1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUCallLowering.h"
19 #include "AMDGPUFrameLowering.h"
20 #include "AMDGPUIntrinsicInfo.h"
21 #include "AMDGPURegisterInfo.h"
22 #include "AMDGPUSubtarget.h"
23 #include "R600MachineFunctionInfo.h"
24 #include "SIMachineFunctionInfo.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "SIInstrInfo.h"
33 using namespace llvm;
34 
35 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
36                             CCValAssign::LocInfo LocInfo,
37                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
38   MachineFunction &MF = State.getMachineFunction();
39   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
40 
41   uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
42                                          ArgFlags.getOrigAlign());
43   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
44   return true;
45 }
46 
47 #include "AMDGPUGenCallingConv.inc"
48 
49 // Find a larger type to do a load / store of a vector with.
50 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
51   unsigned StoreSize = VT.getStoreSizeInBits();
52   if (StoreSize <= 32)
53     return EVT::getIntegerVT(Ctx, StoreSize);
54 
55   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
56   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
57 }
58 
59 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
60                                            const AMDGPUSubtarget &STI)
61     : TargetLowering(TM), Subtarget(&STI) {
62   // Lower floating point store/load to integer store/load to reduce the number
63   // of patterns in tablegen.
64   setOperationAction(ISD::LOAD, MVT::f32, Promote);
65   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
66 
67   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
68   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
69 
70   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
71   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
72 
73   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
74   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
75 
76   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
77   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
78 
79   setOperationAction(ISD::LOAD, MVT::i64, Promote);
80   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
81 
82   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
83   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
84 
85   setOperationAction(ISD::LOAD, MVT::f64, Promote);
86   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
87 
88   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
89   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
90 
91   // There are no 64-bit extloads. These should be done as a 32-bit extload and
92   // an extension to 64-bit.
93   for (MVT VT : MVT::integer_valuetypes()) {
94     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
95     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
96     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
97   }
98 
99   for (MVT VT : MVT::integer_valuetypes()) {
100     if (VT == MVT::i64)
101       continue;
102 
103     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
104     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
105     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
106     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
107 
108     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
109     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
110     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
111     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
112 
113     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
114     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
115     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
116     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
117   }
118 
119   for (MVT VT : MVT::integer_vector_valuetypes()) {
120     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
121     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
122     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
123     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
124     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
125     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
126     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
127     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
128     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
129     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
130     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
131     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
132   }
133 
134   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
135   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
136   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
137   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
138 
139   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
140   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
141   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
142   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
143 
144   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
145   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
146   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
147   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
148 
149   setOperationAction(ISD::STORE, MVT::f32, Promote);
150   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
151 
152   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
153   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
154 
155   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
156   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
157 
158   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
159   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
160 
161   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
162   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
163 
164   setOperationAction(ISD::STORE, MVT::i64, Promote);
165   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
166 
167   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
168   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
169 
170   setOperationAction(ISD::STORE, MVT::f64, Promote);
171   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
172 
173   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
174   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
175 
176   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
177   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
178   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
179   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
180 
181   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
182   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
183   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
184   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
185 
186   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
187   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
188   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
189   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
190 
191   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
192   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
193 
194   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
195   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
196 
197   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
198   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
199 
200   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
201   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
202 
203 
204   setOperationAction(ISD::Constant, MVT::i32, Legal);
205   setOperationAction(ISD::Constant, MVT::i64, Legal);
206   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
207   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
208 
209   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
210   setOperationAction(ISD::BRIND, MVT::Other, Expand);
211 
212   // This is totally unsupported, just custom lower to produce an error.
213   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
214 
215   // We need to custom lower some of the intrinsics
216   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
217   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
218 
219   // Library functions.  These default to Expand, but we have instructions
220   // for them.
221   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
222   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
223   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
224   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
225   setOperationAction(ISD::FABS,   MVT::f32, Legal);
226   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
227   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
228   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
229   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
230   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
231 
232   setOperationAction(ISD::FROUND, MVT::f32, Custom);
233   setOperationAction(ISD::FROUND, MVT::f64, Custom);
234 
235   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
236   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
237 
238   setOperationAction(ISD::FREM, MVT::f32, Custom);
239   setOperationAction(ISD::FREM, MVT::f64, Custom);
240 
241   // v_mad_f32 does not support denormals according to some sources.
242   if (!Subtarget->hasFP32Denormals())
243     setOperationAction(ISD::FMAD, MVT::f32, Legal);
244 
245   // Expand to fneg + fadd.
246   setOperationAction(ISD::FSUB, MVT::f64, Expand);
247 
248   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
249   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
250   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
251   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
252   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
253   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
254   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
255   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
256   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
257   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
258 
259   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
260     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
261     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
262     setOperationAction(ISD::FRINT, MVT::f64, Custom);
263     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
264   }
265 
266   if (!Subtarget->hasBFI()) {
267     // fcopysign can be done in a single instruction with BFI.
268     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
269     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
270   }
271 
272   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
273   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
274 
275   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
276   for (MVT VT : ScalarIntVTs) {
277     // These should use [SU]DIVREM, so set them to expand
278     setOperationAction(ISD::SDIV, VT, Expand);
279     setOperationAction(ISD::UDIV, VT, Expand);
280     setOperationAction(ISD::SREM, VT, Expand);
281     setOperationAction(ISD::UREM, VT, Expand);
282 
283     // GPU does not have divrem function for signed or unsigned.
284     setOperationAction(ISD::SDIVREM, VT, Custom);
285     setOperationAction(ISD::UDIVREM, VT, Custom);
286 
287     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
288     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
289     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
290 
291     setOperationAction(ISD::BSWAP, VT, Expand);
292     setOperationAction(ISD::CTTZ, VT, Expand);
293     setOperationAction(ISD::CTLZ, VT, Expand);
294   }
295 
296   if (!Subtarget->hasBCNT(32))
297     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
298 
299   if (!Subtarget->hasBCNT(64))
300     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
301 
302   // The hardware supports 32-bit ROTR, but not ROTL.
303   setOperationAction(ISD::ROTL, MVT::i32, Expand);
304   setOperationAction(ISD::ROTL, MVT::i64, Expand);
305   setOperationAction(ISD::ROTR, MVT::i64, Expand);
306 
307   setOperationAction(ISD::MUL, MVT::i64, Expand);
308   setOperationAction(ISD::MULHU, MVT::i64, Expand);
309   setOperationAction(ISD::MULHS, MVT::i64, Expand);
310   setOperationAction(ISD::UDIV, MVT::i32, Expand);
311   setOperationAction(ISD::UREM, MVT::i32, Expand);
312   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
313   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
314   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
315   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
316   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
317 
318   setOperationAction(ISD::SMIN, MVT::i32, Legal);
319   setOperationAction(ISD::UMIN, MVT::i32, Legal);
320   setOperationAction(ISD::SMAX, MVT::i32, Legal);
321   setOperationAction(ISD::UMAX, MVT::i32, Legal);
322 
323   if (Subtarget->hasFFBH())
324     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
325 
326   if (Subtarget->hasFFBL())
327     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal);
328 
329   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
330   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
331 
332   // We only really have 32-bit BFE instructions (and 16-bit on VI).
333   //
334   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
335   // effort to match them now. We want this to be false for i64 cases when the
336   // extraction isn't restricted to the upper or lower half. Ideally we would
337   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
338   // span the midpoint are probably relatively rare, so don't worry about them
339   // for now.
340   if (Subtarget->hasBFE())
341     setHasExtractBitsInsn(true);
342 
343   static const MVT::SimpleValueType VectorIntTypes[] = {
344     MVT::v2i32, MVT::v4i32
345   };
346 
347   for (MVT VT : VectorIntTypes) {
348     // Expand the following operations for the current type by default.
349     setOperationAction(ISD::ADD,  VT, Expand);
350     setOperationAction(ISD::AND,  VT, Expand);
351     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
352     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
353     setOperationAction(ISD::MUL,  VT, Expand);
354     setOperationAction(ISD::MULHU, VT, Expand);
355     setOperationAction(ISD::MULHS, VT, Expand);
356     setOperationAction(ISD::OR,   VT, Expand);
357     setOperationAction(ISD::SHL,  VT, Expand);
358     setOperationAction(ISD::SRA,  VT, Expand);
359     setOperationAction(ISD::SRL,  VT, Expand);
360     setOperationAction(ISD::ROTL, VT, Expand);
361     setOperationAction(ISD::ROTR, VT, Expand);
362     setOperationAction(ISD::SUB,  VT, Expand);
363     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
364     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
365     setOperationAction(ISD::SDIV, VT, Expand);
366     setOperationAction(ISD::UDIV, VT, Expand);
367     setOperationAction(ISD::SREM, VT, Expand);
368     setOperationAction(ISD::UREM, VT, Expand);
369     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
370     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
371     setOperationAction(ISD::SDIVREM, VT, Custom);
372     setOperationAction(ISD::UDIVREM, VT, Expand);
373     setOperationAction(ISD::ADDC, VT, Expand);
374     setOperationAction(ISD::SUBC, VT, Expand);
375     setOperationAction(ISD::ADDE, VT, Expand);
376     setOperationAction(ISD::SUBE, VT, Expand);
377     setOperationAction(ISD::SELECT, VT, Expand);
378     setOperationAction(ISD::VSELECT, VT, Expand);
379     setOperationAction(ISD::SELECT_CC, VT, Expand);
380     setOperationAction(ISD::XOR,  VT, Expand);
381     setOperationAction(ISD::BSWAP, VT, Expand);
382     setOperationAction(ISD::CTPOP, VT, Expand);
383     setOperationAction(ISD::CTTZ, VT, Expand);
384     setOperationAction(ISD::CTLZ, VT, Expand);
385     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
386   }
387 
388   static const MVT::SimpleValueType FloatVectorTypes[] = {
389     MVT::v2f32, MVT::v4f32
390   };
391 
392   for (MVT VT : FloatVectorTypes) {
393     setOperationAction(ISD::FABS, VT, Expand);
394     setOperationAction(ISD::FMINNUM, VT, Expand);
395     setOperationAction(ISD::FMAXNUM, VT, Expand);
396     setOperationAction(ISD::FADD, VT, Expand);
397     setOperationAction(ISD::FCEIL, VT, Expand);
398     setOperationAction(ISD::FCOS, VT, Expand);
399     setOperationAction(ISD::FDIV, VT, Expand);
400     setOperationAction(ISD::FEXP2, VT, Expand);
401     setOperationAction(ISD::FLOG2, VT, Expand);
402     setOperationAction(ISD::FREM, VT, Expand);
403     setOperationAction(ISD::FPOW, VT, Expand);
404     setOperationAction(ISD::FFLOOR, VT, Expand);
405     setOperationAction(ISD::FTRUNC, VT, Expand);
406     setOperationAction(ISD::FMUL, VT, Expand);
407     setOperationAction(ISD::FMA, VT, Expand);
408     setOperationAction(ISD::FRINT, VT, Expand);
409     setOperationAction(ISD::FNEARBYINT, VT, Expand);
410     setOperationAction(ISD::FSQRT, VT, Expand);
411     setOperationAction(ISD::FSIN, VT, Expand);
412     setOperationAction(ISD::FSUB, VT, Expand);
413     setOperationAction(ISD::FNEG, VT, Expand);
414     setOperationAction(ISD::VSELECT, VT, Expand);
415     setOperationAction(ISD::SELECT_CC, VT, Expand);
416     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
417     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
418   }
419 
420   // This causes using an unrolled select operation rather than expansion with
421   // bit operations. This is in general better, but the alternative using BFI
422   // instructions may be better if the select sources are SGPRs.
423   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
424   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
425 
426   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
427   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
428 
429   // There are no libcalls of any kind.
430   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
431     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
432 
433   setBooleanContents(ZeroOrNegativeOneBooleanContent);
434   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
435 
436   setSchedulingPreference(Sched::RegPressure);
437   setJumpIsExpensive(true);
438 
439   // FIXME: This is only partially true. If we have to do vector compares, any
440   // SGPR pair can be a condition register. If we have a uniform condition, we
441   // are better off doing SALU operations, where there is only one SCC. For now,
442   // we don't have a way of knowing during instruction selection if a condition
443   // will be uniform and we always use vector compares. Assume we are using
444   // vector compares until that is fixed.
445   setHasMultipleConditionRegisters(true);
446 
447   // SI at least has hardware support for floating point exceptions, but no way
448   // of using or handling them is implemented. They are also optional in OpenCL
449   // (Section 7.3)
450   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
451 
452   PredictableSelectIsExpensive = false;
453 
454   // We want to find all load dependencies for long chains of stores to enable
455   // merging into very wide vectors. The problem is with vectors with > 4
456   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
457   // vectors are a legal type, even though we have to split the loads
458   // usually. When we can more precisely specify load legality per address
459   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
460   // smarter so that they can figure out what to do in 2 iterations without all
461   // N > 4 stores on the same chain.
