1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "SIInstrInfo.h"
32 using namespace llvm;
33 
34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
35                             CCValAssign::LocInfo LocInfo,
36                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
37   MachineFunction &MF = State.getMachineFunction();
38   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
39 
40   uint64_t Offset = MFI->allocateKernArg(ValVT.getStoreSize(),
41                                          ArgFlags.getOrigAlign());
42   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
43   return true;
44 }
45 
46 #include "AMDGPUGenCallingConv.inc"
47 
48 // Find a larger type to do a load / store of a vector with.
49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
50   unsigned StoreSize = VT.getStoreSizeInBits();
51   if (StoreSize <= 32)
52     return EVT::getIntegerVT(Ctx, StoreSize);
53 
54   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
55   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
56 }
57 
58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
59                                            const AMDGPUSubtarget &STI)
60     : TargetLowering(TM), Subtarget(&STI) {
61   // Lower floating point store/load to integer store/load to reduce the number
62   // of patterns in tablegen.
63   setOperationAction(ISD::LOAD, MVT::f32, Promote);
64   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
65 
66   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
67   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
68 
69   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
70   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
71 
72   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
73   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
74 
75   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
76   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
77 
78   setOperationAction(ISD::LOAD, MVT::i64, Promote);
79   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
80 
81   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
82   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
83 
84   setOperationAction(ISD::LOAD, MVT::f64, Promote);
85   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
86 
87   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
88   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
89 
90   // There are no 64-bit extloads. These should be done as a 32-bit extload and
91   // an extension to 64-bit.
92   for (MVT VT : MVT::integer_valuetypes()) {
93     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
94     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
95     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
96   }
97 
98   for (MVT VT : MVT::integer_valuetypes()) {
99     if (VT == MVT::i64)
100       continue;
101 
102     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
103     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
104     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
105     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
106 
107     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
108     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
109     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
110     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
111 
112     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
113     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
114     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
115     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
116   }
117 
118   for (MVT VT : MVT::integer_vector_valuetypes()) {
119     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
120     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
121     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
122     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
123     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
124     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
125     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
126     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
127     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
128     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
129     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
130     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
131   }
132 
133   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
134   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
135   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
136   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
137 
138   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
139   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
140   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
141   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
142 
143   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
144   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
145   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
146   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
147 
148   setOperationAction(ISD::STORE, MVT::f32, Promote);
149   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
150 
151   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
152   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
153 
154   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
155   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
156 
157   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
158   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
159 
160   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
161   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
162 
163   setOperationAction(ISD::STORE, MVT::i64, Promote);
164   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
165 
166   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
167   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
168 
169   setOperationAction(ISD::STORE, MVT::f64, Promote);
170   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
171 
172   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
173   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
174 
175   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
176   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
177 
178   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
179   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
180 
181   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
182   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
183   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
184 
185   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
186   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
187   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
188   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
189 
190   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
191   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
192   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
193   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
194 
195   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
196   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
197   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
198   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
199 
200   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
201   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
202 
203   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
204   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
205 
206   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
207   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
208 
209   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
210   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
211 
212 
213   setOperationAction(ISD::Constant, MVT::i32, Legal);
214   setOperationAction(ISD::Constant, MVT::i64, Legal);
215   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
216   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
217 
218   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
219   setOperationAction(ISD::BRIND, MVT::Other, Expand);
220 
221   // This is totally unsupported, just custom lower to produce an error.
222   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
223 
224   // We need to custom lower some of the intrinsics
225   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
226   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
227 
228   // Library functions.  These default to Expand, but we have instructions
229   // for them.
230   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
231   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
232   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
233   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
234   setOperationAction(ISD::FABS,   MVT::f32, Legal);
235   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
236   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
237   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
238   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
239   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
240 
241   setOperationAction(ISD::FROUND, MVT::f32, Custom);
242   setOperationAction(ISD::FROUND, MVT::f64, Custom);
243 
244   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
245   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
246 
247   setOperationAction(ISD::FREM, MVT::f32, Custom);
248   setOperationAction(ISD::FREM, MVT::f64, Custom);
249 
250   // v_mad_f32 does not support denormals according to some sources.
251   if (!Subtarget->hasFP32Denormals())
252     setOperationAction(ISD::FMAD, MVT::f32, Legal);
253 
254   // Expand to fneg + fadd.
255   setOperationAction(ISD::FSUB, MVT::f64, Expand);
256 
257   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
258   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
259   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
260   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
261   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
262   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
263   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
264   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
265   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
266   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
267 
268   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
269     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
270     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
271     setOperationAction(ISD::FRINT, MVT::f64, Custom);
272     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
273   }
274 
275   if (!Subtarget->hasBFI()) {
276     // fcopysign can be done in a single instruction with BFI.
277     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
278     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
279   }
280 
281   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
282 
283   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
284   for (MVT VT : ScalarIntVTs) {
285     // These should use [SU]DIVREM, so set them to expand
286     setOperationAction(ISD::SDIV, VT, Expand);
287     setOperationAction(ISD::UDIV, VT, Expand);
288     setOperationAction(ISD::SREM, VT, Expand);
289     setOperationAction(ISD::UREM, VT, Expand);
290 
291     // GPU does not have divrem function for signed or unsigned.
292     setOperationAction(ISD::SDIVREM, VT, Custom);
293     setOperationAction(ISD::UDIVREM, VT, Custom);
294 
295     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
296     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
297     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
298 
299     setOperationAction(ISD::BSWAP, VT, Expand);
300     setOperationAction(ISD::CTTZ, VT, Expand);
301     setOperationAction(ISD::CTLZ, VT, Expand);
302   }
303 
304   if (!Subtarget->hasBCNT(32))
305     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
306 
307   if (!Subtarget->hasBCNT(64))
308     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
309 
310   // The hardware supports 32-bit ROTR, but not ROTL.
311   setOperationAction(ISD::ROTL, MVT::i32, Expand);
312   setOperationAction(ISD::ROTL, MVT::i64, Expand);
313   setOperationAction(ISD::ROTR, MVT::i64, Expand);
314 
315   setOperationAction(ISD::MUL, MVT::i64, Expand);
316   setOperationAction(ISD::MULHU, MVT::i64, Expand);
317   setOperationAction(ISD::MULHS, MVT::i64, Expand);
318   setOperationAction(ISD::UDIV, MVT::i32, Expand);
319   setOperationAction(ISD::UREM, MVT::i32, Expand);
320   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
321   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
322   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
323   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
324   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
325 
326   setOperationAction(ISD::SMIN, MVT::i32, Legal);
327   setOperationAction(ISD::UMIN, MVT::i32, Legal);
328   setOperationAction(ISD::SMAX, MVT::i32, Legal);
329   setOperationAction(ISD::UMAX, MVT::i32, Legal);
330 
331   if (Subtarget->hasFFBH())
332     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
333 
334   if (Subtarget->hasFFBL())
335     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal);
336 
337   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
338   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
339 
340   // We only really have 32-bit BFE instructions (and 16-bit on VI).
341   //
342   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
343   // effort to match them now. We want this to be false for i64 cases when the
344   // extraction isn't restricted to the upper or lower half. Ideally we would
345   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
346   // span the midpoint are probably relatively rare, so don't worry about them
347   // for now.
348   if (Subtarget->hasBFE())
349     setHasExtractBitsInsn(true);
350 
351   static const MVT::SimpleValueType VectorIntTypes[] = {
352     MVT::v2i32, MVT::v4i32
353   };
354 
355   for (MVT VT : VectorIntTypes) {
356     // Expand the following operations for the current type by default.
