1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUMachineFunction.h"
19 #include "GCNSubtarget.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/IR/DiagnosticInfo.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/KnownBits.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 using namespace llvm;
29 
30 #include "AMDGPUGenCallingConv.inc"
31 
32 static cl::opt<bool> AMDGPUBypassSlowDiv(
33   "amdgpu-bypass-slow-div",
34   cl::desc("Skip 64-bit divide for dynamic 32-bit values"),
35   cl::init(true));
36 
37 // Find a larger type to do a load / store of a vector with.
38 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
39   unsigned StoreSize = VT.getStoreSizeInBits();
40   if (StoreSize <= 32)
41     return EVT::getIntegerVT(Ctx, StoreSize);
42 
43   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
44   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
45 }
46 
47 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
48   return DAG.computeKnownBits(Op).countMaxActiveBits();
49 }
50 
51 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
52   // In order for this to be a signed 24-bit value, bit 23, must
53   // be a sign bit.
54   return DAG.ComputeMinSignedBits(Op);
55 }
56 
57 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
58                                            const AMDGPUSubtarget &STI)
59     : TargetLowering(TM), Subtarget(&STI) {
60   // Lower floating point store/load to integer store/load to reduce the number
61   // of patterns in tablegen.
62   setOperationAction(ISD::LOAD, MVT::f32, Promote);
63   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
64 
65   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
66   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
67 
68   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
69   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
70 
71   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
72   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
73 
74   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
75   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
76 
77   setOperationAction(ISD::LOAD, MVT::v6f32, Promote);
78   AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32);
79 
80   setOperationAction(ISD::LOAD, MVT::v7f32, Promote);
81   AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32);
82 
83   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
84   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
85 
86   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
87   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
88 
89   setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
90   AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
91 
92   setOperationAction(ISD::LOAD, MVT::i64, Promote);
93   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
94 
95   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
96   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
97 
98   setOperationAction(ISD::LOAD, MVT::f64, Promote);
99   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
100 
101   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
102   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
103 
104   setOperationAction(ISD::LOAD, MVT::v3i64, Promote);
105   AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32);
106 
107   setOperationAction(ISD::LOAD, MVT::v4i64, Promote);
108   AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32);
109 
110   setOperationAction(ISD::LOAD, MVT::v3f64, Promote);
111   AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32);
112 
113   setOperationAction(ISD::LOAD, MVT::v4f64, Promote);
114   AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32);
115 
116   setOperationAction(ISD::LOAD, MVT::v8i64, Promote);
117   AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32);
118 
119   setOperationAction(ISD::LOAD, MVT::v8f64, Promote);
120   AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32);
121 
122   setOperationAction(ISD::LOAD, MVT::v16i64, Promote);
123   AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32);
124 
125   setOperationAction(ISD::LOAD, MVT::v16f64, Promote);
126   AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32);
127 
128   // There are no 64-bit extloads. These should be done as a 32-bit extload and
129   // an extension to 64-bit.
130   for (MVT VT : MVT::integer_valuetypes()) {
131     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
132     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
133     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
134   }
135 
136   for (MVT VT : MVT::integer_valuetypes()) {
137     if (VT == MVT::i64)
138       continue;
139 
140     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
141     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
142     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
143     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
144 
145     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
146     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
147     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
148     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
149 
150     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
151     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
152     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
153     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
154   }
155 
156   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
157     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
158     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
159     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
160     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
161     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
162     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
163     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
164     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
165     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
166     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
167     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
168     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
169     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
170     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
171     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
172   }
173 
174   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
175   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
176   setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
177   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
178   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
179   setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
180   setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
181 
182   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
183   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
184   setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand);
185   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
186   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
187   setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand);
188 
189   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
190   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
191   setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand);
192   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
193   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
194   setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand);
195 
196   setOperationAction(ISD::STORE, MVT::f32, Promote);
197   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
198 
199   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
200   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
201 
202   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
203   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
204 
205   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
206   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
207 
208   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
209   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
210 
211   setOperationAction(ISD::STORE, MVT::v6f32, Promote);
212   AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32);
213 
214   setOperationAction(ISD::STORE, MVT::v7f32, Promote);
215   AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32);
216 
217   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
218   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
219 
220   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
221   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
222 
223   setOperationAction(ISD::STORE, MVT::v32f32, Promote);
224   AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
225 
226   setOperationAction(ISD::STORE, MVT::i64, Promote);
227   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
228 
229   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
230   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
231 
232   setOperationAction(ISD::STORE, MVT::f64, Promote);
233   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
234 
235   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
236   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
237 
238   setOperationAction(ISD::STORE, MVT::v3i64, Promote);
239   AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32);
240 
241   setOperationAction(ISD::STORE, MVT::v3f64, Promote);
242   AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32);
243 
244   setOperationAction(ISD::STORE, MVT::v4i64, Promote);
245   AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32);
246 
247   setOperationAction(ISD::STORE, MVT::v4f64, Promote);
248   AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32);
249 
250   setOperationAction(ISD::STORE, MVT::v8i64, Promote);
251   AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32);
252 
253   setOperationAction(ISD::STORE, MVT::v8f64, Promote);
254   AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32);
255 
256   setOperationAction(ISD::STORE, MVT::v16i64, Promote);
257   AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32);
258 
259   setOperationAction(ISD::STORE, MVT::v16f64, Promote);
260   AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32);
261 
262   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
263   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
264   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
265   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
266 
267   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
268   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
269   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
270   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
271 
272   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
273   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
274   setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
275   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
276   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
277   setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
278   setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
279 
280   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
281   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
282 
283   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
284   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
285 
286   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
287   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
288   setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand);
289   setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand);
290 
291   setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand);
292   setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand);
293   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
294   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
295 
296   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
297   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
298 
299   setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand);
300   setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand);
301   setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
302   setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
303   setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
304   setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
305   setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand);
306 
307   setOperationAction(ISD::Constant, MVT::i32, Legal);
308   setOperationAction(ISD::Constant, MVT::i64, Legal);
309   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
310   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
311 
312   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
313   setOperationAction(ISD::BRIND, MVT::Other, Expand);
314 
315   // This is totally unsupported, just custom lower to produce an error.
316   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
317 
318   // Library functions.  These default to Expand, but we have instructions
319   // for them.
320   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
321   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
322   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
323   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
324   setOperationAction(ISD::FABS,   MVT::f32, Legal);
325   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
326   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
327   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
328   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
329   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
330 
331   setOperationAction(ISD::FROUND, MVT::f32, Custom);
332   setOperationAction(ISD::FROUND, MVT::f64, Custom);
333 
334   setOperationAction(ISD::FLOG, MVT::f32, Custom);
335   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
336   setOperationAction(ISD::FEXP, MVT::f32, Custom);
337 
338 
339   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
340   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
341 
342   setOperationAction(ISD::FREM, MVT::f16, Custom);
343   setOperationAction(ISD::FREM, MVT::f32, Custom);
344   setOperationAction(ISD::FREM, MVT::f64, Custom);
345 
346   // Expand to fneg + fadd.
347   setOperationAction(ISD::FSUB, MVT::f64, Expand);
348 
349   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
350   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
351   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
352   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
353   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
354   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
355   setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom);
356   setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom);
357   setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom);
358   setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom);
359   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
360   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
361   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom);
362   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom);
363   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
364   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
365   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
366   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
367   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
368   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
369   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
370   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
371   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom);
372   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom);
373   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom);
374   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom);
375   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
376   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
377   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
378   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
379   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
380   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
381   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom);
382   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom);
383   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom);
384   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom);
385   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom);
386   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom);
387   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom);
388   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom);
389   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom);
390   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom);
391 
392   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
393   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
394   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
395 
396   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
397   for (MVT VT : ScalarIntVTs) {
398     // These should use [SU]DIVREM, so set them to expand
399     setOperationAction(ISD::SDIV, VT, Expand);
400     setOperationAction(ISD::UDIV, VT, Expand);
401     setOperationAction(ISD::SREM, VT, Expand);
402     setOperationAction(ISD::UREM, VT, Expand);
403 
404     // GPU does not have divrem function for signed or unsigned.
405     setOperationAction(ISD::SDIVREM, VT, Custom);
406     setOperationAction(ISD::UDIVREM, VT, Custom);
407 
408     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
409     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
410     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
411 
412     setOperationAction(ISD::BSWAP, VT, Expand);
413     setOperationAction(ISD::CTTZ, VT, Expand);
414     setOperationAction(ISD::CTLZ, VT, Expand);
415 
416     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
417     setOperationAction(ISD::ADDC, VT, Legal);
418     setOperationAction(ISD::SUBC, VT, Legal);
419     setOperationAction(ISD::ADDE, VT, Legal);
420     setOperationAction(ISD::SUBE, VT, Legal);
421   }
422 
423   // The hardware supports 32-bit FSHR, but not FSHL.
424   setOperationAction(ISD::FSHR, MVT::i32, Legal);
425 
426   // The hardware supports 32-bit ROTR, but not ROTL.
427   setOperationAction(ISD::ROTL, MVT::i32, Expand);
428   setOperationAction(ISD::ROTL, MVT::i64, Expand);
429   setOperationAction(ISD::ROTR, MVT::i64, Expand);
430 
431   setOperationAction(ISD::MULHU, MVT::i16, Expand);
432   setOperationAction(ISD::MULHS, MVT::i16, Expand);
433 
434   setOperationAction(ISD::MUL, MVT::i64, Expand);
435   setOperationAction(ISD::MULHU, MVT::i64, Expand);
436   setOperationAction(ISD::MULHS, MVT::i64, Expand);
437   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
438   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
439   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
440   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
441   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
442 
443   setOperationAction(ISD::SMIN, MVT::i32, Legal);
444   setOperationAction(ISD::UMIN, MVT::i32, Legal);
445   setOperationAction(ISD::SMAX, MVT::i32, Legal);
446   setOperationAction(ISD::UMAX, MVT::i32, Legal);
447 
448   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
449   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
450   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
451   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
452 
453   static const MVT::SimpleValueType VectorIntTypes[] = {
454       MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32};
455 
456   for (MVT VT : VectorIntTypes) {
457     // Expand the following operations for the current type by default.
458     setOperationAction(ISD::ADD,  VT, Expand);
459     setOperationAction(ISD::AND,  VT, Expand);
460     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
461     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
462     setOperationAction(ISD::MUL,  VT, Expand);
463     setOperationAction(ISD::MULHU, VT, Expand);
464     setOperationAction(ISD::MULHS, VT, Expand);
465     setOperationAction(ISD::OR,   VT, Expand);
466     setOperationAction(ISD::SHL,  VT, Expand);
467     setOperationAction(ISD::SRA,  VT, Expand);
468     setOperationAction(ISD::SRL,  VT, Expand);
469     setOperationAction(ISD::ROTL, VT, Expand);
470     setOperationAction(ISD::ROTR, VT, Expand);
471     setOperationAction(ISD::SUB,  VT, Expand);
472     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
473     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
474     setOperationAction(ISD::SDIV, VT, Expand);
475     setOperationAction(ISD::UDIV, VT, Expand);
476     setOperationAction(ISD::SREM, VT, Expand);
477     setOperationAction(ISD::UREM, VT, Expand);
478     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
479     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
480     setOperationAction(ISD::SDIVREM, VT, Expand);
481     setOperationAction(ISD::UDIVREM, VT, Expand);
482     setOperationAction(ISD::SELECT, VT, Expand);
483     setOperationAction(ISD::VSELECT, VT, Expand);
484     setOperationAction(ISD::SELECT_CC, VT, Expand);
485     setOperationAction(ISD::XOR,  VT, Expand);
486     setOperationAction(ISD::BSWAP, VT, Expand);
487     setOperationAction(ISD::CTPOP, VT, Expand);
488     setOperationAction(ISD::CTTZ, VT, Expand);
489     setOperationAction(ISD::CTLZ, VT, Expand);
490     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
491     setOperationAction(ISD::SETCC, VT, Expand);
492   }
493 
494   static const MVT::SimpleValueType FloatVectorTypes[] = {
495       MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32};
496 
497   for (MVT VT : FloatVectorTypes) {
498     setOperationAction(ISD::FABS, VT, Expand);
499     setOperationAction(ISD::FMINNUM, VT, Expand);
500     setOperationAction(ISD::FMAXNUM, VT, Expand);
501     setOperationAction(ISD::FADD, VT, Expand);
502     setOperationAction(ISD::FCEIL, VT, Expand);
503     setOperationAction(ISD::FCOS, VT, Expand);
504     setOperationAction(ISD::FDIV, VT, Expand);
505     setOperationAction(ISD::FEXP2, VT, Expand);
506     setOperationAction(ISD::FEXP, VT, Expand);
507     setOperationAction(ISD::FLOG2, VT, Expand);
508     setOperationAction(ISD::FREM, VT, Expand);
509     setOperationAction(ISD::FLOG, VT, Expand);
510     setOperationAction(ISD::FLOG10, VT, Expand);
511     setOperationAction(ISD::FPOW, VT, Expand);
512     setOperationAction(ISD::FFLOOR, VT, Expand);
513     setOperationAction(ISD::FTRUNC, VT, Expand);
514     setOperationAction(ISD::FMUL, VT, Expand);
515     setOperationAction(ISD::FMA, VT, Expand);
516     setOperationAction(ISD::FRINT, VT, Expand);
517     setOperationAction(ISD::FNEARBYINT, VT, Expand);
518     setOperationAction(ISD::FSQRT, VT, Expand);
519     setOperationAction(ISD::FSIN, VT, Expand);
520     setOperationAction(ISD::FSUB, VT, Expand);
521     setOperationAction(ISD::FNEG, VT, Expand);
522     setOperationAction(ISD::VSELECT, VT, Expand);
523     setOperationAction(ISD::SELECT_CC, VT, Expand);
524     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
525     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
526     setOperationAction(ISD::SETCC, VT, Expand);
527     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
528   }
529 
530   // This causes using an unrolled select operation rather than expansion with
531   // bit operations. This is in general better, but the alternative using BFI
532   // instructions may be better if the select sources are SGPRs.
533   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
534   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
535 
536   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
537   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
538 
539   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
540   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
541 
542   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
543   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
544 
545   setOperationAction(ISD::SELECT, MVT::v6f32, Promote);
546   AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32);
547 
548   setOperationAction(ISD::SELECT, MVT::v7f32, Promote);
549   AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32);
550 
551   // There are no libcalls of any kind.
552   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
553     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
554 
555   setSchedulingPreference(Sched::RegPressure);
556   setJumpIsExpensive(true);
557 
558   // FIXME: This is only partially true. If we have to do vector compares, any
559   // SGPR pair can be a condition register. If we have a uniform condition, we
560   // are better off doing SALU operations, where there is only one SCC. For now,
561   // we don't have a way of knowing during instruction selection if a condition
562   // will be uniform and we always use vector compares. Assume we are using
563   // vector compares until that is fixed.
564   setHasMultipleConditionRegisters(true);
565 
566   setMinCmpXchgSizeInBits(32);
567   setSupportsUnalignedAtomics(false);
568 
569   PredictableSelectIsExpensive = false;
570 
571   // We want to find all load dependencies for long chains of stores to enable
572   // merging into very wide vectors. The problem is with vectors with > 4
573   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
574   // vectors are a legal type, even though we have to split the loads
575   // usually. When we can more precisely specify load legality per address
576   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
577   // smarter so that they can figure out what to do in 2 iterations without all
578   // N > 4 stores on the same chain.
579   GatherAllAliasesMaxDepth = 16;
580 
581   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
582   // about these during lowering.
583   MaxStoresPerMemcpy  = 0xffffffff;
584   MaxStoresPerMemmove = 0xffffffff;
585   MaxStoresPerMemset  = 0xffffffff;
586 
587   // The expansion for 64-bit division is enormous.
588   if (AMDGPUBypassSlowDiv)
589     addBypassSlowDiv(64, 32);
590 
591   setTargetDAGCombine(ISD::BITCAST);
592   setTargetDAGCombine(ISD::SHL);
593   setTargetDAGCombine(ISD::SRA);
594   setTargetDAGCombine(ISD::SRL);
595   setTargetDAGCombine(ISD::TRUNCATE);
596   setTargetDAGCombine(ISD::MUL);
597   setTargetDAGCombine(ISD::MULHU);
598   setTargetDAGCombine(ISD::MULHS);
599   setTargetDAGCombine(ISD::SELECT);
600   setTargetDAGCombine(ISD::SELECT_CC);
601   setTargetDAGCombine(ISD::STORE);
602   setTargetDAGCombine(ISD::FADD);
603   setTargetDAGCombine(ISD::FSUB);
604   setTargetDAGCombine(ISD::FNEG);
605   setTargetDAGCombine(ISD::FABS);
606   setTargetDAGCombine(ISD::AssertZext);
607   setTargetDAGCombine(ISD::AssertSext);
608   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
609 }
610 
611 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const {
612   if (getTargetMachine().Options.NoSignedZerosFPMath)
613     return true;
614 
615   const auto Flags = Op.getNode()->getFlags();
616   if (Flags.hasNoSignedZeros())
617     return true;
618 
619   return false;
620 }
621 
622 //===----------------------------------------------------------------------===//
623 // Target Information
624 //===----------------------------------------------------------------------===//
625 
626 LLVM_READNONE
627 static bool fnegFoldsIntoOp(unsigned Opc) {
628   switch (Opc) {
629   case ISD::FADD:
630   case ISD::FSUB:
631   case ISD::FMUL:
632   case ISD::FMA:
633   case ISD::FMAD:
634   case ISD::FMINNUM:
635   case ISD::FMAXNUM:
636   case ISD::FMINNUM_IEEE:
637   case ISD::FMAXNUM_IEEE:
638   case ISD::FSIN:
639   case ISD::FTRUNC:
640   case ISD::FRINT:
641   case ISD::FNEARBYINT:
642   case ISD::FCANONICALIZE:
643   case AMDGPUISD::RCP:
644   case AMDGPUISD::RCP_LEGACY:
645   case AMDGPUISD::RCP_IFLAG:
646   case AMDGPUISD::SIN_HW:
647   case AMDGPUISD::FMUL_LEGACY:
648   case AMDGPUISD::FMIN_LEGACY:
649   case AMDGPUISD::FMAX_LEGACY:
650   case AMDGPUISD::FMED3:
651     // TODO: handle llvm.amdgcn.fma.legacy
652     return true;
653   default:
654     return false;
655   }
656 }
657 
658 /// \p returns true if the operation will definitely need to use a 64-bit
659 /// encoding, and thus will use a VOP3 encoding regardless of the source
660 /// modifiers.