462   GatherAllAliasesMaxDepth = 16;
463 
464   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
465   // about these during lowering.
466   MaxStoresPerMemcpy  = 0xffffffff;
467   MaxStoresPerMemmove = 0xffffffff;
468   MaxStoresPerMemset  = 0xffffffff;
469 
470   setTargetDAGCombine(ISD::BITCAST);
471   setTargetDAGCombine(ISD::SHL);
472   setTargetDAGCombine(ISD::SRA);
473   setTargetDAGCombine(ISD::SRL);
474   setTargetDAGCombine(ISD::MUL);
475   setTargetDAGCombine(ISD::MULHU);
476   setTargetDAGCombine(ISD::MULHS);
477   setTargetDAGCombine(ISD::SELECT);
478   setTargetDAGCombine(ISD::SELECT_CC);
479   setTargetDAGCombine(ISD::STORE);
480   setTargetDAGCombine(ISD::FADD);
481   setTargetDAGCombine(ISD::FSUB);
482   setTargetDAGCombine(ISD::FNEG);
483   setTargetDAGCombine(ISD::FABS);
484 }
485 
486 //===----------------------------------------------------------------------===//
487 // Target Information
488 //===----------------------------------------------------------------------===//
489 
490 LLVM_READNONE
491 static bool fnegFoldsIntoOp(unsigned Opc) {
492   switch (Opc) {
493   case ISD::FADD:
494   case ISD::FSUB:
495   case ISD::FMUL:
496   case ISD::FMA:
497   case ISD::FMAD:
498   case ISD::FMINNUM:
499   case ISD::FMAXNUM:
500   case ISD::FSIN:
501   case ISD::FTRUNC:
502   case ISD::FRINT:
503   case ISD::FNEARBYINT:
504   case AMDGPUISD::RCP:
505   case AMDGPUISD::RCP_LEGACY:
506   case AMDGPUISD::SIN_HW:
507   case AMDGPUISD::FMUL_LEGACY:
508   case AMDGPUISD::FMIN_LEGACY:
509   case AMDGPUISD::FMAX_LEGACY:
510     return true;
511   default:
512     return false;
513   }
514 }
515 
516 /// \p returns true if the operation will definitely need to use a 64-bit
517 /// encoding, and thus will use a VOP3 encoding regardless of the source
518 /// modifiers.
519 LLVM_READONLY
520 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
521   return N->getNumOperands() > 2 || VT == MVT::f64;
522 }
523 
524 // Most FP instructions support source modifiers, but this could be refined
525 // slightly.
526 LLVM_READONLY
527 static bool hasSourceMods(const SDNode *N) {
528   if (isa<MemSDNode>(N))
529     return false;
530 
531   switch (N->getOpcode()) {
532   case ISD::CopyToReg:
533   case ISD::SELECT:
534   case ISD::FDIV:
535   case ISD::FREM:
536   case ISD::INLINEASM:
537   case AMDGPUISD::INTERP_P1:
538   case AMDGPUISD::INTERP_P2:
539   case AMDGPUISD::DIV_SCALE:
540     return false;
541   default:
542     return true;
543   }
544 }
545 
546 static bool allUsesHaveSourceMods(const SDNode *N, unsigned CostThreshold = 4) {
547   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
548   // it is truly free to use a source modifier in all cases. If there are
549   // multiple users but for each one will necessitate using VOP3, there will be
550   // a code size increase. Try to avoid increasing code size unless we know it
551   // will save on the instruction count.
552   unsigned NumMayIncreaseSize = 0;
553   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
554 
555   // XXX - Should this limit number of uses to check?
556   for (const SDNode *U : N->uses()) {
557     if (!hasSourceMods(U))
558       return false;
559 
560     if (!opMustUseVOP3Encoding(U, VT)) {
561       if (++NumMayIncreaseSize > CostThreshold)
562         return false;
563     }
564   }
565 
566   return true;
567 }
568 
569 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
570   return MVT::i32;
571 }
572 
573 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
574   return true;
575 }
576 
577 // The backend supports 32 and 64 bit floating point immediates.
578 // FIXME: Why are we reporting vectors of FP immediates as legal?
579 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
580   EVT ScalarVT = VT.getScalarType();
581   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
582          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
583 }
584 
585 // We don't want to shrink f64 / f32 constants.
586 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
587   EVT ScalarVT = VT.getScalarType();
588   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
589 }
590 
591 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
592                                                  ISD::LoadExtType,
593                                                  EVT NewVT) const {
594 
595   unsigned NewSize = NewVT.getStoreSizeInBits();
596 
597   // If we are reducing to a 32-bit load, this is always better.
598   if (NewSize == 32)
599     return true;
600 
601   EVT OldVT = N->getValueType(0);
602   unsigned OldSize = OldVT.getStoreSizeInBits();
603 
604   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
605   // extloads, so doing one requires using a buffer_load. In cases where we
606   // still couldn't use a scalar load, using the wider load shouldn't really
607   // hurt anything.
608 
609   // If the old size already had to be an extload, there's no harm in continuing
610   // to reduce the width.
611   return (OldSize < 32);
612 }
613 
614 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
615                                                    EVT CastTy) const {
616 
617   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
618 
619   if (LoadTy.getScalarType() == MVT::i32)
620     return false;
621 
622   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
623   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
624 
625   return (LScalarSize < CastScalarSize) ||
626          (CastScalarSize >= 32);
627 }
628 
629 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
630 // profitable with the expansion for 64-bit since it's generally good to
631 // speculate things.
632 // FIXME: These should really have the size as a parameter.
633 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
634   return true;
635 }
636 
637 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
638   return true;
639 }
640 
641 //===---------------------------------------------------------------------===//
642 // Target Properties
643 //===---------------------------------------------------------------------===//
644 
645 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
646   assert(VT.isFloatingPoint());
647 
648   // Packed operations do not have a fabs modifier.
649   return VT == MVT::f32 || VT == MVT::f64 ||
650          (Subtarget->has16BitInsts() && VT == MVT::f16);
651 }
652 
653 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
654   assert(VT.isFloatingPoint());
655   return VT == MVT::f32 || VT == MVT::f64 ||
656          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
657          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
658 }
659 
660 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
661                                                          unsigned NumElem,
662                                                          unsigned AS) const {
663   return true;
664 }
665 
666 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
667   // There are few operations which truly have vector input operands. Any vector
668   // operation is going to involve operations on each component, and a
669   // build_vector will be a copy per element, so it always makes sense to use a
670   // build_vector input in place of the extracted element to avoid a copy into a
671   // super register.
672   //
673   // We should probably only do this if all users are extracts only, but this
674   // should be the common case.
675   return true;
676 }
677 
678 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
679   // Truncate is just accessing a subregister.
680 
681   unsigned SrcSize = Source.getSizeInBits();
682   unsigned DestSize = Dest.getSizeInBits();
683 
684   return DestSize < SrcSize && DestSize % 32 == 0 ;
685 }
686 
687 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
688   // Truncate is just accessing a subregister.
689 
690   unsigned SrcSize = Source->getScalarSizeInBits();
691   unsigned DestSize = Dest->getScalarSizeInBits();
692 
693   if (DestSize== 16 && Subtarget->has16BitInsts())
694     return SrcSize >= 32;
695 
696   return DestSize < SrcSize && DestSize % 32 == 0;
697 }
698 
699 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
700   unsigned SrcSize = Src->getScalarSizeInBits();
701   unsigned DestSize = Dest->getScalarSizeInBits();
702 
703   if (SrcSize == 16 && Subtarget->has16BitInsts())
704     return DestSize >= 32;
705 
706   return SrcSize == 32 && DestSize == 64;
707 }
708 
709 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
710   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
711   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
712   // this will enable reducing 64-bit operations the 32-bit, which is always
713   // good.
714 
715   if (Src == MVT::i16)
716     return Dest == MVT::i32 ||Dest == MVT::i64 ;
717 
718   return Src == MVT::i32 && Dest == MVT::i64;
719 }
720 
721 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
722   return isZExtFree(Val.getValueType(), VT2);
723 }
724 
725 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
726   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
727   // limited number of native 64-bit operations. Shrinking an operation to fit
728   // in a single 32-bit register should always be helpful. As currently used,
729   // this is much less general than the name suggests, and is only used in
730   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
731   // not profitable, and may actually be harmful.
732   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
733 }
734 
735 //===---------------------------------------------------------------------===//
736 // TargetLowering Callbacks
737 //===---------------------------------------------------------------------===//
738 
739 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
740                                                   bool IsVarArg) const {
741   return CC_AMDGPU;
742 }
743 
744 /// The SelectionDAGBuilder will automatically promote function arguments
745 /// with illegal types.  However, this does not work for the AMDGPU targets
746 /// since the function arguments are stored in memory as these illegal types.
747 /// In order to handle this properly we need to get the original types sizes
748 /// from the LLVM IR Function and fixup the ISD:InputArg values before
749 /// passing them to AnalyzeFormalArguments()
750 
751 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
752 /// input values across multiple registers.  Each item in the Ins array
753 /// represents a single value that will be stored in regsters.  Ins[x].VT is
754 /// the value type of the value that will be stored in the register, so
755 /// whatever SDNode we lower the argument to needs to be this type.
756 ///
757 /// In order to correctly lower the arguments we need to know the size of each
758 /// argument.  Since Ins[x].VT gives us the size of the register that will
759 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
760 /// for the orignal function argument so that we can deduce the correct memory
761 /// type to use for Ins[x].  In most cases the correct memory type will be
762 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
763 /// we have a kernel argument of type v8i8, this argument will be split into
764 /// 8 parts and each part will be represented by its own item in the Ins array.
765 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
766 /// the argument before it was split.  From this, we deduce that the memory type
767 /// for each individual part is i8.  We pass the memory type as LocVT to the
768 /// calling convention analysis function and the register type (Ins[x].VT) as
769 /// the ValVT.
770 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State,
771                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
772   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
773     const ISD::InputArg &In = Ins[i];
774     EVT MemVT;
775 
776     unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT);
777 
778     if (!Subtarget->isAmdHsaOS() &&
779         (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) {
780       // The ABI says the caller will extend these values to 32-bits.
781       MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32;
782     } else if (NumRegs == 1) {
783       // This argument is not split, so the IR type is the memory type.
784       assert(!In.Flags.isSplit());
785       if (In.ArgVT.isExtended()) {
786         // We have an extended type, like i24, so we should just use the register type
787         MemVT = In.VT;
788       } else {
789         MemVT = In.ArgVT;
790       }
791     } else if (In.ArgVT.isVector() && In.VT.isVector() &&
792                In.ArgVT.getScalarType() == In.VT.getScalarType()) {
793       assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements());
794       // We have a vector value which has been split into a vector with
795       // the same scalar type, but fewer elements.  This should handle
796       // all the floating-point vector types.
797       MemVT = In.VT;
798     } else if (In.ArgVT.isVector() &&
799                In.ArgVT.getVectorNumElements() == NumRegs) {
800       // This arg has been split so that each element is stored in a separate
801       // register.
802       MemVT = In.ArgVT.getScalarType();
803     } else if (In.ArgVT.isExtended()) {
804       // We have an extended type, like i65.
805       MemVT = In.VT;
806     } else {
807       unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs;
808       assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0);
809       if (In.VT.isInteger()) {
810         MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
811       } else if (In.VT.isVector()) {
812         assert(!In.VT.getScalarType().isFloatingPoint());
813         unsigned NumElements = In.VT.getVectorNumElements();
814         assert(MemoryBits % NumElements == 0);
815         // This vector type has been split into another vector type with
816         // a different elements size.
817         EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
818                                          MemoryBits / NumElements);
819         MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
820       } else {
821         llvm_unreachable("cannot deduce memory type.");
822       }
823     }
824 
825     // Convert one element vectors to scalar.
