1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUMachineFunction.h"
19 #include "GCNSubtarget.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/IR/DiagnosticInfo.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/KnownBits.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 using namespace llvm;
29 
30 #include "AMDGPUGenCallingConv.inc"
31 
32 static cl::opt<bool> AMDGPUBypassSlowDiv(
33   "amdgpu-bypass-slow-div",
34   cl::desc("Skip 64-bit divide for dynamic 32-bit values"),
35   cl::init(true));
36 
37 // Find a larger type to do a load / store of a vector with.
38 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
39   unsigned StoreSize = VT.getStoreSizeInBits();
40   if (StoreSize <= 32)
41     return EVT::getIntegerVT(Ctx, StoreSize);
42 
43   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
44   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
45 }
46 
47 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
48   EVT VT = Op.getValueType();
49   KnownBits Known = DAG.computeKnownBits(Op);
50   return VT.getSizeInBits() - Known.countMinLeadingZeros();
51 }
52 
53 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
54   EVT VT = Op.getValueType();
55 
56   // In order for this to be a signed 24-bit value, bit 23, must
57   // be a sign bit.
58   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
59 }
60 
61 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
62                                            const AMDGPUSubtarget &STI)
63     : TargetLowering(TM), Subtarget(&STI) {
64   // Lower floating point store/load to integer store/load to reduce the number
65   // of patterns in tablegen.
66   setOperationAction(ISD::LOAD, MVT::f32, Promote);
67   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
68 
69   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
70   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
71 
72   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
73   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
74 
75   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
76   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
77 
78   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
79   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
80 
81   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
82   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
83 
84   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
85   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
86 
87   setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
88   AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
89 
90   setOperationAction(ISD::LOAD, MVT::i64, Promote);
91   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
92 
93   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
94   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
95 
96   setOperationAction(ISD::LOAD, MVT::f64, Promote);
97   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
98 
99   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
100   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
101 
102   setOperationAction(ISD::LOAD, MVT::v4i64, Promote);
103   AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32);
104 
105   setOperationAction(ISD::LOAD, MVT::v4f64, Promote);
106   AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32);
107 
108   setOperationAction(ISD::LOAD, MVT::v8i64, Promote);
109   AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32);
110 
111   setOperationAction(ISD::LOAD, MVT::v8f64, Promote);
112   AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32);
113 
114   setOperationAction(ISD::LOAD, MVT::v16i64, Promote);
115   AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32);
116 
117   setOperationAction(ISD::LOAD, MVT::v16f64, Promote);
118   AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32);
119 
120   // There are no 64-bit extloads. These should be done as a 32-bit extload and
121   // an extension to 64-bit.
122   for (MVT VT : MVT::integer_valuetypes()) {
123     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
124     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
125     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
126   }
127 
128   for (MVT VT : MVT::integer_valuetypes()) {
129     if (VT == MVT::i64)
130       continue;
131 
132     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
133     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
134     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
135     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
136 
137     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
138     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
139     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
140     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
141 
142     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
143     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
144     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
145     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
146   }
147 
148   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
149     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
150     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
151     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
152     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
153     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
154     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
155     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
156     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
157     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
158     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
159     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
160     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
161     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
162     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
163     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
164   }
165 
166   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
167   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
168   setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
169   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
170   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
171   setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
172   setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
173 
174   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
175   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
176   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
177   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
178   setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand);
179 
180   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
181   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
182   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
183   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
184   setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand);
185 
186   setOperationAction(ISD::STORE, MVT::f32, Promote);
187   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
188 
189   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
190   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
191 
192   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
193   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
194 
195   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
196   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
197 
198   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
199   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
200 
201   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
202   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
203 
204   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
205   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
206 
207   setOperationAction(ISD::STORE, MVT::v32f32, Promote);
208   AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
209 
210   setOperationAction(ISD::STORE, MVT::i64, Promote);
211   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
212 
213   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
214   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
215 
216   setOperationAction(ISD::STORE, MVT::f64, Promote);
217   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
218 
219   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
220   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
221 
222   setOperationAction(ISD::STORE, MVT::v4i64, Promote);
223   AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32);
224 
225   setOperationAction(ISD::STORE, MVT::v4f64, Promote);
226   AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32);
227 
228   setOperationAction(ISD::STORE, MVT::v8i64, Promote);
229   AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32);
230 
231   setOperationAction(ISD::STORE, MVT::v8f64, Promote);
232   AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32);
233 
234   setOperationAction(ISD::STORE, MVT::v16i64, Promote);
235   AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32);
236 
237   setOperationAction(ISD::STORE, MVT::v16f64, Promote);
238   AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32);
239 
240   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
241   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
242   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
243   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
244 
245   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
246   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
247   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
248   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
249 
250   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
251   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
252   setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
253   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
254   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
255   setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
256   setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
257 
258   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
259   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
260 
261   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
262   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
263 
264   setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand);
265   setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand);
266   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
267   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
268 
269   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
270   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
271 
272   setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand);
273   setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand);
274   setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
275   setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
276   setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
277   setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
278   setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand);
279 
280   setOperationAction(ISD::Constant, MVT::i32, Legal);
281   setOperationAction(ISD::Constant, MVT::i64, Legal);
282   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
283   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
284 
285   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
286   setOperationAction(ISD::BRIND, MVT::Other, Expand);
287 
288   // This is totally unsupported, just custom lower to produce an error.
289   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
290 
291   // Library functions.  These default to Expand, but we have instructions
292   // for them.
293   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
294   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
295   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
296   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
297   setOperationAction(ISD::FABS,   MVT::f32, Legal);
298   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
299   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
300   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
301   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
302   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
303 
304   setOperationAction(ISD::FROUND, MVT::f32, Custom);
305   setOperationAction(ISD::FROUND, MVT::f64, Custom);
306 
307   setOperationAction(ISD::FLOG, MVT::f32, Custom);
308   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
309   setOperationAction(ISD::FEXP, MVT::f32, Custom);
310 
311 
312   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
313   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
314 
315   setOperationAction(ISD::FREM, MVT::f16, Custom);
316   setOperationAction(ISD::FREM, MVT::f32, Custom);
317   setOperationAction(ISD::FREM, MVT::f64, Custom);
318 
319   // Expand to fneg + fadd.
320   setOperationAction(ISD::FSUB, MVT::f64, Expand);
321 
322   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
323   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
324   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
325   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
326   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
327   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
328   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
329   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
330   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom);
331   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom);
332   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
333   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
334   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
335   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
336   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
337   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
338   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
339   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
340   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
341   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
342   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
343   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
344   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
345   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
346   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom);
347   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom);
348   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom);
349   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom);
350   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom);
351   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom);
352   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom);
353   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom);
354 
355   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
356   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
357   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
358 
359   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
360   for (MVT VT : ScalarIntVTs) {
361     // These should use [SU]DIVREM, so set them to expand
362     setOperationAction(ISD::SDIV, VT, Expand);
363     setOperationAction(ISD::UDIV, VT, Expand);
364     setOperationAction(ISD::SREM, VT, Expand);
365     setOperationAction(ISD::UREM, VT, Expand);
366 
367     // GPU does not have divrem function for signed or unsigned.
368     setOperationAction(ISD::SDIVREM, VT, Custom);
369     setOperationAction(ISD::UDIVREM, VT, Custom);
370 
371     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
372     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
373     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
374 
375     setOperationAction(ISD::BSWAP, VT, Expand);
376     setOperationAction(ISD::CTTZ, VT, Expand);
377     setOperationAction(ISD::CTLZ, VT, Expand);
378 
379     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
380     setOperationAction(ISD::ADDC, VT, Legal);
381     setOperationAction(ISD::SUBC, VT, Legal);
382     setOperationAction(ISD::ADDE, VT, Legal);
383     setOperationAction(ISD::SUBE, VT, Legal);
384   }
385 
386   // The hardware supports 32-bit FSHR, but not FSHL.
387   setOperationAction(ISD::FSHR, MVT::i32, Legal);
388 
389   // The hardware supports 32-bit ROTR, but not ROTL.
390   setOperationAction(ISD::ROTL, MVT::i32, Expand);
391   setOperationAction(ISD::ROTL, MVT::i64, Expand);
392   setOperationAction(ISD::ROTR, MVT::i64, Expand);
393 
394   setOperationAction(ISD::MULHU, MVT::i16, Expand);
395   setOperationAction(ISD::MULHS, MVT::i16, Expand);
396 
397   setOperationAction(ISD::MUL, MVT::i64, Expand);
398   setOperationAction(ISD::MULHU, MVT::i64, Expand);
399   setOperationAction(ISD::MULHS, MVT::i64, Expand);
400   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
401   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
402   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
403   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
404   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
405 
406   setOperationAction(ISD::SMIN, MVT::i32, Legal);
407   setOperationAction(ISD::UMIN, MVT::i32, Legal);
408   setOperationAction(ISD::SMAX, MVT::i32, Legal);
409   setOperationAction(ISD::UMAX, MVT::i32, Legal);
410 
411   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
412   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
413   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
414   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
415 
416   static const MVT::SimpleValueType VectorIntTypes[] = {
417     MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
418   };
419 
420   for (MVT VT : VectorIntTypes) {
421     // Expand the following operations for the current type by default.
422     setOperationAction(ISD::ADD,  VT, Expand);
423     setOperationAction(ISD::AND,  VT, Expand);
424     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
425     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
426     setOperationAction(ISD::MUL,  VT, Expand);
427     setOperationAction(ISD::MULHU, VT, Expand);
428     setOperationAction(ISD::MULHS, VT, Expand);
429     setOperationAction(ISD::OR,   VT, Expand);
430     setOperationAction(ISD::SHL,  VT, Expand);
431     setOperationAction(ISD::SRA,  VT, Expand);
432     setOperationAction(ISD::SRL,  VT, Expand);
433     setOperationAction(ISD::ROTL, VT, Expand);
434     setOperationAction(ISD::ROTR, VT, Expand);
435     setOperationAction(ISD::SUB,  VT, Expand);
436     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
437     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
438     setOperationAction(ISD::SDIV, VT, Expand);
439     setOperationAction(ISD::UDIV, VT, Expand);
440     setOperationAction(ISD::SREM, VT, Expand);
441     setOperationAction(ISD::UREM, VT, Expand);
442     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
443     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
444     setOperationAction(ISD::SDIVREM, VT, Expand);
445     setOperationAction(ISD::UDIVREM, VT, Expand);
446     setOperationAction(ISD::SELECT, VT, Expand);
447     setOperationAction(ISD::VSELECT, VT, Expand);
448     setOperationAction(ISD::SELECT_CC, VT, Expand);
449     setOperationAction(ISD::XOR,  VT, Expand);
450     setOperationAction(ISD::BSWAP, VT, Expand);
451     setOperationAction(ISD::CTPOP, VT, Expand);
452     setOperationAction(ISD::CTTZ, VT, Expand);
453     setOperationAction(ISD::CTLZ, VT, Expand);
454     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
455     setOperationAction(ISD::SETCC, VT, Expand);
456   }
457 
458   static const MVT::SimpleValueType FloatVectorTypes[] = {
459      MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
460   };
461 
462   for (MVT VT : FloatVectorTypes) {
463     setOperationAction(ISD::FABS, VT, Expand);
464     setOperationAction(ISD::FMINNUM, VT, Expand);
465     setOperationAction(ISD::FMAXNUM, VT, Expand);
466     setOperationAction(ISD::FADD, VT, Expand);
467     setOperationAction(ISD::FCEIL, VT, Expand);
468     setOperationAction(ISD::FCOS, VT, Expand);
469     setOperationAction(ISD::FDIV, VT, Expand);
470     setOperationAction(ISD::FEXP2, VT, Expand);
471     setOperationAction(ISD::FEXP, VT, Expand);
472     setOperationAction(ISD::FLOG2, VT, Expand);
473     setOperationAction(ISD::FREM, VT, Expand);
474     setOperationAction(ISD::FLOG, VT, Expand);
475     setOperationAction(ISD::FLOG10, VT, Expand);
476     setOperationAction(ISD::FPOW, VT, Expand);
477     setOperationAction(ISD::FFLOOR, VT, Expand);
478     setOperationAction(ISD::FTRUNC, VT, Expand);
479     setOperationAction(ISD::FMUL, VT, Expand);
480     setOperationAction(ISD::FMA, VT, Expand);
481     setOperationAction(ISD::FRINT, VT, Expand);
482     setOperationAction(ISD::FNEARBYINT, VT, Expand);
483     setOperationAction(ISD::FSQRT, VT, Expand);
484     setOperationAction(ISD::FSIN, VT, Expand);
485     setOperationAction(ISD::FSUB, VT, Expand);
486     setOperationAction(ISD::FNEG, VT, Expand);
487     setOperationAction(ISD::VSELECT, VT, Expand);
488     setOperationAction(ISD::SELECT_CC, VT, Expand);
489     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
490     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
491     setOperationAction(ISD::SETCC, VT, Expand);
492     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
493   }
494 
495   // This causes using an unrolled select operation rather than expansion with
496   // bit operations. This is in general better, but the alternative using BFI
497   // instructions may be better if the select sources are SGPRs.
498   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
499   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
500 
501   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
502   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
503 
504   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
505   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
506 
507   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
508   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
509 
510   // There are no libcalls of any kind.
511   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
512     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
513 
514   setSchedulingPreference(Sched::RegPressure);
515   setJumpIsExpensive(true);
516 
517   // FIXME: This is only partially true. If we have to do vector compares, any
518   // SGPR pair can be a condition register. If we have a uniform condition, we
519   // are better off doing SALU operations, where there is only one SCC. For now,
520   // we don't have a way of knowing during instruction selection if a condition
521   // will be uniform and we always use vector compares. Assume we are using
522   // vector compares until that is fixed.
523   setHasMultipleConditionRegisters(true);
524 
525   setMinCmpXchgSizeInBits(32);
526   setSupportsUnalignedAtomics(false);
527 
528   PredictableSelectIsExpensive = false;
529 
530   // We want to find all load dependencies for long chains of stores to enable
531   // merging into very wide vectors. The problem is with vectors with > 4
532   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
533   // vectors are a legal type, even though we have to split the loads
534   // usually. When we can more precisely specify load legality per address
535   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
536   // smarter so that they can figure out what to do in 2 iterations without all
537   // N > 4 stores on the same chain.
538   GatherAllAliasesMaxDepth = 16;
539 
540   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
541   // about these during lowering.
542   MaxStoresPerMemcpy  = 0xffffffff;
543   MaxStoresPerMemmove = 0xffffffff;
544   MaxStoresPerMemset  = 0xffffffff;
545 
546   // The expansion for 64-bit division is enormous.
547   if (AMDGPUBypassSlowDiv)
548     addBypassSlowDiv(64, 32);
549 
550   setTargetDAGCombine(ISD::BITCAST);
551   setTargetDAGCombine(ISD::SHL);
552   setTargetDAGCombine(ISD::SRA);
553   setTargetDAGCombine(ISD::SRL);
554   setTargetDAGCombine(ISD::TRUNCATE);
555   setTargetDAGCombine(ISD::MUL);
556   setTargetDAGCombine(ISD::MULHU);
557   setTargetDAGCombine(ISD::MULHS);
558   setTargetDAGCombine(ISD::SELECT);
559   setTargetDAGCombine(ISD::SELECT_CC);
560   setTargetDAGCombine(ISD::STORE);
561   setTargetDAGCombine(ISD::FADD);
562   setTargetDAGCombine(ISD::FSUB);
563   setTargetDAGCombine(ISD::FNEG);
564   setTargetDAGCombine(ISD::FABS);
565   setTargetDAGCombine(ISD::AssertZext);
566   setTargetDAGCombine(ISD::AssertSext);
567   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
568 }
569 
570 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const {
571   if (getTargetMachine().Options.NoSignedZerosFPMath)
572     return true;
573 
574   const auto Flags = Op.getNode()->getFlags();
575   if (Flags.hasNoSignedZeros())
576     return true;
577 
578   return false;
579 }
580 
581 //===----------------------------------------------------------------------===//
582 // Target Information
583 //===----------------------------------------------------------------------===//
584 
585 LLVM_READNONE
586 static bool fnegFoldsIntoOp(unsigned Opc) {
587   switch (Opc) {
588   case ISD::FADD:
589   case ISD::FSUB:
590   case ISD::FMUL:
591   case ISD::FMA:
592   case ISD::FMAD:
593   case ISD::FMINNUM:
594   case ISD::FMAXNUM:
595   case ISD::FMINNUM_IEEE:
596   case ISD::FMAXNUM_IEEE:
597   case ISD::FSIN:
598   case ISD::FTRUNC:
599   case ISD::FRINT:
600   case ISD::FNEARBYINT:
601   case ISD::FCANONICALIZE:
602   case AMDGPUISD::RCP:
603   case AMDGPUISD::RCP_LEGACY:
604   case AMDGPUISD::RCP_IFLAG:
605   case AMDGPUISD::SIN_HW:
606   case AMDGPUISD::FMUL_LEGACY:
607   case AMDGPUISD::FMIN_LEGACY:
608   case AMDGPUISD::FMAX_LEGACY:
609   case AMDGPUISD::FMED3:
610     // TODO: handle llvm.amdgcn.fma.legacy
611     return true;
612   default:
613     return false;
614   }
615 }
616 
617 /// \p returns true if the operation will definitely need to use a 64-bit
618 /// encoding, and thus will use a VOP3 encoding regardless of the source
619 /// modifiers.
