1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "SIInstrInfo.h" 33 using namespace llvm; 34 35 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 36 CCValAssign::LocInfo LocInfo, 37 ISD::ArgFlagsTy ArgFlags, CCState &State) { 38 MachineFunction &MF = State.getMachineFunction(); 39 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 40 41 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 42 ArgFlags.getOrigAlign()); 43 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 44 return true; 45 } 46 47 #include "AMDGPUGenCallingConv.inc" 48 49 // Find a larger type to do a load / store of a vector with. 50 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 51 unsigned StoreSize = VT.getStoreSizeInBits(); 52 if (StoreSize <= 32) 53 return EVT::getIntegerVT(Ctx, StoreSize); 54 55 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 56 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 57 } 58 59 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 60 const AMDGPUSubtarget &STI) 61 : TargetLowering(TM), Subtarget(&STI) { 62 // Lower floating point store/load to integer store/load to reduce the number 63 // of patterns in tablegen. 64 setOperationAction(ISD::LOAD, MVT::f32, Promote); 65 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 66 67 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 68 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 69 70 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 71 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 72 73 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 75 76 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 78 79 setOperationAction(ISD::LOAD, MVT::i64, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 81 82 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 84 85 setOperationAction(ISD::LOAD, MVT::f64, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 87 88 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 90 91 // There are no 64-bit extloads. These should be done as a 32-bit extload and 92 // an extension to 64-bit. 93 for (MVT VT : MVT::integer_valuetypes()) { 94 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 95 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 96 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 97 } 98 99 for (MVT VT : MVT::integer_valuetypes()) { 100 if (VT == MVT::i64) 101 continue; 102 103 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 104 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 105 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 106 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 107 108 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 109 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 110 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 111 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 112 113 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 114 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 115 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 116 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 117 } 118 119 for (MVT VT : MVT::integer_vector_valuetypes()) { 120 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 122 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 123 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 124 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 126 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 127 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 128 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 129 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 130 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 131 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 132 } 133 134 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 135 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 136 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 137 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 138 139 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 140 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 141 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 142 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 143 144 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 145 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 146 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 147 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 148 149 setOperationAction(ISD::STORE, MVT::f32, Promote); 150 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 151 152 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 153 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 154 155 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 156 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 157 158 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 159 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 160 161 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 162 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 163 164 setOperationAction(ISD::STORE, MVT::i64, Promote); 165 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 166 167 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 168 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 169 170 setOperationAction(ISD::STORE, MVT::f64, Promote); 171 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 172 173 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 174 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 175 176 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 177 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 178 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 179 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 180 181 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 182 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 183 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 184 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 185 186 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 187 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 188 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 189 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 190 191 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 192 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 193 194 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 195 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 196 197 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 198 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 199 200 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 201 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 202 203 204 setOperationAction(ISD::Constant, MVT::i32, Legal); 205 setOperationAction(ISD::Constant, MVT::i64, Legal); 206 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 207 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 208 209 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 210 setOperationAction(ISD::BRIND, MVT::Other, Expand); 211 212 // This is totally unsupported, just custom lower to produce an error. 213 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 214 215 // We need to custom lower some of the intrinsics 216 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 217 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 218 219 // Library functions. These default to Expand, but we have instructions 220 // for them. 221 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 222 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 223 setOperationAction(ISD::FPOW, MVT::f32, Legal); 224 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 225 setOperationAction(ISD::FABS, MVT::f32, Legal); 226 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 227 setOperationAction(ISD::FRINT, MVT::f32, Legal); 228 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 229 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 230 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 231 232 setOperationAction(ISD::FROUND, MVT::f32, Custom); 233 setOperationAction(ISD::FROUND, MVT::f64, Custom); 234 235 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 236 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 237 238 setOperationAction(ISD::FREM, MVT::f32, Custom); 239 setOperationAction(ISD::FREM, MVT::f64, Custom); 240 241 // v_mad_f32 does not support denormals according to some sources. 242 if (!Subtarget->hasFP32Denormals()) 243 setOperationAction(ISD::FMAD, MVT::f32, Legal); 244 245 // Expand to fneg + fadd. 246 setOperationAction(ISD::FSUB, MVT::f64, Expand); 247 248 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 249 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 250 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 251 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 252 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 253 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 254 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 255 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 256 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 257 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 258 259 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 260 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 261 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 262 setOperationAction(ISD::FRINT, MVT::f64, Custom); 263 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 264 } 265 266 if (!Subtarget->hasBFI()) { 267 // fcopysign can be done in a single instruction with BFI. 268 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 269 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 270 } 271 272 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 273 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 274 275 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 276 for (MVT VT : ScalarIntVTs) { 277 // These should use [SU]DIVREM, so set them to expand 278 setOperationAction(ISD::SDIV, VT, Expand); 279 setOperationAction(ISD::UDIV, VT, Expand); 280 setOperationAction(ISD::SREM, VT, Expand); 281 setOperationAction(ISD::UREM, VT, Expand); 282 283 // GPU does not have divrem function for signed or unsigned. 284 setOperationAction(ISD::SDIVREM, VT, Custom); 285 setOperationAction(ISD::UDIVREM, VT, Custom); 286 287 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 288 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 289 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 290 291 setOperationAction(ISD::BSWAP, VT, Expand); 292 setOperationAction(ISD::CTTZ, VT, Expand); 293 setOperationAction(ISD::CTLZ, VT, Expand); 294 } 295 296 if (!Subtarget->hasBCNT(32)) 297 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 298 299 if (!Subtarget->hasBCNT(64)) 300 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 301 302 // The hardware supports 32-bit ROTR, but not ROTL. 303 setOperationAction(ISD::ROTL, MVT::i32, Expand); 304 setOperationAction(ISD::ROTL, MVT::i64, Expand); 305 setOperationAction(ISD::ROTR, MVT::i64, Expand); 306 307 setOperationAction(ISD::MUL, MVT::i64, Expand); 308 setOperationAction(ISD::MULHU, MVT::i64, Expand); 309 setOperationAction(ISD::MULHS, MVT::i64, Expand); 310 setOperationAction(ISD::UDIV, MVT::i32, Expand); 311 setOperationAction(ISD::UREM, MVT::i32, Expand); 312 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 313 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 314 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 315 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 316 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 317 318 setOperationAction(ISD::SMIN, MVT::i32, Legal); 319 setOperationAction(ISD::UMIN, MVT::i32, Legal); 320 setOperationAction(ISD::SMAX, MVT::i32, Legal); 321 setOperationAction(ISD::UMAX, MVT::i32, Legal); 322 323 if (Subtarget->hasFFBH()) 324 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 325 326 if (Subtarget->hasFFBL()) 327 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 328 329 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 330 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 331 332 // We only really have 32-bit BFE instructions (and 16-bit on VI). 333 // 334 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 335 // effort to match them now. We want this to be false for i64 cases when the 336 // extraction isn't restricted to the upper or lower half. Ideally we would 337 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 338 // span the midpoint are probably relatively rare, so don't worry about them 339 // for now. 340 if (Subtarget->hasBFE()) 341 setHasExtractBitsInsn(true); 342 343 static const MVT::SimpleValueType VectorIntTypes[] = { 344 MVT::v2i32, MVT::v4i32 345 }; 346 347 for (MVT VT : VectorIntTypes) { 348 // Expand the following operations for the current type by default. 349 setOperationAction(ISD::ADD, VT, Expand); 350 setOperationAction(ISD::AND, VT, Expand); 351 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 352 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 353 setOperationAction(ISD::MUL, VT, Expand); 354 setOperationAction(ISD::MULHU, VT, Expand); 355 setOperationAction(ISD::MULHS, VT, Expand); 356 setOperationAction(ISD::OR, VT, Expand); 357 setOperationAction(ISD::SHL, VT, Expand); 358 setOperationAction(ISD::SRA, VT, Expand); 359 setOperationAction(ISD::SRL, VT, Expand); 360 setOperationAction(ISD::ROTL, VT, Expand); 361 setOperationAction(ISD::ROTR, VT, Expand); 362 setOperationAction(ISD::SUB, VT, Expand); 363 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 364 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 365 setOperationAction(ISD::SDIV, VT, Expand); 366 setOperationAction(ISD::UDIV, VT, Expand); 367 setOperationAction(ISD::SREM, VT, Expand); 368 setOperationAction(ISD::UREM, VT, Expand); 369 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 370 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 371 setOperationAction(ISD::SDIVREM, VT, Custom); 372 setOperationAction(ISD::UDIVREM, VT, Expand); 373 setOperationAction(ISD::ADDC, VT, Expand); 374 setOperationAction(ISD::SUBC, VT, Expand); 375 setOperationAction(ISD::ADDE, VT, Expand); 376 setOperationAction(ISD::SUBE, VT, Expand); 377 setOperationAction(ISD::SELECT, VT, Expand); 378 setOperationAction(ISD::VSELECT, VT, Expand); 379 setOperationAction(ISD::SELECT_CC, VT, Expand); 380 setOperationAction(ISD::XOR, VT, Expand); 381 setOperationAction(ISD::BSWAP, VT, Expand); 382 setOperationAction(ISD::CTPOP, VT, Expand); 383 setOperationAction(ISD::CTTZ, VT, Expand); 384 setOperationAction(ISD::CTLZ, VT, Expand); 385 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 386 } 387 388 static const MVT::SimpleValueType FloatVectorTypes[] = { 389 MVT::v2f32, MVT::v4f32 390 }; 391 392 for (MVT VT : FloatVectorTypes) { 393 setOperationAction(ISD::FABS, VT, Expand); 394 setOperationAction(ISD::FMINNUM, VT, Expand); 395 setOperationAction(ISD::FMAXNUM, VT, Expand); 396 setOperationAction(ISD::FADD, VT, Expand); 397 setOperationAction(ISD::FCEIL, VT, Expand); 398 setOperationAction(ISD::FCOS, VT, Expand); 399 setOperationAction(ISD::FDIV, VT, Expand); 400 setOperationAction(ISD::FEXP2, VT, Expand); 401 setOperationAction(ISD::FLOG2, VT, Expand); 402 setOperationAction(ISD::FREM, VT, Expand); 403 setOperationAction(ISD::FPOW, VT, Expand); 404 setOperationAction(ISD::FFLOOR, VT, Expand); 405 setOperationAction(ISD::FTRUNC, VT, Expand); 406 setOperationAction(ISD::FMUL, VT, Expand); 407 setOperationAction(ISD::FMA, VT, Expand); 408 setOperationAction(ISD::FRINT, VT, Expand); 409 setOperationAction(ISD::FNEARBYINT, VT, Expand); 410 setOperationAction(ISD::FSQRT, VT, Expand); 411 setOperationAction(ISD::FSIN, VT, Expand); 412 setOperationAction(ISD::FSUB, VT, Expand); 413 setOperationAction(ISD::FNEG, VT, Expand); 414 setOperationAction(ISD::VSELECT, VT, Expand); 415 setOperationAction(ISD::SELECT_CC, VT, Expand); 416 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 417 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 418 } 419 420 // This causes using an unrolled select operation rather than expansion with 421 // bit operations. This is in general better, but the alternative using BFI 422 // instructions may be better if the select sources are SGPRs. 