 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 668 } else if (NumRegs == 1) { 669 // This argument is not split, so the IR type is the memory type. 670 assert(!In.Flags.isSplit()); 671 if (In.ArgVT.isExtended()) { 672 // We have an extended type, like i24, so we should just use the register type 673 MemVT = In.VT; 674 } else { 675 MemVT = In.ArgVT; 676 } 677 } else if (In.ArgVT.isVector() && In.VT.isVector() && 678 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 679 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 680 // We have a vector value which has been split into a vector with 681 // the same scalar type, but fewer elements. This should handle 682 // all the floating-point vector types. 683 MemVT = In.VT; 684 } else if (In.ArgVT.isVector() && 685 In.ArgVT.getVectorNumElements() == NumRegs) { 686 // This arg has been split so that each element is stored in a separate 687 // register. 688 MemVT = In.ArgVT.getScalarType(); 689 } else if (In.ArgVT.isExtended()) { 690 // We have an extended type, like i65. 691 MemVT = In.VT; 692 } else { 693 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 694 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 695 if (In.VT.isInteger()) { 696 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 697 } else if (In.VT.isVector()) { 698 assert(!In.VT.getScalarType().isFloatingPoint()); 699 unsigned NumElements = In.VT.getVectorNumElements(); 700 assert(MemoryBits % NumElements == 0); 701 // This vector type has been split into another vector type with 702 // a different elements size. 703 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 704 MemoryBits / NumElements); 705 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 706 } else { 707 llvm_unreachable("cannot deduce memory type."); 708 } 709 } 710 711 // Convert one element vectors to scalar. 712 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 713 MemVT = MemVT.getScalarType(); 714 715 if (MemVT.isExtended()) { 716 // This should really only happen if we have vec3 arguments 717 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 718 MemVT = MemVT.getPow2VectorType(State.getContext()); 719 } 720 721 assert(MemVT.isSimple()); 722 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 723 State); 724 } 725 } 726 727 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 728 const SmallVectorImpl<ISD::InputArg> &Ins) const { 729 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 730 } 731 732 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 733 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 734 735 State.AnalyzeReturn(Outs, RetCC_SI); 736 } 737 738 SDValue 739 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 740 bool isVarArg, 741 const SmallVectorImpl<ISD::OutputArg> &Outs, 742 const SmallVectorImpl<SDValue> &OutVals, 743 const SDLoc &DL, SelectionDAG &DAG) const { 744 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 745 } 746 747 //===---------------------------------------------------------------------===// 748 // Target specific lowering 749 //===---------------------------------------------------------------------===// 750 751 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 752 SmallVectorImpl<SDValue> &InVals) const { 753 SDValue Callee = CLI.Callee; 754 SelectionDAG &DAG = CLI.DAG; 755 756 const Function &Fn = *DAG.getMachineFunction().getFunction(); 757 758 StringRef FuncName("<unknown>"); 759 760 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 761 FuncName = G->getSymbol(); 762 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 763 FuncName = G->getGlobal()->getName(); 764 765 DiagnosticInfoUnsupported NoCalls( 766 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 767 DAG.getContext()->diagnose(NoCalls); 768 769 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 770 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 771 772 return DAG.getEntryNode(); 773 } 774 775 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 776 SelectionDAG &DAG) const { 777 const Function &Fn = *DAG.getMachineFunction().getFunction(); 778 779 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 780 SDLoc(Op).getDebugLoc()); 781 DAG.getContext()->diagnose(NoDynamicAlloca); 782 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 783 return DAG.getMergeValues(Ops, SDLoc()); 784 } 785 786 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 787 SelectionDAG &DAG) const { 788 switch (Op.getOpcode()) { 789 default: 790 Op->dump(&DAG); 791 llvm_unreachable("Custom lowering code for this" 792 "instruction is not implemented yet!"); 793 break; 794 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 795 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 796 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 797 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 798 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 799 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 800 case ISD::FREM: return LowerFREM(Op, DAG); 801 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 802 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 803 case ISD::FRINT: return LowerFRINT(Op, DAG); 804 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 805 case ISD::FROUND: return LowerFROUND(Op, DAG); 806 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 807 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 808 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 809 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 810 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 811 case ISD::CTLZ: 812 case ISD::CTLZ_ZERO_UNDEF: 813 return LowerCTLZ(Op, DAG); 814 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 815 } 816 return Op; 817 } 818 819 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 820 SmallVectorImpl<SDValue> &Results, 821 SelectionDAG &DAG) const { 822 switch (N->getOpcode()) { 823 case ISD::SIGN_EXTEND_INREG: 824 // Different parts of legalization seem to interpret which type of 825 // sign_extend_inreg is the one to check for custom lowering. The extended 826 // from type is what really matters, but some places check for custom 827 // lowering of the result type. This results in trying to use 828 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 829 // nothing here and let the illegal result integer be handled normally. 830 return; 831 default: 832 return; 833 } 834 } 835 836 static bool hasDefinedInitializer(const GlobalValue *GV) { 837 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 838 if (!GVar || !GVar->hasInitializer()) 839 return false; 840 841 return !isa<UndefValue>(GVar->getInitializer()); 842 } 843 844 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 845 SDValue Op, 846 SelectionDAG &DAG) const { 847 848 const DataLayout &DL = DAG.getDataLayout(); 849 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 850 const GlobalValue *GV = G->getGlobal(); 851 852 switch (G->getAddressSpace()) { 853 case AMDGPUAS::LOCAL_ADDRESS: { 854 // XXX: What does the value of G->getOffset() mean? 855 assert(G->getOffset() == 0 && 856 "Do not know what to do with an non-zero offset"); 857 858 // TODO: We could emit code to handle the initialization somewhere. 859 if (hasDefinedInitializer(GV)) 860 break; 861 862 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 863 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 864 } 865 } 866 867 const Function &Fn = *DAG.getMachineFunction().getFunction(); 868 DiagnosticInfoUnsupported BadInit( 869 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 870 DAG.getContext()->diagnose(BadInit); 871 return SDValue(); 872 } 873 874 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 875 SelectionDAG &DAG) const { 876 SmallVector<SDValue, 8> Args; 877 878 for (const SDUse &U : Op->ops()) 879 DAG.ExtractVectorElements(U.get(), Args); 880 881 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 882 } 883 884 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 885 SelectionDAG &DAG) const { 886 887 SmallVector<SDValue, 8> Args; 888 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 889 EVT VT = Op.getValueType(); 890 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 891 VT.getVectorNumElements()); 892 893 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 894 } 895 896 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 897 SelectionDAG &DAG) const { 898 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 899 SDLoc DL(Op); 900 EVT VT = Op.getValueType(); 901 902 switch (IntrinsicID) { 903 default: return Op; 904 case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name. 905 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 906 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 907 908 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 909 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 910 Op.getOperand(1), 911 Op.getOperand(2), 912 Op.getOperand(3)); 913 914 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 915 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 916 Op.getOperand(1), 917 Op.getOperand(2), 918 Op.getOperand(3)); 919 } 920 } 921 922 /// \brief Generate Min/Max node 923 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT, 924 SDValue LHS, SDValue RHS, 925 SDValue True, SDValue False, 926 SDValue CC, 927 DAGCombinerInfo &DCI) const { 928 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 929 return SDValue(); 930 931 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 932 return SDValue(); 933 934 SelectionDAG &DAG = DCI.DAG; 935 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 936 switch (CCOpcode) { 937 case ISD::SETOEQ: 938 case ISD::SETONE: 939 case ISD::SETUNE: 940 case ISD::SETNE: 941 case ISD::SETUEQ: 942 case ISD::SETEQ: 943 case ISD::SETFALSE: 944 case ISD::SETFALSE2: 945 case ISD::SETTRUE: 946 case ISD::SETTRUE2: 947 case ISD::SETUO: 948 case ISD::SETO: 949 break; 950 case ISD::SETULE: 951 case ISD::SETULT: { 952 if (LHS == True) 953 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 954 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 955 } 956 case ISD::SETOLE: 957 case ISD::SETOLT: 958 case ISD::SETLE: 959 case ISD::SETLT: { 960 // Ordered. Assume ordered for undefined. 