1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define AMDGPU_LOG2E_F     1.44269504088896340735992468100189214f
16 #define AMDGPU_LN2_F       0.693147180559945309417232121458176568f
17 #define AMDGPU_LN10_F      2.30258509299404568401799145468436421f
18 
19 #include "AMDGPUISelLowering.h"
20 #include "AMDGPU.h"
21 #include "AMDGPUCallLowering.h"
22 #include "AMDGPUFrameLowering.h"
23 #include "AMDGPURegisterInfo.h"
24 #include "AMDGPUSubtarget.h"
25 #include "AMDGPUTargetMachine.h"
26 #include "Utils/AMDGPUBaseInfo.h"
27 #include "R600MachineFunctionInfo.h"
28 #include "SIInstrInfo.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/Support/KnownBits.h"
40 using namespace llvm;
41 
42 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
43                            CCValAssign::LocInfo LocInfo,
44                            ISD::ArgFlagsTy ArgFlags, CCState &State,
45                            const TargetRegisterClass *RC,
46                            unsigned NumRegs) {
47   ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs);
48   unsigned RegResult = State.AllocateReg(RegList);
49   if (RegResult == AMDGPU::NoRegister)
50     return false;
51 
52   State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo));
53   return true;
54 }
55 
56 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
57                               CCValAssign::LocInfo LocInfo,
58                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
59   switch (LocVT.SimpleTy) {
60   case MVT::i64:
61   case MVT::f64:
62   case MVT::v2i32:
63   case MVT::v2f32:
64   case MVT::v4i16:
65   case MVT::v4f16: {
66     // Up to SGPR0-SGPR39
67     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
68                           &AMDGPU::SGPR_64RegClass, 20);
69   }
70   default:
71     return false;
72   }
73 }
74 
75 // Allocate up to VGPR31.
76 //
77 // TODO: Since there are no VGPR alignent requirements would it be better to
78 // split into individual scalar registers?
79 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
80                               CCValAssign::LocInfo LocInfo,
81                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
82   switch (LocVT.SimpleTy) {
83   case MVT::i64:
84   case MVT::f64:
85   case MVT::v2i32:
86   case MVT::v2f32:
87   case MVT::v4i16:
88   case MVT::v4f16: {
89     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
90                           &AMDGPU::VReg_64RegClass, 31);
91   }
92   case MVT::v4i32:
93   case MVT::v4f32:
94   case MVT::v2i64:
95   case MVT::v2f64: {
96     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
97                           &AMDGPU::VReg_128RegClass, 29);
98   }
99   case MVT::v8i32:
100   case MVT::v8f32: {
101     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
102                           &AMDGPU::VReg_256RegClass, 25);
103 
104   }
105   case MVT::v16i32:
106   case MVT::v16f32: {
107     return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
108                           &AMDGPU::VReg_512RegClass, 17);
109 
110   }
111   default:
112     return false;
113   }
114 }
115 
116 #include "AMDGPUGenCallingConv.inc"
117 
118 // Find a larger type to do a load / store of a vector with.
119 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
120   unsigned StoreSize = VT.getStoreSizeInBits();
121   if (StoreSize <= 32)
122     return EVT::getIntegerVT(Ctx, StoreSize);
123 
124   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
125   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
126 }
127 
128 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
129   EVT VT = Op.getValueType();
130   KnownBits Known = DAG.computeKnownBits(Op);
131   return VT.getSizeInBits() - Known.countMinLeadingZeros();
132 }
133 
134 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
135   EVT VT = Op.getValueType();
136 
137   // In order for this to be a signed 24-bit value, bit 23, must
138   // be a sign bit.
139   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
140 }
141 
142 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
143                                            const AMDGPUSubtarget &STI)
144     : TargetLowering(TM), Subtarget(&STI) {
145   // Lower floating point store/load to integer store/load to reduce the number
146   // of patterns in tablegen.
147   setOperationAction(ISD::LOAD, MVT::f32, Promote);
148   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
149 
150   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
151   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
152 
153   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
154   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
155 
156   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
157   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
158 
159   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
160   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
161 
162   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
163   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
164 
165   setOperationAction(ISD::LOAD, MVT::i64, Promote);
166   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
167 
168   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
169   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
170 
171   setOperationAction(ISD::LOAD, MVT::f64, Promote);
172   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
173 
174   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
175   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
176 
177   // There are no 64-bit extloads. These should be done as a 32-bit extload and
178   // an extension to 64-bit.
179   for (MVT VT : MVT::integer_valuetypes()) {
180     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
181     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
182     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
183   }
184 
185   for (MVT VT : MVT::integer_valuetypes()) {
186     if (VT == MVT::i64)
187       continue;
188 
189     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
190     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
191     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
192     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
193 
194     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
195     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
196     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
197     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
198 
199     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
200     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
201     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
202     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
203   }
204 
205   for (MVT VT : MVT::integer_vector_valuetypes()) {
206     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
207     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
208     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
209     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
210     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
211     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
212     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
213     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
214     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
215     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
216     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
217     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
218   }
219 
220   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
221   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
222   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
223   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
224 
225   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
226   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
227   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
228   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
229 
230   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
231   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
232   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
233   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
234 
235   setOperationAction(ISD::STORE, MVT::f32, Promote);
236   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
237 
238   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
239   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
240 
241   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
242   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
243 
244   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
245   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
246 
247   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
248   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
249 
250   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
251   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
252 
253   setOperationAction(ISD::STORE, MVT::i64, Promote);
254   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
255 
256   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
257   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
258 
259   setOperationAction(ISD::STORE, MVT::f64, Promote);
260   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
261 
262   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
263   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
264 
265   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
266   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
267   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
268   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
269 
270   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
271   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
272   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
273   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
274 
275   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
276   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
277   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
278   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
279 
280   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
281   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
282 
283   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
284   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
285 
286   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
287   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
288 
289   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
290   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
291 
292 
293   setOperationAction(ISD::Constant, MVT::i32, Legal);
294   setOperationAction(ISD::Constant, MVT::i64, Legal);
295   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
296   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
297 
298   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
299   setOperationAction(ISD::BRIND, MVT::Other, Expand);
300 
301   // This is totally unsupported, just custom lower to produce an error.
302   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
303 
304   // Library functions.  These default to Expand, but we have instructions
305   // for them.
306   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
307   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
308   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
309   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
310   setOperationAction(ISD::FABS,   MVT::f32, Legal);
311   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
312   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
313   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
314   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
315   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
316 
317   setOperationAction(ISD::FROUND, MVT::f32, Custom);
318   setOperationAction(ISD::FROUND, MVT::f64, Custom);
319 
320   setOperationAction(ISD::FLOG, MVT::f32, Custom);
321   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
322   setOperationAction(ISD::FEXP, MVT::f32, Custom);
323 
324 
325   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
326   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
327 
328   setOperationAction(ISD::FREM, MVT::f32, Custom);
329   setOperationAction(ISD::FREM, MVT::f64, Custom);
330 
331   // Expand to fneg + fadd.
332   setOperationAction(ISD::FSUB, MVT::f64, Expand);
333 
334   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
335   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
336   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
337   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
338   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
339   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
340   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
341   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
342   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
343   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
344   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
345   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
346   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
347   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
348 
349   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
350   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
351   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
352 
353   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
354   for (MVT VT : ScalarIntVTs) {
355     // These should use [SU]DIVREM, so set them to expand
356     setOperationAction(ISD::SDIV, VT, Expand);
357     setOperationAction(ISD::UDIV, VT, Expand);
358     setOperationAction(ISD::SREM, VT, Expand);
359     setOperationAction(ISD::UREM, VT, Expand);
360 
361     // GPU does not have divrem function for signed or unsigned.
362     setOperationAction(ISD::SDIVREM, VT, Custom);
363     setOperationAction(ISD::UDIVREM, VT, Custom);
364 
365     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
366     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
367     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
368 
369     setOperationAction(ISD::BSWAP, VT, Expand);
370     setOperationAction(ISD::CTTZ, VT, Expand);
371     setOperationAction(ISD::CTLZ, VT, Expand);
372 
373     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
374     setOperationAction(ISD::ADDC, VT, Legal);
375     setOperationAction(ISD::SUBC, VT, Legal);
376     setOperationAction(ISD::ADDE, VT, Legal);
377     setOperationAction(ISD::SUBE, VT, Legal);
378   }
379 
380   // The hardware supports 32-bit ROTR, but not ROTL.
381   setOperationAction(ISD::ROTL, MVT::i32, Expand);
382   setOperationAction(ISD::ROTL, MVT::i64, Expand);
383   setOperationAction(ISD::ROTR, MVT::i64, Expand);
384 
385   setOperationAction(ISD::MUL, MVT::i64, Expand);
386   setOperationAction(ISD::MULHU, MVT::i64, Expand);
387   setOperationAction(ISD::MULHS, MVT::i64, Expand);
388   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
389   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
390   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
391   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
392   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
393 
394   setOperationAction(ISD::SMIN, MVT::i32, Legal);
395   setOperationAction(ISD::UMIN, MVT::i32, Legal);
396   setOperationAction(ISD::SMAX, MVT::i32, Legal);
397   setOperationAction(ISD::UMAX, MVT::i32, Legal);
398 
399   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
400   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
401   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
402   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
403 
404   static const MVT::SimpleValueType VectorIntTypes[] = {
405     MVT::v2i32, MVT::v3i32, MVT::v4i32
406   };
407 
408   for (MVT VT : VectorIntTypes) {
409     // Expand the following operations for the current type by default.
410     setOperationAction(ISD::ADD,  VT, Expand);
411     setOperationAction(ISD::AND,  VT, Expand);
412     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
413     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
414     setOperationAction(ISD::MUL,  VT, Expand);
415     setOperationAction(ISD::MULHU, VT, Expand);
416     setOperationAction(ISD::MULHS, VT, Expand);
417     setOperationAction(ISD::OR,   VT, Expand);
418     setOperationAction(ISD::SHL,  VT, Expand);
419     setOperationAction(ISD::SRA,  VT, Expand);
420     setOperationAction(ISD::SRL,  VT, Expand);
421     setOperationAction(ISD::ROTL, VT, Expand);
422     setOperationAction(ISD::ROTR, VT, Expand);
423     setOperationAction(ISD::SUB,  VT, Expand);
424     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
425     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
426     setOperationAction(ISD::SDIV, VT, Expand);
427     setOperationAction(ISD::UDIV, VT, Expand);
428     setOperationAction(ISD::SREM, VT, Expand);
429     setOperationAction(ISD::UREM, VT, Expand);
430     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
431     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
432     setOperationAction(ISD::SDIVREM, VT, Custom);
433     setOperationAction(ISD::UDIVREM, VT, Expand);
434     setOperationAction(ISD::SELECT, VT, Expand);
435     setOperationAction(ISD::VSELECT, VT, Expand);
436     setOperationAction(ISD::SELECT_CC, VT, Expand);
437     setOperationAction(ISD::XOR,  VT, Expand);
438     setOperationAction(ISD::BSWAP, VT, Expand);
439     setOperationAction(ISD::CTPOP, VT, Expand);
440     setOperationAction(ISD::CTTZ, VT, Expand);
441     setOperationAction(ISD::CTLZ, VT, Expand);
442     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
443     setOperationAction(ISD::SETCC, VT, Expand);
444   }
445 
446   static const MVT::SimpleValueType FloatVectorTypes[] = {
447      MVT::v2f32, MVT::v3f32, MVT::v4f32
448   };
449 
450   for (MVT VT : FloatVectorTypes) {
451     setOperationAction(ISD::FABS, VT, Expand);
452     setOperationAction(ISD::FMINNUM, VT, Expand);
453     setOperationAction(ISD::FMAXNUM, VT, Expand);
454     setOperationAction(ISD::FADD, VT, Expand);
455     setOperationAction(ISD::FCEIL, VT, Expand);
456     setOperationAction(ISD::FCOS, VT, Expand);
457     setOperationAction(ISD::FDIV, VT, Expand);
458     setOperationAction(ISD::FEXP2, VT, Expand);
459     setOperationAction(ISD::FEXP, VT, Expand);
460     setOperationAction(ISD::FLOG2, VT, Expand);
461     setOperationAction(ISD::FREM, VT, Expand);
462     setOperationAction(ISD::FLOG, VT, Expand);
463     setOperationAction(ISD::FLOG10, VT, Expand);
464     setOperationAction(ISD::FPOW, VT, Expand);
465     setOperationAction(ISD::FFLOOR, VT, Expand);
466     setOperationAction(ISD::FTRUNC, VT, Expand);
467     setOperationAction(ISD::FMUL, VT, Expand);
468     setOperationAction(ISD::FMA, VT, Expand);
469     setOperationAction(ISD::FRINT, VT, Expand);
470     setOperationAction(ISD::FNEARBYINT, VT, Expand);
471     setOperationAction(ISD::FSQRT, VT, Expand);
472     setOperationAction(ISD::FSIN, VT, Expand);
473     setOperationAction(ISD::FSUB, VT, Expand);
474     setOperationAction(ISD::FNEG, VT, Expand);
475     setOperationAction(ISD::VSELECT, VT, Expand);
476     setOperationAction(ISD::SELECT_CC, VT, Expand);
477     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
478     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
479     setOperationAction(ISD::SETCC, VT, Expand);
480     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
481   }
482 
483   // This causes using an unrolled select operation rather than expansion with
484   // bit operations. This is in general better, but the alternative using BFI
485   // instructions may be better if the select sources are SGPRs.
486   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
487   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
488 
489   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
490   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
491 
492   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
493   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
494 
495   // There are no libcalls of any kind.
496   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
497     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
498 
499   setBooleanContents(ZeroOrNegativeOneBooleanContent);
500   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
501 
502   setSchedulingPreference(Sched::RegPressure);
503   setJumpIsExpensive(true);
504 
505   // FIXME: This is only partially true. If we have to do vector compares, any
506   // SGPR pair can be a condition register. If we have a uniform condition, we
507   // are better off doing SALU operations, where there is only one SCC. For now,
508   // we don't have a way of knowing during instruction selection if a condition
509   // will be uniform and we always use vector compares. Assume we are using
510   // vector compares until that is fixed.
511   setHasMultipleConditionRegisters(true);
512 
513   PredictableSelectIsExpensive = false;
514 
515   // We want to find all load dependencies for long chains of stores to enable
516   // merging into very wide vectors. The problem is with vectors with > 4
517   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
518   // vectors are a legal type, even though we have to split the loads
519   // usually. When we can more precisely specify load legality per address
520   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
521   // smarter so that they can figure out what to do in 2 iterations without all
522   // N > 4 stores on the same chain.
523   GatherAllAliasesMaxDepth = 16;
524 
525   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
526   // about these during lowering.
527   MaxStoresPerMemcpy  = 0xffffffff;
528   MaxStoresPerMemmove = 0xffffffff;
529   MaxStoresPerMemset  = 0xffffffff;
530 
531   setTargetDAGCombine(ISD::BITCAST);
532   setTargetDAGCombine(ISD::SHL);
533   setTargetDAGCombine(ISD::SRA);
534   setTargetDAGCombine(ISD::SRL);
535   setTargetDAGCombine(ISD::TRUNCATE);
536   setTargetDAGCombine(ISD::MUL);
537   setTargetDAGCombine(ISD::MULHU);
538   setTargetDAGCombine(ISD::MULHS);
539   setTargetDAGCombine(ISD::SELECT);
540   setTargetDAGCombine(ISD::SELECT_CC);
541   setTargetDAGCombine(ISD::STORE);
542   setTargetDAGCombine(ISD::FADD);
543   setTargetDAGCombine(ISD::FSUB);
544   setTargetDAGCombine(ISD::FNEG);
545   setTargetDAGCombine(ISD::FABS);
546   setTargetDAGCombine(ISD::AssertZext);
547   setTargetDAGCombine(ISD::AssertSext);
548 }
549 
550 //===----------------------------------------------------------------------===//
551 // Target Information
552 //===----------------------------------------------------------------------===//
553 
554 LLVM_READNONE
555 static bool fnegFoldsIntoOp(unsigned Opc) {
556   switch (Opc) {
557   case ISD::FADD:
558   case ISD::FSUB:
559   case ISD::FMUL:
560   case ISD::FMA:
561   case ISD::FMAD:
562   case ISD::FMINNUM:
563   case ISD::FMAXNUM:
564   case ISD::FMINNUM_IEEE:
565   case ISD::FMAXNUM_IEEE:
566   case ISD::FSIN:
567   case ISD::FTRUNC:
568   case ISD::FRINT:
569   case ISD::FNEARBYINT:
570   case ISD::FCANONICALIZE:
571   case AMDGPUISD::RCP:
572   case AMDGPUISD::RCP_LEGACY:
573   case AMDGPUISD::RCP_IFLAG:
574   case AMDGPUISD::SIN_HW:
575   case AMDGPUISD::FMUL_LEGACY:
576   case AMDGPUISD::FMIN_LEGACY:
577   case AMDGPUISD::FMAX_LEGACY:
578   case AMDGPUISD::FMED3:
579     return true;
580   default:
581     return false;
582   }
583 }
584 
585 /// \p returns true if the operation will definitely need to use a 64-bit
586 /// encoding, and thus will use a VOP3 encoding regardless of the source
587 /// modifiers.