826     if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
827       MemVT = MemVT.getScalarType();
828 
829     if (MemVT.isExtended()) {
830       // This should really only happen if we have vec3 arguments
831       assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
832       MemVT = MemVT.getPow2VectorType(State.getContext());
833     }
834 
835     assert(MemVT.isSimple());
836     allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags,
837                     State);
838   }
839 }
840 
841 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
842                               const SmallVectorImpl<ISD::InputArg> &Ins) const {
843   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
844 }
845 
846 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State,
847                            const SmallVectorImpl<ISD::OutputArg> &Outs) const {
848 
849   State.AnalyzeReturn(Outs, RetCC_SI);
850 }
851 
852 SDValue
853 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
854                                   bool isVarArg,
855                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
856                                   const SmallVectorImpl<SDValue> &OutVals,
857                                   const SDLoc &DL, SelectionDAG &DAG) const {
858   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
859 }
860 
861 //===---------------------------------------------------------------------===//
862 // Target specific lowering
863 //===---------------------------------------------------------------------===//
864 
865 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
866                                         SmallVectorImpl<SDValue> &InVals) const {
867   SDValue Callee = CLI.Callee;
868   SelectionDAG &DAG = CLI.DAG;
869 
870   const Function &Fn = *DAG.getMachineFunction().getFunction();
871 
872   StringRef FuncName("<unknown>");
873 
874   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
875     FuncName = G->getSymbol();
876   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
877     FuncName = G->getGlobal()->getName();
878 
879   DiagnosticInfoUnsupported NoCalls(
880       Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc());
881   DAG.getContext()->diagnose(NoCalls);
882 
883   if (!CLI.IsTailCall) {
884     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
885       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
886   }
887 
888   return DAG.getEntryNode();
889 }
890 
891 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
892                                                       SelectionDAG &DAG) const {
893   const Function &Fn = *DAG.getMachineFunction().getFunction();
894 
895   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
896                                             SDLoc(Op).getDebugLoc());
897   DAG.getContext()->diagnose(NoDynamicAlloca);
898   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
899   return DAG.getMergeValues(Ops, SDLoc());
900 }
901 
902 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
903                                              SelectionDAG &DAG) const {
904   switch (Op.getOpcode()) {
905   default:
906     Op->print(errs(), &DAG);
907     llvm_unreachable("Custom lowering code for this"
908                      "instruction is not implemented yet!");
909     break;
910   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
911   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
912   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
913   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
914   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
915   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
916   case ISD::FREM: return LowerFREM(Op, DAG);
917   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
918   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
919   case ISD::FRINT: return LowerFRINT(Op, DAG);
920   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
921   case ISD::FROUND: return LowerFROUND(Op, DAG);
922   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
923   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
924   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
925   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
926   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
927   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
928   case ISD::CTLZ:
929   case ISD::CTLZ_ZERO_UNDEF:
930     return LowerCTLZ(Op, DAG);
931   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
932   }
933   return Op;
934 }
935 
936 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
937                                               SmallVectorImpl<SDValue> &Results,
938                                               SelectionDAG &DAG) const {
939   switch (N->getOpcode()) {
940   case ISD::SIGN_EXTEND_INREG:
941     // Different parts of legalization seem to interpret which type of
942     // sign_extend_inreg is the one to check for custom lowering. The extended
943     // from type is what really matters, but some places check for custom
944     // lowering of the result type. This results in trying to use
945     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
946     // nothing here and let the illegal result integer be handled normally.
947     return;
948   default:
949     return;
950   }
951 }
952 
953 static bool hasDefinedInitializer(const GlobalValue *GV) {
954   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
955   if (!GVar || !GVar->hasInitializer())
956     return false;
957 
958   return !isa<UndefValue>(GVar->getInitializer());
959 }
960 
961 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
962                                                  SDValue Op,
963                                                  SelectionDAG &DAG) const {
964 
965   const DataLayout &DL = DAG.getDataLayout();
966   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
967   const GlobalValue *GV = G->getGlobal();
968 
969   switch (G->getAddressSpace()) {
970   case AMDGPUAS::LOCAL_ADDRESS: {
971     // XXX: What does the value of G->getOffset() mean?
972     assert(G->getOffset() == 0 &&
973          "Do not know what to do with an non-zero offset");
974 
975     // TODO: We could emit code to handle the initialization somewhere.
976     if (hasDefinedInitializer(GV))
977       break;
978 
979     unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
980     return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
981   }
982   }
983 
984   const Function &Fn = *DAG.getMachineFunction().getFunction();
985   DiagnosticInfoUnsupported BadInit(
986       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
987   DAG.getContext()->diagnose(BadInit);
988   return SDValue();
989 }
990 
991 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
992                                                   SelectionDAG &DAG) const {
993   SmallVector<SDValue, 8> Args;
994 
995   for (const SDUse &U : Op->ops())
996     DAG.ExtractVectorElements(U.get(), Args);
997 
998   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
999 }
1000 
1001 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1002                                                      SelectionDAG &DAG) const {
1003 
1004   SmallVector<SDValue, 8> Args;
1005   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1006   EVT VT = Op.getValueType();
1007   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1008                             VT.getVectorNumElements());
1009 
1010   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1011 }
1012 
1013 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
1014     SelectionDAG &DAG) const {
1015   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1016   SDLoc DL(Op);
1017   EVT VT = Op.getValueType();
1018 
1019   switch (IntrinsicID) {
1020   default: return Op;
1021   case AMDGPUIntrinsic::AMDGPU_bfe_i32:
1022     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
1023                        Op.getOperand(1),
1024                        Op.getOperand(2),
1025                        Op.getOperand(3));
1026 
1027   case AMDGPUIntrinsic::AMDGPU_bfe_u32:
1028     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
1029                        Op.getOperand(1),
1030                        Op.getOperand(2),
1031                        Op.getOperand(3));
1032   }
1033 }
1034 
1035 /// \brief Generate Min/Max node
1036 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1037                                                    SDValue LHS, SDValue RHS,
1038                                                    SDValue True, SDValue False,
1039                                                    SDValue CC,
1040                                                    DAGCombinerInfo &DCI) const {
1041   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1042     return SDValue();
1043 
1044   SelectionDAG &DAG = DCI.DAG;
1045   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1046   switch (CCOpcode) {
1047   case ISD::SETOEQ:
1048   case ISD::SETONE:
1049   case ISD::SETUNE:
1050   case ISD::SETNE:
1051   case ISD::SETUEQ:
1052   case ISD::SETEQ:
1053   case ISD::SETFALSE:
1054   case ISD::SETFALSE2:
1055   case ISD::SETTRUE:
1056   case ISD::SETTRUE2:
1057   case ISD::SETUO:
1058   case ISD::SETO:
1059     break;
1060   case ISD::SETULE:
1061   case ISD::SETULT: {
1062     if (LHS == True)
1063       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1064     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1065   }
1066   case ISD::SETOLE:
1067   case ISD::SETOLT:
1068   case ISD::SETLE:
1069   case ISD::SETLT: {
1070     // Ordered. Assume ordered for undefined.
1071 
1072     // Only do this after legalization to avoid interfering with other combines
1073     // which might occur.
1074     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1075         !DCI.isCalledByLegalizer())
1076       return SDValue();
1077 
1078     // We need to permute the operands to get the correct NaN behavior. The
1079     // selected operand is the second one based on the failing compare with NaN,
1080     // so permute it based on the compare type the hardware uses.
1081     if (LHS == True)
1082       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1083     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1084   }
1085   case ISD::SETUGE:
1086   case ISD::SETUGT: {
1087     if (LHS == True)
1088       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1089     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1090   }
1091   case ISD::SETGT:
1092   case ISD::SETGE:
1093   case ISD::SETOGE:
1094   case ISD::SETOGT: {
1095     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1096         !DCI.isCalledByLegalizer())
1097       return SDValue();
1098 
1099     if (LHS == True)
1100       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1101     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1102   }
1103   case ISD::SETCC_INVALID:
1104     llvm_unreachable("Invalid setcc condcode!");
1105   }
1106   return SDValue();
1107 }
1108 
1109 std::pair<SDValue, SDValue>
1110 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1111   SDLoc SL(Op);
1112 
1113   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1114 
1115   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1116   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1117 
1118   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1119   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1120 
1121   return std::make_pair(Lo, Hi);
1122 }
1123 
1124 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1125   SDLoc SL(Op);
1126 
1127   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1128   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1129   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1130 }
1131 
1132 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1133   SDLoc SL(Op);
1134 
1135   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1136   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1137   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1138 }
1139 
1140 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1141                                               SelectionDAG &DAG) const {
1142   LoadSDNode *Load = cast<LoadSDNode>(Op);
1143   EVT VT = Op.getValueType();
1144 
1145 
1146   // If this is a 2 element vector, we really want to scalarize and not create
1147   // weird 1 element vectors.
1148   if (VT.getVectorNumElements() == 2)
1149     return scalarizeVectorLoad(Load, DAG);
1150 
1151   SDValue BasePtr = Load->getBasePtr();
1152   EVT PtrVT = BasePtr.getValueType();
1153   EVT MemVT = Load->getMemoryVT();
1154   SDLoc SL(Op);
1155 
1156   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1157 
1158   EVT LoVT, HiVT;
1159   EVT LoMemVT, HiMemVT;
1160   SDValue Lo, Hi;
1161 
1162   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1163   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1164   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1165 
1166   unsigned Size = LoMemVT.getStoreSize();
1167   unsigned BaseAlign = Load->getAlignment();
1168   unsigned HiAlign = MinAlign(BaseAlign, Size);
1169 
1170   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1171                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1172                                   BaseAlign, Load->getMemOperand()->getFlags());
1173   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1174                               DAG.getConstant(Size, SL, PtrVT));
1175   SDValue HiLoad =
1176       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1177                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1178                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1179 
1180   SDValue Ops[] = {
1181     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1182     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1183                 LoLoad.getValue(1), HiLoad.getValue(1))
1184   };
1185 
1186   return DAG.getMergeValues(Ops, SL);
1187 }
1188 
1189 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1190                                                SelectionDAG &DAG) const {
1191   StoreSDNode *Store = cast<StoreSDNode>(Op);
1192   SDValue Val = Store->getValue();
1193   EVT VT = Val.getValueType();
1194 
1195   // If this is a 2 element vector, we really want to scalarize and not create
1196   // weird 1 element vectors.
1197   if (VT.getVectorNumElements() == 2)
1198     return scalarizeVectorStore(Store, DAG);
1199 
1200   EVT MemVT = Store->getMemoryVT();
1201   SDValue Chain = Store->getChain();
1202   SDValue BasePtr = Store->getBasePtr();
1203   SDLoc SL(Op);
1204 
1205   EVT LoVT, HiVT;
1206   EVT LoMemVT, HiMemVT;
1207   SDValue Lo, Hi;
1208 
1209   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1210   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1211   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1212 
1213   EVT PtrVT = BasePtr.getValueType();
1214   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1215                               DAG.getConstant(LoMemVT.getStoreSize(), SL,
1216                                               PtrVT));
1217 
1218   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1219   unsigned BaseAlign = Store->getAlignment();
1220   unsigned Size = LoMemVT.getStoreSize();
1221   unsigned HiAlign = MinAlign(BaseAlign, Size);
1222 
1223   SDValue LoStore =
1224       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1225                         Store->getMemOperand()->getFlags());
1226   SDValue HiStore =
1227       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1228                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1229 
1230   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1231 }
1232 
1233 // This is a shortcut for integer division because we have fast i32<->f32
1234 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1235 // float is enough to accurately represent up to a 24-bit signed integer.
1236 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1237                                             bool Sign) const {
1238   SDLoc DL(Op);
1239   EVT VT = Op.getValueType();
1240   SDValue LHS = Op.getOperand(0);
1241   SDValue RHS = Op.getOperand(1);
1242   MVT IntVT = MVT::i32;
1243   MVT FltVT = MVT::f32;
1244 
1245   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1246   if (LHSSignBits < 9)
1247     return SDValue();
1248 
1249   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1250   if (RHSSignBits < 9)
1251     return SDValue();
1252 
1253   unsigned BitSize = VT.getSizeInBits();
1254   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1255   unsigned DivBits = BitSize - SignBits;
1256   if (Sign)
1257     ++DivBits;
1258 
1259   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1260   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1261 
1262   SDValue jq = DAG.getConstant(1, DL, IntVT);
1263 
1264   if (Sign) {
1265     // char|short jq = ia ^ ib;
1266     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1267 
1268     // jq = jq >> (bitsize - 2)
1269     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1270                      DAG.getConstant(BitSize - 2, DL, VT));
1271 
1272     // jq = jq | 0x1
1273     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1274   }
1275 
1276   // int ia = (int)LHS;
1277   SDValue ia = LHS;
1278 
1279   // int ib, (int)RHS;
1280   SDValue ib = RHS;
1281 
1282   // float fa = (float)ia;
1283   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1284 
1285   // float fb = (float)ib;
1286   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1287 
1288   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1289                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1290 
1291   // fq = trunc(fq);
1292   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1293 
1294   // float fqneg = -fq;
1295   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1296 
1297   // float fr = mad(fqneg, fb, fa);
1298   unsigned OpCode = Subtarget->hasFP32Denormals() ?