357     setOperationAction(ISD::ADD,  VT, Expand);
358     setOperationAction(ISD::AND,  VT, Expand);
359     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
360     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
361     setOperationAction(ISD::MUL,  VT, Expand);
362     setOperationAction(ISD::OR,   VT, Expand);
363     setOperationAction(ISD::SHL,  VT, Expand);
364     setOperationAction(ISD::SRA,  VT, Expand);
365     setOperationAction(ISD::SRL,  VT, Expand);
366     setOperationAction(ISD::ROTL, VT, Expand);
367     setOperationAction(ISD::ROTR, VT, Expand);
368     setOperationAction(ISD::SUB,  VT, Expand);
369     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
370     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
371     setOperationAction(ISD::SDIV, VT, Expand);
372     setOperationAction(ISD::UDIV, VT, Expand);
373     setOperationAction(ISD::SREM, VT, Expand);
374     setOperationAction(ISD::UREM, VT, Expand);
375     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
376     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
377     setOperationAction(ISD::SDIVREM, VT, Custom);
378     setOperationAction(ISD::UDIVREM, VT, Expand);
379     setOperationAction(ISD::ADDC, VT, Expand);
380     setOperationAction(ISD::SUBC, VT, Expand);
381     setOperationAction(ISD::ADDE, VT, Expand);
382     setOperationAction(ISD::SUBE, VT, Expand);
383     setOperationAction(ISD::SELECT, VT, Expand);
384     setOperationAction(ISD::VSELECT, VT, Expand);
385     setOperationAction(ISD::SELECT_CC, VT, Expand);
386     setOperationAction(ISD::XOR,  VT, Expand);
387     setOperationAction(ISD::BSWAP, VT, Expand);
388     setOperationAction(ISD::CTPOP, VT, Expand);
389     setOperationAction(ISD::CTTZ, VT, Expand);
390     setOperationAction(ISD::CTLZ, VT, Expand);
391     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
392   }
393 
394   static const MVT::SimpleValueType FloatVectorTypes[] = {
395     MVT::v2f32, MVT::v4f32
396   };
397 
398   for (MVT VT : FloatVectorTypes) {
399     setOperationAction(ISD::FABS, VT, Expand);
400     setOperationAction(ISD::FMINNUM, VT, Expand);
401     setOperationAction(ISD::FMAXNUM, VT, Expand);
402     setOperationAction(ISD::FADD, VT, Expand);
403     setOperationAction(ISD::FCEIL, VT, Expand);
404     setOperationAction(ISD::FCOS, VT, Expand);
405     setOperationAction(ISD::FDIV, VT, Expand);
406     setOperationAction(ISD::FEXP2, VT, Expand);
407     setOperationAction(ISD::FLOG2, VT, Expand);
408     setOperationAction(ISD::FREM, VT, Expand);
409     setOperationAction(ISD::FPOW, VT, Expand);
410     setOperationAction(ISD::FFLOOR, VT, Expand);
411     setOperationAction(ISD::FTRUNC, VT, Expand);
412     setOperationAction(ISD::FMUL, VT, Expand);
413     setOperationAction(ISD::FMA, VT, Expand);
414     setOperationAction(ISD::FRINT, VT, Expand);
415     setOperationAction(ISD::FNEARBYINT, VT, Expand);
416     setOperationAction(ISD::FSQRT, VT, Expand);
417     setOperationAction(ISD::FSIN, VT, Expand);
418     setOperationAction(ISD::FSUB, VT, Expand);
419     setOperationAction(ISD::FNEG, VT, Expand);
420     setOperationAction(ISD::VSELECT, VT, Expand);
421     setOperationAction(ISD::SELECT_CC, VT, Expand);
422     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
423     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
424   }
425 
426   // This causes using an unrolled select operation rather than expansion with
427   // bit operations. This is in general better, but the alternative using BFI
428   // instructions may be better if the select sources are SGPRs.
429   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
430   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
431 
432   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
433   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
434 
435   setBooleanContents(ZeroOrNegativeOneBooleanContent);
436   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
437 
438   setSchedulingPreference(Sched::RegPressure);
439   setJumpIsExpensive(true);
440 
441   // SI at least has hardware support for floating point exceptions, but no way
442   // of using or handling them is implemented. They are also optional in OpenCL
443   // (Section 7.3)
444   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
445 
446   setSelectIsExpensive(false);
447   PredictableSelectIsExpensive = false;
448 
449   setFsqrtIsCheap(true);
450 
451   // We want to find all load dependencies for long chains of stores to enable
452   // merging into very wide vectors. The problem is with vectors with > 4
453   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
454   // vectors are a legal type, even though we have to split the loads
455   // usually. When we can more precisely specify load legality per address
456   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
457   // smarter so that they can figure out what to do in 2 iterations without all
458   // N > 4 stores on the same chain.
459   GatherAllAliasesMaxDepth = 16;
460 
461   // FIXME: Need to really handle these.
462   MaxStoresPerMemcpy  = 4096;
463   MaxStoresPerMemmove = 4096;
464   MaxStoresPerMemset  = 4096;
465 
466   setTargetDAGCombine(ISD::BITCAST);
467   setTargetDAGCombine(ISD::AND);
468   setTargetDAGCombine(ISD::SHL);
469   setTargetDAGCombine(ISD::SRA);
470   setTargetDAGCombine(ISD::SRL);
471   setTargetDAGCombine(ISD::MUL);
472   setTargetDAGCombine(ISD::SELECT);
473   setTargetDAGCombine(ISD::SELECT_CC);
474   setTargetDAGCombine(ISD::STORE);
475   setTargetDAGCombine(ISD::FADD);
476   setTargetDAGCombine(ISD::FSUB);
477 }
478 
479 //===----------------------------------------------------------------------===//
480 // Target Information
481 //===----------------------------------------------------------------------===//
482 
483 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
484   return MVT::i32;
485 }
486 
487 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
488   return true;
489 }
490 
491 // The backend supports 32 and 64 bit floating point immediates.
492 // FIXME: Why are we reporting vectors of FP immediates as legal?
493 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
494   EVT ScalarVT = VT.getScalarType();
495   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
496 }
497 
498 // We don't want to shrink f64 / f32 constants.
499 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
500   EVT ScalarVT = VT.getScalarType();
501   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
502 }
503 
504 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
505                                                  ISD::LoadExtType,
506                                                  EVT NewVT) const {
507 
508   unsigned NewSize = NewVT.getStoreSizeInBits();
509 
510   // If we are reducing to a 32-bit load, this is always better.
511   if (NewSize == 32)
512     return true;
513 
514   EVT OldVT = N->getValueType(0);
515   unsigned OldSize = OldVT.getStoreSizeInBits();
516 
517   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
518   // extloads, so doing one requires using a buffer_load. In cases where we
519   // still couldn't use a scalar load, using the wider load shouldn't really
520   // hurt anything.
521 
522   // If the old size already had to be an extload, there's no harm in continuing
523   // to reduce the width.
524   return (OldSize < 32);
525 }
526 
527 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
528                                                    EVT CastTy) const {
529 
530   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
531 
532   if (LoadTy.getScalarType() == MVT::i32)
533     return false;
534 
535   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
536   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
537 
538   return (LScalarSize < CastScalarSize) ||
539          (CastScalarSize >= 32);
540 }
541 
542 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
543 // profitable with the expansion for 64-bit since it's generally good to
544 // speculate things.
545 // FIXME: These should really have the size as a parameter.
546 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
547   return true;
548 }
549 
550 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
551   return true;
552 }
553 
554 //===---------------------------------------------------------------------===//
555 // Target Properties
556 //===---------------------------------------------------------------------===//
557 
558 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
559   assert(VT.isFloatingPoint());
560   return VT == MVT::f32 || VT == MVT::f64;
561 }
562 
563 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
564   assert(VT.isFloatingPoint());
565   return VT == MVT::f32 || VT == MVT::f64;
566 }
567 
568 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
569                                                          unsigned NumElem,
570                                                          unsigned AS) const {
571   return true;
572 }
573 
574 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
575   // There are few operations which truly have vector input operands. Any vector
576   // operation is going to involve operations on each component, and a
577   // build_vector will be a copy per element, so it always makes sense to use a
578   // build_vector input in place of the extracted element to avoid a copy into a
579   // super register.