620 LLVM_READONLY
621 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
622   return N->getNumOperands() > 2 || VT == MVT::f64;
623 }
624 
625 // Most FP instructions support source modifiers, but this could be refined
626 // slightly.
627 LLVM_READONLY
628 static bool hasSourceMods(const SDNode *N) {
629   if (isa<MemSDNode>(N))
630     return false;
631 
632   switch (N->getOpcode()) {
633   case ISD::CopyToReg:
634   case ISD::SELECT:
635   case ISD::FDIV:
636   case ISD::FREM:
637   case ISD::INLINEASM:
638   case ISD::INLINEASM_BR:
639   case AMDGPUISD::DIV_SCALE:
640   case ISD::INTRINSIC_W_CHAIN:
641 
642   // TODO: Should really be looking at the users of the bitcast. These are
643   // problematic because bitcasts are used to legalize all stores to integer
644   // types.
645   case ISD::BITCAST:
646     return false;
647   case ISD::INTRINSIC_WO_CHAIN: {
648     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
649     case Intrinsic::amdgcn_interp_p1:
650     case Intrinsic::amdgcn_interp_p2:
651     case Intrinsic::amdgcn_interp_mov:
652     case Intrinsic::amdgcn_interp_p1_f16:
653     case Intrinsic::amdgcn_interp_p2_f16:
654       return false;
655     default:
656       return true;
657     }
658   }
659   default:
660     return true;
661   }
662 }
663 
664 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
665                                                  unsigned CostThreshold) {
666   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
667   // it is truly free to use a source modifier in all cases. If there are
668   // multiple users but for each one will necessitate using VOP3, there will be
669   // a code size increase. Try to avoid increasing code size unless we know it
670   // will save on the instruction count.
671   unsigned NumMayIncreaseSize = 0;
672   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
673 
674   // XXX - Should this limit number of uses to check?
675   for (const SDNode *U : N->uses()) {
676     if (!hasSourceMods(U))
677       return false;
678 
679     if (!opMustUseVOP3Encoding(U, VT)) {
680       if (++NumMayIncreaseSize > CostThreshold)
681         return false;
682     }
683   }
684 
685   return true;
686 }
687 
688 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
689                                               ISD::NodeType ExtendKind) const {
690   assert(!VT.isVector() && "only scalar expected");
691 
692   // Round to the next multiple of 32-bits.
693   unsigned Size = VT.getSizeInBits();
694   if (Size <= 32)
695     return MVT::i32;
696   return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32));
697 }
698 
699 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
700   return MVT::i32;
701 }
702 
703 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
704   return true;
705 }
706 
707 // The backend supports 32 and 64 bit floating point immediates.
708 // FIXME: Why are we reporting vectors of FP immediates as legal?
709 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
710                                         bool ForCodeSize) const {
711   EVT ScalarVT = VT.getScalarType();
712   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
713          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
714 }
715 
716 // We don't want to shrink f64 / f32 constants.
717 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
718   EVT ScalarVT = VT.getScalarType();
719   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
720 }
721 
722 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
723                                                  ISD::LoadExtType ExtTy,
724                                                  EVT NewVT) const {
725   // TODO: This may be worth removing. Check regression tests for diffs.
726   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
727     return false;
728 
729   unsigned NewSize = NewVT.getStoreSizeInBits();
730 
731   // If we are reducing to a 32-bit load or a smaller multi-dword load,
732   // this is always better.
733   if (NewSize >= 32)
734     return true;
735 
736   EVT OldVT = N->getValueType(0);
737   unsigned OldSize = OldVT.getStoreSizeInBits();
738 
739   MemSDNode *MN = cast<MemSDNode>(N);
740   unsigned AS = MN->getAddressSpace();
741   // Do not shrink an aligned scalar load to sub-dword.
742   // Scalar engine cannot do sub-dword loads.
743   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
744       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
745        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
746        (isa<LoadSDNode>(N) &&
747         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
748       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
749     return false;
750 
751   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
752   // extloads, so doing one requires using a buffer_load. In cases where we
753   // still couldn't use a scalar load, using the wider load shouldn't really
754   // hurt anything.
755 
756   // If the old size already had to be an extload, there's no harm in continuing
757   // to reduce the width.
758   return (OldSize < 32);
759 }
760 
761 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
762                                                    const SelectionDAG &DAG,
763                                                    const MachineMemOperand &MMO) const {
764 
765   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
766 
767   if (LoadTy.getScalarType() == MVT::i32)
768     return false;
769 
770   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
771   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
772 
773   if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
774     return false;
775 
776   bool Fast = false;
777   return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
778                                         CastTy, MMO, &Fast) &&
779          Fast;
780 }
781 
782 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
783 // profitable with the expansion for 64-bit since it's generally good to
784 // speculate things.
785 // FIXME: These should really have the size as a parameter.
786 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
787   return true;
788 }
789 
790 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
791   return true;
792 }
793 
794 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const {
795   switch (N->getOpcode()) {
796   case ISD::EntryToken:
797   case ISD::TokenFactor:
798     return true;
799   case ISD::INTRINSIC_WO_CHAIN: {
800     unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
801     switch (IntrID) {
802     case Intrinsic::amdgcn_readfirstlane:
803     case Intrinsic::amdgcn_readlane:
804       return true;
805     }
806     return false;
807   }
808   case ISD::LOAD:
809     if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
810         AMDGPUAS::CONSTANT_ADDRESS_32BIT)
811       return true;
812     return false;
813   }
814   return false;
815 }
816 
817 SDValue AMDGPUTargetLowering::getNegatedExpression(
818     SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize,
819     NegatibleCost &Cost, unsigned Depth) const {
820 
821   switch (Op.getOpcode()) {
822   case ISD::FMA:
823   case ISD::FMAD: {
824     // Negating a fma is not free if it has users without source mods.
825     if (!allUsesHaveSourceMods(Op.getNode()))
826       return SDValue();
827     break;
828   }
829   default:
830     break;
831   }
832 
833   return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations,
834                                               ForCodeSize, Cost, Depth);
835 }
836 
837 //===---------------------------------------------------------------------===//
838 // Target Properties
839 //===---------------------------------------------------------------------===//
840 
841 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
842   assert(VT.isFloatingPoint());
843 
844   // Packed operations do not have a fabs modifier.
845   return VT == MVT::f32 || VT == MVT::f64 ||
846          (Subtarget->has16BitInsts() && VT == MVT::f16);
847 }
848 
849 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
850   assert(VT.isFloatingPoint());
851   return VT == MVT::f32 || VT == MVT::f64 ||
852          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
853          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
854 }
855 
856 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
857                                                          unsigned NumElem,
858                                                          unsigned AS) const {
859   return true;
860 }
861 
862 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
863   // There are few operations which truly have vector input operands. Any vector
864   // operation is going to involve operations on each component, and a
865   // build_vector will be a copy per element, so it always makes sense to use a
866   // build_vector input in place of the extracted element to avoid a copy into a
867   // super register.
868   //
869   // We should probably only do this if all users are extracts only, but this
870   // should be the common case.
871   return true;
872 }
873 
874 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
875   // Truncate is just accessing a subregister.
876 
877   unsigned SrcSize = Source.getSizeInBits();
878   unsigned DestSize = Dest.getSizeInBits();
879 
880   return DestSize < SrcSize && DestSize % 32 == 0 ;
881 }
882 
883 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
884   // Truncate is just accessing a subregister.
885 
886   unsigned SrcSize = Source->getScalarSizeInBits();
887   unsigned DestSize = Dest->getScalarSizeInBits();
888 
889   if (DestSize== 16 && Subtarget->has16BitInsts())
890     return SrcSize >= 32;
891 
892   return DestSize < SrcSize && DestSize % 32 == 0;
893 }
894 
895 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
896   unsigned SrcSize = Src->getScalarSizeInBits();
897   unsigned DestSize = Dest->getScalarSizeInBits();
898 
899   if (SrcSize == 16 && Subtarget->has16BitInsts())
900     return DestSize >= 32;
901 
902   return SrcSize == 32 && DestSize == 64;
903 }
904 
905 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
906   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
907   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
908   // this will enable reducing 64-bit operations the 32-bit, which is always
909   // good.
910 
911   if (Src == MVT::i16)
912     return Dest == MVT::i32 ||Dest == MVT::i64 ;
913 
914   return Src == MVT::i32 && Dest == MVT::i64;
915 }
916 
917 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
918   return isZExtFree(Val.getValueType(), VT2);
919 }
920 
921 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
922   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
923   // limited number of native 64-bit operations. Shrinking an operation to fit
924   // in a single 32-bit register should always be helpful. As currently used,
925   // this is much less general than the name suggests, and is only used in
926   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
927   // not profitable, and may actually be harmful.
928   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
929 }
930 
931 //===---------------------------------------------------------------------===//
932 // TargetLowering Callbacks
933 //===---------------------------------------------------------------------===//
934 
935 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
936                                                   bool IsVarArg) {
937   switch (CC) {
938   case CallingConv::AMDGPU_VS:
939   case CallingConv::AMDGPU_GS:
940   case CallingConv::AMDGPU_PS:
941   case CallingConv::AMDGPU_CS:
942   case CallingConv::AMDGPU_HS:
943   case CallingConv::AMDGPU_ES:
944   case CallingConv::AMDGPU_LS:
945     return CC_AMDGPU;
946   case CallingConv::C:
947   case CallingConv::Fast:
948   case CallingConv::Cold:
949     return CC_AMDGPU_Func;
950   case CallingConv::AMDGPU_Gfx:
951     return CC_SI_Gfx;
952   case CallingConv::AMDGPU_KERNEL:
953   case CallingConv::SPIR_KERNEL:
954   default:
955     report_fatal_error("Unsupported calling convention for call");
956   }
957 }
958 
959 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
960                                                     bool IsVarArg) {
961   switch (CC) {
962   case CallingConv::AMDGPU_KERNEL:
963   case CallingConv::SPIR_KERNEL:
964     llvm_unreachable("kernels should not be handled here");
965   case CallingConv::AMDGPU_VS:
966   case CallingConv::AMDGPU_GS:
967   case CallingConv::AMDGPU_PS:
968   case CallingConv::AMDGPU_CS:
969   case CallingConv::AMDGPU_HS:
970   case CallingConv::AMDGPU_ES:
971   case CallingConv::AMDGPU_LS:
972     return RetCC_SI_Shader;
973   case CallingConv::AMDGPU_Gfx:
974     return RetCC_SI_Gfx;
975   case CallingConv::C:
976   case CallingConv::Fast:
977   case CallingConv::Cold:
978     return RetCC_AMDGPU_Func;
979   default:
980     report_fatal_error("Unsupported calling convention.");
981   }
982 }
983 
984 /// The SelectionDAGBuilder will automatically promote function arguments
985 /// with illegal types.  However, this does not work for the AMDGPU targets
986 /// since the function arguments are stored in memory as these illegal types.
987 /// In order to handle this properly we need to get the original types sizes
988 /// from the LLVM IR Function and fixup the ISD:InputArg values before
989 /// passing them to AnalyzeFormalArguments()
990 
991 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
992 /// input values across multiple registers.  Each item in the Ins array
993 /// represents a single value that will be stored in registers.  Ins[x].VT is
994 /// the value type of the value that will be stored in the register, so
995 /// whatever SDNode we lower the argument to needs to be this type.
996 ///
997 /// In order to correctly lower the arguments we need to know the size of each
998 /// argument.  Since Ins[x].VT gives us the size of the register that will
999 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
1000 /// for the orignal function argument so that we can deduce the correct memory
1001 /// type to use for Ins[x].  In most cases the correct memory type will be
1002 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
1003 /// we have a kernel argument of type v8i8, this argument will be split into
1004 /// 8 parts and each part will be represented by its own item in the Ins array.
1005 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
1006 /// the argument before it was split.  From this, we deduce that the memory type
1007 /// for each individual part is i8.  We pass the memory type as LocVT to the
1008 /// calling convention analysis function and the register type (Ins[x].VT) as
1009 /// the ValVT.
1010 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
1011   CCState &State,
1012   const SmallVectorImpl<ISD::InputArg> &Ins) const {
1013   const MachineFunction &MF = State.getMachineFunction();
1014   const Function &Fn = MF.getFunction();
1015   LLVMContext &Ctx = Fn.getParent()->getContext();
1016   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
1017   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
1018   CallingConv::ID CC = Fn.getCallingConv();
1019 
1020   Align MaxAlign = Align(1);
1021   uint64_t ExplicitArgOffset = 0;
1022   const DataLayout &DL = Fn.getParent()->getDataLayout();
1023 
1024   unsigned InIndex = 0;
1025 
1026   for (const Argument &Arg : Fn.args()) {
1027     const bool IsByRef = Arg.hasByRefAttr();
1028     Type *BaseArgTy = Arg.getType();
1029     Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy;
1030     MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None;
1031     if (!Alignment)
1032       Alignment = DL.getABITypeAlign(MemArgTy);
1033     MaxAlign = max(Alignment, MaxAlign);
1034     uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy);
1035 
1036     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset;
1037     ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize;
1038 
1039     // We're basically throwing away everything passed into us and starting over
1040     // to get accurate in-memory offsets. The "PartOffset" is completely useless
1041     // to us as computed in Ins.
1042     //
1043     // We also need to figure out what type legalization is trying to do to get
1044     // the correct memory offsets.
1045 
1046     SmallVector<EVT, 16> ValueVTs;
1047     SmallVector<uint64_t, 16> Offsets;
1048     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
1049 
1050     for (unsigned Value = 0, NumValues = ValueVTs.size();
1051          Value != NumValues; ++Value) {
1052       uint64_t BasePartOffset = Offsets[Value];
1053 
1054       EVT ArgVT = ValueVTs[Value];
1055       EVT MemVT = ArgVT;
1056       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
1057       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
1058 
1059       if (NumRegs == 1) {
1060         // This argument is not split, so the IR type is the memory type.
1061         if (ArgVT.isExtended()) {
1062           // We have an extended type, like i24, so we should just use the
1063           // register type.
1064           MemVT = RegisterVT;
1065         } else {
1066           MemVT = ArgVT;
1067         }
1068       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
1069                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
1070         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
1071         // We have a vector value which has been split into a vector with
1072         // the same scalar type, but fewer elements.  This should handle
1073         // all the floating-point vector types.
1074         MemVT = RegisterVT;
1075       } else if (ArgVT.isVector() &&
1076                  ArgVT.getVectorNumElements() == NumRegs) {
1077         // This arg has been split so that each element is stored in a separate
1078         // register.
1079         MemVT = ArgVT.getScalarType();
1080       } else if (ArgVT.isExtended()) {
1081         // We have an extended type, like i65.
1082         MemVT = RegisterVT;
1083       } else {
1084         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1085         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1086         if (RegisterVT.isInteger()) {
1087           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1088         } else if (RegisterVT.isVector()) {
1089           assert(!RegisterVT.getScalarType().isFloatingPoint());
1090           unsigned NumElements = RegisterVT.getVectorNumElements();
1091           assert(MemoryBits % NumElements == 0);
1092           // This vector type has been split into another vector type with
1093           // a different elements size.
1094           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1095                                            MemoryBits / NumElements);
1096           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1097         } else {
1098           llvm_unreachable("cannot deduce memory type.");
1099         }
1100       }
1101 
1102       // Convert one element vectors to scalar.
1103       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1104         MemVT = MemVT.getScalarType();
1105 
1106       // Round up vec3/vec5 argument.
1107       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1108         assert(MemVT.getVectorNumElements() == 3 ||
1109                MemVT.getVectorNumElements() == 5);
1110         MemVT = MemVT.getPow2VectorType(State.getContext());
1111       } else if (!MemVT.isSimple() && !MemVT.isVector()) {
1112         MemVT = MemVT.getRoundIntegerType(State.getContext());
1113       }
1114 
1115       unsigned PartOffset = 0;
1116       for (unsigned i = 0; i != NumRegs; ++i) {
1117         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1118                                                BasePartOffset + PartOffset,
1119                                                MemVT.getSimpleVT(),
1120                                                CCValAssign::Full));
1121         PartOffset += MemVT.getStoreSize();
1122       }
1123     }
1124   }
1125 }
1126 
1127 SDValue AMDGPUTargetLowering::LowerReturn(
1128   SDValue Chain, CallingConv::ID CallConv,
1129   bool isVarArg,
1130   const SmallVectorImpl<ISD::OutputArg> &Outs,
1131   const SmallVectorImpl<SDValue> &OutVals,
1132   const SDLoc &DL, SelectionDAG &DAG) const {
1133   // FIXME: Fails for r600 tests
1134   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1135   // "wave terminate should not have return values");
1136   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1137 }
1138 
1139 //===---------------------------------------------------------------------===//
1140 // Target specific lowering
1141 //===---------------------------------------------------------------------===//
1142 
1143 /// Selects the correct CCAssignFn for a given CallingConvention value.