661 LLVM_READONLY
662 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
663   return N->getNumOperands() > 2 || VT == MVT::f64;
664 }
665 
666 // Most FP instructions support source modifiers, but this could be refined
667 // slightly.
668 LLVM_READONLY
669 static bool hasSourceMods(const SDNode *N) {
670   if (isa<MemSDNode>(N))
671     return false;
672 
673   switch (N->getOpcode()) {
674   case ISD::CopyToReg:
675   case ISD::SELECT:
676   case ISD::FDIV:
677   case ISD::FREM:
678   case ISD::INLINEASM:
679   case ISD::INLINEASM_BR:
680   case AMDGPUISD::DIV_SCALE:
681   case ISD::INTRINSIC_W_CHAIN:
682 
683   // TODO: Should really be looking at the users of the bitcast. These are
684   // problematic because bitcasts are used to legalize all stores to integer
685   // types.
686   case ISD::BITCAST:
687     return false;
688   case ISD::INTRINSIC_WO_CHAIN: {
689     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
690     case Intrinsic::amdgcn_interp_p1:
691     case Intrinsic::amdgcn_interp_p2:
692     case Intrinsic::amdgcn_interp_mov:
693     case Intrinsic::amdgcn_interp_p1_f16:
694     case Intrinsic::amdgcn_interp_p2_f16:
695       return false;
696     default:
697       return true;
698     }
699   }
700   default:
701     return true;
702   }
703 }
704 
705 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
706                                                  unsigned CostThreshold) {
707   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
708   // it is truly free to use a source modifier in all cases. If there are
709   // multiple users but for each one will necessitate using VOP3, there will be
710   // a code size increase. Try to avoid increasing code size unless we know it
711   // will save on the instruction count.
712   unsigned NumMayIncreaseSize = 0;
713   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
714 
715   // XXX - Should this limit number of uses to check?
716   for (const SDNode *U : N->uses()) {
717     if (!hasSourceMods(U))
718       return false;
719 
720     if (!opMustUseVOP3Encoding(U, VT)) {
721       if (++NumMayIncreaseSize > CostThreshold)
722         return false;
723     }
724   }
725 
726   return true;
727 }
728 
729 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
730                                               ISD::NodeType ExtendKind) const {
731   assert(!VT.isVector() && "only scalar expected");
732 
733   // Round to the next multiple of 32-bits.
734   unsigned Size = VT.getSizeInBits();
735   if (Size <= 32)
736     return MVT::i32;
737   return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32));
738 }
739 
740 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
741   return MVT::i32;
742 }
743 
744 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
745   return true;
746 }
747 
748 // The backend supports 32 and 64 bit floating point immediates.
749 // FIXME: Why are we reporting vectors of FP immediates as legal?
750 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
751                                         bool ForCodeSize) const {
752   EVT ScalarVT = VT.getScalarType();
753   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
754          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
755 }
756 
757 // We don't want to shrink f64 / f32 constants.
758 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
759   EVT ScalarVT = VT.getScalarType();
760   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
761 }
762 
763 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
764                                                  ISD::LoadExtType ExtTy,
765                                                  EVT NewVT) const {
766   // TODO: This may be worth removing. Check regression tests for diffs.
767   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
768     return false;
769 
770   unsigned NewSize = NewVT.getStoreSizeInBits();
771 
772   // If we are reducing to a 32-bit load or a smaller multi-dword load,
773   // this is always better.
774   if (NewSize >= 32)
775     return true;
776 
777   EVT OldVT = N->getValueType(0);
778   unsigned OldSize = OldVT.getStoreSizeInBits();
779 
780   MemSDNode *MN = cast<MemSDNode>(N);
781   unsigned AS = MN->getAddressSpace();
782   // Do not shrink an aligned scalar load to sub-dword.
783   // Scalar engine cannot do sub-dword loads.
784   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
785       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
786        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
787        (isa<LoadSDNode>(N) &&
788         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
789       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
790     return false;
791 
792   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
793   // extloads, so doing one requires using a buffer_load. In cases where we
794   // still couldn't use a scalar load, using the wider load shouldn't really
795   // hurt anything.
796 
797   // If the old size already had to be an extload, there's no harm in continuing
798   // to reduce the width.
799   return (OldSize < 32);
800 }
801 
802 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
803                                                    const SelectionDAG &DAG,
804                                                    const MachineMemOperand &MMO) const {
805 
806   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
807 
808   if (LoadTy.getScalarType() == MVT::i32)
809     return false;
810 
811   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
812   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
813 
814   if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
815     return false;
816 
817   bool Fast = false;
818   return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
819                                         CastTy, MMO, &Fast) &&
820          Fast;
821 }
822 
823 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
824 // profitable with the expansion for 64-bit since it's generally good to
825 // speculate things.
826 // FIXME: These should really have the size as a parameter.
827 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
828   return true;
829 }
830 
831 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
832   return true;
833 }
834 
835 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const {
836   switch (N->getOpcode()) {
837   case ISD::EntryToken:
838   case ISD::TokenFactor:
839     return true;
840   case ISD::INTRINSIC_WO_CHAIN: {
841     unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
842     switch (IntrID) {
843     case Intrinsic::amdgcn_readfirstlane:
844     case Intrinsic::amdgcn_readlane:
845       return true;
846     }
847     return false;
848   }
849   case ISD::LOAD:
850     if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
851         AMDGPUAS::CONSTANT_ADDRESS_32BIT)
852       return true;
853     return false;
854   }
855   return false;
856 }
857 
858 SDValue AMDGPUTargetLowering::getNegatedExpression(
859     SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize,
860     NegatibleCost &Cost, unsigned Depth) const {
861 
862   switch (Op.getOpcode()) {
863   case ISD::FMA:
864   case ISD::FMAD: {
865     // Negating a fma is not free if it has users without source mods.
866     if (!allUsesHaveSourceMods(Op.getNode()))
867       return SDValue();
868     break;
869   }
870   default:
871     break;
872   }
873 
874   return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations,
875                                               ForCodeSize, Cost, Depth);
876 }
877 
878 //===---------------------------------------------------------------------===//
879 // Target Properties
880 //===---------------------------------------------------------------------===//
881 
882 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
883   assert(VT.isFloatingPoint());
884 
885   // Packed operations do not have a fabs modifier.
886   return VT == MVT::f32 || VT == MVT::f64 ||
887          (Subtarget->has16BitInsts() && VT == MVT::f16);
888 }
889 
890 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
891   assert(VT.isFloatingPoint());
892   // Report this based on the end legalized type.
893   VT = VT.getScalarType();
894   return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16;
895 }
896 
897 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
898                                                          unsigned NumElem,
899                                                          unsigned AS) const {
900   return true;
901 }
902 
903 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
904   // There are few operations which truly have vector input operands. Any vector
905   // operation is going to involve operations on each component, and a
906   // build_vector will be a copy per element, so it always makes sense to use a
907   // build_vector input in place of the extracted element to avoid a copy into a
908   // super register.
909   //
910   // We should probably only do this if all users are extracts only, but this
911   // should be the common case.
912   return true;
913 }
914 
915 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
916   // Truncate is just accessing a subregister.
917 
918   unsigned SrcSize = Source.getSizeInBits();
919   unsigned DestSize = Dest.getSizeInBits();
920 
921   return DestSize < SrcSize && DestSize % 32 == 0 ;
922 }
923 
924 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
925   // Truncate is just accessing a subregister.
926 
927   unsigned SrcSize = Source->getScalarSizeInBits();
928   unsigned DestSize = Dest->getScalarSizeInBits();
929 
930   if (DestSize== 16 && Subtarget->has16BitInsts())
931     return SrcSize >= 32;
932 
933   return DestSize < SrcSize && DestSize % 32 == 0;
934 }
935 
936 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
937   unsigned SrcSize = Src->getScalarSizeInBits();
938   unsigned DestSize = Dest->getScalarSizeInBits();
939 
940   if (SrcSize == 16 && Subtarget->has16BitInsts())
941     return DestSize >= 32;
942 
943   return SrcSize == 32 && DestSize == 64;
944 }
945 
946 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
947   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
948   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
949   // this will enable reducing 64-bit operations the 32-bit, which is always
950   // good.
951 
952   if (Src == MVT::i16)
953     return Dest == MVT::i32 ||Dest == MVT::i64 ;
954 
955   return Src == MVT::i32 && Dest == MVT::i64;
956 }
957 
958 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
959   return isZExtFree(Val.getValueType(), VT2);
960 }
961 
962 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
963   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
964   // limited number of native 64-bit operations. Shrinking an operation to fit
965   // in a single 32-bit register should always be helpful. As currently used,
966   // this is much less general than the name suggests, and is only used in
967   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
968   // not profitable, and may actually be harmful.
969   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
970 }
971 
972 //===---------------------------------------------------------------------===//
973 // TargetLowering Callbacks
974 //===---------------------------------------------------------------------===//
975 
976 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
977                                                   bool IsVarArg) {
978   switch (CC) {
979   case CallingConv::AMDGPU_VS:
980   case CallingConv::AMDGPU_GS:
981   case CallingConv::AMDGPU_PS:
982   case CallingConv::AMDGPU_CS:
983   case CallingConv::AMDGPU_HS:
984   case CallingConv::AMDGPU_ES:
985   case CallingConv::AMDGPU_LS:
986     return CC_AMDGPU;
987   case CallingConv::C:
988   case CallingConv::Fast:
989   case CallingConv::Cold:
990     return CC_AMDGPU_Func;
991   case CallingConv::AMDGPU_Gfx:
992     return CC_SI_Gfx;
993   case CallingConv::AMDGPU_KERNEL:
994   case CallingConv::SPIR_KERNEL:
995   default:
996     report_fatal_error("Unsupported calling convention for call");
997   }
998 }
999 
1000 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
1001                                                     bool IsVarArg) {
1002   switch (CC) {
1003   case CallingConv::AMDGPU_KERNEL:
1004   case CallingConv::SPIR_KERNEL:
1005     llvm_unreachable("kernels should not be handled here");
1006   case CallingConv::AMDGPU_VS:
1007   case CallingConv::AMDGPU_GS:
1008   case CallingConv::AMDGPU_PS:
1009   case CallingConv::AMDGPU_CS:
1010   case CallingConv::AMDGPU_HS:
1011   case CallingConv::AMDGPU_ES:
1012   case CallingConv::AMDGPU_LS:
1013     return RetCC_SI_Shader;
1014   case CallingConv::AMDGPU_Gfx:
1015     return RetCC_SI_Gfx;
1016   case CallingConv::C:
1017   case CallingConv::Fast:
1018   case CallingConv::Cold:
1019     return RetCC_AMDGPU_Func;
1020   default:
1021     report_fatal_error("Unsupported calling convention.");
1022   }
1023 }
1024 
1025 /// The SelectionDAGBuilder will automatically promote function arguments
1026 /// with illegal types.  However, this does not work for the AMDGPU targets
1027 /// since the function arguments are stored in memory as these illegal types.
1028 /// In order to handle this properly we need to get the original types sizes
1029 /// from the LLVM IR Function and fixup the ISD:InputArg values before
1030 /// passing them to AnalyzeFormalArguments()
1031 
1032 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
1033 /// input values across multiple registers.  Each item in the Ins array
1034 /// represents a single value that will be stored in registers.  Ins[x].VT is
1035 /// the value type of the value that will be stored in the register, so
1036 /// whatever SDNode we lower the argument to needs to be this type.
1037 ///
1038 /// In order to correctly lower the arguments we need to know the size of each
1039 /// argument.  Since Ins[x].VT gives us the size of the register that will
1040 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
1041 /// for the original function argument so that we can deduce the correct memory
1042 /// type to use for Ins[x].  In most cases the correct memory type will be
1043 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
1044 /// we have a kernel argument of type v8i8, this argument will be split into
1045 /// 8 parts and each part will be represented by its own item in the Ins array.
1046 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
1047 /// the argument before it was split.  From this, we deduce that the memory type
1048 /// for each individual part is i8.  We pass the memory type as LocVT to the
1049 /// calling convention analysis function and the register type (Ins[x].VT) as
1050 /// the ValVT.
1051 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
1052   CCState &State,
1053   const SmallVectorImpl<ISD::InputArg> &Ins) const {
1054   const MachineFunction &MF = State.getMachineFunction();
1055   const Function &Fn = MF.getFunction();
1056   LLVMContext &Ctx = Fn.getParent()->getContext();
1057   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
1058   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
1059   CallingConv::ID CC = Fn.getCallingConv();
1060 
1061   Align MaxAlign = Align(1);
1062   uint64_t ExplicitArgOffset = 0;
1063   const DataLayout &DL = Fn.getParent()->getDataLayout();
1064 
1065   unsigned InIndex = 0;
1066 
1067   for (const Argument &Arg : Fn.args()) {
1068     const bool IsByRef = Arg.hasByRefAttr();
1069     Type *BaseArgTy = Arg.getType();
1070     Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy;
1071     MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None;
1072     if (!Alignment)
1073       Alignment = DL.getABITypeAlign(MemArgTy);
1074     MaxAlign = max(Alignment, MaxAlign);
1075     uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy);
1076 
1077     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset;
1078     ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize;
1079 
1080     // We're basically throwing away everything passed into us and starting over
1081     // to get accurate in-memory offsets. The "PartOffset" is completely useless
1082     // to us as computed in Ins.
1083     //
1084     // We also need to figure out what type legalization is trying to do to get
1085     // the correct memory offsets.
1086 
1087     SmallVector<EVT, 16> ValueVTs;
1088     SmallVector<uint64_t, 16> Offsets;
1089     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
1090 
1091     for (unsigned Value = 0, NumValues = ValueVTs.size();
1092          Value != NumValues; ++Value) {
1093       uint64_t BasePartOffset = Offsets[Value];
1094 
1095       EVT ArgVT = ValueVTs[Value];
1096       EVT MemVT = ArgVT;
1097       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
1098       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
1099 
1100       if (NumRegs == 1) {
1101         // This argument is not split, so the IR type is the memory type.
1102         if (ArgVT.isExtended()) {
1103           // We have an extended type, like i24, so we should just use the
1104           // register type.
1105           MemVT = RegisterVT;
1106         } else {
1107           MemVT = ArgVT;
1108         }
1109       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
1110                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
1111         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
1112         // We have a vector value which has been split into a vector with
1113         // the same scalar type, but fewer elements.  This should handle
1114         // all the floating-point vector types.
1115         MemVT = RegisterVT;
1116       } else if (ArgVT.isVector() &&
1117                  ArgVT.getVectorNumElements() == NumRegs) {
1118         // This arg has been split so that each element is stored in a separate
1119         // register.
1120         MemVT = ArgVT.getScalarType();
1121       } else if (ArgVT.isExtended()) {
1122         // We have an extended type, like i65.
1123         MemVT = RegisterVT;
1124       } else {
1125         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1126         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1127         if (RegisterVT.isInteger()) {
1128           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1129         } else if (RegisterVT.isVector()) {
1130           assert(!RegisterVT.getScalarType().isFloatingPoint());
1131           unsigned NumElements = RegisterVT.getVectorNumElements();
1132           assert(MemoryBits % NumElements == 0);
1133           // This vector type has been split into another vector type with
1134           // a different elements size.
1135           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1136                                            MemoryBits / NumElements);
1137           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1138         } else {
1139           llvm_unreachable("cannot deduce memory type.");
1140         }
1141       }
1142 
1143       // Convert one element vectors to scalar.
1144       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1145         MemVT = MemVT.getScalarType();
1146 
1147       // Round up vec3/vec5 argument.
1148       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1149         assert(MemVT.getVectorNumElements() == 3 ||
1150                MemVT.getVectorNumElements() == 5);
1151         MemVT = MemVT.getPow2VectorType(State.getContext());
1152       } else if (!MemVT.isSimple() && !MemVT.isVector()) {
1153         MemVT = MemVT.getRoundIntegerType(State.getContext());
1154       }
1155 
1156       unsigned PartOffset = 0;
1157       for (unsigned i = 0; i != NumRegs; ++i) {
1158         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1159                                                BasePartOffset + PartOffset,
1160                                                MemVT.getSimpleVT(),
1161                                                CCValAssign::Full));
1162         PartOffset += MemVT.getStoreSize();
1163       }
1164     }
1165   }
1166 }
1167 
1168 SDValue AMDGPUTargetLowering::LowerReturn(
1169   SDValue Chain, CallingConv::ID CallConv,
1170   bool isVarArg,
1171   const SmallVectorImpl<ISD::OutputArg> &Outs,
1172   const SmallVectorImpl<SDValue> &OutVals,
1173   const SDLoc &DL, SelectionDAG &DAG) const {
1174   // FIXME: Fails for r600 tests
1175   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1176   // "wave terminate should not have return values");
1177   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1178 }
1179 
1180 //===---------------------------------------------------------------------===//
1181 // Target specific lowering
1182 //===---------------------------------------------------------------------===//
1183 
1184 /// Selects the correct CCAssignFn for a given CallingConvention value.