1299                     (unsigned)AMDGPUISD::FMAD_FTZ :
1300                     (unsigned)ISD::FMAD;
1301   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1302 
1303   // int iq = (int)fq;
1304   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1305 
1306   // fr = fabs(fr);
1307   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1308 
1309   // fb = fabs(fb);
1310   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1311 
1312   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1313 
1314   // int cv = fr >= fb;
1315   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1316 
1317   // jq = (cv ? jq : 0);
1318   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1319 
1320   // dst = iq + jq;
1321   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1322 
1323   // Rem needs compensation, it's easier to recompute it
1324   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1325   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1326 
1327   // Truncate to number of bits this divide really is.
1328   if (Sign) {
1329     SDValue InRegSize
1330       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1331     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1332     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1333   } else {
1334     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1335     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1336     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1337   }
1338 
1339   return DAG.getMergeValues({ Div, Rem }, DL);
1340 }
1341 
1342 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1343                                       SelectionDAG &DAG,
1344                                       SmallVectorImpl<SDValue> &Results) const {
1345   assert(Op.getValueType() == MVT::i64);
1346 
1347   SDLoc DL(Op);
1348   EVT VT = Op.getValueType();
1349   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1350 
1351   SDValue one = DAG.getConstant(1, DL, HalfVT);
1352   SDValue zero = DAG.getConstant(0, DL, HalfVT);
1353 
1354   //HiLo split
1355   SDValue LHS = Op.getOperand(0);
1356   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1357   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1358 
1359   SDValue RHS = Op.getOperand(1);
1360   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1361   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1362 
1363   if (VT == MVT::i64 &&
1364     DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1365     DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1366 
1367     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1368                               LHS_Lo, RHS_Lo);
1369 
1370     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero});
1371     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero});
1372 
1373     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1374     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1375     return;
1376   }
1377 
1378   // Get Speculative values
1379   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1380   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1381 
1382   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1383   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero});
1384   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1385 
1386   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1387   SDValue DIV_Lo = zero;
1388 
1389   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1390 
1391   for (unsigned i = 0; i < halfBitWidth; ++i) {
1392     const unsigned bitPos = halfBitWidth - i - 1;
1393     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1394     // Get value of high bit
1395     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1396     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1397     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1398 
1399     // Shift
1400     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1401     // Add LHS high bit
1402     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1403 
1404     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1405     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1406 
1407     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1408 
1409     // Update REM
1410     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1411     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1412   }
1413 
1414   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1415   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1416   Results.push_back(DIV);
1417   Results.push_back(REM);
1418 }
1419 
1420 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1421                                            SelectionDAG &DAG) const {
1422   SDLoc DL(Op);
1423   EVT VT = Op.getValueType();
1424 
1425   if (VT == MVT::i64) {
1426     SmallVector<SDValue, 2> Results;
1427     LowerUDIVREM64(Op, DAG, Results);
1428     return DAG.getMergeValues(Results, DL);
1429   }
1430 
1431   if (VT == MVT::i32) {
1432     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1433       return Res;
1434   }
1435 
1436   SDValue Num = Op.getOperand(0);
1437   SDValue Den = Op.getOperand(1);
1438 
1439   // RCP =  URECIP(Den) = 2^32 / Den + e
1440   // e is rounding error.
1441   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1442 
1443   // RCP_LO = mul(RCP, Den) */
1444   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1445 
1446   // RCP_HI = mulhu (RCP, Den) */
1447   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1448 
1449   // NEG_RCP_LO = -RCP_LO
1450   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1451                                                      RCP_LO);
1452 
1453   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1454   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1455                                            NEG_RCP_LO, RCP_LO,
1456                                            ISD::SETEQ);
1457   // Calculate the rounding error from the URECIP instruction
1458   // E = mulhu(ABS_RCP_LO, RCP)
1459   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1460 
1461   // RCP_A_E = RCP + E
1462   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1463 
1464   // RCP_S_E = RCP - E
1465   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1466 
1467   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1468   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1469                                      RCP_A_E, RCP_S_E,
1470                                      ISD::SETEQ);
1471   // Quotient = mulhu(Tmp0, Num)
1472   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1473 
1474   // Num_S_Remainder = Quotient * Den
1475   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1476 
1477   // Remainder = Num - Num_S_Remainder
1478   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1479 
1480   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1481   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1482                                                  DAG.getConstant(-1, DL, VT),
1483                                                  DAG.getConstant(0, DL, VT),
1484                                                  ISD::SETUGE);
1485   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1486   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1487                                                   Num_S_Remainder,
1488                                                   DAG.getConstant(-1, DL, VT),
1489                                                   DAG.getConstant(0, DL, VT),
1490                                                   ISD::SETUGE);
1491   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1492   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1493                                                Remainder_GE_Zero);
1494 
1495   // Calculate Division result:
1496 
1497   // Quotient_A_One = Quotient + 1
1498   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1499                                        DAG.getConstant(1, DL, VT));
1500 
1501   // Quotient_S_One = Quotient - 1
1502   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1503                                        DAG.getConstant(1, DL, VT));
1504 
1505   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1506   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1507                                      Quotient, Quotient_A_One, ISD::SETEQ);
1508 
1509   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1510   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1511                             Quotient_S_One, Div, ISD::SETEQ);
1512 
1513   // Calculate Rem result:
1514 
1515   // Remainder_S_Den = Remainder - Den
1516   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1517 
1518   // Remainder_A_Den = Remainder + Den
1519   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1520 
1521   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1522   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1523                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1524 
1525   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1526   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1527                             Remainder_A_Den, Rem, ISD::SETEQ);
1528   SDValue Ops[2] = {
1529     Div,
1530     Rem
1531   };
1532   return DAG.getMergeValues(Ops, DL);
1533 }
1534 
1535 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1536                                            SelectionDAG &DAG) const {
1537   SDLoc DL(Op);
1538   EVT VT = Op.getValueType();
1539 
1540   SDValue LHS = Op.getOperand(0);
1541   SDValue RHS = Op.getOperand(1);
1542 
1543   SDValue Zero = DAG.getConstant(0, DL, VT);
1544   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1545 
1546   if (VT == MVT::i32) {
1547     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1548       return Res;
1549   }
1550 
1551   if (VT == MVT::i64 &&
1552       DAG.ComputeNumSignBits(LHS) > 32 &&
1553       DAG.ComputeNumSignBits(RHS) > 32) {
1554     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1555 
1556     //HiLo split
1557     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1558     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1559     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1560                                  LHS_Lo, RHS_Lo);
1561     SDValue Res[2] = {
1562       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1563       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1564     };
1565     return DAG.getMergeValues(Res, DL);
1566   }
1567 
1568   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1569   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1570   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1571   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1572 
1573   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1574   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1575 
1576   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1577   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1578 
1579   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1580   SDValue Rem = Div.getValue(1);
1581 
1582   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1583   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1584 
1585   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1586   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1587 
1588   SDValue Res[2] = {
1589     Div,
1590     Rem
1591   };
1592   return DAG.getMergeValues(Res, DL);
1593 }
1594 
1595 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1596 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1597   SDLoc SL(Op);
1598   EVT VT = Op.getValueType();
1599   SDValue X = Op.getOperand(0);
1600   SDValue Y = Op.getOperand(1);
1601 
1602   // TODO: Should this propagate fast-math-flags?
1603 
1604   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1605   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1606   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1607 
1608   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1609 }
1610 
1611 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1612   SDLoc SL(Op);
1613   SDValue Src = Op.getOperand(0);
1614 
1615   // result = trunc(src)
1616   // if (src > 0.0 && src != result)
1617   //   result += 1.0
1618 
1619   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1620 
1621   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1622   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1623 
1624   EVT SetCCVT =
1625       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1626 
1627   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1628   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1629   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1630 
1631   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1632   // TODO: Should this propagate fast-math-flags?
1633   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1634 }
1635 
1636 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1637                                   SelectionDAG &DAG) {
1638   const unsigned FractBits = 52;
1639   const unsigned ExpBits = 11;
1640 
1641   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1642                                 Hi,
1643                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1644                                 DAG.getConstant(ExpBits, SL, MVT::i32));
1645   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1646                             DAG.getConstant(1023, SL, MVT::i32));
1647 
1648   return Exp;
1649 }
1650 
1651 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1652   SDLoc SL(Op);
1653   SDValue Src = Op.getOperand(0);
1654 
1655   assert(Op.getValueType() == MVT::f64);
1656 
1657   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1658   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1659 
1660   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1661 
1662   // Extract the upper half, since this is where we will find the sign and
1663   // exponent.
1664   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1665 
1666   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1667 
1668   const unsigned FractBits = 52;
1669 
1670   // Extract the sign bit.
1671   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
1672   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1673 
1674   // Extend back to to 64-bits.
1675   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
1676   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1677 
1678   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1679   const SDValue FractMask
1680     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
1681 
1682   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1683   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1684   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1685 
1686   EVT SetCCVT =
1687       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1688 
1689   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
1690 
1691   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1692   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1693 
1694   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1695   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1696 
1697   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1698 }
1699 
1700 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1701   SDLoc SL(Op);
1702   SDValue Src = Op.getOperand(0);
1703 
1704   assert(Op.getValueType() == MVT::f64);
1705 
1706   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
1707   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
1708   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
1709 
1710   // TODO: Should this propagate fast-math-flags?
1711 
1712   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
1713   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
1714 
1715   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
1716 
1717   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
1718   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
1719 
1720   EVT SetCCVT =
1721       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1722   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
1723 
1724   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
1725 }
1726 
1727 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
1728   // FNEARBYINT and FRINT are the same, except in their handling of FP
1729   // exceptions. Those aren't really meaningful for us, and OpenCL only has
1730   // rint, so just treat them as equivalent.
1731   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
1732 }
1733 
1734 // XXX - May require not supporting f32 denormals?
1735 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
1736   SDLoc SL(Op);
1737   SDValue X = Op.getOperand(0);
1738 
1739   SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
1740 
1741   // TODO: Should this propagate fast-math-flags?
1742 
1743   SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
1744 
1745   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
1746 
1747   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
1748   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1749   const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
1750 
1751   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
1752 
1753   EVT SetCCVT =
1754       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1755 
1756   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
1757 
1758   SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
1759 
1760   return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
1761 }
1762 
1763 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
1764   SDLoc SL(Op);
1765   SDValue X = Op.getOperand(0);
1766 
1767   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
1768 
1769   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1770   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1771   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
1772   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
1773   EVT SetCCVT =
1774       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1775 
1776   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1777 
1778   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
1779 
1780   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1781 
1782   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
1783                                        MVT::i64);
1784 
1785   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
1786   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
1787                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
1788                                           MVT::i64),
1789                           Exp);
1790 
1791   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
1792   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
1793                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
1794                               ISD::SETNE);
1795 
1796   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
1797                              D, DAG.getConstant(0, SL, MVT::i64));
1798   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
1799 
1800   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
1801   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
1802 
1803   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1804   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1805   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
1806 
1807   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
1808                             ExpEqNegOne,
1809                             DAG.getConstantFP(1.0, SL, MVT::f64),
1810                             DAG.getConstantFP(0.0, SL, MVT::f64));
1811 
1812   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
1813 
1814   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
1815   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
1816 
1817   return K;
1818 }
1819 
1820 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
1821   EVT VT = Op.getValueType();
1822 
1823   if (VT == MVT::f32)
1824     return LowerFROUND32(Op, DAG);
1825 
1826   if (VT == MVT::f64)
1827     return LowerFROUND64(Op, DAG);
1828 
1829   llvm_unreachable("unhandled type");
1830 }
1831 
1832 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
1833   SDLoc SL(Op);
1834   SDValue Src = Op.getOperand(0);
1835 
1836   // result = trunc(src);
1837   // if (src < 0.0 && src != result)
1838   //   result += -1.0.
1839 
1840   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1841 
1842   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1843   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
1844 
1845   EVT SetCCVT =
1846       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1847 
1848   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
1849   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1850   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1851 
1852   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
1853   // TODO: Should this propagate fast-math-flags?
1854   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1855 }
1856 
1857 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
1858   SDLoc SL(Op);
1859   SDValue Src = Op.getOperand(0);
1860   bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
1861 
1862   if (ZeroUndef && Src.getValueType() == MVT::i32)
1863     return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src);
1864 
1865   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1866 
1867   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1868   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1869 
1870   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1871   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1872 
1873   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1874                                    *DAG.getContext(), MVT::i32);
1875 
1876   SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ);
1877 
1878   SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo);
1879   SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi);
1880 
1881   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
1882   SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32);
1883 
1884   // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
1885   SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi);
1886 
1887   if (!ZeroUndef) {
1888     // Test if the full 64-bit input is zero.
1889 
1890     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
1891     // which we probably don't want.
1892     SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ);
1893     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0);
1894 
1895     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
1896     // with the same cycles, otherwise it is slower.