588 LLVM_READONLY
589 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
590   return N->getNumOperands() > 2 || VT == MVT::f64;
591 }
592 
593 // Most FP instructions support source modifiers, but this could be refined
594 // slightly.
595 LLVM_READONLY
596 static bool hasSourceMods(const SDNode *N) {
597   if (isa<MemSDNode>(N))
598     return false;
599 
600   switch (N->getOpcode()) {
601   case ISD::CopyToReg:
602   case ISD::SELECT:
603   case ISD::FDIV:
604   case ISD::FREM:
605   case ISD::INLINEASM:
606   case ISD::INLINEASM_BR:
607   case AMDGPUISD::INTERP_P1:
608   case AMDGPUISD::INTERP_P2:
609   case AMDGPUISD::DIV_SCALE:
610 
611   // TODO: Should really be looking at the users of the bitcast. These are
612   // problematic because bitcasts are used to legalize all stores to integer
613   // types.
614   case ISD::BITCAST:
615     return false;
616   default:
617     return true;
618   }
619 }
620 
621 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
622                                                  unsigned CostThreshold) {
623   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
624   // it is truly free to use a source modifier in all cases. If there are
625   // multiple users but for each one will necessitate using VOP3, there will be
626   // a code size increase. Try to avoid increasing code size unless we know it
627   // will save on the instruction count.
628   unsigned NumMayIncreaseSize = 0;
629   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
630 
631   // XXX - Should this limit number of uses to check?
632   for (const SDNode *U : N->uses()) {
633     if (!hasSourceMods(U))
634       return false;
635 
636     if (!opMustUseVOP3Encoding(U, VT)) {
637       if (++NumMayIncreaseSize > CostThreshold)
638         return false;
639     }
640   }
641 
642   return true;
643 }
644 
645 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
646   return MVT::i32;
647 }
648 
649 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
650   return true;
651 }
652 
653 // The backend supports 32 and 64 bit floating point immediates.
654 // FIXME: Why are we reporting vectors of FP immediates as legal?
655 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
656                                         bool ForCodeSize) const {
657   EVT ScalarVT = VT.getScalarType();
658   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
659          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
660 }
661 
662 // We don't want to shrink f64 / f32 constants.
663 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
664   EVT ScalarVT = VT.getScalarType();
665   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
666 }
667 
668 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
669                                                  ISD::LoadExtType ExtTy,
670                                                  EVT NewVT) const {
671   // TODO: This may be worth removing. Check regression tests for diffs.
672   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
673     return false;
674 
675   unsigned NewSize = NewVT.getStoreSizeInBits();
676 
677   // If we are reducing to a 32-bit load, this is always better.
678   if (NewSize == 32)
679     return true;
680 
681   EVT OldVT = N->getValueType(0);
682   unsigned OldSize = OldVT.getStoreSizeInBits();
683 
684   MemSDNode *MN = cast<MemSDNode>(N);
685   unsigned AS = MN->getAddressSpace();
686   // Do not shrink an aligned scalar load to sub-dword.
687   // Scalar engine cannot do sub-dword loads.
688   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
689       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
690        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
691        (isa<LoadSDNode>(N) &&
692         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
693       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
694     return false;
695 
696   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
697   // extloads, so doing one requires using a buffer_load. In cases where we
698   // still couldn't use a scalar load, using the wider load shouldn't really
699   // hurt anything.
700 
701   // If the old size already had to be an extload, there's no harm in continuing
702   // to reduce the width.
703   return (OldSize < 32);
704 }
705 
706 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
707                                                    EVT CastTy) const {
708 
709   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
710 
711   if (LoadTy.getScalarType() == MVT::i32)
712     return false;
713 
714   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
715   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
716 
717   return (LScalarSize < CastScalarSize) ||
718          (CastScalarSize >= 32);
719 }
720 
721 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
722 // profitable with the expansion for 64-bit since it's generally good to
723 // speculate things.
724 // FIXME: These should really have the size as a parameter.
725 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
726   return true;
727 }
728 
729 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
730   return true;
731 }
732 
733 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
734   switch (N->getOpcode()) {
735     default:
736     return false;
737     case ISD::EntryToken:
738     case ISD::TokenFactor:
739       return true;
740     case ISD::INTRINSIC_WO_CHAIN:
741     {
742       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
743       switch (IntrID) {
744         default:
745         return false;
746         case Intrinsic::amdgcn_readfirstlane:
747         case Intrinsic::amdgcn_readlane:
748           return true;
749       }
750     }
751     break;
752     case ISD::LOAD:
753     {
754       const LoadSDNode * L = dyn_cast<LoadSDNode>(N);
755       if (L->getMemOperand()->getAddrSpace()
756       == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
757         return true;
758       return false;
759     }
760     break;
761   }
762 }
763 
764 //===---------------------------------------------------------------------===//
765 // Target Properties
766 //===---------------------------------------------------------------------===//
767 
768 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
769   assert(VT.isFloatingPoint());
770 
771   // Packed operations do not have a fabs modifier.
772   return VT == MVT::f32 || VT == MVT::f64 ||
773          (Subtarget->has16BitInsts() && VT == MVT::f16);
774 }
775 
776 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
777   assert(VT.isFloatingPoint());
778   return VT == MVT::f32 || VT == MVT::f64 ||
779          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
780          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
781 }
782 
783 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
784                                                          unsigned NumElem,
785                                                          unsigned AS) const {
786   return true;
787 }
788 
789 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
790   // There are few operations which truly have vector input operands. Any vector
791   // operation is going to involve operations on each component, and a
792   // build_vector will be a copy per element, so it always makes sense to use a
793   // build_vector input in place of the extracted element to avoid a copy into a
794   // super register.
795   //
796   // We should probably only do this if all users are extracts only, but this
797   // should be the common case.
798   return true;
799 }
800 
801 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
802   // Truncate is just accessing a subregister.
803 
804   unsigned SrcSize = Source.getSizeInBits();
805   unsigned DestSize = Dest.getSizeInBits();
806 
807   return DestSize < SrcSize && DestSize % 32 == 0 ;
808 }
809 
810 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
811   // Truncate is just accessing a subregister.
812 
813   unsigned SrcSize = Source->getScalarSizeInBits();
814   unsigned DestSize = Dest->getScalarSizeInBits();
815 
816   if (DestSize== 16 && Subtarget->has16BitInsts())
817     return SrcSize >= 32;
818 
819   return DestSize < SrcSize && DestSize % 32 == 0;
820 }
821 
822 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
823   unsigned SrcSize = Src->getScalarSizeInBits();
824   unsigned DestSize = Dest->getScalarSizeInBits();
825 
826   if (SrcSize == 16 && Subtarget->has16BitInsts())
827     return DestSize >= 32;
828 
829   return SrcSize == 32 && DestSize == 64;
830 }
831 
832 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
833   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
834   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
835   // this will enable reducing 64-bit operations the 32-bit, which is always
836   // good.
837 
838   if (Src == MVT::i16)
839     return Dest == MVT::i32 ||Dest == MVT::i64 ;
840 
841   return Src == MVT::i32 && Dest == MVT::i64;
842 }
843 
844 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
845   return isZExtFree(Val.getValueType(), VT2);
846 }
847 
848 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
849   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
850   // limited number of native 64-bit operations. Shrinking an operation to fit
851   // in a single 32-bit register should always be helpful. As currently used,
852   // this is much less general than the name suggests, and is only used in
853   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
854   // not profitable, and may actually be harmful.
855   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
856 }
857 
858 //===---------------------------------------------------------------------===//
859 // TargetLowering Callbacks
860 //===---------------------------------------------------------------------===//
861 
862 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
863                                                   bool IsVarArg) {
864   switch (CC) {
865   case CallingConv::AMDGPU_VS:
866   case CallingConv::AMDGPU_GS:
867   case CallingConv::AMDGPU_PS:
868   case CallingConv::AMDGPU_CS:
869   case CallingConv::AMDGPU_HS:
870   case CallingConv::AMDGPU_ES:
871   case CallingConv::AMDGPU_LS:
872     return CC_AMDGPU;
873   case CallingConv::C:
874   case CallingConv::Fast:
875   case CallingConv::Cold:
876     return CC_AMDGPU_Func;
877   case CallingConv::AMDGPU_KERNEL:
878   case CallingConv::SPIR_KERNEL:
879   default:
880     report_fatal_error("Unsupported calling convention for call");
881   }
882 }
883 
884 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
885                                                     bool IsVarArg) {
886   switch (CC) {
887   case CallingConv::AMDGPU_KERNEL:
888   case CallingConv::SPIR_KERNEL:
889     llvm_unreachable("kernels should not be handled here");
890   case CallingConv::AMDGPU_VS:
891   case CallingConv::AMDGPU_GS:
892   case CallingConv::AMDGPU_PS:
893   case CallingConv::AMDGPU_CS:
894   case CallingConv::AMDGPU_HS:
895   case CallingConv::AMDGPU_ES:
896   case CallingConv::AMDGPU_LS:
897     return RetCC_SI_Shader;
898   case CallingConv::C:
899   case CallingConv::Fast:
900   case CallingConv::Cold:
901     return RetCC_AMDGPU_Func;
902   default:
903     report_fatal_error("Unsupported calling convention.");
904   }
905 }
906 
907 /// The SelectionDAGBuilder will automatically promote function arguments
908 /// with illegal types.  However, this does not work for the AMDGPU targets
909 /// since the function arguments are stored in memory as these illegal types.
910 /// In order to handle this properly we need to get the original types sizes
911 /// from the LLVM IR Function and fixup the ISD:InputArg values before
912 /// passing them to AnalyzeFormalArguments()
913 
914 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
915 /// input values across multiple registers.  Each item in the Ins array
916 /// represents a single value that will be stored in registers.  Ins[x].VT is
917 /// the value type of the value that will be stored in the register, so
918 /// whatever SDNode we lower the argument to needs to be this type.
919 ///
920 /// In order to correctly lower the arguments we need to know the size of each
921 /// argument.  Since Ins[x].VT gives us the size of the register that will
922 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
923 /// for the orignal function argument so that we can deduce the correct memory
924 /// type to use for Ins[x].  In most cases the correct memory type will be
925 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
926 /// we have a kernel argument of type v8i8, this argument will be split into
927 /// 8 parts and each part will be represented by its own item in the Ins array.
928 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
929 /// the argument before it was split.  From this, we deduce that the memory type
930 /// for each individual part is i8.  We pass the memory type as LocVT to the
931 /// calling convention analysis function and the register type (Ins[x].VT) as
932 /// the ValVT.
933 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
934   CCState &State,
935   const SmallVectorImpl<ISD::InputArg> &Ins) const {
936   const MachineFunction &MF = State.getMachineFunction();
937   const Function &Fn = MF.getFunction();
938   LLVMContext &Ctx = Fn.getParent()->getContext();
939   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
940   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
941   CallingConv::ID CC = Fn.getCallingConv();
942 
943   unsigned MaxAlign = 1;
944   uint64_t ExplicitArgOffset = 0;
945   const DataLayout &DL = Fn.getParent()->getDataLayout();
946 
947   unsigned InIndex = 0;
948 
949   for (const Argument &Arg : Fn.args()) {
950     Type *BaseArgTy = Arg.getType();
951     unsigned Align = DL.getABITypeAlignment(BaseArgTy);
952     MaxAlign = std::max(Align, MaxAlign);
953     unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
954 
955     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
956     ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
957 
958     // We're basically throwing away everything passed into us and starting over
959     // to get accurate in-memory offsets. The "PartOffset" is completely useless
960     // to us as computed in Ins.
961     //
962     // We also need to figure out what type legalization is trying to do to get
963     // the correct memory offsets.
964 
965     SmallVector<EVT, 16> ValueVTs;
966     SmallVector<uint64_t, 16> Offsets;
967     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
968 
969     for (unsigned Value = 0, NumValues = ValueVTs.size();
970          Value != NumValues; ++Value) {
971       uint64_t BasePartOffset = Offsets[Value];
972 
973       EVT ArgVT = ValueVTs[Value];
974       EVT MemVT = ArgVT;
975       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
976       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
977 
978       if (NumRegs == 1) {
979         // This argument is not split, so the IR type is the memory type.
980         if (ArgVT.isExtended()) {
981           // We have an extended type, like i24, so we should just use the
982           // register type.
983           MemVT = RegisterVT;
984         } else {
985           MemVT = ArgVT;
986         }
987       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
988                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
989         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
990         // We have a vector value which has been split into a vector with
991         // the same scalar type, but fewer elements.  This should handle
992         // all the floating-point vector types.
993         MemVT = RegisterVT;
994       } else if (ArgVT.isVector() &&
995                  ArgVT.getVectorNumElements() == NumRegs) {
996         // This arg has been split so that each element is stored in a separate
997         // register.
998         MemVT = ArgVT.getScalarType();
999       } else if (ArgVT.isExtended()) {
1000         // We have an extended type, like i65.
1001         MemVT = RegisterVT;
1002       } else {
1003         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1004         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1005         if (RegisterVT.isInteger()) {
1006           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1007         } else if (RegisterVT.isVector()) {
1008           assert(!RegisterVT.getScalarType().isFloatingPoint());
1009           unsigned NumElements = RegisterVT.getVectorNumElements();
1010           assert(MemoryBits % NumElements == 0);
1011           // This vector type has been split into another vector type with
1012           // a different elements size.
1013           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1014                                            MemoryBits / NumElements);
1015           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1016         } else {
1017           llvm_unreachable("cannot deduce memory type.");
1018         }
1019       }
1020 
1021       // Convert one element vectors to scalar.
1022       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1023         MemVT = MemVT.getScalarType();
1024 
1025       // Round up vec3/vec5 argument.
1026       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1027         assert(MemVT.getVectorNumElements() == 3 ||
1028                MemVT.getVectorNumElements() == 5);
1029         MemVT = MemVT.getPow2VectorType(State.getContext());
1030       }
1031 
1032       unsigned PartOffset = 0;
1033       for (unsigned i = 0; i != NumRegs; ++i) {
1034         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1035                                                BasePartOffset + PartOffset,
1036                                                MemVT.getSimpleVT(),
1037                                                CCValAssign::Full));
1038         PartOffset += MemVT.getStoreSize();
1039       }
1040     }
1041   }
1042 }
1043 
1044 SDValue AMDGPUTargetLowering::LowerReturn(
1045   SDValue Chain, CallingConv::ID CallConv,
1046   bool isVarArg,
1047   const SmallVectorImpl<ISD::OutputArg> &Outs,
1048   const SmallVectorImpl<SDValue> &OutVals,
1049   const SDLoc &DL, SelectionDAG &DAG) const {
1050   // FIXME: Fails for r600 tests
1051   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1052   // "wave terminate should not have return values");
1053   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1054 }
1055 
1056 //===---------------------------------------------------------------------===//
1057 // Target specific lowering
1058 //===---------------------------------------------------------------------===//
1059 
1060 /// Selects the correct CCAssignFn for a given CallingConvention value.
1061 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1062                                                     bool IsVarArg) {
1063   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1064 }
1065 
1066 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1067                                                       bool IsVarArg) {
1068   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1069 }
1070 
1071 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1072                                                   SelectionDAG &DAG,
1073                                                   MachineFrameInfo &MFI,
1074                                                   int ClobberedFI) const {
1075   SmallVector<SDValue, 8> ArgChains;
1076   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1077   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1078 
1079   // Include the original chain at the beginning of the list. When this is
1080   // used by target LowerCall hooks, this helps legalize find the
1081   // CALLSEQ_BEGIN node.