1144 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1145                                                     bool IsVarArg) {
1146   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1147 }
1148 
1149 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1150                                                       bool IsVarArg) {
1151   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1152 }
1153 
1154 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1155                                                   SelectionDAG &DAG,
1156                                                   MachineFrameInfo &MFI,
1157                                                   int ClobberedFI) const {
1158   SmallVector<SDValue, 8> ArgChains;
1159   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1160   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1161 
1162   // Include the original chain at the beginning of the list. When this is
1163   // used by target LowerCall hooks, this helps legalize find the
1164   // CALLSEQ_BEGIN node.
1165   ArgChains.push_back(Chain);
1166 
1167   // Add a chain value for each stack argument corresponding
1168   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1169                             UE = DAG.getEntryNode().getNode()->use_end();
1170        U != UE; ++U) {
1171     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1172       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1173         if (FI->getIndex() < 0) {
1174           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1175           int64_t InLastByte = InFirstByte;
1176           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1177 
1178           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1179               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1180             ArgChains.push_back(SDValue(L, 1));
1181         }
1182       }
1183     }
1184   }
1185 
1186   // Build a tokenfactor for all the chains.
1187   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1188 }
1189 
1190 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1191                                                  SmallVectorImpl<SDValue> &InVals,
1192                                                  StringRef Reason) const {
1193   SDValue Callee = CLI.Callee;
1194   SelectionDAG &DAG = CLI.DAG;
1195 
1196   const Function &Fn = DAG.getMachineFunction().getFunction();
1197 
1198   StringRef FuncName("<unknown>");
1199 
1200   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1201     FuncName = G->getSymbol();
1202   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1203     FuncName = G->getGlobal()->getName();
1204 
1205   DiagnosticInfoUnsupported NoCalls(
1206     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1207   DAG.getContext()->diagnose(NoCalls);
1208 
1209   if (!CLI.IsTailCall) {
1210     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1211       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1212   }
1213 
1214   return DAG.getEntryNode();
1215 }
1216 
1217 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1218                                         SmallVectorImpl<SDValue> &InVals) const {
1219   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1220 }
1221 
1222 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1223                                                       SelectionDAG &DAG) const {
1224   const Function &Fn = DAG.getMachineFunction().getFunction();
1225 
1226   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1227                                             SDLoc(Op).getDebugLoc());
1228   DAG.getContext()->diagnose(NoDynamicAlloca);
1229   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1230   return DAG.getMergeValues(Ops, SDLoc());
1231 }
1232 
1233 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1234                                              SelectionDAG &DAG) const {
1235   switch (Op.getOpcode()) {
1236   default:
1237     Op->print(errs(), &DAG);
1238     llvm_unreachable("Custom lowering code for this "
1239                      "instruction is not implemented yet!");
1240     break;
1241   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1242   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1243   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1244   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1245   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1246   case ISD::FREM: return LowerFREM(Op, DAG);
1247   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1248   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1249   case ISD::FRINT: return LowerFRINT(Op, DAG);
1250   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1251   case ISD::FROUND: return LowerFROUND(Op, DAG);
1252   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1253   case ISD::FLOG:
1254     return LowerFLOG(Op, DAG, numbers::ln2f);
1255   case ISD::FLOG10:
1256     return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1257   case ISD::FEXP:
1258     return lowerFEXP(Op, DAG);
1259   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1260   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1261   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1262   case ISD::FP_TO_SINT:
1263   case ISD::FP_TO_UINT:
1264     return LowerFP_TO_INT(Op, DAG);
1265   case ISD::CTTZ:
1266   case ISD::CTTZ_ZERO_UNDEF:
1267   case ISD::CTLZ:
1268   case ISD::CTLZ_ZERO_UNDEF:
1269     return LowerCTLZ_CTTZ(Op, DAG);
1270   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1271   }
1272   return Op;
1273 }
1274 
1275 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1276                                               SmallVectorImpl<SDValue> &Results,
1277                                               SelectionDAG &DAG) const {
1278   switch (N->getOpcode()) {
1279   case ISD::SIGN_EXTEND_INREG:
1280     // Different parts of legalization seem to interpret which type of
1281     // sign_extend_inreg is the one to check for custom lowering. The extended
1282     // from type is what really matters, but some places check for custom
1283     // lowering of the result type. This results in trying to use
1284     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1285     // nothing here and let the illegal result integer be handled normally.
1286     return;
1287   default:
1288     return;
1289   }
1290 }
1291 
1292 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1293   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1294   if (!GVar || !GVar->hasInitializer())
1295     return false;
1296 
1297   return !isa<UndefValue>(GVar->getInitializer());
1298 }
1299 
1300 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1301                                                  SDValue Op,
1302                                                  SelectionDAG &DAG) const {
1303 
1304   const DataLayout &DL = DAG.getDataLayout();
1305   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1306   const GlobalValue *GV = G->getGlobal();
1307 
1308   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1309       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1310     if (!MFI->isModuleEntryFunction() &&
1311         !GV->getName().equals("llvm.amdgcn.module.lds")) {
1312       SDLoc DL(Op);
1313       const Function &Fn = DAG.getMachineFunction().getFunction();
1314       DiagnosticInfoUnsupported BadLDSDecl(
1315         Fn, "local memory global used by non-kernel function",
1316         DL.getDebugLoc(), DS_Warning);
1317       DAG.getContext()->diagnose(BadLDSDecl);
1318 
1319       // We currently don't have a way to correctly allocate LDS objects that
1320       // aren't directly associated with a kernel. We do force inlining of
1321       // functions that use local objects. However, if these dead functions are
1322       // not eliminated, we don't want a compile time error. Just emit a warning
1323       // and a trap, since there should be no callable path here.
1324       SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode());
1325       SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1326                                         Trap, DAG.getRoot());
1327       DAG.setRoot(OutputChain);
1328       return DAG.getUNDEF(Op.getValueType());
1329     }
1330 
1331     // XXX: What does the value of G->getOffset() mean?
1332     assert(G->getOffset() == 0 &&
1333          "Do not know what to do with an non-zero offset");
1334 
1335     // TODO: We could emit code to handle the initialization somewhere.
1336     if (!hasDefinedInitializer(GV)) {
1337       unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV));
1338       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1339     }
1340   }
1341 
1342   const Function &Fn = DAG.getMachineFunction().getFunction();
1343   DiagnosticInfoUnsupported BadInit(
1344       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1345   DAG.getContext()->diagnose(BadInit);
1346   return SDValue();
1347 }
1348 
1349 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1350                                                   SelectionDAG &DAG) const {
1351   SmallVector<SDValue, 8> Args;
1352 
1353   EVT VT = Op.getValueType();
1354   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1355     SDLoc SL(Op);
1356     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1357     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1358 
1359     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1360     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1361   }
1362 
1363   for (const SDUse &U : Op->ops())
1364     DAG.ExtractVectorElements(U.get(), Args);
1365 
1366   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1367 }
1368 
1369 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1370                                                      SelectionDAG &DAG) const {
1371 
1372   SmallVector<SDValue, 8> Args;
1373   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1374   EVT VT = Op.getValueType();
1375   EVT SrcVT = Op.getOperand(0).getValueType();
1376 
1377   // For these types, we have some TableGen patterns except if the index is 1
1378   if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) ||
1379        (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) &&
1380       Start != 1)
1381     return Op;
1382 
1383   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1384                             VT.getVectorNumElements());
1385 
1386   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1387 }
1388 
1389 /// Generate Min/Max node
1390 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1391                                                    SDValue LHS, SDValue RHS,
1392                                                    SDValue True, SDValue False,
1393                                                    SDValue CC,
1394                                                    DAGCombinerInfo &DCI) const {
1395   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1396     return SDValue();
1397 
1398   SelectionDAG &DAG = DCI.DAG;
1399   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1400   switch (CCOpcode) {
1401   case ISD::SETOEQ:
1402   case ISD::SETONE:
1403   case ISD::SETUNE:
1404   case ISD::SETNE:
1405   case ISD::SETUEQ:
1406   case ISD::SETEQ:
1407   case ISD::SETFALSE:
1408   case ISD::SETFALSE2:
1409   case ISD::SETTRUE:
1410   case ISD::SETTRUE2:
1411   case ISD::SETUO:
1412   case ISD::SETO:
1413     break;
1414   case ISD::SETULE:
1415   case ISD::SETULT: {
1416     if (LHS == True)
1417       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1418     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1419   }
1420   case ISD::SETOLE:
1421   case ISD::SETOLT:
1422   case ISD::SETLE:
1423   case ISD::SETLT: {
1424     // Ordered. Assume ordered for undefined.
1425 
1426     // Only do this after legalization to avoid interfering with other combines
1427     // which might occur.
1428     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1429         !DCI.isCalledByLegalizer())
1430       return SDValue();
1431 
1432     // We need to permute the operands to get the correct NaN behavior. The
1433     // selected operand is the second one based on the failing compare with NaN,
1434     // so permute it based on the compare type the hardware uses.
1435     if (LHS == True)
1436       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1437     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1438   }
1439   case ISD::SETUGE:
1440   case ISD::SETUGT: {
1441     if (LHS == True)
1442       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1443     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1444   }
1445   case ISD::SETGT:
1446   case ISD::SETGE:
1447   case ISD::SETOGE:
1448   case ISD::SETOGT: {
1449     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1450         !DCI.isCalledByLegalizer())
1451       return SDValue();
1452 
1453     if (LHS == True)
1454       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1455     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1456   }
1457   case ISD::SETCC_INVALID:
1458     llvm_unreachable("Invalid setcc condcode!");
1459   }
1460   return SDValue();
1461 }
1462 
1463 std::pair<SDValue, SDValue>
1464 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1465   SDLoc SL(Op);
1466 
1467   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1468 
1469   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1470   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1471 
1472   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1473   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1474 
1475   return std::make_pair(Lo, Hi);
1476 }
1477 
1478 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1479   SDLoc SL(Op);
1480 
1481   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1482   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1483   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1484 }
1485 
1486 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1487   SDLoc SL(Op);
1488 
1489   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1490   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1491   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1492 }
1493 
1494 // Split a vector type into two parts. The first part is a power of two vector.
1495 // The second part is whatever is left over, and is a scalar if it would
1496 // otherwise be a 1-vector.
1497 std::pair<EVT, EVT>
1498 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1499   EVT LoVT, HiVT;
1500   EVT EltVT = VT.getVectorElementType();
1501   unsigned NumElts = VT.getVectorNumElements();
1502   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1503   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1504   HiVT = NumElts - LoNumElts == 1
1505              ? EltVT
1506              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1507   return std::make_pair(LoVT, HiVT);
1508 }
1509 
1510 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1511 // scalar.
1512 std::pair<SDValue, SDValue>
1513 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1514                                   const EVT &LoVT, const EVT &HiVT,
1515                                   SelectionDAG &DAG) const {
1516   assert(LoVT.getVectorNumElements() +
1517                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1518              N.getValueType().getVectorNumElements() &&
1519          "More vector elements requested than available!");
1520   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1521                            DAG.getVectorIdxConstant(0, DL));
1522   SDValue Hi = DAG.getNode(
1523       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1524       HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
1525   return std::make_pair(Lo, Hi);
1526 }
1527 
1528 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1529                                               SelectionDAG &DAG) const {
1530   LoadSDNode *Load = cast<LoadSDNode>(Op);
1531   EVT VT = Op.getValueType();
1532   SDLoc SL(Op);
1533 
1534 
1535   // If this is a 2 element vector, we really want to scalarize and not create
1536   // weird 1 element vectors.
1537   if (VT.getVectorNumElements() == 2) {
1538     SDValue Ops[2];
1539     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1540     return DAG.getMergeValues(Ops, SL);
1541   }
1542 
1543   SDValue BasePtr = Load->getBasePtr();
1544   EVT MemVT = Load->getMemoryVT();
1545 
1546   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1547 
1548   EVT LoVT, HiVT;
1549   EVT LoMemVT, HiMemVT;
1550   SDValue Lo, Hi;
1551 
1552   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1553   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1554   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1555 
1556   unsigned Size = LoMemVT.getStoreSize();
1557   unsigned BaseAlign = Load->getAlignment();
1558   unsigned HiAlign = MinAlign(BaseAlign, Size);
1559 
1560   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1561                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1562                                   BaseAlign, Load->getMemOperand()->getFlags());
1563   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size));
1564   SDValue HiLoad =
1565       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1566                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1567                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1568 
1569   SDValue Join;
1570   if (LoVT == HiVT) {
1571     // This is the case that the vector is power of two so was evenly split.
1572     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1573   } else {
1574     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1575                        DAG.getVectorIdxConstant(0, SL));
1576     Join = DAG.getNode(
1577         HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
1578         VT, Join, HiLoad,
1579         DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
1580   }
1581 
1582   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1583                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1584 
1585   return DAG.getMergeValues(Ops, SL);
1586 }
1587 
1588 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op,
1589                                                      SelectionDAG &DAG) const {
1590   LoadSDNode *Load = cast<LoadSDNode>(Op);
1591   EVT VT = Op.getValueType();
1592   SDValue BasePtr = Load->getBasePtr();
1593   EVT MemVT = Load->getMemoryVT();
1594   SDLoc SL(Op);
1595   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1596   unsigned BaseAlign = Load->getAlignment();
1597   unsigned NumElements = MemVT.getVectorNumElements();
1598 
1599   // Widen from vec3 to vec4 when the load is at least 8-byte aligned
1600   // or 16-byte fully dereferenceable. Otherwise, split the vector load.
1601   if (NumElements != 3 ||
1602       (BaseAlign < 8 &&
1603        !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout())))
1604     return SplitVectorLoad(Op, DAG);
1605 
1606   assert(NumElements == 3);
1607 
1608   EVT WideVT =
1609       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1610   EVT WideMemVT =
1611       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1612   SDValue WideLoad = DAG.getExtLoad(
1613       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1614       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1615   return DAG.getMergeValues(
1616       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1617                    DAG.getVectorIdxConstant(0, SL)),
1618        WideLoad.getValue(1)},
1619       SL);
1620 }
1621 
1622 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1623                                                SelectionDAG &DAG) const {
1624   StoreSDNode *Store = cast<StoreSDNode>(Op);
1625   SDValue Val = Store->getValue();
1626   EVT VT = Val.getValueType();
1627 
1628   // If this is a 2 element vector, we really want to scalarize and not create
1629   // weird 1 element vectors.
1630   if (VT.getVectorNumElements() == 2)
1631     return scalarizeVectorStore(Store, DAG);
1632 
1633   EVT MemVT = Store->getMemoryVT();
1634   SDValue Chain = Store->getChain();
1635   SDValue BasePtr = Store->getBasePtr();
1636   SDLoc SL(Op);
1637 
1638   EVT LoVT, HiVT;
1639   EVT LoMemVT, HiMemVT;
1640   SDValue Lo, Hi;
1641 
1642   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1643   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1644   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1645 
1646   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1647 
1648   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1649   unsigned BaseAlign = Store->getAlignment();
1650   unsigned Size = LoMemVT.getStoreSize();
1651   unsigned HiAlign = MinAlign(BaseAlign, Size);
1652 
1653   SDValue LoStore =
1654       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1655                         Store->getMemOperand()->getFlags());
1656   SDValue HiStore =
1657       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1658                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1659 
1660   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1661 }
1662 
1663 // This is a shortcut for integer division because we have fast i32<->f32
1664 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1665 // float is enough to accurately represent up to a 24-bit signed integer.