961 962 // Only do this after legalization to avoid interfering with other combines 963 // which might occur. 964 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 965 !DCI.isCalledByLegalizer()) 966 return SDValue(); 967 968 // We need to permute the operands to get the correct NaN behavior. The 969 // selected operand is the second one based on the failing compare with NaN, 970 // so permute it based on the compare type the hardware uses. 971 if (LHS == True) 972 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 973 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 974 } 975 case ISD::SETUGE: 976 case ISD::SETUGT: { 977 if (LHS == True) 978 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 979 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 980 } 981 case ISD::SETGT: 982 case ISD::SETGE: 983 case ISD::SETOGE: 984 case ISD::SETOGT: { 985 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 986 !DCI.isCalledByLegalizer()) 987 return SDValue(); 988 989 if (LHS == True) 990 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 991 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 992 } 993 case ISD::SETCC_INVALID: 994 llvm_unreachable("Invalid setcc condcode!"); 995 } 996 return SDValue(); 997 } 998 999 std::pair<SDValue, SDValue> 1000 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1001 SDLoc SL(Op); 1002 1003 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1004 1005 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1006 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1007 1008 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1009 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1010 1011 return std::make_pair(Lo, Hi); 1012 } 1013 1014 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1015 SDLoc SL(Op); 1016 1017 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1018 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1019 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1020 } 1021 1022 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1023 SDLoc SL(Op); 1024 1025 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1026 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1027 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1028 } 1029 1030 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1031 SelectionDAG &DAG) const { 1032 LoadSDNode *Load = cast<LoadSDNode>(Op); 1033 EVT VT = Op.getValueType(); 1034 1035 1036 // If this is a 2 element vector, we really want to scalarize and not create 1037 // weird 1 element vectors. 1038 if (VT.getVectorNumElements() == 2) 1039 return scalarizeVectorLoad(Load, DAG); 1040 1041 SDValue BasePtr = Load->getBasePtr(); 1042 EVT PtrVT = BasePtr.getValueType(); 1043 EVT MemVT = Load->getMemoryVT(); 1044 SDLoc SL(Op); 1045 1046 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1047 1048 EVT LoVT, HiVT; 1049 EVT LoMemVT, HiMemVT; 1050 SDValue Lo, Hi; 1051 1052 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1053 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1054 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1055 1056 unsigned Size = LoMemVT.getStoreSize(); 1057 unsigned BaseAlign = Load->getAlignment(); 1058 unsigned HiAlign = MinAlign(BaseAlign, Size); 1059 1060 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1061 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1062 BaseAlign, Load->getMemOperand()->getFlags()); 1063 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1064 DAG.getConstant(Size, SL, PtrVT)); 1065 SDValue HiLoad = 1066 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1067 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1068 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1069 1070 SDValue Ops[] = { 1071 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1072 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1073 LoLoad.getValue(1), HiLoad.getValue(1)) 1074 }; 1075 1076 return DAG.getMergeValues(Ops, SL); 1077 } 1078 1079 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1080 SelectionDAG &DAG) const { 1081 StoreSDNode *Store = cast<StoreSDNode>(Op); 1082 SDValue Val = Store->getValue(); 1083 EVT VT = Val.getValueType(); 1084 1085 // If this is a 2 element vector, we really want to scalarize and not create 1086 // weird 1 element vectors. 1087 if (VT.getVectorNumElements() == 2) 1088 return scalarizeVectorStore(Store, DAG); 1089 1090 EVT MemVT = Store->getMemoryVT(); 1091 SDValue Chain = Store->getChain(); 1092 SDValue BasePtr = Store->getBasePtr(); 1093 SDLoc SL(Op); 1094 1095 EVT LoVT, HiVT; 1096 EVT LoMemVT, HiMemVT; 1097 SDValue Lo, Hi; 1098 1099 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1100 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1101 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1102 1103 EVT PtrVT = BasePtr.getValueType(); 1104 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1105 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1106 PtrVT)); 1107 1108 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1109 unsigned BaseAlign = Store->getAlignment(); 1110 unsigned Size = LoMemVT.getStoreSize(); 1111 unsigned HiAlign = MinAlign(BaseAlign, Size); 1112 1113 SDValue LoStore = 1114 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1115 Store->getMemOperand()->getFlags()); 1116 SDValue HiStore = 1117 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1118 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1119 1120 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1121 } 1122 1123 // This is a shortcut for integer division because we have fast i32<->f32 1124 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1125 // float is enough to accurately represent up to a 24-bit signed integer. 1126 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1127 bool Sign) const { 1128 SDLoc DL(Op); 1129 EVT VT = Op.getValueType(); 1130 SDValue LHS = Op.getOperand(0); 1131 SDValue RHS = Op.getOperand(1); 1132 MVT IntVT = MVT::i32; 1133 MVT FltVT = MVT::f32; 1134 1135 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1136 if (LHSSignBits < 9) 1137 return SDValue(); 1138 1139 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1140 if (RHSSignBits < 9) 1141 return SDValue(); 1142 1143 unsigned BitSize = VT.getSizeInBits(); 1144 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1145 unsigned DivBits = BitSize - SignBits; 1146 if (Sign) 1147 ++DivBits; 1148 1149 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1150 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1151 1152 SDValue jq = DAG.getConstant(1, DL, IntVT); 1153 1154 if (Sign) { 1155 // char|short jq = ia ^ ib; 1156 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1157 1158 // jq = jq >> (bitsize - 2) 1159 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1160 DAG.getConstant(BitSize - 2, DL, VT)); 1161 1162 // jq = jq | 0x1 1163 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1164 } 1165 1166 // int ia = (int)LHS; 1167 SDValue ia = LHS; 1168 1169 // int ib, (int)RHS; 1170 SDValue ib = RHS; 1171 1172 // float fa = (float)ia; 1173 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1174 1175 // float fb = (float)ib; 1176 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1177 1178 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1179 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1180 1181 // fq = trunc(fq); 1182 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1183 1184 // float fqneg = -fq; 1185 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1186 1187 // float fr = mad(fqneg, fb, fa); 1188 SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa); 1189 1190 // int iq = (int)fq; 1191 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1192 1193 // fr = fabs(fr); 1194 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1195 1196 // fb = fabs(fb); 1197 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1198 1199 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1200 1201 // int cv = fr >= fb; 1202 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1203 1204 // jq = (cv ? jq : 0); 1205 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1206 1207 // dst = iq + jq; 1208 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1209 1210 // Rem needs compensation, it's easier to recompute it 1211 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1212 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1213 1214 // Truncate to number of bits this divide really is. 1215 if (Sign) { 1216 SDValue InRegSize 1217 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1218 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1219 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1220 } else { 1221 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1222 