1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPURegisterInfo.h" 20 #include "AMDGPUSubtarget.h" 21 #include "AMDGPUTargetMachine.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIInstrInfo.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/CallingConvLower.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 using namespace llvm; 38 39 #include "AMDGPUGenCallingConv.inc" 40 41 // Find a larger type to do a load / store of a vector with. 42 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 43 unsigned StoreSize = VT.getStoreSizeInBits(); 44 if (StoreSize <= 32) 45 return EVT::getIntegerVT(Ctx, StoreSize); 46 47 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 48 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 49 } 50 51 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 52 EVT VT = Op.getValueType(); 53 KnownBits Known = DAG.computeKnownBits(Op); 54 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 55 } 56 57 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 58 EVT VT = Op.getValueType(); 59 60 // In order for this to be a signed 24-bit value, bit 23, must 61 // be a sign bit. 62 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 // Lower floating point store/load to integer store/load to reduce the number 69 // of patterns in tablegen. 70 setOperationAction(ISD::LOAD, MVT::f32, Promote); 71 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 72 73 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 75 76 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 78 79 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 81 82 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 84 85 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 87 88 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 90 91 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 92 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 93 94 setOperationAction(ISD::LOAD, MVT::i64, Promote); 95 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 96 97 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 98 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 99 100 setOperationAction(ISD::LOAD, MVT::f64, Promote); 101 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 102 103 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 104 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 105 106 // There are no 64-bit extloads. These should be done as a 32-bit extload and 107 // an extension to 64-bit. 108 for (MVT VT : MVT::integer_valuetypes()) { 109 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 110 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 111 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 112 } 113 114 for (MVT VT : MVT::integer_valuetypes()) { 115 if (VT == MVT::i64) 116 continue; 117 118 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 119 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 120 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 122 123 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 124 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 126 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 127 128 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 129 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 130 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 131 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 132 } 133 134 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 135 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 138 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 139 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 141 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 148 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 150 } 151 152 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 153 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 154 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 155 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 156 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 157 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 158 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 159 160 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 161 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 162 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 163 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 164 165 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 167 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 168 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 169 170 setOperationAction(ISD::STORE, MVT::f32, Promote); 171 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 172 173 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 174 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 175 176 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 177 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 178 179 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 180 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 181 182 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 183 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 184 185 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 186 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 187 188 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 189 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 190 191 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 192 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 193 194 setOperationAction(ISD::STORE, MVT::i64, Promote); 195 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 196 197 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 199 200 setOperationAction(ISD::STORE, MVT::f64, Promote); 201 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 202 203 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 205 206 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 207 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 208 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 209 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 210 211 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 212 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 213 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 214 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 215 216 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 217 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 218 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 219 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 220 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 221 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 222 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 223 224 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 225 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 226 227 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 228 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 229 230 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 231 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 232 233 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 234 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 235 236 237 setOperationAction(ISD::Constant, MVT::i32, Legal); 238 setOperationAction(ISD::Constant, MVT::i64, Legal); 239 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 240 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 241 242 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 243 setOperationAction(ISD::BRIND, MVT::Other, Expand); 244 245 // This is totally unsupported, just custom lower to produce an error. 246 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 247 248 // Library functions. These default to Expand, but we have instructions 249 // for them. 250 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 251 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 252 setOperationAction(ISD::FPOW, MVT::f32, Legal); 253 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 254 setOperationAction(ISD::FABS, MVT::f32, Legal); 255 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 256 setOperationAction(ISD::FRINT, MVT::f32, Legal); 257 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 258 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 259 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 260 261 setOperationAction(ISD::FROUND, MVT::f32, Custom); 262 setOperationAction(ISD::FROUND, MVT::f64, Custom); 263 264 setOperationAction(ISD::FLOG, MVT::f32, Custom); 265 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 266 setOperationAction(ISD::FEXP, MVT::f32, Custom); 267 268 269 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 270 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 271 272 setOperationAction(ISD::FREM, MVT::f32, Custom); 273 setOperationAction(ISD::FREM, MVT::f64, Custom); 274 275 // Expand to fneg + fadd. 276 setOperationAction(ISD::FSUB, MVT::f64, Expand); 277 278 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 279 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 280 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 281 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 282 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 283 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 284 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 285 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 286 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 287 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 288 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 289 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 290 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 291 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 292 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 293 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 294 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 295 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 296 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 297 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 298 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 299 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 300 301 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 302 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 303 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 304 305 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 306 for (MVT VT : ScalarIntVTs) { 307 // These should use [SU]DIVREM, so set them to expand 308 setOperationAction(ISD::SDIV, VT, Expand); 309 setOperationAction(ISD::UDIV, VT, Expand); 310 setOperationAction(ISD::SREM, VT, Expand); 311 setOperationAction(ISD::UREM, VT, Expand); 312 313 // GPU does not have divrem function for signed or unsigned. 314 setOperationAction(ISD::SDIVREM, VT, Custom); 315 setOperationAction(ISD::UDIVREM, VT, Custom); 316 317 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 318 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 319 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 320 321 setOperationAction(ISD::BSWAP, VT, Expand); 322 setOperationAction(ISD::CTTZ, VT, Expand); 323 setOperationAction(ISD::CTLZ, VT, Expand); 324 325 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 326 setOperationAction(ISD::ADDC, VT, Legal); 327 setOperationAction(ISD::SUBC, VT, Legal); 328 setOperationAction(ISD::ADDE, VT, Legal); 329 setOperationAction(ISD::SUBE, VT, Legal); 330 } 331 332 // The hardware supports 32-bit ROTR, but not ROTL. 333 setOperationAction(ISD::ROTL, MVT::i32, Expand); 334 setOperationAction(ISD::ROTL, MVT::i64, Expand); 335 setOperationAction(ISD::ROTR, MVT::i64, Expand); 336 337 setOperationAction(ISD::MUL, MVT::i64, Expand); 338 setOperationAction(ISD::MULHU, MVT::i64, Expand); 339 setOperationAction(ISD::MULHS, MVT::i64, Expand); 340 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 341 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 342 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 343 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 344 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 345 346 setOperationAction(ISD::SMIN, MVT::i32, Legal); 347 setOperationAction(ISD::UMIN, MVT::i32, Legal); 348 setOperationAction(ISD::SMAX, MVT::i32, Legal); 349 setOperationAction(ISD::UMAX, MVT::i32, Legal); 350 351 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 352 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 353 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 354 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 355 356 static const MVT::SimpleValueType VectorIntTypes[] = { 357 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 358 }; 359 360 for (MVT VT : VectorIntTypes) { 361 // Expand the following operations for the current type by default. 362 setOperationAction(ISD::ADD, VT, Expand); 363 setOperationAction(ISD::AND, VT, Expand); 364 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 365 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 366 setOperationAction(ISD::MUL, VT, Expand); 367 setOperationAction(ISD::MULHU, VT, Expand); 368 setOperationAction(ISD::MULHS, VT, Expand); 369 setOperationAction(ISD::OR, VT, Expand); 370 setOperationAction(ISD::SHL, VT, Expand); 371 setOperationAction(ISD::SRA, VT, Expand); 372 setOperationAction(ISD::SRL, VT, Expand); 373 setOperationAction(ISD::ROTL, VT, Expand); 374 setOperationAction(ISD::ROTR, VT, Expand); 375 setOperationAction(ISD::SUB, VT, Expand); 376 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 377 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 378 setOperationAction(ISD::SDIV, VT, Expand); 379 setOperationAction(ISD::UDIV, VT, Expand); 380 setOperationAction(ISD::SREM, VT, Expand); 381 setOperationAction(ISD::UREM, VT, Expand); 382 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 383 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 384 setOperationAction(ISD::SDIVREM, VT, Custom); 385 setOperationAction(ISD::UDIVREM, VT, Expand); 386 setOperationAction(ISD::SELECT, VT, Expand); 387 setOperationAction(ISD::VSELECT, VT, Expand); 388 setOperationAction(ISD::SELECT_CC, VT, Expand); 389 setOperationAction(ISD::XOR, VT, Expand); 390 setOperationAction(ISD::BSWAP, VT, Expand); 391 setOperationAction(ISD::CTPOP, VT, Expand); 392 setOperationAction(ISD::CTTZ, VT, Expand); 393 setOperationAction(ISD::CTLZ, VT, Expand); 394 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 395 setOperationAction(ISD::SETCC, VT, Expand); 396 } 397 398 static const MVT::SimpleValueType FloatVectorTypes[] = { 399 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 400 }; 401 402 for (MVT VT : FloatVectorTypes) { 403 setOperationAction(ISD::FABS, VT, Expand); 404 setOperationAction(ISD::FMINNUM, VT, Expand); 405 setOperationAction(ISD::FMAXNUM, VT, Expand); 406 setOperationAction(ISD::FADD, VT, Expand); 407 setOperationAction(ISD::FCEIL, VT, Expand); 408 setOperationAction(ISD::FCOS, VT, Expand); 409 setOperationAction(ISD::FDIV, VT, Expand); 410 setOperationAction(ISD::FEXP2, VT, Expand); 411 setOperationAction(ISD::FEXP, VT, Expand); 412 setOperationAction(ISD::FLOG2, VT, Expand); 413 setOperationAction(ISD::FREM, VT, Expand); 414 setOperationAction(ISD::FLOG, VT, Expand); 415 setOperationAction(ISD::FLOG10, VT, Expand); 416 setOperationAction(ISD::FPOW, VT, Expand); 417 setOperationAction(ISD::FFLOOR, VT, Expand); 418 setOperationAction(ISD::FTRUNC, VT, Expand); 419 setOperationAction(ISD::FMUL, VT, Expand); 420 setOperationAction(ISD::FMA, VT, Expand); 421 setOperationAction(ISD::FRINT, VT, Expand); 422 setOperationAction(ISD::FNEARBYINT, VT, Expand); 423 setOperationAction(ISD::FSQRT, VT, Expand); 424 setOperationAction(ISD::FSIN, VT, Expand); 425 setOperationAction(ISD::FSUB, VT, Expand); 426 setOperationAction(ISD::FNEG, VT, Expand); 427 setOperationAction(ISD::VSELECT, VT, Expand); 428 setOperationAction(ISD::SELECT_CC, VT, Expand); 429 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 430 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 431 setOperationAction(ISD::SETCC, VT, Expand); 432 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 433 } 434 435 // This causes using an unrolled select operation rather than expansion with 436 // bit operations. This is in general better, but the alternative using BFI 437 // instructions may be better if the select sources are SGPRs. 438 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 439 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 440 441 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 442 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 443 444 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 445 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 446 447 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 448 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 449 450 // There are no libcalls of any kind. 451 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 452 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 453 454 setSchedulingPreference(Sched::RegPressure); 455 setJumpIsExpensive(true); 456 457 // FIXME: This is only partially true. If we have to do vector compares, any 458 // SGPR pair can be a condition register. If we have a uniform condition, we 459 // are better off doing SALU operations, where there is only one SCC. For now, 460 // we don't have a way of knowing during instruction selection if a condition 461 // will be uniform and we always use vector compares. Assume we are using 462 // vector compares until that is fixed. 463 setHasMultipleConditionRegisters(true); 464 465 setMinCmpXchgSizeInBits(32); 466 setSupportsUnalignedAtomics(false); 467 468 PredictableSelectIsExpensive = false; 469 470 // We want to find all load dependencies for long chains of stores to enable 471 // merging into very wide vectors. The problem is with vectors with > 4 472 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 473 // vectors are a legal type, even though we have to split the loads 474 // usually. When we can more precisely specify load legality per address 475 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 476 // smarter so that they can figure out what to do in 2 iterations without all 477 // N > 4 stores on the same chain. 478 GatherAllAliasesMaxDepth = 16; 479 480 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 481 // about these during lowering. 482 MaxStoresPerMemcpy = 0xffffffff; 483 MaxStoresPerMemmove = 0xffffffff; 484 MaxStoresPerMemset = 0xffffffff; 485 486 setTargetDAGCombine(ISD::BITCAST); 487 setTargetDAGCombine(ISD::SHL); 488 setTargetDAGCombine(ISD::SRA); 489 setTargetDAGCombine(ISD::SRL); 490 setTargetDAGCombine(ISD::TRUNCATE); 491 setTargetDAGCombine(ISD::MUL); 492 setTargetDAGCombine(ISD::MULHU); 493 setTargetDAGCombine(ISD::MULHS); 494 setTargetDAGCombine(ISD::SELECT); 495 setTargetDAGCombine(ISD::SELECT_CC); 496 setTargetDAGCombine(ISD::STORE); 497 setTargetDAGCombine(ISD::FADD); 498 setTargetDAGCombine(ISD::FSUB); 499 setTargetDAGCombine(ISD::FNEG); 500 setTargetDAGCombine(ISD::FABS); 501 setTargetDAGCombine(ISD::AssertZext); 502 setTargetDAGCombine(ISD::AssertSext); 503 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 504 } 505 506 //===----------------------------------------------------------------------===// 507 // Target Information 508 //===----------------------------------------------------------------------===// 509 510 LLVM_READNONE 511 static bool fnegFoldsIntoOp(unsigned Opc) { 512 switch (Opc) { 513 case ISD::FADD: 514 case ISD::FSUB: 515 case ISD::FMUL: 516 case ISD::FMA: 517 case ISD::FMAD: 518 case ISD::FMINNUM: 519 case ISD::FMAXNUM: 520 case ISD::FMINNUM_IEEE: 521 case ISD::FMAXNUM_IEEE: 522 case ISD::FSIN: 523 case ISD::FTRUNC: 524 case ISD::FRINT: 525 case ISD::FNEARBYINT: 526 case ISD::FCANONICALIZE: 527 case AMDGPUISD::RCP: 528 case AMDGPUISD::RCP_LEGACY: 529 case AMDGPUISD::RCP_IFLAG: 530 case AMDGPUISD::SIN_HW: 531 case AMDGPUISD::FMUL_LEGACY: 532 case AMDGPUISD::FMIN_LEGACY: 533 case AMDGPUISD::FMAX_LEGACY: 534 case AMDGPUISD::FMED3: 535 return true; 536 default: 537 return false; 538 } 539 } 540 541 /// \p returns true if the operation will definitely need to use a 64-bit 542 /// encoding, and thus will use a VOP3 encoding regardless of the source 543 /// modifiers. 