1666 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1667                                             bool Sign) const {
1668   SDLoc DL(Op);
1669   EVT VT = Op.getValueType();
1670   SDValue LHS = Op.getOperand(0);
1671   SDValue RHS = Op.getOperand(1);
1672   MVT IntVT = MVT::i32;
1673   MVT FltVT = MVT::f32;
1674 
1675   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1676   if (LHSSignBits < 9)
1677     return SDValue();
1678 
1679   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1680   if (RHSSignBits < 9)
1681     return SDValue();
1682 
1683   unsigned BitSize = VT.getSizeInBits();
1684   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1685   unsigned DivBits = BitSize - SignBits;
1686   if (Sign)
1687     ++DivBits;
1688 
1689   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1690   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1691 
1692   SDValue jq = DAG.getConstant(1, DL, IntVT);
1693 
1694   if (Sign) {
1695     // char|short jq = ia ^ ib;
1696     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1697 
1698     // jq = jq >> (bitsize - 2)
1699     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1700                      DAG.getConstant(BitSize - 2, DL, VT));
1701 
1702     // jq = jq | 0x1
1703     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1704   }
1705 
1706   // int ia = (int)LHS;
1707   SDValue ia = LHS;
1708 
1709   // int ib, (int)RHS;
1710   SDValue ib = RHS;
1711 
1712   // float fa = (float)ia;
1713   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1714 
1715   // float fb = (float)ib;
1716   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1717 
1718   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1719                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1720 
1721   // fq = trunc(fq);
1722   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1723 
1724   // float fqneg = -fq;
1725   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1726 
1727   MachineFunction &MF = DAG.getMachineFunction();
1728   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
1729 
1730   // float fr = mad(fqneg, fb, fa);
1731   unsigned OpCode = !Subtarget->hasMadMacF32Insts() ?
1732                     (unsigned)ISD::FMA :
1733                     !MFI->getMode().allFP32Denormals() ?
1734                     (unsigned)ISD::FMAD :
1735                     (unsigned)AMDGPUISD::FMAD_FTZ;
1736   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1737 
1738   // int iq = (int)fq;
1739   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1740 
1741   // fr = fabs(fr);
1742   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1743 
1744   // fb = fabs(fb);
1745   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1746 
1747   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1748 
1749   // int cv = fr >= fb;
1750   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1751 
1752   // jq = (cv ? jq : 0);
1753   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1754 
1755   // dst = iq + jq;
1756   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1757 
1758   // Rem needs compensation, it's easier to recompute it
1759   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1760   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1761 
1762   // Truncate to number of bits this divide really is.
1763   if (Sign) {
1764     SDValue InRegSize
1765       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1766     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1767     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1768   } else {
1769     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1770     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1771     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1772   }
1773 
1774   return DAG.getMergeValues({ Div, Rem }, DL);
1775 }
1776 
1777 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1778                                       SelectionDAG &DAG,
1779                                       SmallVectorImpl<SDValue> &Results) const {
1780   SDLoc DL(Op);
1781   EVT VT = Op.getValueType();
1782 
1783   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1784 
1785   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1786 
1787   SDValue One = DAG.getConstant(1, DL, HalfVT);
1788   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1789 
1790   //HiLo split
1791   SDValue LHS = Op.getOperand(0);
1792   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1793   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1794 
1795   SDValue RHS = Op.getOperand(1);
1796   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1797   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1798 
1799   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1800       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1801 
1802     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1803                               LHS_Lo, RHS_Lo);
1804 
1805     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1806     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1807 
1808     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1809     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1810     return;
1811   }
1812 
1813   if (isTypeLegal(MVT::i64)) {
1814     MachineFunction &MF = DAG.getMachineFunction();
1815     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1816 
1817     // Compute denominator reciprocal.
1818     unsigned FMAD = !Subtarget->hasMadMacF32Insts() ?
1819                     (unsigned)ISD::FMA :
1820                     !MFI->getMode().allFP32Denormals() ?
1821                     (unsigned)ISD::FMAD :
1822                     (unsigned)AMDGPUISD::FMAD_FTZ;
1823 
1824     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1825     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1826     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1827       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1828       Cvt_Lo);
1829     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1830     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1831       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1832     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1833       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1834     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1835     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1836       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1837       Mul1);
1838     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1839     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1840     SDValue Rcp64 = DAG.getBitcast(VT,
1841                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1842 
1843     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1844     SDValue One64  = DAG.getConstant(1, DL, VT);
1845     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1846     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1847 
1848     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1849     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1850     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1851     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1852                                     Zero);
1853     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1854                                     One);
1855 
1856     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1857                                   Mulhi1_Lo, Zero1);
1858     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1859                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1860     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1861     SDValue Add1 = DAG.getBitcast(VT,
1862                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1863 
1864     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1865     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1866     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1867                                     Zero);
1868     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1869                                     One);
1870 
1871     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1872                                   Mulhi2_Lo, Zero1);
1873     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1874                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1875     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1876                                   Zero, Add2_Lo.getValue(1));
1877     SDValue Add2 = DAG.getBitcast(VT,
1878                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1879     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1880 
1881     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1882 
1883     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1884     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1885     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1886                                   Mul3_Lo, Zero1);
1887     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1888                                   Mul3_Hi, Sub1_Lo.getValue(1));
1889     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1890     SDValue Sub1 = DAG.getBitcast(VT,
1891                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1892 
1893     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1894     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1895                                  ISD::SETUGE);
1896     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1897                                  ISD::SETUGE);
1898     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1899 
1900     // TODO: Here and below portions of the code can be enclosed into if/endif.
1901     // Currently control flow is unconditional and we have 4 selects after
1902     // potential endif to substitute PHIs.
1903 
1904     // if C3 != 0 ...
1905     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1906                                   RHS_Lo, Zero1);
1907     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1908                                   RHS_Hi, Sub1_Lo.getValue(1));
1909     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1910                                   Zero, Sub2_Lo.getValue(1));
1911     SDValue Sub2 = DAG.getBitcast(VT,
1912                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1913 
1914     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1915 
1916     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1917                                  ISD::SETUGE);
1918     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1919                                  ISD::SETUGE);
1920     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1921 
1922     // if (C6 != 0)
1923     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1924 
1925     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1926                                   RHS_Lo, Zero1);
1927     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1928                                   RHS_Hi, Sub2_Lo.getValue(1));
1929     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1930                                   Zero, Sub3_Lo.getValue(1));
1931     SDValue Sub3 = DAG.getBitcast(VT,
1932                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1933 
1934     // endif C6
1935     // endif C3
1936 
1937     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1938     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1939 
1940     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1941     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1942 
1943     Results.push_back(Div);
1944     Results.push_back(Rem);
1945 
1946     return;
1947   }
1948 
1949   // r600 expandion.
1950   // Get Speculative values
1951   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1952   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1953 
1954   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1955   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1956   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1957 
1958   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1959   SDValue DIV_Lo = Zero;
1960 
1961   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1962 
1963   for (unsigned i = 0; i < halfBitWidth; ++i) {
1964     const unsigned bitPos = halfBitWidth - i - 1;
1965     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1966     // Get value of high bit
1967     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1968     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1969     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1970 
1971     // Shift
1972     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1973     // Add LHS high bit
1974     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1975 
1976     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1977     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1978 
1979     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1980 
1981     // Update REM
1982     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1983     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1984   }
1985 
1986   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1987   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1988   Results.push_back(DIV);
1989   Results.push_back(REM);
1990 }
1991 
1992 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1993                                            SelectionDAG &DAG) const {
1994   SDLoc DL(Op);
1995   EVT VT = Op.getValueType();
1996 
1997   if (VT == MVT::i64) {
1998     SmallVector<SDValue, 2> Results;
1999     LowerUDIVREM64(Op, DAG, Results);
2000     return DAG.getMergeValues(Results, DL);
2001   }
2002 
2003   if (VT == MVT::i32) {
2004     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
2005       return Res;
2006   }
2007 
2008   SDValue X = Op.getOperand(0);
2009   SDValue Y = Op.getOperand(1);
2010 
2011   // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
2012   // algorithm used here.
2013 
2014   // Initial estimate of inv(y).
2015   SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y);
2016 
2017   // One round of UNR.
2018   SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y);
2019   SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z);
2020   Z = DAG.getNode(ISD::ADD, DL, VT, Z,
2021                   DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ));
2022 
2023   // Quotient/remainder estimate.
2024   SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z);
2025   SDValue R =
2026       DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y));
2027 
2028   // First quotient/remainder refinement.
2029   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2030   SDValue One = DAG.getConstant(1, DL, VT);
2031   SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2032   Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2033                   DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2034   R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2035                   DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2036 
2037   // Second quotient/remainder refinement.
2038   Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2039   Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2040                   DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2041   R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2042                   DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2043 
2044   return DAG.getMergeValues({Q, R}, DL);
2045 }
2046 
2047 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
2048                                            SelectionDAG &DAG) const {
2049   SDLoc DL(Op);
2050   EVT VT = Op.getValueType();
2051 
2052   SDValue LHS = Op.getOperand(0);
2053   SDValue RHS = Op.getOperand(1);
2054 
2055   SDValue Zero = DAG.getConstant(0, DL, VT);
2056   SDValue NegOne = DAG.getConstant(-1, DL, VT);
2057 
2058   if (VT == MVT::i32) {
2059     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2060       return Res;
2061   }
2062 
2063   if (VT == MVT::i64 &&
2064       DAG.ComputeNumSignBits(LHS) > 32 &&
2065       DAG.ComputeNumSignBits(RHS) > 32) {
2066     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2067 
2068     //HiLo split
2069     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2070     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2071     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2072                                  LHS_Lo, RHS_Lo);
2073     SDValue Res[2] = {
2074       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2075       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2076     };
2077     return DAG.getMergeValues(Res, DL);
2078   }
2079 
2080   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2081   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2082   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2083   SDValue RSign = LHSign; // Remainder sign is the same as LHS
2084 
2085   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2086   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2087 
2088   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2089   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2090 
2091   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2092   SDValue Rem = Div.getValue(1);
2093 
2094   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2095   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2096 
2097   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2098   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2099 
2100   SDValue Res[2] = {
2101     Div,
2102     Rem
2103   };
2104   return DAG.getMergeValues(Res, DL);
2105 }
2106 
2107 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x)
2108 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2109   SDLoc SL(Op);
2110   EVT VT = Op.getValueType();
2111   auto Flags = Op->getFlags();
2112   SDValue X = Op.getOperand(0);
2113   SDValue Y = Op.getOperand(1);
2114 
2115   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags);
2116   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags);
2117   SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags);
2118   // TODO: For f32 use FMAD instead if !hasFastFMA32?
2119   return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags);
2120 }
2121 
2122 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2123   SDLoc SL(Op);
2124   SDValue Src = Op.getOperand(0);
2125 
2126   // result = trunc(src)
2127   // if (src > 0.0 && src != result)
2128   //   result += 1.0
2129 
2130   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2131 
2132   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2133   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2134 
2135   EVT SetCCVT =
2136       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2137 
2138   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2139   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2140   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2141 
2142   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2143   // TODO: Should this propagate fast-math-flags?
2144   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2145 }
2146 
2147 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2148                                   SelectionDAG &DAG) {
2149   const unsigned FractBits = 52;
2150   const unsigned ExpBits = 11;
2151 
2152   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2153                                 Hi,
2154                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2155                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2156   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2157                             DAG.getConstant(1023, SL, MVT::i32));
2158 
2159   return Exp;
2160 }
2161 
2162 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2163   SDLoc SL(Op);
2164   SDValue Src = Op.getOperand(0);
2165 
2166   assert(Op.getValueType() == MVT::f64);
2167 
2168   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2169   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2170 
2171   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2172 
2173   // Extract the upper half, since this is where we will find the sign and
2174   // exponent.
2175   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2176 
2177   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2178 
2179   const unsigned FractBits = 52;
2180 
2181   // Extract the sign bit.
2182   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2183   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2184 
2185   // Extend back to 64-bits.
2186   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2187   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2188 
2189   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2190   const SDValue FractMask
2191     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2192 
2193   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2194   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2195   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2196 
2197   EVT SetCCVT =
2198       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2199 
2200   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2201 
2202   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2203   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2204 
2205   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2206   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2207 
2208   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2209 }
2210 
2211 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2212   SDLoc SL(Op);
2213   SDValue Src = Op.getOperand(0);
2214 
2215   assert(Op.getValueType() == MVT::f64);
2216 
2217   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2218   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2219   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2220 
2221   // TODO: Should this propagate fast-math-flags?
2222 
2223   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2224   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2225 
2226   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2227 
2228   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2229   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2230 
2231   EVT SetCCVT =
2232       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2233   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2234 
2235   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2236 }
2237 
2238 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2239   // FNEARBYINT and FRINT are the same, except in their handling of FP
2240   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2241   // rint, so just treat them as equivalent.
2242   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2243 }
2244 
2245 // XXX - May require not supporting f32 denormals?
2246 
2247 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2248 // compare and vselect end up producing worse code than scalarizing the whole
2249 // operation.
2250 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2251   SDLoc SL(Op);
2252   SDValue X = Op.getOperand(0);
2253   EVT VT = Op.getValueType();
2254 
2255   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2256 
2257   // TODO: Should this propagate fast-math-flags?
2258 
2259   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2260 
2261   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2262 
2263   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2264   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2265   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2266 
2267   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2268 
2269   EVT SetCCVT =
2270       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2271 
2272   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2273 
2274   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2275 
2276   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2277 }
2278 
2279 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2280   SDLoc SL(Op);
2281   SDValue Src = Op.getOperand(0);
2282 
2283   // result = trunc(src);
2284   // if (src < 0.0 && src != result)
2285   //   result += -1.0.
2286 
2287   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2288 
2289   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2290   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2291 
2292   EVT SetCCVT =
2293       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2294 
2295   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2296   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2297   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2298 
2299   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2300   // TODO: Should this propagate fast-math-flags?
2301   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2302 }
2303 
2304 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2305                                         double Log2BaseInverted) const {
2306   EVT VT = Op.getValueType();
2307 
2308   SDLoc SL(Op);
2309   SDValue Operand = Op.getOperand(0);
2310   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2311   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2312 
2313   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2314 }
2315 
2316 // exp2(M_LOG2E_F * f);
2317 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2318   EVT VT = Op.getValueType();
2319   SDLoc SL(Op);
2320   SDValue Src = Op.getOperand(0);
2321 
2322   const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2323   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2324   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2325 }
2326 
2327 static bool isCtlzOpc(unsigned Opc) {
2328   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2329 }
2330 
2331 static bool isCttzOpc(unsigned Opc) {
2332   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2333 }
2334 
2335 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2336   SDLoc SL(Op);
2337   SDValue Src = Op.getOperand(0);
2338   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2339                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2340 
2341   unsigned ISDOpc, NewOpc;
2342   if (isCtlzOpc(Op.getOpcode())) {
2343     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2344     NewOpc = AMDGPUISD::FFBH_U32;
2345   } else if (isCttzOpc(Op.getOpcode())) {
2346     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2347     NewOpc = AMDGPUISD::FFBL_B32;
2348   } else
2349     llvm_unreachable("Unexpected OPCode!!!");
2350 
2351 
2352   if (ZeroUndef && Src.getValueType() == MVT::i32)
2353     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2354 
2355   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2356 
2357   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2358   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2359 
2360   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2361   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2362 
2363   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2364                                    *DAG.getContext(), MVT::i32);
2365 
2366   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2367   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2368 
2369   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2370   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2371 
2372   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2373   SDValue Add, NewOpr;
2374   if (isCtlzOpc(Op.getOpcode())) {
2375     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2376     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2377     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2378   } else {
2379     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2380     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2381     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2382   }
2383 
2384   if (!ZeroUndef) {
2385     // Test if the full 64-bit input is zero.
2386 
2387     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2388     // which we probably don't want.
2389     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2390     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2391     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2392 
2393     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2394     // with the same cycles, otherwise it is slower.
2395     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2396     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2397 
2398     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2399 
2400     // The instruction returns -1 for 0 input, but the defined intrinsic
2401     // behavior is to return the number of bits.
2402     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2403                          SrcIsZero, Bits32, NewOpr);
2404   }
2405 
2406   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2407 }
2408 
2409 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2410                                                bool Signed) const {
2411   // Unsigned
2412   // cul2f(ulong u)
2413   //{
2414   //  uint lz = clz(u);
2415   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2416   //  u = (u << lz) & 0x7fffffffffffffffUL;
2417   //  ulong t = u & 0xffffffffffUL;
2418   //  uint v = (e << 23) | (uint)(u >> 40);
2419   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2420   //  return as_float(v + r);
2421   //}
2422   // Signed
2423   // cl2f(long l)
2424   //{
2425   //  long s = l >> 63;
2426   //  float r = cul2f((l + s) ^ s);
2427   //  return s ? -r : r;
2428   //}
2429 
2430   SDLoc SL(Op);
2431   SDValue Src = Op.getOperand(0);
2432   SDValue L = Src;
2433 
2434   SDValue S;
2435   if (Signed) {
2436     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2437     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2438 
2439     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2440     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2441   }
2442 
2443   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2444                                    *DAG.getContext(), MVT::f32);
2445 
2446 
2447   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2448   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2449   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2450   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2451 
2452   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2453   SDValue E = DAG.getSelect(SL, MVT::i32,
2454     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2455     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2456     ZeroI32);
2457 
2458   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2459     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2460     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2461 
2462   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2463                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2464 
2465   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2466                              U, DAG.getConstant(40, SL, MVT::i64));
2467 
2468   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2469     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2470     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2471 
2472   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2473   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2474   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2475 
2476   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2477 
2478   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2479 
2480   SDValue R = DAG.getSelect(SL, MVT::i32,
2481     RCmp,
2482     One,
2483     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2484   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2485   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2486 
2487   if (!Signed)
2488     return R;
2489 
2490   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2491   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2492 }
2493 
2494 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2495                                                bool Signed) const {
2496   SDLoc SL(Op);
2497   SDValue Src = Op.getOperand(0);
2498 
2499   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2500 
2501   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2502                            DAG.getConstant(0, SL, MVT::i32));
2503   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2504                            DAG.getConstant(1, SL, MVT::i32));
2505 
2506   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2507                               SL, MVT::f64, Hi);
2508 
2509   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2510 
2511   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2512                               DAG.getConstant(32, SL, MVT::i32));
2513   // TODO: Should this propagate fast-math-flags?