580   //
581   // We should probably only do this if all users are extracts only, but this
582   // should be the common case.
583   return true;
584 }
585 
586 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
587   // Truncate is just accessing a subregister.
588   return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
589 }
590 
591 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
592   // Truncate is just accessing a subregister.
593   return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
594          (Dest->getPrimitiveSizeInBits() % 32 == 0);
595 }
596 
597 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
598   unsigned SrcSize = Src->getScalarSizeInBits();
599   unsigned DestSize = Dest->getScalarSizeInBits();
600 
601   return SrcSize == 32 && DestSize == 64;
602 }
603 
604 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
605   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
606   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
607   // this will enable reducing 64-bit operations the 32-bit, which is always
608   // good.
609   return Src == MVT::i32 && Dest == MVT::i64;
610 }
611 
612 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
613   return isZExtFree(Val.getValueType(), VT2);
614 }
615 
616 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
617   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
618   // limited number of native 64-bit operations. Shrinking an operation to fit
619   // in a single 32-bit register should always be helpful. As currently used,
620   // this is much less general than the name suggests, and is only used in
621   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
622   // not profitable, and may actually be harmful.
623   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
624 }
625 
626 //===---------------------------------------------------------------------===//
627 // TargetLowering Callbacks
628 //===---------------------------------------------------------------------===//
629 
630 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
631                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
632 
633   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
634 }
635 
636 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State,
637                            const SmallVectorImpl<ISD::OutputArg> &Outs) const {
638 
639   State.AnalyzeReturn(Outs, RetCC_SI);
640 }
641 
642 SDValue
643 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
644                                   bool isVarArg,
645                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
646                                   const SmallVectorImpl<SDValue> &OutVals,
647                                   const SDLoc &DL, SelectionDAG &DAG) const {
648   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
649 }
650 
651 //===---------------------------------------------------------------------===//
652 // Target specific lowering
653 //===---------------------------------------------------------------------===//
654 
655 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
656                                         SmallVectorImpl<SDValue> &InVals) const {
657   SDValue Callee = CLI.Callee;
658   SelectionDAG &DAG = CLI.DAG;
659 
660   const Function &Fn = *DAG.getMachineFunction().getFunction();
661 
662   StringRef FuncName("<unknown>");
663 
664   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
665     FuncName = G->getSymbol();
666   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
667     FuncName = G->getGlobal()->getName();
668 
669   DiagnosticInfoUnsupported NoCalls(
670       Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc());
671   DAG.getContext()->diagnose(NoCalls);
672 
673   for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
674     InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
675 
676   return DAG.getEntryNode();
677 }
678 
679 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
680                                                       SelectionDAG &DAG) const {
681   const Function &Fn = *DAG.getMachineFunction().getFunction();
682 
683   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
684                                             SDLoc(Op).getDebugLoc());
685   DAG.getContext()->diagnose(NoDynamicAlloca);
686   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
687   return DAG.getMergeValues(Ops, SDLoc());
688 }
689 
690 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
691                                              SelectionDAG &DAG) const {
692   switch (Op.getOpcode()) {
693   default:
694     Op->dump(&DAG);
695     llvm_unreachable("Custom lowering code for this"
696                      "instruction is not implemented yet!");
697     break;
698   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
699   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
700   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
701   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
702   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
703   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
704   case ISD::FREM: return LowerFREM(Op, DAG);
705   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
706   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
707   case ISD::FRINT: return LowerFRINT(Op, DAG);
708   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
709   case ISD::FROUND: return LowerFROUND(Op, DAG);
710   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
711   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
712   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
713   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
714   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
715   case ISD::CTLZ:
716   case ISD::CTLZ_ZERO_UNDEF:
717     return LowerCTLZ(Op, DAG);
718   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
719   }
720   return Op;
721 }
722 
723 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
724                                               SmallVectorImpl<SDValue> &Results,
725                                               SelectionDAG &DAG) const {
726   switch (N->getOpcode()) {
727   case ISD::SIGN_EXTEND_INREG:
728     // Different parts of legalization seem to interpret which type of
729     // sign_extend_inreg is the one to check for custom lowering. The extended
730     // from type is what really matters, but some places check for custom
731     // lowering of the result type. This results in trying to use
732     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
733     // nothing here and let the illegal result integer be handled normally.
734     return;
735   default:
736     return;
737   }
738 }
739 
740 static bool hasDefinedInitializer(const GlobalValue *GV) {
741   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
742   if (!GVar || !GVar->hasInitializer())
743     return false;
744 
745   return !isa<UndefValue>(GVar->getInitializer());
746 }
747 
748 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
749                                                  SDValue Op,
750                                                  SelectionDAG &DAG) const {
751 
752   const DataLayout &DL = DAG.getDataLayout();
753   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
754   const GlobalValue *GV = G->getGlobal();
755 
756   switch (G->getAddressSpace()) {
757   case AMDGPUAS::LOCAL_ADDRESS: {
758     // XXX: What does the value of G->getOffset() mean?
759     assert(G->getOffset() == 0 &&
760          "Do not know what to do with an non-zero offset");
761 
762     // TODO: We could emit code to handle the initialization somewhere.
763     if (hasDefinedInitializer(GV))
764       break;
765 
766     unsigned Offset;
767     if (MFI->LocalMemoryObjects.count(GV) == 0) {
768       unsigned Align = GV->getAlignment();
769       if (Align == 0)
770         Align = DL.getABITypeAlignment(GV->getValueType());
771 
772       /// TODO: We should sort these to minimize wasted space due to alignment
773       /// padding. Currently the padding is decided by the first encountered use
774       /// during lowering.
775       Offset = MFI->LDSSize = alignTo(MFI->LDSSize, Align);
776       MFI->LocalMemoryObjects[GV] = Offset;
777       MFI->LDSSize += DL.getTypeAllocSize(GV->getValueType());
778     } else {
779       Offset = MFI->LocalMemoryObjects[GV];
780     }
781 
782     return DAG.getConstant(Offset, SDLoc(Op),
783                            getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS));
784   }
785   }
786 
787   const Function &Fn = *DAG.getMachineFunction().getFunction();
788   DiagnosticInfoUnsupported BadInit(
789       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
790   DAG.getContext()->diagnose(BadInit);
791   return SDValue();
792 }
793 
794 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
795                                                   SelectionDAG &DAG) const {
796   SmallVector<SDValue, 8> Args;
797 
798   for (const SDUse &U : Op->ops())
799     DAG.ExtractVectorElements(U.get(), Args);
800 
801   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
802 }
803 
804 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
805                                                      SelectionDAG &DAG) const {
806 
807   SmallVector<SDValue, 8> Args;
808   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
809   EVT VT = Op.getValueType();
810   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
811                             VT.getVectorNumElements());
812 
813   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
814 }
815 
816 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
817     SelectionDAG &DAG) const {
818   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
819   SDLoc DL(Op);
820   EVT VT = Op.getValueType();
821 
822   switch (IntrinsicID) {
823     default: return Op;
824     case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name.