1185 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1186                                                     bool IsVarArg) {
1187   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1188 }
1189 
1190 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1191                                                       bool IsVarArg) {
1192   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1193 }
1194 
1195 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1196                                                   SelectionDAG &DAG,
1197                                                   MachineFrameInfo &MFI,
1198                                                   int ClobberedFI) const {
1199   SmallVector<SDValue, 8> ArgChains;
1200   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1201   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1202 
1203   // Include the original chain at the beginning of the list. When this is
1204   // used by target LowerCall hooks, this helps legalize find the
1205   // CALLSEQ_BEGIN node.
1206   ArgChains.push_back(Chain);
1207 
1208   // Add a chain value for each stack argument corresponding
1209   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1210                             UE = DAG.getEntryNode().getNode()->use_end();
1211        U != UE; ++U) {
1212     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1213       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1214         if (FI->getIndex() < 0) {
1215           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1216           int64_t InLastByte = InFirstByte;
1217           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1218 
1219           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1220               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1221             ArgChains.push_back(SDValue(L, 1));
1222         }
1223       }
1224     }
1225   }
1226 
1227   // Build a tokenfactor for all the chains.
1228   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1229 }
1230 
1231 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1232                                                  SmallVectorImpl<SDValue> &InVals,
1233                                                  StringRef Reason) const {
1234   SDValue Callee = CLI.Callee;
1235   SelectionDAG &DAG = CLI.DAG;
1236 
1237   const Function &Fn = DAG.getMachineFunction().getFunction();
1238 
1239   StringRef FuncName("<unknown>");
1240 
1241   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1242     FuncName = G->getSymbol();
1243   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1244     FuncName = G->getGlobal()->getName();
1245 
1246   DiagnosticInfoUnsupported NoCalls(
1247     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1248   DAG.getContext()->diagnose(NoCalls);
1249 
1250   if (!CLI.IsTailCall) {
1251     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1252       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1253   }
1254 
1255   return DAG.getEntryNode();
1256 }
1257 
1258 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1259                                         SmallVectorImpl<SDValue> &InVals) const {
1260   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1261 }
1262 
1263 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1264                                                       SelectionDAG &DAG) const {
1265   const Function &Fn = DAG.getMachineFunction().getFunction();
1266 
1267   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1268                                             SDLoc(Op).getDebugLoc());
1269   DAG.getContext()->diagnose(NoDynamicAlloca);
1270   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1271   return DAG.getMergeValues(Ops, SDLoc());
1272 }
1273 
1274 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1275                                              SelectionDAG &DAG) const {
1276   switch (Op.getOpcode()) {
1277   default:
1278     Op->print(errs(), &DAG);
1279     llvm_unreachable("Custom lowering code for this "
1280                      "instruction is not implemented yet!");
1281     break;
1282   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1283   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1284   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1285   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1286   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1287   case ISD::FREM: return LowerFREM(Op, DAG);
1288   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1289   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1290   case ISD::FRINT: return LowerFRINT(Op, DAG);
1291   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1292   case ISD::FROUND: return LowerFROUND(Op, DAG);
1293   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1294   case ISD::FLOG:
1295     return LowerFLOG(Op, DAG, numbers::ln2f);
1296   case ISD::FLOG10:
1297     return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1298   case ISD::FEXP:
1299     return lowerFEXP(Op, DAG);
1300   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1301   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1302   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1303   case ISD::FP_TO_SINT:
1304   case ISD::FP_TO_UINT:
1305     return LowerFP_TO_INT(Op, DAG);
1306   case ISD::CTTZ:
1307   case ISD::CTTZ_ZERO_UNDEF:
1308   case ISD::CTLZ:
1309   case ISD::CTLZ_ZERO_UNDEF:
1310     return LowerCTLZ_CTTZ(Op, DAG);
1311   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1312   }
1313   return Op;
1314 }
1315 
1316 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1317                                               SmallVectorImpl<SDValue> &Results,
1318                                               SelectionDAG &DAG) const {
1319   switch (N->getOpcode()) {
1320   case ISD::SIGN_EXTEND_INREG:
1321     // Different parts of legalization seem to interpret which type of
1322     // sign_extend_inreg is the one to check for custom lowering. The extended
1323     // from type is what really matters, but some places check for custom
1324     // lowering of the result type. This results in trying to use
1325     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1326     // nothing here and let the illegal result integer be handled normally.
1327     return;
1328   default:
1329     return;
1330   }
1331 }
1332 
1333 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1334                                                  SDValue Op,
1335                                                  SelectionDAG &DAG) const {
1336 
1337   const DataLayout &DL = DAG.getDataLayout();
1338   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1339   const GlobalValue *GV = G->getGlobal();
1340 
1341   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1342       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1343     if (!MFI->isModuleEntryFunction() &&
1344         !GV->getName().equals("llvm.amdgcn.module.lds")) {
1345       SDLoc DL(Op);
1346       const Function &Fn = DAG.getMachineFunction().getFunction();
1347       DiagnosticInfoUnsupported BadLDSDecl(
1348         Fn, "local memory global used by non-kernel function",
1349         DL.getDebugLoc(), DS_Warning);
1350       DAG.getContext()->diagnose(BadLDSDecl);
1351 
1352       // We currently don't have a way to correctly allocate LDS objects that
1353       // aren't directly associated with a kernel. We do force inlining of
1354       // functions that use local objects. However, if these dead functions are
1355       // not eliminated, we don't want a compile time error. Just emit a warning
1356       // and a trap, since there should be no callable path here.
1357       SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode());
1358       SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1359                                         Trap, DAG.getRoot());
1360       DAG.setRoot(OutputChain);
1361       return DAG.getUNDEF(Op.getValueType());
1362     }
1363 
1364     // XXX: What does the value of G->getOffset() mean?
1365     assert(G->getOffset() == 0 &&
1366          "Do not know what to do with an non-zero offset");
1367 
1368     // TODO: We could emit code to handle the initialization somewhere.
1369     // We ignore the initializer for now and legalize it to allow selection.
1370     // The initializer will anyway get errored out during assembly emission.
1371     unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV));
1372     return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1373   }
1374   return SDValue();
1375 }
1376 
1377 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1378                                                   SelectionDAG &DAG) const {
1379   SmallVector<SDValue, 8> Args;
1380 
1381   EVT VT = Op.getValueType();
1382   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1383     SDLoc SL(Op);
1384     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1385     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1386 
1387     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1388     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1389   }
1390 
1391   for (const SDUse &U : Op->ops())
1392     DAG.ExtractVectorElements(U.get(), Args);
1393 
1394   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1395 }
1396 
1397 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1398                                                      SelectionDAG &DAG) const {
1399 
1400   SmallVector<SDValue, 8> Args;
1401   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1402   EVT VT = Op.getValueType();
1403   EVT SrcVT = Op.getOperand(0).getValueType();
1404 
1405   // For these types, we have some TableGen patterns except if the index is 1
1406   if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) ||
1407        (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) &&
1408       Start != 1)
1409     return Op;
1410 
1411   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1412                             VT.getVectorNumElements());
1413 
1414   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1415 }
1416 
1417 /// Generate Min/Max node
1418 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1419                                                    SDValue LHS, SDValue RHS,
1420                                                    SDValue True, SDValue False,
1421                                                    SDValue CC,
1422                                                    DAGCombinerInfo &DCI) const {
1423   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1424     return SDValue();
1425 
1426   SelectionDAG &DAG = DCI.DAG;
1427   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1428   switch (CCOpcode) {
1429   case ISD::SETOEQ:
1430   case ISD::SETONE:
1431   case ISD::SETUNE:
1432   case ISD::SETNE:
1433   case ISD::SETUEQ:
1434   case ISD::SETEQ:
1435   case ISD::SETFALSE:
1436   case ISD::SETFALSE2:
1437   case ISD::SETTRUE:
1438   case ISD::SETTRUE2:
1439   case ISD::SETUO:
1440   case ISD::SETO:
1441     break;
1442   case ISD::SETULE:
1443   case ISD::SETULT: {
1444     if (LHS == True)
1445       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1446     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1447   }
1448   case ISD::SETOLE:
1449   case ISD::SETOLT:
1450   case ISD::SETLE:
1451   case ISD::SETLT: {
1452     // Ordered. Assume ordered for undefined.
1453 
1454     // Only do this after legalization to avoid interfering with other combines
1455     // which might occur.
1456     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1457         !DCI.isCalledByLegalizer())
1458       return SDValue();
1459 
1460     // We need to permute the operands to get the correct NaN behavior. The
1461     // selected operand is the second one based on the failing compare with NaN,
1462     // so permute it based on the compare type the hardware uses.
1463     if (LHS == True)
1464       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1465     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1466   }
1467   case ISD::SETUGE:
1468   case ISD::SETUGT: {
1469     if (LHS == True)
1470       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1471     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1472   }
1473   case ISD::SETGT:
1474   case ISD::SETGE:
1475   case ISD::SETOGE:
1476   case ISD::SETOGT: {
1477     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1478         !DCI.isCalledByLegalizer())
1479       return SDValue();
1480 
1481     if (LHS == True)
1482       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1483     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1484   }
1485   case ISD::SETCC_INVALID:
1486     llvm_unreachable("Invalid setcc condcode!");
1487   }
1488   return SDValue();
1489 }
1490 
1491 std::pair<SDValue, SDValue>
1492 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1493   SDLoc SL(Op);
1494 
1495   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1496 
1497   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1498   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1499 
1500   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1501   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1502 
1503   return std::make_pair(Lo, Hi);
1504 }
1505 
1506 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1507   SDLoc SL(Op);
1508 
1509   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1510   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1511   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1512 }
1513 
1514 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1515   SDLoc SL(Op);
1516 
1517   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1518   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1519   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1520 }
1521 
1522 // Split a vector type into two parts. The first part is a power of two vector.
1523 // The second part is whatever is left over, and is a scalar if it would
1524 // otherwise be a 1-vector.
1525 std::pair<EVT, EVT>
1526 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1527   EVT LoVT, HiVT;
1528   EVT EltVT = VT.getVectorElementType();
1529   unsigned NumElts = VT.getVectorNumElements();
1530   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1531   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1532   HiVT = NumElts - LoNumElts == 1
1533              ? EltVT
1534              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1535   return std::make_pair(LoVT, HiVT);
1536 }
1537 
1538 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1539 // scalar.
1540 std::pair<SDValue, SDValue>
1541 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1542                                   const EVT &LoVT, const EVT &HiVT,
1543                                   SelectionDAG &DAG) const {
1544   assert(LoVT.getVectorNumElements() +
1545                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1546              N.getValueType().getVectorNumElements() &&
1547          "More vector elements requested than available!");
1548   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1549                            DAG.getVectorIdxConstant(0, DL));
1550   SDValue Hi = DAG.getNode(
1551       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1552       HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
1553   return std::make_pair(Lo, Hi);
1554 }
1555 
1556 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1557                                               SelectionDAG &DAG) const {
1558   LoadSDNode *Load = cast<LoadSDNode>(Op);
1559   EVT VT = Op.getValueType();
1560   SDLoc SL(Op);
1561 
1562 
1563   // If this is a 2 element vector, we really want to scalarize and not create
1564   // weird 1 element vectors.
1565   if (VT.getVectorNumElements() == 2) {
1566     SDValue Ops[2];
1567     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1568     return DAG.getMergeValues(Ops, SL);
1569   }
1570 
1571   SDValue BasePtr = Load->getBasePtr();
1572   EVT MemVT = Load->getMemoryVT();
1573 
1574   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1575 
1576   EVT LoVT, HiVT;
1577   EVT LoMemVT, HiMemVT;
1578   SDValue Lo, Hi;
1579 
1580   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1581   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1582   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1583 
1584   unsigned Size = LoMemVT.getStoreSize();
1585   unsigned BaseAlign = Load->getAlignment();
1586   unsigned HiAlign = MinAlign(BaseAlign, Size);
1587 
1588   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1589                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1590                                   BaseAlign, Load->getMemOperand()->getFlags());
1591   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size));
1592   SDValue HiLoad =
1593       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1594                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1595                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1596 
1597   SDValue Join;
1598   if (LoVT == HiVT) {
1599     // This is the case that the vector is power of two so was evenly split.
1600     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1601   } else {
1602     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1603                        DAG.getVectorIdxConstant(0, SL));
1604     Join = DAG.getNode(
1605         HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
1606         VT, Join, HiLoad,
1607         DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
1608   }
1609 
1610   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1611                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1612 
1613   return DAG.getMergeValues(Ops, SL);
1614 }
1615 
1616 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op,
1617                                                      SelectionDAG &DAG) const {
1618   LoadSDNode *Load = cast<LoadSDNode>(Op);
1619   EVT VT = Op.getValueType();
1620   SDValue BasePtr = Load->getBasePtr();
1621   EVT MemVT = Load->getMemoryVT();
1622   SDLoc SL(Op);
1623   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1624   unsigned BaseAlign = Load->getAlignment();
1625   unsigned NumElements = MemVT.getVectorNumElements();
1626 
1627   // Widen from vec3 to vec4 when the load is at least 8-byte aligned
1628   // or 16-byte fully dereferenceable. Otherwise, split the vector load.
1629   if (NumElements != 3 ||
1630       (BaseAlign < 8 &&
1631        !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout())))
1632     return SplitVectorLoad(Op, DAG);
1633 
1634   assert(NumElements == 3);
1635 
1636   EVT WideVT =
1637       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1638   EVT WideMemVT =
1639       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1640   SDValue WideLoad = DAG.getExtLoad(
1641       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1642       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1643   return DAG.getMergeValues(
1644       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1645                    DAG.getVectorIdxConstant(0, SL)),
1646        WideLoad.getValue(1)},
1647       SL);
1648 }
1649 
1650 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1651                                                SelectionDAG &DAG) const {
1652   StoreSDNode *Store = cast<StoreSDNode>(Op);
1653   SDValue Val = Store->getValue();
1654   EVT VT = Val.getValueType();
1655 
1656   // If this is a 2 element vector, we really want to scalarize and not create
1657   // weird 1 element vectors.
1658   if (VT.getVectorNumElements() == 2)
1659     return scalarizeVectorStore(Store, DAG);
1660 
1661   EVT MemVT = Store->getMemoryVT();
1662   SDValue Chain = Store->getChain();
1663   SDValue BasePtr = Store->getBasePtr();
1664   SDLoc SL(Op);
1665 
1666   EVT LoVT, HiVT;
1667   EVT LoMemVT, HiMemVT;
1668   SDValue Lo, Hi;
1669 
1670   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1671   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1672   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1673 
1674   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1675 
1676   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1677   unsigned BaseAlign = Store->getAlignment();
1678   unsigned Size = LoMemVT.getStoreSize();
1679   unsigned HiAlign = MinAlign(BaseAlign, Size);
1680 
1681   SDValue LoStore =
1682       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1683                         Store->getMemOperand()->getFlags());
1684   SDValue HiStore =
1685       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1686                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1687 
1688   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1689 }
1690 
1691 // This is a shortcut for integer division because we have fast i32<->f32
1692 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1693 // float is enough to accurately represent up to a 24-bit signed integer.
1694 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1695                                             bool Sign) const {
1696   SDLoc DL(Op);
1697   EVT VT = Op.getValueType();
1698   SDValue LHS = Op.getOperand(0);
1699   SDValue RHS = Op.getOperand(1);
1700   MVT IntVT = MVT::i32;
1701   MVT FltVT = MVT::f32;
1702 
1703   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1704   if (LHSSignBits < 9)
1705     return SDValue();
1706 
1707   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1708   if (RHSSignBits < 9)
1709     return SDValue();
1710 
1711   unsigned BitSize = VT.getSizeInBits();
1712   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1713   unsigned DivBits = BitSize - SignBits;
1714   if (Sign)
1715     ++DivBits;
1716 
1717   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1718   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1719 
1720   SDValue jq = DAG.getConstant(1, DL, IntVT);
1721 
1722   if (Sign) {
1723     // char|short jq = ia ^ ib;
1724     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1725 
1726     // jq = jq >> (bitsize - 2)
1727     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1728                      DAG.getConstant(BitSize - 2, DL, VT));
1729 
1730     // jq = jq | 0x1
1731     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1732   }
1733 
1734   // int ia = (int)LHS;
1735   SDValue ia = LHS;
1736 
1737   // int ib, (int)RHS;
1738   SDValue ib = RHS;
1739 
1740   // float fa = (float)ia;
1741   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1742 
1743   // float fb = (float)ib;
1744   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1745 
1746   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1747                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1748 
1749   // fq = trunc(fq);
1750   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1751 
1752   // float fqneg = -fq;
1753   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1754 
1755   MachineFunction &MF = DAG.getMachineFunction();
1756   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
1757 
1758   // float fr = mad(fqneg, fb, fa);
1759   unsigned OpCode = !Subtarget->hasMadMacF32Insts() ?
1760                     (unsigned)ISD::FMA :
1761                     !MFI->getMode().allFP32Denormals() ?
1762                     (unsigned)ISD::FMAD :
1763                     (unsigned)AMDGPUISD::FMAD_FTZ;
1764   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1765 
1766   // int iq = (int)fq;
1767   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1768 
1769   // fr = fabs(fr);
1770   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1771 
1772   // fb = fabs(fb);
1773   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1774 
1775   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1776 
1777   // int cv = fr >= fb;
1778   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1779 
1780   // jq = (cv ? jq : 0);
1781   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1782 
1783   // dst = iq + jq;
1784   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1785 
1786   // Rem needs compensation, it's easier to recompute it
1787   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1788   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1789 
1790   // Truncate to number of bits this divide really is.