2514   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2515 }
2516 
2517 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2518                                                SelectionDAG &DAG) const {
2519   // TODO: Factor out code common with LowerSINT_TO_FP.
2520   EVT DestVT = Op.getValueType();
2521   SDValue Src = Op.getOperand(0);
2522   EVT SrcVT = Src.getValueType();
2523 
2524   if (SrcVT == MVT::i16) {
2525     if (DestVT == MVT::f16)
2526       return Op;
2527     SDLoc DL(Op);
2528 
2529     // Promote src to i32
2530     SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2531     return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2532   }
2533 
2534   assert(SrcVT == MVT::i64 && "operation should be legal");
2535 
2536   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2537     SDLoc DL(Op);
2538 
2539     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2540     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2541     SDValue FPRound =
2542         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2543 
2544     return FPRound;
2545   }
2546 
2547   if (DestVT == MVT::f32)
2548     return LowerINT_TO_FP32(Op, DAG, false);
2549 
2550   assert(DestVT == MVT::f64);
2551   return LowerINT_TO_FP64(Op, DAG, false);
2552 }
2553 
2554 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2555                                               SelectionDAG &DAG) const {
2556   EVT DestVT = Op.getValueType();
2557 
2558   SDValue Src = Op.getOperand(0);
2559   EVT SrcVT = Src.getValueType();
2560 
2561   if (SrcVT == MVT::i16) {
2562     if (DestVT == MVT::f16)
2563       return Op;
2564 
2565     SDLoc DL(Op);
2566     // Promote src to i32
2567     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2568     return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2569   }
2570 
2571   assert(SrcVT == MVT::i64 && "operation should be legal");
2572 
2573   // TODO: Factor out code common with LowerUINT_TO_FP.
2574 
2575   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2576     SDLoc DL(Op);
2577     SDValue Src = Op.getOperand(0);
2578 
2579     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2580     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2581     SDValue FPRound =
2582         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2583 
2584     return FPRound;
2585   }
2586 
2587   if (DestVT == MVT::f32)
2588     return LowerINT_TO_FP32(Op, DAG, true);
2589 
2590   assert(DestVT == MVT::f64);
2591   return LowerINT_TO_FP64(Op, DAG, true);
2592 }
2593 
2594 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2595                                                bool Signed) const {
2596   SDLoc SL(Op);
2597 
2598   SDValue Src = Op.getOperand(0);
2599 
2600   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2601 
2602   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2603                                  MVT::f64);
2604   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2605                                  MVT::f64);
2606   // TODO: Should this propagate fast-math-flags?
2607   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2608 
2609   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2610 
2611 
2612   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2613 
2614   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2615                            MVT::i32, FloorMul);
2616   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2617 
2618   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2619 
2620   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2621 }
2622 
2623 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2624   SDLoc DL(Op);
2625   SDValue N0 = Op.getOperand(0);
2626 
2627   // Convert to target node to get known bits
2628   if (N0.getValueType() == MVT::f32)
2629     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2630 
2631   if (getTargetMachine().Options.UnsafeFPMath) {
2632     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2633     return SDValue();
2634   }
2635 
2636   assert(N0.getSimpleValueType() == MVT::f64);
2637 
2638   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2639   const unsigned ExpMask = 0x7ff;
2640   const unsigned ExpBiasf64 = 1023;
2641   const unsigned ExpBiasf16 = 15;
2642   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2643   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2644   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2645   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2646                            DAG.getConstant(32, DL, MVT::i64));
2647   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2648   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2649   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2650                           DAG.getConstant(20, DL, MVT::i64));
2651   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2652                   DAG.getConstant(ExpMask, DL, MVT::i32));
2653   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2654   // add the f16 bias (15) to get the biased exponent for the f16 format.
2655   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2656                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2657 
2658   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2659                           DAG.getConstant(8, DL, MVT::i32));
2660   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2661                   DAG.getConstant(0xffe, DL, MVT::i32));
2662 
2663   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2664                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2665   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2666 
2667   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2668   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2669 
2670   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2671   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2672       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2673                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2674 
2675   // N = M | (E << 12);
2676   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2677       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2678                   DAG.getConstant(12, DL, MVT::i32)));
2679 
2680   // B = clamp(1-E, 0, 13);
2681   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2682                                   One, E);
2683   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2684   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2685                   DAG.getConstant(13, DL, MVT::i32));
2686 
2687   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2688                                    DAG.getConstant(0x1000, DL, MVT::i32));
2689 
2690   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2691   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2692   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2693   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2694 
2695   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2696   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2697                               DAG.getConstant(0x7, DL, MVT::i32));
2698   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2699                   DAG.getConstant(2, DL, MVT::i32));
2700   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2701                                One, Zero, ISD::SETEQ);
2702   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2703                                One, Zero, ISD::SETGT);
2704   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2705   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2706 
2707   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2708                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2709   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2710                       I, V, ISD::SETEQ);
2711 
2712   // Extract the sign bit.
2713   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2714                             DAG.getConstant(16, DL, MVT::i32));
2715   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2716                      DAG.getConstant(0x8000, DL, MVT::i32));
2717 
2718   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2719   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2720 }
2721 
2722 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op,
2723                                              SelectionDAG &DAG) const {
2724   SDValue Src = Op.getOperand(0);
2725   unsigned OpOpcode = Op.getOpcode();
2726   EVT SrcVT = Src.getValueType();
2727   EVT DestVT = Op.getValueType();
2728 
2729   // Will be selected natively
2730   if (SrcVT == MVT::f16 && DestVT == MVT::i16)
2731     return Op;
2732 
2733   // Promote i16 to i32
2734   if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) {
2735     SDLoc DL(Op);
2736 
2737     SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2738     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32);
2739   }
2740 
2741   if (SrcVT == MVT::f16 ||
2742       (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) {
2743     SDLoc DL(Op);
2744 
2745     SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2746     unsigned Ext =
2747         OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2748     return DAG.getNode(Ext, DL, MVT::i64, FpToInt32);
2749   }
2750 
2751   if (DestVT == MVT::i64 && SrcVT == MVT::f64)
2752     return LowerFP64_TO_INT(Op, DAG, OpOpcode == ISD::FP_TO_SINT);
2753 
2754   return SDValue();
2755 }
2756 
2757 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2758                                                      SelectionDAG &DAG) const {
2759   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2760   MVT VT = Op.getSimpleValueType();
2761   MVT ScalarVT = VT.getScalarType();
2762 
2763   assert(VT.isVector());
2764 
2765   SDValue Src = Op.getOperand(0);
2766   SDLoc DL(Op);
2767 
2768   // TODO: Don't scalarize on Evergreen?
2769   unsigned NElts = VT.getVectorNumElements();
2770   SmallVector<SDValue, 8> Args;
2771   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2772 
2773   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2774   for (unsigned I = 0; I < NElts; ++I)
2775     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2776 
2777   return DAG.getBuildVector(VT, DL, Args);
2778 }
2779 
2780 //===----------------------------------------------------------------------===//
2781 // Custom DAG optimizations
2782 //===----------------------------------------------------------------------===//
2783 
2784 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2785   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2786 }
2787 
2788 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2789   EVT VT = Op.getValueType();
2790   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2791                                      // as unsigned 24-bit values.
2792     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2793 }
2794 
2795 static SDValue simplifyMul24(SDNode *Node24,
2796                              TargetLowering::DAGCombinerInfo &DCI) {
2797   SelectionDAG &DAG = DCI.DAG;
2798   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2799   bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2800 
2801   SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2802   SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2803   unsigned NewOpcode = Node24->getOpcode();
2804   if (IsIntrin) {
2805     unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2806     NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2807       AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2808   }
2809 
2810   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2811 
2812   // First try to simplify using SimplifyMultipleUseDemandedBits which allows
2813   // the operands to have other uses, but will only perform simplifications that
2814   // involve bypassing some nodes for this user.
2815   SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG);
2816   SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG);
2817   if (DemandedLHS || DemandedRHS)
2818     return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2819                        DemandedLHS ? DemandedLHS : LHS,
2820                        DemandedRHS ? DemandedRHS : RHS);
2821 
2822   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2823   // operands if this node is the only user.
2824   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2825     return SDValue(Node24, 0);
2826   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2827     return SDValue(Node24, 0);
2828 
2829   return SDValue();
2830 }
2831 
2832 template <typename IntTy>
2833 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2834                                uint32_t Width, const SDLoc &DL) {
2835   if (Width + Offset < 32) {
2836     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2837     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2838     return DAG.getConstant(Result, DL, MVT::i32);
2839   }
2840 
2841   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2842 }
2843 
2844 static bool hasVolatileUser(SDNode *Val) {
2845   for (SDNode *U : Val->uses()) {
2846     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2847       if (M->isVolatile())
2848         return true;
2849     }
2850   }
2851 
2852   return false;
2853 }
2854 
2855 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2856   // i32 vectors are the canonical memory type.
2857   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2858     return false;
2859 
2860   if (!VT.isByteSized())
2861     return false;
2862 
2863   unsigned Size = VT.getStoreSize();
2864 
2865   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2866     return false;
2867 
2868   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2869     return false;
2870 
2871   return true;
2872 }
2873 
2874 // Replace load of an illegal type with a store of a bitcast to a friendlier
2875 // type.
2876 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2877                                                  DAGCombinerInfo &DCI) const {
2878   if (!DCI.isBeforeLegalize())
2879     return SDValue();
2880 
2881   LoadSDNode *LN = cast<LoadSDNode>(N);
2882   if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2883     return SDValue();
2884 
2885   SDLoc SL(N);
2886   SelectionDAG &DAG = DCI.DAG;
2887   EVT VT = LN->getMemoryVT();
2888 
2889   unsigned Size = VT.getStoreSize();
2890   Align Alignment = LN->getAlign();
2891   if (Alignment < Size && isTypeLegal(VT)) {
2892     bool IsFast;
2893     unsigned AS = LN->getAddressSpace();
2894 
2895     // Expand unaligned loads earlier than legalization. Due to visitation order
2896     // problems during legalization, the emitted instructions to pack and unpack
2897     // the bytes again are not eliminated in the case of an unaligned copy.
2898     if (!allowsMisalignedMemoryAccesses(
2899             VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) {
2900       SDValue Ops[2];
2901 
2902       if (VT.isVector())
2903         std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
2904       else
2905         std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2906 
2907       return DAG.getMergeValues(Ops, SDLoc(N));
2908     }
2909 
2910     if (!IsFast)
2911       return SDValue();
2912   }
2913 
2914   if (!shouldCombineMemoryType(VT))
2915     return SDValue();
2916 
2917   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2918 
2919   SDValue NewLoad
2920     = DAG.getLoad(NewVT, SL, LN->getChain(),
2921                   LN->getBasePtr(), LN->getMemOperand());
2922 
2923   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2924   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2925   return SDValue(N, 0);
2926 }
2927 
2928 // Replace store of an illegal type with a store of a bitcast to a friendlier
2929 // type.
2930 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2931                                                   DAGCombinerInfo &DCI) const {
2932   if (!DCI.isBeforeLegalize())
2933     return SDValue();
2934 
2935   StoreSDNode *SN = cast<StoreSDNode>(N);
2936   if (!SN->isSimple() || !ISD::isNormalStore(SN))
2937     return SDValue();
2938 
2939   EVT VT = SN->getMemoryVT();
2940   unsigned Size = VT.getStoreSize();
2941 
2942   SDLoc SL(N);
2943   SelectionDAG &DAG = DCI.DAG;
2944   Align Alignment = SN->getAlign();
2945   if (Alignment < Size && isTypeLegal(VT)) {
2946     bool IsFast;
2947     unsigned AS = SN->getAddressSpace();
2948 
2949     // Expand unaligned stores earlier than legalization. Due to visitation
2950     // order problems during legalization, the emitted instructions to pack and
2951     // unpack the bytes again are not eliminated in the case of an unaligned
2952     // copy.
2953     if (!allowsMisalignedMemoryAccesses(
2954             VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) {
2955       if (VT.isVector())
2956         return scalarizeVectorStore(SN, DAG);
2957 
2958       return expandUnalignedStore(SN, DAG);
2959     }
2960 
2961     if (!IsFast)
2962       return SDValue();
2963   }
2964 
2965   if (!shouldCombineMemoryType(VT))
2966     return SDValue();
2967 
2968   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2969   SDValue Val = SN->getValue();
2970 
2971   //DCI.AddToWorklist(Val.getNode());
2972 
2973   bool OtherUses = !Val.hasOneUse();
2974   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2975   if (OtherUses) {
2976     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2977     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2978   }
2979 
2980   return DAG.getStore(SN->getChain(), SL, CastVal,
2981                       SN->getBasePtr(), SN->getMemOperand());
2982 }
2983 
2984 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2985 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2986 // issues.
2987 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
2988                                                         DAGCombinerInfo &DCI) const {
2989   SelectionDAG &DAG = DCI.DAG;
2990   SDValue N0 = N->getOperand(0);
2991 
2992   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2993   //     (vt2 (truncate (assertzext vt0:x, vt1)))
2994   if (N0.getOpcode() == ISD::TRUNCATE) {
2995     SDValue N1 = N->getOperand(1);
2996     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
2997     SDLoc SL(N);
2998 
2999     SDValue Src = N0.getOperand(0);
3000     EVT SrcVT = Src.getValueType();
3001     if (SrcVT.bitsGE(ExtVT)) {
3002       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3003       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3004     }
3005   }
3006 
3007   return SDValue();
3008 }
3009 
3010 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3011   SDNode *N, DAGCombinerInfo &DCI) const {
3012   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3013   switch (IID) {
3014   case Intrinsic::amdgcn_mul_i24:
3015   case Intrinsic::amdgcn_mul_u24:
3016     return simplifyMul24(N, DCI);
3017   case Intrinsic::amdgcn_fract:
3018   case Intrinsic::amdgcn_rsq:
3019   case Intrinsic::amdgcn_rcp_legacy:
3020   case Intrinsic::amdgcn_rsq_legacy:
3021   case Intrinsic::amdgcn_rsq_clamp:
3022   case Intrinsic::amdgcn_ldexp: {
3023     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
3024     SDValue Src = N->getOperand(1);
3025     return Src.isUndef() ? Src : SDValue();
3026   }
3027   default:
3028     return SDValue();
3029   }
3030 }
3031 
3032 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3033 /// binary operation \p Opc to it with the corresponding constant operands.
3034 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3035   DAGCombinerInfo &DCI, const SDLoc &SL,
3036   unsigned Opc, SDValue LHS,
3037   uint32_t ValLo, uint32_t ValHi) const {
3038   SelectionDAG &DAG = DCI.DAG;
3039   SDValue Lo, Hi;
3040   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3041 
3042   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3043   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3044 
3045   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3046   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3047 
3048   // Re-visit the ands. It's possible we eliminated one of them and it could
3049   // simplify the vector.
3050   DCI.AddToWorklist(Lo.getNode());
3051   DCI.AddToWorklist(Hi.getNode());
3052 
3053   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3054   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3055 }
3056 
3057 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3058                                                 DAGCombinerInfo &DCI) const {
3059   EVT VT = N->getValueType(0);
3060 
3061   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3062   if (!RHS)
3063     return SDValue();
3064 
3065   SDValue LHS = N->getOperand(0);
3066   unsigned RHSVal = RHS->getZExtValue();
3067   if (!RHSVal)
3068     return LHS;
3069 
3070   SDLoc SL(N);
3071   SelectionDAG &DAG = DCI.DAG;
3072 
3073   switch (LHS->getOpcode()) {
3074   default:
3075     break;
3076   case ISD::ZERO_EXTEND:
3077   case ISD::SIGN_EXTEND:
3078   case ISD::ANY_EXTEND: {
3079     SDValue X = LHS->getOperand(0);
3080 
3081     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3082         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3083       // Prefer build_vector as the canonical form if packed types are legal.