1082   ArgChains.push_back(Chain);
1083 
1084   // Add a chain value for each stack argument corresponding
1085   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1086                             UE = DAG.getEntryNode().getNode()->use_end();
1087        U != UE; ++U) {
1088     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1089       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1090         if (FI->getIndex() < 0) {
1091           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1092           int64_t InLastByte = InFirstByte;
1093           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1094 
1095           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1096               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1097             ArgChains.push_back(SDValue(L, 1));
1098         }
1099       }
1100     }
1101   }
1102 
1103   // Build a tokenfactor for all the chains.
1104   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1105 }
1106 
1107 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1108                                                  SmallVectorImpl<SDValue> &InVals,
1109                                                  StringRef Reason) const {
1110   SDValue Callee = CLI.Callee;
1111   SelectionDAG &DAG = CLI.DAG;
1112 
1113   const Function &Fn = DAG.getMachineFunction().getFunction();
1114 
1115   StringRef FuncName("<unknown>");
1116 
1117   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1118     FuncName = G->getSymbol();
1119   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1120     FuncName = G->getGlobal()->getName();
1121 
1122   DiagnosticInfoUnsupported NoCalls(
1123     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1124   DAG.getContext()->diagnose(NoCalls);
1125 
1126   if (!CLI.IsTailCall) {
1127     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1128       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1129   }
1130 
1131   return DAG.getEntryNode();
1132 }
1133 
1134 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1135                                         SmallVectorImpl<SDValue> &InVals) const {
1136   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1137 }
1138 
1139 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1140                                                       SelectionDAG &DAG) const {
1141   const Function &Fn = DAG.getMachineFunction().getFunction();
1142 
1143   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1144                                             SDLoc(Op).getDebugLoc());
1145   DAG.getContext()->diagnose(NoDynamicAlloca);
1146   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1147   return DAG.getMergeValues(Ops, SDLoc());
1148 }
1149 
1150 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1151                                              SelectionDAG &DAG) const {
1152   switch (Op.getOpcode()) {
1153   default:
1154     Op->print(errs(), &DAG);
1155     llvm_unreachable("Custom lowering code for this"
1156                      "instruction is not implemented yet!");
1157     break;
1158   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1159   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1160   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1161   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1162   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1163   case ISD::FREM: return LowerFREM(Op, DAG);
1164   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1165   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1166   case ISD::FRINT: return LowerFRINT(Op, DAG);
1167   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1168   case ISD::FROUND: return LowerFROUND(Op, DAG);
1169   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1170   case ISD::FLOG:
1171     return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
1172   case ISD::FLOG10:
1173     return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
1174   case ISD::FEXP:
1175     return lowerFEXP(Op, DAG);
1176   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1177   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1178   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1179   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1180   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1181   case ISD::CTTZ:
1182   case ISD::CTTZ_ZERO_UNDEF:
1183   case ISD::CTLZ:
1184   case ISD::CTLZ_ZERO_UNDEF:
1185     return LowerCTLZ_CTTZ(Op, DAG);
1186   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1187   }
1188   return Op;
1189 }
1190 
1191 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1192                                               SmallVectorImpl<SDValue> &Results,
1193                                               SelectionDAG &DAG) const {
1194   switch (N->getOpcode()) {
1195   case ISD::SIGN_EXTEND_INREG:
1196     // Different parts of legalization seem to interpret which type of
1197     // sign_extend_inreg is the one to check for custom lowering. The extended
1198     // from type is what really matters, but some places check for custom
1199     // lowering of the result type. This results in trying to use
1200     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1201     // nothing here and let the illegal result integer be handled normally.
1202     return;
1203   default:
1204     return;
1205   }
1206 }
1207 
1208 static bool hasDefinedInitializer(const GlobalValue *GV) {
1209   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1210   if (!GVar || !GVar->hasInitializer())
1211     return false;
1212 
1213   return !isa<UndefValue>(GVar->getInitializer());
1214 }
1215 
1216 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1217                                                  SDValue Op,
1218                                                  SelectionDAG &DAG) const {
1219 
1220   const DataLayout &DL = DAG.getDataLayout();
1221   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1222   const GlobalValue *GV = G->getGlobal();
1223 
1224   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1225       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1226     if (!MFI->isEntryFunction()) {
1227       const Function &Fn = DAG.getMachineFunction().getFunction();
1228       DiagnosticInfoUnsupported BadLDSDecl(
1229         Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1230       DAG.getContext()->diagnose(BadLDSDecl);
1231     }
1232 
1233     // XXX: What does the value of G->getOffset() mean?
1234     assert(G->getOffset() == 0 &&
1235          "Do not know what to do with an non-zero offset");
1236 
1237     // TODO: We could emit code to handle the initialization somewhere.
1238     if (!hasDefinedInitializer(GV)) {
1239       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1240       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1241     }
1242   }
1243 
1244   const Function &Fn = DAG.getMachineFunction().getFunction();
1245   DiagnosticInfoUnsupported BadInit(
1246       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1247   DAG.getContext()->diagnose(BadInit);
1248   return SDValue();
1249 }
1250 
1251 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1252                                                   SelectionDAG &DAG) const {
1253   SmallVector<SDValue, 8> Args;
1254 
1255   EVT VT = Op.getValueType();
1256   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1257     SDLoc SL(Op);
1258     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1259     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1260 
1261     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1262     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1263   }
1264 
1265   for (const SDUse &U : Op->ops())
1266     DAG.ExtractVectorElements(U.get(), Args);
1267 
1268   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1269 }
1270 
1271 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1272                                                      SelectionDAG &DAG) const {
1273 
1274   SmallVector<SDValue, 8> Args;
1275   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1276   EVT VT = Op.getValueType();
1277   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1278                             VT.getVectorNumElements());
1279 
1280   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1281 }
1282 
1283 /// Generate Min/Max node
1284 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1285                                                    SDValue LHS, SDValue RHS,
1286                                                    SDValue True, SDValue False,
1287                                                    SDValue CC,
1288                                                    DAGCombinerInfo &DCI) const {
1289   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1290     return SDValue();
1291 
1292   SelectionDAG &DAG = DCI.DAG;
1293   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1294   switch (CCOpcode) {
1295   case ISD::SETOEQ:
1296   case ISD::SETONE:
1297   case ISD::SETUNE:
1298   case ISD::SETNE:
1299   case ISD::SETUEQ:
1300   case ISD::SETEQ:
1301   case ISD::SETFALSE:
1302   case ISD::SETFALSE2:
1303   case ISD::SETTRUE:
1304   case ISD::SETTRUE2:
1305   case ISD::SETUO:
1306   case ISD::SETO:
1307     break;
1308   case ISD::SETULE:
1309   case ISD::SETULT: {
1310     if (LHS == True)
1311       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1312     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1313   }
1314   case ISD::SETOLE:
1315   case ISD::SETOLT:
1316   case ISD::SETLE:
1317   case ISD::SETLT: {
1318     // Ordered. Assume ordered for undefined.
1319 
1320     // Only do this after legalization to avoid interfering with other combines
1321     // which might occur.
1322     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1323         !DCI.isCalledByLegalizer())
1324       return SDValue();
1325 
1326     // We need to permute the operands to get the correct NaN behavior. The
1327     // selected operand is the second one based on the failing compare with NaN,
1328     // so permute it based on the compare type the hardware uses.
1329     if (LHS == True)
1330       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1331     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1332   }
1333   case ISD::SETUGE:
1334   case ISD::SETUGT: {
1335     if (LHS == True)
1336       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1337     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1338   }
1339   case ISD::SETGT:
1340   case ISD::SETGE:
1341   case ISD::SETOGE:
1342   case ISD::SETOGT: {
1343     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1344         !DCI.isCalledByLegalizer())
1345       return SDValue();
1346 
1347     if (LHS == True)
1348       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1349     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1350   }
1351   case ISD::SETCC_INVALID:
1352     llvm_unreachable("Invalid setcc condcode!");
1353   }
1354   return SDValue();
1355 }
1356 
1357 std::pair<SDValue, SDValue>
1358 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1359   SDLoc SL(Op);
1360 
1361   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1362 
1363   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1364   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1365 
1366   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1367   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1368 
1369   return std::make_pair(Lo, Hi);
1370 }
1371 
1372 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1373   SDLoc SL(Op);
1374 
1375   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1376   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1377   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1378 }
1379 
1380 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1381   SDLoc SL(Op);
1382 
1383   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1384   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1385   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1386 }
1387 
1388 // Split a vector type into two parts. The first part is a power of two vector.
1389 // The second part is whatever is left over, and is a scalar if it would
1390 // otherwise be a 1-vector.
1391 std::pair<EVT, EVT>
1392 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1393   EVT LoVT, HiVT;
1394   EVT EltVT = VT.getVectorElementType();
1395   unsigned NumElts = VT.getVectorNumElements();
1396   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1397   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1398   HiVT = NumElts - LoNumElts == 1
1399              ? EltVT
1400              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1401   return std::make_pair(LoVT, HiVT);
1402 }
1403 
1404 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1405 // scalar.
1406 std::pair<SDValue, SDValue>
1407 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1408                                   const EVT &LoVT, const EVT &HiVT,
1409                                   SelectionDAG &DAG) const {
1410   assert(LoVT.getVectorNumElements() +
1411                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1412              N.getValueType().getVectorNumElements() &&
1413          "More vector elements requested than available!");
1414   auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1415   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1416                            DAG.getConstant(0, DL, IdxTy));
1417   SDValue Hi = DAG.getNode(
1418       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1419       HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy));
1420   return std::make_pair(Lo, Hi);
1421 }
1422 
1423 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1424                                               SelectionDAG &DAG) const {
1425   LoadSDNode *Load = cast<LoadSDNode>(Op);
1426   EVT VT = Op.getValueType();
1427 
1428 
1429   // If this is a 2 element vector, we really want to scalarize and not create
1430   // weird 1 element vectors.
1431   if (VT.getVectorNumElements() == 2)
1432     return scalarizeVectorLoad(Load, DAG);
1433 
1434   SDValue BasePtr = Load->getBasePtr();
1435   EVT MemVT = Load->getMemoryVT();
1436   SDLoc SL(Op);
1437 
1438   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1439 
1440   EVT LoVT, HiVT;
1441   EVT LoMemVT, HiMemVT;
1442   SDValue Lo, Hi;
1443 
1444   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1445   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1446   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1447 
1448   unsigned Size = LoMemVT.getStoreSize();
1449   unsigned BaseAlign = Load->getAlignment();
1450   unsigned HiAlign = MinAlign(BaseAlign, Size);
1451 
1452   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1453                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1454                                   BaseAlign, Load->getMemOperand()->getFlags());
1455   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1456   SDValue HiLoad =
1457       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1458                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1459                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1460 
1461   auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1462   SDValue Join;
1463   if (LoVT == HiVT) {
1464     // This is the case that the vector is power of two so was evenly split.
1465     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1466   } else {
1467     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1468                        DAG.getConstant(0, SL, IdxTy));
1469     Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR
1470                                        : ISD::INSERT_VECTOR_ELT,
1471                        SL, VT, Join, HiLoad,
1472                        DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy));
1473   }
1474 
1475   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1476                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1477 
1478   return DAG.getMergeValues(Ops, SL);
1479 }
1480 
1481 // Widen a vector load from vec3 to vec4.
1482 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1483                                               SelectionDAG &DAG) const {
1484   LoadSDNode *Load = cast<LoadSDNode>(Op);
1485   EVT VT = Op.getValueType();
1486   assert(VT.getVectorNumElements() == 3);
1487   SDValue BasePtr = Load->getBasePtr();
1488   EVT MemVT = Load->getMemoryVT();
1489   SDLoc SL(Op);
1490   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1491   unsigned BaseAlign = Load->getAlignment();
1492 
1493   EVT WideVT =
1494       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1495   EVT WideMemVT =
1496       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1497   SDValue WideLoad = DAG.getExtLoad(
1498       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1499       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1500   return DAG.getMergeValues(
1501       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1502                    DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))),
1503        WideLoad.getValue(1)},
1504       SL);
1505 }
1506 
1507 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1508                                                SelectionDAG &DAG) const {
1509   StoreSDNode *Store = cast<StoreSDNode>(Op);
1510   SDValue Val = Store->getValue();
1511   EVT VT = Val.getValueType();
1512 
1513   // If this is a 2 element vector, we really want to scalarize and not create
1514   // weird 1 element vectors.
1515   if (VT.getVectorNumElements() == 2)
1516     return scalarizeVectorStore(Store, DAG);
1517 
1518   EVT MemVT = Store->getMemoryVT();
1519   SDValue Chain = Store->getChain();
1520   SDValue BasePtr = Store->getBasePtr();
1521   SDLoc SL(Op);
1522 
1523   EVT LoVT, HiVT;
1524   EVT LoMemVT, HiMemVT;
1525   SDValue Lo, Hi;
1526 
1527   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1528   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1529   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1530 
1531   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1532 
1533   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1534   unsigned BaseAlign = Store->getAlignment();
1535   unsigned Size = LoMemVT.getStoreSize();
1536   unsigned HiAlign = MinAlign(BaseAlign, Size);
1537 
1538   SDValue LoStore =
1539       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1540                         Store->getMemOperand()->getFlags());
1541   SDValue HiStore =
1542       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1543                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1544 
1545   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1546 }
1547 
1548 // This is a shortcut for integer division because we have fast i32<->f32
1549 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1550 // float is enough to accurately represent up to a 24-bit signed integer.
1551 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1552                                             bool Sign) const {
1553   SDLoc DL(Op);
1554   EVT VT = Op.getValueType();
1555   SDValue LHS = Op.getOperand(0);
1556   SDValue RHS = Op.getOperand(1);
1557   MVT IntVT = MVT::i32;
1558   MVT FltVT = MVT::f32;
1559 
1560   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1561   if (LHSSignBits < 9)
1562     return SDValue();
1563 
1564   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1565   if (RHSSignBits < 9)
1566     return SDValue();
1567 
1568   unsigned BitSize = VT.getSizeInBits();
1569   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1570   unsigned DivBits = BitSize - SignBits;
1571   if (Sign)
1572     ++DivBits;
1573 
1574   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1575   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1576 
1577   SDValue jq = DAG.getConstant(1, DL, IntVT);
1578 
1579   if (Sign) {
1580     // char|short jq = ia ^ ib;
1581     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1582 
1583     // jq = jq >> (bitsize - 2)
1584     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1585                      DAG.getConstant(BitSize - 2, DL, VT));
1586 
1587     // jq = jq | 0x1
1588     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1589   }
1590 
1591   // int ia = (int)LHS;
1592   SDValue ia = LHS;
1593 
1594   // int ib, (int)RHS;
1595   SDValue ib = RHS;
1596 
1597   // float fa = (float)ia;
1598   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1599 
1600   // float fb = (float)ib;
1601   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1602 
1603   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1604                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1605 
1606   // fq = trunc(fq);
1607   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1608 
1609   // float fqneg = -fq;
1610   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1611 
1612   // float fr = mad(fqneg, fb, fa);
1613   unsigned OpCode = Subtarget->hasFP32Denormals() ?
1614                     (unsigned)AMDGPUISD::FMAD_FTZ :
1615                     (unsigned)ISD::FMAD;
1616   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1617 
1618   // int iq = (int)fq;
1619   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1620 
1621   // fr = fabs(fr);
1622   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1623 
1624   // fb = fabs(fb);
1625   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1626 
1627   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1628 
1629   // int cv = fr >= fb;
1630   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1631 
1632   // jq = (cv ? jq : 0);
1633   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1634 
1635   // dst = iq + jq;
1636   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1637 
1638   // Rem needs compensation, it's easier to recompute it
1639   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1640   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1641 
1642   // Truncate to number of bits this divide really is.