423 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 424 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 425 426 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 427 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 428 429 // There are no libcalls of any kind. 430 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 431 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 432 433 setBooleanContents(ZeroOrNegativeOneBooleanContent); 434 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 435 436 setSchedulingPreference(Sched::RegPressure); 437 setJumpIsExpensive(true); 438 439 // FIXME: This is only partially true. If we have to do vector compares, any 440 // SGPR pair can be a condition register. If we have a uniform condition, we 441 // are better off doing SALU operations, where there is only one SCC. For now, 442 // we don't have a way of knowing during instruction selection if a condition 443 // will be uniform and we always use vector compares. Assume we are using 444 // vector compares until that is fixed. 445 setHasMultipleConditionRegisters(true); 446 447 // SI at least has hardware support for floating point exceptions, but no way 448 // of using or handling them is implemented. They are also optional in OpenCL 449 // (Section 7.3) 450 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 451 452 PredictableSelectIsExpensive = false; 453 454 // We want to find all load dependencies for long chains of stores to enable 455 // merging into very wide vectors. The problem is with vectors with > 4 456 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 457 // vectors are a legal type, even though we have to split the loads 458 // usually. When we can more precisely specify load legality per address 459 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 460 // smarter so that they can figure out what to do in 2 iterations without all 461 // N > 4 stores on the same chain. 462 GatherAllAliasesMaxDepth = 16; 463 464 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 465 // about these during lowering. 466 MaxStoresPerMemcpy = 0xffffffff; 467 MaxStoresPerMemmove = 0xffffffff; 468 MaxStoresPerMemset = 0xffffffff; 469 470 setTargetDAGCombine(ISD::BITCAST); 471 setTargetDAGCombine(ISD::SHL); 472 setTargetDAGCombine(ISD::SRA); 473 setTargetDAGCombine(ISD::SRL); 474 setTargetDAGCombine(ISD::MUL); 475 setTargetDAGCombine(ISD::MULHU); 476 setTargetDAGCombine(ISD::MULHS); 477 setTargetDAGCombine(ISD::SELECT); 478 setTargetDAGCombine(ISD::SELECT_CC); 479 setTargetDAGCombine(ISD::STORE); 480 setTargetDAGCombine(ISD::FADD); 481 setTargetDAGCombine(ISD::FSUB); 482 setTargetDAGCombine(ISD::FNEG); 483 setTargetDAGCombine(ISD::FABS); 484 } 485 486 //===----------------------------------------------------------------------===// 487 // Target Information 488 //===----------------------------------------------------------------------===// 489 490 LLVM_READNONE 491 static bool fnegFoldsIntoOp(unsigned Opc) { 492 switch (Opc) { 493 case ISD::FADD: 494 case ISD::FSUB: 495 case ISD::FMUL: 496 case ISD::FMA: 497 case ISD::FMAD: 498 case ISD::FMINNUM: 499 case ISD::FMAXNUM: 500 case ISD::FSIN: 501 case ISD::FTRUNC: 502 case ISD::FRINT: 503 case ISD::FNEARBYINT: 504 case AMDGPUISD::RCP: 505 case AMDGPUISD::RCP_LEGACY: 506 case AMDGPUISD::SIN_HW: 507 case AMDGPUISD::FMUL_LEGACY: 508 case AMDGPUISD::FMIN_LEGACY: 509 case AMDGPUISD::FMAX_LEGACY: 510 return true; 511 default: 512 return false; 513 } 514 } 515 516 /// \p returns true if the operation will definitely need to use a 64-bit 517 /// encoding, and thus will use a VOP3 encoding regardless of the source 518 /// modifiers. 519 LLVM_READONLY 520 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 521 return N->getNumOperands() > 2 || VT == MVT::f64; 522 } 523 524 // Most FP instructions support source modifiers, but this could be refined 525 // slightly. 526 LLVM_READONLY 527 static bool hasSourceMods(const SDNode *N) { 528 if (isa<MemSDNode>(N)) 529 return false; 530 531 switch (N->getOpcode()) { 532 case ISD::CopyToReg: 533 case ISD::SELECT: 534 case ISD::FDIV: 535 case ISD::FREM: 536 case ISD::INLINEASM: 537 case AMDGPUISD::INTERP_P1: 538 case AMDGPUISD::INTERP_P2: 539 case AMDGPUISD::DIV_SCALE: 540 return false; 541 default: 542 return true; 543 } 544 } 545 546 static bool allUsesHaveSourceMods(const SDNode *N, unsigned CostThreshold = 4) { 547 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 548 // it is truly free to use a source modifier in all cases. If there are 549 // multiple users but for each one will necessitate using VOP3, there will be 550 // a code size increase. Try to avoid increasing code size unless we know it 551 // will save on the instruction count. 552 unsigned NumMayIncreaseSize = 0; 553 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 554 555 // XXX - Should this limit number of uses to check? 556 for (const SDNode *U : N->uses()) { 557 if (!hasSourceMods(U)) 558 return false; 559 560 if (!opMustUseVOP3Encoding(U, VT)) { 561 if (++NumMayIncreaseSize > CostThreshold) 562 return false; 563 } 564 } 565 566 return true; 567 } 568 569 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 570 return MVT::i32; 571 } 572 573 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 574 return true; 575 } 576 577 // The backend supports 32 and 64 bit floating point immediates. 578 // FIXME: Why are we reporting vectors of FP immediates as legal? 579 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 580 EVT ScalarVT = VT.getScalarType(); 581 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 582 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 583 } 584 585 // We don't want to shrink f64 / f32 constants. 586 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 587 EVT ScalarVT = VT.getScalarType(); 588 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 589 } 590 591 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 592 ISD::LoadExtType, 593 EVT NewVT) const { 594 595 unsigned NewSize = NewVT.getStoreSizeInBits(); 596 597 // If we are reducing to a 32-bit load, this is always better. 598 if (NewSize == 32) 599 return true; 600 601 EVT OldVT = N->getValueType(0); 602 unsigned OldSize = OldVT.getStoreSizeInBits(); 603 604 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 605 // extloads, so doing one requires using a buffer_load. In cases where we 606 // still couldn't use a scalar load, using the wider load shouldn't really 607 // hurt anything. 608 609 // If the old size already had to be an extload, there's no harm in continuing 610 // to reduce the width. 611 return (OldSize < 32); 612 } 613 614 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 615 EVT CastTy) const { 616 617 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 618 619 if (LoadTy.getScalarType() == MVT::i32) 620 return false; 621 622 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 623 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 624 625 return (LScalarSize < CastScalarSize) || 626 (CastScalarSize >= 32); 627 } 628 629 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 630 // profitable with the expansion for 64-bit since it's generally good to 631 // speculate things. 632 // FIXME: These should really have the size as a parameter. 633 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 634 return true; 635 } 636 637 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 638 return true; 639 } 640 641 //===---------------------------------------------------------------------===// 642 // Target Properties 643 //===---------------------------------------------------------------------===// 644 645 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 646 assert(VT.isFloatingPoint()); 647 648 // Packed operations do not have a fabs modifier. 649 return VT == MVT::f32 || VT == MVT::f64 || 650 (Subtarget->has16BitInsts() && VT == MVT::f16); 651 } 652 653 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 654 assert(VT.isFloatingPoint()); 655 return VT == MVT::f32 || VT == MVT::f64 || 656 (Subtarget->has16BitInsts() && VT == MVT::f16) || 657 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 658 } 659 660 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 661 unsigned NumElem, 662 unsigned AS) const { 663 return true; 664 } 665 666 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 667 // There are few operations which truly have vector input operands. Any vector 668 // operation is going to involve operations on each component, and a 669 // build_vector will be a copy per element, so it always makes sense to use a 670 // build_vector input in place of the extracted element to avoid a copy into a 671 // super register. 672 // 673 // We should probably only do this if all users are extracts only, but this 674 // should be the common case. 675 return true; 676 } 677 678 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 679 // Truncate is just accessing a subregister. 680 681 unsigned SrcSize = Source.getSizeInBits(); 682 unsigned DestSize = Dest.getSizeInBits(); 683 684 return DestSize < SrcSize && DestSize % 32 == 0 ; 685 } 686 687 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 688 // Truncate is just accessing a subregister. 689 690 unsigned SrcSize = Source->getScalarSizeInBits(); 691 unsigned DestSize = Dest->getScalarSizeInBits(); 692 693 if (DestSize== 16 && Subtarget->has16BitInsts()) 694 return SrcSize >= 32; 695 696 return DestSize < SrcSize && DestSize % 32 == 0; 697 } 698 699 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 700 unsigned SrcSize = Src->getScalarSizeInBits(); 701 unsigned DestSize = Dest->getScalarSizeInBits(); 702 703 if (SrcSize == 16 && Subtarget->has16BitInsts()) 704 return DestSize >= 32; 705 706 return SrcSize == 32 && DestSize == 64; 707 } 708 709 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 710 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 711 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 712 // this will enable reducing 64-bit operations the 32-bit, which is always 713 // good. 714 715 if (Src == MVT::i16) 716 return Dest == MVT::i32 ||Dest == MVT::i64 ; 717 718 return Src == MVT::i32 && Dest == MVT::i64; 719 } 720 721 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 722 return isZExtFree(Val.getValueType(), VT2); 723 } 724 725 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 726 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 727 // limited number of native 64-bit operations. Shrinking an operation to fit 728 // in a single 32-bit register should always be helpful. As currently used, 729 // this is much less general than the name suggests, and is only used in 730 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 731 // not profitable, and may actually be harmful. 732 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 733 } 734 735 //===---------------------------------------------------------------------===// 736 // TargetLowering Callbacks 737 //===---------------------------------------------------------------------===// 738 739 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 740 bool IsVarArg) const { 741 return CC_AMDGPU; 742 } 743 744 /// The SelectionDAGBuilder will automatically promote function arguments 745 /// with illegal types. However, this does not work for the AMDGPU targets 746 /// since the function arguments are stored in memory as these illegal types. 747 /// In order to handle this properly we need to get the original types sizes 748 /// from the LLVM IR Function and fixup the ISD:InputArg values before 749 /// passing them to AnalyzeFormalArguments() 750 751 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 752 /// input values across multiple registers. Each item in the Ins array 753 /// represents a single value that will be stored in regsters. Ins[x].VT is 754 /// the value type of the value that will be stored in the register, so 755 /// whatever SDNode we lower the argument to needs to be this type. 756 /// 757 /// In order to correctly lower the arguments we need to know the size of each 758 /// argument. Since Ins[x].VT gives us the size of the register that will 759 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 760 /// for the orignal function argument so that we can deduce the correct memory 761 /// type to use for Ins[x]. In most cases the correct memory type will be 762 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 763 /// we have a kernel argument of type v8i8, this argument will be split into 764 /// 8 parts and each part will be represented by its own item in the Ins array. 765 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 766 /// the argument before it was split. From this, we deduce that the memory type 767 /// for each individual part is i8. We pass the memory type as LocVT to the 768 /// calling convention analysis function and the register type (Ins[x].VT) as 769 /// the ValVT. 770 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 771 const SmallVectorImpl<ISD::InputArg> &Ins) const { 772 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 773 const ISD::InputArg &In = Ins[i]; 774 EVT MemVT; 775 776 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 777 778 if (!Subtarget->isAmdHsaOS() && 779 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 780 // The ABI says the caller will extend these values to 32-bits. 781 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 782 } else if (NumRegs == 1) { 783 // This argument is not split, so the IR type is the memory type. 784 assert(!In.Flags.isSplit()); 785 if (In.ArgVT.isExtended()) { 786 // We have an extended type, like i24, so we should just use the register type 787 MemVT = In.VT; 788 } else { 789 MemVT = In.ArgVT; 790 } 791 } else if (In.ArgVT.isVector() && In.VT.isVector() && 792 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 793 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 794 // We have a vector value which has been split into a vector with 795 // the same scalar type, but fewer elements. This should handle 796 // all the floating-point vector types. 797 MemVT = In.VT; 798 } else if (In.ArgVT.isVector() && 799 In.ArgVT.getVectorNumElements() == NumRegs) { 800 // This arg has been split so that each element is stored in a separate 801 // register. 802 MemVT = In.ArgVT.getScalarType(); 803 } else if (In.ArgVT.isExtended()) { 804 // We have an extended type, like i65. 