3084       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3085       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3086        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3087       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3088     }
3089 
3090     // shl (ext x) => zext (shl x), if shift does not overflow int
3091     if (VT != MVT::i64)
3092       break;
3093     KnownBits Known = DAG.computeKnownBits(X);
3094     unsigned LZ = Known.countMinLeadingZeros();
3095     if (LZ < RHSVal)
3096       break;
3097     EVT XVT = X.getValueType();
3098     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3099     return DAG.getZExtOrTrunc(Shl, SL, VT);
3100   }
3101   }
3102 
3103   if (VT != MVT::i64)
3104     return SDValue();
3105 
3106   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3107 
3108   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3109   // common case, splitting this into a move and a 32-bit shift is faster and
3110   // the same code size.
3111   if (RHSVal < 32)
3112     return SDValue();
3113 
3114   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3115 
3116   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3117   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3118 
3119   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3120 
3121   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3122   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3123 }
3124 
3125 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3126                                                 DAGCombinerInfo &DCI) const {
3127   if (N->getValueType(0) != MVT::i64)
3128     return SDValue();
3129 
3130   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3131   if (!RHS)
3132     return SDValue();
3133 
3134   SelectionDAG &DAG = DCI.DAG;
3135   SDLoc SL(N);
3136   unsigned RHSVal = RHS->getZExtValue();
3137 
3138   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3139   if (RHSVal == 32) {
3140     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3141     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3142                                    DAG.getConstant(31, SL, MVT::i32));
3143 
3144     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3145     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3146   }
3147 
3148   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3149   if (RHSVal == 63) {
3150     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3151     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3152                                    DAG.getConstant(31, SL, MVT::i32));
3153     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3154     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3155   }
3156 
3157   return SDValue();
3158 }
3159 
3160 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3161                                                 DAGCombinerInfo &DCI) const {
3162   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3163   if (!RHS)
3164     return SDValue();
3165 
3166   EVT VT = N->getValueType(0);
3167   SDValue LHS = N->getOperand(0);
3168   unsigned ShiftAmt = RHS->getZExtValue();
3169   SelectionDAG &DAG = DCI.DAG;
3170   SDLoc SL(N);
3171 
3172   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3173   // this improves the ability to match BFE patterns in isel.
3174   if (LHS.getOpcode() == ISD::AND) {
3175     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3176       if (Mask->getAPIntValue().isShiftedMask() &&
3177           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3178         return DAG.getNode(
3179             ISD::AND, SL, VT,
3180             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3181             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3182       }
3183     }
3184   }
3185 
3186   if (VT != MVT::i64)
3187     return SDValue();
3188 
3189   if (ShiftAmt < 32)
3190     return SDValue();
3191 
3192   // srl i64:x, C for C >= 32
3193   // =>
3194   //   build_pair (srl hi_32(x), C - 32), 0
3195   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3196   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3197 
3198   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3199   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3200 
3201   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3202   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3203 
3204   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3205 
3206   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3207 }
3208 
3209 SDValue AMDGPUTargetLowering::performTruncateCombine(
3210   SDNode *N, DAGCombinerInfo &DCI) const {
3211   SDLoc SL(N);
3212   SelectionDAG &DAG = DCI.DAG;
3213   EVT VT = N->getValueType(0);
3214   SDValue Src = N->getOperand(0);
3215 
3216   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3217   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3218     SDValue Vec = Src.getOperand(0);
3219     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3220       SDValue Elt0 = Vec.getOperand(0);
3221       EVT EltVT = Elt0.getValueType();
3222       if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) {
3223         if (EltVT.isFloatingPoint()) {
3224           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3225                              EltVT.changeTypeToInteger(), Elt0);
3226         }
3227 
3228         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3229       }
3230     }
3231   }
3232 
3233   // Equivalent of above for accessing the high element of a vector as an
3234   // integer operation.
3235   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3236   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3237     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3238       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3239         SDValue BV = stripBitcast(Src.getOperand(0));
3240         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3241             BV.getValueType().getVectorNumElements() == 2) {
3242           SDValue SrcElt = BV.getOperand(1);
3243           EVT SrcEltVT = SrcElt.getValueType();
3244           if (SrcEltVT.isFloatingPoint()) {
3245             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3246                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3247           }
3248 
3249           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3250         }
3251       }
3252     }
3253   }
3254 
3255   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3256   //
3257   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3258   //     i16 (trunc (srl (i32 (trunc x), K)))
3259   if (VT.getScalarSizeInBits() < 32) {
3260     EVT SrcVT = Src.getValueType();
3261     if (SrcVT.getScalarSizeInBits() > 32 &&
3262         (Src.getOpcode() == ISD::SRL ||
3263          Src.getOpcode() == ISD::SRA ||
3264          Src.getOpcode() == ISD::SHL)) {
3265       SDValue Amt = Src.getOperand(1);
3266       KnownBits Known = DAG.computeKnownBits(Amt);
3267       unsigned Size = VT.getScalarSizeInBits();
3268       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3269           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3270         EVT MidVT = VT.isVector() ?
3271           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3272                            VT.getVectorNumElements()) : MVT::i32;
3273 
3274         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3275         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3276                                     Src.getOperand(0));
3277         DCI.AddToWorklist(Trunc.getNode());
3278 
3279         if (Amt.getValueType() != NewShiftVT) {
3280           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3281           DCI.AddToWorklist(Amt.getNode());
3282         }
3283 
3284         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3285                                           Trunc, Amt);
3286         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3287       }
3288     }
3289   }
3290 
3291   return SDValue();
3292 }
3293 
3294 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3295 // instructions. If we only match on the legalized i64 mul expansion,
3296 // SimplifyDemandedBits will be unable to remove them because there will be
3297 // multiple uses due to the separate mul + mulh[su].
3298 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3299                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3300   if (Size <= 32) {
3301     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3302     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3303   }
3304 
3305   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3306   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3307 
3308   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3309   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3310 
3311   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi);
3312 }
3313 
3314 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3315                                                 DAGCombinerInfo &DCI) const {
3316   EVT VT = N->getValueType(0);
3317 
3318   // Don't generate 24-bit multiplies on values that are in SGPRs, since
3319   // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3320   // unnecessarily). isDivergent() is used as an approximation of whether the
3321   // value is in an SGPR.
3322   if (!N->isDivergent())
3323     return SDValue();
3324 
3325   unsigned Size = VT.getSizeInBits();
3326   if (VT.isVector() || Size > 64)
3327     return SDValue();
3328 
3329   // There are i16 integer mul/mad.
3330   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3331     return SDValue();
3332 
3333   SelectionDAG &DAG = DCI.DAG;
3334   SDLoc DL(N);
3335 
3336   SDValue N0 = N->getOperand(0);
3337   SDValue N1 = N->getOperand(1);
3338 
3339   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3340   // in the source into any_extends if the result of the mul is truncated. Since
3341   // we can assume the high bits are whatever we want, use the underlying value
3342   // to avoid the unknown high bits from interfering.
3343   if (N0.getOpcode() == ISD::ANY_EXTEND)
3344     N0 = N0.getOperand(0);
3345 
3346   if (N1.getOpcode() == ISD::ANY_EXTEND)
3347     N1 = N1.getOperand(0);
3348 
3349   SDValue Mul;
3350 
3351   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3352     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3353     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3354     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3355   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3356     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3357     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3358     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3359   } else {
3360     return SDValue();
3361   }
3362 
3363   // We need to use sext even for MUL_U24, because MUL_U24 is used
3364   // for signed multiply of 8 and 16-bit types.
3365   return DAG.getSExtOrTrunc(Mul, DL, VT);
3366 }
3367 
3368 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3369                                                   DAGCombinerInfo &DCI) const {
3370   EVT VT = N->getValueType(0);
3371 
3372   if (!Subtarget->hasMulI24() || VT.isVector())
3373     return SDValue();
3374 
3375   SelectionDAG &DAG = DCI.DAG;
3376   SDLoc DL(N);
3377 
3378   SDValue N0 = N->getOperand(0);
3379   SDValue N1 = N->getOperand(1);
3380 
3381   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3382     return SDValue();
3383 
3384   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3385   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3386 
3387   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3388   DCI.AddToWorklist(Mulhi.getNode());
3389   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3390 }
3391 
3392 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3393                                                   DAGCombinerInfo &DCI) const {
3394   EVT VT = N->getValueType(0);
3395 
3396   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3397     return SDValue();
3398 
3399   SelectionDAG &DAG = DCI.DAG;
3400   SDLoc DL(N);
3401 
3402   SDValue N0 = N->getOperand(0);
3403   SDValue N1 = N->getOperand(1);
3404 
3405   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3406     return SDValue();
3407 
3408   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3409   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3410 
3411   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3412   DCI.AddToWorklist(Mulhi.getNode());
3413   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3414 }
3415 
3416 static bool isNegativeOne(SDValue Val) {
3417   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3418     return C->isAllOnesValue();
3419   return false;
3420 }
3421 
3422 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3423                                           SDValue Op,
3424                                           const SDLoc &DL,
3425                                           unsigned Opc) const {
3426   EVT VT = Op.getValueType();
3427   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3428   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3429                               LegalVT != MVT::i16))
3430     return SDValue();
3431 
3432   if (VT != MVT::i32)
3433     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3434 
3435   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3436   if (VT != MVT::i32)
3437     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3438 
3439   return FFBX;
3440 }
3441 
3442 // The native instructions return -1 on 0 input. Optimize out a select that
3443 // produces -1 on 0.
3444 //
3445 // TODO: If zero is not undef, we could also do this if the output is compared
3446 // against the bitwidth.
3447 //
3448 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3449 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3450                                                  SDValue LHS, SDValue RHS,
3451                                                  DAGCombinerInfo &DCI) const {
3452   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3453   if (!CmpRhs || !CmpRhs->isNullValue())
3454     return SDValue();
3455 
3456   SelectionDAG &DAG = DCI.DAG;
3457   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3458   SDValue CmpLHS = Cond.getOperand(0);
3459 
3460   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3461   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3462   if (CCOpcode == ISD::SETEQ &&
3463       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3464       RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) {
3465     unsigned Opc =
3466         isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3467     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3468   }
3469 
3470   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3471   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3472   if (CCOpcode == ISD::SETNE &&
3473       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) &&
3474       LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) {
3475     unsigned Opc =
3476         isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3477 
3478     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3479   }
3480 
3481   return SDValue();
3482 }
3483 
3484 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3485                                          unsigned Op,
3486                                          const SDLoc &SL,
3487                                          SDValue Cond,
3488                                          SDValue N1,
3489                                          SDValue N2) {
3490   SelectionDAG &DAG = DCI.DAG;
3491   EVT VT = N1.getValueType();
3492 
3493   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3494                                   N1.getOperand(0), N2.getOperand(0));
3495   DCI.AddToWorklist(NewSelect.getNode());
3496   return DAG.getNode(Op, SL, VT, NewSelect);
3497 }
3498 
3499 // Pull a free FP operation out of a select so it may fold into uses.
3500 //
3501 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3502 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3503 //
3504 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3505 // select c, (fabs x), +k -> fabs (select c, x, k)
3506 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3507                                     SDValue N) {
3508   SelectionDAG &DAG = DCI.DAG;
3509   SDValue Cond = N.getOperand(0);
3510   SDValue LHS = N.getOperand(1);
3511   SDValue RHS = N.getOperand(2);
3512 
3513   EVT VT = N.getValueType();
3514   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3515       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3516     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3517                                      SDLoc(N), Cond, LHS, RHS);
3518   }
3519 
3520   bool Inv = false;
3521   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3522     std::swap(LHS, RHS);
3523     Inv = true;
3524   }
3525 
3526   // TODO: Support vector constants.
3527   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3528   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3529     SDLoc SL(N);
3530     // If one side is an fneg/fabs and the other is a constant, we can push the
3531     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3532     SDValue NewLHS = LHS.getOperand(0);
3533     SDValue NewRHS = RHS;
3534 
3535     // Careful: if the neg can be folded up, don't try to pull it back down.
3536     bool ShouldFoldNeg = true;
3537 
3538     if (NewLHS.hasOneUse()) {
3539       unsigned Opc = NewLHS.getOpcode();
3540       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3541         ShouldFoldNeg = false;
3542       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3543         ShouldFoldNeg = false;
3544     }
3545 
3546     if (ShouldFoldNeg) {
3547       if (LHS.getOpcode() == ISD::FNEG)
3548         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3549       else if (CRHS->isNegative())
3550         return SDValue();
3551 
3552       if (Inv)
3553         std::swap(NewLHS, NewRHS);
3554 
3555       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3556                                       Cond, NewLHS, NewRHS);
3557       DCI.AddToWorklist(NewSelect.getNode());
3558       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3559     }
3560   }
3561 
3562   return SDValue();
3563 }
3564 
3565 
3566 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3567                                                    DAGCombinerInfo &DCI) const {
3568   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3569     return Folded;
3570 
3571   SDValue Cond = N->getOperand(0);
3572   if (Cond.getOpcode() != ISD::SETCC)
3573     return SDValue();
3574 
3575   EVT VT = N->getValueType(0);
3576   SDValue LHS = Cond.getOperand(0);
3577   SDValue RHS = Cond.getOperand(1);
3578   SDValue CC = Cond.getOperand(2);
3579 
3580   SDValue True = N->getOperand(1);
3581   SDValue False = N->getOperand(2);
3582 
3583   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3584     SelectionDAG &DAG = DCI.DAG;
3585     if (DAG.isConstantValueOfAnyType(True) &&
3586         !DAG.isConstantValueOfAnyType(False)) {
3587       // Swap cmp + select pair to move constant to false input.
3588       // This will allow using VOPC cndmasks more often.
3589       // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3590 
3591       SDLoc SL(N);
3592       ISD::CondCode NewCC =
3593           getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3594 
3595       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3596       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3597     }
3598 
3599     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3600       SDValue MinMax
3601         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3602       // Revisit this node so we can catch min3/max3/med3 patterns.
3603       //DCI.AddToWorklist(MinMax.getNode());
3604       return MinMax;
3605     }
3606   }
3607 
3608   // There's no reason to not do this if the condition has other uses.
3609   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3610 }
3611 
3612 static bool isInv2Pi(const APFloat &APF) {
3613   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3614   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3615   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3616 
3617   return APF.bitwiseIsEqual(KF16) ||
3618          APF.bitwiseIsEqual(KF32) ||
3619          APF.bitwiseIsEqual(KF64);
3620 }
3621 
3622 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3623 // additional cost to negate them.
3624 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3625   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3626     if (C->isZero() && !C->isNegative())
3627       return true;
3628 
3629     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3630       return true;
3631   }
3632 
3633   return false;
3634 }
3635 
3636 static unsigned inverseMinMax(unsigned Opc) {
3637   switch (Opc) {
3638   case ISD::FMAXNUM:
3639     return ISD::FMINNUM;
3640   case ISD::FMINNUM:
3641     return ISD::FMAXNUM;
3642   case ISD::FMAXNUM_IEEE:
3643     return ISD::FMINNUM_IEEE;
3644   case ISD::FMINNUM_IEEE:
3645     return ISD::FMAXNUM_IEEE;
3646   case AMDGPUISD::FMAX_LEGACY:
3647     return AMDGPUISD::FMIN_LEGACY;
3648   case AMDGPUISD::FMIN_LEGACY:
3649     return  AMDGPUISD::FMAX_LEGACY;
3650   default:
3651     llvm_unreachable("invalid min/max opcode");
3652   }
3653 }
3654 
3655 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3656                                                  DAGCombinerInfo &DCI) const {
3657   SelectionDAG &DAG = DCI.DAG;
3658   SDValue N0 = N->getOperand(0);
3659   EVT VT = N->getValueType(0);
3660 
3661   unsigned Opc = N0.getOpcode();
3662 
3663   // If the input has multiple uses and we can either fold the negate down, or
3664   // the other uses cannot, give up. This both prevents unprofitable
3665   // transformations and infinite loops: we won't repeatedly try to fold around
3666   // a negate that has no 'good' form.
3667   if (N0.hasOneUse()) {
3668     // This may be able to fold into the source, but at a code size cost. Don't
3669     // fold if the fold into the user is free.
3670     if (allUsesHaveSourceMods(N, 0))
3671       return SDValue();
3672   } else {
3673     if (fnegFoldsIntoOp(Opc) &&
3674         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3675       return SDValue();
3676   }
3677 
3678   SDLoc SL(N);
3679   switch (Opc) {
3680   case ISD::FADD: {
3681     if (!mayIgnoreSignedZero(N0))
3682       return SDValue();
3683 
3684     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3685     SDValue LHS = N0.getOperand(0);
3686     SDValue RHS = N0.getOperand(1);
3687 
3688     if (LHS.getOpcode() != ISD::FNEG)
3689       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3690     else
3691       LHS = LHS.getOperand(0);
3692 
3693     if (RHS.getOpcode() != ISD::FNEG)
3694       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3695     else
3696       RHS = RHS.getOperand(0);
3697 
3698     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3699     if (Res.getOpcode() != ISD::FADD)
3700       return SDValue(); // Op got folded away.