1643   if (Sign) {
1644     SDValue InRegSize
1645       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1646     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1647     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1648   } else {
1649     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1650     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1651     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1652   }
1653 
1654   return DAG.getMergeValues({ Div, Rem }, DL);
1655 }
1656 
1657 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1658                                       SelectionDAG &DAG,
1659                                       SmallVectorImpl<SDValue> &Results) const {
1660   SDLoc DL(Op);
1661   EVT VT = Op.getValueType();
1662 
1663   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1664 
1665   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1666 
1667   SDValue One = DAG.getConstant(1, DL, HalfVT);
1668   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1669 
1670   //HiLo split
1671   SDValue LHS = Op.getOperand(0);
1672   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1673   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1674 
1675   SDValue RHS = Op.getOperand(1);
1676   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1677   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1678 
1679   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1680       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1681 
1682     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1683                               LHS_Lo, RHS_Lo);
1684 
1685     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1686     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1687 
1688     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1689     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1690     return;
1691   }
1692 
1693   if (isTypeLegal(MVT::i64)) {
1694     // Compute denominator reciprocal.
1695     unsigned FMAD = Subtarget->hasFP32Denormals() ?
1696                     (unsigned)AMDGPUISD::FMAD_FTZ :
1697                     (unsigned)ISD::FMAD;
1698 
1699     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1700     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1701     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1702       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1703       Cvt_Lo);
1704     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1705     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1706       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1707     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1708       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1709     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1710     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1711       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1712       Mul1);
1713     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1714     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1715     SDValue Rcp64 = DAG.getBitcast(VT,
1716                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1717 
1718     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1719     SDValue One64  = DAG.getConstant(1, DL, VT);
1720     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1721     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1722 
1723     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1724     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1725     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1726     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1727                                     Zero);
1728     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1729                                     One);
1730 
1731     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1732                                   Mulhi1_Lo, Zero1);
1733     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1734                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1735     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1736     SDValue Add1 = DAG.getBitcast(VT,
1737                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1738 
1739     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1740     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1741     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1742                                     Zero);
1743     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1744                                     One);
1745 
1746     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1747                                   Mulhi2_Lo, Zero1);
1748     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1749                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1750     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1751                                   Zero, Add2_Lo.getValue(1));
1752     SDValue Add2 = DAG.getBitcast(VT,
1753                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1754     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1755 
1756     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1757 
1758     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1759     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1760     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1761                                   Mul3_Lo, Zero1);
1762     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1763                                   Mul3_Hi, Sub1_Lo.getValue(1));
1764     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1765     SDValue Sub1 = DAG.getBitcast(VT,
1766                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1767 
1768     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1769     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1770                                  ISD::SETUGE);
1771     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1772                                  ISD::SETUGE);
1773     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1774 
1775     // TODO: Here and below portions of the code can be enclosed into if/endif.
1776     // Currently control flow is unconditional and we have 4 selects after
1777     // potential endif to substitute PHIs.
1778 
1779     // if C3 != 0 ...
1780     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1781                                   RHS_Lo, Zero1);
1782     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1783                                   RHS_Hi, Sub1_Lo.getValue(1));
1784     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1785                                   Zero, Sub2_Lo.getValue(1));
1786     SDValue Sub2 = DAG.getBitcast(VT,
1787                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1788 
1789     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1790 
1791     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1792                                  ISD::SETUGE);
1793     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1794                                  ISD::SETUGE);
1795     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1796 
1797     // if (C6 != 0)
1798     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1799 
1800     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1801                                   RHS_Lo, Zero1);
1802     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1803                                   RHS_Hi, Sub2_Lo.getValue(1));
1804     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1805                                   Zero, Sub3_Lo.getValue(1));
1806     SDValue Sub3 = DAG.getBitcast(VT,
1807                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1808 
1809     // endif C6
1810     // endif C3
1811 
1812     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1813     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1814 
1815     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1816     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1817 
1818     Results.push_back(Div);
1819     Results.push_back(Rem);
1820 
1821     return;
1822   }
1823 
1824   // r600 expandion.
1825   // Get Speculative values
1826   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1827   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1828 
1829   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1830   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1831   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1832 
1833   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1834   SDValue DIV_Lo = Zero;
1835 
1836   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1837 
1838   for (unsigned i = 0; i < halfBitWidth; ++i) {
1839     const unsigned bitPos = halfBitWidth - i - 1;
1840     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1841     // Get value of high bit
1842     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1843     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1844     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1845 
1846     // Shift
1847     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1848     // Add LHS high bit
1849     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1850 
1851     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1852     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1853 
1854     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1855 
1856     // Update REM
1857     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1858     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1859   }
1860 
1861   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1862   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1863   Results.push_back(DIV);
1864   Results.push_back(REM);
1865 }
1866 
1867 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1868                                            SelectionDAG &DAG) const {
1869   SDLoc DL(Op);
1870   EVT VT = Op.getValueType();
1871 
1872   if (VT == MVT::i64) {
1873     SmallVector<SDValue, 2> Results;
1874     LowerUDIVREM64(Op, DAG, Results);
1875     return DAG.getMergeValues(Results, DL);
1876   }
1877 
1878   if (VT == MVT::i32) {
1879     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1880       return Res;
1881   }
1882 
1883   SDValue Num = Op.getOperand(0);
1884   SDValue Den = Op.getOperand(1);
1885 
1886   // RCP =  URECIP(Den) = 2^32 / Den + e
1887   // e is rounding error.
1888   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1889 
1890   // RCP_LO = mul(RCP, Den) */
1891   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1892 
1893   // RCP_HI = mulhu (RCP, Den) */
1894   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1895 
1896   // NEG_RCP_LO = -RCP_LO
1897   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1898                                                      RCP_LO);
1899 
1900   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1901   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1902                                            NEG_RCP_LO, RCP_LO,
1903                                            ISD::SETEQ);
1904   // Calculate the rounding error from the URECIP instruction
1905   // E = mulhu(ABS_RCP_LO, RCP)
1906   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1907 
1908   // RCP_A_E = RCP + E
1909   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1910 
1911   // RCP_S_E = RCP - E
1912   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1913 
1914   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1915   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1916                                      RCP_A_E, RCP_S_E,
1917                                      ISD::SETEQ);
1918   // Quotient = mulhu(Tmp0, Num)
1919   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1920 
1921   // Num_S_Remainder = Quotient * Den
1922   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1923 
1924   // Remainder = Num - Num_S_Remainder
1925   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1926 
1927   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1928   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1929                                                  DAG.getConstant(-1, DL, VT),
1930                                                  DAG.getConstant(0, DL, VT),
1931                                                  ISD::SETUGE);
1932   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1933   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1934                                                   Num_S_Remainder,
1935                                                   DAG.getConstant(-1, DL, VT),
1936                                                   DAG.getConstant(0, DL, VT),
1937                                                   ISD::SETUGE);
1938   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1939   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1940                                                Remainder_GE_Zero);
1941 
1942   // Calculate Division result:
1943 
1944   // Quotient_A_One = Quotient + 1
1945   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1946                                        DAG.getConstant(1, DL, VT));
1947 
1948   // Quotient_S_One = Quotient - 1
1949   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1950                                        DAG.getConstant(1, DL, VT));
1951 
1952   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1953   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1954                                      Quotient, Quotient_A_One, ISD::SETEQ);
1955 
1956   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1957   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1958                             Quotient_S_One, Div, ISD::SETEQ);
1959 
1960   // Calculate Rem result:
1961 
1962   // Remainder_S_Den = Remainder - Den
1963   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1964 
1965   // Remainder_A_Den = Remainder + Den
1966   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1967 
1968   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1969   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1970                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1971 
1972   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1973   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1974                             Remainder_A_Den, Rem, ISD::SETEQ);
1975   SDValue Ops[2] = {
1976     Div,
1977     Rem
1978   };
1979   return DAG.getMergeValues(Ops, DL);
1980 }
1981 
1982 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1983                                            SelectionDAG &DAG) const {
1984   SDLoc DL(Op);
1985   EVT VT = Op.getValueType();
1986 
1987   SDValue LHS = Op.getOperand(0);
1988   SDValue RHS = Op.getOperand(1);
1989 
1990   SDValue Zero = DAG.getConstant(0, DL, VT);
1991   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1992 
1993   if (VT == MVT::i32) {
1994     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1995       return Res;
1996   }
1997 
1998   if (VT == MVT::i64 &&
1999       DAG.ComputeNumSignBits(LHS) > 32 &&
2000       DAG.ComputeNumSignBits(RHS) > 32) {
2001     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2002 
2003     //HiLo split
2004     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2005     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2006     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2007                                  LHS_Lo, RHS_Lo);
2008     SDValue Res[2] = {
2009       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2010       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2011     };
2012     return DAG.getMergeValues(Res, DL);
2013   }
2014 
2015   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2016   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2017   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2018   SDValue RSign = LHSign; // Remainder sign is the same as LHS
2019 
2020   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2021   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2022 
2023   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2024   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2025 
2026   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2027   SDValue Rem = Div.getValue(1);
2028 
2029   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2030   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2031 
2032   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2033   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2034 
2035   SDValue Res[2] = {
2036     Div,
2037     Rem
2038   };
2039   return DAG.getMergeValues(Res, DL);
2040 }
2041 
2042 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2043 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2044   SDLoc SL(Op);
2045   EVT VT = Op.getValueType();
2046   SDValue X = Op.getOperand(0);
2047   SDValue Y = Op.getOperand(1);
2048 
2049   // TODO: Should this propagate fast-math-flags?
2050 
2051   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2052   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2053   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2054 
2055   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2056 }
2057 
2058 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2059   SDLoc SL(Op);
2060   SDValue Src = Op.getOperand(0);
2061 
2062   // result = trunc(src)
2063   // if (src > 0.0 && src != result)
2064   //   result += 1.0
2065 
2066   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2067 
2068   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2069   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2070 
2071   EVT SetCCVT =
2072       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2073 
2074   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2075   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2076   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2077 
2078   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2079   // TODO: Should this propagate fast-math-flags?
2080   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2081 }
2082 
2083 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2084                                   SelectionDAG &DAG) {
2085   const unsigned FractBits = 52;
2086   const unsigned ExpBits = 11;
2087 
2088   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2089                                 Hi,
2090                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2091                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2092   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2093                             DAG.getConstant(1023, SL, MVT::i32));
2094 
2095   return Exp;
2096 }
2097 
2098 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2099   SDLoc SL(Op);
2100   SDValue Src = Op.getOperand(0);
2101 
2102   assert(Op.getValueType() == MVT::f64);
2103 
2104   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2105   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2106 
2107   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2108 
2109   // Extract the upper half, since this is where we will find the sign and
2110   // exponent.
2111   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2112 
2113   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2114 
2115   const unsigned FractBits = 52;
2116 
2117   // Extract the sign bit.
2118   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2119   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2120 
2121   // Extend back to 64-bits.
2122   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2123   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2124 
2125   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2126   const SDValue FractMask
2127     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2128 
2129   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2130   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2131   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2132 
2133   EVT SetCCVT =
2134       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2135 
2136   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2137 
2138   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2139   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2140 
2141   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2142   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2143 
2144   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2145 }
2146 
2147 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2148   SDLoc SL(Op);
2149   SDValue Src = Op.getOperand(0);
2150 
2151   assert(Op.getValueType() == MVT::f64);
2152 
2153   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2154   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2155   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2156 
2157   // TODO: Should this propagate fast-math-flags?
2158 
2159   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2160   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2161 
2162   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2163 
2164   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2165   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2166 
2167   EVT SetCCVT =
2168       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2169   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2170 
2171   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2172 }
2173 
2174 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2175   // FNEARBYINT and FRINT are the same, except in their handling of FP
2176   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2177   // rint, so just treat them as equivalent.
2178   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2179 }
2180 
2181 // XXX - May require not supporting f32 denormals?
2182 
2183 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2184 // compare and vselect end up producing worse code than scalarizing the whole
2185 // operation.
2186 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2187   SDLoc SL(Op);
2188   SDValue X = Op.getOperand(0);
2189   EVT VT = Op.getValueType();
2190 
2191   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2192 
2193   // TODO: Should this propagate fast-math-flags?
2194 
2195   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2196 
2197   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2198 
2199   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2200   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2201   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2202 
2203   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2204 
2205   EVT SetCCVT =
2206       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2207 
2208   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2209 
2210   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2211 
2212   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2213 }
2214 
2215 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2216   SDLoc SL(Op);
2217   SDValue X = Op.getOperand(0);
2218 
2219   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2220 
2221   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2222   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2223   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2224   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2225   EVT SetCCVT =
2226       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2227 
2228   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2229 
2230   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2231 
2232   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2233 
2234   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2235                                        MVT::i64);
2236 
2237   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2238   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2239                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2240                                           MVT::i64),
2241                           Exp);
2242 
2243   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2244   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2245                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2246                               ISD::SETNE);
2247 
2248   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2249                              D, DAG.getConstant(0, SL, MVT::i64));
2250   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2251 
2252   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2253   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2254 
2255   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2256   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2257   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2258 
2259   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2260                             ExpEqNegOne,
2261                             DAG.getConstantFP(1.0, SL, MVT::f64),
2262                             DAG.getConstantFP(0.0, SL, MVT::f64));
2263 
2264   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2265 
2266   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2267   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2268 
2269   return K;
2270 }
2271 
2272 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2273   EVT VT = Op.getValueType();
2274 
2275   if (VT == MVT::f32 || VT == MVT::f16)
2276     return LowerFROUND32_16(Op, DAG);
2277 
2278   if (VT == MVT::f64)
2279     return LowerFROUND64(Op, DAG);
2280 
2281   llvm_unreachable("unhandled type");
2282 }
2283 
2284 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2285   SDLoc SL(Op);
2286   SDValue Src = Op.getOperand(0);
2287 
2288   // result = trunc(src);
2289   // if (src < 0.0 && src != result)
2290   //   result += -1.0.
2291 
2292   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2293 
2294   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2295   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2296 
2297   EVT SetCCVT =
2298       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2299 
2300   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2301   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2302   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2303 
2304   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2305   // TODO: Should this propagate fast-math-flags?
2306   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2307 }
2308 
2309 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2310                                         double Log2BaseInverted) const {
2311   EVT VT = Op.getValueType();
2312 
2313   SDLoc SL(Op);
2314   SDValue Operand = Op.getOperand(0);
2315   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2316   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2317 
2318   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2319 }
2320 
2321 // Return M_LOG2E of appropriate type
2322 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) {
2323   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
2324   case MVT::f32:
2325     return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT);
2326   case MVT::f16:
2327     return DAG.getConstantFP(
2328       APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"),
2329       SL, VT);
2330   case MVT::f64:
2331     return DAG.getConstantFP(
2332       APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT);
2333   default:
2334     llvm_unreachable("unsupported fp type");
2335   }
2336 }
2337 
2338 // exp2(M_LOG2E_F * f);
2339 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2340   EVT VT = Op.getValueType();
2341   SDLoc SL(Op);
2342   SDValue Src = Op.getOperand(0);
2343 
2344   const SDValue K = getLog2EVal(DAG, SL, VT);
2345   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2346   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2347 }
2348 
2349 static bool isCtlzOpc(unsigned Opc) {
2350   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2351 }
2352 
2353 static bool isCttzOpc(unsigned Opc) {
2354   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2355 }
2356 
2357 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2358   SDLoc SL(Op);
2359   SDValue Src = Op.getOperand(0);
2360   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2361                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2362 
2363   unsigned ISDOpc, NewOpc;
2364   if (isCtlzOpc(Op.getOpcode())) {
2365     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2366     NewOpc = AMDGPUISD::FFBH_U32;
2367   } else if (isCttzOpc(Op.getOpcode())) {
2368     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2369     NewOpc = AMDGPUISD::FFBL_B32;
2370   } else
2371     llvm_unreachable("Unexpected OPCode!!!");
2372 
2373 
2374   if (ZeroUndef && Src.getValueType() == MVT::i32)
2375     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2376 
2377   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2378 
2379   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2380   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2381 
2382   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2383   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2384 
2385   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2386                                    *DAG.getContext(), MVT::i32);
2387 
2388   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2389   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2390 
2391   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2392   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2393 
2394   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2395   SDValue Add, NewOpr;
2396   if (isCtlzOpc(Op.getOpcode())) {
2397     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2398     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2399     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2400   } else {
2401     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2402     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2403     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2404   }
2405 
2406   if (!ZeroUndef) {
2407     // Test if the full 64-bit input is zero.
2408 
2409     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2410     // which we probably don't want.
2411     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2412     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2413     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2414 
2415     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2416     // with the same cycles, otherwise it is slower.
2417     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2418     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2419 
2420     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2421 
2422     // The instruction returns -1 for 0 input, but the defined intrinsic
2423     // behavior is to return the number of bits.