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1223 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1224 } 1225 1226 return DAG.getMergeValues({ Div, Rem }, DL); 1227 } 1228 1229 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1230 SelectionDAG &DAG, 1231 SmallVectorImpl<SDValue> &Results) const { 1232 assert(Op.getValueType() == MVT::i64); 1233 1234 SDLoc DL(Op); 1235 EVT VT = Op.getValueType(); 1236 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1237 1238 SDValue one = DAG.getConstant(1, DL, HalfVT); 1239 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1240 1241 //HiLo split 1242 SDValue LHS = Op.getOperand(0); 1243 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1244 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1245 1246 SDValue RHS = Op.getOperand(1); 1247 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1248 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1249 1250 if (VT == MVT::i64 && 1251 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1252 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1253 1254 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1255 LHS_Lo, RHS_Lo); 1256 1257 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1258 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1259 1260 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1261 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1262 return; 1263 } 1264 1265 // Get Speculative values 1266 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1267 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1268 1269 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1270 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1271 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1272 1273 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1274 SDValue DIV_Lo = zero; 1275 1276 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1277 1278 for (unsigned i = 0; i < halfBitWidth; ++i) { 1279 const unsigned bitPos = halfBitWidth - i - 1; 1280 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1281 // Get value of high bit 1282 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1283 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1284 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1285 1286 // Shift 1287 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1288 // Add LHS high bit 1289 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1290 1291 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1292 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1293 1294 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1295 1296 // Update REM 1297 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1298 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1299 } 1300 1301 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1302 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1303 Results.push_back(DIV); 1304 Results.push_back(REM); 1305 } 1306 1307 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1308 SelectionDAG &DAG) const { 1309 SDLoc DL(Op); 1310 EVT VT = Op.getValueType(); 1311 1312 if (VT == MVT::i64) { 1313 SmallVector<SDValue, 2> Results; 1314 LowerUDIVREM64(Op, DAG, Results); 1315 return DAG.getMergeValues(Results, DL); 1316 } 1317 1318 if (VT == MVT::i32) { 1319 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1320 return Res; 1321 } 1322 1323 SDValue Num = Op.getOperand(0); 1324 SDValue Den = Op.getOperand(1); 1325 1326 // RCP = URECIP(Den) = 2^32 / Den + e 1327 // e is rounding error. 1328 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1329 1330 // RCP_LO = mul(RCP, Den) */ 1331 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1332 1333 // RCP_HI = mulhu (RCP, Den) */ 1334 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1335 1336 // NEG_RCP_LO = -RCP_LO 1337 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1338 RCP_LO); 1339 1340 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1341 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1342 NEG_RCP_LO, RCP_LO, 1343 ISD::SETEQ); 1344 // Calculate the rounding error from the URECIP instruction 1345 // E = mulhu(ABS_RCP_LO, RCP) 1346 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1347 1348 // RCP_A_E = RCP + E 1349 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1350 1351 // RCP_S_E = RCP - E 1352 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1353 1354 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1355 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1356 RCP_A_E, RCP_S_E, 1357 ISD::SETEQ); 1358 // Quotient = mulhu(Tmp0, Num) 1359 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1360 1361 // Num_S_Remainder = Quotient * Den 1362 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1363 1364 // Remainder = Num - Num_S_Remainder 1365 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1366 1367 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1368 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1369 DAG.getConstant(-1, DL, VT), 1370 DAG.getConstant(0, DL, VT), 1371 ISD::SETUGE); 1372 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1373 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1374 Num_S_Remainder, 1375 DAG.getConstant(-1, DL, VT), 1376 DAG.getConstant(0, DL, VT), 1377 ISD::SETUGE); 1378 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1379 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1380 Remainder_GE_Zero); 1381 1382 // Calculate Division result: 1383 1384 // Quotient_A_One = Quotient + 1 1385 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1386 DAG.getConstant(1, DL, VT)); 1387 1388 // Quotient_S_One = Quotient - 1 1389 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1390 DAG.getConstant(1, DL, VT)); 1391 1392 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1393 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1394 Quotient, Quotient_A_One, ISD::SETEQ); 1395 1396 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1397 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1398 Quotient_S_One, Div, ISD::SETEQ); 1399 1400 // Calculate Rem result: 1401 1402 // Remainder_S_Den = Remainder - Den 1403 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1404 1405 // Remainder_A_Den = Remainder + Den 1406 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1407 1408 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1409 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1410 Remainder, Remainder_S_Den, ISD::SETEQ); 1411 1412 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1413 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1414 Remainder_A_Den, Rem, ISD::SETEQ); 1415 SDValue Ops[2] = { 1416 Div, 1417 Rem 1418 }; 1419 return DAG.getMergeValues(Ops, DL); 1420 } 1421 1422 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1423 SelectionDAG &DAG) const { 1424 SDLoc DL(Op); 1425 EVT VT = Op.getValueType(); 1426 1427 SDValue LHS = Op.getOperand(0); 1428 SDValue RHS = Op.getOperand(1); 1429 1430 SDValue Zero = DAG.getConstant(0, DL, VT); 1431 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1432 1433 if (VT == MVT::i32) { 1434 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1435 return Res; 1436 } 1437 1438 if (VT == MVT::i64 && 1439 DAG.ComputeNumSignBits(LHS) > 32 && 1440 DAG.ComputeNumSignBits(RHS) > 32) { 1441 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1442 1443 //HiLo split 1444 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1445 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1446 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1447 LHS_Lo, RHS_Lo); 1448 SDValue Res[2] = { 1449 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1450 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1451 }; 1452 return DAG.getMergeValues(Res, DL); 1453 } 1454 1455 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1456 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1457 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1458 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1459 1460 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1461 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1462 1463 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1464 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1465 1466 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1467 SDValue Rem = Div.getValue(1); 1468 1469 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1470 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1471 1472 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1473 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1474 1475 SDValue Res[2] = { 1476 Div, 1477 Rem 1478 }; 1479 return DAG.getMergeValues(Res, DL); 1480 } 1481 1482 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1483 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1484 SDLoc SL(Op); 1485 EVT VT = Op.getValueType(); 1486 SDValue X = Op.getOperand(0); 1487 SDValue Y = Op.getOperand(1); 1488 1489 // TODO: Should this propagate fast-math-flags? 