825       return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
826                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
827 
828     case AMDGPUIntrinsic::AMDGPU_bfe_i32:
829       return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
830                          Op.getOperand(1),
831                          Op.getOperand(2),
832                          Op.getOperand(3));
833 
834     case AMDGPUIntrinsic::AMDGPU_bfe_u32:
835       return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
836                          Op.getOperand(1),
837                          Op.getOperand(2),
838                          Op.getOperand(3));
839   }
840 }
841 
842 /// \brief Generate Min/Max node
843 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT,
844                                                    SDValue LHS, SDValue RHS,
845                                                    SDValue True, SDValue False,
846                                                    SDValue CC,
847                                                    DAGCombinerInfo &DCI) const {
848   if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
849     return SDValue();
850 
851   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
852     return SDValue();
853 
854   SelectionDAG &DAG = DCI.DAG;
855   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
856   switch (CCOpcode) {
857   case ISD::SETOEQ:
858   case ISD::SETONE:
859   case ISD::SETUNE:
860   case ISD::SETNE:
861   case ISD::SETUEQ:
862   case ISD::SETEQ:
863   case ISD::SETFALSE:
864   case ISD::SETFALSE2:
865   case ISD::SETTRUE:
866   case ISD::SETTRUE2:
867   case ISD::SETUO:
868   case ISD::SETO:
869     break;
870   case ISD::SETULE:
871   case ISD::SETULT: {
872     if (LHS == True)
873       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
874     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
875   }
876   case ISD::SETOLE:
877   case ISD::SETOLT:
878   case ISD::SETLE:
879   case ISD::SETLT: {
880     // Ordered. Assume ordered for undefined.
881 
882     // Only do this after legalization to avoid interfering with other combines
883     // which might occur.
884     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
885         !DCI.isCalledByLegalizer())
886       return SDValue();
887 
888     // We need to permute the operands to get the correct NaN behavior. The
889     // selected operand is the second one based on the failing compare with NaN,
890     // so permute it based on the compare type the hardware uses.
891     if (LHS == True)
892       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
893     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
894   }
895   case ISD::SETUGE:
896   case ISD::SETUGT: {
897     if (LHS == True)
898       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
899     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
900   }
901   case ISD::SETGT:
902   case ISD::SETGE:
903   case ISD::SETOGE:
904   case ISD::SETOGT: {
905     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
906         !DCI.isCalledByLegalizer())
907       return SDValue();
908 
909     if (LHS == True)
910       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
911     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
912   }
913   case ISD::SETCC_INVALID:
914     llvm_unreachable("Invalid setcc condcode!");
915   }
916   return SDValue();
917 }
918 
919 std::pair<SDValue, SDValue>
920 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
921   SDLoc SL(Op);
922 
923   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
924 
925   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
926   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
927 
928   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
929   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
930 
931   return std::make_pair(Lo, Hi);
932 }
933 
934 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
935   SDLoc SL(Op);
936 
937   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
938   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
939   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
940 }
941 
942 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
943   SDLoc SL(Op);
944 
945   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
946   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
947   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
948 }
949 
950 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
951                                               SelectionDAG &DAG) const {
952   LoadSDNode *Load = cast<LoadSDNode>(Op);
953   EVT VT = Op.getValueType();
954 
955 
956   // If this is a 2 element vector, we really want to scalarize and not create
957   // weird 1 element vectors.
958   if (VT.getVectorNumElements() == 2)
959     return scalarizeVectorLoad(Load, DAG);
960 
961   SDValue BasePtr = Load->getBasePtr();
962   EVT PtrVT = BasePtr.getValueType();
963   EVT MemVT = Load->getMemoryVT();
964   SDLoc SL(Op);
965 
966   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
967 
968   EVT LoVT, HiVT;
969   EVT LoMemVT, HiMemVT;
970   SDValue Lo, Hi;
971 
972   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
973   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
974   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
975 
976   unsigned Size = LoMemVT.getStoreSize();
977   unsigned BaseAlign = Load->getAlignment();
978   unsigned HiAlign = MinAlign(BaseAlign, Size);
979 
980   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
981                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
982                                   BaseAlign, Load->getMemOperand()->getFlags());
983   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
984                               DAG.getConstant(Size, SL, PtrVT));
985   SDValue HiLoad =
986       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
987                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
988                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
989 
990   SDValue Ops[] = {
991     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
992     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
993                 LoLoad.getValue(1), HiLoad.getValue(1))
994   };
995 
996   return DAG.getMergeValues(Ops, SL);
997 }
998 
999 // FIXME: This isn't doing anything for SI. This should be used in a target
1000 // combine during type legalization.
1001 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
1002                                                SelectionDAG &DAG) const {
1003   StoreSDNode *Store = cast<StoreSDNode>(Op);
1004   EVT MemVT = Store->getMemoryVT();
1005   unsigned MemBits = MemVT.getSizeInBits();
1006 
1007   // Byte stores are really expensive, so if possible, try to pack 32-bit vector
1008   // truncating store into an i32 store.
1009   // XXX: We could also handle optimize other vector bitwidths.
1010   if (!MemVT.isVector() || MemBits > 32) {
1011     return SDValue();
1012   }
1013 
1014   SDLoc DL(Op);
1015   SDValue Value = Store->getValue();
1016   EVT VT = Value.getValueType();
1017   EVT ElemVT = VT.getVectorElementType();
1018   SDValue Ptr = Store->getBasePtr();
1019   EVT MemEltVT = MemVT.getVectorElementType();
1020   unsigned MemEltBits = MemEltVT.getSizeInBits();
1021   unsigned MemNumElements = MemVT.getVectorNumElements();
1022   unsigned PackedSize = MemVT.getStoreSizeInBits();
1023   SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32);
1024 
1025   assert(Value.getValueType().getScalarSizeInBits() >= 32);
1026 
1027   SDValue PackedValue;
1028   for (unsigned i = 0; i < MemNumElements; ++i) {
1029     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
1030                               DAG.getConstant(i, DL, MVT::i32));
1031     Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
1032     Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
1033 
1034     SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32);
1035     Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
1036 
1037     if (i == 0) {
1038       PackedValue = Elt;
1039     } else {
1040       PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
1041     }
1042   }
1043 
1044   if (PackedSize < 32) {
1045     EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
1046     return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
1047                              Store->getMemOperand()->getPointerInfo(), PackedVT,
1048                              Store->getAlignment(),
1049                              Store->getMemOperand()->getFlags());
1050   }
1051 
1052   return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
1053                       Store->getMemOperand()->getPointerInfo(),
1054                       Store->getAlignment(),
1055                       Store->getMemOperand()->getFlags());
1056 }
1057 
1058 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1059                                                SelectionDAG &DAG) const {
1060   StoreSDNode *Store = cast<StoreSDNode>(Op);
1061   SDValue Val = Store->getValue();
1062   EVT VT = Val.getValueType();
1063 
1064   // If this is a 2 element vector, we really want to scalarize and not create
1065   // weird 1 element vectors.
1066   if (VT.getVectorNumElements() == 2)
1067     return scalarizeVectorStore(Store, DAG);
1068 
1069   EVT MemVT = Store->getMemoryVT();
1070   SDValue Chain = Store->getChain();
1071   SDValue BasePtr = Store->getBasePtr();
1072   SDLoc SL(Op);
1073 
1074   EVT LoVT, HiVT;
1075   EVT LoMemVT, HiMemVT;
1076   SDValue Lo, Hi;
1077 
1078   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1079   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1080   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1081 
1082   EVT PtrVT = BasePtr.getValueType();
1083   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1084                               DAG.getConstant(LoMemVT.getStoreSize(), SL,
1085                                               PtrVT));
1086 
1087   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1088   unsigned BaseAlign = Store->getAlignment();
1089   unsigned Size = LoMemVT.getStoreSize();
1090   unsigned HiAlign = MinAlign(BaseAlign, Size);
1091 
1092   SDValue LoStore =
1093       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1094                         Store->getMemOperand()->getFlags());
1095   SDValue HiStore =
1096       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1097                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1098 
1099   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1100 }
1101 
1102 // This is a shortcut for integer division because we have fast i32<->f32
1103 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1104 // float is enough to accurately represent up to a 24-bit signed integer.