3701     if (!N0.hasOneUse())
3702       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3703     return Res;
3704   }
3705   case ISD::FMUL:
3706   case AMDGPUISD::FMUL_LEGACY: {
3707     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3708     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3709     SDValue LHS = N0.getOperand(0);
3710     SDValue RHS = N0.getOperand(1);
3711 
3712     if (LHS.getOpcode() == ISD::FNEG)
3713       LHS = LHS.getOperand(0);
3714     else if (RHS.getOpcode() == ISD::FNEG)
3715       RHS = RHS.getOperand(0);
3716     else
3717       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3718 
3719     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3720     if (Res.getOpcode() != Opc)
3721       return SDValue(); // Op got folded away.
3722     if (!N0.hasOneUse())
3723       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3724     return Res;
3725   }
3726   case ISD::FMA:
3727   case ISD::FMAD: {
3728     // TODO: handle llvm.amdgcn.fma.legacy
3729     if (!mayIgnoreSignedZero(N0))
3730       return SDValue();
3731 
3732     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3733     SDValue LHS = N0.getOperand(0);
3734     SDValue MHS = N0.getOperand(1);
3735     SDValue RHS = N0.getOperand(2);
3736 
3737     if (LHS.getOpcode() == ISD::FNEG)
3738       LHS = LHS.getOperand(0);
3739     else if (MHS.getOpcode() == ISD::FNEG)
3740       MHS = MHS.getOperand(0);
3741     else
3742       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3743 
3744     if (RHS.getOpcode() != ISD::FNEG)
3745       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3746     else
3747       RHS = RHS.getOperand(0);
3748 
3749     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3750     if (Res.getOpcode() != Opc)
3751       return SDValue(); // Op got folded away.
3752     if (!N0.hasOneUse())
3753       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3754     return Res;
3755   }
3756   case ISD::FMAXNUM:
3757   case ISD::FMINNUM:
3758   case ISD::FMAXNUM_IEEE:
3759   case ISD::FMINNUM_IEEE:
3760   case AMDGPUISD::FMAX_LEGACY:
3761   case AMDGPUISD::FMIN_LEGACY: {
3762     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3763     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3764     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3765     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3766 
3767     SDValue LHS = N0.getOperand(0);
3768     SDValue RHS = N0.getOperand(1);
3769 
3770     // 0 doesn't have a negated inline immediate.
3771     // TODO: This constant check should be generalized to other operations.
3772     if (isConstantCostlierToNegate(RHS))
3773       return SDValue();
3774 
3775     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3776     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3777     unsigned Opposite = inverseMinMax(Opc);
3778 
3779     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3780     if (Res.getOpcode() != Opposite)
3781       return SDValue(); // Op got folded away.
3782     if (!N0.hasOneUse())
3783       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3784     return Res;
3785   }
3786   case AMDGPUISD::FMED3: {
3787     SDValue Ops[3];
3788     for (unsigned I = 0; I < 3; ++I)
3789       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3790 
3791     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3792     if (Res.getOpcode() != AMDGPUISD::FMED3)
3793       return SDValue(); // Op got folded away.
3794 
3795     if (!N0.hasOneUse()) {
3796       SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res);
3797       DAG.ReplaceAllUsesWith(N0, Neg);
3798 
3799       for (SDNode *U : Neg->uses())
3800         DCI.AddToWorklist(U);
3801     }
3802 
3803     return Res;
3804   }
3805   case ISD::FP_EXTEND:
3806   case ISD::FTRUNC:
3807   case ISD::FRINT:
3808   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3809   case ISD::FSIN:
3810   case ISD::FCANONICALIZE:
3811   case AMDGPUISD::RCP:
3812   case AMDGPUISD::RCP_LEGACY:
3813   case AMDGPUISD::RCP_IFLAG:
3814   case AMDGPUISD::SIN_HW: {
3815     SDValue CvtSrc = N0.getOperand(0);
3816     if (CvtSrc.getOpcode() == ISD::FNEG) {
3817       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3818       // (fneg (rcp (fneg x))) -> (rcp x)
3819       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3820     }
3821 
3822     if (!N0.hasOneUse())
3823       return SDValue();
3824 
3825     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3826     // (fneg (rcp x)) -> (rcp (fneg x))
3827     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3828     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3829   }
3830   case ISD::FP_ROUND: {
3831     SDValue CvtSrc = N0.getOperand(0);
3832 
3833     if (CvtSrc.getOpcode() == ISD::FNEG) {
3834       // (fneg (fp_round (fneg x))) -> (fp_round x)
3835       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3836                          CvtSrc.getOperand(0), N0.getOperand(1));
3837     }
3838 
3839     if (!N0.hasOneUse())
3840       return SDValue();
3841 
3842     // (fneg (fp_round x)) -> (fp_round (fneg x))
3843     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3844     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3845   }
3846   case ISD::FP16_TO_FP: {
3847     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3848     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3849     // Put the fneg back as a legal source operation that can be matched later.
3850     SDLoc SL(N);
3851 
3852     SDValue Src = N0.getOperand(0);
3853     EVT SrcVT = Src.getValueType();
3854 
3855     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3856     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3857                                   DAG.getConstant(0x8000, SL, SrcVT));
3858     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3859   }
3860   default:
3861     return SDValue();
3862   }
3863 }
3864 
3865 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3866                                                  DAGCombinerInfo &DCI) const {
3867   SelectionDAG &DAG = DCI.DAG;
3868   SDValue N0 = N->getOperand(0);
3869 
3870   if (!N0.hasOneUse())
3871     return SDValue();
3872 
3873   switch (N0.getOpcode()) {
3874   case ISD::FP16_TO_FP: {
3875     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3876     SDLoc SL(N);
3877     SDValue Src = N0.getOperand(0);
3878     EVT SrcVT = Src.getValueType();
3879 
3880     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3881     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3882                                   DAG.getConstant(0x7fff, SL, SrcVT));
3883     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3884   }
3885   default:
3886     return SDValue();
3887   }
3888 }
3889 
3890 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3891                                                 DAGCombinerInfo &DCI) const {
3892   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3893   if (!CFP)
3894     return SDValue();
3895 
3896   // XXX - Should this flush denormals?
3897   const APFloat &Val = CFP->getValueAPF();
3898   APFloat One(Val.getSemantics(), "1.0");
3899   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3900 }
3901 
3902 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3903                                                 DAGCombinerInfo &DCI) const {
3904   SelectionDAG &DAG = DCI.DAG;
3905   SDLoc DL(N);
3906 
3907   switch(N->getOpcode()) {
3908   default:
3909     break;
3910   case ISD::BITCAST: {
3911     EVT DestVT = N->getValueType(0);
3912 
3913     // Push casts through vector builds. This helps avoid emitting a large
3914     // number of copies when materializing floating point vector constants.
3915     //
3916     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3917     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3918     if (DestVT.isVector()) {
3919       SDValue Src = N->getOperand(0);
3920       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3921         EVT SrcVT = Src.getValueType();
3922         unsigned NElts = DestVT.getVectorNumElements();
3923 
3924         if (SrcVT.getVectorNumElements() == NElts) {
3925           EVT DestEltVT = DestVT.getVectorElementType();
3926 
3927           SmallVector<SDValue, 8> CastedElts;
3928           SDLoc SL(N);
3929           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3930             SDValue Elt = Src.getOperand(I);
3931             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3932           }
3933 
3934           return DAG.getBuildVector(DestVT, SL, CastedElts);
3935         }
3936       }
3937     }
3938 
3939     if (DestVT.getSizeInBits() != 64 || !DestVT.isVector())
3940       break;
3941 
3942     // Fold bitcasts of constants.
3943     //
3944     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3945     // TODO: Generalize and move to DAGCombiner
3946     SDValue Src = N->getOperand(0);
3947     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3948       SDLoc SL(N);
3949       uint64_t CVal = C->getZExtValue();
3950       SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3951                                DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3952                                DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3953       return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3954     }
3955 
3956     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3957       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3958       SDLoc SL(N);
3959       uint64_t CVal = Val.getZExtValue();
3960       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3961                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3962                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3963 
3964       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3965     }
3966 
3967     break;
3968   }
3969   case ISD::SHL: {
3970     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3971       break;
3972 
3973     return performShlCombine(N, DCI);
3974   }
3975   case ISD::SRL: {
3976     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3977       break;
3978 
3979     return performSrlCombine(N, DCI);
3980   }
3981   case ISD::SRA: {
3982     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3983       break;
3984 
3985     return performSraCombine(N, DCI);
3986   }
3987   case ISD::TRUNCATE:
3988     return performTruncateCombine(N, DCI);
3989   case ISD::MUL:
3990     return performMulCombine(N, DCI);
3991   case ISD::MULHS:
3992     return performMulhsCombine(N, DCI);
3993   case ISD::MULHU:
3994     return performMulhuCombine(N, DCI);
3995   case AMDGPUISD::MUL_I24:
3996   case AMDGPUISD::MUL_U24:
3997   case AMDGPUISD::MULHI_I24:
3998   case AMDGPUISD::MULHI_U24:
3999     return simplifyMul24(N, DCI);
4000   case ISD::SELECT:
4001     return performSelectCombine(N, DCI);
4002   case ISD::FNEG:
4003     return performFNegCombine(N, DCI);
4004   case ISD::FABS:
4005     return performFAbsCombine(N, DCI);
4006   case AMDGPUISD::BFE_I32:
4007   case AMDGPUISD::BFE_U32: {
4008     assert(!N->getValueType(0).isVector() &&
4009            "Vector handling of BFE not implemented");
4010     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4011     if (!Width)
4012       break;
4013 
4014     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4015     if (WidthVal == 0)
4016       return DAG.getConstant(0, DL, MVT::i32);
4017 
4018     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4019     if (!Offset)
4020       break;
4021 
4022     SDValue BitsFrom = N->getOperand(0);
4023     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4024 
4025     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4026 
4027     if (OffsetVal == 0) {
4028       // This is already sign / zero extended, so try to fold away extra BFEs.
4029       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4030 
4031       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4032       if (OpSignBits >= SignBits)
4033         return BitsFrom;
4034 
4035       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4036       if (Signed) {
4037         // This is a sign_extend_inreg. Replace it to take advantage of existing
4038         // DAG Combines. If not eliminated, we will match back to BFE during
4039         // selection.
4040 
4041         // TODO: The sext_inreg of extended types ends, although we can could
4042         // handle them in a single BFE.
4043         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4044                            DAG.getValueType(SmallVT));
4045       }
4046 
4047       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4048     }
4049 
4050     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4051       if (Signed) {
4052         return constantFoldBFE<int32_t>(DAG,
4053                                         CVal->getSExtValue(),
4054                                         OffsetVal,
4055                                         WidthVal,
4056                                         DL);
4057       }
4058 
4059       return constantFoldBFE<uint32_t>(DAG,
4060                                        CVal->getZExtValue(),
4061                                        OffsetVal,
4062                                        WidthVal,
4063                                        DL);
4064     }
4065 
4066     if ((OffsetVal + WidthVal) >= 32 &&
4067         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4068       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4069       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4070                          BitsFrom, ShiftVal);
4071     }
4072 
4073     if (BitsFrom.hasOneUse()) {
4074       APInt Demanded = APInt::getBitsSet(32,
4075                                          OffsetVal,
4076                                          OffsetVal + WidthVal);
4077 
4078       KnownBits Known;
4079       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4080                                             !DCI.isBeforeLegalizeOps());
4081       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4082       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4083           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4084         DCI.CommitTargetLoweringOpt(TLO);
4085       }
4086     }
4087 
4088     break;
4089   }
4090   case ISD::LOAD:
4091     return performLoadCombine(N, DCI);
4092   case ISD::STORE:
4093     return performStoreCombine(N, DCI);
4094   case AMDGPUISD::RCP:
4095   case AMDGPUISD::RCP_IFLAG:
4096     return performRcpCombine(N, DCI);
4097   case ISD::AssertZext:
4098   case ISD::AssertSext:
4099     return performAssertSZExtCombine(N, DCI);
4100   case ISD::INTRINSIC_WO_CHAIN:
4101     return performIntrinsicWOChainCombine(N, DCI);
4102   }
4103   return SDValue();
4104 }
4105 
4106 //===----------------------------------------------------------------------===//
4107 // Helper functions
4108 //===----------------------------------------------------------------------===//
4109 
4110 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4111                                                    const TargetRegisterClass *RC,
4112                                                    Register Reg, EVT VT,
4113                                                    const SDLoc &SL,
4114                                                    bool RawReg) const {
4115   MachineFunction &MF = DAG.getMachineFunction();
4116   MachineRegisterInfo &MRI = MF.getRegInfo();
4117   Register VReg;
4118 
4119   if (!MRI.isLiveIn(Reg)) {
4120     VReg = MRI.createVirtualRegister(RC);
4121     MRI.addLiveIn(Reg, VReg);
4122   } else {
4123     VReg = MRI.getLiveInVirtReg(Reg);
4124   }
4125 
4126   if (RawReg)
4127     return DAG.getRegister(VReg, VT);
4128 
4129   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4130 }
4131 
4132 // This may be called multiple times, and nothing prevents creating multiple
4133 // objects at the same offset. See if we already defined this object.
4134 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4135                                        int64_t Offset) {
4136   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4137     if (MFI.getObjectOffset(I) == Offset) {
4138       assert(MFI.getObjectSize(I) == Size);
4139       return I;
4140     }
4141   }
4142 
4143   return MFI.CreateFixedObject(Size, Offset, true);
4144 }
4145 
4146 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4147                                                   EVT VT,
4148                                                   const SDLoc &SL,
4149                                                   int64_t Offset) const {
4150   MachineFunction &MF = DAG.getMachineFunction();
4151   MachineFrameInfo &MFI = MF.getFrameInfo();
4152   int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4153 
4154   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4155   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4156 
4157   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4),
4158                      MachineMemOperand::MODereferenceable |
4159                          MachineMemOperand::MOInvariant);
4160 }
4161 
4162 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4163                                                    const SDLoc &SL,
4164                                                    SDValue Chain,
4165                                                    SDValue ArgVal,
4166                                                    int64_t Offset) const {
4167   MachineFunction &MF = DAG.getMachineFunction();
4168   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4169   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4170 
4171   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4172   // Stores to the argument stack area are relative to the stack pointer.
4173   SDValue SP =
4174       DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32);
4175   Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr);
4176   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4),
4177                                MachineMemOperand::MODereferenceable);
4178   return Store;
4179 }
4180 
4181 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4182                                              const TargetRegisterClass *RC,
4183                                              EVT VT, const SDLoc &SL,
4184                                              const ArgDescriptor &Arg) const {
4185   assert(Arg && "Attempting to load missing argument");