1490 1491 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1492 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1493 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1494 1495 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1496 } 1497 1498 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1499 SDLoc SL(Op); 1500 SDValue Src = Op.getOperand(0); 1501 1502 // result = trunc(src) 1503 // if (src > 0.0 && src != result) 1504 // result += 1.0 1505 1506 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1507 1508 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1509 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1510 1511 EVT SetCCVT = 1512 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1513 1514 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1515 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1516 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1517 1518 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1519 // TODO: Should this propagate fast-math-flags? 1520 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1521 } 1522 1523 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1524 SelectionDAG &DAG) { 1525 const unsigned FractBits = 52; 1526 const unsigned ExpBits = 11; 1527 1528 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1529 Hi, 1530 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1531 DAG.getConstant(ExpBits, SL, MVT::i32)); 1532 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1533 DAG.getConstant(1023, SL, MVT::i32)); 1534 1535 return Exp; 1536 } 1537 1538 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1539 SDLoc SL(Op); 1540 SDValue Src = Op.getOperand(0); 1541 1542 assert(Op.getValueType() == MVT::f64); 1543 1544 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1545 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1546 1547 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1548 1549 // Extract the upper half, since this is where we will find the sign and 1550 // exponent. 1551 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1552 1553 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1554 1555 const unsigned FractBits = 52; 1556 1557 // Extract the sign bit. 1558 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1559 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1560 1561 // Extend back to to 64-bits. 1562 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1563 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1564 1565 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1566 const SDValue FractMask 1567 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1568 1569 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1570 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1571 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1572 1573 EVT SetCCVT = 1574 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1575 1576 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1577 1578 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1579 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1580 1581 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1582 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1583 1584 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1585 } 1586 1587 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1588 SDLoc SL(Op); 1589 SDValue Src = Op.getOperand(0); 1590 1591 assert(Op.getValueType() == MVT::f64); 1592 1593 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 1594 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1595 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1596 1597 // TODO: Should this propagate fast-math-flags? 1598 1599 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1600 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1601 1602 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1603 1604 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 1605 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1606 1607 EVT SetCCVT = 1608 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1609 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1610 1611 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1612 } 1613 1614 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1615 // FNEARBYINT and FRINT are the same, except in their handling of FP 1616 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1617 // rint, so just treat them as equivalent. 1618 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1619 } 1620 1621 // XXX - May require not supporting f32 denormals? 1622 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1623 SDLoc SL(Op); 1624 SDValue X = Op.getOperand(0); 1625 1626 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1627 1628 // TODO: Should this propagate fast-math-flags? 1629 1630 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1631 1632 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1633 1634 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1635 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1636 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1637 1638 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1639 1640 EVT SetCCVT = 1641 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1642 1643 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1644 1645 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1646 1647 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1648 } 1649 1650 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1651 SDLoc SL(Op); 1652 SDValue X = Op.getOperand(0); 1653 1654 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1655 1656 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1657 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1658 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1659 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1660 EVT SetCCVT = 1661 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1662 1663 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1664 1665 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1666 1667 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1668 1669 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1670 MVT::i64); 1671 1672 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1673 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1674 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1675 MVT::i64), 1676 Exp); 1677 1678 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1679 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1680 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1681 ISD::SETNE); 1682 1683 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1684 D, DAG.getConstant(0, SL, MVT::i64)); 1685 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1686 1687 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1688 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1689 1690 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1691 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1692 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1693 1694 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1695 ExpEqNegOne, 1696 DAG.getConstantFP(1.0, SL, MVT::f64), 1697 DAG.getConstantFP(0.0, SL, MVT::f64)); 1698 1699 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1700 1701 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1702 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1703 1704 return K; 1705 } 1706 1707 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1708 EVT VT = Op.getValueType(); 1709 1710 if (VT == MVT::f32) 1711 return LowerFROUND32(Op, DAG); 1712 1713 if (VT == MVT::f64) 1714 return LowerFROUND64(Op, DAG); 1715 1716 llvm_unreachable("unhandled type"); 1717 } 1718 1719 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1720 SDLoc SL(Op); 1721 SDValue Src = Op.getOperand(0); 1722 1723 // result = trunc(src); 1724 // if (src < 0.0 && src != result) 1725 // result += -1.0. 1726 1727 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1728 1729 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1730 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1731 1732 EVT SetCCVT = 1733 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1734 1735 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1736 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1737 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1738 1739 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1740 // TODO: Should this propagate fast-math-flags? 1741 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1742 } 1743 1744 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1745 SDLoc SL(Op); 1746 SDValue Src = Op.getOperand(0); 1747 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1748 1749 if (ZeroUndef && Src.getValueType() == MVT::i32) 1750 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1751 1752 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1753 1754 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1755 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1756 1757 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1758 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1759 1760 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1761 *DAG.getContext(), MVT::i32); 1762 1763 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1764 1765 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1766 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1767 1768 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1769 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1770 1771 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1772 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1773 1774 if (!ZeroUndef) { 1775 // Test if the full 64-bit input is zero. 1776 1777 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1778 // which we probably don't want. 1779 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1780 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1781 1782 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1783 // with the same cycles, otherwise it is slower. 