2424     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2425                          SrcIsZero, Bits32, NewOpr);
2426   }
2427 
2428   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2429 }
2430 
2431 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2432                                                bool Signed) const {
2433   // Unsigned
2434   // cul2f(ulong u)
2435   //{
2436   //  uint lz = clz(u);
2437   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2438   //  u = (u << lz) & 0x7fffffffffffffffUL;
2439   //  ulong t = u & 0xffffffffffUL;
2440   //  uint v = (e << 23) | (uint)(u >> 40);
2441   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2442   //  return as_float(v + r);
2443   //}
2444   // Signed
2445   // cl2f(long l)
2446   //{
2447   //  long s = l >> 63;
2448   //  float r = cul2f((l + s) ^ s);
2449   //  return s ? -r : r;
2450   //}
2451 
2452   SDLoc SL(Op);
2453   SDValue Src = Op.getOperand(0);
2454   SDValue L = Src;
2455 
2456   SDValue S;
2457   if (Signed) {
2458     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2459     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2460 
2461     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2462     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2463   }
2464 
2465   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2466                                    *DAG.getContext(), MVT::f32);
2467 
2468 
2469   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2470   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2471   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2472   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2473 
2474   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2475   SDValue E = DAG.getSelect(SL, MVT::i32,
2476     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2477     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2478     ZeroI32);
2479 
2480   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2481     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2482     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2483 
2484   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2485                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2486 
2487   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2488                              U, DAG.getConstant(40, SL, MVT::i64));
2489 
2490   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2491     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2492     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2493 
2494   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2495   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2496   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2497 
2498   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2499 
2500   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2501 
2502   SDValue R = DAG.getSelect(SL, MVT::i32,
2503     RCmp,
2504     One,
2505     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2506   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2507   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2508 
2509   if (!Signed)
2510     return R;
2511 
2512   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2513   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2514 }
2515 
2516 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2517                                                bool Signed) const {
2518   SDLoc SL(Op);
2519   SDValue Src = Op.getOperand(0);
2520 
2521   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2522 
2523   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2524                            DAG.getConstant(0, SL, MVT::i32));
2525   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2526                            DAG.getConstant(1, SL, MVT::i32));
2527 
2528   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2529                               SL, MVT::f64, Hi);
2530 
2531   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2532 
2533   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2534                               DAG.getConstant(32, SL, MVT::i32));
2535   // TODO: Should this propagate fast-math-flags?
2536   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2537 }
2538 
2539 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2540                                                SelectionDAG &DAG) const {
2541   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2542          "operation should be legal");
2543 
2544   // TODO: Factor out code common with LowerSINT_TO_FP.
2545 
2546   EVT DestVT = Op.getValueType();
2547   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2548     SDLoc DL(Op);
2549     SDValue Src = Op.getOperand(0);
2550 
2551     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2552     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2553     SDValue FPRound =
2554         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2555 
2556     return FPRound;
2557   }
2558 
2559   if (DestVT == MVT::f32)
2560     return LowerINT_TO_FP32(Op, DAG, false);
2561 
2562   assert(DestVT == MVT::f64);
2563   return LowerINT_TO_FP64(Op, DAG, false);
2564 }
2565 
2566 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2567                                               SelectionDAG &DAG) const {
2568   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2569          "operation should be legal");
2570 
2571   // TODO: Factor out code common with LowerUINT_TO_FP.
2572 
2573   EVT DestVT = Op.getValueType();
2574   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2575     SDLoc DL(Op);
2576     SDValue Src = Op.getOperand(0);
2577 
2578     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2579     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2580     SDValue FPRound =
2581         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2582 
2583     return FPRound;
2584   }
2585 
2586   if (DestVT == MVT::f32)
2587     return LowerINT_TO_FP32(Op, DAG, true);
2588 
2589   assert(DestVT == MVT::f64);
2590   return LowerINT_TO_FP64(Op, DAG, true);
2591 }
2592 
2593 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2594                                                bool Signed) const {
2595   SDLoc SL(Op);
2596 
2597   SDValue Src = Op.getOperand(0);
2598 
2599   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2600 
2601   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2602                                  MVT::f64);
2603   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2604                                  MVT::f64);
2605   // TODO: Should this propagate fast-math-flags?
2606   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2607 
2608   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2609 
2610 
2611   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2612 
2613   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2614                            MVT::i32, FloorMul);
2615   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2616 
2617   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2618 
2619   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2620 }
2621 
2622 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2623   SDLoc DL(Op);
2624   SDValue N0 = Op.getOperand(0);
2625 
2626   // Convert to target node to get known bits
2627   if (N0.getValueType() == MVT::f32)
2628     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2629 
2630   if (getTargetMachine().Options.UnsafeFPMath) {
2631     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2632     return SDValue();
2633   }
2634 
2635   assert(N0.getSimpleValueType() == MVT::f64);
2636 
2637   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2638   const unsigned ExpMask = 0x7ff;
2639   const unsigned ExpBiasf64 = 1023;
2640   const unsigned ExpBiasf16 = 15;
2641   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2642   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2643   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2644   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2645                            DAG.getConstant(32, DL, MVT::i64));
2646   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2647   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2648   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2649                           DAG.getConstant(20, DL, MVT::i64));
2650   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2651                   DAG.getConstant(ExpMask, DL, MVT::i32));
2652   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2653   // add the f16 bias (15) to get the biased exponent for the f16 format.
2654   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2655                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2656 
2657   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2658                           DAG.getConstant(8, DL, MVT::i32));
2659   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2660                   DAG.getConstant(0xffe, DL, MVT::i32));
2661 
2662   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2663                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2664   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2665 
2666   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2667   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2668 
2669   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2670   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2671       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2672                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2673 
2674   // N = M | (E << 12);
2675   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2676       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2677                   DAG.getConstant(12, DL, MVT::i32)));
2678 
2679   // B = clamp(1-E, 0, 13);
2680   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2681                                   One, E);
2682   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2683   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2684                   DAG.getConstant(13, DL, MVT::i32));
2685 
2686   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2687                                    DAG.getConstant(0x1000, DL, MVT::i32));
2688 
2689   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2690   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2691   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2692   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2693 
2694   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2695   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2696                               DAG.getConstant(0x7, DL, MVT::i32));
2697   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2698                   DAG.getConstant(2, DL, MVT::i32));
2699   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2700                                One, Zero, ISD::SETEQ);
2701   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2702                                One, Zero, ISD::SETGT);
2703   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2704   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2705 
2706   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2707                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2708   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2709                       I, V, ISD::SETEQ);
2710 
2711   // Extract the sign bit.
2712   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2713                             DAG.getConstant(16, DL, MVT::i32));
2714   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2715                      DAG.getConstant(0x8000, DL, MVT::i32));
2716 
2717   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2718   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2719 }
2720 
2721 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2722                                               SelectionDAG &DAG) const {
2723   SDValue Src = Op.getOperand(0);
2724 
2725   // TODO: Factor out code common with LowerFP_TO_UINT.
2726 
2727   EVT SrcVT = Src.getValueType();
2728   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2729     SDLoc DL(Op);
2730 
2731     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2732     SDValue FpToInt32 =
2733         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2734 
2735     return FpToInt32;
2736   }
2737 
2738   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2739     return LowerFP64_TO_INT(Op, DAG, true);
2740 
2741   return SDValue();
2742 }
2743 
2744 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2745                                               SelectionDAG &DAG) const {
2746   SDValue Src = Op.getOperand(0);
2747 
2748   // TODO: Factor out code common with LowerFP_TO_SINT.
2749 
2750   EVT SrcVT = Src.getValueType();
2751   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2752     SDLoc DL(Op);
2753 
2754     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2755     SDValue FpToInt32 =
2756         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2757 
2758     return FpToInt32;
2759   }
2760 
2761   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2762     return LowerFP64_TO_INT(Op, DAG, false);
2763 
2764   return SDValue();
2765 }
2766 
2767 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2768                                                      SelectionDAG &DAG) const {
2769   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2770   MVT VT = Op.getSimpleValueType();
2771   MVT ScalarVT = VT.getScalarType();
2772 
2773   assert(VT.isVector());
2774 
2775   SDValue Src = Op.getOperand(0);
2776   SDLoc DL(Op);
2777 
2778   // TODO: Don't scalarize on Evergreen?
2779   unsigned NElts = VT.getVectorNumElements();
2780   SmallVector<SDValue, 8> Args;
2781   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2782 
2783   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2784   for (unsigned I = 0; I < NElts; ++I)
2785     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2786 
2787   return DAG.getBuildVector(VT, DL, Args);
2788 }
2789 
2790 //===----------------------------------------------------------------------===//
2791 // Custom DAG optimizations
2792 //===----------------------------------------------------------------------===//
2793 
2794 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2795   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2796 }
2797 
2798 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2799   EVT VT = Op.getValueType();
2800   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2801                                      // as unsigned 24-bit values.
2802     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2803 }
2804 
2805 static SDValue simplifyI24(SDNode *Node24,
2806                            TargetLowering::DAGCombinerInfo &DCI) {
2807   SelectionDAG &DAG = DCI.DAG;
2808   SDValue LHS = Node24->getOperand(0);
2809   SDValue RHS = Node24->getOperand(1);
2810 
2811   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2812 
2813   // First try to simplify using GetDemandedBits which allows the operands to
2814   // have other uses, but will only perform simplifications that involve
2815   // bypassing some nodes for this user.
2816   SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded);
2817   SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded);
2818   if (DemandedLHS || DemandedRHS)
2819     return DAG.getNode(Node24->getOpcode(), SDLoc(Node24), Node24->getVTList(),
2820                        DemandedLHS ? DemandedLHS : LHS,
2821                        DemandedRHS ? DemandedRHS : RHS);
2822 
2823   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2824   // operands if this node is the only user.
2825   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2826   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2827     return SDValue(Node24, 0);
2828   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2829     return SDValue(Node24, 0);
2830 
2831   return SDValue();
2832 }
2833 
2834 template <typename IntTy>
2835 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2836                                uint32_t Width, const SDLoc &DL) {
2837   if (Width + Offset < 32) {
2838     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2839     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2840     return DAG.getConstant(Result, DL, MVT::i32);
2841   }
2842 
2843   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2844 }
2845 
2846 static bool hasVolatileUser(SDNode *Val) {
2847   for (SDNode *U : Val->uses()) {
2848     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2849       if (M->isVolatile())
2850         return true;
2851     }
2852   }
2853 
2854   return false;
2855 }
2856 
2857 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2858   // i32 vectors are the canonical memory type.
2859   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2860     return false;
2861 
2862   if (!VT.isByteSized())
2863     return false;
2864 
2865   unsigned Size = VT.getStoreSize();
2866 
2867   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2868     return false;
2869 
2870   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2871     return false;
2872 
2873   return true;
2874 }
2875 
2876 // Replace load of an illegal type with a store of a bitcast to a friendlier
2877 // type.
2878 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2879                                                  DAGCombinerInfo &DCI) const {
2880   if (!DCI.isBeforeLegalize())
2881     return SDValue();
2882 
2883   LoadSDNode *LN = cast<LoadSDNode>(N);
2884   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2885     return SDValue();
2886 
2887   SDLoc SL(N);
2888   SelectionDAG &DAG = DCI.DAG;
2889   EVT VT = LN->getMemoryVT();
2890 
2891   unsigned Size = VT.getStoreSize();
2892   unsigned Align = LN->getAlignment();
2893   if (Align < Size && isTypeLegal(VT)) {
2894     bool IsFast;
2895     unsigned AS = LN->getAddressSpace();
2896 
2897     // Expand unaligned loads earlier than legalization. Due to visitation order
2898     // problems during legalization, the emitted instructions to pack and unpack
2899     // the bytes again are not eliminated in the case of an unaligned copy.
2900     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2901       if (VT.isVector())
2902         return scalarizeVectorLoad(LN, DAG);
2903 
2904       SDValue Ops[2];
2905       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2906       return DAG.getMergeValues(Ops, SDLoc(N));
2907     }
2908 
2909     if (!IsFast)
2910       return SDValue();
2911   }
2912 
2913   if (!shouldCombineMemoryType(VT))
2914     return SDValue();
2915 
2916   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2917 
2918   SDValue NewLoad
2919     = DAG.getLoad(NewVT, SL, LN->getChain(),
2920                   LN->getBasePtr(), LN->getMemOperand());
2921 
2922   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2923   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2924   return SDValue(N, 0);
2925 }
2926 
2927 // Replace store of an illegal type with a store of a bitcast to a friendlier
2928 // type.
2929 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2930                                                   DAGCombinerInfo &DCI) const {
2931   if (!DCI.isBeforeLegalize())
2932     return SDValue();
2933 
2934   StoreSDNode *SN = cast<StoreSDNode>(N);
2935   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2936     return SDValue();
2937 
2938   EVT VT = SN->getMemoryVT();
2939   unsigned Size = VT.getStoreSize();
2940 
2941   SDLoc SL(N);
2942   SelectionDAG &DAG = DCI.DAG;
2943   unsigned Align = SN->getAlignment();
2944   if (Align < Size && isTypeLegal(VT)) {
2945     bool IsFast;
2946     unsigned AS = SN->getAddressSpace();
2947 
2948     // Expand unaligned stores earlier than legalization. Due to visitation
2949     // order problems during legalization, the emitted instructions to pack and
2950     // unpack the bytes again are not eliminated in the case of an unaligned
2951     // copy.
2952     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2953       if (VT.isVector())
2954         return scalarizeVectorStore(SN, DAG);
2955 
2956       return expandUnalignedStore(SN, DAG);
2957     }
2958 
2959     if (!IsFast)
2960       return SDValue();
2961   }
2962 
2963   if (!shouldCombineMemoryType(VT))
2964     return SDValue();
2965 
2966   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2967   SDValue Val = SN->getValue();
2968 
2969   //DCI.AddToWorklist(Val.getNode());
2970 
2971   bool OtherUses = !Val.hasOneUse();
2972   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2973   if (OtherUses) {
2974     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2975     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2976   }
2977 
2978   return DAG.getStore(SN->getChain(), SL, CastVal,
2979                       SN->getBasePtr(), SN->getMemOperand());
2980 }
2981 
2982 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2983 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2984 // issues.
2985 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
2986                                                         DAGCombinerInfo &DCI) const {
2987   SelectionDAG &DAG = DCI.DAG;
2988   SDValue N0 = N->getOperand(0);
2989 
2990   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2991   //     (vt2 (truncate (assertzext vt0:x, vt1)))
2992   if (N0.getOpcode() == ISD::TRUNCATE) {
2993     SDValue N1 = N->getOperand(1);
2994     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
2995     SDLoc SL(N);
2996 
2997     SDValue Src = N0.getOperand(0);
2998     EVT SrcVT = Src.getValueType();
2999     if (SrcVT.bitsGE(ExtVT)) {
3000       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3001       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3002     }
3003   }
3004 
3005   return SDValue();
3006 }
3007 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3008 /// binary operation \p Opc to it with the corresponding constant operands.
3009 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3010   DAGCombinerInfo &DCI, const SDLoc &SL,
3011   unsigned Opc, SDValue LHS,
3012   uint32_t ValLo, uint32_t ValHi) const {
3013   SelectionDAG &DAG = DCI.DAG;
3014   SDValue Lo, Hi;
3015   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3016 
3017   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3018   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3019 
3020   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3021   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3022 
3023   // Re-visit the ands. It's possible we eliminated one of them and it could
3024   // simplify the vector.
3025   DCI.AddToWorklist(Lo.getNode());
3026   DCI.AddToWorklist(Hi.getNode());
3027 
3028   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3029   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3030 }
3031 
3032 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3033                                                 DAGCombinerInfo &DCI) const {
3034   EVT VT = N->getValueType(0);
3035 
3036   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3037   if (!RHS)
3038     return SDValue();
3039 
3040   SDValue LHS = N->getOperand(0);
3041   unsigned RHSVal = RHS->getZExtValue();
3042   if (!RHSVal)
3043     return LHS;
3044 
3045   SDLoc SL(N);
3046   SelectionDAG &DAG = DCI.DAG;
3047 
3048   switch (LHS->getOpcode()) {
3049   default:
3050     break;
3051   case ISD::ZERO_EXTEND:
3052   case ISD::SIGN_EXTEND:
3053   case ISD::ANY_EXTEND: {
3054     SDValue X = LHS->getOperand(0);
3055 
3056     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3057         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3058       // Prefer build_vector as the canonical form if packed types are legal.