544 LLVM_READONLY 545 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 546 return N->getNumOperands() > 2 || VT == MVT::f64; 547 } 548 549 // Most FP instructions support source modifiers, but this could be refined 550 // slightly. 551 LLVM_READONLY 552 static bool hasSourceMods(const SDNode *N) { 553 if (isa<MemSDNode>(N)) 554 return false; 555 556 switch (N->getOpcode()) { 557 case ISD::CopyToReg: 558 case ISD::SELECT: 559 case ISD::FDIV: 560 case ISD::FREM: 561 case ISD::INLINEASM: 562 case ISD::INLINEASM_BR: 563 case AMDGPUISD::DIV_SCALE: 564 case ISD::INTRINSIC_W_CHAIN: 565 566 // TODO: Should really be looking at the users of the bitcast. These are 567 // problematic because bitcasts are used to legalize all stores to integer 568 // types. 569 case ISD::BITCAST: 570 return false; 571 case ISD::INTRINSIC_WO_CHAIN: { 572 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 573 case Intrinsic::amdgcn_interp_p1: 574 case Intrinsic::amdgcn_interp_p2: 575 case Intrinsic::amdgcn_interp_mov: 576 case Intrinsic::amdgcn_interp_p1_f16: 577 case Intrinsic::amdgcn_interp_p2_f16: 578 return false; 579 default: 580 return true; 581 } 582 } 583 default: 584 return true; 585 } 586 } 587 588 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 589 unsigned CostThreshold) { 590 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 591 // it is truly free to use a source modifier in all cases. If there are 592 // multiple users but for each one will necessitate using VOP3, there will be 593 // a code size increase. Try to avoid increasing code size unless we know it 594 // will save on the instruction count. 595 unsigned NumMayIncreaseSize = 0; 596 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 597 598 // XXX - Should this limit number of uses to check? 599 for (const SDNode *U : N->uses()) { 600 if (!hasSourceMods(U)) 601 return false; 602 603 if (!opMustUseVOP3Encoding(U, VT)) { 604 if (++NumMayIncreaseSize > CostThreshold) 605 return false; 606 } 607 } 608 609 return true; 610 } 611 612 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 613 return MVT::i32; 614 } 615 616 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 617 return true; 618 } 619 620 // The backend supports 32 and 64 bit floating point immediates. 621 // FIXME: Why are we reporting vectors of FP immediates as legal? 622 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 623 bool ForCodeSize) const { 624 EVT ScalarVT = VT.getScalarType(); 625 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 626 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 627 } 628 629 // We don't want to shrink f64 / f32 constants. 630 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 631 EVT ScalarVT = VT.getScalarType(); 632 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 633 } 634 635 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 636 ISD::LoadExtType ExtTy, 637 EVT NewVT) const { 638 // TODO: This may be worth removing. Check regression tests for diffs. 639 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 640 return false; 641 642 unsigned NewSize = NewVT.getStoreSizeInBits(); 643 644 // If we are reducing to a 32-bit load, this is always better. 645 if (NewSize == 32) 646 return true; 647 648 EVT OldVT = N->getValueType(0); 649 unsigned OldSize = OldVT.getStoreSizeInBits(); 650 651 MemSDNode *MN = cast<MemSDNode>(N); 652 unsigned AS = MN->getAddressSpace(); 653 // Do not shrink an aligned scalar load to sub-dword. 654 // Scalar engine cannot do sub-dword loads. 655 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 656 (AS == AMDGPUAS::CONSTANT_ADDRESS || 657 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 658 (isa<LoadSDNode>(N) && 659 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 660 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 661 return false; 662 663 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 664 // extloads, so doing one requires using a buffer_load. In cases where we 665 // still couldn't use a scalar load, using the wider load shouldn't really 666 // hurt anything. 667 668 // If the old size already had to be an extload, there's no harm in continuing 669 // to reduce the width. 670 return (OldSize < 32); 671 } 672 673 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 674 const SelectionDAG &DAG, 675 const MachineMemOperand &MMO) const { 676 677 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 678 679 if (LoadTy.getScalarType() == MVT::i32) 680 return false; 681 682 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 683 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 684 685 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 686 return false; 687 688 bool Fast = false; 689 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 690 CastTy, MMO, &Fast) && 691 Fast; 692 } 693 694 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 695 // profitable with the expansion for 64-bit since it's generally good to 696 // speculate things. 697 // FIXME: These should really have the size as a parameter. 698 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 699 return true; 700 } 701 702 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 703 return true; 704 } 705 706 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 707 switch (N->getOpcode()) { 708 default: 709 return false; 710 case ISD::EntryToken: 711 case ISD::TokenFactor: 712 return true; 713 case ISD::INTRINSIC_WO_CHAIN: 714 { 715 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 716 switch (IntrID) { 717 default: 718 return false; 719 case Intrinsic::amdgcn_readfirstlane: 720 case Intrinsic::amdgcn_readlane: 721 return true; 722 } 723 } 724 break; 725 case ISD::LOAD: 726 { 727 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 728 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 729 return true; 730 return false; 731 } 732 break; 733 } 734 } 735 736 //===---------------------------------------------------------------------===// 737 // Target Properties 738 //===---------------------------------------------------------------------===// 739 740 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 741 assert(VT.isFloatingPoint()); 742 743 // Packed operations do not have a fabs modifier. 744 return VT == MVT::f32 || VT == MVT::f64 || 745 (Subtarget->has16BitInsts() && VT == MVT::f16); 746 } 747 748 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 749 assert(VT.isFloatingPoint()); 750 return VT == MVT::f32 || VT == MVT::f64 || 751 (Subtarget->has16BitInsts() && VT == MVT::f16) || 752 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 753 } 754 755 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 756 unsigned NumElem, 757 unsigned AS) const { 758 return true; 759 } 760 761 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 762 // There are few operations which truly have vector input operands. Any vector 763 // operation is going to involve operations on each component, and a 764 // build_vector will be a copy per element, so it always makes sense to use a 765 // build_vector input in place of the extracted element to avoid a copy into a 766 // super register. 767 // 768 // We should probably only do this if all users are extracts only, but this 769 // should be the common case. 770 return true; 771 } 772 773 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 774 // Truncate is just accessing a subregister. 775 776 unsigned SrcSize = Source.getSizeInBits(); 777 unsigned DestSize = Dest.getSizeInBits(); 778 779 return DestSize < SrcSize && DestSize % 32 == 0 ; 780 } 781 782 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 783 // Truncate is just accessing a subregister. 784 785 unsigned SrcSize = Source->getScalarSizeInBits(); 786 unsigned DestSize = Dest->getScalarSizeInBits(); 787 788 if (DestSize== 16 && Subtarget->has16BitInsts()) 789 return SrcSize >= 32; 790 791 return DestSize < SrcSize && DestSize % 32 == 0; 792 } 793 794 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 795 unsigned SrcSize = Src->getScalarSizeInBits(); 796 unsigned DestSize = Dest->getScalarSizeInBits(); 797 798 if (SrcSize == 16 && Subtarget->has16BitInsts()) 799 return DestSize >= 32; 800 801 return SrcSize == 32 && DestSize == 64; 802 } 803 804 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 805 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 806 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 807 // this will enable reducing 64-bit operations the 32-bit, which is always 808 // good. 809 810 if (Src == MVT::i16) 811 return Dest == MVT::i32 ||Dest == MVT::i64 ; 812 813 return Src == MVT::i32 && Dest == MVT::i64; 814 } 815 816 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 817 return isZExtFree(Val.getValueType(), VT2); 818 } 819 820 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 821 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 822 // limited number of native 64-bit operations. Shrinking an operation to fit 823 // in a single 32-bit register should always be helpful. As currently used, 824 // this is much less general than the name suggests, and is only used in 825 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 826 // not profitable, and may actually be harmful. 827 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 828 } 829 830 //===---------------------------------------------------------------------===// 831 // TargetLowering Callbacks 832 //===---------------------------------------------------------------------===// 833 834 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 835 bool IsVarArg) { 836 switch (CC) { 837 case CallingConv::AMDGPU_VS: 838 case CallingConv::AMDGPU_GS: 839 case CallingConv::AMDGPU_PS: 840 case CallingConv::AMDGPU_CS: 841 case CallingConv::AMDGPU_HS: 842 case CallingConv::AMDGPU_ES: 843 case CallingConv::AMDGPU_LS: 844 return CC_AMDGPU; 845 case CallingConv::C: 846 case CallingConv::Fast: 847 case CallingConv::Cold: 848 return CC_AMDGPU_Func; 849 case CallingConv::AMDGPU_KERNEL: 850 case CallingConv::SPIR_KERNEL: 851 default: 852 report_fatal_error("Unsupported calling convention for call"); 853 } 854 } 855 856 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 857 bool IsVarArg) { 858 switch (CC) { 859 case CallingConv::AMDGPU_KERNEL: 860 case CallingConv::SPIR_KERNEL: 861 llvm_unreachable("kernels should not be handled here"); 862 case CallingConv::AMDGPU_VS: 863 case CallingConv::AMDGPU_GS: 864 case CallingConv::AMDGPU_PS: 865 case CallingConv::AMDGPU_CS: 866 case CallingConv::AMDGPU_HS: 867 case CallingConv::AMDGPU_ES: 868 case CallingConv::AMDGPU_LS: 869 return RetCC_SI_Shader; 870 case CallingConv::C: 871 case CallingConv::Fast: 872 case CallingConv::Cold: 873 return RetCC_AMDGPU_Func; 874 default: 875 report_fatal_error("Unsupported calling convention."); 876 } 877 } 878 879 /// The SelectionDAGBuilder will automatically promote function arguments 880 /// with illegal types. However, this does not work for the AMDGPU targets 881 /// since the function arguments are stored in memory as these illegal types. 882 /// In order to handle this properly we need to get the original types sizes 883 /// from the LLVM IR Function and fixup the ISD:InputArg values before 884 /// passing them to AnalyzeFormalArguments() 885 886 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 887 /// input values across multiple registers. Each item in the Ins array 888 /// represents a single value that will be stored in registers. Ins[x].VT is 889 /// the value type of the value that will be stored in the register, so 890 /// whatever SDNode we lower the argument to needs to be this type. 891 /// 892 /// In order to correctly lower the arguments we need to know the size of each 893 /// argument. Since Ins[x].VT gives us the size of the register that will 894 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 895 /// for the orignal function argument so that we can deduce the correct memory 896 /// type to use for Ins[x]. In most cases the correct memory type will be 897 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 898 /// we have a kernel argument of type v8i8, this argument will be split into 899 /// 8 parts and each part will be represented by its own item in the Ins array. 900 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 901 /// the argument before it was split. From this, we deduce that the memory type 902 /// for each individual part is i8. We pass the memory type as LocVT to the 903 /// calling convention analysis function and the register type (Ins[x].VT) as 904 /// the ValVT. 905 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 906 CCState &State, 907 const SmallVectorImpl<ISD::InputArg> &Ins) const { 908 const MachineFunction &MF = State.getMachineFunction(); 909 const Function &Fn = MF.getFunction(); 910 LLVMContext &Ctx = Fn.getParent()->getContext(); 911 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 912 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 913 CallingConv::ID CC = Fn.getCallingConv(); 914 915 unsigned MaxAlign = 1; 916 uint64_t ExplicitArgOffset = 0; 917 const DataLayout &DL = Fn.getParent()->getDataLayout(); 918 919 unsigned InIndex = 0; 920 921 for (const Argument &Arg : Fn.args()) { 922 Type *BaseArgTy = Arg.getType(); 923 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 924 MaxAlign = std::max(Align, MaxAlign); 925 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 926 927 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 928 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 929 930 // We're basically throwing away everything passed into us and starting over 931 // to get accurate in-memory offsets. The "PartOffset" is completely useless 932 // to us as computed in Ins. 933 // 934 // We also need to figure out what type legalization is trying to do to get 935 // the correct memory offsets. 936 937 SmallVector<EVT, 16> ValueVTs; 938 SmallVector<uint64_t, 16> Offsets; 939 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 940 941 for (unsigned Value = 0, NumValues = ValueVTs.size(); 942 Value != NumValues; ++Value) { 943 uint64_t BasePartOffset = Offsets[Value]; 944 945 EVT ArgVT = ValueVTs[Value]; 946 EVT MemVT = ArgVT; 947 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 948 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 949 950 if (NumRegs == 1) { 951 // This argument is not split, so the IR type is the memory type. 952 if (ArgVT.isExtended()) { 953 // We have an extended type, like i24, so we should just use the 954 // register type. 955 MemVT = RegisterVT; 956 } else { 957 MemVT = ArgVT; 958 } 959 } else if (ArgVT.isVector() && RegisterVT.isVector() && 960 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 961 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 962 // We have a vector value which has been split into a vector with 963 // the same scalar type, but fewer elements. This should handle 964 // all the floating-point vector types. 965 MemVT = RegisterVT; 966 } else if (ArgVT.isVector() && 967 ArgVT.getVectorNumElements() == NumRegs) { 968 // This arg has been split so that each element is stored in a separate 969 // register. 970 MemVT = ArgVT.getScalarType(); 971 } else if (ArgVT.isExtended()) { 972 // We have an extended type, like i65. 973 MemVT = RegisterVT; 974 } else { 975 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 976 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 977 if (RegisterVT.isInteger()) { 978 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 979 } else if (RegisterVT.isVector()) { 980 assert(!RegisterVT.getScalarType().isFloatingPoint()); 981 unsigned NumElements = RegisterVT.getVectorNumElements(); 982 assert(MemoryBits % NumElements == 0); 983 // This vector type has been split into another vector type with 984 // a different elements size. 985 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 986 MemoryBits / NumElements); 987 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 988 } else { 989 llvm_unreachable("cannot deduce memory type."); 990 } 991 } 992 993 // Convert one element vectors to scalar. 994 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 995 MemVT = MemVT.getScalarType(); 996 997 // Round up vec3/vec5 argument. 998 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 999 assert(MemVT.getVectorNumElements() == 3 || 1000 MemVT.getVectorNumElements() == 5); 1001 MemVT = MemVT.getPow2VectorType(State.getContext()); 1002 } 1003 1004 unsigned PartOffset = 0; 1005 for (unsigned i = 0; i != NumRegs; ++i) { 1006 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1007 BasePartOffset + PartOffset, 1008 MemVT.getSimpleVT(), 1009 CCValAssign::Full)); 1010 PartOffset += MemVT.getStoreSize(); 1011 } 1012 } 1013 } 1014 } 1015 1016 SDValue AMDGPUTargetLowering::LowerReturn( 1017 SDValue Chain, CallingConv::ID CallConv, 1018 bool isVarArg, 1019 const SmallVectorImpl<ISD::OutputArg> &Outs, 1020 const SmallVectorImpl<SDValue> &OutVals, 1021 const SDLoc &DL, SelectionDAG &DAG) const { 1022 // FIXME: Fails for r600 tests 1023 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1024 // "wave terminate should not have return values"); 1025 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1026 } 1027 1028 //===---------------------------------------------------------------------===// 1029 // Target specific lowering 1030 //===---------------------------------------------------------------------===// 1031 1032 /// Selects the correct CCAssignFn for a given CallingConvention value. 1033 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1034 bool IsVarArg) { 1035 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1036 } 1037 1038 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1039 bool IsVarArg) { 1040 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1041 } 1042 1043 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1044 SelectionDAG &DAG, 1045 MachineFrameInfo &MFI, 1046 int ClobberedFI) const { 1047 SmallVector<SDValue, 8> ArgChains; 1048 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1049 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1050 1051 // Include the original chain at the beginning of the list. When this is 1052 // used by target LowerCall hooks, this helps legalize find the 1053 // CALLSEQ_BEGIN node. 1054 ArgChains.push_back(Chain); 1055 1056 // Add a chain value for each stack argument corresponding 1057 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1058 UE = DAG.getEntryNode().getNode()->use_end(); 1059 U != UE; ++U) { 1060 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1061 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1062 if (FI->getIndex() < 0) { 1063 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1064 int64_t InLastByte = InFirstByte; 1065 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1066 1067 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1068 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1069 ArgChains.push_back(SDValue(L, 1)); 1070 } 1071 } 1072 } 1073 } 1074 1075 // Build a tokenfactor for all the chains. 