1784 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1785 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1786 1787 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1788 1789 // The instruction returns -1 for 0 input, but the defined intrinsic 1790 // behavior is to return the number of bits. 1791 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1792 SrcIsZero, Bits32, NewCtlz); 1793 } 1794 1795 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1796 } 1797 1798 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1799 bool Signed) const { 1800 // Unsigned 1801 // cul2f(ulong u) 1802 //{ 1803 // uint lz = clz(u); 1804 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1805 // u = (u << lz) & 0x7fffffffffffffffUL; 1806 // ulong t = u & 0xffffffffffUL; 1807 // uint v = (e << 23) | (uint)(u >> 40); 1808 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1809 // return as_float(v + r); 1810 //} 1811 // Signed 1812 // cl2f(long l) 1813 //{ 1814 // long s = l >> 63; 1815 // float r = cul2f((l + s) ^ s); 1816 // return s ? -r : r; 1817 //} 1818 1819 SDLoc SL(Op); 1820 SDValue Src = Op.getOperand(0); 1821 SDValue L = Src; 1822 1823 SDValue S; 1824 if (Signed) { 1825 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1826 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1827 1828 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1829 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1830 } 1831 1832 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1833 *DAG.getContext(), MVT::f32); 1834 1835 1836 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1837 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1838 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1839 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1840 1841 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1842 SDValue E = DAG.getSelect(SL, MVT::i32, 1843 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1844 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1845 ZeroI32); 1846 1847 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1848 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1849 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1850 1851 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1852 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1853 1854 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1855 U, DAG.getConstant(40, SL, MVT::i64)); 1856 1857 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1858 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1859 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1860 1861 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1862 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1863 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 1864 1865 SDValue One = DAG.getConstant(1, SL, MVT::i32); 1866 1867 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 1868 1869 SDValue R = DAG.getSelect(SL, MVT::i32, 1870 RCmp, 1871 One, 1872 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 1873 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 1874 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 1875 1876 if (!Signed) 1877 return R; 1878 1879 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 1880 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 1881 } 1882 1883 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 1884 bool Signed) const { 1885 SDLoc SL(Op); 1886 SDValue Src = Op.getOperand(0); 1887 1888 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1889 1890 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1891 DAG.getConstant(0, SL, MVT::i32)); 1892 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1893 DAG.getConstant(1, SL, MVT::i32)); 1894 1895 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 1896 SL, MVT::f64, Hi); 1897 1898 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 1899 1900 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 1901 DAG.getConstant(32, SL, MVT::i32)); 1902 // TODO: Should this propagate fast-math-flags? 1903 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 1904 } 1905 1906 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 1907 SelectionDAG &DAG) const { 1908 assert(Op.getOperand(0).getValueType() == MVT::i64 && 1909 "operation should be legal"); 1910 1911 EVT DestVT = Op.getValueType(); 1912 1913 if (DestVT == MVT::f32) 1914 return LowerINT_TO_FP32(Op, DAG, false); 1915 1916 assert(DestVT == MVT::f64); 1917 return LowerINT_TO_FP64(Op, DAG, false); 1918 } 1919 1920 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 1921 SelectionDAG &DAG) const { 1922 assert(Op.getOperand(0).getValueType() == MVT::i64 && 1923 "operation should be legal"); 1924 1925 EVT DestVT = Op.getValueType(); 1926 if (DestVT == MVT::f32) 1927 return LowerINT_TO_FP32(Op, DAG, true); 1928 1929 assert(DestVT == MVT::f64); 1930 return LowerINT_TO_FP64(Op, DAG, true); 1931 } 1932 1933 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 1934 bool Signed) const { 1935 SDLoc SL(Op); 1936 1937 SDValue Src = Op.getOperand(0); 1938 1939 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1940 1941 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 1942 MVT::f64); 1943 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 1944 MVT::f64); 1945 // TODO: Should this propagate fast-math-flags? 1946 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 1947 1948 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 1949 1950 1951 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 1952 1953 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 1954 MVT::i32, FloorMul); 1955 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 1956 1957 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 1958 1959 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 1960 } 1961 1962 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 1963 SelectionDAG &DAG) const { 1964 SDValue Src = Op.getOperand(0); 1965 1966 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 1967 return LowerFP64_TO_INT(Op, DAG, true); 1968 1969 return SDValue(); 1970 } 1971 1972 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 1973 SelectionDAG &DAG) const { 1974 SDValue Src = Op.getOperand(0); 1975 1976 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 1977 return LowerFP64_TO_INT(Op, DAG, false); 1978 1979 return SDValue(); 1980 } 1981 1982 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1983 SelectionDAG &DAG) const { 1984 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1985 MVT VT = Op.getSimpleValueType(); 1986 MVT ScalarVT = VT.getScalarType(); 1987 1988 assert(VT.isVector()); 1989 1990 SDValue Src = Op.getOperand(0); 1991 SDLoc DL(Op); 1992 1993 // TODO: Don't scalarize on Evergreen? 1994 unsigned NElts = VT.getVectorNumElements(); 1995 SmallVector<SDValue, 8> Args; 1996 DAG.ExtractVectorElements(Src, Args, 0, NElts); 1997 1998 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 1999 for (unsigned I = 0; I < NElts; ++I) 2000 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2001 2002 return DAG.getBuildVector(VT, DL, Args); 2003 } 2004 2005 //===----------------------------------------------------------------------===// 2006 // Custom DAG optimizations 2007 //===----------------------------------------------------------------------===// 2008 2009 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2010 APInt KnownZero, KnownOne; 2011 EVT VT = Op.getValueType(); 2012 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2013 2014 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2015 } 2016 2017 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2018 EVT VT = Op.getValueType(); 2019 2020 // In order for this to be a signed 24-bit value, bit 23, must 2021 // be a sign bit. 2022 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2023 // as unsigned 24-bit values. 2024 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2025 } 2026 2027 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2028 TargetLowering::DAGCombinerInfo &DCI) { 2029 2030 SelectionDAG &DAG = DCI.DAG; 2031 SDValue Op = Node24->getOperand(OpIdx); 2032 EVT VT = Op.getValueType(); 2033 2034 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2035 APInt KnownZero, KnownOne; 2036 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2037 if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI)) 2038 return true; 2039 2040 return false; 2041 } 2042 2043 template <typename IntTy> 2044 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2045 uint32_t Width, const SDLoc &DL) { 2046 if (Width + Offset < 32) { 2047 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2048 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2049 return DAG.getConstant(Result, DL, MVT::i32); 2050 } 2051 2052 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2053 } 2054 2055 static bool hasVolatileUser(SDNode *Val) { 2056 for (SDNode *U : Val->uses()) { 2057 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2058 if (M->isVolatile()) 2059 return true; 2060 } 2061 } 2062 2063 return false; 2064 } 2065 2066 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2067 // i32 vectors are the canonical memory type. 2068 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2069 return false; 2070 2071 if (!VT.isByteSized()) 2072 return