1791   if (Sign) {
1792     SDValue InRegSize
1793       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1794     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1795     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1796   } else {
1797     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1798     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1799     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1800   }
1801 
1802   return DAG.getMergeValues({ Div, Rem }, DL);
1803 }
1804 
1805 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1806                                       SelectionDAG &DAG,
1807                                       SmallVectorImpl<SDValue> &Results) const {
1808   SDLoc DL(Op);
1809   EVT VT = Op.getValueType();
1810 
1811   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1812 
1813   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1814 
1815   SDValue One = DAG.getConstant(1, DL, HalfVT);
1816   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1817 
1818   //HiLo split
1819   SDValue LHS = Op.getOperand(0);
1820   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1821   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1822 
1823   SDValue RHS = Op.getOperand(1);
1824   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1825   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1826 
1827   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1828       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1829 
1830     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1831                               LHS_Lo, RHS_Lo);
1832 
1833     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1834     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1835 
1836     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1837     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1838     return;
1839   }
1840 
1841   if (isTypeLegal(MVT::i64)) {
1842     // The algorithm here is based on ideas from "Software Integer Division",
1843     // Tom Rodeheffer, August 2008.
1844 
1845     MachineFunction &MF = DAG.getMachineFunction();
1846     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1847 
1848     // Compute denominator reciprocal.
1849     unsigned FMAD = !Subtarget->hasMadMacF32Insts() ?
1850                     (unsigned)ISD::FMA :
1851                     !MFI->getMode().allFP32Denormals() ?
1852                     (unsigned)ISD::FMAD :
1853                     (unsigned)AMDGPUISD::FMAD_FTZ;
1854 
1855     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1856     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1857     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1858       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1859       Cvt_Lo);
1860     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1861     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1862       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1863     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1864       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1865     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1866     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1867       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1868       Mul1);
1869     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1870     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1871     SDValue Rcp64 = DAG.getBitcast(VT,
1872                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1873 
1874     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1875     SDValue One64  = DAG.getConstant(1, DL, VT);
1876     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1877     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1878 
1879     // First round of UNR (Unsigned integer Newton-Raphson).
1880     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1881     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1882     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1883     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1884                                     Zero);
1885     SDValue Mulhi1_Hi =
1886         DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, One);
1887     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1888                                   Mulhi1_Lo, Zero1);
1889     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1890                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1891     SDValue Add1 = DAG.getBitcast(VT,
1892                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1893 
1894     // Second round of UNR.
1895     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1896     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1897     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1898                                     Zero);
1899     SDValue Mulhi2_Hi =
1900         DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, One);
1901     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1902                                   Mulhi2_Lo, Zero1);
1903     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Hi,
1904                                   Mulhi2_Hi, Add2_Lo.getValue(1));
1905     SDValue Add2 = DAG.getBitcast(VT,
1906                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1907 
1908     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1909 
1910     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1911 
1912     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1913     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1914     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1915                                   Mul3_Lo, Zero1);
1916     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1917                                   Mul3_Hi, Sub1_Lo.getValue(1));
1918     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1919     SDValue Sub1 = DAG.getBitcast(VT,
1920                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1921 
1922     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1923     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1924                                  ISD::SETUGE);
1925     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1926                                  ISD::SETUGE);
1927     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1928 
1929     // TODO: Here and below portions of the code can be enclosed into if/endif.
1930     // Currently control flow is unconditional and we have 4 selects after
1931     // potential endif to substitute PHIs.
1932 
1933     // if C3 != 0 ...
1934     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1935                                   RHS_Lo, Zero1);
1936     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1937                                   RHS_Hi, Sub1_Lo.getValue(1));
1938     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1939                                   Zero, Sub2_Lo.getValue(1));
1940     SDValue Sub2 = DAG.getBitcast(VT,
1941                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1942 
1943     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1944 
1945     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1946                                  ISD::SETUGE);
1947     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1948                                  ISD::SETUGE);
1949     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1950 
1951     // if (C6 != 0)
1952     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1953 
1954     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1955                                   RHS_Lo, Zero1);
1956     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1957                                   RHS_Hi, Sub2_Lo.getValue(1));
1958     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1959                                   Zero, Sub3_Lo.getValue(1));
1960     SDValue Sub3 = DAG.getBitcast(VT,
1961                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1962 
1963     // endif C6
1964     // endif C3
1965 
1966     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1967     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1968 
1969     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1970     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1971 
1972     Results.push_back(Div);
1973     Results.push_back(Rem);
1974 
1975     return;
1976   }
1977 
1978   // r600 expandion.
1979   // Get Speculative values
1980   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1981   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1982 
1983   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1984   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1985   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1986 
1987   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1988   SDValue DIV_Lo = Zero;
1989 
1990   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1991 
1992   for (unsigned i = 0; i < halfBitWidth; ++i) {
1993     const unsigned bitPos = halfBitWidth - i - 1;
1994     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1995     // Get value of high bit
1996     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1997     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1998     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1999 
2000     // Shift
2001     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
2002     // Add LHS high bit
2003     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
2004 
2005     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
2006     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
2007 
2008     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
2009 
2010     // Update REM
2011     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
2012     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
2013   }
2014 
2015   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
2016   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
2017   Results.push_back(DIV);
2018   Results.push_back(REM);
2019 }
2020 
2021 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
2022                                            SelectionDAG &DAG) const {
2023   SDLoc DL(Op);
2024   EVT VT = Op.getValueType();
2025 
2026   if (VT == MVT::i64) {
2027     SmallVector<SDValue, 2> Results;
2028     LowerUDIVREM64(Op, DAG, Results);
2029     return DAG.getMergeValues(Results, DL);
2030   }
2031 
2032   if (VT == MVT::i32) {
2033     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
2034       return Res;
2035   }
2036 
2037   SDValue X = Op.getOperand(0);
2038   SDValue Y = Op.getOperand(1);
2039 
2040   // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
2041   // algorithm used here.
2042 
2043   // Initial estimate of inv(y).
2044   SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y);
2045 
2046   // One round of UNR.
2047   SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y);
2048   SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z);
2049   Z = DAG.getNode(ISD::ADD, DL, VT, Z,
2050                   DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ));
2051 
2052   // Quotient/remainder estimate.
2053   SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z);
2054   SDValue R =
2055       DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y));
2056 
2057   // First quotient/remainder refinement.
2058   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2059   SDValue One = DAG.getConstant(1, DL, VT);
2060   SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2061   Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2062                   DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2063   R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2064                   DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2065 
2066   // Second quotient/remainder refinement.
2067   Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2068   Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2069                   DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2070   R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2071                   DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2072 
2073   return DAG.getMergeValues({Q, R}, DL);
2074 }
2075 
2076 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
2077                                            SelectionDAG &DAG) const {
2078   SDLoc DL(Op);
2079   EVT VT = Op.getValueType();
2080 
2081   SDValue LHS = Op.getOperand(0);
2082   SDValue RHS = Op.getOperand(1);
2083 
2084   SDValue Zero = DAG.getConstant(0, DL, VT);
2085   SDValue NegOne = DAG.getConstant(-1, DL, VT);
2086 
2087   if (VT == MVT::i32) {
2088     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2089       return Res;
2090   }
2091 
2092   if (VT == MVT::i64 &&
2093       DAG.ComputeNumSignBits(LHS) > 32 &&
2094       DAG.ComputeNumSignBits(RHS) > 32) {
2095     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2096 
2097     //HiLo split
2098     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2099     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2100     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2101                                  LHS_Lo, RHS_Lo);
2102     SDValue Res[2] = {
2103       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2104       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2105     };
2106     return DAG.getMergeValues(Res, DL);
2107   }
2108 
2109   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2110   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2111   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2112   SDValue RSign = LHSign; // Remainder sign is the same as LHS
2113 
2114   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2115   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2116 
2117   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2118   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2119 
2120   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2121   SDValue Rem = Div.getValue(1);
2122 
2123   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2124   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2125 
2126   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2127   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2128 
2129   SDValue Res[2] = {
2130     Div,
2131     Rem
2132   };
2133   return DAG.getMergeValues(Res, DL);
2134 }
2135 
2136 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x)
2137 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2138   SDLoc SL(Op);
2139   EVT VT = Op.getValueType();
2140   auto Flags = Op->getFlags();
2141   SDValue X = Op.getOperand(0);
2142   SDValue Y = Op.getOperand(1);
2143 
2144   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags);
2145   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags);
2146   SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags);
2147   // TODO: For f32 use FMAD instead if !hasFastFMA32?
2148   return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags);
2149 }
2150 
2151 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2152   SDLoc SL(Op);
2153   SDValue Src = Op.getOperand(0);
2154 
2155   // result = trunc(src)
2156   // if (src > 0.0 && src != result)
2157   //   result += 1.0
2158 
2159   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2160 
2161   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2162   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2163 
2164   EVT SetCCVT =
2165       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2166 
2167   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2168   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2169   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2170 
2171   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2172   // TODO: Should this propagate fast-math-flags?
2173   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2174 }
2175 
2176 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2177                                   SelectionDAG &DAG) {
2178   const unsigned FractBits = 52;
2179   const unsigned ExpBits = 11;
2180 
2181   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2182                                 Hi,
2183                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2184                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2185   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2186                             DAG.getConstant(1023, SL, MVT::i32));
2187 
2188   return Exp;
2189 }
2190 
2191 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2192   SDLoc SL(Op);
2193   SDValue Src = Op.getOperand(0);
2194 
2195   assert(Op.getValueType() == MVT::f64);
2196 
2197   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2198 
2199   // Extract the upper half, since this is where we will find the sign and
2200   // exponent.
2201   SDValue Hi = getHiHalf64(Src, DAG);
2202 
2203   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2204 
2205   const unsigned FractBits = 52;
2206 
2207   // Extract the sign bit.
2208   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2209   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2210 
2211   // Extend back to 64-bits.
2212   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2213   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2214 
2215   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2216   const SDValue FractMask
2217     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2218 
2219   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2220   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2221   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2222 
2223   EVT SetCCVT =
2224       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2225 
2226   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2227 
2228   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2229   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2230 
2231   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2232   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2233 
2234   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2235 }
2236 
2237 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2238   SDLoc SL(Op);
2239   SDValue Src = Op.getOperand(0);
2240 
2241   assert(Op.getValueType() == MVT::f64);
2242 
2243   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2244   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2245   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2246 
2247   // TODO: Should this propagate fast-math-flags?
2248 
2249   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2250   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2251 
2252   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2253 
2254   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2255   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2256 
2257   EVT SetCCVT =
2258       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2259   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2260 
2261   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2262 }
2263 
2264 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2265   // FNEARBYINT and FRINT are the same, except in their handling of FP
2266   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2267   // rint, so just treat them as equivalent.
2268   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2269 }
2270 
2271 // XXX - May require not supporting f32 denormals?
2272 
2273 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2274 // compare and vselect end up producing worse code than scalarizing the whole
2275 // operation.
2276 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2277   SDLoc SL(Op);
2278   SDValue X = Op.getOperand(0);
2279   EVT VT = Op.getValueType();
2280 
2281   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2282 
2283   // TODO: Should this propagate fast-math-flags?
2284 
2285   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2286 
2287   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2288 
2289   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2290   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2291   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2292 
2293   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2294 
2295   EVT SetCCVT =
2296       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2297 
2298   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2299 
2300   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2301 
2302   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2303 }
2304 
2305 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2306   SDLoc SL(Op);
2307   SDValue Src = Op.getOperand(0);
2308 
2309   // result = trunc(src);
2310   // if (src < 0.0 && src != result)
2311   //   result += -1.0.
2312 
2313   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2314 
2315   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2316   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2317 
2318   EVT SetCCVT =
2319       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2320 
2321   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2322   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2323   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2324 
2325   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2326   // TODO: Should this propagate fast-math-flags?
2327   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2328 }
2329 
2330 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2331                                         double Log2BaseInverted) const {
2332   EVT VT = Op.getValueType();
2333 
2334   SDLoc SL(Op);
2335   SDValue Operand = Op.getOperand(0);
2336   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2337   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2338 
2339   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2340 }
2341 
2342 // exp2(M_LOG2E_F * f);
2343 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2344   EVT VT = Op.getValueType();
2345   SDLoc SL(Op);
2346   SDValue Src = Op.getOperand(0);
2347 
2348   const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2349   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2350   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2351 }
2352 
2353 static bool isCtlzOpc(unsigned Opc) {
2354   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2355 }
2356 
2357 static bool isCttzOpc(unsigned Opc) {
2358   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2359 }
2360 
2361 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2362   SDLoc SL(Op);
2363   SDValue Src = Op.getOperand(0);
2364 
2365   assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode()));
2366   bool Ctlz = isCtlzOpc(Op.getOpcode());
2367   unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32;
2368 
2369   bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF ||
2370                    Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF;
2371 
2372   if (Src.getValueType() == MVT::i32) {
2373     // (ctlz hi:lo) -> (umin (ffbh src), 32)
2374     // (cttz hi:lo) -> (umin (ffbl src), 32)
2375     // (ctlz_zero_undef src) -> (ffbh src)
2376     // (cttz_zero_undef src) -> (ffbl src)
2377     SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src);
2378     if (!ZeroUndef) {
2379       const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32);
2380       NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32);
2381     }
2382     return NewOpr;
2383   }
2384 
2385   SDValue Lo, Hi;
2386   std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2387 
2388   SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo);
2389   SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi);
2390 
2391   // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64)
2392   // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64)
2393   // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32))
2394   // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo))
2395 
2396   unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT;
2397   const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32);
2398   if (Ctlz)
2399     OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32);
2400   else
2401     OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32);
2402 
2403   SDValue NewOpr;
2404   NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi);
2405   if (!ZeroUndef) {
2406     const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32);
2407     NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64);
2408   }
2409 
2410   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2411 }
2412 
2413 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2414                                                bool Signed) const {
2415   // The regular method converting a 64-bit integer to float roughly consists of
2416   // 2 steps: normalization and rounding. In fact, after normalization, the
2417   // conversion from a 64-bit integer to a float is essentially the same as the
2418   // one from a 32-bit integer. The only difference is that it has more
2419   // trailing bits to be rounded. To leverage the native 32-bit conversion, a
2420   // 64-bit integer could be preprocessed and fit into a 32-bit integer then
2421   // converted into the correct float number. The basic steps for the unsigned
2422   // conversion are illustrated in the following pseudo code:
2423   //
2424   // f32 uitofp(i64 u) {
2425   //   i32 hi, lo = split(u);
2426   //   // Only count the leading zeros in hi as we have native support of the
2427   //   // conversion from i32 to f32. If hi is all 0s, the conversion is
2428   //   // reduced to a 32-bit one automatically.
2429   //   i32 shamt = clz(hi); // Return 32 if hi is all 0s.
2430   //   u <<= shamt;
2431   //   hi, lo = split(u);
2432   //   hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo.
2433   //   // convert it as a 32-bit integer and scale the result back.
2434   //   return uitofp(hi) * 2^(32 - shamt);
2435   // }
2436   //
2437   // The signed one follows the same principle but uses 'ffbh_i32' to count its
2438   // sign bits instead. If 'ffbh_i32' is not available, its absolute value is
2439   // converted instead followed by negation based its sign bit.
2440 
2441   SDLoc SL(Op);
2442   SDValue Src = Op.getOperand(0);
2443 
2444   SDValue Lo, Hi;
2445   std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2446   SDValue Sign;
2447   SDValue ShAmt;
2448   if (Signed && Subtarget->isGCN()) {
2449     // We also need to consider the sign bit in Lo if Hi has just sign bits,
2450     // i.e. Hi is 0 or -1. However, that only needs to take the MSB into
2451     // account. That is, the maximal shift is
2452     // - 32 if Lo and Hi have opposite signs;
2453     // - 33 if Lo and Hi have the same sign.
2454     //
2455     // Or, MaxShAmt = 33 + OppositeSign, where
2456     //
2457     // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is
2458     // - -1 if Lo and Hi have opposite signs; and
2459     // -  0 otherwise.
2460     //
2461     // All in all, ShAmt is calculated as
2462     //
2463     //  umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1.
2464     //
2465     // or
2466     //
2467     //  umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31).
2468     //
2469     // to reduce the critical path.
2470     SDValue OppositeSign = DAG.getNode(
2471         ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi),
2472         DAG.getConstant(31, SL, MVT::i32));
2473     SDValue MaxShAmt =
2474         DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32),
2475                     OppositeSign);
2476     // Count the leading sign bits.
2477     ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi);
2478     // Different from unsigned conversion, the shift should be one bit less to
2479     // preserve the sign bit.
2480     ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt,
2481                         DAG.getConstant(1, SL, MVT::i32));
2482     ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt);
2483   } else {
2484     if (Signed) {
2485       // Without 'ffbh_i32', only leading zeros could be counted. Take the
2486       // absolute value first.
2487       Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src,
2488                          DAG.getConstant(63, SL, MVT::i64));
2489       SDValue Abs =
2490           DAG.getNode(ISD::XOR, SL, MVT::i64,
2491                       DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign);
2492       std::tie(Lo, Hi) = split64BitValue(Abs, DAG);
2493     }
2494     // Count the leading zeros.
2495     ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi);
2496     // The shift amount for signed integers is [0, 32].
2497   }
2498   // Normalize the given 64-bit integer.
2499   SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt);
2500   // Split it again.
2501   std::tie(Lo, Hi) = split64BitValue(Norm, DAG);
2502   // Calculate the adjust bit for rounding.
2503   // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo)
2504   SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32,
2505                                DAG.getConstant(1, SL, MVT::i32), Lo);
2506   // Get the 32-bit normalized integer.
2507   Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust);
2508   // Convert the normalized 32-bit integer into f32.
2509   unsigned Opc =
2510       (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
2511   SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm);
2512 
2513   // Finally, need to scale back the converted floating number as the original
2514   // 64-bit integer is converted as a 32-bit one.
2515   ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32),
2516                       ShAmt);
2517   // On GCN, use LDEXP directly.