1105 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1106                                             bool Sign) const {
1107   SDLoc DL(Op);
1108   EVT VT = Op.getValueType();
1109   SDValue LHS = Op.getOperand(0);
1110   SDValue RHS = Op.getOperand(1);
1111   MVT IntVT = MVT::i32;
1112   MVT FltVT = MVT::f32;
1113 
1114   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1115   if (LHSSignBits < 9)
1116     return SDValue();
1117 
1118   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1119   if (RHSSignBits < 9)
1120     return SDValue();
1121 
1122   unsigned BitSize = VT.getSizeInBits();
1123   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1124   unsigned DivBits = BitSize - SignBits;
1125   if (Sign)
1126     ++DivBits;
1127 
1128   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1129   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1130 
1131   SDValue jq = DAG.getConstant(1, DL, IntVT);
1132 
1133   if (Sign) {
1134     // char|short jq = ia ^ ib;
1135     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1136 
1137     // jq = jq >> (bitsize - 2)
1138     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1139                      DAG.getConstant(BitSize - 2, DL, VT));
1140 
1141     // jq = jq | 0x1
1142     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1143   }
1144 
1145   // int ia = (int)LHS;
1146   SDValue ia = LHS;
1147 
1148   // int ib, (int)RHS;
1149   SDValue ib = RHS;
1150 
1151   // float fa = (float)ia;
1152   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1153 
1154   // float fb = (float)ib;
1155   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1156 
1157   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1158                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1159 
1160   // fq = trunc(fq);
1161   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1162 
1163   // float fqneg = -fq;
1164   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1165 
1166   // float fr = mad(fqneg, fb, fa);
1167   SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa);
1168 
1169   // int iq = (int)fq;
1170   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1171 
1172   // fr = fabs(fr);
1173   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1174 
1175   // fb = fabs(fb);
1176   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1177 
1178   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1179 
1180   // int cv = fr >= fb;
1181   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1182 
1183   // jq = (cv ? jq : 0);
1184   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1185 
1186   // dst = iq + jq;
1187   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1188 
1189   // Rem needs compensation, it's easier to recompute it
1190   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1191   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1192 
1193   // Truncate to number of bits this divide really is.
1194   if (Sign) {
1195     SDValue InRegSize
1196       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1197     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1198     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1199   } else {
1200     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1201     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1202     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1203   }
1204 
1205   return DAG.getMergeValues({ Div, Rem }, DL);
1206 }
1207 
1208 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1209                                       SelectionDAG &DAG,
1210                                       SmallVectorImpl<SDValue> &Results) const {
1211   assert(Op.getValueType() == MVT::i64);
1212 
1213   SDLoc DL(Op);
1214   EVT VT = Op.getValueType();
1215   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1216 
1217   SDValue one = DAG.getConstant(1, DL, HalfVT);
1218   SDValue zero = DAG.getConstant(0, DL, HalfVT);
1219 
1220   //HiLo split
1221   SDValue LHS = Op.getOperand(0);
1222   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1223   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1224 
1225   SDValue RHS = Op.getOperand(1);
1226   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1227   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1228 
1229   if (VT == MVT::i64 &&
1230     DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1231     DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1232 
1233     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1234                               LHS_Lo, RHS_Lo);
1235 
1236     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero});
1237     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero});
1238 
1239     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1240     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1241     return;
1242   }
1243 
1244   // Get Speculative values
1245   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1246   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1247 
1248   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1249   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero});
1250   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1251 
1252   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1253   SDValue DIV_Lo = zero;
1254 
1255   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1256 
1257   for (unsigned i = 0; i < halfBitWidth; ++i) {
1258     const unsigned bitPos = halfBitWidth - i - 1;
1259     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1260     // Get value of high bit
1261     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1262     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1263     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1264 
1265     // Shift
1266     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1267     // Add LHS high bit
1268     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1269 
1270     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1271     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1272 
1273     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1274 
1275     // Update REM
1276     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1277     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1278   }
1279 
1280   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1281   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1282   Results.push_back(DIV);
1283   Results.push_back(REM);
1284 }
1285 
1286 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1287                                            SelectionDAG &DAG) const {
1288   SDLoc DL(Op);
1289   EVT VT = Op.getValueType();
1290 
1291   if (VT == MVT::i64) {
1292     SmallVector<SDValue, 2> Results;
1293     LowerUDIVREM64(Op, DAG, Results);
1294     return DAG.getMergeValues(Results, DL);
1295   }
1296 
1297   if (VT == MVT::i32) {
1298     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1299       return Res;
1300   }
1301 
1302   SDValue Num = Op.getOperand(0);
1303   SDValue Den = Op.getOperand(1);
1304 
1305   // RCP =  URECIP(Den) = 2^32 / Den + e
1306   // e is rounding error.
1307   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1308 
1309   // RCP_LO = mul(RCP, Den) */
1310   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1311 
1312   // RCP_HI = mulhu (RCP, Den) */
1313   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1314 
1315   // NEG_RCP_LO = -RCP_LO
1316   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1317                                                      RCP_LO);
1318 
1319   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1320   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1321                                            NEG_RCP_LO, RCP_LO,
1322                                            ISD::SETEQ);
1323   // Calculate the rounding error from the URECIP instruction
1324   // E = mulhu(ABS_RCP_LO, RCP)
1325   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1326 
1327   // RCP_A_E = RCP + E
1328   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1329 
1330   // RCP_S_E = RCP - E
1331   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1332 
1333   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1334   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1335                                      RCP_A_E, RCP_S_E,
1336                                      ISD::SETEQ);
1337   // Quotient = mulhu(Tmp0, Num)
1338   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1339 
1340   // Num_S_Remainder = Quotient * Den
1341   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1342 
1343   // Remainder = Num - Num_S_Remainder
1344   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1345 
1346   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1347   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1348                                                  DAG.getConstant(-1, DL, VT),
1349                                                  DAG.getConstant(0, DL, VT),
1350                                                  ISD::SETUGE);
1351   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1352   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1353                                                   Num_S_Remainder,
1354                                                   DAG.getConstant(-1, DL, VT),
1355                                                   DAG.getConstant(0, DL, VT),
1356                                                   ISD::SETUGE);
1357   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1358   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1359                                                Remainder_GE_Zero);
1360 
1361   // Calculate Division result:
1362 
1363   // Quotient_A_One = Quotient + 1
1364   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1365                                        DAG.getConstant(1, DL, VT));
1366 
1367   // Quotient_S_One = Quotient - 1
1368   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1369                                        DAG.getConstant(1, DL, VT));
1370 
1371   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1372   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1373                                      Quotient, Quotient_A_One, ISD::SETEQ);
1374 
1375   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1376   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1377                             Quotient_S_One, Div, ISD::SETEQ);
1378 
1379   // Calculate Rem result:
1380 
1381   // Remainder_S_Den = Remainder - Den
1382   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1383 
1384   // Remainder_A_Den = Remainder + Den
1385   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1386 
1387   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1388   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1389                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1390 
1391   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1392   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1393                             Remainder_A_Den, Rem, ISD::SETEQ);
1394   SDValue Ops[2] = {
1395     Div,
1396     Rem
1397   };
1398   return DAG.getMergeValues(Ops, DL);
1399 }
1400 
1401 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1402                                            SelectionDAG &DAG) const {
1403   SDLoc DL(Op);
1404   EVT VT = Op.getValueType();
1405 
1406   SDValue LHS = Op.getOperand(0);
1407   SDValue RHS = Op.getOperand(1);
1408 
1409   SDValue Zero = DAG.getConstant(0, DL, VT);
1410   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1411 
1412   if (VT == MVT::i32) {
1413     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1414       return Res;
1415   }
1416 
1417   if (VT == MVT::i64 &&
1418       DAG.ComputeNumSignBits(LHS) > 32 &&
1419       DAG.ComputeNumSignBits(RHS) > 32) {
1420     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1421 
1422     //HiLo split
1423     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1424     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1425     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1426                                  LHS_Lo, RHS_Lo);
1427     SDValue Res[2] = {
1428       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1429       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1430     };
1431     return DAG.getMergeValues(Res, DL);
1432   }
1433 
1434   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1435   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1436   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1437   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1438 
1439   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1440   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1441 
1442   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1443   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1444 
1445   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1446   SDValue Rem = Div.getValue(1);
1447 
1448   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1449   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1450 
1451   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1452   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1453 
1454   SDValue Res[2] = {
1455     Div,
1456     Rem
1457   };
1458   return DAG.getMergeValues(Res, DL);
1459 }
1460 
1461 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1462 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1463   SDLoc SL(Op);
1464   EVT VT = Op.getValueType();
1465   SDValue X = Op.getOperand(0);
1466   SDValue Y = Op.getOperand(1);
1467 
1468   // TODO: Should this propagate fast-math-flags?