3059       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3060       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3061        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3062       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3063     }
3064 
3065     // shl (ext x) => zext (shl x), if shift does not overflow int
3066     if (VT != MVT::i64)
3067       break;
3068     KnownBits Known = DAG.computeKnownBits(X);
3069     unsigned LZ = Known.countMinLeadingZeros();
3070     if (LZ < RHSVal)
3071       break;
3072     EVT XVT = X.getValueType();
3073     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3074     return DAG.getZExtOrTrunc(Shl, SL, VT);
3075   }
3076   }
3077 
3078   if (VT != MVT::i64)
3079     return SDValue();
3080 
3081   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3082 
3083   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3084   // common case, splitting this into a move and a 32-bit shift is faster and
3085   // the same code size.
3086   if (RHSVal < 32)
3087     return SDValue();
3088 
3089   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3090 
3091   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3092   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3093 
3094   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3095 
3096   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3097   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3098 }
3099 
3100 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3101                                                 DAGCombinerInfo &DCI) const {
3102   if (N->getValueType(0) != MVT::i64)
3103     return SDValue();
3104 
3105   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3106   if (!RHS)
3107     return SDValue();
3108 
3109   SelectionDAG &DAG = DCI.DAG;
3110   SDLoc SL(N);
3111   unsigned RHSVal = RHS->getZExtValue();
3112 
3113   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3114   if (RHSVal == 32) {
3115     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3116     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3117                                    DAG.getConstant(31, SL, MVT::i32));
3118 
3119     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3120     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3121   }
3122 
3123   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3124   if (RHSVal == 63) {
3125     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3126     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3127                                    DAG.getConstant(31, SL, MVT::i32));
3128     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3129     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3130   }
3131 
3132   return SDValue();
3133 }
3134 
3135 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3136                                                 DAGCombinerInfo &DCI) const {
3137   if (N->getValueType(0) != MVT::i64)
3138     return SDValue();
3139 
3140   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3141   if (!RHS)
3142     return SDValue();
3143 
3144   unsigned ShiftAmt = RHS->getZExtValue();
3145   if (ShiftAmt < 32)
3146     return SDValue();
3147 
3148   // srl i64:x, C for C >= 32
3149   // =>
3150   //   build_pair (srl hi_32(x), C - 32), 0
3151 
3152   SelectionDAG &DAG = DCI.DAG;
3153   SDLoc SL(N);
3154 
3155   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3156   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3157 
3158   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
3159   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
3160                            VecOp, One);
3161 
3162   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3163   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3164 
3165   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3166 
3167   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3168 }
3169 
3170 SDValue AMDGPUTargetLowering::performTruncateCombine(
3171   SDNode *N, DAGCombinerInfo &DCI) const {
3172   SDLoc SL(N);
3173   SelectionDAG &DAG = DCI.DAG;
3174   EVT VT = N->getValueType(0);
3175   SDValue Src = N->getOperand(0);
3176 
3177   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3178   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3179     SDValue Vec = Src.getOperand(0);
3180     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3181       SDValue Elt0 = Vec.getOperand(0);
3182       EVT EltVT = Elt0.getValueType();
3183       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3184         if (EltVT.isFloatingPoint()) {
3185           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3186                              EltVT.changeTypeToInteger(), Elt0);
3187         }
3188 
3189         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3190       }
3191     }
3192   }
3193 
3194   // Equivalent of above for accessing the high element of a vector as an
3195   // integer operation.
3196   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3197   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3198     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3199       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3200         SDValue BV = stripBitcast(Src.getOperand(0));
3201         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3202             BV.getValueType().getVectorNumElements() == 2) {
3203           SDValue SrcElt = BV.getOperand(1);
3204           EVT SrcEltVT = SrcElt.getValueType();
3205           if (SrcEltVT.isFloatingPoint()) {
3206             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3207                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3208           }
3209 
3210           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3211         }
3212       }
3213     }
3214   }
3215 
3216   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3217   //
3218   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3219   //     i16 (trunc (srl (i32 (trunc x), K)))
3220   if (VT.getScalarSizeInBits() < 32) {
3221     EVT SrcVT = Src.getValueType();
3222     if (SrcVT.getScalarSizeInBits() > 32 &&
3223         (Src.getOpcode() == ISD::SRL ||
3224          Src.getOpcode() == ISD::SRA ||
3225          Src.getOpcode() == ISD::SHL)) {
3226       SDValue Amt = Src.getOperand(1);
3227       KnownBits Known = DAG.computeKnownBits(Amt);
3228       unsigned Size = VT.getScalarSizeInBits();
3229       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3230           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3231         EVT MidVT = VT.isVector() ?
3232           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3233                            VT.getVectorNumElements()) : MVT::i32;
3234 
3235         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3236         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3237                                     Src.getOperand(0));
3238         DCI.AddToWorklist(Trunc.getNode());
3239 
3240         if (Amt.getValueType() != NewShiftVT) {
3241           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3242           DCI.AddToWorklist(Amt.getNode());
3243         }
3244 
3245         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3246                                           Trunc, Amt);
3247         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3248       }
3249     }
3250   }
3251 
3252   return SDValue();
3253 }
3254 
3255 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3256 // instructions. If we only match on the legalized i64 mul expansion,
3257 // SimplifyDemandedBits will be unable to remove them because there will be
3258 // multiple uses due to the separate mul + mulh[su].
3259 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3260                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3261   if (Size <= 32) {
3262     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3263     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3264   }
3265 
3266   // Because we want to eliminate extension instructions before the
3267   // operation, we need to create a single user here (i.e. not the separate
3268   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3269 
3270   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3271 
3272   SDValue Mul = DAG.getNode(MulOpc, SL,
3273                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3274 
3275   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3276                      Mul.getValue(0), Mul.getValue(1));
3277 }
3278 
3279 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3280                                                 DAGCombinerInfo &DCI) const {
3281   EVT VT = N->getValueType(0);
3282 
3283   unsigned Size = VT.getSizeInBits();
3284   if (VT.isVector() || Size > 64)
3285     return SDValue();
3286 
3287   // There are i16 integer mul/mad.
3288   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3289     return SDValue();
3290 
3291   SelectionDAG &DAG = DCI.DAG;
3292   SDLoc DL(N);
3293 
3294   SDValue N0 = N->getOperand(0);
3295   SDValue N1 = N->getOperand(1);
3296 
3297   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3298   // in the source into any_extends if the result of the mul is truncated. Since
3299   // we can assume the high bits are whatever we want, use the underlying value
3300   // to avoid the unknown high bits from interfering.
3301   if (N0.getOpcode() == ISD::ANY_EXTEND)
3302     N0 = N0.getOperand(0);
3303 
3304   if (N1.getOpcode() == ISD::ANY_EXTEND)
3305     N1 = N1.getOperand(0);
3306 
3307   SDValue Mul;
3308 
3309   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3310     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3311     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3312     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3313   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3314     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3315     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3316     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3317   } else {
3318     return SDValue();
3319   }
3320 
3321   // We need to use sext even for MUL_U24, because MUL_U24 is used
3322   // for signed multiply of 8 and 16-bit types.
3323   return DAG.getSExtOrTrunc(Mul, DL, VT);
3324 }
3325 
3326 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3327                                                   DAGCombinerInfo &DCI) const {
3328   EVT VT = N->getValueType(0);
3329 
3330   if (!Subtarget->hasMulI24() || VT.isVector())
3331     return SDValue();
3332 
3333   SelectionDAG &DAG = DCI.DAG;
3334   SDLoc DL(N);
3335 
3336   SDValue N0 = N->getOperand(0);
3337   SDValue N1 = N->getOperand(1);
3338 
3339   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3340     return SDValue();
3341 
3342   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3343   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3344 
3345   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3346   DCI.AddToWorklist(Mulhi.getNode());
3347   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3348 }
3349 
3350 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3351                                                   DAGCombinerInfo &DCI) const {
3352   EVT VT = N->getValueType(0);
3353 
3354   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3355     return SDValue();
3356 
3357   SelectionDAG &DAG = DCI.DAG;
3358   SDLoc DL(N);
3359 
3360   SDValue N0 = N->getOperand(0);
3361   SDValue N1 = N->getOperand(1);
3362 
3363   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3364     return SDValue();
3365 
3366   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3367   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3368 
3369   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3370   DCI.AddToWorklist(Mulhi.getNode());
3371   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3372 }
3373 
3374 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3375   SDNode *N, DAGCombinerInfo &DCI) const {
3376   SelectionDAG &DAG = DCI.DAG;
3377 
3378   // Simplify demanded bits before splitting into multiple users.
3379   if (SDValue V = simplifyI24(N, DCI))
3380     return V;
3381 
3382   SDValue N0 = N->getOperand(0);
3383   SDValue N1 = N->getOperand(1);
3384 
3385   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3386 
3387   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3388   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3389 
3390   SDLoc SL(N);
3391 
3392   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3393   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3394   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3395 }
3396 
3397 static bool isNegativeOne(SDValue Val) {
3398   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3399     return C->isAllOnesValue();
3400   return false;
3401 }
3402 
3403 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3404                                           SDValue Op,
3405                                           const SDLoc &DL,
3406                                           unsigned Opc) const {
3407   EVT VT = Op.getValueType();
3408   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3409   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3410                               LegalVT != MVT::i16))
3411     return SDValue();
3412 
3413   if (VT != MVT::i32)
3414     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3415 
3416   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3417   if (VT != MVT::i32)
3418     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3419 
3420   return FFBX;
3421 }
3422 
3423 // The native instructions return -1 on 0 input. Optimize out a select that
3424 // produces -1 on 0.
3425 //
3426 // TODO: If zero is not undef, we could also do this if the output is compared
3427 // against the bitwidth.
3428 //
3429 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3430 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3431                                                  SDValue LHS, SDValue RHS,
3432                                                  DAGCombinerInfo &DCI) const {
3433   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3434   if (!CmpRhs || !CmpRhs->isNullValue())
3435     return SDValue();
3436 
3437   SelectionDAG &DAG = DCI.DAG;
3438   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3439   SDValue CmpLHS = Cond.getOperand(0);
3440 
3441   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3442                                            AMDGPUISD::FFBH_U32;
3443 
3444   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3445   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3446   if (CCOpcode == ISD::SETEQ &&
3447       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3448       RHS.getOperand(0) == CmpLHS &&
3449       isNegativeOne(LHS)) {
3450     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3451   }
3452 
3453   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3454   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3455   if (CCOpcode == ISD::SETNE &&
3456       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3457       LHS.getOperand(0) == CmpLHS &&
3458       isNegativeOne(RHS)) {
3459     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3460   }
3461 
3462   return SDValue();
3463 }
3464 
3465 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3466                                          unsigned Op,
3467                                          const SDLoc &SL,
3468                                          SDValue Cond,
3469                                          SDValue N1,
3470                                          SDValue N2) {
3471   SelectionDAG &DAG = DCI.DAG;
3472   EVT VT = N1.getValueType();
3473 
3474   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3475                                   N1.getOperand(0), N2.getOperand(0));
3476   DCI.AddToWorklist(NewSelect.getNode());
3477   return DAG.getNode(Op, SL, VT, NewSelect);
3478 }
3479 
3480 // Pull a free FP operation out of a select so it may fold into uses.
3481 //
3482 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3483 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3484 //
3485 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3486 // select c, (fabs x), +k -> fabs (select c, x, k)
3487 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3488                                     SDValue N) {
3489   SelectionDAG &DAG = DCI.DAG;
3490   SDValue Cond = N.getOperand(0);
3491   SDValue LHS = N.getOperand(1);
3492   SDValue RHS = N.getOperand(2);
3493 
3494   EVT VT = N.getValueType();
3495   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3496       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3497     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3498                                      SDLoc(N), Cond, LHS, RHS);
3499   }
3500 
3501   bool Inv = false;
3502   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3503     std::swap(LHS, RHS);
3504     Inv = true;
3505   }
3506 
3507   // TODO: Support vector constants.
3508   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3509   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3510     SDLoc SL(N);
3511     // If one side is an fneg/fabs and the other is a constant, we can push the
3512     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3513     SDValue NewLHS = LHS.getOperand(0);
3514     SDValue NewRHS = RHS;
3515 
3516     // Careful: if the neg can be folded up, don't try to pull it back down.
3517     bool ShouldFoldNeg = true;
3518 
3519     if (NewLHS.hasOneUse()) {
3520       unsigned Opc = NewLHS.getOpcode();
3521       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3522         ShouldFoldNeg = false;
3523       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3524         ShouldFoldNeg = false;
3525     }
3526 
3527     if (ShouldFoldNeg) {
3528       if (LHS.getOpcode() == ISD::FNEG)
3529         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3530       else if (CRHS->isNegative())
3531         return SDValue();
3532 
3533       if (Inv)
3534         std::swap(NewLHS, NewRHS);
3535 
3536       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3537                                       Cond, NewLHS, NewRHS);
3538       DCI.AddToWorklist(NewSelect.getNode());
3539       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3540     }
3541   }
3542 
3543   return SDValue();
3544 }
3545 
3546 
3547 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3548                                                    DAGCombinerInfo &DCI) const {
3549   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3550     return Folded;
3551 
3552   SDValue Cond = N->getOperand(0);
3553   if (Cond.getOpcode() != ISD::SETCC)
3554     return SDValue();
3555 
3556   EVT VT = N->getValueType(0);
3557   SDValue LHS = Cond.getOperand(0);
3558   SDValue RHS = Cond.getOperand(1);
3559   SDValue CC = Cond.getOperand(2);
3560 
3561   SDValue True = N->getOperand(1);
3562   SDValue False = N->getOperand(2);
3563 
3564   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3565     SelectionDAG &DAG = DCI.DAG;
3566     if ((DAG.isConstantValueOfAnyType(True) ||
3567          DAG.isConstantValueOfAnyType(True)) &&
3568         (!DAG.isConstantValueOfAnyType(False) &&
3569          !DAG.isConstantValueOfAnyType(False))) {
3570       // Swap cmp + select pair to move constant to false input.
3571       // This will allow using VOPC cndmasks more often.
3572       // select (setcc x, y), k, x -> select (setcc y, x) x, x
3573 
3574       SDLoc SL(N);
3575       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3576                                             LHS.getValueType().isInteger());
3577 
3578       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3579       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3580     }
3581 
3582     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3583       SDValue MinMax
3584         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3585       // Revisit this node so we can catch min3/max3/med3 patterns.
3586       //DCI.AddToWorklist(MinMax.getNode());
3587       return MinMax;
3588     }
3589   }
3590 
3591   // There's no reason to not do this if the condition has other uses.
3592   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3593 }
3594 
3595 static bool isInv2Pi(const APFloat &APF) {
3596   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3597   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3598   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3599 
3600   return APF.bitwiseIsEqual(KF16) ||
3601          APF.bitwiseIsEqual(KF32) ||
3602          APF.bitwiseIsEqual(KF64);
3603 }
3604 
3605 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3606 // additional cost to negate them.
3607 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3608   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3609     if (C->isZero() && !C->isNegative())
3610       return true;
3611 
3612     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3613       return true;
3614   }
3615 
3616   return false;
3617 }
3618 
3619 static unsigned inverseMinMax(unsigned Opc) {
3620   switch (Opc) {
3621   case ISD::FMAXNUM:
3622     return ISD::FMINNUM;
3623   case ISD::FMINNUM:
3624     return ISD::FMAXNUM;
3625   case ISD::FMAXNUM_IEEE:
3626     return ISD::FMINNUM_IEEE;
3627   case ISD::FMINNUM_IEEE:
3628     return ISD::FMAXNUM_IEEE;
3629   case AMDGPUISD::FMAX_LEGACY:
3630     return AMDGPUISD::FMIN_LEGACY;
3631   case AMDGPUISD::FMIN_LEGACY:
3632     return  AMDGPUISD::FMAX_LEGACY;
3633   default:
3634     llvm_unreachable("invalid min/max opcode");
3635   }
3636 }
3637 
3638 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3639                                                  DAGCombinerInfo &DCI) const {
3640   SelectionDAG &DAG = DCI.DAG;
3641   SDValue N0 = N->getOperand(0);
3642   EVT VT = N->getValueType(0);
3643 
3644   unsigned Opc = N0.getOpcode();
3645 
3646   // If the input has multiple uses and we can either fold the negate down, or
3647   // the other uses cannot, give up. This both prevents unprofitable
3648   // transformations and infinite loops: we won't repeatedly try to fold around
3649   // a negate that has no 'good' form.