2518   if (Subtarget->isGCN())
2519     return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt);
2520 
2521   // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent
2522   // part directly to emulate the multiplication of 2^ShAmt. That 8-bit
2523   // exponent is enough to avoid overflowing into the sign bit.
2524   SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt,
2525                             DAG.getConstant(23, SL, MVT::i32));
2526   SDValue IVal =
2527       DAG.getNode(ISD::ADD, SL, MVT::i32,
2528                   DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp);
2529   if (Signed) {
2530     // Set the sign bit.
2531     Sign = DAG.getNode(ISD::SHL, SL, MVT::i32,
2532                        DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign),
2533                        DAG.getConstant(31, SL, MVT::i32));
2534     IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign);
2535   }
2536   return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal);
2537 }
2538 
2539 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2540                                                bool Signed) const {
2541   SDLoc SL(Op);
2542   SDValue Src = Op.getOperand(0);
2543 
2544   SDValue Lo, Hi;
2545   std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2546 
2547   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2548                               SL, MVT::f64, Hi);
2549 
2550   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2551 
2552   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2553                               DAG.getConstant(32, SL, MVT::i32));
2554   // TODO: Should this propagate fast-math-flags?
2555   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2556 }
2557 
2558 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2559                                                SelectionDAG &DAG) const {
2560   // TODO: Factor out code common with LowerSINT_TO_FP.
2561   EVT DestVT = Op.getValueType();
2562   SDValue Src = Op.getOperand(0);
2563   EVT SrcVT = Src.getValueType();
2564 
2565   if (SrcVT == MVT::i16) {
2566     if (DestVT == MVT::f16)
2567       return Op;
2568     SDLoc DL(Op);
2569 
2570     // Promote src to i32
2571     SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2572     return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2573   }
2574 
2575   assert(SrcVT == MVT::i64 && "operation should be legal");
2576 
2577   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2578     SDLoc DL(Op);
2579 
2580     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2581     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2582     SDValue FPRound =
2583         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2584 
2585     return FPRound;
2586   }
2587 
2588   if (DestVT == MVT::f32)
2589     return LowerINT_TO_FP32(Op, DAG, false);
2590 
2591   assert(DestVT == MVT::f64);
2592   return LowerINT_TO_FP64(Op, DAG, false);
2593 }
2594 
2595 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2596                                               SelectionDAG &DAG) const {
2597   EVT DestVT = Op.getValueType();
2598 
2599   SDValue Src = Op.getOperand(0);
2600   EVT SrcVT = Src.getValueType();
2601 
2602   if (SrcVT == MVT::i16) {
2603     if (DestVT == MVT::f16)
2604       return Op;
2605 
2606     SDLoc DL(Op);
2607     // Promote src to i32
2608     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2609     return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2610   }
2611 
2612   assert(SrcVT == MVT::i64 && "operation should be legal");
2613 
2614   // TODO: Factor out code common with LowerUINT_TO_FP.
2615 
2616   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2617     SDLoc DL(Op);
2618     SDValue Src = Op.getOperand(0);
2619 
2620     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2621     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2622     SDValue FPRound =
2623         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2624 
2625     return FPRound;
2626   }
2627 
2628   if (DestVT == MVT::f32)
2629     return LowerINT_TO_FP32(Op, DAG, true);
2630 
2631   assert(DestVT == MVT::f64);
2632   return LowerINT_TO_FP64(Op, DAG, true);
2633 }
2634 
2635 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG,
2636                                                bool Signed) const {
2637   SDLoc SL(Op);
2638 
2639   SDValue Src = Op.getOperand(0);
2640   EVT SrcVT = Src.getValueType();
2641 
2642   assert(SrcVT == MVT::f32 || SrcVT == MVT::f64);
2643 
2644   // The basic idea of converting a floating point number into a pair of 32-bit
2645   // integers is illustrated as follows:
2646   //
2647   //     tf := trunc(val);
2648   //    hif := floor(tf * 2^-32);
2649   //    lof := tf - hif * 2^32; // lof is always positive due to floor.
2650   //     hi := fptoi(hif);
2651   //     lo := fptoi(lof);
2652   //
2653   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src);
2654   SDValue Sign;
2655   if (Signed && SrcVT == MVT::f32) {
2656     // However, a 32-bit floating point number has only 23 bits mantissa and
2657     // it's not enough to hold all the significant bits of `lof` if val is
2658     // negative. To avoid the loss of precision, We need to take the absolute
2659     // value after truncating and flip the result back based on the original
2660     // signedness.
2661     Sign = DAG.getNode(ISD::SRA, SL, MVT::i32,
2662                        DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc),
2663                        DAG.getConstant(31, SL, MVT::i32));
2664     Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc);
2665   }
2666 
2667   SDValue K0, K1;
2668   if (SrcVT == MVT::f64) {
2669     K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)),
2670                            SL, SrcVT);
2671     K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)),
2672                            SL, SrcVT);
2673   } else {
2674     K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL,
2675                            SrcVT);
2676     K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL,
2677                            SrcVT);
2678   }
2679   // TODO: Should this propagate fast-math-flags?
2680   SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0);
2681 
2682   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul);
2683 
2684   SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc);
2685 
2686   SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT
2687                                                          : ISD::FP_TO_UINT,
2688                            SL, MVT::i32, FloorMul);
2689   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2690 
2691   SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64,
2692                                DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}));
2693 
2694   if (Signed && SrcVT == MVT::f32) {
2695     assert(Sign);
2696     // Flip the result based on the signedness, which is either all 0s or 1s.
2697     Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64,
2698                        DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign}));
2699     // r := xor(r, sign) - sign;
2700     Result =
2701         DAG.getNode(ISD::SUB, SL, MVT::i64,
2702                     DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign);
2703   }
2704 
2705   return Result;
2706 }
2707 
2708 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2709   SDLoc DL(Op);
2710   SDValue N0 = Op.getOperand(0);
2711 
2712   // Convert to target node to get known bits
2713   if (N0.getValueType() == MVT::f32)
2714     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2715 
2716   if (getTargetMachine().Options.UnsafeFPMath) {
2717     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2718     return SDValue();
2719   }
2720 
2721   assert(N0.getSimpleValueType() == MVT::f64);
2722 
2723   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2724   const unsigned ExpMask = 0x7ff;
2725   const unsigned ExpBiasf64 = 1023;
2726   const unsigned ExpBiasf16 = 15;
2727   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2728   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2729   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2730   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2731                            DAG.getConstant(32, DL, MVT::i64));
2732   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2733   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2734   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2735                           DAG.getConstant(20, DL, MVT::i64));
2736   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2737                   DAG.getConstant(ExpMask, DL, MVT::i32));
2738   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2739   // add the f16 bias (15) to get the biased exponent for the f16 format.
2740   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2741                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2742 
2743   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2744                           DAG.getConstant(8, DL, MVT::i32));
2745   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2746                   DAG.getConstant(0xffe, DL, MVT::i32));
2747 
2748   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2749                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2750   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2751 
2752   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2753   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2754 
2755   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2756   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2757       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2758                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2759 
2760   // N = M | (E << 12);
2761   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2762       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2763                   DAG.getConstant(12, DL, MVT::i32)));
2764 
2765   // B = clamp(1-E, 0, 13);
2766   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2767                                   One, E);
2768   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2769   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2770                   DAG.getConstant(13, DL, MVT::i32));
2771 
2772   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2773                                    DAG.getConstant(0x1000, DL, MVT::i32));
2774 
2775   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2776   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2777   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2778   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2779 
2780   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2781   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2782                               DAG.getConstant(0x7, DL, MVT::i32));
2783   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2784                   DAG.getConstant(2, DL, MVT::i32));
2785   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2786                                One, Zero, ISD::SETEQ);
2787   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2788                                One, Zero, ISD::SETGT);
2789   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2790   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2791 
2792   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2793                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2794   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2795                       I, V, ISD::SETEQ);
2796 
2797   // Extract the sign bit.
2798   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2799                             DAG.getConstant(16, DL, MVT::i32));
2800   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2801                      DAG.getConstant(0x8000, DL, MVT::i32));
2802 
2803   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2804   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2805 }
2806 
2807 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op,
2808                                              SelectionDAG &DAG) const {
2809   SDValue Src = Op.getOperand(0);
2810   unsigned OpOpcode = Op.getOpcode();
2811   EVT SrcVT = Src.getValueType();
2812   EVT DestVT = Op.getValueType();
2813 
2814   // Will be selected natively
2815   if (SrcVT == MVT::f16 && DestVT == MVT::i16)
2816     return Op;
2817 
2818   // Promote i16 to i32
2819   if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) {
2820     SDLoc DL(Op);
2821 
2822     SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2823     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32);
2824   }
2825 
2826   if (SrcVT == MVT::f16 ||
2827       (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) {
2828     SDLoc DL(Op);
2829 
2830     SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2831     unsigned Ext =
2832         OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2833     return DAG.getNode(Ext, DL, MVT::i64, FpToInt32);
2834   }
2835 
2836   if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64))
2837     return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT);
2838 
2839   return SDValue();
2840 }
2841 
2842 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2843                                                      SelectionDAG &DAG) const {
2844   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2845   MVT VT = Op.getSimpleValueType();
2846   MVT ScalarVT = VT.getScalarType();
2847 
2848   assert(VT.isVector());
2849 
2850   SDValue Src = Op.getOperand(0);
2851   SDLoc DL(Op);
2852 
2853   // TODO: Don't scalarize on Evergreen?
2854   unsigned NElts = VT.getVectorNumElements();
2855   SmallVector<SDValue, 8> Args;
2856   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2857 
2858   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2859   for (unsigned I = 0; I < NElts; ++I)
2860     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2861 
2862   return DAG.getBuildVector(VT, DL, Args);
2863 }
2864 
2865 //===----------------------------------------------------------------------===//
2866 // Custom DAG optimizations
2867 //===----------------------------------------------------------------------===//
2868 
2869 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2870   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2871 }
2872 
2873 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2874   EVT VT = Op.getValueType();
2875   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2876                                      // as unsigned 24-bit values.
2877          AMDGPUTargetLowering::numBitsSigned(Op, DAG) <= 24;
2878 }
2879 
2880 static SDValue simplifyMul24(SDNode *Node24,
2881                              TargetLowering::DAGCombinerInfo &DCI) {
2882   SelectionDAG &DAG = DCI.DAG;
2883   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2884   bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2885 
2886   SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2887   SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2888   unsigned NewOpcode = Node24->getOpcode();
2889   if (IsIntrin) {
2890     unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2891     switch (IID) {
2892     case Intrinsic::amdgcn_mul_i24:
2893       NewOpcode = AMDGPUISD::MUL_I24;
2894       break;
2895     case Intrinsic::amdgcn_mul_u24:
2896       NewOpcode = AMDGPUISD::MUL_U24;
2897       break;
2898     case Intrinsic::amdgcn_mulhi_i24:
2899       NewOpcode = AMDGPUISD::MULHI_I24;
2900       break;
2901     case Intrinsic::amdgcn_mulhi_u24:
2902       NewOpcode = AMDGPUISD::MULHI_U24;
2903       break;
2904     default:
2905       llvm_unreachable("Expected 24-bit mul intrinsic");
2906     }
2907   }
2908 
2909   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2910 
2911   // First try to simplify using SimplifyMultipleUseDemandedBits which allows
2912   // the operands to have other uses, but will only perform simplifications that
2913   // involve bypassing some nodes for this user.
2914   SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG);
2915   SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG);
2916   if (DemandedLHS || DemandedRHS)
2917     return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2918                        DemandedLHS ? DemandedLHS : LHS,
2919                        DemandedRHS ? DemandedRHS : RHS);
2920 
2921   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2922   // operands if this node is the only user.
2923   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2924     return SDValue(Node24, 0);
2925   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2926     return SDValue(Node24, 0);
2927 
2928   return SDValue();
2929 }
2930 
2931 template <typename IntTy>
2932 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2933                                uint32_t Width, const SDLoc &DL) {
2934   if (Width + Offset < 32) {
2935     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2936     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2937     return DAG.getConstant(Result, DL, MVT::i32);
2938   }
2939 
2940   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2941 }
2942 
2943 static bool hasVolatileUser(SDNode *Val) {
2944   for (SDNode *U : Val->uses()) {
2945     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2946       if (M->isVolatile())
2947         return true;
2948     }
2949   }
2950 
2951   return false;
2952 }
2953 
2954 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2955   // i32 vectors are the canonical memory type.
2956   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2957     return false;
2958 
2959   if (!VT.isByteSized())
2960     return false;
2961 
2962   unsigned Size = VT.getStoreSize();
2963 
2964   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2965     return false;
2966 
2967   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2968     return false;
2969 
2970   return true;
2971 }
2972 
2973 // Replace load of an illegal type with a store of a bitcast to a friendlier
2974 // type.
2975 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2976                                                  DAGCombinerInfo &DCI) const {
2977   if (!DCI.isBeforeLegalize())
2978     return SDValue();
2979 
2980   LoadSDNode *LN = cast<LoadSDNode>(N);
2981   if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2982     return SDValue();
2983 
2984   SDLoc SL(N);
2985   SelectionDAG &DAG = DCI.DAG;
2986   EVT VT = LN->getMemoryVT();
2987 
2988   unsigned Size = VT.getStoreSize();
2989   Align Alignment = LN->getAlign();
2990   if (Alignment < Size && isTypeLegal(VT)) {
2991     bool IsFast;
2992     unsigned AS = LN->getAddressSpace();
2993 
2994     // Expand unaligned loads earlier than legalization. Due to visitation order
2995     // problems during legalization, the emitted instructions to pack and unpack
2996     // the bytes again are not eliminated in the case of an unaligned copy.
2997     if (!allowsMisalignedMemoryAccesses(
2998             VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) {
2999       SDValue Ops[2];
3000 
3001       if (VT.isVector())
3002         std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
3003       else
3004         std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
3005 
3006       return DAG.getMergeValues(Ops, SDLoc(N));
3007     }
3008 
3009     if (!IsFast)
3010       return SDValue();
3011   }
3012 
3013   if (!shouldCombineMemoryType(VT))
3014     return SDValue();
3015 
3016   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3017 
3018   SDValue NewLoad
3019     = DAG.getLoad(NewVT, SL, LN->getChain(),
3020                   LN->getBasePtr(), LN->getMemOperand());
3021 
3022   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
3023   DCI.CombineTo(N, BC, NewLoad.getValue(1));
3024   return SDValue(N, 0);
3025 }
3026 
3027 // Replace store of an illegal type with a store of a bitcast to a friendlier
3028 // type.
3029 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
3030                                                   DAGCombinerInfo &DCI) const {
3031   if (!DCI.isBeforeLegalize())
3032     return SDValue();
3033 
3034   StoreSDNode *SN = cast<StoreSDNode>(N);
3035   if (!SN->isSimple() || !ISD::isNormalStore(SN))
3036     return SDValue();
3037 
3038   EVT VT = SN->getMemoryVT();
3039   unsigned Size = VT.getStoreSize();
3040 
3041   SDLoc SL(N);
3042   SelectionDAG &DAG = DCI.DAG;
3043   Align Alignment = SN->getAlign();
3044   if (Alignment < Size && isTypeLegal(VT)) {
3045     bool IsFast;
3046     unsigned AS = SN->getAddressSpace();
3047 
3048     // Expand unaligned stores earlier than legalization. Due to visitation
3049     // order problems during legalization, the emitted instructions to pack and
3050     // unpack the bytes again are not eliminated in the case of an unaligned
3051     // copy.
3052     if (!allowsMisalignedMemoryAccesses(
3053             VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) {
3054       if (VT.isVector())
3055         return scalarizeVectorStore(SN, DAG);
3056 
3057       return expandUnalignedStore(SN, DAG);
3058     }
3059 
3060     if (!IsFast)
3061       return SDValue();
3062   }
3063 
3064   if (!shouldCombineMemoryType(VT))
3065     return SDValue();
3066 
3067   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3068   SDValue Val = SN->getValue();
3069 
3070   //DCI.AddToWorklist(Val.getNode());
3071 
3072   bool OtherUses = !Val.hasOneUse();
3073   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
3074   if (OtherUses) {
3075     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
3076     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
3077   }
3078 
3079   return DAG.getStore(SN->getChain(), SL, CastVal,
3080                       SN->getBasePtr(), SN->getMemOperand());
3081 }
3082 
3083 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3084 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3085 // issues.
3086 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3087                                                         DAGCombinerInfo &DCI) const {
3088   SelectionDAG &DAG = DCI.DAG;
3089   SDValue N0 = N->getOperand(0);
3090 
3091   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3092   //     (vt2 (truncate (assertzext vt0:x, vt1)))
3093   if (N0.getOpcode() == ISD::TRUNCATE) {
3094     SDValue N1 = N->getOperand(1);
3095     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3096     SDLoc SL(N);
3097 
3098     SDValue Src = N0.getOperand(0);
3099     EVT SrcVT = Src.getValueType();
3100     if (SrcVT.bitsGE(ExtVT)) {
3101       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3102       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3103     }
3104   }
3105 
3106   return SDValue();
3107 }
3108 
3109 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3110   SDNode *N, DAGCombinerInfo &DCI) const {
3111   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3112   switch (IID) {
3113   case Intrinsic::amdgcn_mul_i24:
3114   case Intrinsic::amdgcn_mul_u24:
3115   case Intrinsic::amdgcn_mulhi_i24:
3116   case Intrinsic::amdgcn_mulhi_u24:
3117     return simplifyMul24(N, DCI);
3118   case Intrinsic::amdgcn_fract:
3119   case Intrinsic::amdgcn_rsq:
3120   case Intrinsic::amdgcn_rcp_legacy:
3121   case Intrinsic::amdgcn_rsq_legacy:
3122   case Intrinsic::amdgcn_rsq_clamp:
3123   case Intrinsic::amdgcn_ldexp: {
3124     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
3125     SDValue Src = N->getOperand(1);
3126     return Src.isUndef() ? Src : SDValue();
3127   }
3128   default:
3129     return SDValue();
3130   }
3131 }
3132 
3133 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3134 /// binary operation \p Opc to it with the corresponding constant operands.