1897     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
1898     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
1899 
1900     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
1901 
1902     // The instruction returns -1 for 0 input, but the defined intrinsic
1903     // behavior is to return the number of bits.
1904     NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32,
1905                           SrcIsZero, Bits32, NewCtlz);
1906   }
1907 
1908   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz);
1909 }
1910 
1911 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
1912                                                bool Signed) const {
1913   // Unsigned
1914   // cul2f(ulong u)
1915   //{
1916   //  uint lz = clz(u);
1917   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
1918   //  u = (u << lz) & 0x7fffffffffffffffUL;
1919   //  ulong t = u & 0xffffffffffUL;
1920   //  uint v = (e << 23) | (uint)(u >> 40);
1921   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
1922   //  return as_float(v + r);
1923   //}
1924   // Signed
1925   // cl2f(long l)
1926   //{
1927   //  long s = l >> 63;
1928   //  float r = cul2f((l + s) ^ s);
1929   //  return s ? -r : r;
1930   //}
1931 
1932   SDLoc SL(Op);
1933   SDValue Src = Op.getOperand(0);
1934   SDValue L = Src;
1935 
1936   SDValue S;
1937   if (Signed) {
1938     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
1939     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
1940 
1941     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
1942     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
1943   }
1944 
1945   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1946                                    *DAG.getContext(), MVT::f32);
1947 
1948 
1949   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
1950   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
1951   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
1952   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
1953 
1954   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
1955   SDValue E = DAG.getSelect(SL, MVT::i32,
1956     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
1957     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
1958     ZeroI32);
1959 
1960   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
1961     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
1962     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
1963 
1964   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
1965                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
1966 
1967   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
1968                              U, DAG.getConstant(40, SL, MVT::i64));
1969 
1970   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
1971     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
1972     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
1973 
1974   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
1975   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
1976   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
1977 
1978   SDValue One = DAG.getConstant(1, SL, MVT::i32);
1979 
1980   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
1981 
1982   SDValue R = DAG.getSelect(SL, MVT::i32,
1983     RCmp,
1984     One,
1985     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
1986   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
1987   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
1988 
1989   if (!Signed)
1990     return R;
1991 
1992   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
1993   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
1994 }
1995 
1996 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
1997                                                bool Signed) const {
1998   SDLoc SL(Op);
1999   SDValue Src = Op.getOperand(0);
2000 
2001   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2002 
2003   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2004                            DAG.getConstant(0, SL, MVT::i32));
2005   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2006                            DAG.getConstant(1, SL, MVT::i32));
2007 
2008   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2009                               SL, MVT::f64, Hi);
2010 
2011   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2012 
2013   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2014                               DAG.getConstant(32, SL, MVT::i32));
2015   // TODO: Should this propagate fast-math-flags?
2016   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2017 }
2018 
2019 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2020                                                SelectionDAG &DAG) const {
2021   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2022          "operation should be legal");
2023 
2024   // TODO: Factor out code common with LowerSINT_TO_FP.
2025 
2026   EVT DestVT = Op.getValueType();
2027   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2028     SDLoc DL(Op);
2029     SDValue Src = Op.getOperand(0);
2030 
2031     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2032     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2033     SDValue FPRound =
2034         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2035 
2036     return FPRound;
2037   }
2038 
2039   if (DestVT == MVT::f32)
2040     return LowerINT_TO_FP32(Op, DAG, false);
2041 
2042   assert(DestVT == MVT::f64);
2043   return LowerINT_TO_FP64(Op, DAG, false);
2044 }
2045 
2046 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2047                                               SelectionDAG &DAG) const {
2048   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2049          "operation should be legal");
2050 
2051   // TODO: Factor out code common with LowerUINT_TO_FP.
2052 
2053   EVT DestVT = Op.getValueType();
2054   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2055     SDLoc DL(Op);
2056     SDValue Src = Op.getOperand(0);
2057 
2058     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2059     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2060     SDValue FPRound =
2061         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2062 
2063     return FPRound;
2064   }
2065 
2066   if (DestVT == MVT::f32)
2067     return LowerINT_TO_FP32(Op, DAG, true);
2068 
2069   assert(DestVT == MVT::f64);
2070   return LowerINT_TO_FP64(Op, DAG, true);
2071 }
2072 
2073 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2074                                                bool Signed) const {
2075   SDLoc SL(Op);
2076 
2077   SDValue Src = Op.getOperand(0);
2078 
2079   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2080 
2081   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2082                                  MVT::f64);
2083   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2084                                  MVT::f64);
2085   // TODO: Should this propagate fast-math-flags?
2086   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2087 
2088   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2089 
2090 
2091   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2092 
2093   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2094                            MVT::i32, FloorMul);
2095   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2096 
2097   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2098 
2099   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2100 }
2101 
2102 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2103 
2104   if (getTargetMachine().Options.UnsafeFPMath) {
2105     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2106     return SDValue();
2107   }
2108 
2109   SDLoc DL(Op);
2110   SDValue N0 = Op.getOperand(0);
2111   assert (N0.getSimpleValueType() == MVT::f64);
2112 
2113   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2114   const unsigned ExpMask = 0x7ff;
2115   const unsigned ExpBiasf64 = 1023;
2116   const unsigned ExpBiasf16 = 15;
2117   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2118   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2119   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2120   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2121                            DAG.getConstant(32, DL, MVT::i64));
2122   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2123   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2124   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2125                           DAG.getConstant(20, DL, MVT::i64));
2126   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2127                   DAG.getConstant(ExpMask, DL, MVT::i32));
2128   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2129   // add the f16 bias (15) to get the biased exponent for the f16 format.
2130   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2131                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2132 
2133   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2134                           DAG.getConstant(8, DL, MVT::i32));
2135   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2136                   DAG.getConstant(0xffe, DL, MVT::i32));
2137 
2138   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2139                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2140   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2141 
2142   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2143   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2144 
2145   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2146   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2147       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2148                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2149 
2150   // N = M | (E << 12);
2151   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2152       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2153                   DAG.getConstant(12, DL, MVT::i32)));
2154 
2155   // B = clamp(1-E, 0, 13);
2156   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2157                                   One, E);
2158   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2159   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2160                   DAG.getConstant(13, DL, MVT::i32));
2161 
2162   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2163                                    DAG.getConstant(0x1000, DL, MVT::i32));
2164 
2165   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2166   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2167   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2168   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2169 
2170   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2171   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2172                               DAG.getConstant(0x7, DL, MVT::i32));
2173   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2174                   DAG.getConstant(2, DL, MVT::i32));
2175   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2176                                One, Zero, ISD::SETEQ);
2177   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2178                                One, Zero, ISD::SETGT);
2179   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2180   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2181 
2182   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2183                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2184   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2185                       I, V, ISD::SETEQ);
2186 
2187   // Extract the sign bit.
2188   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2189                             DAG.getConstant(16, DL, MVT::i32));
2190   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2191                      DAG.getConstant(0x8000, DL, MVT::i32));
2192 
2193   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2194   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2195 }
2196 
2197 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2198                                               SelectionDAG &DAG) const {
2199   SDValue Src = Op.getOperand(0);
2200 
2201   // TODO: Factor out code common with LowerFP_TO_UINT.
2202 
2203   EVT SrcVT = Src.getValueType();
2204   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2205     SDLoc DL(Op);
2206 
2207     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2208     SDValue FpToInt32 =
2209         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2210 
2211     return FpToInt32;
2212   }
2213 
2214   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2215     return LowerFP64_TO_INT(Op, DAG, true);
2216 
2217   return SDValue();
2218 }
2219 
2220 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2221                                               SelectionDAG &DAG) const {
2222   SDValue Src = Op.getOperand(0);
2223 
2224   // TODO: Factor out code common with LowerFP_TO_SINT.
2225 
2226   EVT SrcVT = Src.getValueType();
2227   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2228     SDLoc DL(Op);
2229 
2230     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2231     SDValue FpToInt32 =
2232         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2233 
2234     return FpToInt32;
2235   }
2236 
2237   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2238     return LowerFP64_TO_INT(Op, DAG, false);
2239 
2240   return SDValue();
2241 }
2242 
2243 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2244                                                      SelectionDAG &DAG) const {
2245   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2246   MVT VT = Op.getSimpleValueType();
2247   MVT ScalarVT = VT.getScalarType();
2248 
2249   assert(VT.isVector());
2250 
2251   SDValue Src = Op.getOperand(0);
2252   SDLoc DL(Op);
2253 
2254   // TODO: Don't scalarize on Evergreen?
2255   unsigned NElts = VT.getVectorNumElements();
2256   SmallVector<SDValue, 8> Args;
2257   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2258 
2259   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2260   for (unsigned I = 0; I < NElts; ++I)
2261     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2262 
2263   return DAG.getBuildVector(VT, DL, Args);
2264 }
2265 
2266 //===----------------------------------------------------------------------===//
2267 // Custom DAG optimizations
2268 //===----------------------------------------------------------------------===//
2269 
2270 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2271   APInt KnownZero, KnownOne;
2272   EVT VT = Op.getValueType();
2273   DAG.computeKnownBits(Op, KnownZero, KnownOne);
2274 
2275   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
2276 }
2277 
2278 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2279   EVT VT = Op.getValueType();
2280 
2281   // In order for this to be a signed 24-bit value, bit 23, must
2282   // be a sign bit.
2283   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2284                                      // as unsigned 24-bit values.
2285          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2286 }
2287 
2288 static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
2289                         TargetLowering::DAGCombinerInfo &DCI) {
2290 
2291   SelectionDAG &DAG = DCI.DAG;
2292   SDValue Op = Node24->getOperand(OpIdx);
2293   EVT VT = Op.getValueType();
2294 
2295   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2296   APInt KnownZero, KnownOne;
2297   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2298   if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI))
2299     return true;
2300 
2301   return false;
2302 }
2303 
2304 template <typename IntTy>
2305 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2306                                uint32_t Width, const SDLoc &DL) {
2307   if (Width + Offset < 32) {
2308     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2309     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2310     return DAG.getConstant(Result, DL, MVT::i32);
2311   }
2312 
2313   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2314 }
2315 
2316 static bool hasVolatileUser(SDNode *Val) {
2317   for (SDNode *U : Val->uses()) {
2318     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2319       if (M->isVolatile())
2320         return true;
2321     }
2322   }
2323 
2324   return false;
2325 }
2326 
2327 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2328   // i32 vectors are the canonical memory type.
2329   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2330     return false;
2331 
2332   if (!VT.isByteSized())
2333     return false;
2334 
2335   unsigned Size = VT.getStoreSize();
2336 
2337   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2338     return false;
2339 
2340   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2341     return false;
2342 
2343   return true;
2344 }
2345 
2346 // Replace load of an illegal type with a store of a bitcast to a friendlier
2347 // type.
2348 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2349                                                  DAGCombinerInfo &DCI) const {
2350   if (!DCI.isBeforeLegalize())
2351     return SDValue();
2352 
2353   LoadSDNode *LN = cast<LoadSDNode>(N);
2354   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2355     return SDValue();
2356 
2357   SDLoc SL(N);
2358   SelectionDAG &DAG = DCI.DAG;
2359   EVT VT = LN->getMemoryVT();
2360 
2361   unsigned Size = VT.getStoreSize();
2362   unsigned Align = LN->getAlignment();
2363   if (Align < Size && isTypeLegal(VT)) {
2364     bool IsFast;
2365     unsigned AS = LN->getAddressSpace();
2366 
2367     // Expand unaligned loads earlier than legalization. Due to visitation order
2368     // problems during legalization, the emitted instructions to pack and unpack
2369     // the bytes again are not eliminated in the case of an unaligned copy.
2370     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2371       if (VT.isVector())
2372         return scalarizeVectorLoad(LN, DAG);
2373 
2374       SDValue Ops[2];
2375       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2376       return DAG.getMergeValues(Ops, SDLoc(N));
2377     }
2378 
2379     if (!IsFast)
2380       return SDValue();
2381   }
2382 
2383   if (!shouldCombineMemoryType(VT))
2384     return SDValue();
2385 
2386   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2387 
2388   SDValue NewLoad
2389     = DAG.getLoad(NewVT, SL, LN->getChain(),
2390                   LN->getBasePtr(), LN->getMemOperand());
2391 
2392   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2393   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2394   return SDValue(N, 0);
2395 }
2396 
2397 // Replace store of an illegal type with a store of a bitcast to a friendlier
2398 // type.