805 MemVT = In.VT; 806 } else { 807 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 808 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 809 if (In.VT.isInteger()) { 810 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 811 } else if (In.VT.isVector()) { 812 assert(!In.VT.getScalarType().isFloatingPoint()); 813 unsigned NumElements = In.VT.getVectorNumElements(); 814 assert(MemoryBits % NumElements == 0); 815 // This vector type has been split into another vector type with 816 // a different elements size. 817 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 818 MemoryBits / NumElements); 819 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 820 } else { 821 llvm_unreachable("cannot deduce memory type."); 822 } 823 } 824 825 // Convert one element vectors to scalar. 826 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 827 MemVT = MemVT.getScalarType(); 828 829 if (MemVT.isExtended()) { 830 // This should really only happen if we have vec3 arguments 831 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 832 MemVT = MemVT.getPow2VectorType(State.getContext()); 833 } 834 835 assert(MemVT.isSimple()); 836 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 837 State); 838 } 839 } 840 841 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 842 const SmallVectorImpl<ISD::InputArg> &Ins) const { 843 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 844 } 845 846 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 847 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 848 849 State.AnalyzeReturn(Outs, RetCC_SI); 850 } 851 852 SDValue 853 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 854 bool isVarArg, 855 const SmallVectorImpl<ISD::OutputArg> &Outs, 856 const SmallVectorImpl<SDValue> &OutVals, 857 const SDLoc &DL, SelectionDAG &DAG) const { 858 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 859 } 860 861 //===---------------------------------------------------------------------===// 862 // Target specific lowering 863 //===---------------------------------------------------------------------===// 864 865 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 866 SmallVectorImpl<SDValue> &InVals) const { 867 SDValue Callee = CLI.Callee; 868 SelectionDAG &DAG = CLI.DAG; 869 870 const Function &Fn = *DAG.getMachineFunction().getFunction(); 871 872 StringRef FuncName("<unknown>"); 873 874 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 875 FuncName = G->getSymbol(); 876 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 877 FuncName = G->getGlobal()->getName(); 878 879 DiagnosticInfoUnsupported NoCalls( 880 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 881 DAG.getContext()->diagnose(NoCalls); 882 883 if (!CLI.IsTailCall) { 884 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 885 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 886 } 887 888 return DAG.getEntryNode(); 889 } 890 891 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 892 SelectionDAG &DAG) const { 893 const Function &Fn = *DAG.getMachineFunction().getFunction(); 894 895 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 896 SDLoc(Op).getDebugLoc()); 897 DAG.getContext()->diagnose(NoDynamicAlloca); 898 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 899 return DAG.getMergeValues(Ops, SDLoc()); 900 } 901 902 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 903 SelectionDAG &DAG) const { 904 switch (Op.getOpcode()) { 905 default: 906 Op->print(errs(), &DAG); 907 llvm_unreachable("Custom lowering code for this" 908 "instruction is not implemented yet!"); 909 break; 910 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 911 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 912 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 913 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 914 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 915 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 916 case ISD::FREM: return LowerFREM(Op, DAG); 917 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 918 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 919 case ISD::FRINT: return LowerFRINT(Op, DAG); 920 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 921 case ISD::FROUND: return LowerFROUND(Op, DAG); 922 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 923 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 924 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 925 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 926 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 927 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 928 case ISD::CTLZ: 929 case ISD::CTLZ_ZERO_UNDEF: 930 return LowerCTLZ(Op, DAG); 931 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 932 } 933 return Op; 934 } 935 936 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 937 SmallVectorImpl<SDValue> &Results, 938 SelectionDAG &DAG) const { 939 switch (N->getOpcode()) { 940 case ISD::SIGN_EXTEND_INREG: 941 // Different parts of legalization seem to interpret which type of 942 // sign_extend_inreg is the one to check for custom lowering. The extended 943 // from type is what really matters, but some places check for custom 944 // lowering of the result type. This results in trying to use 945 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 946 // nothing here and let the illegal result integer be handled normally. 947 return; 948 default: 949 return; 950 } 951 } 952 953 static bool hasDefinedInitializer(const GlobalValue *GV) { 954 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 955 if (!GVar || !GVar->hasInitializer()) 956 return false; 957 958 return !isa<UndefValue>(GVar->getInitializer()); 959 } 960 961 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 962 SDValue Op, 963 SelectionDAG &DAG) const { 964 965 const DataLayout &DL = DAG.getDataLayout(); 966 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 967 const GlobalValue *GV = G->getGlobal(); 968 969 switch (G->getAddressSpace()) { 970 case AMDGPUAS::LOCAL_ADDRESS: { 971 // XXX: What does the value of G->getOffset() mean? 972 assert(G->getOffset() == 0 && 973 "Do not know what to do with an non-zero offset"); 974 975 // TODO: We could emit code to handle the initialization somewhere. 976 if (hasDefinedInitializer(GV)) 977 break; 978 979 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 980 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 981 } 982 } 983 984 const Function &Fn = *DAG.getMachineFunction().getFunction(); 985 DiagnosticInfoUnsupported BadInit( 986 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 987 DAG.getContext()->diagnose(BadInit); 988 return SDValue(); 989 } 990 991 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 992 SelectionDAG &DAG) const { 993 SmallVector<SDValue, 8> Args; 994 995 for (const SDUse &U : Op->ops()) 996 DAG.ExtractVectorElements(U.get(), Args); 997 998 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 999 } 1000 1001 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1002 SelectionDAG &DAG) const { 1003 1004 SmallVector<SDValue, 8> Args; 1005 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1006 EVT VT = Op.getValueType(); 1007 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1008 VT.getVectorNumElements()); 1009 1010 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1011 } 1012 1013 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 1014 SelectionDAG &DAG) const { 1015 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1016 SDLoc DL(Op); 1017 EVT VT = Op.getValueType(); 1018 1019 switch (IntrinsicID) { 1020 default: return Op; 1021 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 1022 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 1023 Op.getOperand(1), 1024 Op.getOperand(2), 1025 Op.getOperand(3)); 1026 1027 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 1028 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 1029 Op.getOperand(1), 1030 Op.getOperand(2), 1031 Op.getOperand(3)); 1032 } 1033 } 1034 1035 /// \brief Generate Min/Max node 1036 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1037 SDValue LHS, SDValue RHS, 1038 SDValue True, SDValue False, 1039 SDValue CC, 1040 DAGCombinerInfo &DCI) const { 1041 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1042 return SDValue(); 1043 1044 SelectionDAG &DAG = DCI.DAG; 1045 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1046 switch (CCOpcode) { 1047 case ISD::SETOEQ: 1048 case ISD::SETONE: 1049 case ISD::SETUNE: 1050 case ISD::SETNE: 1051 case ISD::SETUEQ: 1052 case ISD::SETEQ: 1053 case ISD::SETFALSE: 1054 case ISD::SETFALSE2: 1055 case ISD::SETTRUE: 1056 case ISD::SETTRUE2: 1057 case ISD::SETUO: 1058 case ISD::SETO: 1059 break; 1060 case ISD::SETULE: 1061 case ISD::SETULT: { 1062 if (LHS == True) 1063 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1064 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1065 } 1066 case ISD::SETOLE: 1067 case ISD::SETOLT: 1068 case ISD::SETLE: 1069 case ISD::SETLT: { 1070 // Ordered. Assume ordered for undefined. 1071 1072 // Only do this after legalization to avoid interfering with other combines 1073 // which might occur. 1074 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1075 !DCI.isCalledByLegalizer()) 1076 return SDValue(); 1077 1078 // We need to permute the operands to get the correct NaN behavior. The 1079 // selected operand is the second one based on the failing compare with NaN, 1080 // so permute it based on the compare type the hardware uses. 1081 if (LHS == True) 1082 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1083 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1084 } 1085 case ISD::SETUGE: 1086 case ISD::SETUGT: { 1087 if (LHS == True) 1088 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1089 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1090 } 1091 case ISD::SETGT: 1092 case ISD::SETGE: 1093 case ISD::SETOGE: 1094 case ISD::SETOGT: { 1095 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1096 !DCI.isCalledByLegalizer()) 1097 return SDValue(); 1098 1099 if (LHS == True) 1100 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1101 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1102 } 1103 case ISD::SETCC_INVALID: 1104 llvm_unreachable("Invalid setcc condcode!"); 1105 } 1106 return SDValue(); 1107 } 1108 1109 std::pair<SDValue, SDValue> 1110 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1111 SDLoc SL(Op); 1112 1113 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1114 1115 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1116 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1117 1118 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1119 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1120 1121 return std::make_pair(Lo, Hi); 1122 } 1123 1124 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1125 SDLoc SL(Op); 1126 1127 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1128 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1129 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1130 } 1131 1132 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1133 SDLoc SL(Op); 1134 1135 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1136 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1137 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1138 } 1139 1140 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1141 SelectionDAG &DAG) const { 1142 LoadSDNode *Load = cast<LoadSDNode>(Op); 1143 EVT VT = Op.getValueType(); 1144 1145 1146 // If this is a 2 element vector, we really want to scalarize and not create 1147 // weird 1 element vectors. 1148 if (VT.getVectorNumElements() == 2) 1149 return scalarizeVectorLoad(Load, DAG); 1150 1151 SDValue BasePtr = Load->getBasePtr(); 1152 EVT PtrVT = BasePtr.getValueType(); 1153 EVT MemVT = Load->getMemoryVT(); 1154 SDLoc SL(Op); 1155 1156 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1157 1158 EVT LoVT, HiVT; 1159 EVT LoMemVT, HiMemVT; 1160 SDValue Lo, Hi; 1161 1162 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1163 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1164 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1165 1166 unsigned Size = LoMemVT.getStoreSize(); 1167 unsigned BaseAlign = Load->getAlignment(); 1168 unsigned HiAlign = MinAlign(BaseAlign, Size); 1169 1170 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1171 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1172 BaseAlign, Load->getMemOperand()->getFlags()); 1173 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1174 DAG.getConstant(Size, SL, PtrVT)); 1175 SDValue HiLoad = 1176 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1177 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1178 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1179 1180 SDValue Ops[] = { 1181 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1182 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1183 LoLoad.getValue(1), HiLoad.getValue(1)) 1184 }; 1185 1186 return DAG.getMergeValues(Ops, SL); 1187 } 1188 1189 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1190 SelectionDAG &DAG) const { 1191 StoreSDNode *Store = cast<StoreSDNode>(Op); 1192 SDValue Val = Store->getValue(); 1193 EVT VT = Val.getValueType(); 1194 1195 // If this is a 2 element vector, we really want to scalarize and not create 1196 // weird 1 element vectors. 1197 if (VT.getVectorNumElements() == 2) 1198 return scalarizeVectorStore(Store, DAG); 1199 1200 EVT MemVT = Store->getMemoryVT(); 1201 SDValue Chain = Store->getChain(); 1202 SDValue BasePtr = Store->getBasePtr(); 1203 SDLoc SL(Op); 1204 1205 EVT LoVT, HiVT; 1206 EVT LoMemVT, HiMemVT; 1207 SDValue Lo, Hi; 1208 1209 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1210 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1211 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1212 1213 EVT PtrVT = BasePtr.getValueType(); 1214 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1215 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1216 PtrVT)); 1217 1218 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1219 unsigned BaseAlign = Store->getAlignment(); 1220 unsigned Size = LoMemVT.getStoreSize(); 1221 unsigned HiAlign = MinAlign(BaseAlign, Size); 1222 1223 SDValue LoStore = 1224 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1225 Store->getMemOperand()->getFlags()); 1226 SDValue HiStore = 1227 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1228 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1229 1230 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1231 } 1232 1233 // This is a shortcut for integer division because we have fast i32<->f32 1234 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1235 // float is enough to accurately represent up to a 24-bit signed integer. 