1469 
1470   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1471   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1472   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1473 
1474   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1475 }
1476 
1477 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1478   SDLoc SL(Op);
1479   SDValue Src = Op.getOperand(0);
1480 
1481   // result = trunc(src)
1482   // if (src > 0.0 && src != result)
1483   //   result += 1.0
1484 
1485   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1486 
1487   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1488   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1489 
1490   EVT SetCCVT =
1491       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1492 
1493   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1494   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1495   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1496 
1497   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1498   // TODO: Should this propagate fast-math-flags?
1499   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1500 }
1501 
1502 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1503                                   SelectionDAG &DAG) {
1504   const unsigned FractBits = 52;
1505   const unsigned ExpBits = 11;
1506 
1507   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1508                                 Hi,
1509                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1510                                 DAG.getConstant(ExpBits, SL, MVT::i32));
1511   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1512                             DAG.getConstant(1023, SL, MVT::i32));
1513 
1514   return Exp;
1515 }
1516 
1517 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1518   SDLoc SL(Op);
1519   SDValue Src = Op.getOperand(0);
1520 
1521   assert(Op.getValueType() == MVT::f64);
1522 
1523   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1524   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1525 
1526   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1527 
1528   // Extract the upper half, since this is where we will find the sign and
1529   // exponent.
1530   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1531 
1532   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1533 
1534   const unsigned FractBits = 52;
1535 
1536   // Extract the sign bit.
1537   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
1538   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1539 
1540   // Extend back to to 64-bits.
1541   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
1542   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1543 
1544   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1545   const SDValue FractMask
1546     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
1547 
1548   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1549   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1550   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1551 
1552   EVT SetCCVT =
1553       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1554 
1555   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
1556 
1557   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1558   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1559 
1560   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1561   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1562 
1563   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1564 }
1565 
1566 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1567   SDLoc SL(Op);
1568   SDValue Src = Op.getOperand(0);
1569 
1570   assert(Op.getValueType() == MVT::f64);
1571 
1572   APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
1573   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
1574   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
1575 
1576   // TODO: Should this propagate fast-math-flags?
1577 
1578   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
1579   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
1580 
1581   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
1582 
1583   APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
1584   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
1585 
1586   EVT SetCCVT =
1587       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1588   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
1589 
1590   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
1591 }
1592 
1593 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
1594   // FNEARBYINT and FRINT are the same, except in their handling of FP
1595   // exceptions. Those aren't really meaningful for us, and OpenCL only has
1596   // rint, so just treat them as equivalent.
1597   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
1598 }
1599 
1600 // XXX - May require not supporting f32 denormals?
1601 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
1602   SDLoc SL(Op);
1603   SDValue X = Op.getOperand(0);
1604 
1605   SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
1606 
1607   // TODO: Should this propagate fast-math-flags?
1608 
1609   SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
1610 
1611   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
1612 
1613   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
1614   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1615   const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
1616 
1617   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
1618 
1619   EVT SetCCVT =
1620       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1621 
1622   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
1623 
1624   SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
1625 
1626   return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
1627 }
1628 
1629 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
1630   SDLoc SL(Op);
1631   SDValue X = Op.getOperand(0);
1632 
1633   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
1634 
1635   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1636   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1637   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
1638   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
1639   EVT SetCCVT =
1640       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1641 
1642   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1643 
1644   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
1645 
1646   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1647 
1648   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
1649                                        MVT::i64);
1650 
1651   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
1652   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
1653                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
1654                                           MVT::i64),
1655                           Exp);
1656 
1657   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
1658   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
1659                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
1660                               ISD::SETNE);
1661 
1662   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
1663                              D, DAG.getConstant(0, SL, MVT::i64));
1664   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
1665 
1666   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
1667   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
1668 
1669   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1670   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1671   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
1672 
1673   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
1674                             ExpEqNegOne,
1675                             DAG.getConstantFP(1.0, SL, MVT::f64),
1676                             DAG.getConstantFP(0.0, SL, MVT::f64));
1677 
1678   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
1679 
1680   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
1681   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
1682 
1683   return K;
1684 }
1685 
1686 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
1687   EVT VT = Op.getValueType();
1688 
1689   if (VT == MVT::f32)
1690     return LowerFROUND32(Op, DAG);
1691 
1692   if (VT == MVT::f64)
1693     return LowerFROUND64(Op, DAG);
1694 
1695   llvm_unreachable("unhandled type");
1696 }
1697 
1698 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
1699   SDLoc SL(Op);
1700   SDValue Src = Op.getOperand(0);
1701 
1702   // result = trunc(src);
1703   // if (src < 0.0 && src != result)
1704   //   result += -1.0.
1705 
1706   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1707 
1708   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1709   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
1710 
1711   EVT SetCCVT =
1712       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1713 
1714   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
1715   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1716   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1717 
1718   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
1719   // TODO: Should this propagate fast-math-flags?
1720   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1721 }
1722 
1723 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
1724   SDLoc SL(Op);
1725   SDValue Src = Op.getOperand(0);
1726   bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
1727 
1728   if (ZeroUndef && Src.getValueType() == MVT::i32)
1729     return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src);
1730 
1731   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1732 
1733   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1734   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1735 
1736   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1737   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1738 
1739   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1740                                    *DAG.getContext(), MVT::i32);
1741 
1742   SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ);
1743 
1744   SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo);
1745   SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi);
1746 
1747   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
1748   SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32);
1749 
1750   // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
1751   SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi);
1752 
1753   if (!ZeroUndef) {
1754     // Test if the full 64-bit input is zero.
1755 
1756     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
1757     // which we probably don't want.
1758     SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ);
1759     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0);
1760 
1761     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
1762     // with the same cycles, otherwise it is slower.
1763     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
1764     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
1765 
1766     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
1767 
1768     // The instruction returns -1 for 0 input, but the defined intrinsic
1769     // behavior is to return the number of bits.