2399 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2400                                                   DAGCombinerInfo &DCI) const {
2401   if (!DCI.isBeforeLegalize())
2402     return SDValue();
2403 
2404   StoreSDNode *SN = cast<StoreSDNode>(N);
2405   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2406     return SDValue();
2407 
2408   EVT VT = SN->getMemoryVT();
2409   unsigned Size = VT.getStoreSize();
2410 
2411   SDLoc SL(N);
2412   SelectionDAG &DAG = DCI.DAG;
2413   unsigned Align = SN->getAlignment();
2414   if (Align < Size && isTypeLegal(VT)) {
2415     bool IsFast;
2416     unsigned AS = SN->getAddressSpace();
2417 
2418     // Expand unaligned stores earlier than legalization. Due to visitation
2419     // order problems during legalization, the emitted instructions to pack and
2420     // unpack the bytes again are not eliminated in the case of an unaligned
2421     // copy.
2422     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2423       if (VT.isVector())
2424         return scalarizeVectorStore(SN, DAG);
2425 
2426       return expandUnalignedStore(SN, DAG);
2427     }
2428 
2429     if (!IsFast)
2430       return SDValue();
2431   }
2432 
2433   if (!shouldCombineMemoryType(VT))
2434     return SDValue();
2435 
2436   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2437   SDValue Val = SN->getValue();
2438 
2439   //DCI.AddToWorklist(Val.getNode());
2440 
2441   bool OtherUses = !Val.hasOneUse();
2442   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2443   if (OtherUses) {
2444     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2445     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2446   }
2447 
2448   return DAG.getStore(SN->getChain(), SL, CastVal,
2449                       SN->getBasePtr(), SN->getMemOperand());
2450 }
2451 
2452 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N,
2453                                                   DAGCombinerInfo &DCI) const {
2454   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
2455   if (!CSrc)
2456     return SDValue();
2457 
2458   const APFloat &F = CSrc->getValueAPF();
2459   APFloat Zero = APFloat::getZero(F.getSemantics());
2460   APFloat::cmpResult Cmp0 = F.compare(Zero);
2461   if (Cmp0 == APFloat::cmpLessThan ||
2462       (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) {
2463     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
2464   }
2465 
2466   APFloat One(F.getSemantics(), "1.0");
2467   APFloat::cmpResult Cmp1 = F.compare(One);
2468   if (Cmp1 == APFloat::cmpGreaterThan)
2469     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
2470 
2471   return SDValue(CSrc, 0);
2472 }
2473 
2474 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
2475 /// binary operation \p Opc to it with the corresponding constant operands.
2476 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
2477   DAGCombinerInfo &DCI, const SDLoc &SL,
2478   unsigned Opc, SDValue LHS,
2479   uint32_t ValLo, uint32_t ValHi) const {
2480   SelectionDAG &DAG = DCI.DAG;
2481   SDValue Lo, Hi;
2482   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
2483 
2484   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
2485   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
2486 
2487   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
2488   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
2489 
2490   // Re-visit the ands. It's possible we eliminated one of them and it could
2491   // simplify the vector.
2492   DCI.AddToWorklist(Lo.getNode());
2493   DCI.AddToWorklist(Hi.getNode());
2494 
2495   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2496   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2497 }
2498 
2499 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2500                                                 DAGCombinerInfo &DCI) const {
2501   if (N->getValueType(0) != MVT::i64)
2502     return SDValue();
2503 
2504   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2505 
2506   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2507   // common case, splitting this into a move and a 32-bit shift is faster and
2508   // the same code size.
2509   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2510   if (!RHS)
2511     return SDValue();
2512 
2513   unsigned RHSVal = RHS->getZExtValue();
2514   if (RHSVal < 32)
2515     return SDValue();
2516 
2517   SDValue LHS = N->getOperand(0);
2518 
2519   SDLoc SL(N);
2520   SelectionDAG &DAG = DCI.DAG;
2521 
2522   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
2523 
2524   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2525   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
2526 
2527   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2528 
2529   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
2530   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2531 }
2532 
2533 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
2534                                                 DAGCombinerInfo &DCI) const {
2535   if (N->getValueType(0) != MVT::i64)
2536     return SDValue();
2537 
2538   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2539   if (!RHS)
2540     return SDValue();
2541 
2542   SelectionDAG &DAG = DCI.DAG;
2543   SDLoc SL(N);
2544   unsigned RHSVal = RHS->getZExtValue();
2545 
2546   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
2547   if (RHSVal == 32) {
2548     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2549     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2550                                    DAG.getConstant(31, SL, MVT::i32));
2551 
2552     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
2553     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2554   }
2555 
2556   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
2557   if (RHSVal == 63) {
2558     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2559     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2560                                    DAG.getConstant(31, SL, MVT::i32));
2561     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
2562     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2563   }
2564 
2565   return SDValue();
2566 }
2567 
2568 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
2569                                                 DAGCombinerInfo &DCI) const {
2570   if (N->getValueType(0) != MVT::i64)
2571     return SDValue();
2572 
2573   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2574   if (!RHS)
2575     return SDValue();
2576 
2577   unsigned ShiftAmt = RHS->getZExtValue();
2578   if (ShiftAmt < 32)
2579     return SDValue();
2580 
2581   // srl i64:x, C for C >= 32
2582   // =>
2583   //   build_pair (srl hi_32(x), C - 32), 0
2584 
2585   SelectionDAG &DAG = DCI.DAG;
2586   SDLoc SL(N);
2587 
2588   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2589   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2590 
2591   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
2592   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
2593                            VecOp, One);
2594 
2595   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
2596   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
2597 
2598   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
2599 
2600   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
2601 }
2602 
2603 // We need to specifically handle i64 mul here to avoid unnecessary conversion
2604 // instructions. If we only match on the legalized i64 mul expansion,
2605 // SimplifyDemandedBits will be unable to remove them because there will be
2606 // multiple uses due to the separate mul + mulh[su].
2607 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
2608                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
2609   if (Size <= 32) {
2610     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2611     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
2612   }
2613 
2614   // Because we want to eliminate extension instructions before the
2615   // operation, we need to create a single user here (i.e. not the separate
2616   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
2617 
2618   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
2619 
2620   SDValue Mul = DAG.getNode(MulOpc, SL,
2621                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
2622 
2623   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
2624                      Mul.getValue(0), Mul.getValue(1));
2625 }
2626 
2627 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2628                                                 DAGCombinerInfo &DCI) const {
2629   EVT VT = N->getValueType(0);
2630 
2631   unsigned Size = VT.getSizeInBits();
2632   if (VT.isVector() || Size > 64)
2633     return SDValue();
2634 
2635   // There are i16 integer mul/mad.
2636   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
2637     return SDValue();
2638 
2639   SelectionDAG &DAG = DCI.DAG;
2640   SDLoc DL(N);
2641 
2642   SDValue N0 = N->getOperand(0);
2643   SDValue N1 = N->getOperand(1);
2644   SDValue Mul;
2645 
2646   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2647     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2648     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2649     Mul = getMul24(DAG, DL, N0, N1, Size, false);
2650   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2651     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2652     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2653     Mul = getMul24(DAG, DL, N0, N1, Size, true);
2654   } else {
2655     return SDValue();
2656   }
2657 
2658   // We need to use sext even for MUL_U24, because MUL_U24 is used
2659   // for signed multiply of 8 and 16-bit types.
2660   return DAG.getSExtOrTrunc(Mul, DL, VT);
2661 }
2662 
2663 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
2664                                                   DAGCombinerInfo &DCI) const {
2665   EVT VT = N->getValueType(0);
2666 
2667   if (!Subtarget->hasMulI24() || VT.isVector())
2668     return SDValue();
2669 
2670   SelectionDAG &DAG = DCI.DAG;
2671   SDLoc DL(N);
2672 
2673   SDValue N0 = N->getOperand(0);
2674   SDValue N1 = N->getOperand(1);
2675 
2676   if (!isI24(N0, DAG) || !isI24(N1, DAG))
2677     return SDValue();
2678 
2679   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2680   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2681 
2682   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
2683   DCI.AddToWorklist(Mulhi.getNode());
2684   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
2685 }
2686 
2687 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
2688                                                   DAGCombinerInfo &DCI) const {
2689   EVT VT = N->getValueType(0);
2690 
2691   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
2692     return SDValue();
2693 
2694   SelectionDAG &DAG = DCI.DAG;
2695   SDLoc DL(N);
2696 
2697   SDValue N0 = N->getOperand(0);
2698   SDValue N1 = N->getOperand(1);
2699 
2700   if (!isU24(N0, DAG) || !isU24(N1, DAG))
2701     return SDValue();
2702 
2703   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2704   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2705 
2706   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
2707   DCI.AddToWorklist(Mulhi.getNode());
2708   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
2709 }
2710 
2711 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
2712   SDNode *N, DAGCombinerInfo &DCI) const {
2713   SelectionDAG &DAG = DCI.DAG;
2714 
2715   // Simplify demanded bits before splitting into multiple users.
2716   if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI))
2717     return SDValue();
2718 
2719   SDValue N0 = N->getOperand(0);
2720   SDValue N1 = N->getOperand(1);
2721 
2722   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
2723 
2724   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2725   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
2726 
2727   SDLoc SL(N);
2728 
2729   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
2730   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
2731   return DAG.getMergeValues({ MulLo, MulHi }, SL);
2732 }
2733 
2734 static bool isNegativeOne(SDValue Val) {
2735   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
2736     return C->isAllOnesValue();
2737   return false;
2738 }
2739 
2740 static bool isCtlzOpc(unsigned Opc) {
2741   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2742 }
2743 
2744 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG,
2745                                           SDValue Op,
2746                                           const SDLoc &DL) const {
2747   EVT VT = Op.getValueType();
2748   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
2749   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
2750                               LegalVT != MVT::i16))
2751     return SDValue();
2752 
2753   if (VT != MVT::i32)
2754     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
2755 
2756   SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op);
2757   if (VT != MVT::i32)
2758     FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH);
2759 
2760   return FFBH;
2761 }
2762 
2763 // The native instructions return -1 on 0 input. Optimize out a select that
2764 // produces -1 on 0.
2765 //
2766 // TODO: If zero is not undef, we could also do this if the output is compared
2767 // against the bitwidth.
2768 //
2769 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
2770 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond,
2771                                                  SDValue LHS, SDValue RHS,
2772                                                  DAGCombinerInfo &DCI) const {
2773   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2774   if (!CmpRhs || !CmpRhs->isNullValue())
2775     return SDValue();
2776 
2777   SelectionDAG &DAG = DCI.DAG;
2778   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2779   SDValue CmpLHS = Cond.getOperand(0);
2780 
2781   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
2782   if (CCOpcode == ISD::SETEQ &&
2783       isCtlzOpc(RHS.getOpcode()) &&
2784       RHS.getOperand(0) == CmpLHS &&
2785       isNegativeOne(LHS)) {
2786     return getFFBH_U32(DAG, CmpLHS, SL);
2787   }
2788 
2789   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
2790   if (CCOpcode == ISD::SETNE &&
2791       isCtlzOpc(LHS.getOpcode()) &&
2792       LHS.getOperand(0) == CmpLHS &&
2793       isNegativeOne(RHS)) {
2794     return getFFBH_U32(DAG, CmpLHS, SL);
2795   }
2796 
2797   return SDValue();
2798 }
2799 
2800 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
2801                                          unsigned Op,
2802                                          const SDLoc &SL,
2803                                          SDValue Cond,
2804                                          SDValue N1,
2805                                          SDValue N2) {
2806   SelectionDAG &DAG = DCI.DAG;
2807   EVT VT = N1.getValueType();
2808 
2809   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
2810                                   N1.getOperand(0), N2.getOperand(0));
2811   DCI.AddToWorklist(NewSelect.getNode());
2812   return DAG.getNode(Op, SL, VT, NewSelect);
2813 }
2814 
2815 // Pull a free FP operation out of a select so it may fold into uses.
2816 //
2817 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
2818 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
2819 //
2820 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
2821 // select c, (fabs x), +k -> fabs (select c, x, k)
2822 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
2823                                     SDValue N) {
2824   SelectionDAG &DAG = DCI.DAG;
2825   SDValue Cond = N.getOperand(0);
2826   SDValue LHS = N.getOperand(1);
2827   SDValue RHS = N.getOperand(2);
2828 
2829   EVT VT = N.getValueType();
2830   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
2831       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
2832     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
2833                                      SDLoc(N), Cond, LHS, RHS);
2834   }
2835 
2836   bool Inv = false;
2837   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
2838     std::swap(LHS, RHS);
2839     Inv = true;
2840   }
2841 
2842   // TODO: Support vector constants.
2843   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
2844   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
2845     SDLoc SL(N);
2846     // If one side is an fneg/fabs and the other is a constant, we can push the
2847     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
2848     SDValue NewLHS = LHS.getOperand(0);
2849     SDValue NewRHS = RHS;
2850 
2851     // Careful: if the neg can be folded up, don't try to pull it back down.