3650   if (N0.hasOneUse()) {
3651     // This may be able to fold into the source, but at a code size cost. Don't
3652     // fold if the fold into the user is free.
3653     if (allUsesHaveSourceMods(N, 0))
3654       return SDValue();
3655   } else {
3656     if (fnegFoldsIntoOp(Opc) &&
3657         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3658       return SDValue();
3659   }
3660 
3661   SDLoc SL(N);
3662   switch (Opc) {
3663   case ISD::FADD: {
3664     if (!mayIgnoreSignedZero(N0))
3665       return SDValue();
3666 
3667     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3668     SDValue LHS = N0.getOperand(0);
3669     SDValue RHS = N0.getOperand(1);
3670 
3671     if (LHS.getOpcode() != ISD::FNEG)
3672       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3673     else
3674       LHS = LHS.getOperand(0);
3675 
3676     if (RHS.getOpcode() != ISD::FNEG)
3677       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3678     else
3679       RHS = RHS.getOperand(0);
3680 
3681     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3682     if (!N0.hasOneUse())
3683       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3684     return Res;
3685   }
3686   case ISD::FMUL:
3687   case AMDGPUISD::FMUL_LEGACY: {
3688     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3689     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3690     SDValue LHS = N0.getOperand(0);
3691     SDValue RHS = N0.getOperand(1);
3692 
3693     if (LHS.getOpcode() == ISD::FNEG)
3694       LHS = LHS.getOperand(0);
3695     else if (RHS.getOpcode() == ISD::FNEG)
3696       RHS = RHS.getOperand(0);
3697     else
3698       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3699 
3700     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3701     if (!N0.hasOneUse())
3702       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3703     return Res;
3704   }
3705   case ISD::FMA:
3706   case ISD::FMAD: {
3707     if (!mayIgnoreSignedZero(N0))
3708       return SDValue();
3709 
3710     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3711     SDValue LHS = N0.getOperand(0);
3712     SDValue MHS = N0.getOperand(1);
3713     SDValue RHS = N0.getOperand(2);
3714 
3715     if (LHS.getOpcode() == ISD::FNEG)
3716       LHS = LHS.getOperand(0);
3717     else if (MHS.getOpcode() == ISD::FNEG)
3718       MHS = MHS.getOperand(0);
3719     else
3720       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3721 
3722     if (RHS.getOpcode() != ISD::FNEG)
3723       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3724     else
3725       RHS = RHS.getOperand(0);
3726 
3727     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3728     if (!N0.hasOneUse())
3729       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3730     return Res;
3731   }
3732   case ISD::FMAXNUM:
3733   case ISD::FMINNUM:
3734   case ISD::FMAXNUM_IEEE:
3735   case ISD::FMINNUM_IEEE:
3736   case AMDGPUISD::FMAX_LEGACY:
3737   case AMDGPUISD::FMIN_LEGACY: {
3738     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3739     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3740     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3741     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3742 
3743     SDValue LHS = N0.getOperand(0);
3744     SDValue RHS = N0.getOperand(1);
3745 
3746     // 0 doesn't have a negated inline immediate.
3747     // TODO: This constant check should be generalized to other operations.
3748     if (isConstantCostlierToNegate(RHS))
3749       return SDValue();
3750 
3751     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3752     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3753     unsigned Opposite = inverseMinMax(Opc);
3754 
3755     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3756     if (!N0.hasOneUse())
3757       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3758     return Res;
3759   }
3760   case AMDGPUISD::FMED3: {
3761     SDValue Ops[3];
3762     for (unsigned I = 0; I < 3; ++I)
3763       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3764 
3765     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3766     if (!N0.hasOneUse())
3767       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3768     return Res;
3769   }
3770   case ISD::FP_EXTEND:
3771   case ISD::FTRUNC:
3772   case ISD::FRINT:
3773   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3774   case ISD::FSIN:
3775   case ISD::FCANONICALIZE:
3776   case AMDGPUISD::RCP:
3777   case AMDGPUISD::RCP_LEGACY:
3778   case AMDGPUISD::RCP_IFLAG:
3779   case AMDGPUISD::SIN_HW: {
3780     SDValue CvtSrc = N0.getOperand(0);
3781     if (CvtSrc.getOpcode() == ISD::FNEG) {
3782       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3783       // (fneg (rcp (fneg x))) -> (rcp x)
3784       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3785     }
3786 
3787     if (!N0.hasOneUse())
3788       return SDValue();
3789 
3790     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3791     // (fneg (rcp x)) -> (rcp (fneg x))
3792     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3793     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3794   }
3795   case ISD::FP_ROUND: {
3796     SDValue CvtSrc = N0.getOperand(0);
3797 
3798     if (CvtSrc.getOpcode() == ISD::FNEG) {
3799       // (fneg (fp_round (fneg x))) -> (fp_round x)
3800       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3801                          CvtSrc.getOperand(0), N0.getOperand(1));
3802     }
3803 
3804     if (!N0.hasOneUse())
3805       return SDValue();
3806 
3807     // (fneg (fp_round x)) -> (fp_round (fneg x))
3808     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3809     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3810   }
3811   case ISD::FP16_TO_FP: {
3812     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3813     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3814     // Put the fneg back as a legal source operation that can be matched later.
3815     SDLoc SL(N);
3816 
3817     SDValue Src = N0.getOperand(0);
3818     EVT SrcVT = Src.getValueType();
3819 
3820     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3821     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3822                                   DAG.getConstant(0x8000, SL, SrcVT));
3823     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3824   }
3825   default:
3826     return SDValue();
3827   }
3828 }
3829 
3830 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3831                                                  DAGCombinerInfo &DCI) const {
3832   SelectionDAG &DAG = DCI.DAG;
3833   SDValue N0 = N->getOperand(0);
3834 
3835   if (!N0.hasOneUse())
3836     return SDValue();
3837 
3838   switch (N0.getOpcode()) {
3839   case ISD::FP16_TO_FP: {
3840     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3841     SDLoc SL(N);
3842     SDValue Src = N0.getOperand(0);
3843     EVT SrcVT = Src.getValueType();
3844 
3845     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3846     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3847                                   DAG.getConstant(0x7fff, SL, SrcVT));
3848     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3849   }
3850   default:
3851     return SDValue();
3852   }
3853 }
3854 
3855 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3856                                                 DAGCombinerInfo &DCI) const {
3857   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3858   if (!CFP)
3859     return SDValue();
3860 
3861   // XXX - Should this flush denormals?
3862   const APFloat &Val = CFP->getValueAPF();
3863   APFloat One(Val.getSemantics(), "1.0");
3864   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3865 }
3866 
3867 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3868                                                 DAGCombinerInfo &DCI) const {
3869   SelectionDAG &DAG = DCI.DAG;
3870   SDLoc DL(N);
3871 
3872   switch(N->getOpcode()) {
3873   default:
3874     break;
3875   case ISD::BITCAST: {
3876     EVT DestVT = N->getValueType(0);
3877 
3878     // Push casts through vector builds. This helps avoid emitting a large
3879     // number of copies when materializing floating point vector constants.
3880     //
3881     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3882     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3883     if (DestVT.isVector()) {
3884       SDValue Src = N->getOperand(0);
3885       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3886         EVT SrcVT = Src.getValueType();
3887         unsigned NElts = DestVT.getVectorNumElements();
3888 
3889         if (SrcVT.getVectorNumElements() == NElts) {
3890           EVT DestEltVT = DestVT.getVectorElementType();
3891 
3892           SmallVector<SDValue, 8> CastedElts;
3893           SDLoc SL(N);
3894           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3895             SDValue Elt = Src.getOperand(I);
3896             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3897           }
3898 
3899           return DAG.getBuildVector(DestVT, SL, CastedElts);
3900         }
3901       }
3902     }
3903 
3904     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3905       break;
3906 
3907     // Fold bitcasts of constants.
3908     //
3909     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3910     // TODO: Generalize and move to DAGCombiner
3911     SDValue Src = N->getOperand(0);
3912     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3913       if (Src.getValueType() == MVT::i64) {
3914         SDLoc SL(N);
3915         uint64_t CVal = C->getZExtValue();
3916         SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3917                                  DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3918                                  DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3919         return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3920       }
3921     }
3922 
3923     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3924       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3925       SDLoc SL(N);
3926       uint64_t CVal = Val.getZExtValue();
3927       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3928                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3929                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3930 
3931       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3932     }
3933 
3934     break;
3935   }
3936   case ISD::SHL: {
3937     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3938       break;
3939 
3940     return performShlCombine(N, DCI);
3941   }
3942   case ISD::SRL: {
3943     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3944       break;
3945 
3946     return performSrlCombine(N, DCI);
3947   }
3948   case ISD::SRA: {
3949     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3950       break;
3951 
3952     return performSraCombine(N, DCI);
3953   }
3954   case ISD::TRUNCATE:
3955     return performTruncateCombine(N, DCI);
3956   case ISD::MUL:
3957     return performMulCombine(N, DCI);
3958   case ISD::MULHS:
3959     return performMulhsCombine(N, DCI);
3960   case ISD::MULHU:
3961     return performMulhuCombine(N, DCI);
3962   case AMDGPUISD::MUL_I24:
3963   case AMDGPUISD::MUL_U24:
3964   case AMDGPUISD::MULHI_I24:
3965   case AMDGPUISD::MULHI_U24: {
3966     if (SDValue V = simplifyI24(N, DCI))
3967       return V;
3968     return SDValue();
3969   }
3970   case AMDGPUISD::MUL_LOHI_I24:
3971   case AMDGPUISD::MUL_LOHI_U24:
3972     return performMulLoHi24Combine(N, DCI);
3973   case ISD::SELECT:
3974     return performSelectCombine(N, DCI);
3975   case ISD::FNEG:
3976     return performFNegCombine(N, DCI);
3977   case ISD::FABS:
3978     return performFAbsCombine(N, DCI);
3979   case AMDGPUISD::BFE_I32:
3980   case AMDGPUISD::BFE_U32: {
3981     assert(!N->getValueType(0).isVector() &&
3982            "Vector handling of BFE not implemented");
3983     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
3984     if (!Width)
3985       break;
3986 
3987     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
3988     if (WidthVal == 0)
3989       return DAG.getConstant(0, DL, MVT::i32);
3990 
3991     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
3992     if (!Offset)
3993       break;
3994 
3995     SDValue BitsFrom = N->getOperand(0);
3996     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
3997 
3998     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
3999 
4000     if (OffsetVal == 0) {
4001       // This is already sign / zero extended, so try to fold away extra BFEs.
4002       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4003 
4004       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4005       if (OpSignBits >= SignBits)
4006         return BitsFrom;
4007 
4008       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4009       if (Signed) {
4010         // This is a sign_extend_inreg. Replace it to take advantage of existing
4011         // DAG Combines. If not eliminated, we will match back to BFE during
4012         // selection.
4013 
4014         // TODO: The sext_inreg of extended types ends, although we can could
4015         // handle them in a single BFE.
4016         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4017                            DAG.getValueType(SmallVT));
4018       }
4019 
4020       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4021     }
4022 
4023     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4024       if (Signed) {
4025         return constantFoldBFE<int32_t>(DAG,
4026                                         CVal->getSExtValue(),
4027                                         OffsetVal,
4028                                         WidthVal,
4029                                         DL);
4030       }
4031 
4032       return constantFoldBFE<uint32_t>(DAG,
4033                                        CVal->getZExtValue(),
4034                                        OffsetVal,
4035                                        WidthVal,
4036                                        DL);
4037     }
4038 
4039     if ((OffsetVal + WidthVal) >= 32 &&
4040         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4041       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4042       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4043                          BitsFrom, ShiftVal);
4044     }
4045 
4046     if (BitsFrom.hasOneUse()) {
4047       APInt Demanded = APInt::getBitsSet(32,
4048                                          OffsetVal,
4049                                          OffsetVal + WidthVal);
4050 
4051       KnownBits Known;
4052       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4053                                             !DCI.isBeforeLegalizeOps());
4054       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4055       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4056           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4057         DCI.CommitTargetLoweringOpt(TLO);
4058       }
4059     }
4060 
4061     break;
4062   }
4063   case ISD::LOAD:
4064     return performLoadCombine(N, DCI);
4065   case ISD::STORE:
4066     return performStoreCombine(N, DCI);
4067   case AMDGPUISD::RCP:
4068   case AMDGPUISD::RCP_IFLAG:
4069     return performRcpCombine(N, DCI);
4070   case ISD::AssertZext:
4071   case ISD::AssertSext:
4072     return performAssertSZExtCombine(N, DCI);
4073   }
4074   return SDValue();
4075 }
4076 
4077 //===----------------------------------------------------------------------===//
4078 // Helper functions
4079 //===----------------------------------------------------------------------===//
4080 
4081 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4082                                                    const TargetRegisterClass *RC,
4083                                                    unsigned Reg, EVT VT,
4084                                                    const SDLoc &SL,
4085                                                    bool RawReg) const {
4086   MachineFunction &MF = DAG.getMachineFunction();
4087   MachineRegisterInfo &MRI = MF.getRegInfo();
4088   unsigned VReg;
4089 
4090   if (!MRI.isLiveIn(Reg)) {
4091     VReg = MRI.createVirtualRegister(RC);
4092     MRI.addLiveIn(Reg, VReg);
4093   } else {
4094     VReg = MRI.getLiveInVirtReg(Reg);
4095   }
4096 
4097   if (RawReg)
4098     return DAG.getRegister(VReg, VT);
4099 
4100   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4101 }
4102 
4103 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4104                                                   EVT VT,
4105                                                   const SDLoc &SL,
4106                                                   int64_t Offset) const {
4107   MachineFunction &MF = DAG.getMachineFunction();
4108   MachineFrameInfo &MFI = MF.getFrameInfo();
4109 
4110   int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
4111   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4112   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4113 
4114   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4115                      MachineMemOperand::MODereferenceable |
4116                      MachineMemOperand::MOInvariant);
4117 }
4118 
4119 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4120                                                    const SDLoc &SL,
4121                                                    SDValue Chain,
4122                                                    SDValue ArgVal,
4123                                                    int64_t Offset) const {
4124   MachineFunction &MF = DAG.getMachineFunction();
4125   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4126 
4127   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4128   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4129                                MachineMemOperand::MODereferenceable);
4130   return Store;
4131 }
4132 
4133 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4134                                              const TargetRegisterClass *RC,
4135                                              EVT VT, const SDLoc &SL,