1076 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1077 } 1078 1079 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1080 SmallVectorImpl<SDValue> &InVals, 1081 StringRef Reason) const { 1082 SDValue Callee = CLI.Callee; 1083 SelectionDAG &DAG = CLI.DAG; 1084 1085 const Function &Fn = DAG.getMachineFunction().getFunction(); 1086 1087 StringRef FuncName("<unknown>"); 1088 1089 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1090 FuncName = G->getSymbol(); 1091 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1092 FuncName = G->getGlobal()->getName(); 1093 1094 DiagnosticInfoUnsupported NoCalls( 1095 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1096 DAG.getContext()->diagnose(NoCalls); 1097 1098 if (!CLI.IsTailCall) { 1099 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1100 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1101 } 1102 1103 return DAG.getEntryNode(); 1104 } 1105 1106 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1107 SmallVectorImpl<SDValue> &InVals) const { 1108 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1109 } 1110 1111 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1112 SelectionDAG &DAG) const { 1113 const Function &Fn = DAG.getMachineFunction().getFunction(); 1114 1115 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1116 SDLoc(Op).getDebugLoc()); 1117 DAG.getContext()->diagnose(NoDynamicAlloca); 1118 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1119 return DAG.getMergeValues(Ops, SDLoc()); 1120 } 1121 1122 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1123 SelectionDAG &DAG) const { 1124 switch (Op.getOpcode()) { 1125 default: 1126 Op->print(errs(), &DAG); 1127 llvm_unreachable("Custom lowering code for this" 1128 "instruction is not implemented yet!"); 1129 break; 1130 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1131 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1132 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1133 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1134 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1135 case ISD::FREM: return LowerFREM(Op, DAG); 1136 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1137 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1138 case ISD::FRINT: return LowerFRINT(Op, DAG); 1139 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1140 case ISD::FROUND: return LowerFROUND(Op, DAG); 1141 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1142 case ISD::FLOG: 1143 return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef); 1144 case ISD::FLOG10: 1145 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1146 case ISD::FEXP: 1147 return lowerFEXP(Op, DAG); 1148 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1149 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1150 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1151 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1152 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1153 case ISD::CTTZ: 1154 case ISD::CTTZ_ZERO_UNDEF: 1155 case ISD::CTLZ: 1156 case ISD::CTLZ_ZERO_UNDEF: 1157 return LowerCTLZ_CTTZ(Op, DAG); 1158 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1159 } 1160 return Op; 1161 } 1162 1163 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1164 SmallVectorImpl<SDValue> &Results, 1165 SelectionDAG &DAG) const { 1166 switch (N->getOpcode()) { 1167 case ISD::SIGN_EXTEND_INREG: 1168 // Different parts of legalization seem to interpret which type of 1169 // sign_extend_inreg is the one to check for custom lowering. The extended 1170 // from type is what really matters, but some places check for custom 1171 // lowering of the result type. This results in trying to use 1172 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1173 // nothing here and let the illegal result integer be handled normally. 1174 return; 1175 default: 1176 return; 1177 } 1178 } 1179 1180 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1181 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1182 if (!GVar || !GVar->hasInitializer()) 1183 return false; 1184 1185 return !isa<UndefValue>(GVar->getInitializer()); 1186 } 1187 1188 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1189 SDValue Op, 1190 SelectionDAG &DAG) const { 1191 1192 const DataLayout &DL = DAG.getDataLayout(); 1193 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1194 const GlobalValue *GV = G->getGlobal(); 1195 1196 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1197 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1198 if (!MFI->isEntryFunction()) { 1199 const Function &Fn = DAG.getMachineFunction().getFunction(); 1200 DiagnosticInfoUnsupported BadLDSDecl( 1201 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1202 DAG.getContext()->diagnose(BadLDSDecl); 1203 } 1204 1205 // XXX: What does the value of G->getOffset() mean? 1206 assert(G->getOffset() == 0 && 1207 "Do not know what to do with an non-zero offset"); 1208 1209 // TODO: We could emit code to handle the initialization somewhere. 1210 if (!hasDefinedInitializer(GV)) { 1211 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1212 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1213 } 1214 } 1215 1216 const Function &Fn = DAG.getMachineFunction().getFunction(); 1217 DiagnosticInfoUnsupported BadInit( 1218 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1219 DAG.getContext()->diagnose(BadInit); 1220 return SDValue(); 1221 } 1222 1223 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1224 SelectionDAG &DAG) const { 1225 SmallVector<SDValue, 8> Args; 1226 1227 EVT VT = Op.getValueType(); 1228 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1229 SDLoc SL(Op); 1230 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1231 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1232 1233 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1234 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1235 } 1236 1237 for (const SDUse &U : Op->ops()) 1238 DAG.ExtractVectorElements(U.get(), Args); 1239 1240 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1241 } 1242 1243 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1244 SelectionDAG &DAG) const { 1245 1246 SmallVector<SDValue, 8> Args; 1247 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1248 EVT VT = Op.getValueType(); 1249 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1250 VT.getVectorNumElements()); 1251 1252 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1253 } 1254 1255 /// Generate Min/Max node 1256 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1257 SDValue LHS, SDValue RHS, 1258 SDValue True, SDValue False, 1259 SDValue CC, 1260 DAGCombinerInfo &DCI) const { 1261 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1262 return SDValue(); 1263 1264 SelectionDAG &DAG = DCI.DAG; 1265 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1266 switch (CCOpcode) { 1267 case ISD::SETOEQ: 1268 case ISD::SETONE: 1269 case ISD::SETUNE: 1270 case ISD::SETNE: 1271 case ISD::SETUEQ: 1272 case ISD::SETEQ: 1273 case ISD::SETFALSE: 1274 case ISD::SETFALSE2: 1275 case ISD::SETTRUE: 1276 case ISD::SETTRUE2: 1277 case ISD::SETUO: 1278 case ISD::SETO: 1279 break; 1280 case ISD::SETULE: 1281 case ISD::SETULT: { 1282 if (LHS == True) 1283 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1284 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1285 } 1286 case ISD::SETOLE: 1287 case ISD::SETOLT: 1288 case ISD::SETLE: 1289 case ISD::SETLT: { 1290 // Ordered. Assume ordered for undefined. 1291 1292 // Only do this after legalization to avoid interfering with other combines 1293 // which might occur. 1294 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1295 !DCI.isCalledByLegalizer()) 1296 return SDValue(); 1297 1298 // We need to permute the operands to get the correct NaN behavior. The 1299 // selected operand is the second one based on the failing compare with NaN, 1300 // so permute it based on the compare type the hardware uses. 1301 if (LHS == True) 1302 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1303 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1304 } 1305 case ISD::SETUGE: 1306 case ISD::SETUGT: { 1307 if (LHS == True) 1308 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1309 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1310 } 1311 case ISD::SETGT: 1312 case ISD::SETGE: 1313 case ISD::SETOGE: 1314 case ISD::SETOGT: { 1315 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1316 !DCI.isCalledByLegalizer()) 1317 return SDValue(); 1318 1319 if (LHS == True) 1320 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1321 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1322 } 1323 case ISD::SETCC_INVALID: 1324 llvm_unreachable("Invalid setcc condcode!"); 1325 } 1326 return SDValue(); 1327 } 1328 1329 std::pair<SDValue, SDValue> 1330 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1331 SDLoc SL(Op); 1332 1333 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1334 1335 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1336 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1337 1338 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1339 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1340 1341 return std::make_pair(Lo, Hi); 1342 } 1343 1344 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1345 SDLoc SL(Op); 1346 1347 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1348 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1349 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1350 } 1351 1352 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1353 SDLoc SL(Op); 1354 1355 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1356 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1357 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1358 } 1359 1360 // Split a vector type into two parts. The first part is a power of two vector. 1361 // The second part is whatever is left over, and is a scalar if it would 1362 // otherwise be a 1-vector. 1363 std::pair<EVT, EVT> 1364 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1365 EVT LoVT, HiVT; 1366 EVT EltVT = VT.getVectorElementType(); 1367 unsigned NumElts = VT.getVectorNumElements(); 1368 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1369 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1370 HiVT = NumElts - LoNumElts == 1 1371 ? EltVT 1372 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1373 return std::make_pair(LoVT, HiVT); 1374 } 1375 1376 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1377 // scalar. 1378 std::pair<SDValue, SDValue> 1379 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1380 const EVT &LoVT, const EVT &HiVT, 1381 SelectionDAG &DAG) const { 1382 assert(LoVT.getVectorNumElements() + 1383 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1384 N.getValueType().getVectorNumElements() && 1385 "More vector elements requested than available!"); 1386 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1387 DAG.getVectorIdxConstant(0, DL)); 1388 SDValue Hi = DAG.getNode( 1389 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1390 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1391 return std::make_pair(Lo, Hi); 1392 } 1393 1394 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1395 SelectionDAG &DAG) const { 1396 LoadSDNode *Load = cast<LoadSDNode>(Op); 1397 EVT VT = Op.getValueType(); 1398 SDLoc SL(Op); 1399 1400 1401 // If this is a 2 element vector, we really want to scalarize and not create 1402 // weird 1 element vectors. 1403 if (VT.getVectorNumElements() == 2) { 1404 SDValue Ops[2]; 1405 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1406 return DAG.getMergeValues(Ops, SL); 1407 } 1408 1409 SDValue BasePtr = Load->getBasePtr(); 1410 EVT MemVT = Load->getMemoryVT(); 1411 1412 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1413 1414 EVT LoVT, HiVT; 1415 EVT LoMemVT, HiMemVT; 1416 SDValue Lo, Hi; 1417 1418 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1419 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1420 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1421 1422 unsigned Size = LoMemVT.getStoreSize(); 1423 unsigned BaseAlign = Load->getAlignment(); 1424 unsigned HiAlign = MinAlign(BaseAlign, Size); 1425 1426 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1427 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1428 BaseAlign, Load->getMemOperand()->getFlags()); 1429 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1430 SDValue HiLoad = 1431 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1432 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1433 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1434 1435 SDValue Join; 1436 if (LoVT == HiVT) { 1437 // This is the case that the vector is power of two so was evenly split. 1438 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1439 } else { 1440 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1441 DAG.getVectorIdxConstant(0, SL)); 1442 Join = DAG.getNode( 1443 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1444 VT, Join, HiLoad, 1445 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1446 } 1447 1448 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1449 LoLoad.getValue(1), HiLoad.getValue(1))}; 1450 1451 return DAG.getMergeValues(Ops, SL); 1452 } 1453 1454 // Widen a vector load from vec3 to vec4. 1455 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1456 SelectionDAG &DAG) const { 1457 LoadSDNode *Load = cast<LoadSDNode>(Op); 1458 EVT VT = Op.getValueType(); 1459 assert(VT.getVectorNumElements() == 3); 1460 SDValue BasePtr = Load->getBasePtr(); 1461 EVT MemVT = Load->getMemoryVT(); 1462 SDLoc SL(Op); 1463 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1464 unsigned BaseAlign = Load->getAlignment(); 1465 1466 EVT WideVT = 1467 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1468 EVT WideMemVT = 1469 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1470 SDValue WideLoad = DAG.getExtLoad( 1471 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1472 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1473 return DAG.getMergeValues( 1474 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1475 DAG.getVectorIdxConstant(0, SL)), 1476 WideLoad.getValue(1)}, 1477 SL); 1478 } 1479 1480 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1481 SelectionDAG &DAG) const { 1482 StoreSDNode *Store = cast<StoreSDNode>(Op); 1483 SDValue Val = Store->getValue(); 1484 EVT VT = Val.getValueType(); 1485 1486 // If this is a 2 element vector, we really want to scalarize and not create 1487 // weird 1 element vectors. 1488 if (VT.getVectorNumElements() == 2) 1489 return scalarizeVectorStore(Store, DAG); 1490 1491 EVT MemVT = Store->getMemoryVT(); 1492 SDValue Chain = Store->getChain(); 1493 SDValue BasePtr = Store->getBasePtr(); 1494 SDLoc SL(Op); 1495 1496 EVT LoVT, HiVT; 1497 EVT LoMemVT, HiMemVT; 1498 SDValue Lo, Hi; 1499 1500 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1501 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1502 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1503 1504 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1505 1506 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1507 unsigned BaseAlign = Store->getAlignment(); 1508 unsigned Size = LoMemVT.getStoreSize(); 1509 unsigned HiAlign = MinAlign(BaseAlign, Size); 1510 1511 SDValue LoStore = 1512 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1513 Store->getMemOperand()->getFlags()); 1514 SDValue HiStore = 1515 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1516 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1517 1518 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1519 } 1520 1521 // This is a shortcut for integer division because we have fast i32<->f32 1522 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1523 // float is enough to accurately represent up to a 24-bit signed integer. 1524 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1525 bool Sign) const { 1526 SDLoc DL(Op); 1527 EVT VT = Op.getValueType(); 1528 SDValue LHS = Op.getOperand(0); 1529 SDValue RHS = Op.getOperand(1); 1530 MVT IntVT = MVT::i32; 1531 MVT FltVT = MVT::f32; 1532 1533 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1534 if (LHSSignBits < 9) 1535 return SDValue(); 1536 1537 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1538 if (RHSSignBits < 9) 1539 return SDValue(); 1540 1541 unsigned BitSize = VT.getSizeInBits(); 1542 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1543 unsigned DivBits = BitSize - SignBits; 1544 if (Sign) 1545 ++DivBits; 1546 1547 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1548 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1549 1550 SDValue jq = DAG.getConstant(1, DL, IntVT); 1551 1552 if (Sign) { 1553 // char|short jq = ia ^ ib; 1554 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1555 1556 // jq = jq >> (bitsize - 2) 1557 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1558 DAG.getConstant(BitSize - 2, DL, VT)); 1559 1560 // jq = jq | 0x1 1561 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1562 } 1563 1564 // int ia = (int)LHS; 1565 SDValue ia = LHS; 1566 1567 // int ib, (int)RHS; 1568 SDValue ib = RHS; 1569 1570 // float fa = (float)ia; 1571 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1572 1573 // float fb = (float)ib; 1574 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1575 1576 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1577 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1578 1579 // fq = trunc(fq); 1580 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1581 1582 // float fqneg = -fq; 1583 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1584 1585 MachineFunction &MF = DAG.getMachineFunction(); 1586 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1587 1588 // float fr = mad(fqneg, fb, fa); 1589 unsigned OpCode = MFI->getMode().FP32Denormals ? 1590 (unsigned)AMDGPUISD::FMAD_FTZ : 1591 (unsigned)ISD::FMAD; 1592 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1593 1594 // int iq = (int)fq; 1595 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1596 1597 // fr = fabs(fr); 1598 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1599 1600 // fb = fabs(fb); 1601 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1602 1603 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1604 1605 // int cv = fr >= fb; 1606 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1607 1608 // jq = (cv ? jq : 0); 1609 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1610 1611 // dst = iq + jq; 1612 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1613 1614 // Rem needs compensation, it's easier to recompute it 1615 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1616 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1617 1618 // Truncate to number of bits this divide really is. 1619 if (Sign) { 1620 SDValue InRegSize 1621 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1622 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1623 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1624 } else { 1625 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1626 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1627 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1628 } 1629 1630 return DAG.getMergeValues({ Div, Rem }, DL); 1631 } 1632 1633 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1634 SelectionDAG &DAG, 1635 SmallVectorImpl<SDValue> &Results) const { 1636 SDLoc DL(Op); 1637 EVT VT = Op.getValueType(); 1638 1639 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1640 1641 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1642 1643 SDValue One = DAG.getConstant(1, DL, HalfVT); 1644 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1645 1646 //HiLo split 1647 SDValue LHS = Op.getOperand(0); 1648 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1649 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1650 1651 SDValue RHS = Op.getOperand(1); 1652 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1653 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1654 1655 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1656 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1657 1658 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1659 LHS_Lo, RHS_Lo); 1660 1661 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1662 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1663 1664 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1665 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1666 return; 1667 } 1668 1669 if (isTypeLegal(MVT::i64)) { 1670 MachineFunction &MF = DAG.getMachineFunction(); 1671 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1672 1673 // Compute denominator reciprocal. 1674 unsigned FMAD = MFI->getMode().FP32Denormals ? 