2852     bool ShouldFoldNeg = true;
2853 
2854     if (NewLHS.hasOneUse()) {
2855       unsigned Opc = NewLHS.getOpcode();
2856       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
2857         ShouldFoldNeg = false;
2858       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
2859         ShouldFoldNeg = false;
2860     }
2861 
2862     if (ShouldFoldNeg) {
2863       if (LHS.getOpcode() == ISD::FNEG)
2864         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
2865       else if (CRHS->isNegative())
2866         return SDValue();
2867 
2868       if (Inv)
2869         std::swap(NewLHS, NewRHS);
2870 
2871       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
2872                                       Cond, NewLHS, NewRHS);
2873       DCI.AddToWorklist(NewSelect.getNode());
2874       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
2875     }
2876   }
2877 
2878   return SDValue();
2879 }
2880 
2881 
2882 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
2883                                                    DAGCombinerInfo &DCI) const {
2884   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
2885     return Folded;
2886 
2887   SDValue Cond = N->getOperand(0);
2888   if (Cond.getOpcode() != ISD::SETCC)
2889     return SDValue();
2890 
2891   EVT VT = N->getValueType(0);
2892   SDValue LHS = Cond.getOperand(0);
2893   SDValue RHS = Cond.getOperand(1);
2894   SDValue CC = Cond.getOperand(2);
2895 
2896   SDValue True = N->getOperand(1);
2897   SDValue False = N->getOperand(2);
2898 
2899   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
2900     SelectionDAG &DAG = DCI.DAG;
2901     if ((DAG.isConstantValueOfAnyType(True) ||
2902          DAG.isConstantValueOfAnyType(True)) &&
2903         (!DAG.isConstantValueOfAnyType(False) &&
2904          !DAG.isConstantValueOfAnyType(False))) {
2905       // Swap cmp + select pair to move constant to false input.
2906       // This will allow using VOPC cndmasks more often.
2907       // select (setcc x, y), k, x -> select (setcc y, x) x, x
2908 
2909       SDLoc SL(N);
2910       ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2911                                             LHS.getValueType().isInteger());
2912 
2913       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
2914       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
2915     }
2916 
2917     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
2918       SDValue MinMax
2919         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
2920       // Revisit this node so we can catch min3/max3/med3 patterns.
2921       //DCI.AddToWorklist(MinMax.getNode());
2922       return MinMax;
2923     }
2924   }
2925 
2926   // There's no reason to not do this if the condition has other uses.
2927   return performCtlzCombine(SDLoc(N), Cond, True, False, DCI);
2928 }
2929 
2930 static bool isConstantFPZero(SDValue N) {
2931   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N))
2932     return C->isZero() && !C->isNegative();
2933   return false;
2934 }
2935 
2936 static unsigned inverseMinMax(unsigned Opc) {
2937   switch (Opc) {
2938   case ISD::FMAXNUM:
2939     return ISD::FMINNUM;
2940   case ISD::FMINNUM:
2941     return ISD::FMAXNUM;
2942   case AMDGPUISD::FMAX_LEGACY:
2943     return AMDGPUISD::FMIN_LEGACY;
2944   case AMDGPUISD::FMIN_LEGACY:
2945     return  AMDGPUISD::FMAX_LEGACY;
2946   default:
2947     llvm_unreachable("invalid min/max opcode");
2948   }
2949 }
2950 
2951 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
2952                                                  DAGCombinerInfo &DCI) const {
2953   SelectionDAG &DAG = DCI.DAG;
2954   SDValue N0 = N->getOperand(0);
2955   EVT VT = N->getValueType(0);
2956 
2957   unsigned Opc = N0.getOpcode();
2958 
2959   // If the input has multiple uses and we can either fold the negate down, or
2960   // the other uses cannot, give up. This both prevents unprofitable
2961   // transformations and infinite loops: we won't repeatedly try to fold around
2962   // a negate that has no 'good' form.
2963   if (N0.hasOneUse()) {
2964     // This may be able to fold into the source, but at a code size cost. Don't
2965     // fold if the fold into the user is free.
2966     if (allUsesHaveSourceMods(N, 0))
2967       return SDValue();
2968   } else {
2969     if (fnegFoldsIntoOp(Opc) &&
2970         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
2971       return SDValue();
2972   }
2973 
2974   SDLoc SL(N);
2975   switch (Opc) {
2976   case ISD::FADD: {
2977     if (!mayIgnoreSignedZero(N0))
2978       return SDValue();
2979 
2980     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
2981     SDValue LHS = N0.getOperand(0);
2982     SDValue RHS = N0.getOperand(1);
2983 
2984     if (LHS.getOpcode() != ISD::FNEG)
2985       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
2986     else
2987       LHS = LHS.getOperand(0);
2988 
2989     if (RHS.getOpcode() != ISD::FNEG)
2990       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
2991     else
2992       RHS = RHS.getOperand(0);
2993 
2994     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
2995     if (!N0.hasOneUse())
2996       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
2997     return Res;
2998   }
2999   case ISD::FMUL:
3000   case AMDGPUISD::FMUL_LEGACY: {
3001     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3002     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3003     SDValue LHS = N0.getOperand(0);
3004     SDValue RHS = N0.getOperand(1);
3005 
3006     if (LHS.getOpcode() == ISD::FNEG)
3007       LHS = LHS.getOperand(0);
3008     else if (RHS.getOpcode() == ISD::FNEG)
3009       RHS = RHS.getOperand(0);
3010     else
3011       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3012 
3013     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3014     if (!N0.hasOneUse())
3015       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3016     return Res;
3017   }
3018   case ISD::FMA:
3019   case ISD::FMAD: {
3020     if (!mayIgnoreSignedZero(N0))
3021       return SDValue();
3022 
3023     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3024     SDValue LHS = N0.getOperand(0);
3025     SDValue MHS = N0.getOperand(1);
3026     SDValue RHS = N0.getOperand(2);
3027 
3028     if (LHS.getOpcode() == ISD::FNEG)
3029       LHS = LHS.getOperand(0);
3030     else if (MHS.getOpcode() == ISD::FNEG)
3031       MHS = MHS.getOperand(0);
3032     else
3033       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3034 
3035     if (RHS.getOpcode() != ISD::FNEG)
3036       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3037     else
3038       RHS = RHS.getOperand(0);
3039 
3040     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3041     if (!N0.hasOneUse())
3042       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3043     return Res;
3044   }
3045   case ISD::FMAXNUM:
3046   case ISD::FMINNUM:
3047   case AMDGPUISD::FMAX_LEGACY:
3048   case AMDGPUISD::FMIN_LEGACY: {
3049     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3050     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3051     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3052     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3053 
3054     SDValue LHS = N0.getOperand(0);
3055     SDValue RHS = N0.getOperand(1);
3056 
3057     // 0 doesn't have a negated inline immediate.
3058     // TODO: Shouldn't fold 1/2pi either, and should be generalized to other
3059     // operations.
3060     if (isConstantFPZero(RHS))
3061       return SDValue();
3062 
3063     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3064     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3065     unsigned Opposite = inverseMinMax(Opc);
3066 
3067     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3068     if (!N0.hasOneUse())
3069       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3070     return Res;
3071   }
3072   case ISD::FP_EXTEND:
3073   case ISD::FTRUNC:
3074   case ISD::FRINT:
3075   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3076   case ISD::FSIN:
3077   case AMDGPUISD::RCP:
3078   case AMDGPUISD::RCP_LEGACY:
3079   case AMDGPUISD::SIN_HW: {
3080     SDValue CvtSrc = N0.getOperand(0);
3081     if (CvtSrc.getOpcode() == ISD::FNEG) {
3082       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3083       // (fneg (rcp (fneg x))) -> (rcp x)
3084       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3085     }
3086 
3087     if (!N0.hasOneUse())
3088       return SDValue();
3089 
3090     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3091     // (fneg (rcp x)) -> (rcp (fneg x))
3092     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3093     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3094   }
3095   case ISD::FP_ROUND: {
3096     SDValue CvtSrc = N0.getOperand(0);
3097 
3098     if (CvtSrc.getOpcode() == ISD::FNEG) {
3099       // (fneg (fp_round (fneg x))) -> (fp_round x)
3100       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3101                          CvtSrc.getOperand(0), N0.getOperand(1));
3102     }
3103 
3104     if (!N0.hasOneUse())
3105       return SDValue();
3106 
3107     // (fneg (fp_round x)) -> (fp_round (fneg x))
3108     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3109     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3110   }
3111   case ISD::FP16_TO_FP: {
3112     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3113     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3114     // Put the fneg back as a legal source operation that can be matched later.
3115     SDLoc SL(N);
3116 
3117     SDValue Src = N0.getOperand(0);
3118     EVT SrcVT = Src.getValueType();
3119 
3120     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3121     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3122                                   DAG.getConstant(0x8000, SL, SrcVT));
3123     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3124   }
3125   default:
3126     return SDValue();
3127   }
3128 }
3129 
3130 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3131                                                  DAGCombinerInfo &DCI) const {
3132   SelectionDAG &DAG = DCI.DAG;
3133   SDValue N0 = N->getOperand(0);
3134 
3135   if (!N0.hasOneUse())
3136     return SDValue();
3137 
3138   switch (N0.getOpcode()) {
3139   case ISD::FP16_TO_FP: {
3140     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3141     SDLoc SL(N);
3142     SDValue Src = N0.getOperand(0);
3143     EVT SrcVT = Src.getValueType();
3144 
3145     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3146     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3147                                   DAG.getConstant(0x7fff, SL, SrcVT));
3148     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3149   }
3150   default:
3151     return SDValue();
3152   }
3153 }
3154 
3155 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3156                                                 DAGCombinerInfo &DCI) const {
3157   SelectionDAG &DAG = DCI.DAG;
3158   SDLoc DL(N);
3159 
3160   switch(N->getOpcode()) {
3161   default:
3162     break;
3163   case ISD::BITCAST: {
3164     EVT DestVT = N->getValueType(0);
3165 
3166     // Push casts through vector builds. This helps avoid emitting a large
3167     // number of copies when materializing floating point vector constants.
3168     //
3169     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3170     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3171     if (DestVT.isVector()) {
3172       SDValue Src = N->getOperand(0);
3173       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3174         EVT SrcVT = Src.getValueType();
3175         unsigned NElts = DestVT.getVectorNumElements();
3176 
3177         if (SrcVT.getVectorNumElements() == NElts) {
3178           EVT DestEltVT = DestVT.getVectorElementType();
3179 
3180           SmallVector<SDValue, 8> CastedElts;
3181           SDLoc SL(N);
3182           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3183             SDValue Elt = Src.getOperand(I);
3184             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3185           }
3186 
3187           return DAG.getBuildVector(DestVT, SL, CastedElts);
3188         }
3189       }
3190     }
3191 
3192     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3193       break;
3194 
3195     // Fold bitcasts of constants.
3196     //
3197     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3198     // TODO: Generalize and move to DAGCombiner
3199     SDValue Src = N->getOperand(0);
3200     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3201       assert(Src.getValueType() == MVT::i64);
3202       SDLoc SL(N);
3203       uint64_t CVal = C->getZExtValue();
3204       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
3205                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3206                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3207     }
3208 
3209     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3210       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3211       SDLoc SL(N);
3212       uint64_t CVal = Val.getZExtValue();
3213       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3214                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3215                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3216 
3217       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3218     }
3219 
3220     break;
3221   }
3222   case ISD::SHL: {
3223     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3224       break;
3225 
3226     return performShlCombine(N, DCI);
3227   }
3228   case ISD::SRL: {
3229     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3230       break;
3231 
3232     return performSrlCombine(N, DCI);
3233   }
3234   case ISD::SRA: {
3235     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3236       break;
3237 
3238     return performSraCombine(N, DCI);
3239   }
3240   case ISD::MUL:
3241     return performMulCombine(N, DCI);
3242   case ISD::MULHS:
3243     return performMulhsCombine(N, DCI);
3244   case ISD::MULHU:
3245     return performMulhuCombine(N, DCI);
3246   case AMDGPUISD::MUL_I24:
3247   case AMDGPUISD::MUL_U24:
3248   case AMDGPUISD::MULHI_I24:
3249   case AMDGPUISD::MULHI_U24: {
3250     // If the first call to simplify is successfull, then N may end up being
3251     // deleted, so we shouldn't call simplifyI24 again.