4186 
4187   SDValue V = Arg.isRegister() ?
4188     CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4189     loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4190 
4191   if (!Arg.isMasked())
4192     return V;
4193 
4194   unsigned Mask = Arg.getMask();
4195   unsigned Shift = countTrailingZeros<unsigned>(Mask);
4196   V = DAG.getNode(ISD::SRL, SL, VT, V,
4197                   DAG.getShiftAmountConstant(Shift, VT, SL));
4198   return DAG.getNode(ISD::AND, SL, VT, V,
4199                      DAG.getConstant(Mask >> Shift, SL, VT));
4200 }
4201 
4202 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4203     const MachineFunction &MF, const ImplicitParameter Param) const {
4204   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4205   const AMDGPUSubtarget &ST =
4206       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4207   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4208   const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4209   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4210                        ExplicitArgOffset;
4211   switch (Param) {
4212   case GRID_DIM:
4213     return ArgOffset;
4214   case GRID_OFFSET:
4215     return ArgOffset + 4;
4216   }
4217   llvm_unreachable("unexpected implicit parameter type");
4218 }
4219 
4220 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4221 
4222 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4223   switch ((AMDGPUISD::NodeType)Opcode) {
4224   case AMDGPUISD::FIRST_NUMBER: break;
4225   // AMDIL DAG nodes
4226   NODE_NAME_CASE(UMUL);
4227   NODE_NAME_CASE(BRANCH_COND);
4228 
4229   // AMDGPU DAG nodes
4230   NODE_NAME_CASE(IF)
4231   NODE_NAME_CASE(ELSE)
4232   NODE_NAME_CASE(LOOP)
4233   NODE_NAME_CASE(CALL)
4234   NODE_NAME_CASE(TC_RETURN)
4235   NODE_NAME_CASE(TRAP)
4236   NODE_NAME_CASE(RET_FLAG)
4237   NODE_NAME_CASE(RETURN_TO_EPILOG)
4238   NODE_NAME_CASE(ENDPGM)
4239   NODE_NAME_CASE(DWORDADDR)
4240   NODE_NAME_CASE(FRACT)
4241   NODE_NAME_CASE(SETCC)
4242   NODE_NAME_CASE(SETREG)
4243   NODE_NAME_CASE(DENORM_MODE)
4244   NODE_NAME_CASE(FMA_W_CHAIN)
4245   NODE_NAME_CASE(FMUL_W_CHAIN)
4246   NODE_NAME_CASE(CLAMP)
4247   NODE_NAME_CASE(COS_HW)
4248   NODE_NAME_CASE(SIN_HW)
4249   NODE_NAME_CASE(FMAX_LEGACY)
4250   NODE_NAME_CASE(FMIN_LEGACY)
4251   NODE_NAME_CASE(FMAX3)
4252   NODE_NAME_CASE(SMAX3)
4253   NODE_NAME_CASE(UMAX3)
4254   NODE_NAME_CASE(FMIN3)
4255   NODE_NAME_CASE(SMIN3)
4256   NODE_NAME_CASE(UMIN3)
4257   NODE_NAME_CASE(FMED3)
4258   NODE_NAME_CASE(SMED3)
4259   NODE_NAME_CASE(UMED3)
4260   NODE_NAME_CASE(FDOT2)
4261   NODE_NAME_CASE(URECIP)
4262   NODE_NAME_CASE(DIV_SCALE)
4263   NODE_NAME_CASE(DIV_FMAS)
4264   NODE_NAME_CASE(DIV_FIXUP)
4265   NODE_NAME_CASE(FMAD_FTZ)
4266   NODE_NAME_CASE(RCP)
4267   NODE_NAME_CASE(RSQ)
4268   NODE_NAME_CASE(RCP_LEGACY)
4269   NODE_NAME_CASE(RCP_IFLAG)
4270   NODE_NAME_CASE(FMUL_LEGACY)
4271   NODE_NAME_CASE(RSQ_CLAMP)
4272   NODE_NAME_CASE(LDEXP)
4273   NODE_NAME_CASE(FP_CLASS)
4274   NODE_NAME_CASE(DOT4)
4275   NODE_NAME_CASE(CARRY)
4276   NODE_NAME_CASE(BORROW)
4277   NODE_NAME_CASE(BFE_U32)
4278   NODE_NAME_CASE(BFE_I32)
4279   NODE_NAME_CASE(BFI)
4280   NODE_NAME_CASE(BFM)
4281   NODE_NAME_CASE(FFBH_U32)
4282   NODE_NAME_CASE(FFBH_I32)
4283   NODE_NAME_CASE(FFBL_B32)
4284   NODE_NAME_CASE(MUL_U24)
4285   NODE_NAME_CASE(MUL_I24)
4286   NODE_NAME_CASE(MULHI_U24)
4287   NODE_NAME_CASE(MULHI_I24)
4288   NODE_NAME_CASE(MAD_U24)
4289   NODE_NAME_CASE(MAD_I24)
4290   NODE_NAME_CASE(MAD_I64_I32)
4291   NODE_NAME_CASE(MAD_U64_U32)
4292   NODE_NAME_CASE(PERM)
4293   NODE_NAME_CASE(TEXTURE_FETCH)
4294   NODE_NAME_CASE(R600_EXPORT)
4295   NODE_NAME_CASE(CONST_ADDRESS)
4296   NODE_NAME_CASE(REGISTER_LOAD)
4297   NODE_NAME_CASE(REGISTER_STORE)
4298   NODE_NAME_CASE(SAMPLE)
4299   NODE_NAME_CASE(SAMPLEB)
4300   NODE_NAME_CASE(SAMPLED)
4301   NODE_NAME_CASE(SAMPLEL)
4302   NODE_NAME_CASE(CVT_F32_UBYTE0)
4303   NODE_NAME_CASE(CVT_F32_UBYTE1)
4304   NODE_NAME_CASE(CVT_F32_UBYTE2)
4305   NODE_NAME_CASE(CVT_F32_UBYTE3)
4306   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4307   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4308   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4309   NODE_NAME_CASE(CVT_PK_I16_I32)
4310   NODE_NAME_CASE(CVT_PK_U16_U32)
4311   NODE_NAME_CASE(FP_TO_FP16)
4312   NODE_NAME_CASE(FP16_ZEXT)
4313   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4314   NODE_NAME_CASE(CONST_DATA_PTR)
4315   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4316   NODE_NAME_CASE(LDS)
4317   NODE_NAME_CASE(DUMMY_CHAIN)
4318   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4319   NODE_NAME_CASE(LOAD_D16_HI)
4320   NODE_NAME_CASE(LOAD_D16_LO)
4321   NODE_NAME_CASE(LOAD_D16_HI_I8)
4322   NODE_NAME_CASE(LOAD_D16_HI_U8)
4323   NODE_NAME_CASE(LOAD_D16_LO_I8)
4324   NODE_NAME_CASE(LOAD_D16_LO_U8)
4325   NODE_NAME_CASE(STORE_MSKOR)
4326   NODE_NAME_CASE(LOAD_CONSTANT)
4327   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4328   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4329   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4330   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4331   NODE_NAME_CASE(DS_ORDERED_COUNT)
4332   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4333   NODE_NAME_CASE(ATOMIC_INC)
4334   NODE_NAME_CASE(ATOMIC_DEC)
4335   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4336   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4337   NODE_NAME_CASE(BUFFER_LOAD)
4338   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4339   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4340   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4341   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4342   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4343   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4344   NODE_NAME_CASE(SBUFFER_LOAD)
4345   NODE_NAME_CASE(BUFFER_STORE)
4346   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4347   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4348   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4349   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4350   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4351   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4352   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4353   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4354   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4355   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4356   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4357   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4358   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4359   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4360   NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4361   NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4362   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4363   NODE_NAME_CASE(BUFFER_ATOMIC_CSUB)
4364   NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4365   NODE_NAME_CASE(BUFFER_ATOMIC_FMIN)
4366   NODE_NAME_CASE(BUFFER_ATOMIC_FMAX)
4367 
4368   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4369   }
4370   return nullptr;
4371 }
4372 
4373 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4374                                               SelectionDAG &DAG, int Enabled,
4375                                               int &RefinementSteps,
4376                                               bool &UseOneConstNR,
4377                                               bool Reciprocal) const {
4378   EVT VT = Operand.getValueType();
4379 
4380   if (VT == MVT::f32) {
4381     RefinementSteps = 0;
4382     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4383   }
4384 
4385   // TODO: There is also f64 rsq instruction, but the documentation is less
4386   // clear on its precision.
4387 
4388   return SDValue();
4389 }
4390 
4391 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4392                                                SelectionDAG &DAG, int Enabled,
4393                                                int &RefinementSteps) const {
4394   EVT VT = Operand.getValueType();
4395 
4396   if (VT == MVT::f32) {
4397     // Reciprocal, < 1 ulp error.
4398     //
4399     // This reciprocal approximation converges to < 0.5 ulp error with one
4400     // newton rhapson performed with two fused multiple adds (FMAs).
4401 
4402     RefinementSteps = 0;
4403     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4404   }
4405 
4406   // TODO: There is also f64 rcp instruction, but the documentation is less
4407   // clear on its precision.
4408 
4409   return SDValue();
4410 }
4411 
4412 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4413     const SDValue Op, KnownBits &Known,
4414     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4415 
4416   Known.resetAll(); // Don't know anything.
4417 
4418   unsigned Opc = Op.getOpcode();
4419 
4420   switch (Opc) {
4421   default:
4422     break;
4423   case AMDGPUISD::CARRY:
4424   case AMDGPUISD::BORROW: {
4425     Known.Zero = APInt::getHighBitsSet(32, 31);
4426     break;
4427   }
4428 
4429   case AMDGPUISD::BFE_I32:
4430   case AMDGPUISD::BFE_U32: {
4431     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4432     if (!CWidth)
4433       return;
4434 
4435     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4436 
4437     if (Opc == AMDGPUISD::BFE_U32)
4438       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4439 
4440     break;
4441   }
4442   case AMDGPUISD::FP_TO_FP16:
4443   case AMDGPUISD::FP16_ZEXT: {
4444     unsigned BitWidth = Known.getBitWidth();
4445 
4446     // High bits are zero.
4447     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4448     break;
4449   }
4450   case AMDGPUISD::MUL_U24:
4451   case AMDGPUISD::MUL_I24: {
4452     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4453     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4454     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4455                       RHSKnown.countMinTrailingZeros();
4456     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4457     // Skip extra check if all bits are known zeros.
4458     if (TrailZ >= 32)
4459       break;
4460 
4461     // Truncate to 24 bits.
4462     LHSKnown = LHSKnown.trunc(24);
4463     RHSKnown = RHSKnown.trunc(24);
4464 
4465     if (Opc == AMDGPUISD::MUL_I24) {
4466       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4467       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4468       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4469       if (MaxValBits >= 32)
4470         break;
4471       bool LHSNegative = LHSKnown.isNegative();
4472       bool LHSNonNegative = LHSKnown.isNonNegative();
4473       bool LHSPositive = LHSKnown.isStrictlyPositive();
4474       bool RHSNegative = RHSKnown.isNegative();
4475       bool RHSNonNegative = RHSKnown.isNonNegative();
4476       bool RHSPositive = RHSKnown.isStrictlyPositive();
4477 
4478       if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4479         Known.Zero.setHighBits(32 - MaxValBits);
4480       else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4481         Known.One.setHighBits(32 - MaxValBits);
4482     } else {
4483       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4484       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4485       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4486       if (MaxValBits >= 32)
4487         break;
4488       Known.Zero.setHighBits(32 - MaxValBits);
4489     }
4490     break;
4491   }
4492   case AMDGPUISD::PERM: {
4493     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4494     if (!CMask)
4495       return;
4496 
4497     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4498     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4499     unsigned Sel = CMask->getZExtValue();
4500 
4501     for (unsigned I = 0; I < 32; I += 8) {
4502       unsigned SelBits = Sel & 0xff;
4503       if (SelBits < 4) {
4504         SelBits *= 8;
4505         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4506         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4507       } else if (SelBits < 7) {
4508         SelBits = (SelBits & 3) * 8;
4509         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4510         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4511       } else if (SelBits == 0x0c) {
4512         Known.Zero |= 0xFFull << I;
4513       } else if (SelBits > 0x0c) {
4514         Known.One |= 0xFFull << I;
4515       }
4516       Sel >>= 8;
4517     }
4518     break;
4519   }
4520   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4521     Known.Zero.setHighBits(24);
4522     break;
4523   }
4524   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4525     Known.Zero.setHighBits(16);
4526     break;
4527   }
4528   case AMDGPUISD::LDS: {
4529     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4530     Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout());
4531 
4532     Known.Zero.setHighBits(16);
4533     Known.Zero.setLowBits(Log2(Alignment));
4534     break;
4535   }
4536   case ISD::INTRINSIC_WO_CHAIN: {
4537     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4538     switch (IID) {
4539     case Intrinsic::amdgcn_mbcnt_lo:
4540     case Intrinsic::amdgcn_mbcnt_hi: {
4541       const GCNSubtarget &ST =
4542           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4543       // These return at most the wavefront size - 1.
4544       unsigned Size = Op.getValueType().getSizeInBits();
4545       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4546       break;
4547     }
4548     default:
4549       break;
4550     }
4551   }
4552   }
4553 }
4554 
4555 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4556     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4557     unsigned Depth) const {
4558   switch (Op.getOpcode()) {
4559   case AMDGPUISD::BFE_I32: {
4560     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4561     if (!Width)
4562       return 1;
4563 
4564     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4565     if (!isNullConstant(Op.getOperand(1)))
4566       return SignBits;
4567 
4568     // TODO: Could probably figure something out with non-0 offsets.
4569     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4570     return std::max(SignBits, Op0SignBits);
4571   }
4572 
4573   case AMDGPUISD::BFE_U32: {
4574     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4575     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4576   }
4577 
4578   case AMDGPUISD::CARRY:
4579   case AMDGPUISD::BORROW:
4580     return 31;
4581   case AMDGPUISD::BUFFER_LOAD_BYTE:
4582     return 25;
4583   case AMDGPUISD::BUFFER_LOAD_SHORT:
4584     return 17;
4585   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4586     return 24;
4587   case AMDGPUISD::BUFFER_LOAD_USHORT:
4588     return 16;
4589   case AMDGPUISD::FP_TO_FP16:
4590   case AMDGPUISD::FP16_ZEXT:
4591     return 16;
4592   default:
4593     return 1;
4594   }
4595 }
4596 
4597 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr(
4598   GISelKnownBits &Analysis, Register R,
4599   const APInt &DemandedElts, const MachineRegisterInfo &MRI,
4600   unsigned Depth) const {
4601   const MachineInstr *MI = MRI.getVRegDef(R);
4602   if (!MI)
4603     return 1;
4604 
4605   // TODO: Check range metadata on MMO.
4606   switch (MI->getOpcode()) {
4607   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE:
4608     return 25;
4609   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT:
4610     return 17;
4611   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
4612     return 24;
4613   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
4614     return 16;
4615   default:
4616     return 1;
4617   }
4618 }
4619 
4620 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4621                                                         const SelectionDAG &DAG,
4622                                                         bool SNaN,
4623                                                         unsigned Depth) const {
4624   unsigned Opcode = Op.getOpcode();
4625   switch (Opcode) {
4626   case AMDGPUISD::FMIN_LEGACY:
4627   case AMDGPUISD::FMAX_LEGACY: {
4628     if (SNaN)
4629       return true;
4630 
4631     // TODO: Can check no nans on one of the operands for each one, but which
4632     // one?
4633     return false;
4634   }
4635   case AMDGPUISD::FMUL_LEGACY:
4636   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4637     if (SNaN)
4638       return true;
4639     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4640            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4641   }
4642   case AMDGPUISD::FMED3:
4643   case AMDGPUISD::FMIN3:
4644   case AMDGPUISD::FMAX3:
4645   case AMDGPUISD::FMAD_FTZ: {
4646     if (SNaN)
4647       return true;
4648     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4649            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4650            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4651   }
4652   case AMDGPUISD::CVT_F32_UBYTE0:
4653   case AMDGPUISD::CVT_F32_UBYTE1:
4654   case AMDGPUISD::CVT_F32_UBYTE2:
4655   case AMDGPUISD::CVT_F32_UBYTE3:
4656     return true;
4657 
4658   case AMDGPUISD::RCP:
4659   case AMDGPUISD::RSQ:
4660   case AMDGPUISD::RCP_LEGACY:
4661   case AMDGPUISD::RSQ_CLAMP: {
4662     if (SNaN)
4663       return true;
4664 
4665     // TODO: Need is known positive check.
4666     return false;
4667   }
4668   case AMDGPUISD::LDEXP:
4669   case AMDGPUISD::FRACT: {
4670     if (SNaN)
4671       return true;
4672     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4673   }
4674   case AMDGPUISD::DIV_SCALE:
4675   case AMDGPUISD::DIV_FMAS:
4676   case AMDGPUISD::DIV_FIXUP:
4677     // TODO: Refine on operands.
4678     return SNaN;
4679   case AMDGPUISD::SIN_HW:
4680   case AMDGPUISD::COS_HW: {
4681     // TODO: Need check for infinity
4682     return SNaN;
4683   }
4684   case ISD::INTRINSIC_WO_CHAIN: {
4685     unsigned IntrinsicID
4686       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4687     // TODO: Handle more intrinsics
4688     switch (IntrinsicID) {
4689     case Intrinsic::amdgcn_cubeid:
4690       return true;
4691 
4692     case Intrinsic::amdgcn_frexp_mant: {
4693       if (SNaN)
4694         return true;
4695       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4696     }
4697     case Intrinsic::amdgcn_cvt_pkrtz: {
4698       if (SNaN)
4699         return true;
4700       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4701              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4702     }
4703     case Intrinsic::amdgcn_rcp:
4704     case Intrinsic::amdgcn_rsq:
4705     case Intrinsic::amdgcn_rcp_legacy:
4706     case Intrinsic::amdgcn_rsq_legacy:
4707     case Intrinsic::amdgcn_rsq_clamp: {
4708       if (SNaN)
4709         return true;
4710 
4711       // TODO: Need is known positive check.
4712       return false;
4713     }
4714     case Intrinsic::amdgcn_trig_preop:
4715     case Intrinsic::amdgcn_fdot2:
4716       // TODO: Refine on operand
4717       return SNaN;
4718     case Intrinsic::amdgcn_fma_legacy:
4719       if (SNaN)
4720         return true;
4721       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4722              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) &&
4723              DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1);
4724     default:
4725       return false;
4726     }
4727   }
4728   default:
4729     return false;
4730   }
4731 }
4732 
4733 TargetLowering::AtomicExpansionKind
4734 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4735   switch (RMW->getOperation()) {
4736   case AtomicRMWInst::Nand:
4737   case AtomicRMWInst::FAdd:
4738   case AtomicRMWInst::FSub:
4739     return AtomicExpansionKind::CmpXChg;
4740   default:
4741     return AtomicExpansionKind::None;
4742   }
4743 }
4744