1675 (unsigned)AMDGPUISD::FMAD_FTZ : 1676 (unsigned)ISD::FMAD; 1677 1678 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1679 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1680 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1681 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1682 Cvt_Lo); 1683 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1684 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1685 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1686 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1687 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1688 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1689 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1690 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1691 Mul1); 1692 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1693 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1694 SDValue Rcp64 = DAG.getBitcast(VT, 1695 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1696 1697 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1698 SDValue One64 = DAG.getConstant(1, DL, VT); 1699 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1700 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1701 1702 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1703 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1704 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1705 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1706 Zero); 1707 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1708 One); 1709 1710 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1711 Mulhi1_Lo, Zero1); 1712 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1713 Mulhi1_Hi, Add1_Lo.getValue(1)); 1714 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1715 SDValue Add1 = DAG.getBitcast(VT, 1716 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1717 1718 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1719 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1720 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1721 Zero); 1722 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1723 One); 1724 1725 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1726 Mulhi2_Lo, Zero1); 1727 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1728 Mulhi2_Hi, Add1_Lo.getValue(1)); 1729 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1730 Zero, Add2_Lo.getValue(1)); 1731 SDValue Add2 = DAG.getBitcast(VT, 1732 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1733 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1734 1735 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1736 1737 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1738 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1739 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1740 Mul3_Lo, Zero1); 1741 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1742 Mul3_Hi, Sub1_Lo.getValue(1)); 1743 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1744 SDValue Sub1 = DAG.getBitcast(VT, 1745 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1746 1747 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1748 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1749 ISD::SETUGE); 1750 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1751 ISD::SETUGE); 1752 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1753 1754 // TODO: Here and below portions of the code can be enclosed into if/endif. 1755 // Currently control flow is unconditional and we have 4 selects after 1756 // potential endif to substitute PHIs. 1757 1758 // if C3 != 0 ... 1759 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1760 RHS_Lo, Zero1); 1761 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1762 RHS_Hi, Sub1_Lo.getValue(1)); 1763 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1764 Zero, Sub2_Lo.getValue(1)); 1765 SDValue Sub2 = DAG.getBitcast(VT, 1766 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1767 1768 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1769 1770 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1771 ISD::SETUGE); 1772 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1773 ISD::SETUGE); 1774 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1775 1776 // if (C6 != 0) 1777 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1778 1779 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1780 RHS_Lo, Zero1); 1781 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1782 RHS_Hi, Sub2_Lo.getValue(1)); 1783 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1784 Zero, Sub3_Lo.getValue(1)); 1785 SDValue Sub3 = DAG.getBitcast(VT, 1786 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1787 1788 // endif C6 1789 // endif C3 1790 1791 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1792 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1793 1794 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1795 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1796 1797 Results.push_back(Div); 1798 Results.push_back(Rem); 1799 1800 return; 1801 } 1802 1803 // r600 expandion. 1804 // Get Speculative values 1805 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1806 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1807 1808 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1809 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1810 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1811 1812 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1813 SDValue DIV_Lo = Zero; 1814 1815 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1816 1817 for (unsigned i = 0; i < halfBitWidth; ++i) { 1818 const unsigned bitPos = halfBitWidth - i - 1; 1819 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1820 // Get value of high bit 1821 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1822 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1823 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1824 1825 // Shift 1826 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1827 // Add LHS high bit 1828 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1829 1830 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1831 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1832 1833 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1834 1835 // Update REM 1836 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1837 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1838 } 1839 1840 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1841 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1842 Results.push_back(DIV); 1843 Results.push_back(REM); 1844 } 1845 1846 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1847 SelectionDAG &DAG) const { 1848 SDLoc DL(Op); 1849 EVT VT = Op.getValueType(); 1850 1851 if (VT == MVT::i64) { 1852 SmallVector<SDValue, 2> Results; 1853 LowerUDIVREM64(Op, DAG, Results); 1854 return DAG.getMergeValues(Results, DL); 1855 } 1856 1857 if (VT == MVT::i32) { 1858 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1859 return Res; 1860 } 1861 1862 SDValue Num = Op.getOperand(0); 1863 SDValue Den = Op.getOperand(1); 1864 1865 // RCP = URECIP(Den) = 2^32 / Den + e 1866 // e is rounding error. 1867 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1868 1869 // RCP_LO = mul(RCP, Den) */ 1870 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1871 1872 // RCP_HI = mulhu (RCP, Den) */ 1873 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1874 1875 // NEG_RCP_LO = -RCP_LO 1876 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1877 RCP_LO); 1878 1879 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1880 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1881 NEG_RCP_LO, RCP_LO, 1882 ISD::SETEQ); 1883 // Calculate the rounding error from the URECIP instruction 1884 // E = mulhu(ABS_RCP_LO, RCP) 1885 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1886 1887 // RCP_A_E = RCP + E 1888 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1889 1890 // RCP_S_E = RCP - E 1891 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1892 1893 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1894 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1895 RCP_A_E, RCP_S_E, 1896 ISD::SETEQ); 1897 // Quotient = mulhu(Tmp0, Num) 1898 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1899 1900 // Num_S_Remainder = Quotient * Den 1901 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1902 1903 // Remainder = Num - Num_S_Remainder 1904 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1905 1906 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1907 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1908 DAG.getConstant(-1, DL, VT), 1909 DAG.getConstant(0, DL, VT), 1910 ISD::SETUGE); 1911 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1912 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1913 Num_S_Remainder, 1914 DAG.getConstant(-1, DL, VT), 1915 DAG.getConstant(0, DL, VT), 1916 ISD::SETUGE); 1917 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1918 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1919 Remainder_GE_Zero); 1920 1921 // Calculate Division result: 1922 1923 // Quotient_A_One = Quotient + 1 1924 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1925 DAG.getConstant(1, DL, VT)); 1926 1927 // Quotient_S_One = Quotient - 1 1928 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1929 DAG.getConstant(1, DL, VT)); 1930 1931 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1932 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1933 Quotient, Quotient_A_One, ISD::SETEQ); 1934 1935 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1936 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1937 Quotient_S_One, Div, ISD::SETEQ); 1938 1939 // Calculate Rem result: 1940 1941 // Remainder_S_Den = Remainder - Den 1942 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1943 1944 // Remainder_A_Den = Remainder + Den 1945 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1946 1947 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1948 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1949 Remainder, Remainder_S_Den, ISD::SETEQ); 1950 1951 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1952 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1953 Remainder_A_Den, Rem, ISD::SETEQ); 1954 SDValue Ops[2] = { 1955 Div, 1956 Rem 1957 }; 1958 return DAG.getMergeValues(Ops, DL); 1959 } 1960 1961 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1962 SelectionDAG &DAG) const { 1963 SDLoc DL(Op); 1964 EVT VT = Op.getValueType(); 1965 1966 SDValue LHS = Op.getOperand(0); 1967 SDValue RHS = Op.getOperand(1); 1968 1969 SDValue Zero = DAG.getConstant(0, DL, VT); 1970 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1971 1972 if (VT == MVT::i32) { 1973 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1974 return Res; 1975 } 1976 1977 if (VT == MVT::i64 && 1978 DAG.ComputeNumSignBits(LHS) > 32 && 1979 DAG.ComputeNumSignBits(RHS) > 32) { 1980 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1981 1982 //HiLo split 1983 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1984 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1985 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1986 LHS_Lo, RHS_Lo); 1987 SDValue Res[2] = { 1988 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1989 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1990 }; 1991 return DAG.getMergeValues(Res, DL); 1992 } 1993 1994 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1995 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1996 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1997 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1998 1999 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2000 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2001 2002 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2003 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2004 2005 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2006 SDValue Rem = Div.getValue(1); 2007 2008 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2009 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2010 2011 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2012 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2013 2014 SDValue Res[2] = { 2015 Div, 2016 Rem 2017 }; 2018 return DAG.getMergeValues(Res, DL); 2019 } 2020 2021 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2022 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2023 SDLoc SL(Op); 2024 EVT VT = Op.getValueType(); 2025 SDValue X = Op.getOperand(0); 2026 SDValue Y = Op.getOperand(1); 2027 2028 // TODO: Should this propagate fast-math-flags? 2029 2030 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2031 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2032 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2033 2034 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2035 } 2036 2037 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2038 SDLoc SL(Op); 2039 SDValue Src = Op.getOperand(0); 2040 2041 // result = trunc(src) 2042 // if (src > 0.0 && src != result) 2043 // result += 1.0 2044 2045 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2046 2047 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2048 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2049 2050 EVT SetCCVT = 2051 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2052 2053 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2054 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2055 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2056 2057 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2058 // TODO: Should this propagate fast-math-flags? 2059 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2060 } 2061 2062 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2063 SelectionDAG &DAG) { 2064 const unsigned FractBits = 52; 2065 const unsigned ExpBits = 11; 2066 2067 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2068 Hi, 2069 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2070 DAG.getConstant(ExpBits, SL, MVT::i32)); 2071 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2072 DAG.getConstant(1023, SL, MVT::i32)); 2073 2074 return Exp; 2075 } 2076 2077 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2078 SDLoc SL(Op); 2079 SDValue Src = Op.getOperand(0); 2080 2081 assert(Op.getValueType() == MVT::f64); 2082 2083 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2084 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2085 2086 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2087 2088 // Extract the upper half, since this is where we will find the sign and 2089 // exponent. 2090 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2091 2092 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2093 2094 const unsigned FractBits = 52; 2095 2096 // Extract the sign bit. 2097 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2098 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2099 2100 // Extend back to 64-bits. 2101 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2102 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2103 2104 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2105 const SDValue FractMask 2106 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2107 2108 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2109 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2110 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2111 2112 EVT SetCCVT = 2113 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2114 2115 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2116 2117 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2118 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2119 2120 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2121 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2122 2123 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2124 } 2125 2126 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2127 SDLoc SL(Op); 2128 SDValue Src = Op.getOperand(0); 2129 2130 assert(Op.getValueType() == MVT::f64); 2131 2132 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2133 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2134 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2135 2136 // TODO: Should this propagate fast-math-flags? 2137 2138 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2139 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2140 2141 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2142 2143 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2144 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2145 2146 EVT SetCCVT = 2147 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2148 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2149 2150 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2151 } 2152 2153 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2154 // FNEARBYINT and FRINT are the same, except in their handling of FP 2155 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2156 // rint, so just treat them as equivalent. 2157 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2158 } 2159 2160 // XXX - May require not supporting f32 denormals? 2161 2162 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2163 // compare and vselect end up producing worse code than scalarizing the whole 2164 // operation. 2165 SDValue AMDGPUTargetLowering::LowerFROUND_LegalFTRUNC(SDValue Op, 2166 SelectionDAG &DAG) const { 2167 SDLoc SL(Op); 2168 SDValue X = Op.getOperand(0); 2169 EVT VT = Op.getValueType(); 2170 2171 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2172 2173 // TODO: Should this propagate fast-math-flags? 2174 2175 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2176 2177 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2178 2179 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2180 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2181 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2182 2183 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2184 2185 EVT SetCCVT = 2186 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2187 2188 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2189 2190 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2191 2192 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2193 } 2194 2195 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2196 SDLoc SL(Op); 2197 SDValue X = Op.getOperand(0); 2198 2199 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2200 2201 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2202 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2203 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2204 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2205 EVT SetCCVT = 2206 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2207 2208 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2209 2210 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2211 2212 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2213 2214 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2215 MVT::i64); 2216 2217 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2218 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2219 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2220 MVT::i64), 2221 Exp); 2222 2223 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2224 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2225 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2226 ISD::SETNE); 2227 2228 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2229 D, DAG.getConstant(0, SL, MVT::i64)); 2230 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2231 2232 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2233 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2234 2235 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2236 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2237 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2238 2239 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2240 ExpEqNegOne, 2241 DAG.getConstantFP(1.0, SL, MVT::f64), 2242 DAG.getConstantFP(0.0, SL, MVT::f64)); 2243 2244 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2245 2246 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2247 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2248 2249 return K; 2250 } 2251 2252 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2253 EVT VT = Op.getValueType(); 2254 2255 if (isOperationLegal(ISD::FTRUNC, VT)) 2256 return LowerFROUND_LegalFTRUNC(Op, DAG); 2257 2258 if (VT == MVT::f64) 2259 return LowerFROUND64(Op, DAG); 2260 2261 llvm_unreachable("unhandled type"); 2262 } 2263 2264 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2265 SDLoc SL(Op); 2266 SDValue Src = Op.getOperand(0); 2267 2268 // result = trunc(src); 2269 // if (src < 0.0 && src != result) 2270 // result += -1.0. 