1236 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1237 bool Sign) const { 1238 SDLoc DL(Op); 1239 EVT VT = Op.getValueType(); 1240 SDValue LHS = Op.getOperand(0); 1241 SDValue RHS = Op.getOperand(1); 1242 MVT IntVT = MVT::i32; 1243 MVT FltVT = MVT::f32; 1244 1245 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1246 if (LHSSignBits < 9) 1247 return SDValue(); 1248 1249 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1250 if (RHSSignBits < 9) 1251 return SDValue(); 1252 1253 unsigned BitSize = VT.getSizeInBits(); 1254 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1255 unsigned DivBits = BitSize - SignBits; 1256 if (Sign) 1257 ++DivBits; 1258 1259 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1260 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1261 1262 SDValue jq = DAG.getConstant(1, DL, IntVT); 1263 1264 if (Sign) { 1265 // char|short jq = ia ^ ib; 1266 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1267 1268 // jq = jq >> (bitsize - 2) 1269 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1270 DAG.getConstant(BitSize - 2, DL, VT)); 1271 1272 // jq = jq | 0x1 1273 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1274 } 1275 1276 // int ia = (int)LHS; 1277 SDValue ia = LHS; 1278 1279 // int ib, (int)RHS; 1280 SDValue ib = RHS; 1281 1282 // float fa = (float)ia; 1283 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1284 1285 // float fb = (float)ib; 1286 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1287 1288 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1289 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1290 1291 // fq = trunc(fq); 1292 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1293 1294 // float fqneg = -fq; 1295 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1296 1297 // float fr = mad(fqneg, fb, fa); 1298 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1299 (unsigned)AMDGPUISD::FMAD_FTZ : 1300 (unsigned)ISD::FMAD; 1301 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1302 1303 // int iq = (int)fq; 1304 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1305 1306 // fr = fabs(fr); 1307 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1308 1309 // fb = fabs(fb); 1310 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1311 1312 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1313 1314 // int cv = fr >= fb; 1315 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1316 1317 // jq = (cv ? jq : 0); 1318 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1319 1320 // dst = iq + jq; 1321 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1322 1323 // Rem needs compensation, it's easier to recompute it 1324 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1325 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1326 1327 // Truncate to number of bits this divide really is. 1328 if (Sign) { 1329 SDValue InRegSize 1330 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1331 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1332 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1333 } else { 1334 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1335 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1336 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1337 } 1338 1339 return DAG.getMergeValues({ Div, Rem }, DL); 1340 } 1341 1342 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1343 SelectionDAG &DAG, 1344 SmallVectorImpl<SDValue> &Results) const { 1345 assert(Op.getValueType() == MVT::i64); 1346 1347 SDLoc DL(Op); 1348 EVT VT = Op.getValueType(); 1349 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1350 1351 SDValue one = DAG.getConstant(1, DL, HalfVT); 1352 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1353 1354 //HiLo split 1355 SDValue LHS = Op.getOperand(0); 1356 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1357 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1358 1359 SDValue RHS = Op.getOperand(1); 1360 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1361 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1362 1363 if (VT == MVT::i64 && 1364 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1365 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1366 1367 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1368 LHS_Lo, RHS_Lo); 1369 1370 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1371 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1372 1373 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1374 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1375 return; 1376 } 1377 1378 // Get Speculative values 1379 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1380 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1381 1382 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1383 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1384 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1385 1386 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1387 SDValue DIV_Lo = zero; 1388 1389 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1390 1391 for (unsigned i = 0; i < halfBitWidth; ++i) { 1392 const unsigned bitPos = halfBitWidth - i - 1; 1393 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1394 // Get value of high bit 1395 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1396 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1397 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1398 1399 // Shift 1400 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1401 // Add LHS high bit 1402 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1403 1404 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1405 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1406 1407 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1408 1409 // Update REM 1410 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1411 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1412 } 1413 1414 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1415 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1416 Results.push_back(DIV); 1417 Results.push_back(REM); 1418 } 1419 1420 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1421 SelectionDAG &DAG) const { 1422 SDLoc DL(Op); 1423 EVT VT = Op.getValueType(); 1424 1425 if (VT == MVT::i64) { 1426 SmallVector<SDValue, 2> Results; 1427 LowerUDIVREM64(Op, DAG, Results); 1428 return DAG.getMergeValues(Results, DL); 1429 } 1430 1431 if (VT == MVT::i32) { 1432 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1433 return Res; 1434 } 1435 1436 SDValue Num = Op.getOperand(0); 1437 SDValue Den = Op.getOperand(1); 1438 1439 // RCP = URECIP(Den) = 2^32 / Den + e 1440 // e is rounding error. 1441 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1442 1443 // RCP_LO = mul(RCP, Den) */ 1444 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1445 1446 // RCP_HI = mulhu (RCP, Den) */ 1447 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1448 1449 // NEG_RCP_LO = -RCP_LO 1450 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1451 RCP_LO); 1452 1453 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1454 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1455 NEG_RCP_LO, RCP_LO, 1456 ISD::SETEQ); 1457 // Calculate the rounding error from the URECIP instruction 1458 // E = mulhu(ABS_RCP_LO, RCP) 1459 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1460 1461 // RCP_A_E = RCP + E 1462 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1463 1464 // RCP_S_E = RCP - E 1465 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1466 1467 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1468 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1469 RCP_A_E, RCP_S_E, 1470 ISD::SETEQ); 1471 // Quotient = mulhu(Tmp0, Num) 1472 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1473 1474 // Num_S_Remainder = Quotient * Den 1475 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1476 1477 // Remainder = Num - Num_S_Remainder 1478 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1479 1480 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1481 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1482 DAG.getConstant(-1, DL, VT), 1483 DAG.getConstant(0, DL, VT), 1484 ISD::SETUGE); 1485 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1486 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1487 Num_S_Remainder, 1488 DAG.getConstant(-1, DL, VT), 1489 DAG.getConstant(0, DL, VT), 1490 ISD::SETUGE); 1491 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1492 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1493 Remainder_GE_Zero); 1494 1495 // Calculate Division result: 1496 1497 // Quotient_A_One = Quotient + 1 1498 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1499 DAG.getConstant(1, DL, VT)); 1500 1501 // Quotient_S_One = Quotient - 1 1502 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1503 DAG.getConstant(1, DL, VT)); 1504 1505 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1506 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1507 Quotient, Quotient_A_One, ISD::SETEQ); 1508 1509 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1510 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1511 Quotient_S_One, Div, ISD::SETEQ); 1512 1513 // Calculate Rem result: 1514 1515 // Remainder_S_Den = Remainder - Den 1516 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1517 1518 // Remainder_A_Den = Remainder + Den 1519 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1520 1521 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1522 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1523 Remainder, Remainder_S_Den, ISD::SETEQ); 1524 1525 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1526 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1527 Remainder_A_Den, Rem, ISD::SETEQ); 1528 SDValue Ops[2] = { 1529 Div, 1530 Rem 1531 }; 1532 return DAG.getMergeValues(Ops, DL); 1533 } 1534 1535 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1536 SelectionDAG &DAG) const { 1537 SDLoc DL(Op); 1538 EVT VT = Op.getValueType(); 1539 1540 SDValue LHS = Op.getOperand(0); 1541 SDValue RHS = Op.getOperand(1); 1542 1543 SDValue Zero = DAG.getConstant(0, DL, VT); 1544 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1545 1546 if (VT == MVT::i32) { 1547 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1548 return Res; 1549 } 1550 1551 if (VT == MVT::i64 && 1552 DAG.ComputeNumSignBits(LHS) > 32 && 1553 DAG.ComputeNumSignBits(RHS) > 32) { 1554 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1555 1556 //HiLo split 1557 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1558 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1559 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1560 LHS_Lo, RHS_Lo); 1561 SDValue Res[2] = { 1562 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1563 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1564 }; 1565 return DAG.getMergeValues(Res, DL); 1566 } 1567 1568 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1569 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1570 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1571 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1572 1573 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1574 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1575 1576 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1577 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1578 1579 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1580 SDValue Rem = Div.getValue(1); 1581 1582 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1583 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1584 1585 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1586 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1587 1588 SDValue Res[2] = { 1589 Div, 1590 Rem 1591 }; 1592 return DAG.getMergeValues(Res, DL); 1593 } 1594 1595 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1596 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1597 SDLoc SL(Op); 1598 EVT VT = Op.getValueType(); 1599 SDValue X = Op.getOperand(0); 1600 SDValue Y = Op.getOperand(1); 1601 1602 // TODO: Should this propagate fast-math-flags? 1603 1604 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1605 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1606 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1607 1608 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1609 } 1610 1611 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1612 SDLoc SL(Op); 1613 SDValue Src = Op.getOperand(0); 1614 1615 // result = trunc(src) 1616 // if (src > 0.0 && src != result) 1617 // result += 1.0 1618 1619 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1620 1621 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1622 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1623 1624 EVT SetCCVT = 1625 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1626 1627 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1628 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1629 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1630 1631 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1632 // TODO: Should this propagate fast-math-flags? 1633 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1634 } 1635 1636 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1637 SelectionDAG &DAG) { 1638 const unsigned FractBits = 52; 1639 const unsigned ExpBits = 11; 1640 1641 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1642 Hi, 1643 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1644 DAG.getConstant(ExpBits, SL, MVT::i32)); 1645 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1646 DAG.getConstant(1023, SL, MVT::i32)); 1647 1648 return Exp; 1649 } 1650 1651 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1652 SDLoc SL(Op); 1653 SDValue Src = Op.getOperand(0); 1654 1655 assert(Op.getValueType() == MVT::f64); 1656 1657 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1658 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1659 1660 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1661 1662 // Extract the upper half, since this is where we will find the sign and 1663 // exponent. 1664 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1665 1666 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1667 1668 const unsigned FractBits = 52; 1669 1670 // Extract the sign bit. 1671 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1672 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1673 1674 // Extend back to to 64-bits. 1675 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1676 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1677 1678 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1679 const SDValue FractMask 1680 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1681 1682 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1683 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1684 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1685 1686 EVT SetCCVT = 1687 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1688 1689 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1690 1691 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1692 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1693 1694 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1695 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1696 1697 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1698 } 1699 1700 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1701 SDLoc SL(Op); 1702 SDValue Src = Op.getOperand(0); 1703 1704 assert(Op.getValueType() == MVT::f64); 1705 1706 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1707 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1708 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1709 1710 // TODO: Should this propagate fast-math-flags? 