false; 2073 2074 unsigned Size = VT.getStoreSize(); 2075 2076 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2077 return false; 2078 2079 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2080 return false; 2081 2082 return true; 2083 } 2084 2085 // Replace load of an illegal type with a store of a bitcast to a friendlier 2086 // type. 2087 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2088 DAGCombinerInfo &DCI) const { 2089 if (!DCI.isBeforeLegalize()) 2090 return SDValue(); 2091 2092 LoadSDNode *LN = cast<LoadSDNode>(N); 2093 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2094 return SDValue(); 2095 2096 SDLoc SL(N); 2097 SelectionDAG &DAG = DCI.DAG; 2098 EVT VT = LN->getMemoryVT(); 2099 2100 unsigned Size = VT.getStoreSize(); 2101 unsigned Align = LN->getAlignment(); 2102 if (Align < Size && isTypeLegal(VT)) { 2103 bool IsFast; 2104 unsigned AS = LN->getAddressSpace(); 2105 2106 // Expand unaligned loads earlier than legalization. Due to visitation order 2107 // problems during legalization, the emitted instructions to pack and unpack 2108 // the bytes again are not eliminated in the case of an unaligned copy. 2109 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2110 if (VT.isVector()) 2111 return scalarizeVectorLoad(LN, DAG); 2112 2113 SDValue Ops[2]; 2114 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2115 return DAG.getMergeValues(Ops, SDLoc(N)); 2116 } 2117 2118 if (!IsFast) 2119 return SDValue(); 2120 } 2121 2122 if (!shouldCombineMemoryType(VT)) 2123 return SDValue(); 2124 2125 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2126 2127 SDValue NewLoad 2128 = DAG.getLoad(NewVT, SL, LN->getChain(), 2129 LN->getBasePtr(), LN->getMemOperand()); 2130 2131 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2132 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2133 return SDValue(N, 0); 2134 } 2135 2136 // Replace store of an illegal type with a store of a bitcast to a friendlier 2137 // type. 2138 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2139 DAGCombinerInfo &DCI) const { 2140 if (!DCI.isBeforeLegalize()) 2141 return SDValue(); 2142 2143 StoreSDNode *SN = cast<StoreSDNode>(N); 2144 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2145 return SDValue(); 2146 2147 EVT VT = SN->getMemoryVT(); 2148 unsigned Size = VT.getStoreSize(); 2149 2150 SDLoc SL(N); 2151 SelectionDAG &DAG = DCI.DAG; 2152 unsigned Align = SN->getAlignment(); 2153 if (Align < Size && isTypeLegal(VT)) { 2154 bool IsFast; 2155 unsigned AS = SN->getAddressSpace(); 2156 2157 // Expand unaligned stores earlier than legalization. Due to visitation 2158 // order problems during legalization, the emitted instructions to pack and 2159 // unpack the bytes again are not eliminated in the case of an unaligned 2160 // copy. 2161 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2162 if (VT.isVector()) 2163 return scalarizeVectorStore(SN, DAG); 2164 2165 return expandUnalignedStore(SN, DAG); 2166 } 2167 2168 if (!IsFast) 2169 return SDValue(); 2170 } 2171 2172 if (!shouldCombineMemoryType(VT)) 2173 return SDValue(); 2174 2175 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2176 SDValue Val = SN->getValue(); 2177 2178 //DCI.AddToWorklist(Val.getNode()); 2179 2180 bool OtherUses = !Val.hasOneUse(); 2181 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2182 if (OtherUses) { 2183 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2184 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2185 } 2186 2187 return DAG.getStore(SN->getChain(), SL, CastVal, 2188 SN->getBasePtr(), SN->getMemOperand()); 2189 } 2190 2191 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2192 /// binary operation \p Opc to it with the corresponding constant operands. 2193 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2194 DAGCombinerInfo &DCI, const SDLoc &SL, 2195 unsigned Opc, SDValue LHS, 2196 uint32_t ValLo, uint32_t ValHi) const { 2197 SelectionDAG &DAG = DCI.DAG; 2198 SDValue Lo, Hi; 2199 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2200 2201 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2202 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2203 2204 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2205 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2206 2207 // Re-visit the ands. It's possible we eliminated one of them and it could 2208 // simplify the vector. 2209 DCI.AddToWorklist(Lo.getNode()); 2210 DCI.AddToWorklist(Hi.getNode()); 2211 2212 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2213 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2214 } 2215 2216 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2217 DAGCombinerInfo &DCI) const { 2218 if (N->getValueType(0) != MVT::i64) 2219 return SDValue(); 2220 2221 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2222 2223 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2224 // common case, splitting this into a move and a 32-bit shift is faster and 2225 // the same code size. 2226 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2227 if (!RHS) 2228 return SDValue(); 2229 2230 unsigned RHSVal = RHS->getZExtValue(); 2231 if (RHSVal < 32) 2232 return SDValue(); 2233 2234 SDValue LHS = N->getOperand(0); 2235 2236 SDLoc SL(N); 2237 SelectionDAG &DAG = DCI.DAG; 2238 2239 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2240 2241 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2242 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2243 2244 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2245 2246 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2247 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2248 } 2249 2250 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2251 DAGCombinerInfo &DCI) const { 2252 if (N->getValueType(0) != MVT::i64) 2253 return SDValue(); 2254 2255 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2256 if (!RHS) 2257 return SDValue(); 2258 2259 SelectionDAG &DAG = DCI.DAG; 2260 SDLoc SL(N); 2261 unsigned RHSVal = RHS->getZExtValue(); 2262 2263 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2264 if (RHSVal == 32) { 2265 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2266 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2267 DAG.getConstant(31, SL, MVT::i32)); 2268 2269 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2270 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2271 } 2272 2273 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2274 if (RHSVal == 63) { 2275 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2276 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2277 DAG.getConstant(31, SL, MVT::i32)); 2278 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2279 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2280 } 2281 2282 return SDValue(); 2283 } 2284 2285 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2286 DAGCombinerInfo &DCI) const { 2287 if (N->getValueType(0) != MVT::i64) 2288 return SDValue(); 2289 2290 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2291 if (!RHS) 2292 return SDValue(); 2293 2294 unsigned ShiftAmt = RHS->getZExtValue(); 2295 if (ShiftAmt < 32) 2296 return SDValue(); 2297 2298 // srl i64:x, C for C >= 32 2299 // => 2300 // build_pair (srl hi_32(x), C - 32), 0 2301 2302 SelectionDAG &DAG = DCI.DAG; 2303 SDLoc SL(N); 2304 2305 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2306 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2307 2308 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2309 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2310 VecOp, One); 2311 2312 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2313 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2314 2315 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2316 2317 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2318 } 2319 2320 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2321 // instructions. If we only match on the legalized i64 mul expansion, 2322 // SimplifyDemandedBits will be unable to remove them because there will be 2323 // multiple uses due to the separate mul + mulh[su]. 2324 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2325 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2326 if (Size <= 32) { 2327 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2328 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2329 } 2330 2331 // Because we want to eliminate extension instructions before the 2332 // operation, we need to create a single user here (i.e. not the separate 2333 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2334 2335 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2336 2337 SDValue Mul = DAG.getNode(MulOpc, SL, 2338 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 2339 2340 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 2341 Mul.getValue(0), Mul.getValue(1)); 2342 } 2343 2344 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2345 DAGCombinerInfo &DCI) const { 2346 EVT VT = N->getValueType(0); 2347 2348 unsigned Size = VT.getSizeInBits(); 2349 if (VT.isVector() || Size > 64) 2350 return SDValue(); 2351 2352 SelectionDAG &DAG = DCI.DAG; 2353 SDLoc DL(N); 2354 2355 SDValue N0 = N->getOperand(0); 2356 SDValue N1 = N->getOperand(1); 2357 SDValue Mul; 2358 2359 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2360 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2361 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2362 Mul = getMul24(DAG, DL, N0, N1, Size, false); 2363 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2364 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2365 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2366 Mul = getMul24(DAG, DL, N0, N1, Size, true); 2367 } else { 2368 return SDValue(); 2369 } 2370 2371 // We need to use sext even for MUL_U24, because MUL_U24 is used 2372 // for signed multiply of 8 and 16-bit types. 