2271 2272 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2273 2274 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2275 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2276 2277 EVT SetCCVT = 2278 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2279 2280 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2281 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2282 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2283 2284 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2285 // TODO: Should this propagate fast-math-flags? 2286 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2287 } 2288 2289 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2290 double Log2BaseInverted) const { 2291 EVT VT = Op.getValueType(); 2292 2293 SDLoc SL(Op); 2294 SDValue Operand = Op.getOperand(0); 2295 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2296 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2297 2298 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2299 } 2300 2301 // exp2(M_LOG2E_F * f); 2302 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2303 EVT VT = Op.getValueType(); 2304 SDLoc SL(Op); 2305 SDValue Src = Op.getOperand(0); 2306 2307 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2308 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2309 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2310 } 2311 2312 static bool isCtlzOpc(unsigned Opc) { 2313 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2314 } 2315 2316 static bool isCttzOpc(unsigned Opc) { 2317 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2318 } 2319 2320 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2321 SDLoc SL(Op); 2322 SDValue Src = Op.getOperand(0); 2323 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2324 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2325 2326 unsigned ISDOpc, NewOpc; 2327 if (isCtlzOpc(Op.getOpcode())) { 2328 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2329 NewOpc = AMDGPUISD::FFBH_U32; 2330 } else if (isCttzOpc(Op.getOpcode())) { 2331 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2332 NewOpc = AMDGPUISD::FFBL_B32; 2333 } else 2334 llvm_unreachable("Unexpected OPCode!!!"); 2335 2336 2337 if (ZeroUndef && Src.getValueType() == MVT::i32) 2338 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2339 2340 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2341 2342 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2343 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2344 2345 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2346 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2347 2348 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2349 *DAG.getContext(), MVT::i32); 2350 2351 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2352 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2353 2354 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2355 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2356 2357 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2358 SDValue Add, NewOpr; 2359 if (isCtlzOpc(Op.getOpcode())) { 2360 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2361 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2362 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2363 } else { 2364 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2365 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2366 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2367 } 2368 2369 if (!ZeroUndef) { 2370 // Test if the full 64-bit input is zero. 2371 2372 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2373 // which we probably don't want. 2374 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2375 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2376 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2377 2378 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2379 // with the same cycles, otherwise it is slower. 2380 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2381 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2382 2383 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2384 2385 // The instruction returns -1 for 0 input, but the defined intrinsic 2386 // behavior is to return the number of bits. 2387 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2388 SrcIsZero, Bits32, NewOpr); 2389 } 2390 2391 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2392 } 2393 2394 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2395 bool Signed) const { 2396 // Unsigned 2397 // cul2f(ulong u) 2398 //{ 2399 // uint lz = clz(u); 2400 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2401 // u = (u << lz) & 0x7fffffffffffffffUL; 2402 // ulong t = u & 0xffffffffffUL; 2403 // uint v = (e << 23) | (uint)(u >> 40); 2404 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2405 // return as_float(v + r); 2406 //} 2407 // Signed 2408 // cl2f(long l) 2409 //{ 2410 // long s = l >> 63; 2411 // float r = cul2f((l + s) ^ s); 2412 // return s ? -r : r; 2413 //} 2414 2415 SDLoc SL(Op); 2416 SDValue Src = Op.getOperand(0); 2417 SDValue L = Src; 2418 2419 SDValue S; 2420 if (Signed) { 2421 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2422 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2423 2424 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2425 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2426 } 2427 2428 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2429 *DAG.getContext(), MVT::f32); 2430 2431 2432 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2433 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2434 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2435 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2436 2437 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2438 SDValue E = DAG.getSelect(SL, MVT::i32, 2439 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2440 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2441 ZeroI32); 2442 2443 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2444 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2445 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2446 2447 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2448 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2449 2450 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2451 U, DAG.getConstant(40, SL, MVT::i64)); 2452 2453 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2454 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2455 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2456 2457 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2458 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2459 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2460 2461 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2462 2463 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2464 2465 SDValue R = DAG.getSelect(SL, MVT::i32, 2466 RCmp, 2467 One, 2468 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2469 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2470 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2471 2472 if (!Signed) 2473 return R; 2474 2475 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2476 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2477 } 2478 2479 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2480 bool Signed) const { 2481 SDLoc SL(Op); 2482 SDValue Src = Op.getOperand(0); 2483 2484 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2485 2486 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2487 DAG.getConstant(0, SL, MVT::i32)); 2488 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2489 DAG.getConstant(1, SL, MVT::i32)); 2490 2491 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2492 SL, MVT::f64, Hi); 2493 2494 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2495 2496 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2497 DAG.getConstant(32, SL, MVT::i32)); 2498 // TODO: Should this propagate fast-math-flags? 2499 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2500 } 2501 2502 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2503 SelectionDAG &DAG) const { 2504 // TODO: Factor out code common with LowerSINT_TO_FP. 2505 EVT DestVT = Op.getValueType(); 2506 SDValue Src = Op.getOperand(0); 2507 EVT SrcVT = Src.getValueType(); 2508 2509 if (SrcVT == MVT::i16) { 2510 if (DestVT == MVT::f16) 2511 return Op; 2512 SDLoc DL(Op); 2513 2514 // Promote src to i32 2515 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2516 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2517 } 2518 2519 assert(SrcVT == MVT::i64 && "operation should be legal"); 2520 2521 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2522 SDLoc DL(Op); 2523 2524 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2525 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2526 SDValue FPRound = 2527 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2528 2529 return FPRound; 2530 } 2531 2532 if (DestVT == MVT::f32) 2533 return LowerINT_TO_FP32(Op, DAG, false); 2534 2535 assert(DestVT == MVT::f64); 2536 return LowerINT_TO_FP64(Op, DAG, false); 2537 } 2538 2539 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2540 SelectionDAG &DAG) const { 2541 EVT DestVT = Op.getValueType(); 2542 2543 SDValue Src = Op.getOperand(0); 2544 EVT SrcVT = Src.getValueType(); 2545 2546 if (SrcVT == MVT::i16) { 2547 if (DestVT == MVT::f16) 2548 return Op; 2549 2550 SDLoc DL(Op); 2551 // Promote src to i32 2552 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2553 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2554 } 2555 2556 assert(SrcVT == MVT::i64 && "operation should be legal"); 2557 2558 // TODO: Factor out code common with LowerUINT_TO_FP. 2559 2560 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2561 SDLoc DL(Op); 2562 SDValue Src = Op.getOperand(0); 2563 2564 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2565 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2566 SDValue FPRound = 2567 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2568 2569 return FPRound; 2570 } 2571 2572 if (DestVT == MVT::f32) 2573 return LowerINT_TO_FP32(Op, DAG, true); 2574 2575 assert(DestVT == MVT::f64); 2576 return LowerINT_TO_FP64(Op, DAG, true); 2577 } 2578 2579 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2580 bool Signed) const { 2581 SDLoc SL(Op); 2582 2583 SDValue Src = Op.getOperand(0); 2584 2585 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2586 2587 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2588 MVT::f64); 2589 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2590 MVT::f64); 2591 // TODO: Should this propagate fast-math-flags? 2592 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2593 2594 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2595 2596 2597 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2598 2599 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2600 MVT::i32, FloorMul); 2601 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2602 2603 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2604 2605 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2606 } 2607 2608 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2609 SDLoc DL(Op); 2610 SDValue N0 = Op.getOperand(0); 2611 2612 // Convert to target node to get known bits 2613 if (N0.getValueType() == MVT::f32) 2614 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2615 2616 if (getTargetMachine().Options.UnsafeFPMath) { 2617 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2618 return SDValue(); 2619 } 2620 2621 assert(N0.getSimpleValueType() == MVT::f64); 2622 2623 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2624 const unsigned ExpMask = 0x7ff; 2625 const unsigned ExpBiasf64 = 1023; 2626 const unsigned ExpBiasf16 = 15; 2627 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2628 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2629 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2630 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2631 DAG.getConstant(32, DL, MVT::i64)); 2632 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2633 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2634 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2635 DAG.getConstant(20, DL, MVT::i64)); 2636 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2637 DAG.getConstant(ExpMask, DL, MVT::i32)); 2638 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2639 // add the f16 bias (15) to get the biased exponent for the f16 format. 2640 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2641 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2642 2643 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2644 DAG.getConstant(8, DL, MVT::i32)); 2645 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2646 DAG.getConstant(0xffe, DL, MVT::i32)); 2647 2648 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2649 DAG.getConstant(0x1ff, DL, MVT::i32)); 2650 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2651 2652 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2653 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2654 2655 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2656 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2657 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2658 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2659 2660 // N = M | (E << 12); 2661 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2662 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2663 DAG.getConstant(12, DL, MVT::i32))); 2664 2665 // B = clamp(1-E, 0, 13); 2666 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2667 One, E); 2668 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2669 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2670 DAG.getConstant(13, DL, MVT::i32)); 2671 2672 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2673 DAG.getConstant(0x1000, DL, MVT::i32)); 2674 2675 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2676 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2677 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2678 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2679 2680 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2681 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2682 DAG.getConstant(0x7, DL, MVT::i32)); 2683 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2684 DAG.getConstant(2, DL, MVT::i32)); 2685 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2686 One, Zero, ISD::SETEQ); 2687 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2688 One, Zero, ISD::SETGT); 2689 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2690 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2691 2692 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2693 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2694 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2695 I, V, ISD::SETEQ); 2696 2697 // Extract the sign bit. 2698 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2699 DAG.getConstant(16, DL, MVT::i32)); 2700 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2701 DAG.getConstant(0x8000, DL, MVT::i32)); 2702 2703 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2704 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2705 } 2706 2707 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2708 SelectionDAG &DAG) const { 2709 SDValue Src = Op.getOperand(0); 2710 2711 // TODO: Factor out code common with LowerFP_TO_UINT. 2712 2713 EVT SrcVT = Src.getValueType(); 2714 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2715 SDLoc DL(Op); 2716 2717 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2718 SDValue FpToInt32 = 2719 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2720 2721 return FpToInt32; 2722 } 2723 2724 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2725 return LowerFP64_TO_INT(Op, DAG, true); 2726 2727 return SDValue(); 2728 } 2729 2730 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2731 SelectionDAG &DAG) const { 2732 SDValue Src = Op.getOperand(0); 2733 2734 // TODO: Factor out code common with LowerFP_TO_SINT. 2735 2736 EVT SrcVT = Src.getValueType(); 2737 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2738 SDLoc DL(Op); 2739 2740 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2741 SDValue FpToInt32 = 2742 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2743 2744 return FpToInt32; 2745 } 2746 2747 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2748 return LowerFP64_TO_INT(Op, DAG, false); 2749 2750 return SDValue(); 2751 } 2752 2753 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2754 SelectionDAG &DAG) const { 2755 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2756 MVT VT = Op.getSimpleValueType(); 2757 MVT ScalarVT = VT.getScalarType(); 2758 2759 assert(VT.isVector()); 2760 2761 SDValue Src = Op.getOperand(0); 2762 SDLoc DL(Op); 2763 2764 // TODO: Don't scalarize on Evergreen? 2765 unsigned NElts = VT.getVectorNumElements(); 2766 SmallVector<SDValue, 8> Args; 2767 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2768 2769 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2770 for (unsigned I = 0; I < NElts; ++I) 2771 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2772 2773 return DAG.getBuildVector(VT, DL, Args); 2774 } 2775 2776 //===----------------------------------------------------------------------===// 2777 // Custom DAG optimizations 2778 //===----------------------------------------------------------------------===// 2779 2780 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2781 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2782 } 2783 2784 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2785 EVT VT = Op.getValueType(); 2786 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2787 // as unsigned 24-bit values. 