3135 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3136   DAGCombinerInfo &DCI, const SDLoc &SL,
3137   unsigned Opc, SDValue LHS,
3138   uint32_t ValLo, uint32_t ValHi) const {
3139   SelectionDAG &DAG = DCI.DAG;
3140   SDValue Lo, Hi;
3141   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3142 
3143   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3144   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3145 
3146   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3147   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3148 
3149   // Re-visit the ands. It's possible we eliminated one of them and it could
3150   // simplify the vector.
3151   DCI.AddToWorklist(Lo.getNode());
3152   DCI.AddToWorklist(Hi.getNode());
3153 
3154   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3155   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3156 }
3157 
3158 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3159                                                 DAGCombinerInfo &DCI) const {
3160   EVT VT = N->getValueType(0);
3161 
3162   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3163   if (!RHS)
3164     return SDValue();
3165 
3166   SDValue LHS = N->getOperand(0);
3167   unsigned RHSVal = RHS->getZExtValue();
3168   if (!RHSVal)
3169     return LHS;
3170 
3171   SDLoc SL(N);
3172   SelectionDAG &DAG = DCI.DAG;
3173 
3174   switch (LHS->getOpcode()) {
3175   default:
3176     break;
3177   case ISD::ZERO_EXTEND:
3178   case ISD::SIGN_EXTEND:
3179   case ISD::ANY_EXTEND: {
3180     SDValue X = LHS->getOperand(0);
3181 
3182     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3183         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3184       // Prefer build_vector as the canonical form if packed types are legal.
3185       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3186       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3187        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3188       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3189     }
3190 
3191     // shl (ext x) => zext (shl x), if shift does not overflow int
3192     if (VT != MVT::i64)
3193       break;
3194     KnownBits Known = DAG.computeKnownBits(X);
3195     unsigned LZ = Known.countMinLeadingZeros();
3196     if (LZ < RHSVal)
3197       break;
3198     EVT XVT = X.getValueType();
3199     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3200     return DAG.getZExtOrTrunc(Shl, SL, VT);
3201   }
3202   }
3203 
3204   if (VT != MVT::i64)
3205     return SDValue();
3206 
3207   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3208 
3209   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3210   // common case, splitting this into a move and a 32-bit shift is faster and
3211   // the same code size.
3212   if (RHSVal < 32)
3213     return SDValue();
3214 
3215   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3216 
3217   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3218   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3219 
3220   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3221 
3222   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3223   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3224 }
3225 
3226 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3227                                                 DAGCombinerInfo &DCI) const {
3228   if (N->getValueType(0) != MVT::i64)
3229     return SDValue();
3230 
3231   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3232   if (!RHS)
3233     return SDValue();
3234 
3235   SelectionDAG &DAG = DCI.DAG;
3236   SDLoc SL(N);
3237   unsigned RHSVal = RHS->getZExtValue();
3238 
3239   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3240   if (RHSVal == 32) {
3241     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3242     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3243                                    DAG.getConstant(31, SL, MVT::i32));
3244 
3245     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3246     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3247   }
3248 
3249   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3250   if (RHSVal == 63) {
3251     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3252     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3253                                    DAG.getConstant(31, SL, MVT::i32));
3254     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3255     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3256   }
3257 
3258   return SDValue();
3259 }
3260 
3261 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3262                                                 DAGCombinerInfo &DCI) const {
3263   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3264   if (!RHS)
3265     return SDValue();
3266 
3267   EVT VT = N->getValueType(0);
3268   SDValue LHS = N->getOperand(0);
3269   unsigned ShiftAmt = RHS->getZExtValue();
3270   SelectionDAG &DAG = DCI.DAG;
3271   SDLoc SL(N);
3272 
3273   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3274   // this improves the ability to match BFE patterns in isel.
3275   if (LHS.getOpcode() == ISD::AND) {
3276     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3277       if (Mask->getAPIntValue().isShiftedMask() &&
3278           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3279         return DAG.getNode(
3280             ISD::AND, SL, VT,
3281             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3282             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3283       }
3284     }
3285   }
3286 
3287   if (VT != MVT::i64)
3288     return SDValue();
3289 
3290   if (ShiftAmt < 32)
3291     return SDValue();
3292 
3293   // srl i64:x, C for C >= 32
3294   // =>
3295   //   build_pair (srl hi_32(x), C - 32), 0
3296   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3297 
3298   SDValue Hi = getHiHalf64(LHS, DAG);
3299 
3300   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3301   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3302 
3303   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3304 
3305   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3306 }
3307 
3308 SDValue AMDGPUTargetLowering::performTruncateCombine(
3309   SDNode *N, DAGCombinerInfo &DCI) const {
3310   SDLoc SL(N);
3311   SelectionDAG &DAG = DCI.DAG;
3312   EVT VT = N->getValueType(0);
3313   SDValue Src = N->getOperand(0);
3314 
3315   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3316   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3317     SDValue Vec = Src.getOperand(0);
3318     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3319       SDValue Elt0 = Vec.getOperand(0);
3320       EVT EltVT = Elt0.getValueType();
3321       if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) {
3322         if (EltVT.isFloatingPoint()) {
3323           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3324                              EltVT.changeTypeToInteger(), Elt0);
3325         }
3326 
3327         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3328       }
3329     }
3330   }
3331 
3332   // Equivalent of above for accessing the high element of a vector as an
3333   // integer operation.
3334   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3335   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3336     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3337       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3338         SDValue BV = stripBitcast(Src.getOperand(0));
3339         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3340             BV.getValueType().getVectorNumElements() == 2) {
3341           SDValue SrcElt = BV.getOperand(1);
3342           EVT SrcEltVT = SrcElt.getValueType();
3343           if (SrcEltVT.isFloatingPoint()) {
3344             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3345                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3346           }
3347 
3348           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3349         }
3350       }
3351     }
3352   }
3353 
3354   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3355   //
3356   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3357   //     i16 (trunc (srl (i32 (trunc x), K)))
3358   if (VT.getScalarSizeInBits() < 32) {
3359     EVT SrcVT = Src.getValueType();
3360     if (SrcVT.getScalarSizeInBits() > 32 &&
3361         (Src.getOpcode() == ISD::SRL ||
3362          Src.getOpcode() == ISD::SRA ||
3363          Src.getOpcode() == ISD::SHL)) {
3364       SDValue Amt = Src.getOperand(1);
3365       KnownBits Known = DAG.computeKnownBits(Amt);
3366       unsigned Size = VT.getScalarSizeInBits();
3367       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3368           (Known.countMaxActiveBits() <= Log2_32(Size))) {
3369         EVT MidVT = VT.isVector() ?
3370           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3371                            VT.getVectorNumElements()) : MVT::i32;
3372 
3373         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3374         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3375                                     Src.getOperand(0));
3376         DCI.AddToWorklist(Trunc.getNode());
3377 
3378         if (Amt.getValueType() != NewShiftVT) {
3379           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3380           DCI.AddToWorklist(Amt.getNode());
3381         }
3382 
3383         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3384                                           Trunc, Amt);
3385         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3386       }
3387     }
3388   }
3389 
3390   return SDValue();
3391 }
3392 
3393 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3394 // instructions. If we only match on the legalized i64 mul expansion,
3395 // SimplifyDemandedBits will be unable to remove them because there will be
3396 // multiple uses due to the separate mul + mulh[su].
3397 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3398                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3399   if (Size <= 32) {
3400     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3401     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3402   }
3403 
3404   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3405   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3406 
3407   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3408   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3409 
3410   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi);
3411 }
3412 
3413 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3414                                                 DAGCombinerInfo &DCI) const {
3415   EVT VT = N->getValueType(0);
3416 
3417   // Don't generate 24-bit multiplies on values that are in SGPRs, since
3418   // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3419   // unnecessarily). isDivergent() is used as an approximation of whether the
3420   // value is in an SGPR.
3421   if (!N->isDivergent())
3422     return SDValue();
3423 
3424   unsigned Size = VT.getSizeInBits();
3425   if (VT.isVector() || Size > 64)
3426     return SDValue();
3427 
3428   // There are i16 integer mul/mad.
3429   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3430     return SDValue();
3431 
3432   SelectionDAG &DAG = DCI.DAG;
3433   SDLoc DL(N);
3434 
3435   SDValue N0 = N->getOperand(0);
3436   SDValue N1 = N->getOperand(1);
3437 
3438   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3439   // in the source into any_extends if the result of the mul is truncated. Since
3440   // we can assume the high bits are whatever we want, use the underlying value
3441   // to avoid the unknown high bits from interfering.
3442   if (N0.getOpcode() == ISD::ANY_EXTEND)
3443     N0 = N0.getOperand(0);
3444 
3445   if (N1.getOpcode() == ISD::ANY_EXTEND)
3446     N1 = N1.getOperand(0);
3447 
3448   SDValue Mul;
3449 
3450   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3451     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3452     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3453     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3454   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3455     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3456     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3457     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3458   } else {
3459     return SDValue();
3460   }
3461 
3462   // We need to use sext even for MUL_U24, because MUL_U24 is used
3463   // for signed multiply of 8 and 16-bit types.
3464   return DAG.getSExtOrTrunc(Mul, DL, VT);
3465 }
3466 
3467 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3468                                                   DAGCombinerInfo &DCI) const {
3469   EVT VT = N->getValueType(0);
3470 
3471   if (!Subtarget->hasMulI24() || VT.isVector())
3472     return SDValue();
3473 
3474   // Don't generate 24-bit multiplies on values that are in SGPRs, since
3475   // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3476   // unnecessarily). isDivergent() is used as an approximation of whether the
3477   // value is in an SGPR.
3478   // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3479   // valu op anyway)
3480   if (Subtarget->hasSMulHi() && !N->isDivergent())
3481     return SDValue();
3482 
3483   SelectionDAG &DAG = DCI.DAG;
3484   SDLoc DL(N);
3485 
3486   SDValue N0 = N->getOperand(0);
3487   SDValue N1 = N->getOperand(1);
3488 
3489   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3490     return SDValue();
3491 
3492   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3493   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3494 
3495   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3496   DCI.AddToWorklist(Mulhi.getNode());
3497   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3498 }
3499 
3500 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3501                                                   DAGCombinerInfo &DCI) const {
3502   EVT VT = N->getValueType(0);
3503 
3504   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3505     return SDValue();
3506 
3507   // Don't generate 24-bit multiplies on values that are in SGPRs, since
3508   // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3509   // unnecessarily). isDivergent() is used as an approximation of whether the
3510   // value is in an SGPR.
3511   // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3512   // valu op anyway)
3513   if (Subtarget->hasSMulHi() && !N->isDivergent())
3514     return SDValue();
3515 
3516   SelectionDAG &DAG = DCI.DAG;
3517   SDLoc DL(N);
3518 
3519   SDValue N0 = N->getOperand(0);
3520   SDValue N1 = N->getOperand(1);
3521 
3522   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3523     return SDValue();
3524 
3525   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3526   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3527 
3528   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3529   DCI.AddToWorklist(Mulhi.getNode());
3530   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3531 }
3532 
3533 static bool isNegativeOne(SDValue Val) {
3534   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3535     return C->isAllOnes();
3536   return false;
3537 }
3538 
3539 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3540                                           SDValue Op,
3541                                           const SDLoc &DL,
3542                                           unsigned Opc) const {
3543   EVT VT = Op.getValueType();
3544   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3545   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3546                               LegalVT != MVT::i16))
3547     return SDValue();
3548 
3549   if (VT != MVT::i32)
3550     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3551 
3552   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3553   if (VT != MVT::i32)
3554     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3555 
3556   return FFBX;
3557 }
3558 
3559 // The native instructions return -1 on 0 input. Optimize out a select that
3560 // produces -1 on 0.
3561 //
3562 // TODO: If zero is not undef, we could also do this if the output is compared
3563 // against the bitwidth.
3564 //
3565 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3566 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3567                                                  SDValue LHS, SDValue RHS,
3568                                                  DAGCombinerInfo &DCI) const {
3569   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3570   if (!CmpRhs || !CmpRhs->isZero())
3571     return SDValue();
3572 
3573   SelectionDAG &DAG = DCI.DAG;
3574   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3575   SDValue CmpLHS = Cond.getOperand(0);
3576 
3577   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3578   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3579   if (CCOpcode == ISD::SETEQ &&
3580       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3581       RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) {
3582     unsigned Opc =
3583         isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3584     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3585   }
3586 
3587   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3588   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3589   if (CCOpcode == ISD::SETNE &&
3590       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) &&
3591       LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) {
3592     unsigned Opc =
3593         isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3594 
3595     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3596   }
3597 
3598   return SDValue();
3599 }
3600 
3601 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3602                                          unsigned Op,
3603                                          const SDLoc &SL,
3604                                          SDValue Cond,
3605                                          SDValue N1,
3606                                          SDValue N2) {
3607   SelectionDAG &DAG = DCI.DAG;
3608   EVT VT = N1.getValueType();
3609 
3610   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3611                                   N1.getOperand(0), N2.getOperand(0));
3612   DCI.AddToWorklist(NewSelect.getNode());
3613   return DAG.getNode(Op, SL, VT, NewSelect);
3614 }
3615 
3616 // Pull a free FP operation out of a select so it may fold into uses.
3617 //
3618 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3619 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3620 //
3621 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3622 // select c, (fabs x), +k -> fabs (select c, x, k)
3623 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3624                                     SDValue N) {
3625   SelectionDAG &DAG = DCI.DAG;
3626   SDValue Cond = N.getOperand(0);
3627   SDValue LHS = N.getOperand(1);
3628   SDValue RHS = N.getOperand(2);
3629 
3630   EVT VT = N.getValueType();
3631   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3632       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3633     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3634                                      SDLoc(N), Cond, LHS, RHS);
3635   }
3636 
3637   bool Inv = false;
3638   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3639     std::swap(LHS, RHS);
3640     Inv = true;
3641   }
3642 
3643   // TODO: Support vector constants.
3644   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3645   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3646     SDLoc SL(N);
3647     // If one side is an fneg/fabs and the other is a constant, we can push the
3648     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3649     SDValue NewLHS = LHS.getOperand(0);
3650     SDValue NewRHS = RHS;
3651 
3652     // Careful: if the neg can be folded up, don't try to pull it back down.
3653     bool ShouldFoldNeg = true;
3654 
3655     if (NewLHS.hasOneUse()) {
3656       unsigned Opc = NewLHS.getOpcode();
3657       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3658         ShouldFoldNeg = false;
3659       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3660         ShouldFoldNeg = false;
3661     }
3662 
3663     if (ShouldFoldNeg) {
3664       if (LHS.getOpcode() == ISD::FNEG)
3665         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3666       else if (CRHS->isNegative())
3667         return SDValue();
3668 
3669       if (Inv)
3670         std::swap(NewLHS, NewRHS);
3671 
3672       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3673                                       Cond, NewLHS, NewRHS);
3674       DCI.AddToWorklist(NewSelect.getNode());
3675       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3676     }
3677   }
3678 
3679   return SDValue();
3680 }
3681 
3682 
3683 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3684                                                    DAGCombinerInfo &DCI) const {
3685   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3686     return Folded;
3687 
3688   SDValue Cond = N->getOperand(0);
3689   if (Cond.getOpcode() != ISD::SETCC)
3690     return SDValue();
3691 
3692   EVT VT = N->getValueType(0);
3693   SDValue LHS = Cond.getOperand(0);
3694   SDValue RHS = Cond.getOperand(1);
3695   SDValue CC = Cond.getOperand(2);
3696 
3697   SDValue True = N->getOperand(1);
3698   SDValue False = N->getOperand(2);
3699 
3700   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3701     SelectionDAG &DAG = DCI.DAG;
3702     if (DAG.isConstantValueOfAnyType(True) &&
3703         !DAG.isConstantValueOfAnyType(False)) {
3704       // Swap cmp + select pair to move constant to false input.
3705       // This will allow using VOPC cndmasks more often.
3706       // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3707 
3708       SDLoc SL(N);
3709       ISD::CondCode NewCC =
3710           getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3711 
3712       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3713       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3714     }
3715 
3716     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3717       SDValue MinMax
3718         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3719       // Revisit this node so we can catch min3/max3/med3 patterns.
3720       //DCI.AddToWorklist(MinMax.getNode());
3721       return MinMax;
3722     }
3723   }
3724 
3725   // There's no reason to not do this if the condition has other uses.
3726   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3727 }
3728 
3729 static bool isInv2Pi(const APFloat &APF) {
3730   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3731   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3732   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3733 
3734   return APF.bitwiseIsEqual(KF16) ||
3735          APF.bitwiseIsEqual(KF32) ||
3736          APF.bitwiseIsEqual(KF64);
3737 }
3738 
3739 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3740 // additional cost to negate them.
3741 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3742   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3743     if (C->isZero() && !C->isNegative())
3744       return true;
3745 
3746     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3747       return true;
3748   }
3749 
3750   return false;
3751 }
3752 
3753 static unsigned inverseMinMax(unsigned Opc) {
3754   switch (Opc) {
3755   case ISD::FMAXNUM:
3756     return ISD::FMINNUM;
3757   case ISD::FMINNUM:
3758     return ISD::FMAXNUM;
3759   case ISD::FMAXNUM_IEEE:
3760     return ISD::FMINNUM_IEEE;
3761   case ISD::FMINNUM_IEEE:
3762     return ISD::FMAXNUM_IEEE;
3763   case AMDGPUISD::FMAX_LEGACY:
3764     return AMDGPUISD::FMIN_LEGACY;
3765   case AMDGPUISD::FMIN_LEGACY:
3766     return  AMDGPUISD::FMAX_LEGACY;
3767   default:
3768     llvm_unreachable("invalid min/max opcode");
3769   }
3770 }
3771 
3772 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3773                                                  DAGCombinerInfo &DCI) const {
3774   SelectionDAG &DAG = DCI.DAG;
3775   SDValue N0 = N->getOperand(0);
3776   EVT VT = N->getValueType(0);
3777 
3778   unsigned Opc = N0.getOpcode();
3779 
3780   // If the input has multiple uses and we can either fold the negate down, or
3781   // the other uses cannot, give up. This both prevents unprofitable
3782   // transformations and infinite loops: we won't repeatedly try to fold around
3783   // a negate that has no 'good' form.