2373 return DAG.getSExtOrTrunc(Mul, DL, VT); 2374 } 2375 2376 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 2377 DAGCombinerInfo &DCI) const { 2378 EVT VT = N->getValueType(0); 2379 2380 if (!Subtarget->hasMulI24() || VT.isVector()) 2381 return SDValue(); 2382 2383 SelectionDAG &DAG = DCI.DAG; 2384 SDLoc DL(N); 2385 2386 SDValue N0 = N->getOperand(0); 2387 SDValue N1 = N->getOperand(1); 2388 2389 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 2390 return SDValue(); 2391 2392 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2393 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2394 2395 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 2396 DCI.AddToWorklist(Mulhi.getNode()); 2397 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 2398 } 2399 2400 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 2401 DAGCombinerInfo &DCI) const { 2402 EVT VT = N->getValueType(0); 2403 2404 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 2405 return SDValue(); 2406 2407 SelectionDAG &DAG = DCI.DAG; 2408 SDLoc DL(N); 2409 2410 SDValue N0 = N->getOperand(0); 2411 SDValue N1 = N->getOperand(1); 2412 2413 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 2414 return SDValue(); 2415 2416 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2417 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2418 2419 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 2420 DCI.AddToWorklist(Mulhi.getNode()); 2421 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 2422 } 2423 2424 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 2425 SDNode *N, DAGCombinerInfo &DCI) const { 2426 SelectionDAG &DAG = DCI.DAG; 2427 2428 // Simplify demanded bits before splitting into multiple users. 2429 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 2430 return SDValue(); 2431 2432 SDValue N0 = N->getOperand(0); 2433 SDValue N1 = N->getOperand(1); 2434 2435 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 2436 2437 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2438 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 2439 2440 SDLoc SL(N); 2441 2442 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 2443 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 2444 return DAG.getMergeValues({ MulLo, MulHi }, SL); 2445 } 2446 2447 static bool isNegativeOne(SDValue Val) { 2448 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2449 return C->isAllOnesValue(); 2450 return false; 2451 } 2452 2453 static bool isCtlzOpc(unsigned Opc) { 2454 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2455 } 2456 2457 // Get FFBH node if the incoming op may have been type legalized from a smaller 2458 // type VT. 2459 // Need to match pre-legalized type because the generic legalization inserts the 2460 // add/sub between the select and compare. 2461 static SDValue getFFBH_U32(const TargetLowering &TLI, SelectionDAG &DAG, 2462 const SDLoc &SL, SDValue Op) { 2463 EVT VT = Op.getValueType(); 2464 EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2465 if (LegalVT != MVT::i32) 2466 return SDValue(); 2467 2468 if (VT != MVT::i32) 2469 Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op); 2470 2471 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op); 2472 if (VT != MVT::i32) 2473 FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH); 2474 2475 return FFBH; 2476 } 2477 2478 // The native instructions return -1 on 0 input. Optimize out a select that 2479 // produces -1 on 0. 2480 // 2481 // TODO: If zero is not undef, we could also do this if the output is compared 2482 // against the bitwidth. 2483 // 2484 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2485 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2486 SDValue LHS, SDValue RHS, 2487 DAGCombinerInfo &DCI) const { 2488 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2489 if (!CmpRhs || !CmpRhs->isNullValue()) 2490 return SDValue(); 2491 2492 SelectionDAG &DAG = DCI.DAG; 2493 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2494 SDValue CmpLHS = Cond.getOperand(0); 2495 2496 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2497 if (CCOpcode == ISD::SETEQ && 2498 isCtlzOpc(RHS.getOpcode()) && 2499 RHS.getOperand(0) == CmpLHS && 2500 isNegativeOne(LHS)) { 2501 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2502 } 2503 2504 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2505 if (CCOpcode == ISD::SETNE && 2506 isCtlzOpc(LHS.getOpcode()) && 2507 LHS.getOperand(0) == CmpLHS && 2508 isNegativeOne(RHS)) { 2509 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2510 } 2511 2512 return SDValue(); 2513 } 2514 2515 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2516 DAGCombinerInfo &DCI) const { 2517 SDValue Cond = N->getOperand(0); 2518 if (Cond.getOpcode() != ISD::SETCC) 2519 return SDValue(); 2520 2521 EVT VT = N->getValueType(0); 2522 SDValue LHS = Cond.getOperand(0); 2523 SDValue RHS = Cond.getOperand(1); 2524 SDValue CC = Cond.getOperand(2); 2525 2526 SDValue True = N->getOperand(1); 2527 SDValue False = N->getOperand(2); 2528 2529 if (VT == MVT::f32 && Cond.hasOneUse()) { 2530 SDValue MinMax 2531 = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2532 // Revisit this node so we can catch min3/max3/med3 patterns. 2533 //DCI.AddToWorklist(MinMax.getNode()); 2534 return MinMax; 2535 } 2536 2537 // There's no reason to not do this if the condition has other uses. 2538 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2539 } 2540 2541 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2542 DAGCombinerInfo &DCI) const { 2543 SelectionDAG &DAG = DCI.DAG; 2544 SDLoc DL(N); 2545 2546 switch(N->getOpcode()) { 2547 default: 2548 break; 2549 case ISD::BITCAST: { 2550 EVT DestVT = N->getValueType(0); 2551 2552 // Push casts through vector builds. This helps avoid emitting a large 2553 // number of copies when materializing floating point vector constants. 2554 // 2555 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 2556 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 2557 if (DestVT.isVector()) { 2558 SDValue Src = N->getOperand(0); 2559 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2560 EVT SrcVT = Src.getValueType(); 2561 unsigned NElts = DestVT.getVectorNumElements(); 2562 2563 if (SrcVT.getVectorNumElements() == NElts) { 2564 EVT DestEltVT = DestVT.getVectorElementType(); 2565 2566 SmallVector<SDValue, 8> CastedElts; 2567 SDLoc SL(N); 2568 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 2569 SDValue Elt = Src.getOperand(I); 2570 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 2571 } 2572 2573 return DAG.getBuildVector(DestVT, SL, CastedElts); 2574 } 2575 } 2576 } 2577 2578 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 2579 break; 2580 2581 // Fold bitcasts of constants. 2582 // 2583 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 2584 // TODO: Generalize and move to DAGCombiner 2585 SDValue Src = N->getOperand(0); 2586 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 2587 assert(Src.getValueType() == MVT::i64); 2588 SDLoc SL(N); 2589 uint64_t CVal = C->getZExtValue(); 2590 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 2591 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2592 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2593 } 2594 2595 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 2596 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 2597 SDLoc SL(N); 2598 uint64_t CVal = Val.getZExtValue(); 2599 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2600 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2601 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2602 2603 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 2604 } 2605 2606 break; 2607 } 2608 case ISD::SHL: { 2609 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2610 break; 2611 2612 return performShlCombine(N, DCI); 2613 } 2614 case ISD::SRL: { 2615 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2616 break; 2617 2618 return performSrlCombine(N, DCI); 2619 } 2620 case ISD::SRA: { 2621 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2622 break; 2623 2624 return performSraCombine(N, DCI); 2625 } 2626 case ISD::MUL: 2627 return performMulCombine(N, DCI); 2628 case ISD::MULHS: 2629 return performMulhsCombine(N, DCI); 2630 case ISD::MULHU: 2631 return performMulhuCombine(N, DCI); 2632 case AMDGPUISD::MUL_I24: 2633 case AMDGPUISD::MUL_U24: 2634 case AMDGPUISD::MULHI_I24: 2635 case AMDGPUISD::MULHI_U24: { 2636 // If the first call to simplify is successfull, then N may end up being 2637 // deleted, so we shouldn't call simplifyI24 again. 