2788 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2789 } 2790 2791 static SDValue simplifyI24(SDNode *Node24, 2792 TargetLowering::DAGCombinerInfo &DCI) { 2793 SelectionDAG &DAG = DCI.DAG; 2794 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2795 2796 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2797 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2798 unsigned NewOpcode = Node24->getOpcode(); 2799 if (IsIntrin) { 2800 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2801 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2802 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2803 } 2804 2805 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2806 2807 // First try to simplify using GetDemandedBits which allows the operands to 2808 // have other uses, but will only perform simplifications that involve 2809 // bypassing some nodes for this user. 2810 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2811 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2812 if (DemandedLHS || DemandedRHS) 2813 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2814 DemandedLHS ? DemandedLHS : LHS, 2815 DemandedRHS ? DemandedRHS : RHS); 2816 2817 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2818 // operands if this node is the only user. 2819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2820 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2821 return SDValue(Node24, 0); 2822 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2823 return SDValue(Node24, 0); 2824 2825 return SDValue(); 2826 } 2827 2828 template <typename IntTy> 2829 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2830 uint32_t Width, const SDLoc &DL) { 2831 if (Width + Offset < 32) { 2832 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2833 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2834 return DAG.getConstant(Result, DL, MVT::i32); 2835 } 2836 2837 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2838 } 2839 2840 static bool hasVolatileUser(SDNode *Val) { 2841 for (SDNode *U : Val->uses()) { 2842 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2843 if (M->isVolatile()) 2844 return true; 2845 } 2846 } 2847 2848 return false; 2849 } 2850 2851 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2852 // i32 vectors are the canonical memory type. 2853 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2854 return false; 2855 2856 if (!VT.isByteSized()) 2857 return false; 2858 2859 unsigned Size = VT.getStoreSize(); 2860 2861 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2862 return false; 2863 2864 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2865 return false; 2866 2867 return true; 2868 } 2869 2870 // Replace load of an illegal type with a store of a bitcast to a friendlier 2871 // type. 2872 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2873 DAGCombinerInfo &DCI) const { 2874 if (!DCI.isBeforeLegalize()) 2875 return SDValue(); 2876 2877 LoadSDNode *LN = cast<LoadSDNode>(N); 2878 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2879 return SDValue(); 2880 2881 SDLoc SL(N); 2882 SelectionDAG &DAG = DCI.DAG; 2883 EVT VT = LN->getMemoryVT(); 2884 2885 unsigned Size = VT.getStoreSize(); 2886 unsigned Align = LN->getAlignment(); 2887 if (Align < Size && isTypeLegal(VT)) { 2888 bool IsFast; 2889 unsigned AS = LN->getAddressSpace(); 2890 2891 // Expand unaligned loads earlier than legalization. Due to visitation order 2892 // problems during legalization, the emitted instructions to pack and unpack 2893 // the bytes again are not eliminated in the case of an unaligned copy. 2894 if (!allowsMisalignedMemoryAccesses( 2895 VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { 2896 SDValue Ops[2]; 2897 2898 if (VT.isVector()) 2899 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2900 else 2901 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2902 2903 return DAG.getMergeValues(Ops, SDLoc(N)); 2904 } 2905 2906 if (!IsFast) 2907 return SDValue(); 2908 } 2909 2910 if (!shouldCombineMemoryType(VT)) 2911 return SDValue(); 2912 2913 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2914 2915 SDValue NewLoad 2916 = DAG.getLoad(NewVT, SL, LN->getChain(), 2917 LN->getBasePtr(), LN->getMemOperand()); 2918 2919 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2920 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2921 return SDValue(N, 0); 2922 } 2923 2924 // Replace store of an illegal type with a store of a bitcast to a friendlier 2925 // type. 2926 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2927 DAGCombinerInfo &DCI) const { 2928 if (!DCI.isBeforeLegalize()) 2929 return SDValue(); 2930 2931 StoreSDNode *SN = cast<StoreSDNode>(N); 2932 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2933 return SDValue(); 2934 2935 EVT VT = SN->getMemoryVT(); 2936 unsigned Size = VT.getStoreSize(); 2937 2938 SDLoc SL(N); 2939 SelectionDAG &DAG = DCI.DAG; 2940 unsigned Align = SN->getAlignment(); 2941 if (Align < Size && isTypeLegal(VT)) { 2942 bool IsFast; 2943 unsigned AS = SN->getAddressSpace(); 2944 2945 // Expand unaligned stores earlier than legalization. Due to visitation 2946 // order problems during legalization, the emitted instructions to pack and 2947 // unpack the bytes again are not eliminated in the case of an unaligned 2948 // copy. 2949 if (!allowsMisalignedMemoryAccesses( 2950 VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { 2951 if (VT.isVector()) 2952 return scalarizeVectorStore(SN, DAG); 2953 2954 return expandUnalignedStore(SN, DAG); 2955 } 2956 2957 if (!IsFast) 2958 return SDValue(); 2959 } 2960 2961 if (!shouldCombineMemoryType(VT)) 2962 return SDValue(); 2963 2964 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2965 SDValue Val = SN->getValue(); 2966 2967 //DCI.AddToWorklist(Val.getNode()); 2968 2969 bool OtherUses = !Val.hasOneUse(); 2970 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2971 if (OtherUses) { 2972 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2973 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2974 } 2975 2976 return DAG.getStore(SN->getChain(), SL, CastVal, 2977 SN->getBasePtr(), SN->getMemOperand()); 2978 } 2979 2980 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2981 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2982 // issues. 2983 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2984 DAGCombinerInfo &DCI) const { 2985 SelectionDAG &DAG = DCI.DAG; 2986 SDValue N0 = N->getOperand(0); 2987 2988 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2989 // (vt2 (truncate (assertzext vt0:x, vt1))) 2990 if (N0.getOpcode() == ISD::TRUNCATE) { 2991 SDValue N1 = N->getOperand(1); 2992 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2993 SDLoc SL(N); 2994 2995 SDValue Src = N0.getOperand(0); 2996 EVT SrcVT = Src.getValueType(); 2997 if (SrcVT.bitsGE(ExtVT)) { 2998 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2999 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3000 } 3001 } 3002 3003 return SDValue(); 3004 } 3005 3006 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3007 SDNode *N, DAGCombinerInfo &DCI) const { 3008 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3009 switch (IID) { 3010 case Intrinsic::amdgcn_mul_i24: 3011 case Intrinsic::amdgcn_mul_u24: 3012 return simplifyI24(N, DCI); 3013 default: 3014 return SDValue(); 3015 } 3016 } 3017 3018 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3019 /// binary operation \p Opc to it with the corresponding constant operands. 3020 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3021 DAGCombinerInfo &DCI, const SDLoc &SL, 3022 unsigned Opc, SDValue LHS, 3023 uint32_t ValLo, uint32_t ValHi) const { 3024 SelectionDAG &DAG = DCI.DAG; 3025 SDValue Lo, Hi; 3026 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3027 3028 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3029 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3030 3031 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3032 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3033 3034 // Re-visit the ands. It's possible we eliminated one of them and it could 3035 // simplify the vector. 3036 DCI.AddToWorklist(Lo.getNode()); 3037 DCI.AddToWorklist(Hi.getNode()); 3038 3039 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3040 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3041 } 3042 3043 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3044 DAGCombinerInfo &DCI) const { 3045 EVT VT = N->getValueType(0); 3046 3047 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3048 if (!RHS) 3049 return SDValue(); 3050 3051 SDValue LHS = N->getOperand(0); 3052 unsigned RHSVal = RHS->getZExtValue(); 3053 if (!RHSVal) 3054 return LHS; 3055 3056 SDLoc SL(N); 3057 SelectionDAG &DAG = DCI.DAG; 3058 3059 switch (LHS->getOpcode()) { 3060 default: 3061 break; 3062 case ISD::ZERO_EXTEND: 3063 case ISD::SIGN_EXTEND: 3064 case ISD::ANY_EXTEND: { 3065 SDValue X = LHS->getOperand(0); 3066 3067 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3068 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3069 // Prefer build_vector as the canonical form if packed types are legal. 3070 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3071 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3072 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3073 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3074 } 3075 3076 // shl (ext x) => zext (shl x), if shift does not overflow int 3077 if (VT != MVT::i64) 3078 break; 3079 KnownBits Known = DAG.computeKnownBits(X); 3080 unsigned LZ = Known.countMinLeadingZeros(); 3081 if (LZ < RHSVal) 3082 break; 3083 EVT XVT = X.getValueType(); 3084 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3085 return DAG.getZExtOrTrunc(Shl, SL, VT); 3086 } 3087 } 3088 3089 if (VT != MVT::i64) 3090 return SDValue(); 3091 3092 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3093 3094 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3095 // common case, splitting this into a move and a 32-bit shift is faster and 3096 // the same code size. 3097 if (RHSVal < 32) 3098 return SDValue(); 3099 3100 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3101 3102 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3103 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3104 3105 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3106 3107 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3108 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3109 } 3110 3111 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3112 DAGCombinerInfo &DCI) const { 3113 if (N->getValueType(0) != MVT::i64) 3114 return SDValue(); 3115 3116 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3117 if (!RHS) 3118 return SDValue(); 3119 3120 SelectionDAG &DAG = DCI.DAG; 3121 SDLoc SL(N); 3122 unsigned RHSVal = RHS->getZExtValue(); 3123 3124 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3125 if (RHSVal == 32) { 3126 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3127 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3128 DAG.getConstant(31, SL, MVT::i32)); 3129 3130 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3131 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3132 } 3133 3134 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3135 if (RHSVal == 63) { 3136 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3137 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3138 DAG.getConstant(31, SL, MVT::i32)); 3139 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3140 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3141 } 3142 3143 return SDValue(); 3144 } 3145 3146 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3147 DAGCombinerInfo &DCI) const { 3148 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3149 if (!RHS) 3150 return SDValue(); 3151 3152 EVT VT = N->getValueType(0); 3153 SDValue LHS = N->getOperand(0); 3154 unsigned ShiftAmt = RHS->getZExtValue(); 3155 SelectionDAG &DAG = DCI.DAG; 3156 SDLoc SL(N); 3157 3158 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3159 // this improves the ability to match BFE patterns in isel. 3160 if (LHS.getOpcode() == ISD::AND) { 3161 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3162 if (Mask->getAPIntValue().isShiftedMask() && 3163 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3164 return DAG.getNode( 3165 ISD::AND, SL, VT, 3166 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3167 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3168 } 3169 } 3170 } 3171 3172 if (VT != MVT::i64) 3173 return SDValue(); 3174 3175 if (ShiftAmt < 32) 3176 return SDValue(); 3177 3178 // srl i64:x, C for C >= 32 3179 // => 3180 // build_pair (srl hi_32(x), C - 32), 0 3181 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3182 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3183 3184 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3185 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3186 3187 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3188 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3189 3190 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3191 3192 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3193 } 3194 3195 SDValue AMDGPUTargetLowering::performTruncateCombine( 3196 SDNode *N, DAGCombinerInfo &DCI) const { 3197 SDLoc SL(N); 3198 SelectionDAG &DAG = DCI.DAG; 3199 EVT VT = N->getValueType(0); 3200 SDValue Src = N->getOperand(0); 3201 3202 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3203 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3204 SDValue Vec = Src.getOperand(0); 3205 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3206 SDValue Elt0 = Vec.getOperand(0); 3207 EVT EltVT = Elt0.getValueType(); 3208 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3209 if (EltVT.isFloatingPoint()) { 3210 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3211 EltVT.changeTypeToInteger(), Elt0); 3212 } 3213 3214 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3215 } 3216 } 3217 } 3218 3219 // Equivalent of above for accessing the high element of a vector as an 3220 // integer operation. 3221 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3222 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3223 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3224 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3225 SDValue BV = stripBitcast(Src.getOperand(0)); 3226 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3227 BV.getValueType().getVectorNumElements() == 2) { 3228 SDValue SrcElt = BV.getOperand(1); 3229 EVT SrcEltVT = SrcElt.getValueType(); 3230 if (SrcEltVT.isFloatingPoint()) { 3231 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3232 SrcEltVT.changeTypeToInteger(), SrcElt); 3233 } 3234 3235 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3236 } 3237 } 3238 } 3239 } 3240 3241 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3242 // 3243 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3244 // i16 (trunc (srl (i32 (trunc x), K))) 3245 if (VT.getScalarSizeInBits() < 32) { 3246 EVT SrcVT = Src.getValueType(); 3247 if (SrcVT.getScalarSizeInBits() > 32 && 3248 (Src.getOpcode() == ISD::SRL || 3249 Src.getOpcode() == ISD::SRA || 3250 Src.getOpcode() == ISD::SHL)) { 3251 SDValue Amt = Src.getOperand(1); 3252 KnownBits Known = DAG.computeKnownBits(Amt); 3253 unsigned Size = VT.getScalarSizeInBits(); 3254 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3255 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3256 EVT MidVT = VT.isVector() ? 3257 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3258 VT.getVectorNumElements()) : MVT::i32; 3259 3260 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3261 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3262 Src.getOperand(0)); 3263 DCI.AddToWorklist(Trunc.getNode()); 3264 3265 if (Amt.getValueType() != NewShiftVT) { 3266 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3267 DCI.AddToWorklist(Amt.getNode()); 3268 } 3269 3270 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3271 Trunc, Amt); 3272 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3273 } 3274 } 3275 } 3276 3277 return SDValue(); 3278 } 3279 3280 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3281 // instructions. If we only match on the legalized i64 mul expansion, 3282 // SimplifyDemandedBits will be unable to remove them because there will be 3283 // multiple uses due to the separate mul + mulh[su]. 3284 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3285 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3286 if (Size <= 32) { 3287 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3288 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3289 } 3290 3291 // Because we want to eliminate extension instructions before the 3292 // operation, we need to create a single user here (i.e. not the separate 3293 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3294 3295 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3296 3297 SDValue Mul = DAG.getNode(MulOpc, SL, 3298 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3299 3300 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3301 Mul.getValue(0), Mul.getValue(1)); 3302 } 3303 3304 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3305 DAGCombinerInfo &DCI) const { 3306 EVT VT = N->getValueType(0); 3307 3308 unsigned Size = VT.getSizeInBits(); 3309 if (VT.isVector() || Size > 64) 3310 return SDValue(); 3311 3312 // There are i16 integer mul/mad. 3313 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3314 return SDValue(); 3315 3316 SelectionDAG &DAG = DCI.DAG; 3317 SDLoc DL(N); 3318 3319 SDValue N0 = N->getOperand(0); 3320 SDValue N1 = N->getOperand(1); 3321 3322 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3323 // in the source into any_extends if the result of the mul is truncated. Since 3324 // we can assume the high bits are whatever we want, use the underlying value 3325 // to avoid the unknown high bits from interfering. 3326 if (N0.getOpcode() == ISD::ANY_EXTEND) 3327 N0 = N0.getOperand(0); 3328 3329 if (N1.getOpcode() == ISD::ANY_EXTEND) 3330 N1 = N1.getOperand(0); 3331 3332 SDValue Mul; 3333 3334 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3335 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3336 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3337 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3338 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3339 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3340 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3341 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3342 } else { 3343 return SDValue(); 3344 } 3345 3346 // We need to use sext even for MUL_U24, because MUL_U24 is used 3347 // for signed multiply of 8 and 16-bit types. 3348 return DAG.getSExtOrTrunc(Mul, DL, VT); 3349 } 3350 3351 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3352 DAGCombinerInfo &DCI) const { 3353 EVT VT = N->getValueType(0); 3354 3355 if (!Subtarget->hasMulI24() || VT.isVector()) 3356 return SDValue(); 3357 3358 SelectionDAG &DAG = DCI.DAG; 3359 SDLoc DL(N); 3360 3361 SDValue N0 = N->getOperand(0); 3362 SDValue N1 = N->getOperand(1); 3363 3364 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3365 return SDValue(); 3366 3367 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3368 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3369 3370 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3371 DCI.AddToWorklist(Mulhi.getNode()); 3372 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3373 } 3374 3375 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3376 DAGCombinerInfo &DCI) const { 3377 EVT VT = N->getValueType(0); 3378 3379 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3380 return SDValue(); 3381 3382 SelectionDAG &DAG = DCI.DAG; 3383 SDLoc DL(N); 3384 3385 SDValue N0 = N->getOperand(0); 3386 SDValue N1 = N->getOperand(1); 3387 3388 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3389 return SDValue(); 3390 3391 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3392 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3393 3394 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3395 DCI.AddToWorklist(Mulhi.getNode()); 3396 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3397 } 3398 3399 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3400 SDNode *N, DAGCombinerInfo &DCI) const { 3401 SelectionDAG &DAG = DCI.DAG; 3402 3403 // Simplify demanded bits before splitting into multiple users. 3404 if (SDValue V = simplifyI24(N, DCI)) 3405 return V; 3406 3407 SDValue N0 = N->getOperand(0); 3408 SDValue N1 = N->getOperand(1); 3409 3410 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3411 3412 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3413 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3414 3415 SDLoc SL(N); 3416 3417 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3418 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3419 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3420 } 3421 3422 static bool isNegativeOne(SDValue Val) { 3423 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3424 return C->isAllOnesValue(); 3425 return false; 3426 } 3427 3428 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3429 SDValue Op, 3430 const SDLoc &DL, 3431 unsigned Opc) const { 3432 EVT VT = Op.getValueType(); 3433 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3434 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3435 LegalVT != MVT::i16)) 3436 return SDValue(); 3437 3438 if (VT != MVT::i32) 3439 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3440 3441 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3442 if (VT != MVT::i32) 3443 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3444 3445 return FFBX; 3446 } 3447 3448 // The native instructions return -1 on 0 input. Optimize out a select that 3449 // produces -1 on 0. 3450 // 3451 // TODO: If zero is not undef, we could also do this if the output is compared 3452 // against the bitwidth. 