1711 1712 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1713 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1714 1715 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1716 1717 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1718 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1719 1720 EVT SetCCVT = 1721 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1722 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1723 1724 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1725 } 1726 1727 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1728 // FNEARBYINT and FRINT are the same, except in their handling of FP 1729 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1730 // rint, so just treat them as equivalent. 1731 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1732 } 1733 1734 // XXX - May require not supporting f32 denormals? 1735 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1736 SDLoc SL(Op); 1737 SDValue X = Op.getOperand(0); 1738 1739 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1740 1741 // TODO: Should this propagate fast-math-flags? 1742 1743 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1744 1745 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1746 1747 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1748 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1749 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1750 1751 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1752 1753 EVT SetCCVT = 1754 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1755 1756 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1757 1758 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1759 1760 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1761 } 1762 1763 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1764 SDLoc SL(Op); 1765 SDValue X = Op.getOperand(0); 1766 1767 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1768 1769 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1770 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1771 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1772 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1773 EVT SetCCVT = 1774 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1775 1776 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1777 1778 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1779 1780 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1781 1782 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1783 MVT::i64); 1784 1785 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1786 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1787 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1788 MVT::i64), 1789 Exp); 1790 1791 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1792 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1793 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1794 ISD::SETNE); 1795 1796 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1797 D, DAG.getConstant(0, SL, MVT::i64)); 1798 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1799 1800 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1801 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1802 1803 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1804 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1805 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1806 1807 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1808 ExpEqNegOne, 1809 DAG.getConstantFP(1.0, SL, MVT::f64), 1810 DAG.getConstantFP(0.0, SL, MVT::f64)); 1811 1812 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1813 1814 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1815 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1816 1817 return K; 1818 } 1819 1820 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1821 EVT VT = Op.getValueType(); 1822 1823 if (VT == MVT::f32) 1824 return LowerFROUND32(Op, DAG); 1825 1826 if (VT == MVT::f64) 1827 return LowerFROUND64(Op, DAG); 1828 1829 llvm_unreachable("unhandled type"); 1830 } 1831 1832 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1833 SDLoc SL(Op); 1834 SDValue Src = Op.getOperand(0); 1835 1836 // result = trunc(src); 1837 // if (src < 0.0 && src != result) 1838 // result += -1.0. 1839 1840 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1841 1842 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1843 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1844 1845 EVT SetCCVT = 1846 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1847 1848 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1849 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1850 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1851 1852 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1853 // TODO: Should this propagate fast-math-flags? 1854 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1855 } 1856 1857 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1858 SDLoc SL(Op); 1859 SDValue Src = Op.getOperand(0); 1860 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1861 1862 if (ZeroUndef && Src.getValueType() == MVT::i32) 1863 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1864 1865 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1866 1867 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1868 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1869 1870 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1871 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1872 1873 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1874 *DAG.getContext(), MVT::i32); 1875 1876 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1877 1878 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1879 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1880 1881 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1882 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1883 1884 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1885 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1886 1887 if (!ZeroUndef) { 1888 // Test if the full 64-bit input is zero. 1889 1890 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1891 // which we probably don't want. 1892 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1893 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1894 1895 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1896 // with the same cycles, otherwise it is slower. 1897 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1898 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1899 1900 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1901 1902 // The instruction returns -1 for 0 input, but the defined intrinsic 1903 // behavior is to return the number of bits. 1904 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1905 SrcIsZero, Bits32, NewCtlz); 1906 } 1907 1908 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1909 } 1910 1911 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1912 bool Signed) const { 1913 // Unsigned 1914 // cul2f(ulong u) 1915 //{ 1916 // uint lz = clz(u); 1917 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1918 // u = (u << lz) & 0x7fffffffffffffffUL; 1919 // ulong t = u & 0xffffffffffUL; 1920 // uint v = (e << 23) | (uint)(u >> 40); 1921 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1922 // return as_float(v + r); 1923 //} 1924 // Signed 1925 // cl2f(long l) 1926 //{ 1927 // long s = l >> 63; 1928 // float r = cul2f((l + s) ^ s); 1929 // return s ? -r : r; 1930 //} 1931 1932 SDLoc SL(Op); 1933 SDValue Src = Op.getOperand(0); 1934 SDValue L = Src; 1935 1936 SDValue S; 1937 if (Signed) { 1938 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1939 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1940 1941 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1942 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1943 } 1944 1945 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1946 *DAG.getContext(), MVT::f32); 1947 1948 1949 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1950 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1951 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1952 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1953 1954 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1955 SDValue E = DAG.getSelect(SL, MVT::i32, 1956 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1957 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1958 ZeroI32); 1959 1960 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1961 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1962 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1963 1964 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1965 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1966 1967 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1968 U, DAG.getConstant(40, SL, MVT::i64)); 1969 1970 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1971 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1972 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1973 1974 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1975 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1976 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 1977 1978 SDValue One = DAG.getConstant(1, SL, MVT::i32); 1979 1980 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 1981 1982 SDValue R = DAG.getSelect(SL, MVT::i32, 1983 RCmp, 1984 One, 1985 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 1986 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 1987 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 1988 1989 if (!Signed) 1990 return R; 1991 1992 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 1993 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 1994 } 1995 1996 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 1997 bool Signed) const { 1998 SDLoc SL(Op); 1999 SDValue Src = Op.getOperand(0); 2000 2001 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2002 2003 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2004 DAG.getConstant(0, SL, MVT::i32)); 2005 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2006 DAG.getConstant(1, SL, MVT::i32)); 2007 2008 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2009 SL, MVT::f64, Hi); 2010 2011 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2012 2013 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2014 DAG.getConstant(32, SL, MVT::i32)); 2015 // TODO: Should this propagate fast-math-flags? 2016 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2017 } 2018 2019 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2020 SelectionDAG &DAG) const { 2021 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2022 "operation should be legal"); 2023 2024 // TODO: Factor out code common with LowerSINT_TO_FP. 2025 2026 EVT DestVT = Op.getValueType(); 2027 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2028 SDLoc DL(Op); 2029 SDValue Src = Op.getOperand(0); 2030 2031 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2032 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2033 SDValue FPRound = 2034 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2035 2036 return FPRound; 2037 } 2038 2039 if (DestVT == MVT::f32) 2040 return LowerINT_TO_FP32(Op, DAG, false); 2041 2042 assert(DestVT == MVT::f64); 2043 return LowerINT_TO_FP64(Op, DAG, false); 2044 } 2045 2046 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2047 SelectionDAG &DAG) const { 2048 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2049 "operation should be legal"); 2050 2051 // TODO: Factor out code common with LowerUINT_TO_FP. 2052 2053 EVT DestVT = Op.getValueType(); 2054 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2055 SDLoc DL(Op); 2056 SDValue Src = Op.getOperand(0); 2057 2058 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2059 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2060 SDValue FPRound = 2061 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2062 2063 return FPRound; 2064 } 2065 2066 if (DestVT == MVT::f32) 2067 return LowerINT_TO_FP32(Op, DAG, true); 2068 2069 assert(DestVT == MVT::f64); 2070 return LowerINT_TO_FP64(Op, DAG, true); 2071 } 2072 2073 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2074 bool Signed) const { 2075 SDLoc SL(Op); 2076 2077 SDValue Src = Op.getOperand(0); 2078 2079 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2080 2081 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2082 MVT::f64); 2083 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2084 MVT::f64); 2085 // TODO: Should this propagate fast-math-flags? 2086 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2087 2088 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2089 2090 2091 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2092 2093 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2094 MVT::i32, FloorMul); 2095 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2096 2097 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2098 2099 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2100 } 2101 2102 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2103 2104 if (getTargetMachine().Options.UnsafeFPMath) { 2105 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2106 return SDValue(); 2107 } 2108 2109 SDLoc DL(Op); 2110 SDValue N0 = Op.getOperand(0); 2111 assert (N0.getSimpleValueType() == MVT::f64); 2112 2113 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2114 const unsigned ExpMask = 0x7ff; 2115 const unsigned ExpBiasf64 = 1023; 2116 const unsigned ExpBiasf16 = 15; 2117 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2118 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2119 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2120 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2121 DAG.getConstant(32, DL, MVT::i64)); 2122 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2123 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2124 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2125 DAG.getConstant(20, DL, MVT::i64)); 2126 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2127 DAG.getConstant(ExpMask, DL, MVT::i32)); 2128 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2129 // add the f16 bias (15) to get the biased exponent for the f16 format. 