3784   if (N0.hasOneUse()) {
3785     // This may be able to fold into the source, but at a code size cost. Don't
3786     // fold if the fold into the user is free.
3787     if (allUsesHaveSourceMods(N, 0))
3788       return SDValue();
3789   } else {
3790     if (fnegFoldsIntoOp(Opc) &&
3791         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3792       return SDValue();
3793   }
3794 
3795   SDLoc SL(N);
3796   switch (Opc) {
3797   case ISD::FADD: {
3798     if (!mayIgnoreSignedZero(N0))
3799       return SDValue();
3800 
3801     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3802     SDValue LHS = N0.getOperand(0);
3803     SDValue RHS = N0.getOperand(1);
3804 
3805     if (LHS.getOpcode() != ISD::FNEG)
3806       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3807     else
3808       LHS = LHS.getOperand(0);
3809 
3810     if (RHS.getOpcode() != ISD::FNEG)
3811       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3812     else
3813       RHS = RHS.getOperand(0);
3814 
3815     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3816     if (Res.getOpcode() != ISD::FADD)
3817       return SDValue(); // Op got folded away.
3818     if (!N0.hasOneUse())
3819       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3820     return Res;
3821   }
3822   case ISD::FMUL:
3823   case AMDGPUISD::FMUL_LEGACY: {
3824     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3825     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3826     SDValue LHS = N0.getOperand(0);
3827     SDValue RHS = N0.getOperand(1);
3828 
3829     if (LHS.getOpcode() == ISD::FNEG)
3830       LHS = LHS.getOperand(0);
3831     else if (RHS.getOpcode() == ISD::FNEG)
3832       RHS = RHS.getOperand(0);
3833     else
3834       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3835 
3836     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3837     if (Res.getOpcode() != Opc)
3838       return SDValue(); // Op got folded away.
3839     if (!N0.hasOneUse())
3840       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3841     return Res;
3842   }
3843   case ISD::FMA:
3844   case ISD::FMAD: {
3845     // TODO: handle llvm.amdgcn.fma.legacy
3846     if (!mayIgnoreSignedZero(N0))
3847       return SDValue();
3848 
3849     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3850     SDValue LHS = N0.getOperand(0);
3851     SDValue MHS = N0.getOperand(1);
3852     SDValue RHS = N0.getOperand(2);
3853 
3854     if (LHS.getOpcode() == ISD::FNEG)
3855       LHS = LHS.getOperand(0);
3856     else if (MHS.getOpcode() == ISD::FNEG)
3857       MHS = MHS.getOperand(0);
3858     else
3859       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3860 
3861     if (RHS.getOpcode() != ISD::FNEG)
3862       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3863     else
3864       RHS = RHS.getOperand(0);
3865 
3866     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3867     if (Res.getOpcode() != Opc)
3868       return SDValue(); // Op got folded away.
3869     if (!N0.hasOneUse())
3870       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3871     return Res;
3872   }
3873   case ISD::FMAXNUM:
3874   case ISD::FMINNUM:
3875   case ISD::FMAXNUM_IEEE:
3876   case ISD::FMINNUM_IEEE:
3877   case AMDGPUISD::FMAX_LEGACY:
3878   case AMDGPUISD::FMIN_LEGACY: {
3879     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3880     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3881     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3882     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3883 
3884     SDValue LHS = N0.getOperand(0);
3885     SDValue RHS = N0.getOperand(1);
3886 
3887     // 0 doesn't have a negated inline immediate.
3888     // TODO: This constant check should be generalized to other operations.
3889     if (isConstantCostlierToNegate(RHS))
3890       return SDValue();
3891 
3892     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3893     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3894     unsigned Opposite = inverseMinMax(Opc);
3895 
3896     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3897     if (Res.getOpcode() != Opposite)
3898       return SDValue(); // Op got folded away.
3899     if (!N0.hasOneUse())
3900       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3901     return Res;
3902   }
3903   case AMDGPUISD::FMED3: {
3904     SDValue Ops[3];
3905     for (unsigned I = 0; I < 3; ++I)
3906       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3907 
3908     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3909     if (Res.getOpcode() != AMDGPUISD::FMED3)
3910       return SDValue(); // Op got folded away.
3911 
3912     if (!N0.hasOneUse()) {
3913       SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res);
3914       DAG.ReplaceAllUsesWith(N0, Neg);
3915 
3916       for (SDNode *U : Neg->uses())
3917         DCI.AddToWorklist(U);
3918     }
3919 
3920     return Res;
3921   }
3922   case ISD::FP_EXTEND:
3923   case ISD::FTRUNC:
3924   case ISD::FRINT:
3925   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3926   case ISD::FSIN:
3927   case ISD::FCANONICALIZE:
3928   case AMDGPUISD::RCP:
3929   case AMDGPUISD::RCP_LEGACY:
3930   case AMDGPUISD::RCP_IFLAG:
3931   case AMDGPUISD::SIN_HW: {
3932     SDValue CvtSrc = N0.getOperand(0);
3933     if (CvtSrc.getOpcode() == ISD::FNEG) {
3934       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3935       // (fneg (rcp (fneg x))) -> (rcp x)
3936       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3937     }
3938 
3939     if (!N0.hasOneUse())
3940       return SDValue();
3941 
3942     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3943     // (fneg (rcp x)) -> (rcp (fneg x))
3944     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3945     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3946   }
3947   case ISD::FP_ROUND: {
3948     SDValue CvtSrc = N0.getOperand(0);
3949 
3950     if (CvtSrc.getOpcode() == ISD::FNEG) {
3951       // (fneg (fp_round (fneg x))) -> (fp_round x)
3952       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3953                          CvtSrc.getOperand(0), N0.getOperand(1));
3954     }
3955 
3956     if (!N0.hasOneUse())
3957       return SDValue();
3958 
3959     // (fneg (fp_round x)) -> (fp_round (fneg x))
3960     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3961     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3962   }
3963   case ISD::FP16_TO_FP: {
3964     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3965     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3966     // Put the fneg back as a legal source operation that can be matched later.
3967     SDLoc SL(N);
3968 
3969     SDValue Src = N0.getOperand(0);
3970     EVT SrcVT = Src.getValueType();
3971 
3972     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3973     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3974                                   DAG.getConstant(0x8000, SL, SrcVT));
3975     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3976   }
3977   default:
3978     return SDValue();
3979   }
3980 }
3981 
3982 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3983                                                  DAGCombinerInfo &DCI) const {
3984   SelectionDAG &DAG = DCI.DAG;
3985   SDValue N0 = N->getOperand(0);
3986 
3987   if (!N0.hasOneUse())
3988     return SDValue();
3989 
3990   switch (N0.getOpcode()) {
3991   case ISD::FP16_TO_FP: {
3992     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3993     SDLoc SL(N);
3994     SDValue Src = N0.getOperand(0);
3995     EVT SrcVT = Src.getValueType();
3996 
3997     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3998     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3999                                   DAG.getConstant(0x7fff, SL, SrcVT));
4000     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
4001   }
4002   default:
4003     return SDValue();
4004   }
4005 }
4006 
4007 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
4008                                                 DAGCombinerInfo &DCI) const {
4009   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
4010   if (!CFP)
4011     return SDValue();
4012 
4013   // XXX - Should this flush denormals?
4014   const APFloat &Val = CFP->getValueAPF();
4015   APFloat One(Val.getSemantics(), "1.0");
4016   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
4017 }
4018 
4019 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
4020                                                 DAGCombinerInfo &DCI) const {
4021   SelectionDAG &DAG = DCI.DAG;
4022   SDLoc DL(N);
4023 
4024   switch(N->getOpcode()) {
4025   default:
4026     break;
4027   case ISD::BITCAST: {
4028     EVT DestVT = N->getValueType(0);
4029 
4030     // Push casts through vector builds. This helps avoid emitting a large
4031     // number of copies when materializing floating point vector constants.
4032     //
4033     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
4034     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
4035     if (DestVT.isVector()) {
4036       SDValue Src = N->getOperand(0);
4037       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
4038         EVT SrcVT = Src.getValueType();
4039         unsigned NElts = DestVT.getVectorNumElements();
4040 
4041         if (SrcVT.getVectorNumElements() == NElts) {
4042           EVT DestEltVT = DestVT.getVectorElementType();
4043 
4044           SmallVector<SDValue, 8> CastedElts;
4045           SDLoc SL(N);
4046           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
4047             SDValue Elt = Src.getOperand(I);
4048             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
4049           }
4050 
4051           return DAG.getBuildVector(DestVT, SL, CastedElts);
4052         }
4053       }
4054     }
4055 
4056     if (DestVT.getSizeInBits() != 64 || !DestVT.isVector())
4057       break;
4058 
4059     // Fold bitcasts of constants.
4060     //
4061     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
4062     // TODO: Generalize and move to DAGCombiner
4063     SDValue Src = N->getOperand(0);
4064     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
4065       SDLoc SL(N);
4066       uint64_t CVal = C->getZExtValue();
4067       SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4068                                DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4069                                DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4070       return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
4071     }
4072 
4073     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
4074       const APInt &Val = C->getValueAPF().bitcastToAPInt();
4075       SDLoc SL(N);
4076       uint64_t CVal = Val.getZExtValue();
4077       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4078                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4079                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4080 
4081       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
4082     }
4083 
4084     break;
4085   }
4086   case ISD::SHL: {
4087     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4088       break;
4089 
4090     return performShlCombine(N, DCI);
4091   }
4092   case ISD::SRL: {
4093     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4094       break;
4095 
4096     return performSrlCombine(N, DCI);
4097   }
4098   case ISD::SRA: {
4099     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4100       break;
4101 
4102     return performSraCombine(N, DCI);
4103   }
4104   case ISD::TRUNCATE:
4105     return performTruncateCombine(N, DCI);
4106   case ISD::MUL:
4107     return performMulCombine(N, DCI);
4108   case ISD::MULHS:
4109     return performMulhsCombine(N, DCI);
4110   case ISD::MULHU:
4111     return performMulhuCombine(N, DCI);
4112   case AMDGPUISD::MUL_I24:
4113   case AMDGPUISD::MUL_U24:
4114   case AMDGPUISD::MULHI_I24:
4115   case AMDGPUISD::MULHI_U24:
4116     return simplifyMul24(N, DCI);
4117   case ISD::SELECT:
4118     return performSelectCombine(N, DCI);
4119   case ISD::FNEG:
4120     return performFNegCombine(N, DCI);
4121   case ISD::FABS:
4122     return performFAbsCombine(N, DCI);
4123   case AMDGPUISD::BFE_I32:
4124   case AMDGPUISD::BFE_U32: {
4125     assert(!N->getValueType(0).isVector() &&
4126            "Vector handling of BFE not implemented");
4127     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4128     if (!Width)
4129       break;
4130 
4131     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4132     if (WidthVal == 0)
4133       return DAG.getConstant(0, DL, MVT::i32);
4134 
4135     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4136     if (!Offset)
4137       break;
4138 
4139     SDValue BitsFrom = N->getOperand(0);
4140     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4141 
4142     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4143 
4144     if (OffsetVal == 0) {
4145       // This is already sign / zero extended, so try to fold away extra BFEs.
4146       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4147 
4148       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4149       if (OpSignBits >= SignBits)
4150         return BitsFrom;
4151 
4152       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4153       if (Signed) {
4154         // This is a sign_extend_inreg. Replace it to take advantage of existing
4155         // DAG Combines. If not eliminated, we will match back to BFE during
4156         // selection.
4157 
4158         // TODO: The sext_inreg of extended types ends, although we can could
4159         // handle them in a single BFE.
4160         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4161                            DAG.getValueType(SmallVT));
4162       }
4163 
4164       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4165     }
4166 
4167     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4168       if (Signed) {
4169         return constantFoldBFE<int32_t>(DAG,
4170                                         CVal->getSExtValue(),
4171                                         OffsetVal,
4172                                         WidthVal,
4173                                         DL);
4174       }
4175 
4176       return constantFoldBFE<uint32_t>(DAG,
4177                                        CVal->getZExtValue(),
4178                                        OffsetVal,
4179                                        WidthVal,
4180                                        DL);
4181     }
4182 
4183     if ((OffsetVal + WidthVal) >= 32 &&
4184         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4185       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4186       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4187                          BitsFrom, ShiftVal);
4188     }
4189 
4190     if (BitsFrom.hasOneUse()) {
4191       APInt Demanded = APInt::getBitsSet(32,
4192                                          OffsetVal,
4193                                          OffsetVal + WidthVal);
4194 
4195       KnownBits Known;
4196       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4197                                             !DCI.isBeforeLegalizeOps());
4198       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4199       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4200           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4201         DCI.CommitTargetLoweringOpt(TLO);
4202       }
4203     }
4204 
4205     break;
4206   }
4207   case ISD::LOAD:
4208     return performLoadCombine(N, DCI);
4209   case ISD::STORE:
4210     return performStoreCombine(N, DCI);
4211   case AMDGPUISD::RCP:
4212   case AMDGPUISD::RCP_IFLAG:
4213     return performRcpCombine(N, DCI);
4214   case ISD::AssertZext:
4215   case ISD::AssertSext:
4216     return performAssertSZExtCombine(N, DCI);
4217   case ISD::INTRINSIC_WO_CHAIN:
4218     return performIntrinsicWOChainCombine(N, DCI);
4219   }
4220   return SDValue();
4221 }
4222 
4223 //===----------------------------------------------------------------------===//
4224 // Helper functions
4225 //===----------------------------------------------------------------------===//
4226 
4227 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4228                                                    const TargetRegisterClass *RC,
4229                                                    Register Reg, EVT VT,
4230                                                    const SDLoc &SL,
4231                                                    bool RawReg) const {
4232   MachineFunction &MF = DAG.getMachineFunction();
4233   MachineRegisterInfo &MRI = MF.getRegInfo();
4234   Register VReg;
4235 
4236   if (!MRI.isLiveIn(Reg)) {
4237     VReg = MRI.createVirtualRegister(RC);
4238     MRI.addLiveIn(Reg, VReg);
4239   } else {
4240     VReg = MRI.getLiveInVirtReg(Reg);
4241   }
4242 
4243   if (RawReg)
4244     return DAG.getRegister(VReg, VT);
4245 
4246   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4247 }
4248 
4249 // This may be called multiple times, and nothing prevents creating multiple
4250 // objects at the same offset. See if we already defined this object.
4251 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4252                                        int64_t Offset) {
4253   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4254     if (MFI.getObjectOffset(I) == Offset) {
4255       assert(MFI.getObjectSize(I) == Size);
4256       return I;
4257     }
4258   }
4259 
4260   return MFI.CreateFixedObject(Size, Offset, true);
4261 }
4262 
4263 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4264                                                   EVT VT,
4265                                                   const SDLoc &SL,
4266                                                   int64_t Offset) const {
4267   MachineFunction &MF = DAG.getMachineFunction();
4268   MachineFrameInfo &MFI = MF.getFrameInfo();
4269   int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4270 
4271   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4272   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4273 
4274   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4),
4275                      MachineMemOperand::MODereferenceable |
4276                          MachineMemOperand::MOInvariant);
4277 }
4278 
4279 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4280                                                    const SDLoc &SL,
4281                                                    SDValue Chain,
4282                                                    SDValue ArgVal,
4283                                                    int64_t Offset) const {
4284   MachineFunction &MF = DAG.getMachineFunction();
4285   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4286   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4287 
4288   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4289   // Stores to the argument stack area are relative to the stack pointer.