3453 // 3454 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3455 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3456 SDValue LHS, SDValue RHS, 3457 DAGCombinerInfo &DCI) const { 3458 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3459 if (!CmpRhs || !CmpRhs->isNullValue()) 3460 return SDValue(); 3461 3462 SelectionDAG &DAG = DCI.DAG; 3463 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3464 SDValue CmpLHS = Cond.getOperand(0); 3465 3466 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3467 AMDGPUISD::FFBH_U32; 3468 3469 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3470 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3471 if (CCOpcode == ISD::SETEQ && 3472 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3473 RHS.getOperand(0) == CmpLHS && 3474 isNegativeOne(LHS)) { 3475 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3476 } 3477 3478 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3479 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3480 if (CCOpcode == ISD::SETNE && 3481 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3482 LHS.getOperand(0) == CmpLHS && 3483 isNegativeOne(RHS)) { 3484 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3485 } 3486 3487 return SDValue(); 3488 } 3489 3490 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3491 unsigned Op, 3492 const SDLoc &SL, 3493 SDValue Cond, 3494 SDValue N1, 3495 SDValue N2) { 3496 SelectionDAG &DAG = DCI.DAG; 3497 EVT VT = N1.getValueType(); 3498 3499 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3500 N1.getOperand(0), N2.getOperand(0)); 3501 DCI.AddToWorklist(NewSelect.getNode()); 3502 return DAG.getNode(Op, SL, VT, NewSelect); 3503 } 3504 3505 // Pull a free FP operation out of a select so it may fold into uses. 3506 // 3507 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3508 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3509 // 3510 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3511 // select c, (fabs x), +k -> fabs (select c, x, k) 3512 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3513 SDValue N) { 3514 SelectionDAG &DAG = DCI.DAG; 3515 SDValue Cond = N.getOperand(0); 3516 SDValue LHS = N.getOperand(1); 3517 SDValue RHS = N.getOperand(2); 3518 3519 EVT VT = N.getValueType(); 3520 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3521 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3522 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3523 SDLoc(N), Cond, LHS, RHS); 3524 } 3525 3526 bool Inv = false; 3527 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3528 std::swap(LHS, RHS); 3529 Inv = true; 3530 } 3531 3532 // TODO: Support vector constants. 3533 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3534 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3535 SDLoc SL(N); 3536 // If one side is an fneg/fabs and the other is a constant, we can push the 3537 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3538 SDValue NewLHS = LHS.getOperand(0); 3539 SDValue NewRHS = RHS; 3540 3541 // Careful: if the neg can be folded up, don't try to pull it back down. 3542 bool ShouldFoldNeg = true; 3543 3544 if (NewLHS.hasOneUse()) { 3545 unsigned Opc = NewLHS.getOpcode(); 3546 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3547 ShouldFoldNeg = false; 3548 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3549 ShouldFoldNeg = false; 3550 } 3551 3552 if (ShouldFoldNeg) { 3553 if (LHS.getOpcode() == ISD::FNEG) 3554 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3555 else if (CRHS->isNegative()) 3556 return SDValue(); 3557 3558 if (Inv) 3559 std::swap(NewLHS, NewRHS); 3560 3561 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3562 Cond, NewLHS, NewRHS); 3563 DCI.AddToWorklist(NewSelect.getNode()); 3564 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3565 } 3566 } 3567 3568 return SDValue(); 3569 } 3570 3571 3572 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3573 DAGCombinerInfo &DCI) const { 3574 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3575 return Folded; 3576 3577 SDValue Cond = N->getOperand(0); 3578 if (Cond.getOpcode() != ISD::SETCC) 3579 return SDValue(); 3580 3581 EVT VT = N->getValueType(0); 3582 SDValue LHS = Cond.getOperand(0); 3583 SDValue RHS = Cond.getOperand(1); 3584 SDValue CC = Cond.getOperand(2); 3585 3586 SDValue True = N->getOperand(1); 3587 SDValue False = N->getOperand(2); 3588 3589 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3590 SelectionDAG &DAG = DCI.DAG; 3591 if (DAG.isConstantValueOfAnyType(True) && 3592 !DAG.isConstantValueOfAnyType(False)) { 3593 // Swap cmp + select pair to move constant to false input. 3594 // This will allow using VOPC cndmasks more often. 3595 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3596 3597 SDLoc SL(N); 3598 ISD::CondCode NewCC = 3599 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3600 3601 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3602 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3603 } 3604 3605 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3606 SDValue MinMax 3607 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3608 // Revisit this node so we can catch min3/max3/med3 patterns. 3609 //DCI.AddToWorklist(MinMax.getNode()); 3610 return MinMax; 3611 } 3612 } 3613 3614 // There's no reason to not do this if the condition has other uses. 3615 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3616 } 3617 3618 static bool isInv2Pi(const APFloat &APF) { 3619 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3620 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3621 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3622 3623 return APF.bitwiseIsEqual(KF16) || 3624 APF.bitwiseIsEqual(KF32) || 3625 APF.bitwiseIsEqual(KF64); 3626 } 3627 3628 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3629 // additional cost to negate them. 3630 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3631 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3632 if (C->isZero() && !C->isNegative()) 3633 return true; 3634 3635 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3636 return true; 3637 } 3638 3639 return false; 3640 } 3641 3642 static unsigned inverseMinMax(unsigned Opc) { 3643 switch (Opc) { 3644 case ISD::FMAXNUM: 3645 return ISD::FMINNUM; 3646 case ISD::FMINNUM: 3647 return ISD::FMAXNUM; 3648 case ISD::FMAXNUM_IEEE: 3649 return ISD::FMINNUM_IEEE; 3650 case ISD::FMINNUM_IEEE: 3651 return ISD::FMAXNUM_IEEE; 3652 case AMDGPUISD::FMAX_LEGACY: 3653 return AMDGPUISD::FMIN_LEGACY; 3654 case AMDGPUISD::FMIN_LEGACY: 3655 return AMDGPUISD::FMAX_LEGACY; 3656 default: 3657 llvm_unreachable("invalid min/max opcode"); 3658 } 3659 } 3660 3661 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3662 DAGCombinerInfo &DCI) const { 3663 SelectionDAG &DAG = DCI.DAG; 3664 SDValue N0 = N->getOperand(0); 3665 EVT VT = N->getValueType(0); 3666 3667 unsigned Opc = N0.getOpcode(); 3668 3669 // If the input has multiple uses and we can either fold the negate down, or 3670 // the other uses cannot, give up. This both prevents unprofitable 3671 // transformations and infinite loops: we won't repeatedly try to fold around 3672 // a negate that has no 'good' form. 3673 if (N0.hasOneUse()) { 3674 // This may be able to fold into the source, but at a code size cost. Don't 3675 // fold if the fold into the user is free. 3676 if (allUsesHaveSourceMods(N, 0)) 3677 return SDValue(); 3678 } else { 3679 if (fnegFoldsIntoOp(Opc) && 3680 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3681 return SDValue(); 3682 } 3683 3684 SDLoc SL(N); 3685 switch (Opc) { 3686 case ISD::FADD: { 3687 if (!mayIgnoreSignedZero(N0)) 3688 return SDValue(); 3689 3690 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3691 SDValue LHS = N0.getOperand(0); 3692 SDValue RHS = N0.getOperand(1); 3693 3694 if (LHS.getOpcode() != ISD::FNEG) 3695 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3696 else 3697 LHS = LHS.getOperand(0); 3698 3699 if (RHS.getOpcode() != ISD::FNEG) 3700 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3701 else 3702 RHS = RHS.getOperand(0); 3703 3704 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3705 if (Res.getOpcode() != ISD::FADD) 3706 return SDValue(); // Op got folded away. 3707 if (!N0.hasOneUse()) 3708 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3709 return Res; 3710 } 3711 case ISD::FMUL: 3712 case AMDGPUISD::FMUL_LEGACY: { 3713 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3714 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3715 SDValue LHS = N0.getOperand(0); 3716 SDValue RHS = N0.getOperand(1); 3717 3718 if (LHS.getOpcode() == ISD::FNEG) 3719 LHS = LHS.getOperand(0); 3720 else if (RHS.getOpcode() == ISD::FNEG) 3721 RHS = RHS.getOperand(0); 3722 else 3723 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3724 3725 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3726 if (Res.getOpcode() != Opc) 3727 return SDValue(); // Op got folded away. 3728 if (!N0.hasOneUse()) 3729 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3730 return Res; 3731 } 3732 case ISD::FMA: 3733 case ISD::FMAD: { 3734 if (!mayIgnoreSignedZero(N0)) 3735 return SDValue(); 3736 3737 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3738 SDValue LHS = N0.getOperand(0); 3739 SDValue MHS = N0.getOperand(1); 3740 SDValue RHS = N0.getOperand(2); 3741 3742 if (LHS.getOpcode() == ISD::FNEG) 3743 LHS = LHS.getOperand(0); 3744 else if (MHS.getOpcode() == ISD::FNEG) 3745 MHS = MHS.getOperand(0); 3746 else 3747 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3748 3749 if (RHS.getOpcode() != ISD::FNEG) 3750 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3751 else 3752 RHS = RHS.getOperand(0); 3753 3754 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3755 if (Res.getOpcode() != Opc) 3756 return SDValue(); // Op got folded away. 3757 if (!N0.hasOneUse()) 3758 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3759 return Res; 3760 } 3761 case ISD::FMAXNUM: 3762 case ISD::FMINNUM: 3763 case ISD::FMAXNUM_IEEE: 3764 case ISD::FMINNUM_IEEE: 3765 case AMDGPUISD::FMAX_LEGACY: 3766 case AMDGPUISD::FMIN_LEGACY: { 3767 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3768 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3769 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3770 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3771 3772 SDValue LHS = N0.getOperand(0); 3773 SDValue RHS = N0.getOperand(1); 3774 3775 // 0 doesn't have a negated inline immediate. 3776 // TODO: This constant check should be generalized to other operations. 3777 if (isConstantCostlierToNegate(RHS)) 3778 return SDValue(); 3779 3780 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3781 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3782 unsigned Opposite = inverseMinMax(Opc); 3783 3784 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3785 if (Res.getOpcode() != Opposite) 3786 return SDValue(); // Op got folded away. 3787 if (!N0.hasOneUse()) 3788 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3789 return Res; 3790 } 3791 case AMDGPUISD::FMED3: { 3792 SDValue Ops[3]; 3793 for (unsigned I = 0; I < 3; ++I) 3794 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3795 3796 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3797 if (Res.getOpcode() != AMDGPUISD::FMED3) 3798 return SDValue(); // Op got folded away. 3799 if (!N0.hasOneUse()) 3800 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3801 return Res; 3802 } 3803 case ISD::FP_EXTEND: 3804 case ISD::FTRUNC: 3805 case ISD::FRINT: 3806 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3807 case ISD::FSIN: 3808 case ISD::FCANONICALIZE: 3809 case AMDGPUISD::RCP: 3810 case AMDGPUISD::RCP_LEGACY: 3811 case AMDGPUISD::RCP_IFLAG: 3812 case AMDGPUISD::SIN_HW: { 3813 SDValue CvtSrc = N0.getOperand(0); 3814 if (CvtSrc.getOpcode() == ISD::FNEG) { 3815 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3816 // (fneg (rcp (fneg x))) -> (rcp x) 3817 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3818 } 3819 3820 if (!N0.hasOneUse()) 3821 return SDValue(); 3822 3823 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3824 // (fneg (rcp x)) -> (rcp (fneg x)) 3825 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3826 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3827 } 3828 case ISD::FP_ROUND: { 3829 SDValue CvtSrc = N0.getOperand(0); 3830 3831 if (CvtSrc.getOpcode() == ISD::FNEG) { 3832 // (fneg (fp_round (fneg x))) -> (fp_round x) 3833 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3834 CvtSrc.getOperand(0), N0.getOperand(1)); 3835 } 3836 3837 if (!N0.hasOneUse()) 3838 return SDValue(); 3839 3840 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3841 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3842 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3843 } 3844 case ISD::FP16_TO_FP: { 3845 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3846 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3847 // Put the fneg back as a legal source operation that can be matched later. 3848 SDLoc SL(N); 3849 3850 SDValue Src = N0.getOperand(0); 3851 EVT SrcVT = Src.getValueType(); 3852 3853 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3854 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3855 DAG.getConstant(0x8000, SL, SrcVT)); 3856 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3857 } 3858 default: 3859 return SDValue(); 3860 } 3861 } 3862 3863 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3864 DAGCombinerInfo &DCI) const { 3865 SelectionDAG &DAG = DCI.DAG; 3866 SDValue N0 = N->getOperand(0); 3867 3868 if (!N0.hasOneUse()) 3869 return SDValue(); 3870 3871 switch (N0.getOpcode()) { 3872 case ISD::FP16_TO_FP: { 3873 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3874 SDLoc SL(N); 3875 SDValue Src = N0.getOperand(0); 3876 EVT SrcVT = Src.getValueType(); 3877 3878 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3879 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3880 DAG.getConstant(0x7fff, SL, SrcVT)); 3881 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3882 } 3883 default: 3884 return SDValue(); 3885 } 3886 } 3887 3888 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3889 DAGCombinerInfo &DCI) const { 3890 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3891 if (!CFP) 3892 return SDValue(); 3893 3894 // XXX - Should this flush denormals? 3895 const APFloat &Val = CFP->getValueAPF(); 3896 APFloat One(Val.getSemantics(), "1.0"); 3897 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3898 } 3899 3900 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3901 DAGCombinerInfo &DCI) const { 3902 SelectionDAG &DAG = DCI.DAG; 3903 SDLoc DL(N); 3904 3905 switch(N->getOpcode()) { 3906 default: 3907 break; 3908 case ISD::BITCAST: { 3909 EVT DestVT = N->getValueType(0); 3910 3911 // Push casts through vector builds. This helps avoid emitting a large 3912 // number of copies when materializing floating point vector constants. 3913 // 3914 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3915 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3916 if (DestVT.isVector()) { 3917 SDValue Src = N->getOperand(0); 3918 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3919 EVT SrcVT = Src.getValueType(); 3920 unsigned NElts = DestVT.getVectorNumElements(); 3921 3922 if (SrcVT.getVectorNumElements() == NElts) { 3923 EVT DestEltVT = DestVT.getVectorElementType(); 3924 3925 SmallVector<SDValue, 8> CastedElts; 3926 SDLoc SL(N); 3927 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3928 SDValue Elt = Src.getOperand(I); 3929 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3930 } 3931 3932 return DAG.getBuildVector(DestVT, SL, CastedElts); 3933 } 3934 } 3935 } 3936 3937 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3938 break; 3939 3940 // Fold bitcasts of constants. 3941 // 3942 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3943 // TODO: Generalize and move to DAGCombiner 3944 SDValue Src = N->getOperand(0); 3945 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3946 if (Src.getValueType() == MVT::i64) { 3947 SDLoc SL(N); 3948 uint64_t CVal = C->getZExtValue(); 3949 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3950 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3951 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3952 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3953 } 3954 } 3955 3956 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3957 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3958 SDLoc SL(N); 3959 uint64_t CVal = Val.getZExtValue(); 3960 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3961 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3962 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3963 3964 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3965 } 3966 3967 break; 3968 } 3969 case ISD::SHL: { 3970 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3971 break; 3972 3973 return performShlCombine(N, DCI); 3974 } 3975 case ISD::SRL: { 3976 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3977 break; 3978 3979 return performSrlCombine(N, DCI); 3980 } 3981 case ISD::SRA: { 3982 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3983 break; 3984 3985 return performSraCombine(N, DCI); 3986 } 3987 case ISD::TRUNCATE: 3988 return performTruncateCombine(N, DCI); 3989 case ISD::MUL: 3990 return performMulCombine(N, DCI); 3991 case ISD::MULHS: 3992 return performMulhsCombine(N, DCI); 3993 case ISD::MULHU: 3994 return performMulhuCombine(N, DCI); 3995 case AMDGPUISD::MUL_I24: 3996 case AMDGPUISD::MUL_U24: 3997 case AMDGPUISD::MULHI_I24: 3998 case AMDGPUISD::MULHI_U24: { 3999 if (SDValue V = simplifyI24(N, DCI)) 4000 return V; 4001 return SDValue(); 4002 } 4003 case AMDGPUISD::MUL_LOHI_I24: 4004 case AMDGPUISD::MUL_LOHI_U24: 4005 return performMulLoHi24Combine(N, DCI); 4006 case ISD::SELECT: 4007 return performSelectCombine(N, DCI); 4008 case ISD::FNEG: 4009 return performFNegCombine(N, DCI); 4010 case ISD::FABS: 4011 return performFAbsCombine(N, DCI); 4012 case AMDGPUISD::BFE_I32: 4013 case AMDGPUISD::BFE_U32: { 4014 assert(!N->getValueType(0).isVector() && 4015 "Vector handling of BFE not implemented"); 4016 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4017 if (!Width) 4018 break; 4019 4020 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4021 if (WidthVal == 0) 4022 return DAG.getConstant(0, DL, MVT::i32); 4023 4024 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4025 if (!Offset) 4026 break; 4027 4028 SDValue BitsFrom = N->getOperand(0); 4029 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4030 4031 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4032 4033 if (OffsetVal == 0) { 4034 // This is already sign / zero extended, so try to fold away extra BFEs. 4035 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4036 4037 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4038 if (OpSignBits >= SignBits) 4039 return BitsFrom; 4040 4041 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4042 if (Signed) { 4043 // This is a sign_extend_inreg. Replace it to take advantage of existing 4044 // DAG Combines. If not eliminated, we will match back to BFE during 4045 // selection. 