2130 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2131 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2132 2133 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2134 DAG.getConstant(8, DL, MVT::i32)); 2135 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2136 DAG.getConstant(0xffe, DL, MVT::i32)); 2137 2138 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2139 DAG.getConstant(0x1ff, DL, MVT::i32)); 2140 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2141 2142 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2143 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2144 2145 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2146 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2147 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2148 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2149 2150 // N = M | (E << 12); 2151 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2152 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2153 DAG.getConstant(12, DL, MVT::i32))); 2154 2155 // B = clamp(1-E, 0, 13); 2156 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2157 One, E); 2158 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2159 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2160 DAG.getConstant(13, DL, MVT::i32)); 2161 2162 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2163 DAG.getConstant(0x1000, DL, MVT::i32)); 2164 2165 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2166 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2167 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2168 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2169 2170 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2171 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2172 DAG.getConstant(0x7, DL, MVT::i32)); 2173 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2174 DAG.getConstant(2, DL, MVT::i32)); 2175 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2176 One, Zero, ISD::SETEQ); 2177 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2178 One, Zero, ISD::SETGT); 2179 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2180 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2181 2182 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2183 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2184 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2185 I, V, ISD::SETEQ); 2186 2187 // Extract the sign bit. 2188 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2189 DAG.getConstant(16, DL, MVT::i32)); 2190 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2191 DAG.getConstant(0x8000, DL, MVT::i32)); 2192 2193 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2194 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2195 } 2196 2197 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2198 SelectionDAG &DAG) const { 2199 SDValue Src = Op.getOperand(0); 2200 2201 // TODO: Factor out code common with LowerFP_TO_UINT. 2202 2203 EVT SrcVT = Src.getValueType(); 2204 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2205 SDLoc DL(Op); 2206 2207 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2208 SDValue FpToInt32 = 2209 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2210 2211 return FpToInt32; 2212 } 2213 2214 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2215 return LowerFP64_TO_INT(Op, DAG, true); 2216 2217 return SDValue(); 2218 } 2219 2220 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2221 SelectionDAG &DAG) const { 2222 SDValue Src = Op.getOperand(0); 2223 2224 // TODO: Factor out code common with LowerFP_TO_SINT. 2225 2226 EVT SrcVT = Src.getValueType(); 2227 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2228 SDLoc DL(Op); 2229 2230 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2231 SDValue FpToInt32 = 2232 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2233 2234 return FpToInt32; 2235 } 2236 2237 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2238 return LowerFP64_TO_INT(Op, DAG, false); 2239 2240 return SDValue(); 2241 } 2242 2243 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2244 SelectionDAG &DAG) const { 2245 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2246 MVT VT = Op.getSimpleValueType(); 2247 MVT ScalarVT = VT.getScalarType(); 2248 2249 assert(VT.isVector()); 2250 2251 SDValue Src = Op.getOperand(0); 2252 SDLoc DL(Op); 2253 2254 // TODO: Don't scalarize on Evergreen? 2255 unsigned NElts = VT.getVectorNumElements(); 2256 SmallVector<SDValue, 8> Args; 2257 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2258 2259 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2260 for (unsigned I = 0; I < NElts; ++I) 2261 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2262 2263 return DAG.getBuildVector(VT, DL, Args); 2264 } 2265 2266 //===----------------------------------------------------------------------===// 2267 // Custom DAG optimizations 2268 //===----------------------------------------------------------------------===// 2269 2270 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2271 APInt KnownZero, KnownOne; 2272 EVT VT = Op.getValueType(); 2273 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2274 2275 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2276 } 2277 2278 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2279 EVT VT = Op.getValueType(); 2280 2281 // In order for this to be a signed 24-bit value, bit 23, must 2282 // be a sign bit. 2283 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2284 // as unsigned 24-bit values. 2285 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2286 } 2287 2288 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2289 TargetLowering::DAGCombinerInfo &DCI) { 2290 2291 SelectionDAG &DAG = DCI.DAG; 2292 SDValue Op = Node24->getOperand(OpIdx); 2293 EVT VT = Op.getValueType(); 2294 2295 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2296 APInt KnownZero, KnownOne; 2297 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2298 if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI)) 2299 return true; 2300 2301 return false; 2302 } 2303 2304 template <typename IntTy> 2305 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2306 uint32_t Width, const SDLoc &DL) { 2307 if (Width + Offset < 32) { 2308 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2309 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2310 return DAG.getConstant(Result, DL, MVT::i32); 2311 } 2312 2313 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2314 } 2315 2316 static bool hasVolatileUser(SDNode *Val) { 2317 for (SDNode *U : Val->uses()) { 2318 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2319 if (M->isVolatile()) 2320 return true; 2321 } 2322 } 2323 2324 return false; 2325 } 2326 2327 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2328 // i32 vectors are the canonical memory type. 2329 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2330 return false; 2331 2332 if (!VT.isByteSized()) 2333 return false; 2334 2335 unsigned Size = VT.getStoreSize(); 2336 2337 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2338 return false; 2339 2340 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2341 return false; 2342 2343 return true; 2344 } 2345 2346 // Replace load of an illegal type with a store of a bitcast to a friendlier 2347 // type. 2348 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2349 DAGCombinerInfo &DCI) const { 2350 if (!DCI.isBeforeLegalize()) 2351 return SDValue(); 2352 2353 LoadSDNode *LN = cast<LoadSDNode>(N); 2354 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2355 return SDValue(); 2356 2357 SDLoc SL(N); 2358 SelectionDAG &DAG = DCI.DAG; 2359 EVT VT = LN->getMemoryVT(); 2360 2361 unsigned Size = VT.getStoreSize(); 2362 unsigned Align = LN->getAlignment(); 2363 if (Align < Size && isTypeLegal(VT)) { 2364 bool IsFast; 2365 unsigned AS = LN->getAddressSpace(); 2366 2367 // Expand unaligned loads earlier than legalization. Due to visitation order 2368 // problems during legalization, the emitted instructions to pack and unpack 2369 // the bytes again are not eliminated in the case of an unaligned copy. 2370 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2371 if (VT.isVector()) 2372 return scalarizeVectorLoad(LN, DAG); 2373 2374 SDValue Ops[2]; 2375 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2376 return DAG.getMergeValues(Ops, SDLoc(N)); 2377 } 2378 2379 if (!IsFast) 2380 return SDValue(); 2381 } 2382 2383 if (!shouldCombineMemoryType(VT)) 2384 return SDValue(); 2385 2386 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2387 2388 SDValue NewLoad 2389 = DAG.getLoad(NewVT, SL, LN->getChain(), 2390 LN->getBasePtr(), LN->getMemOperand()); 2391 2392 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2393 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2394 return SDValue(N, 0); 2395 } 2396 2397 // Replace store of an illegal type with a store of a bitcast to a friendlier 2398 // type. 2399 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2400 DAGCombinerInfo &DCI) const { 2401 if (!DCI.isBeforeLegalize()) 2402 return SDValue(); 2403 2404 StoreSDNode *SN = cast<StoreSDNode>(N); 2405 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2406 return SDValue(); 2407 2408 EVT VT = SN->getMemoryVT(); 2409 unsigned Size = VT.getStoreSize(); 2410 2411 SDLoc SL(N); 2412 SelectionDAG &DAG = DCI.DAG; 2413 unsigned Align = SN->getAlignment(); 2414 if (Align < Size && isTypeLegal(VT)) { 2415 bool IsFast; 2416 unsigned AS = SN->getAddressSpace(); 2417 2418 // Expand unaligned stores earlier than legalization. Due to visitation 2419 // order problems during legalization, the emitted instructions to pack and 2420 // unpack the bytes again are not eliminated in the case of an unaligned 2421 // copy. 2422 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2423 if (VT.isVector()) 2424 return scalarizeVectorStore(SN, DAG); 2425 2426 return expandUnalignedStore(SN, DAG); 2427 } 2428 2429 if (!IsFast) 2430 return SDValue(); 2431 } 2432 2433 if (!shouldCombineMemoryType(VT)) 2434 return SDValue(); 2435 2436 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2437 SDValue Val = SN->getValue(); 2438 2439 //DCI.AddToWorklist(Val.getNode()); 2440 2441 bool OtherUses = !Val.hasOneUse(); 2442 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2443 if (OtherUses) { 2444 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2445 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2446 } 2447 2448 return DAG.getStore(SN->getChain(), SL, CastVal, 2449 SN->getBasePtr(), SN->getMemOperand()); 2450 } 2451 2452 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, 2453 DAGCombinerInfo &DCI) const { 2454 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 2455 if (!CSrc) 2456 return SDValue(); 2457 2458 const APFloat &F = CSrc->getValueAPF(); 2459 APFloat Zero = APFloat::getZero(F.getSemantics()); 2460 APFloat::cmpResult Cmp0 = F.compare(Zero); 2461 if (Cmp0 == APFloat::cmpLessThan || 2462 (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { 2463 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 2464 } 2465 2466 APFloat One(F.getSemantics(), "1.0"); 2467 APFloat::cmpResult Cmp1 = F.compare(One); 2468 if (Cmp1 == APFloat::cmpGreaterThan) 2469 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 2470 2471 return SDValue(CSrc, 0); 2472 } 2473 2474 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2475 /// binary operation \p Opc to it with the corresponding constant operands. 2476 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2477 DAGCombinerInfo &DCI, const SDLoc &SL, 2478 unsigned Opc, SDValue LHS, 2479 uint32_t ValLo, uint32_t ValHi) const { 2480 SelectionDAG &DAG = DCI.DAG; 2481 SDValue Lo, Hi; 2482 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2483 2484 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2485 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2486 2487 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2488 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2489 2490 // Re-visit the ands. It's possible we eliminated one of them and it could 2491 // simplify the vector. 2492 DCI.AddToWorklist(Lo.getNode()); 2493 DCI.AddToWorklist(Hi.getNode()); 2494 2495 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2496 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2497 } 2498 2499 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2500 DAGCombinerInfo &DCI) const { 2501 if (N->getValueType(0) != MVT::i64) 2502 return SDValue(); 2503 2504 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2505 2506 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2507 // common case, splitting this into a move and a 32-bit shift is faster and 2508 // the same code size. 2509 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2510 if (!RHS) 2511 return SDValue(); 2512 2513 unsigned RHSVal = RHS->getZExtValue(); 2514 if (RHSVal < 32) 2515 return SDValue(); 2516 2517 SDValue LHS = N->getOperand(0); 2518 2519 SDLoc SL(N); 2520 SelectionDAG &DAG = DCI.DAG; 2521 2522 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2523 2524 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2525 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2526 2527 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2528 2529 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2530 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2531 } 2532 2533 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2534 DAGCombinerInfo &DCI) const { 2535 if (N->getValueType(0) != MVT::i64) 2536 return SDValue(); 2537 2538 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2539 if (!RHS) 2540 return SDValue(); 2541 2542 SelectionDAG &DAG = DCI.DAG; 2543 SDLoc SL(N); 2544 unsigned RHSVal = RHS->getZExtValue(); 2545 2546 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2547 if (RHSVal == 32) { 2548 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2549 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2550 DAG.getConstant(31, SL, MVT::i32)); 2551 2552 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2553 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2554 } 2555 2556 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2557 if (RHSVal == 63) { 2558 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2559 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2560 DAG.getConstant(31, SL, MVT::i32)); 2561 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2562 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2563 } 2564 2565 return SDValue(); 2566 } 2567 2568 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2569 DAGCombinerInfo &DCI) const { 2570 if (N->getValueType(0) != MVT::i64) 2571 return SDValue(); 2572 2573 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2574 if (!RHS) 2575 return SDValue(); 2576 2577 unsigned ShiftAmt = RHS->getZExtValue(); 2578 if (ShiftAmt < 32) 2579 return SDValue(); 2580 2581 // srl i64:x, C for C >= 32 2582 // => 2583 // build_pair (srl hi_32(x), C - 32), 0 2584 2585 SelectionDAG &DAG = DCI.DAG; 2586 SDLoc SL(N); 2587 2588 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2589 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2590 2591 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2592 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2593 VecOp, One); 2594 2595 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2596 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2597 2598 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2599 2600 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2601 } 2602 2603 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2604 // instructions. If we only match on the legalized i64 mul expansion, 2605 // SimplifyDemandedBits will be unable to remove them because there will be 2606 // multiple uses due to the separate mul + mulh[su]. 