4136                                              const ArgDescriptor &Arg) const {
4137   assert(Arg && "Attempting to load missing argument");
4138 
4139   if (Arg.isRegister())
4140     return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL);
4141   return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4142 }
4143 
4144 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4145     const MachineFunction &MF, const ImplicitParameter Param) const {
4146   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4147   const AMDGPUSubtarget &ST =
4148       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4149   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4150   unsigned Alignment = ST.getAlignmentForImplicitArgPtr();
4151   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4152                        ExplicitArgOffset;
4153   switch (Param) {
4154   case GRID_DIM:
4155     return ArgOffset;
4156   case GRID_OFFSET:
4157     return ArgOffset + 4;
4158   }
4159   llvm_unreachable("unexpected implicit parameter type");
4160 }
4161 
4162 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4163 
4164 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4165   switch ((AMDGPUISD::NodeType)Opcode) {
4166   case AMDGPUISD::FIRST_NUMBER: break;
4167   // AMDIL DAG nodes
4168   NODE_NAME_CASE(UMUL);
4169   NODE_NAME_CASE(BRANCH_COND);
4170 
4171   // AMDGPU DAG nodes
4172   NODE_NAME_CASE(IF)
4173   NODE_NAME_CASE(ELSE)
4174   NODE_NAME_CASE(LOOP)
4175   NODE_NAME_CASE(CALL)
4176   NODE_NAME_CASE(TC_RETURN)
4177   NODE_NAME_CASE(TRAP)
4178   NODE_NAME_CASE(RET_FLAG)
4179   NODE_NAME_CASE(RETURN_TO_EPILOG)
4180   NODE_NAME_CASE(ENDPGM)
4181   NODE_NAME_CASE(DWORDADDR)
4182   NODE_NAME_CASE(FRACT)
4183   NODE_NAME_CASE(SETCC)
4184   NODE_NAME_CASE(SETREG)
4185   NODE_NAME_CASE(FMA_W_CHAIN)
4186   NODE_NAME_CASE(FMUL_W_CHAIN)
4187   NODE_NAME_CASE(CLAMP)
4188   NODE_NAME_CASE(COS_HW)
4189   NODE_NAME_CASE(SIN_HW)
4190   NODE_NAME_CASE(FMAX_LEGACY)
4191   NODE_NAME_CASE(FMIN_LEGACY)
4192   NODE_NAME_CASE(FMAX3)
4193   NODE_NAME_CASE(SMAX3)
4194   NODE_NAME_CASE(UMAX3)
4195   NODE_NAME_CASE(FMIN3)
4196   NODE_NAME_CASE(SMIN3)
4197   NODE_NAME_CASE(UMIN3)
4198   NODE_NAME_CASE(FMED3)
4199   NODE_NAME_CASE(SMED3)
4200   NODE_NAME_CASE(UMED3)
4201   NODE_NAME_CASE(FDOT2)
4202   NODE_NAME_CASE(URECIP)
4203   NODE_NAME_CASE(DIV_SCALE)
4204   NODE_NAME_CASE(DIV_FMAS)
4205   NODE_NAME_CASE(DIV_FIXUP)
4206   NODE_NAME_CASE(FMAD_FTZ)
4207   NODE_NAME_CASE(TRIG_PREOP)
4208   NODE_NAME_CASE(RCP)
4209   NODE_NAME_CASE(RSQ)
4210   NODE_NAME_CASE(RCP_LEGACY)
4211   NODE_NAME_CASE(RSQ_LEGACY)
4212   NODE_NAME_CASE(RCP_IFLAG)
4213   NODE_NAME_CASE(FMUL_LEGACY)
4214   NODE_NAME_CASE(RSQ_CLAMP)
4215   NODE_NAME_CASE(LDEXP)
4216   NODE_NAME_CASE(FP_CLASS)
4217   NODE_NAME_CASE(DOT4)
4218   NODE_NAME_CASE(CARRY)
4219   NODE_NAME_CASE(BORROW)
4220   NODE_NAME_CASE(BFE_U32)
4221   NODE_NAME_CASE(BFE_I32)
4222   NODE_NAME_CASE(BFI)
4223   NODE_NAME_CASE(BFM)
4224   NODE_NAME_CASE(FFBH_U32)
4225   NODE_NAME_CASE(FFBH_I32)
4226   NODE_NAME_CASE(FFBL_B32)
4227   NODE_NAME_CASE(MUL_U24)
4228   NODE_NAME_CASE(MUL_I24)
4229   NODE_NAME_CASE(MULHI_U24)
4230   NODE_NAME_CASE(MULHI_I24)
4231   NODE_NAME_CASE(MUL_LOHI_U24)
4232   NODE_NAME_CASE(MUL_LOHI_I24)
4233   NODE_NAME_CASE(MAD_U24)
4234   NODE_NAME_CASE(MAD_I24)
4235   NODE_NAME_CASE(MAD_I64_I32)
4236   NODE_NAME_CASE(MAD_U64_U32)
4237   NODE_NAME_CASE(PERM)
4238   NODE_NAME_CASE(TEXTURE_FETCH)
4239   NODE_NAME_CASE(EXPORT)
4240   NODE_NAME_CASE(EXPORT_DONE)
4241   NODE_NAME_CASE(R600_EXPORT)
4242   NODE_NAME_CASE(CONST_ADDRESS)
4243   NODE_NAME_CASE(REGISTER_LOAD)
4244   NODE_NAME_CASE(REGISTER_STORE)
4245   NODE_NAME_CASE(SAMPLE)
4246   NODE_NAME_CASE(SAMPLEB)
4247   NODE_NAME_CASE(SAMPLED)
4248   NODE_NAME_CASE(SAMPLEL)
4249   NODE_NAME_CASE(CVT_F32_UBYTE0)
4250   NODE_NAME_CASE(CVT_F32_UBYTE1)
4251   NODE_NAME_CASE(CVT_F32_UBYTE2)
4252   NODE_NAME_CASE(CVT_F32_UBYTE3)
4253   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4254   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4255   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4256   NODE_NAME_CASE(CVT_PK_I16_I32)
4257   NODE_NAME_CASE(CVT_PK_U16_U32)
4258   NODE_NAME_CASE(FP_TO_FP16)
4259   NODE_NAME_CASE(FP16_ZEXT)
4260   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4261   NODE_NAME_CASE(CONST_DATA_PTR)
4262   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4263   NODE_NAME_CASE(KILL)
4264   NODE_NAME_CASE(DUMMY_CHAIN)
4265   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4266   NODE_NAME_CASE(INIT_EXEC)
4267   NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
4268   NODE_NAME_CASE(SENDMSG)
4269   NODE_NAME_CASE(SENDMSGHALT)
4270   NODE_NAME_CASE(INTERP_MOV)
4271   NODE_NAME_CASE(INTERP_P1)
4272   NODE_NAME_CASE(INTERP_P2)
4273   NODE_NAME_CASE(INTERP_P1LL_F16)
4274   NODE_NAME_CASE(INTERP_P1LV_F16)
4275   NODE_NAME_CASE(INTERP_P2_F16)
4276   NODE_NAME_CASE(LOAD_D16_HI)
4277   NODE_NAME_CASE(LOAD_D16_LO)
4278   NODE_NAME_CASE(LOAD_D16_HI_I8)
4279   NODE_NAME_CASE(LOAD_D16_HI_U8)
4280   NODE_NAME_CASE(LOAD_D16_LO_I8)
4281   NODE_NAME_CASE(LOAD_D16_LO_U8)
4282   NODE_NAME_CASE(STORE_MSKOR)
4283   NODE_NAME_CASE(LOAD_CONSTANT)
4284   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4285   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3)
4286   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4287   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4288   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4289   NODE_NAME_CASE(DS_ORDERED_COUNT)
4290   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4291   NODE_NAME_CASE(ATOMIC_INC)
4292   NODE_NAME_CASE(ATOMIC_DEC)
4293   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4294   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4295   NODE_NAME_CASE(BUFFER_LOAD)
4296   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4297   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4298   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4299   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4300   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4301   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4302   NODE_NAME_CASE(SBUFFER_LOAD)
4303   NODE_NAME_CASE(BUFFER_STORE)
4304   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4305   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4306   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4307   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4308   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4309   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4310   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4311   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4312   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4313   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4314   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4315   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4316   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4317   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4318   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4319 
4320   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4321   }
4322   return nullptr;
4323 }
4324 
4325 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4326                                               SelectionDAG &DAG, int Enabled,
4327                                               int &RefinementSteps,
4328                                               bool &UseOneConstNR,
4329                                               bool Reciprocal) const {
4330   EVT VT = Operand.getValueType();
4331 
4332   if (VT == MVT::f32) {
4333     RefinementSteps = 0;
4334     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4335   }
4336 
4337   // TODO: There is also f64 rsq instruction, but the documentation is less
4338   // clear on its precision.
4339 
4340   return SDValue();
4341 }
4342 
4343 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4344                                                SelectionDAG &DAG, int Enabled,
4345                                                int &RefinementSteps) const {
4346   EVT VT = Operand.getValueType();
4347 
4348   if (VT == MVT::f32) {
4349     // Reciprocal, < 1 ulp error.
4350     //
4351     // This reciprocal approximation converges to < 0.5 ulp error with one
4352     // newton rhapson performed with two fused multiple adds (FMAs).
4353 
4354     RefinementSteps = 0;
4355     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4356   }
4357 
4358   // TODO: There is also f64 rcp instruction, but the documentation is less
4359   // clear on its precision.
4360 
4361   return SDValue();
4362 }
4363 
4364 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4365     const SDValue Op, KnownBits &Known,
4366     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4367 
4368   Known.resetAll(); // Don't know anything.
4369 
4370   unsigned Opc = Op.getOpcode();
4371 
4372   switch (Opc) {
4373   default:
4374     break;
4375   case AMDGPUISD::CARRY:
4376   case AMDGPUISD::BORROW: {
4377     Known.Zero = APInt::getHighBitsSet(32, 31);
4378     break;
4379   }
4380 
4381   case AMDGPUISD::BFE_I32:
4382   case AMDGPUISD::BFE_U32: {
4383     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4384     if (!CWidth)
4385       return;
4386 
4387     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4388 
4389     if (Opc == AMDGPUISD::BFE_U32)
4390       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4391 
4392     break;
4393   }
4394   case AMDGPUISD::FP_TO_FP16:
4395   case AMDGPUISD::FP16_ZEXT: {
4396     unsigned BitWidth = Known.getBitWidth();
4397 
4398     // High bits are zero.
4399     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4400     break;
4401   }
4402   case AMDGPUISD::MUL_U24:
4403   case AMDGPUISD::MUL_I24: {
4404     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4405     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4406     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4407                       RHSKnown.countMinTrailingZeros();
4408     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4409 
4410     // Truncate to 24 bits.
4411     LHSKnown = LHSKnown.trunc(24);
4412     RHSKnown = RHSKnown.trunc(24);
4413 
4414     bool Negative = false;
4415     if (Opc == AMDGPUISD::MUL_I24) {
4416       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4417       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4418       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4419       if (MaxValBits >= 32)
4420         break;
4421       bool LHSNegative = LHSKnown.isNegative();
4422       bool LHSPositive = LHSKnown.isNonNegative();
4423       bool RHSNegative = RHSKnown.isNegative();
4424       bool RHSPositive = RHSKnown.isNonNegative();
4425       if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4426         break;
4427       Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4428       if (Negative)
4429         Known.One.setHighBits(32 - MaxValBits);
4430       else
4431         Known.Zero.setHighBits(32 - MaxValBits);
4432     } else {
4433       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4434       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4435       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4436       if (MaxValBits >= 32)
4437         break;
4438       Known.Zero.setHighBits(32 - MaxValBits);
4439     }
4440     break;
4441   }
4442   case AMDGPUISD::PERM: {
4443     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4444     if (!CMask)
4445       return;
4446 
4447     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4448     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4449     unsigned Sel = CMask->getZExtValue();
4450 
4451     for (unsigned I = 0; I < 32; I += 8) {
4452       unsigned SelBits = Sel & 0xff;
4453       if (SelBits < 4) {
4454         SelBits *= 8;
4455         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4456         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4457       } else if (SelBits < 7) {
4458         SelBits = (SelBits & 3) * 8;
4459         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4460         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4461       } else if (SelBits == 0x0c) {
4462         Known.Zero |= 0xff << I;
4463       } else if (SelBits > 0x0c) {
4464         Known.One |= 0xff << I;
4465       }
4466       Sel >>= 8;
4467     }
4468     break;
4469   }
4470   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4471     Known.Zero.setHighBits(24);
4472     break;
4473   }
4474   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4475     Known.Zero.setHighBits(16);
4476     break;
4477   }
4478   case ISD::INTRINSIC_WO_CHAIN: {
4479     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4480     switch (IID) {
4481     case Intrinsic::amdgcn_mbcnt_lo:
4482     case Intrinsic::amdgcn_mbcnt_hi: {
4483       const GCNSubtarget &ST =
4484           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4485       // These return at most the wavefront size - 1.
4486       unsigned Size = Op.getValueType().getSizeInBits();
4487       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4488       break;
4489     }
4490     default:
4491       break;
4492     }
4493   }
4494   }
4495 }
4496 
4497 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4498     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4499     unsigned Depth) const {
4500   switch (Op.getOpcode()) {
4501   case AMDGPUISD::BFE_I32: {
4502     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4503     if (!Width)
4504       return 1;
4505 
4506     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4507     if (!isNullConstant(Op.getOperand(1)))
4508       return SignBits;
4509 
4510     // TODO: Could probably figure something out with non-0 offsets.
4511     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4512     return std::max(SignBits, Op0SignBits);
4513   }
4514 
4515   case AMDGPUISD::BFE_U32: {
4516     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4517     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4518   }
4519 
4520   case AMDGPUISD::CARRY:
4521   case AMDGPUISD::BORROW:
4522     return 31;
4523   case AMDGPUISD::BUFFER_LOAD_BYTE:
4524     return 25;
4525   case AMDGPUISD::BUFFER_LOAD_SHORT:
4526     return 17;
4527   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4528     return 24;
4529   case AMDGPUISD::BUFFER_LOAD_USHORT:
4530     return 16;
4531   case AMDGPUISD::FP_TO_FP16:
4532   case AMDGPUISD::FP16_ZEXT:
4533     return 16;
4534   default:
4535     return 1;
4536   }
4537 }
4538 
4539 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4540                                                         const SelectionDAG &DAG,
4541                                                         bool SNaN,
4542                                                         unsigned Depth) const {
4543   unsigned Opcode = Op.getOpcode();
4544   switch (Opcode) {
4545   case AMDGPUISD::FMIN_LEGACY:
4546   case AMDGPUISD::FMAX_LEGACY: {
4547     if (SNaN)
4548       return true;
4549 
4550     // TODO: Can check no nans on one of the operands for each one, but which
4551     // one?
4552     return false;
4553   }
4554   case AMDGPUISD::FMUL_LEGACY:
4555   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4556     if (SNaN)
4557       return true;
4558     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4559            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4560   }
4561   case AMDGPUISD::FMED3:
4562   case AMDGPUISD::FMIN3:
4563   case AMDGPUISD::FMAX3:
4564   case AMDGPUISD::FMAD_FTZ: {
4565     if (SNaN)
4566       return true;
4567     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4568            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4569            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4570   }
4571   case AMDGPUISD::CVT_F32_UBYTE0:
4572   case AMDGPUISD::CVT_F32_UBYTE1:
4573   case AMDGPUISD::CVT_F32_UBYTE2:
4574   case AMDGPUISD::CVT_F32_UBYTE3:
4575     return true;
4576 
4577   case AMDGPUISD::RCP:
4578   case AMDGPUISD::RSQ:
4579   case AMDGPUISD::RCP_LEGACY:
4580   case AMDGPUISD::RSQ_LEGACY:
4581   case AMDGPUISD::RSQ_CLAMP: {
4582     if (SNaN)
4583       return true;
4584 
4585     // TODO: Need is known positive check.
4586     return false;
4587   }
4588   case AMDGPUISD::LDEXP:
4589   case AMDGPUISD::FRACT: {
4590     if (SNaN)
4591       return true;
4592     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4593   }
4594   case AMDGPUISD::DIV_SCALE:
4595   case AMDGPUISD::DIV_FMAS:
4596   case AMDGPUISD::DIV_FIXUP:
4597   case AMDGPUISD::TRIG_PREOP:
4598     // TODO: Refine on operands.
4599     return SNaN;
4600   case AMDGPUISD::SIN_HW:
4601   case AMDGPUISD::COS_HW: {
4602     // TODO: Need check for infinity
4603     return SNaN;
4604   }
4605   case ISD::INTRINSIC_WO_CHAIN: {
4606     unsigned IntrinsicID
4607       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4608     // TODO: Handle more intrinsics
4609     switch (IntrinsicID) {
4610     case Intrinsic::amdgcn_cubeid:
4611       return true;
4612 
4613     case Intrinsic::amdgcn_frexp_mant: {
4614       if (SNaN)
4615         return true;
4616       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4617     }
4618     case Intrinsic::amdgcn_cvt_pkrtz: {
4619       if (SNaN)
4620         return true;
4621       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4622              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4623     }
4624     case Intrinsic::amdgcn_fdot2:
4625       // TODO: Refine on operand
4626       return SNaN;
4627     default:
4628       return false;
4629     }
4630   }
4631   default:
4632     return false;
4633   }
4634 }
4635 
4636 TargetLowering::AtomicExpansionKind
4637 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4638   switch (RMW->getOperation()) {
4639   case AtomicRMWInst::Nand:
4640   case AtomicRMWInst::FAdd:
4641   case AtomicRMWInst::FSub:
4642     return AtomicExpansionKind::CmpXChg;
4643   default:
4644     return AtomicExpansionKind::None;
4645   }
4646 }
4647