1770     NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32,
1771                           SrcIsZero, Bits32, NewCtlz);
1772   }
1773 
1774   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz);
1775 }
1776 
1777 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
1778                                                bool Signed) const {
1779   // Unsigned
1780   // cul2f(ulong u)
1781   //{
1782   //  uint lz = clz(u);
1783   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
1784   //  u = (u << lz) & 0x7fffffffffffffffUL;
1785   //  ulong t = u & 0xffffffffffUL;
1786   //  uint v = (e << 23) | (uint)(u >> 40);
1787   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
1788   //  return as_float(v + r);
1789   //}
1790   // Signed
1791   // cl2f(long l)
1792   //{
1793   //  long s = l >> 63;
1794   //  float r = cul2f((l + s) ^ s);
1795   //  return s ? -r : r;
1796   //}
1797 
1798   SDLoc SL(Op);
1799   SDValue Src = Op.getOperand(0);
1800   SDValue L = Src;
1801 
1802   SDValue S;
1803   if (Signed) {
1804     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
1805     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
1806 
1807     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
1808     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
1809   }
1810 
1811   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1812                                    *DAG.getContext(), MVT::f32);
1813 
1814 
1815   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
1816   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
1817   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
1818   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
1819 
1820   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
1821   SDValue E = DAG.getSelect(SL, MVT::i32,
1822     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
1823     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
1824     ZeroI32);
1825 
1826   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
1827     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
1828     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
1829 
1830   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
1831                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
1832 
1833   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
1834                              U, DAG.getConstant(40, SL, MVT::i64));
1835 
1836   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
1837     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
1838     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
1839 
1840   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
1841   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
1842   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
1843 
1844   SDValue One = DAG.getConstant(1, SL, MVT::i32);
1845 
1846   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
1847 
1848   SDValue R = DAG.getSelect(SL, MVT::i32,
1849     RCmp,
1850     One,
1851     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
1852   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
1853   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
1854 
1855   if (!Signed)
1856     return R;
1857 
1858   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
1859   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
1860 }
1861 
1862 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
1863                                                bool Signed) const {
1864   SDLoc SL(Op);
1865   SDValue Src = Op.getOperand(0);
1866 
1867   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1868 
1869   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1870                            DAG.getConstant(0, SL, MVT::i32));
1871   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1872                            DAG.getConstant(1, SL, MVT::i32));
1873 
1874   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
1875                               SL, MVT::f64, Hi);
1876 
1877   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
1878 
1879   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
1880                               DAG.getConstant(32, SL, MVT::i32));
1881   // TODO: Should this propagate fast-math-flags?
1882   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
1883 }
1884 
1885 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
1886                                                SelectionDAG &DAG) const {
1887   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1888          "operation should be legal");
1889 
1890   EVT DestVT = Op.getValueType();
1891   if (DestVT == MVT::f64)
1892     return LowerINT_TO_FP64(Op, DAG, false);
1893 
1894   if (DestVT == MVT::f32)
1895     return LowerINT_TO_FP32(Op, DAG, false);
1896 
1897   return SDValue();
1898 }
1899 
1900 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
1901                                               SelectionDAG &DAG) const {
1902   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
1903          "operation should be legal");
1904 
1905   EVT DestVT = Op.getValueType();
1906   if (DestVT == MVT::f32)
1907     return LowerINT_TO_FP32(Op, DAG, true);
1908 
1909   if (DestVT == MVT::f64)
1910     return LowerINT_TO_FP64(Op, DAG, true);
1911 
1912   return SDValue();
1913 }
1914 
1915 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
1916                                                bool Signed) const {
1917   SDLoc SL(Op);
1918 
1919   SDValue Src = Op.getOperand(0);
1920 
1921   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1922 
1923   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
1924                                  MVT::f64);
1925   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
1926                                  MVT::f64);
1927   // TODO: Should this propagate fast-math-flags?
1928   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
1929 
1930   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
1931 
1932 
1933   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
1934 
1935   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
1936                            MVT::i32, FloorMul);
1937   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
1938 
1939   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
1940 
1941   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
1942 }
1943 
1944 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
1945                                               SelectionDAG &DAG) const {
1946   SDValue Src = Op.getOperand(0);
1947 
1948   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
1949     return LowerFP64_TO_INT(Op, DAG, true);
1950 
1951   return SDValue();
1952 }
1953 
1954 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
1955                                               SelectionDAG &DAG) const {
1956   SDValue Src = Op.getOperand(0);
1957 
1958   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
1959     return LowerFP64_TO_INT(Op, DAG, false);
1960 
1961   return SDValue();
1962 }
1963 
1964 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1965                                                      SelectionDAG &DAG) const {
1966   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1967   MVT VT = Op.getSimpleValueType();
1968   MVT ScalarVT = VT.getScalarType();
1969 
1970   if (!VT.isVector())
1971     return SDValue();
1972 
1973   SDValue Src = Op.getOperand(0);
1974   SDLoc DL(Op);
1975 
1976   // TODO: Don't scalarize on Evergreen?
1977   unsigned NElts = VT.getVectorNumElements();
1978   SmallVector<SDValue, 8> Args;
1979   DAG.ExtractVectorElements(Src, Args, 0, NElts);
1980 
1981   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
1982   for (unsigned I = 0; I < NElts; ++I)
1983     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
1984 
1985   return DAG.getBuildVector(VT, DL, Args);
1986 }
1987 
1988 //===----------------------------------------------------------------------===//
1989 // Custom DAG optimizations
1990 //===----------------------------------------------------------------------===//
1991 
1992 static bool isU24(SDValue Op, SelectionDAG &DAG) {
1993   APInt KnownZero, KnownOne;
1994   EVT VT = Op.getValueType();
1995   DAG.computeKnownBits(Op, KnownZero, KnownOne);
1996 
1997   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
1998 }
1999 
2000 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2001   EVT VT = Op.getValueType();
2002 
2003   // In order for this to be a signed 24-bit value, bit 23, must
2004   // be a sign bit.
2005   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2006                                      // as unsigned 24-bit values.
2007          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2008 }
2009 
2010 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
2011 
2012   SelectionDAG &DAG = DCI.DAG;
2013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2014   EVT VT = Op.getValueType();
2015 
2016   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2017   APInt KnownZero, KnownOne;
2018   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2019   if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
2020     DCI.CommitTargetLoweringOpt(TLO);
2021 }
2022 
2023 template <typename IntTy>
2024 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2025                                uint32_t Width, const SDLoc &DL) {
2026   if (Width + Offset < 32) {
2027     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2028     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2029     return DAG.getConstant(Result, DL, MVT::i32);
2030   }
2031 
2032   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2033 }
2034 
2035 static bool hasVolatileUser(SDNode *Val) {
2036   for (SDNode *U : Val->uses()) {
2037     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2038       if (M->isVolatile())
2039         return true;
2040     }
2041   }
2042 
2043   return false;
2044 }
2045 
2046 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2047   // i32 vectors are the canonical memory type.
2048   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2049     return false;
2050 
2051   if (!VT.isByteSized())
2052     return false;
2053 
2054   unsigned Size = VT.getStoreSize();
2055 
2056   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2057     return false;
2058 
2059   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2060     return false;
2061 
2062   return true;
2063 }
2064 
2065 // Replace load of an illegal type with a store of a bitcast to a friendlier
2066 // type.
2067 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2068                                                  DAGCombinerInfo &DCI) const {
2069   if (!DCI.isBeforeLegalize())
2070     return SDValue();
2071 
2072   LoadSDNode *LN = cast<LoadSDNode>(N);
2073   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2074     return SDValue();
2075 
2076   SDLoc SL(N);
2077   SelectionDAG &DAG = DCI.DAG;
2078   EVT VT = LN->getMemoryVT();
2079 
2080   unsigned Size = VT.getStoreSize();
2081   unsigned Align = LN->getAlignment();
2082   if (Align < Size && isTypeLegal(VT)) {
2083     bool IsFast;
2084     unsigned AS = LN->getAddressSpace();
2085 
2086     // Expand unaligned loads earlier than legalization. Due to visitation order
2087     // problems during legalization, the emitted instructions to pack and unpack
2088     // the bytes again are not eliminated in the case of an unaligned copy.