4290   SDValue SP =
4291       DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32);
4292   Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr);
4293   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4),
4294                                MachineMemOperand::MODereferenceable);
4295   return Store;
4296 }
4297 
4298 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4299                                              const TargetRegisterClass *RC,
4300                                              EVT VT, const SDLoc &SL,
4301                                              const ArgDescriptor &Arg) const {
4302   assert(Arg && "Attempting to load missing argument");
4303 
4304   SDValue V = Arg.isRegister() ?
4305     CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4306     loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4307 
4308   if (!Arg.isMasked())
4309     return V;
4310 
4311   unsigned Mask = Arg.getMask();
4312   unsigned Shift = countTrailingZeros<unsigned>(Mask);
4313   V = DAG.getNode(ISD::SRL, SL, VT, V,
4314                   DAG.getShiftAmountConstant(Shift, VT, SL));
4315   return DAG.getNode(ISD::AND, SL, VT, V,
4316                      DAG.getConstant(Mask >> Shift, SL, VT));
4317 }
4318 
4319 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4320     const MachineFunction &MF, const ImplicitParameter Param) const {
4321   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4322   const AMDGPUSubtarget &ST =
4323       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4324   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4325   const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4326   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4327                        ExplicitArgOffset;
4328   switch (Param) {
4329   case GRID_DIM:
4330     return ArgOffset;
4331   case GRID_OFFSET:
4332     return ArgOffset + 4;
4333   }
4334   llvm_unreachable("unexpected implicit parameter type");
4335 }
4336 
4337 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4338 
4339 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4340   switch ((AMDGPUISD::NodeType)Opcode) {
4341   case AMDGPUISD::FIRST_NUMBER: break;
4342   // AMDIL DAG nodes
4343   NODE_NAME_CASE(UMUL);
4344   NODE_NAME_CASE(BRANCH_COND);
4345 
4346   // AMDGPU DAG nodes
4347   NODE_NAME_CASE(IF)
4348   NODE_NAME_CASE(ELSE)
4349   NODE_NAME_CASE(LOOP)
4350   NODE_NAME_CASE(CALL)
4351   NODE_NAME_CASE(TC_RETURN)
4352   NODE_NAME_CASE(TRAP)
4353   NODE_NAME_CASE(RET_FLAG)
4354   NODE_NAME_CASE(RET_GFX_FLAG)
4355   NODE_NAME_CASE(RETURN_TO_EPILOG)
4356   NODE_NAME_CASE(ENDPGM)
4357   NODE_NAME_CASE(DWORDADDR)
4358   NODE_NAME_CASE(FRACT)
4359   NODE_NAME_CASE(SETCC)
4360   NODE_NAME_CASE(SETREG)
4361   NODE_NAME_CASE(DENORM_MODE)
4362   NODE_NAME_CASE(FMA_W_CHAIN)
4363   NODE_NAME_CASE(FMUL_W_CHAIN)
4364   NODE_NAME_CASE(CLAMP)
4365   NODE_NAME_CASE(COS_HW)
4366   NODE_NAME_CASE(SIN_HW)
4367   NODE_NAME_CASE(FMAX_LEGACY)
4368   NODE_NAME_CASE(FMIN_LEGACY)
4369   NODE_NAME_CASE(FMAX3)
4370   NODE_NAME_CASE(SMAX3)
4371   NODE_NAME_CASE(UMAX3)
4372   NODE_NAME_CASE(FMIN3)
4373   NODE_NAME_CASE(SMIN3)
4374   NODE_NAME_CASE(UMIN3)
4375   NODE_NAME_CASE(FMED3)
4376   NODE_NAME_CASE(SMED3)
4377   NODE_NAME_CASE(UMED3)
4378   NODE_NAME_CASE(FDOT2)
4379   NODE_NAME_CASE(URECIP)
4380   NODE_NAME_CASE(DIV_SCALE)
4381   NODE_NAME_CASE(DIV_FMAS)
4382   NODE_NAME_CASE(DIV_FIXUP)
4383   NODE_NAME_CASE(FMAD_FTZ)
4384   NODE_NAME_CASE(RCP)
4385   NODE_NAME_CASE(RSQ)
4386   NODE_NAME_CASE(RCP_LEGACY)
4387   NODE_NAME_CASE(RCP_IFLAG)
4388   NODE_NAME_CASE(FMUL_LEGACY)
4389   NODE_NAME_CASE(RSQ_CLAMP)
4390   NODE_NAME_CASE(LDEXP)
4391   NODE_NAME_CASE(FP_CLASS)
4392   NODE_NAME_CASE(DOT4)
4393   NODE_NAME_CASE(CARRY)
4394   NODE_NAME_CASE(BORROW)
4395   NODE_NAME_CASE(BFE_U32)
4396   NODE_NAME_CASE(BFE_I32)
4397   NODE_NAME_CASE(BFI)
4398   NODE_NAME_CASE(BFM)
4399   NODE_NAME_CASE(FFBH_U32)
4400   NODE_NAME_CASE(FFBH_I32)
4401   NODE_NAME_CASE(FFBL_B32)
4402   NODE_NAME_CASE(MUL_U24)
4403   NODE_NAME_CASE(MUL_I24)
4404   NODE_NAME_CASE(MULHI_U24)
4405   NODE_NAME_CASE(MULHI_I24)
4406   NODE_NAME_CASE(MAD_U24)
4407   NODE_NAME_CASE(MAD_I24)
4408   NODE_NAME_CASE(MAD_I64_I32)
4409   NODE_NAME_CASE(MAD_U64_U32)
4410   NODE_NAME_CASE(PERM)
4411   NODE_NAME_CASE(TEXTURE_FETCH)
4412   NODE_NAME_CASE(R600_EXPORT)
4413   NODE_NAME_CASE(CONST_ADDRESS)
4414   NODE_NAME_CASE(REGISTER_LOAD)
4415   NODE_NAME_CASE(REGISTER_STORE)
4416   NODE_NAME_CASE(SAMPLE)
4417   NODE_NAME_CASE(SAMPLEB)
4418   NODE_NAME_CASE(SAMPLED)
4419   NODE_NAME_CASE(SAMPLEL)
4420   NODE_NAME_CASE(CVT_F32_UBYTE0)
4421   NODE_NAME_CASE(CVT_F32_UBYTE1)
4422   NODE_NAME_CASE(CVT_F32_UBYTE2)
4423   NODE_NAME_CASE(CVT_F32_UBYTE3)
4424   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4425   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4426   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4427   NODE_NAME_CASE(CVT_PK_I16_I32)
4428   NODE_NAME_CASE(CVT_PK_U16_U32)
4429   NODE_NAME_CASE(FP_TO_FP16)
4430   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4431   NODE_NAME_CASE(CONST_DATA_PTR)
4432   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4433   NODE_NAME_CASE(LDS)
4434   NODE_NAME_CASE(DUMMY_CHAIN)
4435   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4436   NODE_NAME_CASE(LOAD_D16_HI)
4437   NODE_NAME_CASE(LOAD_D16_LO)
4438   NODE_NAME_CASE(LOAD_D16_HI_I8)
4439   NODE_NAME_CASE(LOAD_D16_HI_U8)
4440   NODE_NAME_CASE(LOAD_D16_LO_I8)
4441   NODE_NAME_CASE(LOAD_D16_LO_U8)
4442   NODE_NAME_CASE(STORE_MSKOR)
4443   NODE_NAME_CASE(LOAD_CONSTANT)
4444   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4445   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4446   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4447   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4448   NODE_NAME_CASE(DS_ORDERED_COUNT)
4449   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4450   NODE_NAME_CASE(ATOMIC_INC)
4451   NODE_NAME_CASE(ATOMIC_DEC)
4452   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4453   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4454   NODE_NAME_CASE(BUFFER_LOAD)
4455   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4456   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4457   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4458   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4459   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4460   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4461   NODE_NAME_CASE(SBUFFER_LOAD)
4462   NODE_NAME_CASE(BUFFER_STORE)
4463   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4464   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4465   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4466   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4467   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4468   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4469   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4470   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4471   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4472   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4473   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4474   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4475   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4476   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4477   NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4478   NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4479   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4480   NODE_NAME_CASE(BUFFER_ATOMIC_CSUB)
4481   NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4482   NODE_NAME_CASE(BUFFER_ATOMIC_FMIN)
4483   NODE_NAME_CASE(BUFFER_ATOMIC_FMAX)
4484 
4485   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4486   }
4487   return nullptr;
4488 }
4489 
4490 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4491                                               SelectionDAG &DAG, int Enabled,
4492                                               int &RefinementSteps,
4493                                               bool &UseOneConstNR,
4494                                               bool Reciprocal) const {
4495   EVT VT = Operand.getValueType();
4496 
4497   if (VT == MVT::f32) {
4498     RefinementSteps = 0;
4499     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4500   }
4501 
4502   // TODO: There is also f64 rsq instruction, but the documentation is less
4503   // clear on its precision.
4504 
4505   return SDValue();
4506 }
4507 
4508 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4509                                                SelectionDAG &DAG, int Enabled,
4510                                                int &RefinementSteps) const {
4511   EVT VT = Operand.getValueType();
4512 
4513   if (VT == MVT::f32) {
4514     // Reciprocal, < 1 ulp error.
4515     //
4516     // This reciprocal approximation converges to < 0.5 ulp error with one
4517     // newton rhapson performed with two fused multiple adds (FMAs).
4518 
4519     RefinementSteps = 0;
4520     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4521   }
4522 
4523   // TODO: There is also f64 rcp instruction, but the documentation is less
4524   // clear on its precision.
4525 
4526   return SDValue();
4527 }
4528 
4529 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4530     const SDValue Op, KnownBits &Known,
4531     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4532 
4533   Known.resetAll(); // Don't know anything.
4534 
4535   unsigned Opc = Op.getOpcode();
4536 
4537   switch (Opc) {
4538   default:
4539     break;
4540   case AMDGPUISD::CARRY:
4541   case AMDGPUISD::BORROW: {
4542     Known.Zero = APInt::getHighBitsSet(32, 31);
4543     break;
4544   }
4545 
4546   case AMDGPUISD::BFE_I32:
4547   case AMDGPUISD::BFE_U32: {
4548     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4549     if (!CWidth)
4550       return;
4551 
4552     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4553 
4554     if (Opc == AMDGPUISD::BFE_U32)
4555       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4556 
4557     break;
4558   }
4559   case AMDGPUISD::FP_TO_FP16: {
4560     unsigned BitWidth = Known.getBitWidth();
4561 
4562     // High bits are zero.
4563     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4564     break;
4565   }
4566   case AMDGPUISD::MUL_U24:
4567   case AMDGPUISD::MUL_I24: {
4568     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4569     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4570     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4571                       RHSKnown.countMinTrailingZeros();
4572     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4573     // Skip extra check if all bits are known zeros.
4574     if (TrailZ >= 32)
4575       break;
4576 
4577     // Truncate to 24 bits.
4578     LHSKnown = LHSKnown.trunc(24);
4579     RHSKnown = RHSKnown.trunc(24);
4580 
4581     if (Opc == AMDGPUISD::MUL_I24) {
4582       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4583       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4584       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4585       if (MaxValBits >= 32)
4586         break;
4587       bool LHSNegative = LHSKnown.isNegative();
4588       bool LHSNonNegative = LHSKnown.isNonNegative();
4589       bool LHSPositive = LHSKnown.isStrictlyPositive();
4590       bool RHSNegative = RHSKnown.isNegative();
4591       bool RHSNonNegative = RHSKnown.isNonNegative();
4592       bool RHSPositive = RHSKnown.isStrictlyPositive();
4593 
4594       if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4595         Known.Zero.setHighBits(32 - MaxValBits);
4596       else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4597         Known.One.setHighBits(32 - MaxValBits);
4598     } else {
4599       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4600       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4601       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4602       if (MaxValBits >= 32)
4603         break;
4604       Known.Zero.setHighBits(32 - MaxValBits);
4605     }
4606     break;
4607   }
4608   case AMDGPUISD::PERM: {
4609     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4610     if (!CMask)
4611       return;
4612 
4613     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4614     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4615     unsigned Sel = CMask->getZExtValue();
4616 
4617     for (unsigned I = 0; I < 32; I += 8) {
4618       unsigned SelBits = Sel & 0xff;
4619       if (SelBits < 4) {
4620         SelBits *= 8;
4621         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4622         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4623       } else if (SelBits < 7) {
4624         SelBits = (SelBits & 3) * 8;
4625         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4626         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4627       } else if (SelBits == 0x0c) {
4628         Known.Zero |= 0xFFull << I;
4629       } else if (SelBits > 0x0c) {
4630         Known.One |= 0xFFull << I;
4631       }
4632       Sel >>= 8;
4633     }
4634     break;
4635   }
4636   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4637     Known.Zero.setHighBits(24);
4638     break;
4639   }
4640   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4641     Known.Zero.setHighBits(16);
4642     break;
4643   }
4644   case AMDGPUISD::LDS: {
4645     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4646     Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout());
4647 
4648     Known.Zero.setHighBits(16);
4649     Known.Zero.setLowBits(Log2(Alignment));
4650     break;
4651   }
4652   case ISD::INTRINSIC_WO_CHAIN: {
4653     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4654     switch (IID) {
4655     case Intrinsic::amdgcn_mbcnt_lo:
4656     case Intrinsic::amdgcn_mbcnt_hi: {
4657       const GCNSubtarget &ST =
4658           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4659       // These return at most the wavefront size - 1.
4660       unsigned Size = Op.getValueType().getSizeInBits();
4661       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4662       break;
4663     }
4664     default:
4665       break;
4666     }
4667   }
4668   }
4669 }
4670 
4671 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4672     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4673     unsigned Depth) const {
4674   switch (Op.getOpcode()) {
4675   case AMDGPUISD::BFE_I32: {
4676     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4677     if (!Width)
4678       return 1;
4679 
4680     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4681     if (!isNullConstant(Op.getOperand(1)))
4682       return SignBits;
4683 
4684     // TODO: Could probably figure something out with non-0 offsets.
4685     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4686     return std::max(SignBits, Op0SignBits);
4687   }
4688 
4689   case AMDGPUISD::BFE_U32: {
4690     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4691     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4692   }
4693 
4694   case AMDGPUISD::CARRY:
4695   case AMDGPUISD::BORROW:
4696     return 31;
4697   case AMDGPUISD::BUFFER_LOAD_BYTE:
4698     return 25;
4699   case AMDGPUISD::BUFFER_LOAD_SHORT:
4700     return 17;
4701   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4702     return 24;
4703   case AMDGPUISD::BUFFER_LOAD_USHORT:
4704     return 16;
4705   case AMDGPUISD::FP_TO_FP16:
4706     return 16;
4707   default:
4708     return 1;
4709   }
4710 }
4711 
4712 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr(
4713   GISelKnownBits &Analysis, Register R,
4714   const APInt &DemandedElts, const MachineRegisterInfo &MRI,
4715   unsigned Depth) const {
4716   const MachineInstr *MI = MRI.getVRegDef(R);
4717   if (!MI)
4718     return 1;
4719 
4720   // TODO: Check range metadata on MMO.
4721   switch (MI->getOpcode()) {
4722   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE:
4723     return 25;
4724   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT:
4725     return 17;
4726   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
4727     return 24;
4728   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
4729     return 16;
4730   default:
4731     return 1;
4732   }
4733 }
4734 
4735 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4736                                                         const SelectionDAG &DAG,
4737                                                         bool SNaN,
4738                                                         unsigned Depth) const {
4739   unsigned Opcode = Op.getOpcode();
4740   switch (Opcode) {
4741   case AMDGPUISD::FMIN_LEGACY:
4742   case AMDGPUISD::FMAX_LEGACY: {
4743     if (SNaN)
4744       return true;
4745 
4746     // TODO: Can check no nans on one of the operands for each one, but which
4747     // one?
4748     return false;
4749   }
4750   case AMDGPUISD::FMUL_LEGACY:
4751   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4752     if (SNaN)
4753       return true;
4754     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4755            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4756   }
4757   case AMDGPUISD::FMED3:
4758   case AMDGPUISD::FMIN3:
4759   case AMDGPUISD::FMAX3:
4760   case AMDGPUISD::FMAD_FTZ: {
4761     if (SNaN)
4762       return true;
4763     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4764            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4765            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4766   }
4767   case AMDGPUISD::CVT_F32_UBYTE0:
4768   case AMDGPUISD::CVT_F32_UBYTE1:
4769   case AMDGPUISD::CVT_F32_UBYTE2:
4770   case AMDGPUISD::CVT_F32_UBYTE3:
4771     return true;
4772 
4773   case AMDGPUISD::RCP:
4774   case AMDGPUISD::RSQ:
4775   case AMDGPUISD::RCP_LEGACY:
4776   case AMDGPUISD::RSQ_CLAMP: {
4777     if (SNaN)
4778       return true;
4779 
4780     // TODO: Need is known positive check.
4781     return false;
4782   }
4783   case AMDGPUISD::LDEXP:
4784   case AMDGPUISD::FRACT: {
4785     if (SNaN)
4786       return true;
4787     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4788   }
4789   case AMDGPUISD::DIV_SCALE:
4790   case AMDGPUISD::DIV_FMAS:
4791   case AMDGPUISD::DIV_FIXUP:
4792     // TODO: Refine on operands.
4793     return SNaN;
4794   case AMDGPUISD::SIN_HW:
4795   case AMDGPUISD::COS_HW: {
4796     // TODO: Need check for infinity
4797     return SNaN;
4798   }
4799   case ISD::INTRINSIC_WO_CHAIN: {
4800     unsigned IntrinsicID
4801       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4802     // TODO: Handle more intrinsics
4803     switch (IntrinsicID) {
4804     case Intrinsic::amdgcn_cubeid:
4805       return true;
4806 
4807     case Intrinsic::amdgcn_frexp_mant: {
4808       if (SNaN)
4809         return true;
4810       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4811     }
4812     case Intrinsic::amdgcn_cvt_pkrtz: {
4813       if (SNaN)
4814         return true;
4815       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4816              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4817     }
4818     case Intrinsic::amdgcn_rcp:
4819     case Intrinsic::amdgcn_rsq:
4820     case Intrinsic::amdgcn_rcp_legacy:
4821     case Intrinsic::amdgcn_rsq_legacy:
4822     case Intrinsic::amdgcn_rsq_clamp: {
4823       if (SNaN)
4824         return true;
4825 
4826       // TODO: Need is known positive check.
4827       return false;
4828     }
4829     case Intrinsic::amdgcn_trig_preop:
4830     case Intrinsic::amdgcn_fdot2:
4831       // TODO: Refine on operand
4832       return SNaN;
4833     case Intrinsic::amdgcn_fma_legacy:
4834       if (SNaN)
4835         return true;
4836       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4837              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) &&
4838              DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1);
4839     default:
4840       return false;
4841     }
4842   }
4843   default:
4844     return false;
4845   }
4846 }
4847 
4848 TargetLowering::AtomicExpansionKind
4849 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4850   switch (RMW->getOperation()) {
4851   case AtomicRMWInst::Nand:
4852   case AtomicRMWInst::FAdd:
4853   case AtomicRMWInst::FSub:
4854     return AtomicExpansionKind::CmpXChg;
4855   default:
4856     return AtomicExpansionKind::None;
4857   }
4858 }
4859 
4860 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtactLegal(
4861     unsigned Opc, LLT Ty1, LLT Ty2) const {
4862   return Ty1 == Ty2 && (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64));
4863 }
4864