2607 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2608 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2609 if (Size <= 32) { 2610 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2611 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2612 } 2613 2614 // Because we want to eliminate extension instructions before the 2615 // operation, we need to create a single user here (i.e. not the separate 2616 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2617 2618 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2619 2620 SDValue Mul = DAG.getNode(MulOpc, SL, 2621 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 2622 2623 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 2624 Mul.getValue(0), Mul.getValue(1)); 2625 } 2626 2627 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2628 DAGCombinerInfo &DCI) const { 2629 EVT VT = N->getValueType(0); 2630 2631 unsigned Size = VT.getSizeInBits(); 2632 if (VT.isVector() || Size > 64) 2633 return SDValue(); 2634 2635 // There are i16 integer mul/mad. 2636 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 2637 return SDValue(); 2638 2639 SelectionDAG &DAG = DCI.DAG; 2640 SDLoc DL(N); 2641 2642 SDValue N0 = N->getOperand(0); 2643 SDValue N1 = N->getOperand(1); 2644 SDValue Mul; 2645 2646 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2647 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2648 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2649 Mul = getMul24(DAG, DL, N0, N1, Size, false); 2650 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2651 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2652 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2653 Mul = getMul24(DAG, DL, N0, N1, Size, true); 2654 } else { 2655 return SDValue(); 2656 } 2657 2658 // We need to use sext even for MUL_U24, because MUL_U24 is used 2659 // for signed multiply of 8 and 16-bit types. 2660 return DAG.getSExtOrTrunc(Mul, DL, VT); 2661 } 2662 2663 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 2664 DAGCombinerInfo &DCI) const { 2665 EVT VT = N->getValueType(0); 2666 2667 if (!Subtarget->hasMulI24() || VT.isVector()) 2668 return SDValue(); 2669 2670 SelectionDAG &DAG = DCI.DAG; 2671 SDLoc DL(N); 2672 2673 SDValue N0 = N->getOperand(0); 2674 SDValue N1 = N->getOperand(1); 2675 2676 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 2677 return SDValue(); 2678 2679 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2680 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2681 2682 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 2683 DCI.AddToWorklist(Mulhi.getNode()); 2684 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 2685 } 2686 2687 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 2688 DAGCombinerInfo &DCI) const { 2689 EVT VT = N->getValueType(0); 2690 2691 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 2692 return SDValue(); 2693 2694 SelectionDAG &DAG = DCI.DAG; 2695 SDLoc DL(N); 2696 2697 SDValue N0 = N->getOperand(0); 2698 SDValue N1 = N->getOperand(1); 2699 2700 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 2701 return SDValue(); 2702 2703 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2704 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2705 2706 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 2707 DCI.AddToWorklist(Mulhi.getNode()); 2708 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 2709 } 2710 2711 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 2712 SDNode *N, DAGCombinerInfo &DCI) const { 2713 SelectionDAG &DAG = DCI.DAG; 2714 2715 // Simplify demanded bits before splitting into multiple users. 2716 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 2717 return SDValue(); 2718 2719 SDValue N0 = N->getOperand(0); 2720 SDValue N1 = N->getOperand(1); 2721 2722 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 2723 2724 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2725 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 2726 2727 SDLoc SL(N); 2728 2729 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 2730 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 2731 return DAG.getMergeValues({ MulLo, MulHi }, SL); 2732 } 2733 2734 static bool isNegativeOne(SDValue Val) { 2735 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2736 return C->isAllOnesValue(); 2737 return false; 2738 } 2739 2740 static bool isCtlzOpc(unsigned Opc) { 2741 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2742 } 2743 2744 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG, 2745 SDValue Op, 2746 const SDLoc &DL) const { 2747 EVT VT = Op.getValueType(); 2748 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 2749 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 2750 LegalVT != MVT::i16)) 2751 return SDValue(); 2752 2753 if (VT != MVT::i32) 2754 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 2755 2756 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op); 2757 if (VT != MVT::i32) 2758 FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH); 2759 2760 return FFBH; 2761 } 2762 2763 // The native instructions return -1 on 0 input. Optimize out a select that 2764 // produces -1 on 0. 2765 // 2766 // TODO: If zero is not undef, we could also do this if the output is compared 2767 // against the bitwidth. 2768 // 2769 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2770 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2771 SDValue LHS, SDValue RHS, 2772 DAGCombinerInfo &DCI) const { 2773 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2774 if (!CmpRhs || !CmpRhs->isNullValue()) 2775 return SDValue(); 2776 2777 SelectionDAG &DAG = DCI.DAG; 2778 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2779 SDValue CmpLHS = Cond.getOperand(0); 2780 2781 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2782 if (CCOpcode == ISD::SETEQ && 2783 isCtlzOpc(RHS.getOpcode()) && 2784 RHS.getOperand(0) == CmpLHS && 2785 isNegativeOne(LHS)) { 2786 return getFFBH_U32(DAG, CmpLHS, SL); 2787 } 2788 2789 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2790 if (CCOpcode == ISD::SETNE && 2791 isCtlzOpc(LHS.getOpcode()) && 2792 LHS.getOperand(0) == CmpLHS && 2793 isNegativeOne(RHS)) { 2794 return getFFBH_U32(DAG, CmpLHS, SL); 2795 } 2796 2797 return SDValue(); 2798 } 2799 2800 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 2801 unsigned Op, 2802 const SDLoc &SL, 2803 SDValue Cond, 2804 SDValue N1, 2805 SDValue N2) { 2806 SelectionDAG &DAG = DCI.DAG; 2807 EVT VT = N1.getValueType(); 2808 2809 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 2810 N1.getOperand(0), N2.getOperand(0)); 2811 DCI.AddToWorklist(NewSelect.getNode()); 2812 return DAG.getNode(Op, SL, VT, NewSelect); 2813 } 2814 2815 // Pull a free FP operation out of a select so it may fold into uses. 2816 // 2817 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 2818 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 2819 // 2820 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 2821 // select c, (fabs x), +k -> fabs (select c, x, k) 2822 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 2823 SDValue N) { 2824 SelectionDAG &DAG = DCI.DAG; 2825 SDValue Cond = N.getOperand(0); 2826 SDValue LHS = N.getOperand(1); 2827 SDValue RHS = N.getOperand(2); 2828 2829 EVT VT = N.getValueType(); 2830 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 2831 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 2832 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 2833 SDLoc(N), Cond, LHS, RHS); 2834 } 2835 2836 bool Inv = false; 2837 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 2838 std::swap(LHS, RHS); 2839 Inv = true; 2840 } 2841 2842 // TODO: Support vector constants. 2843 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 2844 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 2845 SDLoc SL(N); 2846 // If one side is an fneg/fabs and the other is a constant, we can push the 2847 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 2848 SDValue NewLHS = LHS.getOperand(0); 2849 SDValue NewRHS = RHS; 2850 2851 // Careful: if the neg can be folded up, don't try to pull it back down. 2852 bool ShouldFoldNeg = true; 2853 2854 if (NewLHS.hasOneUse()) { 2855 unsigned Opc = NewLHS.getOpcode(); 2856 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 2857 ShouldFoldNeg = false; 2858 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 2859 ShouldFoldNeg = false; 2860 } 2861 2862 if (ShouldFoldNeg) { 2863 if (LHS.getOpcode() == ISD::FNEG) 2864 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 2865 else if (CRHS->isNegative()) 2866 return SDValue(); 2867 2868 if (Inv) 2869 std::swap(NewLHS, NewRHS); 2870 2871 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 2872 Cond, NewLHS, NewRHS); 2873 DCI.AddToWorklist(NewSelect.getNode()); 2874 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 2875 } 2876 } 2877 2878 return SDValue(); 2879 } 2880 2881 2882 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2883 DAGCombinerInfo &DCI) const { 2884 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 2885 return Folded; 2886 2887 SDValue Cond = N->getOperand(0); 2888 if (Cond.getOpcode() != ISD::SETCC) 2889 return SDValue(); 2890 2891 EVT VT = N->getValueType(0); 2892 SDValue LHS = Cond.getOperand(0); 2893 SDValue RHS = Cond.getOperand(1); 2894 SDValue CC = Cond.getOperand(2); 2895 2896 SDValue True = N->getOperand(1); 2897 SDValue False = N->getOperand(2); 2898 2899 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 2900 SelectionDAG &DAG = DCI.DAG; 2901 if ((DAG.isConstantValueOfAnyType(True) || 2902 DAG.isConstantValueOfAnyType(True)) && 2903 (!DAG.isConstantValueOfAnyType(False) && 2904 !DAG.isConstantValueOfAnyType(False))) { 2905 // Swap cmp + select pair to move constant to false input. 2906 // This will allow using VOPC cndmasks more often. 2907 // select (setcc x, y), k, x -> select (setcc y, x) x, x 2908 2909 SDLoc SL(N); 2910 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 2911 LHS.getValueType().isInteger()); 2912 2913 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 2914 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 2915 } 2916 2917 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 2918 SDValue MinMax 2919 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2920 // Revisit this node so we can catch min3/max3/med3 patterns. 2921 //DCI.AddToWorklist(MinMax.getNode()); 2922 return MinMax; 2923 } 2924 } 2925 2926 // There's no reason to not do this if the condition has other uses. 2927 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2928 } 2929 2930 static bool isConstantFPZero(SDValue N) { 2931 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) 2932 return C->isZero() && !C->isNegative(); 2933 return false; 2934 } 2935 2936 static unsigned inverseMinMax(unsigned Opc) { 2937 switch (Opc) { 2938 case ISD::FMAXNUM: 2939 return ISD::FMINNUM; 2940 case ISD::FMINNUM: 2941 return ISD::FMAXNUM; 2942 case AMDGPUISD::FMAX_LEGACY: 2943 return AMDGPUISD::FMIN_LEGACY; 2944 case AMDGPUISD::FMIN_LEGACY: 2945 return AMDGPUISD::FMAX_LEGACY; 2946 default: 2947 llvm_unreachable("invalid min/max opcode"); 2948 } 2949 } 2950 2951 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 2952 DAGCombinerInfo &DCI) const { 2953 SelectionDAG &DAG = DCI.DAG; 2954 SDValue N0 = N->getOperand(0); 2955 EVT VT = N->getValueType(0); 2956 2957 unsigned Opc = N0.getOpcode(); 2958 2959 // If the input has multiple uses and we can either fold the negate down, or 2960 // the other uses cannot, give up. This both prevents unprofitable 2961 // transformations and infinite loops: we won't repeatedly try to fold around 2962 // a negate that has no 'good' form. 2963 if (N0.hasOneUse()) { 2964 // This may be able to fold into the source, but at a code size cost. Don't 2965 // fold if the fold into the user is free. 2966 if (allUsesHaveSourceMods(N, 0)) 2967 return SDValue(); 2968 } else { 2969 if (fnegFoldsIntoOp(Opc) && 2970 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 2971 return SDValue(); 2972 } 2973 2974 SDLoc SL(N); 2975 switch (Opc) { 2976 case ISD::FADD: { 2977 if (!mayIgnoreSignedZero(N0)) 2978 return SDValue(); 2979 2980 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 2981 SDValue LHS = N0.getOperand(0); 2982 SDValue RHS = N0.getOperand(1); 2983 2984 if (LHS.getOpcode() != ISD::FNEG) 2985 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 2986 else 2987 LHS = LHS.getOperand(0); 2988 2989 if (RHS.getOpcode() != ISD::FNEG) 2990 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 2991 else 2992 RHS = RHS.getOperand(0); 2993 2994 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 2995 if (!N0.hasOneUse()) 2996 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 2997 return Res; 2998 } 2999 case ISD::FMUL: 3000 case AMDGPUISD::FMUL_LEGACY: { 3001 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3002 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3003 SDValue LHS = N0.getOperand(0); 3004 SDValue RHS = N0.getOperand(1); 3005 3006 if (LHS.getOpcode() == ISD::FNEG) 3007 LHS = LHS.getOperand(0); 3008 else if (RHS.getOpcode() == ISD::FNEG) 3009 RHS = RHS.getOperand(0); 3010 else 3011 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3012 3013 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3014 if (!N0.hasOneUse()) 3015 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3016 return Res; 3017 } 3018 case ISD::FMA: 3019 case ISD::FMAD: { 3020 if (!mayIgnoreSignedZero(N0)) 3021 return SDValue(); 3022 3023 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3024 SDValue LHS = N0.getOperand(0); 3025 SDValue MHS = N0.getOperand(1); 3026 SDValue RHS = N0.getOperand(2); 3027 3028 if (LHS.getOpcode() == ISD::FNEG) 3029 LHS = LHS.getOperand(0); 3030 else if (MHS.getOpcode() == ISD::FNEG) 3031 MHS = MHS.getOperand(0); 3032 else 3033 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3034 3035 if (RHS.getOpcode() != ISD::FNEG) 3036 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3037 else 3038 RHS = RHS.getOperand(0); 3039 3040 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3041 if (!N0.hasOneUse()) 3042 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3043 return Res; 3044 } 3045 case ISD::FMAXNUM: 3046 case ISD::FMINNUM: 3047 case AMDGPUISD::FMAX_LEGACY: 3048 case AMDGPUISD::FMIN_LEGACY: { 3049 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3050 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3051 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3052 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3053 3054 SDValue LHS = N0.getOperand(0); 3055 SDValue RHS = N0.getOperand(1); 3056 3057 // 0 doesn't have a negated inline immediate. 3058 // TODO: Shouldn't fold 1/2pi either, and should be generalized to other 3059 // operations. 3060 if (isConstantFPZero(RHS)) 3061 return SDValue(); 3062 3063 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3064 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3065 unsigned Opposite = inverseMinMax(Opc); 3066 3067 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3068 if (!N0.hasOneUse()) 3069 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3070 return Res; 3071 } 3072 case ISD::FP_EXTEND: 3073 case ISD::FTRUNC: 3074 case ISD::FRINT: 3075 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3076 case ISD::FSIN: 3077 case AMDGPUISD::RCP: 3078 case AMDGPUISD::RCP_LEGACY: 3079 case AMDGPUISD::SIN_HW: { 3080 SDValue CvtSrc = N0.getOperand(0); 3081 if (CvtSrc.getOpcode() == ISD::FNEG) { 3082 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3083 // (fneg (rcp (fneg x))) -> (rcp x) 3084 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3085 } 3086 3087 if (!N0.hasOneUse()) 3088 return SDValue(); 3089 3090 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3091 // (fneg (rcp x)) -> (rcp (fneg x)) 3092 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3093 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3094 } 3095 case ISD::FP_ROUND: { 3096 SDValue CvtSrc = N0.getOperand(0); 3097 3098 if (CvtSrc.getOpcode() == ISD::FNEG) { 3099 // (fneg (fp_round (fneg x))) -> (fp_round x) 3100 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3101 CvtSrc.getOperand(0), N0.getOperand(1)); 3102 } 3103 3104 if (!N0.hasOneUse()) 3105 return SDValue(); 3106 3107 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3108 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3109 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3110 } 3111 case ISD::FP16_TO_FP: { 3112 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3113 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3114 // Put the fneg back as a legal source operation that can be matched later. 