2638 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 2639 return SDValue(); 2640 } 2641 case AMDGPUISD::MUL_LOHI_I24: 2642 case AMDGPUISD::MUL_LOHI_U24: 2643 return performMulLoHi24Combine(N, DCI); 2644 case ISD::SELECT: 2645 return performSelectCombine(N, DCI); 2646 case AMDGPUISD::BFE_I32: 2647 case AMDGPUISD::BFE_U32: { 2648 assert(!N->getValueType(0).isVector() && 2649 "Vector handling of BFE not implemented"); 2650 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2651 if (!Width) 2652 break; 2653 2654 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2655 if (WidthVal == 0) 2656 return DAG.getConstant(0, DL, MVT::i32); 2657 2658 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2659 if (!Offset) 2660 break; 2661 2662 SDValue BitsFrom = N->getOperand(0); 2663 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2664 2665 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2666 2667 if (OffsetVal == 0) { 2668 // This is already sign / zero extended, so try to fold away extra BFEs. 2669 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2670 2671 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2672 if (OpSignBits >= SignBits) 2673 return BitsFrom; 2674 2675 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2676 if (Signed) { 2677 // This is a sign_extend_inreg. Replace it to take advantage of existing 2678 // DAG Combines. If not eliminated, we will match back to BFE during 2679 // selection. 2680 2681 // TODO: The sext_inreg of extended types ends, although we can could 2682 // handle them in a single BFE. 2683 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2684 DAG.getValueType(SmallVT)); 2685 } 2686 2687 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2688 } 2689 2690 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2691 if (Signed) { 2692 return constantFoldBFE<int32_t>(DAG, 2693 CVal->getSExtValue(), 2694 OffsetVal, 2695 WidthVal, 2696 DL); 2697 } 2698 2699 return constantFoldBFE<uint32_t>(DAG, 2700 CVal->getZExtValue(), 2701 OffsetVal, 2702 WidthVal, 2703 DL); 2704 } 2705 2706 if ((OffsetVal + WidthVal) >= 32) { 2707 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2708 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2709 BitsFrom, ShiftVal); 2710 } 2711 2712 if (BitsFrom.hasOneUse()) { 2713 APInt Demanded = APInt::getBitsSet(32, 2714 OffsetVal, 2715 OffsetVal + WidthVal); 2716 2717 APInt KnownZero, KnownOne; 2718 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2719 !DCI.isBeforeLegalizeOps()); 2720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2721 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2722 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2723 KnownZero, KnownOne, TLO)) { 2724 DCI.CommitTargetLoweringOpt(TLO); 2725 } 2726 } 2727 2728 break; 2729 } 2730 case ISD::LOAD: 2731 return performLoadCombine(N, DCI); 2732 case ISD::STORE: 2733 return performStoreCombine(N, DCI); 2734 } 2735 return SDValue(); 2736 } 2737 2738 //===----------------------------------------------------------------------===// 2739 // Helper functions 2740 //===----------------------------------------------------------------------===// 2741 2742 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2743 const TargetRegisterClass *RC, 2744 unsigned Reg, EVT VT) const { 2745 MachineFunction &MF = DAG.getMachineFunction(); 2746 MachineRegisterInfo &MRI = MF.getRegInfo(); 2747 unsigned VirtualRegister; 2748 if (!MRI.isLiveIn(Reg)) { 2749 VirtualRegister = MRI.createVirtualRegister(RC); 2750 MRI.addLiveIn(Reg, VirtualRegister); 2751 } else { 2752 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2753 } 2754 return DAG.getRegister(VirtualRegister, VT); 2755 } 2756 2757 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2758 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2759 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 2760 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 2761 switch (Param) { 2762 case GRID_DIM: 2763 return ArgOffset; 2764 case GRID_OFFSET: 2765 return ArgOffset + 4; 2766 } 2767 llvm_unreachable("unexpected implicit parameter type"); 2768 } 2769 2770 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2771 2772 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2773 switch ((AMDGPUISD::NodeType)Opcode) { 2774 case AMDGPUISD::FIRST_NUMBER: break; 2775 // AMDIL DAG nodes 2776 NODE_NAME_CASE(CALL); 2777 NODE_NAME_CASE(UMUL); 2778 NODE_NAME_CASE(BRANCH_COND); 2779 2780 // AMDGPU DAG nodes 2781 NODE_NAME_CASE(ENDPGM) 2782 NODE_NAME_CASE(RETURN) 2783 NODE_NAME_CASE(DWORDADDR) 2784 NODE_NAME_CASE(FRACT) 2785 NODE_NAME_CASE(SETCC) 2786 NODE_NAME_CASE(CLAMP) 2787 NODE_NAME_CASE(COS_HW) 2788 NODE_NAME_CASE(SIN_HW) 2789 NODE_NAME_CASE(FMAX_LEGACY) 2790 NODE_NAME_CASE(FMIN_LEGACY) 2791 NODE_NAME_CASE(FMAX3) 2792 NODE_NAME_CASE(SMAX3) 2793 NODE_NAME_CASE(UMAX3) 2794 NODE_NAME_CASE(FMIN3) 2795 NODE_NAME_CASE(SMIN3) 2796 NODE_NAME_CASE(UMIN3) 2797 NODE_NAME_CASE(FMED3) 2798 NODE_NAME_CASE(SMED3) 2799 NODE_NAME_CASE(UMED3) 2800 NODE_NAME_CASE(URECIP) 2801 NODE_NAME_CASE(DIV_SCALE) 2802 NODE_NAME_CASE(DIV_FMAS) 2803 NODE_NAME_CASE(DIV_FIXUP) 2804 NODE_NAME_CASE(TRIG_PREOP) 2805 NODE_NAME_CASE(RCP) 2806 NODE_NAME_CASE(RSQ) 2807 NODE_NAME_CASE(RCP_LEGACY) 2808 NODE_NAME_CASE(RSQ_LEGACY) 2809 NODE_NAME_CASE(FMUL_LEGACY) 2810 NODE_NAME_CASE(RSQ_CLAMP) 2811 NODE_NAME_CASE(LDEXP) 2812 NODE_NAME_CASE(FP_CLASS) 2813 NODE_NAME_CASE(DOT4) 2814 NODE_NAME_CASE(CARRY) 2815 NODE_NAME_CASE(BORROW) 2816 NODE_NAME_CASE(BFE_U32) 2817 NODE_NAME_CASE(BFE_I32) 2818 NODE_NAME_CASE(BFI) 2819 NODE_NAME_CASE(BFM) 2820 NODE_NAME_CASE(FFBH_U32) 2821 NODE_NAME_CASE(FFBH_I32) 2822 NODE_NAME_CASE(MUL_U24) 2823 NODE_NAME_CASE(MUL_I24) 2824 NODE_NAME_CASE(MULHI_U24) 2825 NODE_NAME_CASE(MULHI_I24) 2826 NODE_NAME_CASE(MUL_LOHI_U24) 2827 NODE_NAME_CASE(MUL_LOHI_I24) 2828 NODE_NAME_CASE(MAD_U24) 2829 NODE_NAME_CASE(MAD_I24) 2830 NODE_NAME_CASE(TEXTURE_FETCH) 2831 NODE_NAME_CASE(EXPORT) 2832 NODE_NAME_CASE(CONST_ADDRESS) 2833 NODE_NAME_CASE(REGISTER_LOAD) 2834 NODE_NAME_CASE(REGISTER_STORE) 2835 NODE_NAME_CASE(LOAD_INPUT) 2836 NODE_NAME_CASE(SAMPLE) 2837 NODE_NAME_CASE(SAMPLEB) 2838 NODE_NAME_CASE(SAMPLED) 2839 NODE_NAME_CASE(SAMPLEL) 2840 NODE_NAME_CASE(CVT_F32_UBYTE0) 2841 NODE_NAME_CASE(CVT_F32_UBYTE1) 2842 NODE_NAME_CASE(CVT_F32_UBYTE2) 2843 NODE_NAME_CASE(CVT_F32_UBYTE3) 2844 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2845 NODE_NAME_CASE(CONST_DATA_PTR) 2846 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 2847 NODE_NAME_CASE(KILL) 2848 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2849 NODE_NAME_CASE(SENDMSG) 2850 NODE_NAME_CASE(INTERP_MOV) 2851 NODE_NAME_CASE(INTERP_P1) 2852 NODE_NAME_CASE(INTERP_P2) 2853 NODE_NAME_CASE(STORE_MSKOR) 2854 NODE_NAME_CASE(LOAD_CONSTANT) 2855 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2856 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 2857 NODE_NAME_CASE(ATOMIC_INC) 2858 NODE_NAME_CASE(ATOMIC_DEC) 2859 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2860 } 2861 return nullptr; 2862 } 2863 2864 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2865 SelectionDAG &DAG, int Enabled, 2866 int &RefinementSteps, 2867 bool &UseOneConstNR) const { 2868 EVT VT = Operand.getValueType(); 2869 2870 if (VT == MVT::f32) { 2871 RefinementSteps = 0; 2872 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2873 } 2874 2875 // TODO: There is also f64 rsq instruction, but the documentation is less 2876 // clear on its precision. 2877 2878 return SDValue(); 2879 } 2880 2881 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2882 SelectionDAG &DAG, int Enabled, 2883 int &RefinementSteps) const { 2884 EVT VT = Operand.getValueType(); 2885 2886 if (VT == MVT::f32) { 2887 // Reciprocal, < 1 ulp error. 2888 // 2889 // This reciprocal approximation converges to < 0.5 ulp error with one 2890 // newton rhapson performed with two fused multiple adds (FMAs). 2891 2892 RefinementSteps = 0; 2893 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2894 } 2895 2896 // TODO: There is also f64 rcp instruction, but the documentation is less 2897 // clear on its precision. 2898 2899 return SDValue(); 2900 } 2901 2902 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2903 const SDValue Op, 2904 APInt &KnownZero, 2905 APInt &KnownOne, 2906 const SelectionDAG &DAG, 2907 unsigned Depth) const { 2908 2909 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2910 2911 APInt KnownZero2; 2912 APInt KnownOne2; 2913 unsigned Opc = Op.getOpcode(); 2914 2915 switch (Opc) { 2916 default: 2917 break; 2918 case AMDGPUISD::CARRY: 2919 case AMDGPUISD::BORROW: { 2920 KnownZero = APInt::getHighBitsSet(32, 31); 2921 break; 2922 } 2923 2924 case AMDGPUISD::BFE_I32: 2925 case AMDGPUISD::BFE_U32: { 2926 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2927 if (!CWidth) 2928 return; 2929 2930 unsigned BitWidth = 32; 2931 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2932 2933 if (Opc == AMDGPUISD::BFE_U32) 2934 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2935 2936 break; 2937 } 2938 } 2939 } 2940 2941 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2942 SDValue Op, 2943 const SelectionDAG &DAG, 2944 unsigned Depth) const { 2945 switch (Op.getOpcode()) { 2946 case AMDGPUISD::BFE_I32: { 2947 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2948 if (!Width) 2949 return 1; 2950 2951 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2952 if (!isNullConstant(Op.getOperand(1))) 2953 return SignBits; 2954 2955 // TODO: Could probably figure something out with non-0 offsets. 2956 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2957 return std::max(SignBits, Op0SignBits); 2958 } 2959 2960 case AMDGPUISD::BFE_U32: { 2961 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2962 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2963 } 2964 2965 case AMDGPUISD::CARRY: 2966 case AMDGPUISD::BORROW: 2967 return 31; 2968 2969 default: 2970 return 1; 2971 } 2972 } 2973