3252     simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI);
3253     return SDValue();
3254   }
3255   case AMDGPUISD::MUL_LOHI_I24:
3256   case AMDGPUISD::MUL_LOHI_U24:
3257     return performMulLoHi24Combine(N, DCI);
3258   case ISD::SELECT:
3259     return performSelectCombine(N, DCI);
3260   case ISD::FNEG:
3261     return performFNegCombine(N, DCI);
3262   case ISD::FABS:
3263     return performFAbsCombine(N, DCI);
3264   case AMDGPUISD::BFE_I32:
3265   case AMDGPUISD::BFE_U32: {
3266     assert(!N->getValueType(0).isVector() &&
3267            "Vector handling of BFE not implemented");
3268     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
3269     if (!Width)
3270       break;
3271 
3272     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
3273     if (WidthVal == 0)
3274       return DAG.getConstant(0, DL, MVT::i32);
3275 
3276     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
3277     if (!Offset)
3278       break;
3279 
3280     SDValue BitsFrom = N->getOperand(0);
3281     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
3282 
3283     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
3284 
3285     if (OffsetVal == 0) {
3286       // This is already sign / zero extended, so try to fold away extra BFEs.
3287       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
3288 
3289       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
3290       if (OpSignBits >= SignBits)
3291         return BitsFrom;
3292 
3293       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
3294       if (Signed) {
3295         // This is a sign_extend_inreg. Replace it to take advantage of existing
3296         // DAG Combines. If not eliminated, we will match back to BFE during
3297         // selection.
3298 
3299         // TODO: The sext_inreg of extended types ends, although we can could
3300         // handle them in a single BFE.
3301         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
3302                            DAG.getValueType(SmallVT));
3303       }
3304 
3305       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
3306     }
3307 
3308     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
3309       if (Signed) {
3310         return constantFoldBFE<int32_t>(DAG,
3311                                         CVal->getSExtValue(),
3312                                         OffsetVal,
3313                                         WidthVal,
3314                                         DL);
3315       }
3316 
3317       return constantFoldBFE<uint32_t>(DAG,
3318                                        CVal->getZExtValue(),
3319                                        OffsetVal,
3320                                        WidthVal,
3321                                        DL);
3322     }
3323 
3324     if ((OffsetVal + WidthVal) >= 32) {
3325       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
3326       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
3327                          BitsFrom, ShiftVal);
3328     }
3329 
3330     if (BitsFrom.hasOneUse()) {
3331       APInt Demanded = APInt::getBitsSet(32,
3332                                          OffsetVal,
3333                                          OffsetVal + WidthVal);
3334 
3335       APInt KnownZero, KnownOne;
3336       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3337                                             !DCI.isBeforeLegalizeOps());
3338       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3339       if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
3340           TLI.SimplifyDemandedBits(BitsFrom, Demanded,
3341                                    KnownZero, KnownOne, TLO)) {
3342         DCI.CommitTargetLoweringOpt(TLO);
3343       }
3344     }
3345 
3346     break;
3347   }
3348   case ISD::LOAD:
3349     return performLoadCombine(N, DCI);
3350   case ISD::STORE:
3351     return performStoreCombine(N, DCI);
3352   case AMDGPUISD::CLAMP:
3353     return performClampCombine(N, DCI);
3354   }
3355   return SDValue();
3356 }
3357 
3358 //===----------------------------------------------------------------------===//
3359 // Helper functions
3360 //===----------------------------------------------------------------------===//
3361 
3362 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
3363                                                   const TargetRegisterClass *RC,
3364                                                    unsigned Reg, EVT VT) const {
3365   MachineFunction &MF = DAG.getMachineFunction();
3366   MachineRegisterInfo &MRI = MF.getRegInfo();
3367   unsigned VirtualRegister;
3368   if (!MRI.isLiveIn(Reg)) {
3369     VirtualRegister = MRI.createVirtualRegister(RC);
3370     MRI.addLiveIn(Reg, VirtualRegister);
3371   } else {
3372     VirtualRegister = MRI.getLiveInVirtReg(Reg);
3373   }
3374   return DAG.getRegister(VirtualRegister, VT);
3375 }
3376 
3377 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
3378     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
3379   unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr();
3380   uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment);
3381   switch (Param) {
3382   case GRID_DIM:
3383     return ArgOffset;
3384   case GRID_OFFSET:
3385     return ArgOffset + 4;
3386   }
3387   llvm_unreachable("unexpected implicit parameter type");
3388 }
3389 
3390 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
3391 
3392 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
3393   switch ((AMDGPUISD::NodeType)Opcode) {
3394   case AMDGPUISD::FIRST_NUMBER: break;
3395   // AMDIL DAG nodes
3396   NODE_NAME_CASE(CALL);
3397   NODE_NAME_CASE(UMUL);
3398   NODE_NAME_CASE(BRANCH_COND);
3399 
3400   // AMDGPU DAG nodes
3401   NODE_NAME_CASE(ENDPGM)
3402   NODE_NAME_CASE(RETURN)
3403   NODE_NAME_CASE(DWORDADDR)
3404   NODE_NAME_CASE(FRACT)
3405   NODE_NAME_CASE(SETCC)
3406   NODE_NAME_CASE(SETREG)
3407   NODE_NAME_CASE(FMA_W_CHAIN)
3408   NODE_NAME_CASE(FMUL_W_CHAIN)
3409   NODE_NAME_CASE(CLAMP)
3410   NODE_NAME_CASE(COS_HW)
3411   NODE_NAME_CASE(SIN_HW)
3412   NODE_NAME_CASE(FMAX_LEGACY)
3413   NODE_NAME_CASE(FMIN_LEGACY)
3414   NODE_NAME_CASE(FMAX3)
3415   NODE_NAME_CASE(SMAX3)
3416   NODE_NAME_CASE(UMAX3)
3417   NODE_NAME_CASE(FMIN3)
3418   NODE_NAME_CASE(SMIN3)
3419   NODE_NAME_CASE(UMIN3)
3420   NODE_NAME_CASE(FMED3)
3421   NODE_NAME_CASE(SMED3)
3422   NODE_NAME_CASE(UMED3)
3423   NODE_NAME_CASE(URECIP)
3424   NODE_NAME_CASE(DIV_SCALE)
3425   NODE_NAME_CASE(DIV_FMAS)
3426   NODE_NAME_CASE(DIV_FIXUP)
3427   NODE_NAME_CASE(FMAD_FTZ)
3428   NODE_NAME_CASE(TRIG_PREOP)
3429   NODE_NAME_CASE(RCP)
3430   NODE_NAME_CASE(RSQ)
3431   NODE_NAME_CASE(RCP_LEGACY)
3432   NODE_NAME_CASE(RSQ_LEGACY)
3433   NODE_NAME_CASE(FMUL_LEGACY)
3434   NODE_NAME_CASE(RSQ_CLAMP)
3435   NODE_NAME_CASE(LDEXP)
3436   NODE_NAME_CASE(FP_CLASS)
3437   NODE_NAME_CASE(DOT4)
3438   NODE_NAME_CASE(CARRY)
3439   NODE_NAME_CASE(BORROW)
3440   NODE_NAME_CASE(BFE_U32)
3441   NODE_NAME_CASE(BFE_I32)
3442   NODE_NAME_CASE(BFI)
3443   NODE_NAME_CASE(BFM)
3444   NODE_NAME_CASE(FFBH_U32)
3445   NODE_NAME_CASE(FFBH_I32)
3446   NODE_NAME_CASE(MUL_U24)
3447   NODE_NAME_CASE(MUL_I24)
3448   NODE_NAME_CASE(MULHI_U24)
3449   NODE_NAME_CASE(MULHI_I24)
3450   NODE_NAME_CASE(MUL_LOHI_U24)
3451   NODE_NAME_CASE(MUL_LOHI_I24)
3452   NODE_NAME_CASE(MAD_U24)
3453   NODE_NAME_CASE(MAD_I24)
3454   NODE_NAME_CASE(TEXTURE_FETCH)
3455   NODE_NAME_CASE(EXPORT)
3456   NODE_NAME_CASE(EXPORT_DONE)
3457   NODE_NAME_CASE(R600_EXPORT)
3458   NODE_NAME_CASE(CONST_ADDRESS)
3459   NODE_NAME_CASE(REGISTER_LOAD)
3460   NODE_NAME_CASE(REGISTER_STORE)
3461   NODE_NAME_CASE(LOAD_INPUT)
3462   NODE_NAME_CASE(SAMPLE)
3463   NODE_NAME_CASE(SAMPLEB)
3464   NODE_NAME_CASE(SAMPLED)
3465   NODE_NAME_CASE(SAMPLEL)
3466   NODE_NAME_CASE(CVT_F32_UBYTE0)
3467   NODE_NAME_CASE(CVT_F32_UBYTE1)
3468   NODE_NAME_CASE(CVT_F32_UBYTE2)
3469   NODE_NAME_CASE(CVT_F32_UBYTE3)
3470   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
3471   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
3472   NODE_NAME_CASE(CONST_DATA_PTR)
3473   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
3474   NODE_NAME_CASE(KILL)
3475   NODE_NAME_CASE(DUMMY_CHAIN)
3476   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
3477   NODE_NAME_CASE(SENDMSG)
3478   NODE_NAME_CASE(SENDMSGHALT)
3479   NODE_NAME_CASE(INTERP_MOV)
3480   NODE_NAME_CASE(INTERP_P1)
3481   NODE_NAME_CASE(INTERP_P2)
3482   NODE_NAME_CASE(STORE_MSKOR)
3483   NODE_NAME_CASE(LOAD_CONSTANT)
3484   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
3485   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
3486   NODE_NAME_CASE(ATOMIC_INC)
3487   NODE_NAME_CASE(ATOMIC_DEC)
3488   NODE_NAME_CASE(BUFFER_LOAD)
3489   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
3490   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
3491   }
3492   return nullptr;
3493 }
3494 
3495 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
3496                                               SelectionDAG &DAG, int Enabled,
3497                                               int &RefinementSteps,
3498                                               bool &UseOneConstNR,
3499                                               bool Reciprocal) const {
3500   EVT VT = Operand.getValueType();
3501 
3502   if (VT == MVT::f32) {
3503     RefinementSteps = 0;
3504     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
3505   }
3506 
3507   // TODO: There is also f64 rsq instruction, but the documentation is less
3508   // clear on its precision.
3509 
3510   return SDValue();
3511 }
3512 
3513 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
3514                                                SelectionDAG &DAG, int Enabled,
3515                                                int &RefinementSteps) const {
3516   EVT VT = Operand.getValueType();
3517 
3518   if (VT == MVT::f32) {
3519     // Reciprocal, < 1 ulp error.
3520     //
3521     // This reciprocal approximation converges to < 0.5 ulp error with one
3522     // newton rhapson performed with two fused multiple adds (FMAs).
3523 
3524     RefinementSteps = 0;
3525     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
3526   }
3527 
3528   // TODO: There is also f64 rcp instruction, but the documentation is less
3529   // clear on its precision.
3530 
3531   return SDValue();
3532 }
3533 
3534 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
3535   const SDValue Op,
3536   APInt &KnownZero,
3537   APInt &KnownOne,
3538   const SelectionDAG &DAG,
3539   unsigned Depth) const {
3540 
3541   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
3542 
3543   APInt KnownZero2;
3544   APInt KnownOne2;
3545   unsigned Opc = Op.getOpcode();
3546 
3547   switch (Opc) {
3548   default:
3549     break;
3550   case AMDGPUISD::CARRY:
3551   case AMDGPUISD::BORROW: {
3552     KnownZero = APInt::getHighBitsSet(32, 31);
3553     break;
3554   }
3555 
3556   case AMDGPUISD::BFE_I32:
3557   case AMDGPUISD::BFE_U32: {
3558     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3559     if (!CWidth)
3560       return;
3561 
3562     unsigned BitWidth = 32;
3563     uint32_t Width = CWidth->getZExtValue() & 0x1f;
3564 
3565     if (Opc == AMDGPUISD::BFE_U32)
3566       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
3567 
3568     break;
3569   }
3570   }
3571 }
3572 
3573 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
3574   SDValue Op,
3575   const SelectionDAG &DAG,
3576   unsigned Depth) const {
3577   switch (Op.getOpcode()) {
3578   case AMDGPUISD::BFE_I32: {
3579     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3580     if (!Width)
3581       return 1;
3582 
3583     unsigned SignBits = 32 - Width->getZExtValue() + 1;
3584     if (!isNullConstant(Op.getOperand(1)))
3585       return SignBits;
3586 
3587     // TODO: Could probably figure something out with non-0 offsets.
3588     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3589     return std::max(SignBits, Op0SignBits);
3590   }
3591 
3592   case AMDGPUISD::BFE_U32: {
3593     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3594     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
3595   }
3596 
3597   case AMDGPUISD::CARRY:
3598   case AMDGPUISD::BORROW:
3599     return 31;
3600 
3601   default:
3602     return 1;
3603   }
3604 }
3605