3115 SDLoc SL(N); 3116 3117 SDValue Src = N0.getOperand(0); 3118 EVT SrcVT = Src.getValueType(); 3119 3120 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3121 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3122 DAG.getConstant(0x8000, SL, SrcVT)); 3123 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3124 } 3125 default: 3126 return SDValue(); 3127 } 3128 } 3129 3130 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3131 DAGCombinerInfo &DCI) const { 3132 SelectionDAG &DAG = DCI.DAG; 3133 SDValue N0 = N->getOperand(0); 3134 3135 if (!N0.hasOneUse()) 3136 return SDValue(); 3137 3138 switch (N0.getOpcode()) { 3139 case ISD::FP16_TO_FP: { 3140 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3141 SDLoc SL(N); 3142 SDValue Src = N0.getOperand(0); 3143 EVT SrcVT = Src.getValueType(); 3144 3145 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3146 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3147 DAG.getConstant(0x7fff, SL, SrcVT)); 3148 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3149 } 3150 default: 3151 return SDValue(); 3152 } 3153 } 3154 3155 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3156 DAGCombinerInfo &DCI) const { 3157 SelectionDAG &DAG = DCI.DAG; 3158 SDLoc DL(N); 3159 3160 switch(N->getOpcode()) { 3161 default: 3162 break; 3163 case ISD::BITCAST: { 3164 EVT DestVT = N->getValueType(0); 3165 3166 // Push casts through vector builds. This helps avoid emitting a large 3167 // number of copies when materializing floating point vector constants. 3168 // 3169 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3170 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3171 if (DestVT.isVector()) { 3172 SDValue Src = N->getOperand(0); 3173 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3174 EVT SrcVT = Src.getValueType(); 3175 unsigned NElts = DestVT.getVectorNumElements(); 3176 3177 if (SrcVT.getVectorNumElements() == NElts) { 3178 EVT DestEltVT = DestVT.getVectorElementType(); 3179 3180 SmallVector<SDValue, 8> CastedElts; 3181 SDLoc SL(N); 3182 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3183 SDValue Elt = Src.getOperand(I); 3184 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3185 } 3186 3187 return DAG.getBuildVector(DestVT, SL, CastedElts); 3188 } 3189 } 3190 } 3191 3192 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3193 break; 3194 3195 // Fold bitcasts of constants. 3196 // 3197 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3198 // TODO: Generalize and move to DAGCombiner 3199 SDValue Src = N->getOperand(0); 3200 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3201 assert(Src.getValueType() == MVT::i64); 3202 SDLoc SL(N); 3203 uint64_t CVal = C->getZExtValue(); 3204 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3205 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3206 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3207 } 3208 3209 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3210 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3211 SDLoc SL(N); 3212 uint64_t CVal = Val.getZExtValue(); 3213 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3214 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3215 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3216 3217 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3218 } 3219 3220 break; 3221 } 3222 case ISD::SHL: { 3223 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3224 break; 3225 3226 return performShlCombine(N, DCI); 3227 } 3228 case ISD::SRL: { 3229 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3230 break; 3231 3232 return performSrlCombine(N, DCI); 3233 } 3234 case ISD::SRA: { 3235 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3236 break; 3237 3238 return performSraCombine(N, DCI); 3239 } 3240 case ISD::MUL: 3241 return performMulCombine(N, DCI); 3242 case ISD::MULHS: 3243 return performMulhsCombine(N, DCI); 3244 case ISD::MULHU: 3245 return performMulhuCombine(N, DCI); 3246 case AMDGPUISD::MUL_I24: 3247 case AMDGPUISD::MUL_U24: 3248 case AMDGPUISD::MULHI_I24: 3249 case AMDGPUISD::MULHI_U24: { 3250 // If the first call to simplify is successfull, then N may end up being 3251 // deleted, so we shouldn't call simplifyI24 again. 3252 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3253 return SDValue(); 3254 } 3255 case AMDGPUISD::MUL_LOHI_I24: 3256 case AMDGPUISD::MUL_LOHI_U24: 3257 return performMulLoHi24Combine(N, DCI); 3258 case ISD::SELECT: 3259 return performSelectCombine(N, DCI); 3260 case ISD::FNEG: 3261 return performFNegCombine(N, DCI); 3262 case ISD::FABS: 3263 return performFAbsCombine(N, DCI); 3264 case AMDGPUISD::BFE_I32: 3265 case AMDGPUISD::BFE_U32: { 3266 assert(!N->getValueType(0).isVector() && 3267 "Vector handling of BFE not implemented"); 3268 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3269 if (!Width) 3270 break; 3271 3272 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3273 if (WidthVal == 0) 3274 return DAG.getConstant(0, DL, MVT::i32); 3275 3276 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3277 if (!Offset) 3278 break; 3279 3280 SDValue BitsFrom = N->getOperand(0); 3281 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3282 3283 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3284 3285 if (OffsetVal == 0) { 3286 // This is already sign / zero extended, so try to fold away extra BFEs. 3287 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3288 3289 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3290 if (OpSignBits >= SignBits) 3291 return BitsFrom; 3292 3293 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3294 if (Signed) { 3295 // This is a sign_extend_inreg. Replace it to take advantage of existing 3296 // DAG Combines. If not eliminated, we will match back to BFE during 3297 // selection. 3298 3299 // TODO: The sext_inreg of extended types ends, although we can could 3300 // handle them in a single BFE. 3301 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3302 DAG.getValueType(SmallVT)); 3303 } 3304 3305 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3306 } 3307 3308 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3309 if (Signed) { 3310 return constantFoldBFE<int32_t>(DAG, 3311 CVal->getSExtValue(), 3312 OffsetVal, 3313 WidthVal, 3314 DL); 3315 } 3316 3317 return constantFoldBFE<uint32_t>(DAG, 3318 CVal->getZExtValue(), 3319 OffsetVal, 3320 WidthVal, 3321 DL); 3322 } 3323 3324 if ((OffsetVal + WidthVal) >= 32) { 3325 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3326 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3327 BitsFrom, ShiftVal); 3328 } 3329 3330 if (BitsFrom.hasOneUse()) { 3331 APInt Demanded = APInt::getBitsSet(32, 3332 OffsetVal, 3333 OffsetVal + WidthVal); 3334 3335 APInt KnownZero, KnownOne; 3336 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3337 !DCI.isBeforeLegalizeOps()); 3338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3339 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 3340 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 3341 KnownZero, KnownOne, TLO)) { 3342 DCI.CommitTargetLoweringOpt(TLO); 3343 } 3344 } 3345 3346 break; 3347 } 3348 case ISD::LOAD: 3349 return performLoadCombine(N, DCI); 3350 case ISD::STORE: 3351 return performStoreCombine(N, DCI); 3352 case AMDGPUISD::CLAMP: 3353 return performClampCombine(N, DCI); 3354 } 3355 return SDValue(); 3356 } 3357 3358 //===----------------------------------------------------------------------===// 3359 // Helper functions 3360 //===----------------------------------------------------------------------===// 3361 3362 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3363 const TargetRegisterClass *RC, 3364 unsigned Reg, EVT VT) const { 3365 MachineFunction &MF = DAG.getMachineFunction(); 3366 MachineRegisterInfo &MRI = MF.getRegInfo(); 3367 unsigned VirtualRegister; 3368 if (!MRI.isLiveIn(Reg)) { 3369 VirtualRegister = MRI.createVirtualRegister(RC); 3370 MRI.addLiveIn(Reg, VirtualRegister); 3371 } else { 3372 VirtualRegister = MRI.getLiveInVirtReg(Reg); 3373 } 3374 return DAG.getRegister(VirtualRegister, VT); 3375 } 3376 3377 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 3378 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 3379 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 3380 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 3381 switch (Param) { 3382 case GRID_DIM: 3383 return ArgOffset; 3384 case GRID_OFFSET: 3385 return ArgOffset + 4; 3386 } 3387 llvm_unreachable("unexpected implicit parameter type"); 3388 } 3389 3390 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 3391 3392 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 3393 switch ((AMDGPUISD::NodeType)Opcode) { 3394 case AMDGPUISD::FIRST_NUMBER: break; 3395 // AMDIL DAG nodes 3396 NODE_NAME_CASE(CALL); 3397 NODE_NAME_CASE(UMUL); 3398 NODE_NAME_CASE(BRANCH_COND); 3399 3400 // AMDGPU DAG nodes 3401 NODE_NAME_CASE(ENDPGM) 3402 NODE_NAME_CASE(RETURN) 3403 NODE_NAME_CASE(DWORDADDR) 3404 NODE_NAME_CASE(FRACT) 3405 NODE_NAME_CASE(SETCC) 3406 NODE_NAME_CASE(SETREG) 3407 NODE_NAME_CASE(FMA_W_CHAIN) 3408 NODE_NAME_CASE(FMUL_W_CHAIN) 3409 NODE_NAME_CASE(CLAMP) 3410 NODE_NAME_CASE(COS_HW) 3411 NODE_NAME_CASE(SIN_HW) 3412 NODE_NAME_CASE(FMAX_LEGACY) 3413 NODE_NAME_CASE(FMIN_LEGACY) 3414 NODE_NAME_CASE(FMAX3) 3415 NODE_NAME_CASE(SMAX3) 3416 NODE_NAME_CASE(UMAX3) 3417 NODE_NAME_CASE(FMIN3) 3418 NODE_NAME_CASE(SMIN3) 3419 NODE_NAME_CASE(UMIN3) 3420 NODE_NAME_CASE(FMED3) 3421 NODE_NAME_CASE(SMED3) 3422 NODE_NAME_CASE(UMED3) 3423 NODE_NAME_CASE(URECIP) 3424 NODE_NAME_CASE(DIV_SCALE) 3425 NODE_NAME_CASE(DIV_FMAS) 3426 NODE_NAME_CASE(DIV_FIXUP) 3427 NODE_NAME_CASE(FMAD_FTZ) 3428 NODE_NAME_CASE(TRIG_PREOP) 3429 NODE_NAME_CASE(RCP) 3430 NODE_NAME_CASE(RSQ) 3431 NODE_NAME_CASE(RCP_LEGACY) 3432 NODE_NAME_CASE(RSQ_LEGACY) 3433 NODE_NAME_CASE(FMUL_LEGACY) 3434 NODE_NAME_CASE(RSQ_CLAMP) 3435 NODE_NAME_CASE(LDEXP) 3436 NODE_NAME_CASE(FP_CLASS) 3437 NODE_NAME_CASE(DOT4) 3438 NODE_NAME_CASE(CARRY) 3439 NODE_NAME_CASE(BORROW) 3440 NODE_NAME_CASE(BFE_U32) 3441 NODE_NAME_CASE(BFE_I32) 3442 NODE_NAME_CASE(BFI) 3443 NODE_NAME_CASE(BFM) 3444 NODE_NAME_CASE(FFBH_U32) 3445 NODE_NAME_CASE(FFBH_I32) 3446 NODE_NAME_CASE(MUL_U24) 3447 NODE_NAME_CASE(MUL_I24) 3448 NODE_NAME_CASE(MULHI_U24) 3449 NODE_NAME_CASE(MULHI_I24) 3450 NODE_NAME_CASE(MUL_LOHI_U24) 3451 NODE_NAME_CASE(MUL_LOHI_I24) 3452 NODE_NAME_CASE(MAD_U24) 3453 NODE_NAME_CASE(MAD_I24) 3454 NODE_NAME_CASE(TEXTURE_FETCH) 3455 NODE_NAME_CASE(EXPORT) 3456 NODE_NAME_CASE(EXPORT_DONE) 3457 NODE_NAME_CASE(R600_EXPORT) 3458 NODE_NAME_CASE(CONST_ADDRESS) 3459 NODE_NAME_CASE(REGISTER_LOAD) 3460 NODE_NAME_CASE(REGISTER_STORE) 3461 NODE_NAME_CASE(LOAD_INPUT) 3462 NODE_NAME_CASE(SAMPLE) 3463 NODE_NAME_CASE(SAMPLEB) 3464 NODE_NAME_CASE(SAMPLED) 3465 NODE_NAME_CASE(SAMPLEL) 3466 NODE_NAME_CASE(CVT_F32_UBYTE0) 3467 NODE_NAME_CASE(CVT_F32_UBYTE1) 3468 NODE_NAME_CASE(CVT_F32_UBYTE2) 3469 NODE_NAME_CASE(CVT_F32_UBYTE3) 3470 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 3471 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3472 NODE_NAME_CASE(CONST_DATA_PTR) 3473 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3474 NODE_NAME_CASE(KILL) 3475 NODE_NAME_CASE(DUMMY_CHAIN) 3476 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3477 NODE_NAME_CASE(SENDMSG) 3478 NODE_NAME_CASE(SENDMSGHALT) 3479 NODE_NAME_CASE(INTERP_MOV) 3480 NODE_NAME_CASE(INTERP_P1) 3481 NODE_NAME_CASE(INTERP_P2) 3482 NODE_NAME_CASE(STORE_MSKOR) 3483 NODE_NAME_CASE(LOAD_CONSTANT) 3484 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3485 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3486 NODE_NAME_CASE(ATOMIC_INC) 3487 NODE_NAME_CASE(ATOMIC_DEC) 3488 NODE_NAME_CASE(BUFFER_LOAD) 3489 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 3490 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3491 } 3492 return nullptr; 3493 } 3494 3495 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3496 SelectionDAG &DAG, int Enabled, 3497 int &RefinementSteps, 3498 bool &UseOneConstNR, 3499 bool Reciprocal) const { 3500 EVT VT = Operand.getValueType(); 3501 3502 if (VT == MVT::f32) { 3503 RefinementSteps = 0; 3504 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3505 } 3506 3507 // TODO: There is also f64 rsq instruction, but the documentation is less 3508 // clear on its precision. 3509 3510 return SDValue(); 3511 } 3512 3513 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3514 SelectionDAG &DAG, int Enabled, 3515 int &RefinementSteps) const { 3516 EVT VT = Operand.getValueType(); 3517 3518 if (VT == MVT::f32) { 3519 // Reciprocal, < 1 ulp error. 3520 // 3521 // This reciprocal approximation converges to < 0.5 ulp error with one 3522 // newton rhapson performed with two fused multiple adds (FMAs). 3523 3524 RefinementSteps = 0; 3525 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3526 } 3527 3528 // TODO: There is also f64 rcp instruction, but the documentation is less 3529 // clear on its precision. 3530 3531 return SDValue(); 3532 } 3533 3534 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3535 const SDValue Op, 3536 APInt &KnownZero, 3537 APInt &KnownOne, 3538 const SelectionDAG &DAG, 3539 unsigned Depth) const { 3540 3541 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 3542 3543 APInt KnownZero2; 3544 APInt KnownOne2; 3545 unsigned Opc = Op.getOpcode(); 3546 3547 switch (Opc) { 3548 default: 3549 break; 3550 case AMDGPUISD::CARRY: 3551 case AMDGPUISD::BORROW: { 3552 KnownZero = APInt::getHighBitsSet(32, 31); 3553 break; 3554 } 3555 3556 case AMDGPUISD::BFE_I32: 3557 case AMDGPUISD::BFE_U32: { 3558 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3559 if (!CWidth) 3560 return; 3561 3562 unsigned BitWidth = 32; 3563 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3564 3565 if (Opc == AMDGPUISD::BFE_U32) 3566 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 3567 3568 break; 3569 } 3570 } 3571 } 3572 3573 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3574 SDValue Op, 3575 const SelectionDAG &DAG, 3576 unsigned Depth) const { 3577 switch (Op.getOpcode()) { 3578 case AMDGPUISD::BFE_I32: { 3579 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3580 if (!Width) 3581 return 1; 3582 3583 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3584 if (!isNullConstant(Op.getOperand(1))) 3585 return SignBits; 3586 3587 // TODO: Could probably figure something out with non-0 offsets. 3588 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3589 return std::max(SignBits, Op0SignBits); 3590 } 3591 3592 case AMDGPUISD::BFE_U32: { 3593 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3594 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3595 } 3596 3597 case AMDGPUISD::CARRY: 3598 case AMDGPUISD::BORROW: 3599 return 31; 3600 3601 default: 3602 return 1; 3603 } 3604 } 3605