4046 4047 // TODO: The sext_inreg of extended types ends, although we can could 4048 // handle them in a single BFE. 4049 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4050 DAG.getValueType(SmallVT)); 4051 } 4052 4053 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4054 } 4055 4056 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4057 if (Signed) { 4058 return constantFoldBFE<int32_t>(DAG, 4059 CVal->getSExtValue(), 4060 OffsetVal, 4061 WidthVal, 4062 DL); 4063 } 4064 4065 return constantFoldBFE<uint32_t>(DAG, 4066 CVal->getZExtValue(), 4067 OffsetVal, 4068 WidthVal, 4069 DL); 4070 } 4071 4072 if ((OffsetVal + WidthVal) >= 32 && 4073 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4074 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4075 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4076 BitsFrom, ShiftVal); 4077 } 4078 4079 if (BitsFrom.hasOneUse()) { 4080 APInt Demanded = APInt::getBitsSet(32, 4081 OffsetVal, 4082 OffsetVal + WidthVal); 4083 4084 KnownBits Known; 4085 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4086 !DCI.isBeforeLegalizeOps()); 4087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4088 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4089 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4090 DCI.CommitTargetLoweringOpt(TLO); 4091 } 4092 } 4093 4094 break; 4095 } 4096 case ISD::LOAD: 4097 return performLoadCombine(N, DCI); 4098 case ISD::STORE: 4099 return performStoreCombine(N, DCI); 4100 case AMDGPUISD::RCP: 4101 case AMDGPUISD::RCP_IFLAG: 4102 return performRcpCombine(N, DCI); 4103 case ISD::AssertZext: 4104 case ISD::AssertSext: 4105 return performAssertSZExtCombine(N, DCI); 4106 case ISD::INTRINSIC_WO_CHAIN: 4107 return performIntrinsicWOChainCombine(N, DCI); 4108 } 4109 return SDValue(); 4110 } 4111 4112 //===----------------------------------------------------------------------===// 4113 // Helper functions 4114 //===----------------------------------------------------------------------===// 4115 4116 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4117 const TargetRegisterClass *RC, 4118 unsigned Reg, EVT VT, 4119 const SDLoc &SL, 4120 bool RawReg) const { 4121 MachineFunction &MF = DAG.getMachineFunction(); 4122 MachineRegisterInfo &MRI = MF.getRegInfo(); 4123 unsigned VReg; 4124 4125 if (!MRI.isLiveIn(Reg)) { 4126 VReg = MRI.createVirtualRegister(RC); 4127 MRI.addLiveIn(Reg, VReg); 4128 } else { 4129 VReg = MRI.getLiveInVirtReg(Reg); 4130 } 4131 4132 if (RawReg) 4133 return DAG.getRegister(VReg, VT); 4134 4135 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4136 } 4137 4138 // This may be called multiple times, and nothing prevents creating multiple 4139 // objects at the same offset. See if we already defined this object. 4140 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4141 int64_t Offset) { 4142 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4143 if (MFI.getObjectOffset(I) == Offset) { 4144 assert(MFI.getObjectSize(I) == Size); 4145 return I; 4146 } 4147 } 4148 4149 return MFI.CreateFixedObject(Size, Offset, true); 4150 } 4151 4152 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4153 EVT VT, 4154 const SDLoc &SL, 4155 int64_t Offset) const { 4156 MachineFunction &MF = DAG.getMachineFunction(); 4157 MachineFrameInfo &MFI = MF.getFrameInfo(); 4158 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4159 4160 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4161 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4162 4163 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4164 MachineMemOperand::MODereferenceable | 4165 MachineMemOperand::MOInvariant); 4166 } 4167 4168 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4169 const SDLoc &SL, 4170 SDValue Chain, 4171 SDValue ArgVal, 4172 int64_t Offset) const { 4173 MachineFunction &MF = DAG.getMachineFunction(); 4174 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4175 4176 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4177 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4178 MachineMemOperand::MODereferenceable); 4179 return Store; 4180 } 4181 4182 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4183 const TargetRegisterClass *RC, 4184 EVT VT, const SDLoc &SL, 4185 const ArgDescriptor &Arg) const { 4186 assert(Arg && "Attempting to load missing argument"); 4187 4188 SDValue V = Arg.isRegister() ? 4189 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4190 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4191 4192 if (!Arg.isMasked()) 4193 return V; 4194 4195 unsigned Mask = Arg.getMask(); 4196 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4197 V = DAG.getNode(ISD::SRL, SL, VT, V, 4198 DAG.getShiftAmountConstant(Shift, VT, SL)); 4199 return DAG.getNode(ISD::AND, SL, VT, V, 4200 DAG.getConstant(Mask >> Shift, SL, VT)); 4201 } 4202 4203 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4204 const MachineFunction &MF, const ImplicitParameter Param) const { 4205 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4206 const AMDGPUSubtarget &ST = 4207 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4208 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4209 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4210 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4211 ExplicitArgOffset; 4212 switch (Param) { 4213 case GRID_DIM: 4214 return ArgOffset; 4215 case GRID_OFFSET: 4216 return ArgOffset + 4; 4217 } 4218 llvm_unreachable("unexpected implicit parameter type"); 4219 } 4220 4221 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4222 4223 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4224 switch ((AMDGPUISD::NodeType)Opcode) { 4225 case AMDGPUISD::FIRST_NUMBER: break; 4226 // AMDIL DAG nodes 4227 NODE_NAME_CASE(UMUL); 4228 NODE_NAME_CASE(BRANCH_COND); 4229 4230 // AMDGPU DAG nodes 4231 NODE_NAME_CASE(IF) 4232 NODE_NAME_CASE(ELSE) 4233 NODE_NAME_CASE(LOOP) 4234 NODE_NAME_CASE(CALL) 4235 NODE_NAME_CASE(TC_RETURN) 4236 NODE_NAME_CASE(TRAP) 4237 NODE_NAME_CASE(RET_FLAG) 4238 NODE_NAME_CASE(RETURN_TO_EPILOG) 4239 NODE_NAME_CASE(ENDPGM) 4240 NODE_NAME_CASE(DWORDADDR) 4241 NODE_NAME_CASE(FRACT) 4242 NODE_NAME_CASE(SETCC) 4243 NODE_NAME_CASE(SETREG) 4244 NODE_NAME_CASE(DENORM_MODE) 4245 NODE_NAME_CASE(FMA_W_CHAIN) 4246 NODE_NAME_CASE(FMUL_W_CHAIN) 4247 NODE_NAME_CASE(CLAMP) 4248 NODE_NAME_CASE(COS_HW) 4249 NODE_NAME_CASE(SIN_HW) 4250 NODE_NAME_CASE(FMAX_LEGACY) 4251 NODE_NAME_CASE(FMIN_LEGACY) 4252 NODE_NAME_CASE(FMAX3) 4253 NODE_NAME_CASE(SMAX3) 4254 NODE_NAME_CASE(UMAX3) 4255 NODE_NAME_CASE(FMIN3) 4256 NODE_NAME_CASE(SMIN3) 4257 NODE_NAME_CASE(UMIN3) 4258 NODE_NAME_CASE(FMED3) 4259 NODE_NAME_CASE(SMED3) 4260 NODE_NAME_CASE(UMED3) 4261 NODE_NAME_CASE(FDOT2) 4262 NODE_NAME_CASE(URECIP) 4263 NODE_NAME_CASE(DIV_SCALE) 4264 NODE_NAME_CASE(DIV_FMAS) 4265 NODE_NAME_CASE(DIV_FIXUP) 4266 NODE_NAME_CASE(FMAD_FTZ) 4267 NODE_NAME_CASE(TRIG_PREOP) 4268 NODE_NAME_CASE(RCP) 4269 NODE_NAME_CASE(RSQ) 4270 NODE_NAME_CASE(RCP_LEGACY) 4271 NODE_NAME_CASE(RSQ_LEGACY) 4272 NODE_NAME_CASE(RCP_IFLAG) 4273 NODE_NAME_CASE(FMUL_LEGACY) 4274 NODE_NAME_CASE(RSQ_CLAMP) 4275 NODE_NAME_CASE(LDEXP) 4276 NODE_NAME_CASE(FP_CLASS) 4277 NODE_NAME_CASE(DOT4) 4278 NODE_NAME_CASE(CARRY) 4279 NODE_NAME_CASE(BORROW) 4280 NODE_NAME_CASE(BFE_U32) 4281 NODE_NAME_CASE(BFE_I32) 4282 NODE_NAME_CASE(BFI) 4283 NODE_NAME_CASE(BFM) 4284 NODE_NAME_CASE(FFBH_U32) 4285 NODE_NAME_CASE(FFBH_I32) 4286 NODE_NAME_CASE(FFBL_B32) 4287 NODE_NAME_CASE(MUL_U24) 4288 NODE_NAME_CASE(MUL_I24) 4289 NODE_NAME_CASE(MULHI_U24) 4290 NODE_NAME_CASE(MULHI_I24) 4291 NODE_NAME_CASE(MUL_LOHI_U24) 4292 NODE_NAME_CASE(MUL_LOHI_I24) 4293 NODE_NAME_CASE(MAD_U24) 4294 NODE_NAME_CASE(MAD_I24) 4295 NODE_NAME_CASE(MAD_I64_I32) 4296 NODE_NAME_CASE(MAD_U64_U32) 4297 NODE_NAME_CASE(PERM) 4298 NODE_NAME_CASE(TEXTURE_FETCH) 4299 NODE_NAME_CASE(R600_EXPORT) 4300 NODE_NAME_CASE(CONST_ADDRESS) 4301 NODE_NAME_CASE(REGISTER_LOAD) 4302 NODE_NAME_CASE(REGISTER_STORE) 4303 NODE_NAME_CASE(SAMPLE) 4304 NODE_NAME_CASE(SAMPLEB) 4305 NODE_NAME_CASE(SAMPLED) 4306 NODE_NAME_CASE(SAMPLEL) 4307 NODE_NAME_CASE(CVT_F32_UBYTE0) 4308 NODE_NAME_CASE(CVT_F32_UBYTE1) 4309 NODE_NAME_CASE(CVT_F32_UBYTE2) 4310 NODE_NAME_CASE(CVT_F32_UBYTE3) 4311 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4312 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4313 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4314 NODE_NAME_CASE(CVT_PK_I16_I32) 4315 NODE_NAME_CASE(CVT_PK_U16_U32) 4316 NODE_NAME_CASE(FP_TO_FP16) 4317 NODE_NAME_CASE(FP16_ZEXT) 4318 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4319 NODE_NAME_CASE(CONST_DATA_PTR) 4320 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4321 NODE_NAME_CASE(LDS) 4322 NODE_NAME_CASE(KILL) 4323 NODE_NAME_CASE(DUMMY_CHAIN) 4324 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4325 NODE_NAME_CASE(INTERP_P1LL_F16) 4326 NODE_NAME_CASE(INTERP_P1LV_F16) 4327 NODE_NAME_CASE(INTERP_P2_F16) 4328 NODE_NAME_CASE(LOAD_D16_HI) 4329 NODE_NAME_CASE(LOAD_D16_LO) 4330 NODE_NAME_CASE(LOAD_D16_HI_I8) 4331 NODE_NAME_CASE(LOAD_D16_HI_U8) 4332 NODE_NAME_CASE(LOAD_D16_LO_I8) 4333 NODE_NAME_CASE(LOAD_D16_LO_U8) 4334 NODE_NAME_CASE(STORE_MSKOR) 4335 NODE_NAME_CASE(LOAD_CONSTANT) 4336 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4337 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4338 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4339 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4340 NODE_NAME_CASE(DS_ORDERED_COUNT) 4341 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4342 NODE_NAME_CASE(ATOMIC_INC) 4343 NODE_NAME_CASE(ATOMIC_DEC) 4344 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4345 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4346 NODE_NAME_CASE(BUFFER_LOAD) 4347 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4348 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4349 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4350 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4351 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4352 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4353 NODE_NAME_CASE(SBUFFER_LOAD) 4354 NODE_NAME_CASE(BUFFER_STORE) 4355 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4356 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4357 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4358 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4359 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4360 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4361 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4362 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4363 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4364 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4365 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4366 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4367 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4368 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4369 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4370 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4371 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4372 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4373 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) 4374 NODE_NAME_CASE(ATOMIC_PK_FADD) 4375 4376 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4377 } 4378 return nullptr; 4379 } 4380 4381 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4382 SelectionDAG &DAG, int Enabled, 4383 int &RefinementSteps, 4384 bool &UseOneConstNR, 4385 bool Reciprocal) const { 4386 EVT VT = Operand.getValueType(); 4387 4388 if (VT == MVT::f32) { 4389 RefinementSteps = 0; 4390 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4391 } 4392 4393 // TODO: There is also f64 rsq instruction, but the documentation is less 4394 // clear on its precision. 4395 4396 return SDValue(); 4397 } 4398 4399 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4400 SelectionDAG &DAG, int Enabled, 4401 int &RefinementSteps) const { 4402 EVT VT = Operand.getValueType(); 4403 4404 if (VT == MVT::f32) { 4405 // Reciprocal, < 1 ulp error. 4406 // 4407 // This reciprocal approximation converges to < 0.5 ulp error with one 4408 // newton rhapson performed with two fused multiple adds (FMAs). 4409 4410 RefinementSteps = 0; 4411 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4412 } 4413 4414 // TODO: There is also f64 rcp instruction, but the documentation is less 4415 // clear on its precision. 4416 4417 return SDValue(); 4418 } 4419 4420 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4421 const SDValue Op, KnownBits &Known, 4422 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4423 4424 Known.resetAll(); // Don't know anything. 4425 4426 unsigned Opc = Op.getOpcode(); 4427 4428 switch (Opc) { 4429 default: 4430 break; 4431 case AMDGPUISD::CARRY: 4432 case AMDGPUISD::BORROW: { 4433 Known.Zero = APInt::getHighBitsSet(32, 31); 4434 break; 4435 } 4436 4437 case AMDGPUISD::BFE_I32: 4438 case AMDGPUISD::BFE_U32: { 4439 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4440 if (!CWidth) 4441 return; 4442 4443 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4444 4445 if (Opc == AMDGPUISD::BFE_U32) 4446 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4447 4448 break; 4449 } 4450 case AMDGPUISD::FP_TO_FP16: 4451 case AMDGPUISD::FP16_ZEXT: { 4452 unsigned BitWidth = Known.getBitWidth(); 4453 4454 // High bits are zero. 4455 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4456 break; 4457 } 4458 case AMDGPUISD::MUL_U24: 4459 case AMDGPUISD::MUL_I24: { 4460 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4461 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4462 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4463 RHSKnown.countMinTrailingZeros(); 4464 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4465 // Skip extra check if all bits are known zeros. 4466 if (TrailZ >= 32) 4467 break; 4468 4469 // Truncate to 24 bits. 4470 LHSKnown = LHSKnown.trunc(24); 4471 RHSKnown = RHSKnown.trunc(24); 4472 4473 if (Opc == AMDGPUISD::MUL_I24) { 4474 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4475 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4476 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4477 if (MaxValBits >= 32) 4478 break; 4479 bool LHSNegative = LHSKnown.isNegative(); 4480 bool LHSNonNegative = LHSKnown.isNonNegative(); 4481 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4482 bool RHSNegative = RHSKnown.isNegative(); 4483 bool RHSNonNegative = RHSKnown.isNonNegative(); 4484 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4485 4486 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4487 Known.Zero.setHighBits(32 - MaxValBits); 4488 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4489 Known.One.setHighBits(32 - MaxValBits); 4490 } else { 4491 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4492 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4493 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4494 if (MaxValBits >= 32) 4495 break; 4496 Known.Zero.setHighBits(32 - MaxValBits); 4497 } 4498 break; 4499 } 4500 case AMDGPUISD::PERM: { 4501 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4502 if (!CMask) 4503 return; 4504 4505 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4506 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4507 unsigned Sel = CMask->getZExtValue(); 4508 4509 for (unsigned I = 0; I < 32; I += 8) { 4510 unsigned SelBits = Sel & 0xff; 4511 if (SelBits < 4) { 4512 SelBits *= 8; 4513 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4514 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4515 } else if (SelBits < 7) { 4516 SelBits = (SelBits & 3) * 8; 4517 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4518 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4519 } else if (SelBits == 0x0c) { 4520 Known.Zero |= 0xFFull << I; 4521 } else if (SelBits > 0x0c) { 4522 Known.One |= 0xFFull << I; 4523 } 4524 Sel >>= 8; 4525 } 4526 break; 4527 } 4528 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4529 Known.Zero.setHighBits(24); 4530 break; 4531 } 4532 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4533 Known.Zero.setHighBits(16); 4534 break; 4535 } 4536 case AMDGPUISD::LDS: { 4537 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4538 unsigned Align = GA->getGlobal()->getAlignment(); 4539 4540 Known.Zero.setHighBits(16); 4541 if (Align) 4542 Known.Zero.setLowBits(Log2_32(Align)); 4543 break; 4544 } 4545 case ISD::INTRINSIC_WO_CHAIN: { 4546 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4547 switch (IID) { 4548 case Intrinsic::amdgcn_mbcnt_lo: 4549 case Intrinsic::amdgcn_mbcnt_hi: { 4550 const GCNSubtarget &ST = 4551 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4552 // These return at most the wavefront size - 1. 4553 unsigned Size = Op.getValueType().getSizeInBits(); 4554 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4555 break; 4556 } 4557 default: 4558 break; 4559 } 4560 } 4561 } 4562 } 4563 4564 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4565 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4566 unsigned Depth) const { 4567 switch (Op.getOpcode()) { 4568 case AMDGPUISD::BFE_I32: { 4569 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4570 if (!Width) 4571 return 1; 4572 4573 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4574 if (!isNullConstant(Op.getOperand(1))) 4575 return SignBits; 4576 4577 // TODO: Could probably figure something out with non-0 offsets. 4578 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4579 return std::max(SignBits, Op0SignBits); 4580 } 4581 4582 case AMDGPUISD::BFE_U32: { 4583 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4584 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4585 } 4586 4587 case AMDGPUISD::CARRY: 4588 case AMDGPUISD::BORROW: 4589 return 31; 4590 case AMDGPUISD::BUFFER_LOAD_BYTE: 4591 return 25; 4592 case AMDGPUISD::BUFFER_LOAD_SHORT: 4593 return 17; 4594 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4595 return 24; 4596 case AMDGPUISD::BUFFER_LOAD_USHORT: 4597 return 16; 4598 case AMDGPUISD::FP_TO_FP16: 4599 case AMDGPUISD::FP16_ZEXT: 4600 return 16; 4601 default: 4602 return 1; 4603 } 4604 } 4605 4606 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4607 const SelectionDAG &DAG, 4608 bool SNaN, 4609 unsigned Depth) const { 4610 unsigned Opcode = Op.getOpcode(); 4611 switch (Opcode) { 4612 case AMDGPUISD::FMIN_LEGACY: 4613 case AMDGPUISD::FMAX_LEGACY: { 4614 if (SNaN) 4615 return true; 4616 4617 // TODO: Can check no nans on one of the operands for each one, but which 4618 // one? 4619 return false; 4620 } 4621 case AMDGPUISD::FMUL_LEGACY: 4622 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4623 if (SNaN) 4624 return true; 4625 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4626 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4627 } 4628 case AMDGPUISD::FMED3: 4629 case AMDGPUISD::FMIN3: 4630 case AMDGPUISD::FMAX3: 4631 case AMDGPUISD::FMAD_FTZ: { 4632 if (SNaN) 4633 return true; 4634 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4635 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4636 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4637 } 4638 case AMDGPUISD::CVT_F32_UBYTE0: 4639 case AMDGPUISD::CVT_F32_UBYTE1: 4640 case AMDGPUISD::CVT_F32_UBYTE2: 4641 case AMDGPUISD::CVT_F32_UBYTE3: 4642 return true; 4643 4644 case AMDGPUISD::RCP: 4645 case AMDGPUISD::RSQ: 4646 case AMDGPUISD::RCP_LEGACY: 4647 case AMDGPUISD::RSQ_LEGACY: 4648 case AMDGPUISD::RSQ_CLAMP: { 4649 if (SNaN) 4650 return true; 4651 4652 // TODO: Need is known positive check. 4653 return false; 4654 } 4655 case AMDGPUISD::LDEXP: 4656 case AMDGPUISD::FRACT: { 4657 if (SNaN) 4658 return true; 4659 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4660 } 4661 case AMDGPUISD::DIV_SCALE: 4662 case AMDGPUISD::DIV_FMAS: 4663 case AMDGPUISD::DIV_FIXUP: 4664 case AMDGPUISD::TRIG_PREOP: 4665 // TODO: Refine on operands. 4666 return SNaN; 4667 case AMDGPUISD::SIN_HW: 4668 case AMDGPUISD::COS_HW: { 4669 // TODO: Need check for infinity 4670 return SNaN; 4671 } 4672 case ISD::INTRINSIC_WO_CHAIN: { 4673 unsigned IntrinsicID 4674 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4675 // TODO: Handle more intrinsics 4676 switch (IntrinsicID) { 4677 case Intrinsic::amdgcn_cubeid: 4678 return true; 4679 4680 case Intrinsic::amdgcn_frexp_mant: { 4681 if (SNaN) 4682 return true; 4683 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4684 } 4685 case Intrinsic::amdgcn_cvt_pkrtz: { 4686 if (SNaN) 4687 return true; 4688 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4689 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4690 } 4691 case Intrinsic::amdgcn_fdot2: 4692 // TODO: Refine on operand 4693 return SNaN; 4694 default: 4695 return false; 4696 } 4697 } 4698 default: 4699 return false; 4700 } 4701 } 4702 4703 TargetLowering::AtomicExpansionKind 4704 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4705 switch (RMW->getOperation()) { 4706 case AtomicRMWInst::Nand: 4707 case AtomicRMWInst::FAdd: 4708 case AtomicRMWInst::FSub: 4709 return AtomicExpansionKind::CmpXChg; 4710 default: 4711 return AtomicExpansionKind::None; 4712 } 4713 } 4714