2089     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2090       SDValue Ops[2];
2091       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2092       return DAG.getMergeValues(Ops, SDLoc(N));
2093     }
2094 
2095     if (!IsFast)
2096       return SDValue();
2097   }
2098 
2099   if (!shouldCombineMemoryType(VT))
2100     return SDValue();
2101 
2102   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2103 
2104   SDValue NewLoad
2105     = DAG.getLoad(NewVT, SL, LN->getChain(),
2106                   LN->getBasePtr(), LN->getMemOperand());
2107 
2108   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2109   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2110   return SDValue(N, 0);
2111 }
2112 
2113 // Replace store of an illegal type with a store of a bitcast to a friendlier
2114 // type.
2115 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2116                                                   DAGCombinerInfo &DCI) const {
2117   if (!DCI.isBeforeLegalize())
2118     return SDValue();
2119 
2120   StoreSDNode *SN = cast<StoreSDNode>(N);
2121   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2122     return SDValue();
2123 
2124   EVT VT = SN->getMemoryVT();
2125   unsigned Size = VT.getStoreSize();
2126 
2127   SDLoc SL(N);
2128   SelectionDAG &DAG = DCI.DAG;
2129   unsigned Align = SN->getAlignment();
2130   if (Align < Size && isTypeLegal(VT)) {
2131     bool IsFast;
2132     unsigned AS = SN->getAddressSpace();
2133 
2134     // Expand unaligned stores earlier than legalization. Due to visitation
2135     // order problems during legalization, the emitted instructions to pack and
2136     // unpack the bytes again are not eliminated in the case of an unaligned
2137     // copy.
2138     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast))
2139       return expandUnalignedStore(SN, DAG);
2140 
2141     if (!IsFast)
2142       return SDValue();
2143   }
2144 
2145   if (!shouldCombineMemoryType(VT))
2146     return SDValue();
2147 
2148   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2149   SDValue Val = SN->getValue();
2150 
2151   //DCI.AddToWorklist(Val.getNode());
2152 
2153   bool OtherUses = !Val.hasOneUse();
2154   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2155   if (OtherUses) {
2156     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2157     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2158   }
2159 
2160   return DAG.getStore(SN->getChain(), SL, CastVal,
2161                       SN->getBasePtr(), SN->getMemOperand());
2162 }
2163 
2164 // TODO: Should repeat for other bit ops.
2165 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N,
2166                                                 DAGCombinerInfo &DCI) const {
2167   if (N->getValueType(0) != MVT::i64)
2168     return SDValue();
2169 
2170   // Break up 64-bit and of a constant into two 32-bit ands. This will typically
2171   // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer
2172   // combine opportunities since most 64-bit operations are decomposed this way.
2173   // TODO: We won't want this for SALU especially if it is an inline immediate.
2174   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2175   if (!RHS)
2176     return SDValue();
2177 
2178   uint64_t Val = RHS->getZExtValue();
2179   if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) {
2180     // If either half of the constant is 0, this is really a 32-bit and, so
2181     // split it. If we can re-use the full materialized constant, keep it.
2182     return SDValue();
2183   }
2184 
2185   SDLoc SL(N);
2186   SelectionDAG &DAG = DCI.DAG;
2187 
2188   SDValue Lo, Hi;
2189   std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG);
2190 
2191   SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32);
2192   SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32);
2193 
2194   SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS);
2195   SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS);
2196 
2197   // Re-visit the ands. It's possible we eliminated one of them and it could
2198   // simplify the vector.
2199   DCI.AddToWorklist(Lo.getNode());
2200   DCI.AddToWorklist(Hi.getNode());
2201 
2202   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2203   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2204 }
2205 
2206 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2207                                                 DAGCombinerInfo &DCI) const {
2208   if (N->getValueType(0) != MVT::i64)
2209     return SDValue();
2210 
2211   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2212 
2213   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2214   // common case, splitting this into a move and a 32-bit shift is faster and
2215   // the same code size.
2216   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2217   if (!RHS)
2218     return SDValue();
2219 
2220   unsigned RHSVal = RHS->getZExtValue();
2221   if (RHSVal < 32)
2222     return SDValue();
2223 
2224   SDValue LHS = N->getOperand(0);
2225 
2226   SDLoc SL(N);
2227   SelectionDAG &DAG = DCI.DAG;
2228 
2229   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
2230 
2231   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2232   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
2233 
2234   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2235 
2236   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
2237   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2238 }
2239 
2240 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
2241                                                 DAGCombinerInfo &DCI) const {
2242   if (N->getValueType(0) != MVT::i64)
2243     return SDValue();
2244 
2245   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2246   if (!RHS)
2247     return SDValue();
2248 
2249   SelectionDAG &DAG = DCI.DAG;
2250   SDLoc SL(N);
2251   unsigned RHSVal = RHS->getZExtValue();
2252 
2253   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
2254   if (RHSVal == 32) {
2255     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2256     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2257                                    DAG.getConstant(31, SL, MVT::i32));
2258 
2259     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
2260     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2261   }
2262 
2263   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
2264   if (RHSVal == 63) {
2265     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2266     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2267                                    DAG.getConstant(31, SL, MVT::i32));
2268     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
2269     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2270   }
2271 
2272   return SDValue();
2273 }
2274 
2275 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
2276                                                 DAGCombinerInfo &DCI) const {
2277   if (N->getValueType(0) != MVT::i64)
2278     return SDValue();
2279 
2280   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2281   if (!RHS)
2282     return SDValue();
2283 
2284   unsigned ShiftAmt = RHS->getZExtValue();
2285   if (ShiftAmt < 32)
2286     return SDValue();
2287 
2288   // srl i64:x, C for C >= 32
2289   // =>
2290   //   build_pair (srl hi_32(x), C - 32), 0
2291 
2292   SelectionDAG &DAG = DCI.DAG;
2293   SDLoc SL(N);
2294 
2295   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2296   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2297 
2298   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
2299   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
2300                            VecOp, One);
2301 
2302   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
2303   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
2304 
2305   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
2306 
2307   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
2308 }
2309 
2310 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2311                                                 DAGCombinerInfo &DCI) const {
2312   EVT VT = N->getValueType(0);
2313 
2314   if (VT.isVector() || VT.getSizeInBits() > 32)
2315     return SDValue();
2316 
2317   SelectionDAG &DAG = DCI.DAG;
2318   SDLoc DL(N);
2319 
2320   SDValue N0 = N->getOperand(0);
2321   SDValue N1 = N->getOperand(1);
2322   SDValue Mul;
2323 
2324   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2325     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2326     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2327     Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
2328   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2329     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2330     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2331     Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
2332   } else {
2333     return SDValue();
2334   }
2335 
2336   // We need to use sext even for MUL_U24, because MUL_U24 is used
2337   // for signed multiply of 8 and 16-bit types.
2338   return DAG.getSExtOrTrunc(Mul, DL, VT);
2339 }
2340 
2341 static bool isNegativeOne(SDValue Val) {
2342   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
2343     return C->isAllOnesValue();
2344   return false;
2345 }
2346 
2347 static bool isCtlzOpc(unsigned Opc) {
2348   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2349 }
2350 
2351 // Get FFBH node if the incoming op may have been type legalized from a smaller
2352 // type VT.
2353 // Need to match pre-legalized type because the generic legalization inserts the
2354 // add/sub between the select and compare.
2355 static SDValue getFFBH_U32(const TargetLowering &TLI, SelectionDAG &DAG,
2356                            const SDLoc &SL, SDValue Op) {
2357   EVT VT = Op.getValueType();
2358   EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2359   if (LegalVT != MVT::i32)
2360     return SDValue();
2361 
2362   if (VT != MVT::i32)
2363     Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op);
2364 
2365   SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op);
2366   if (VT != MVT::i32)
2367     FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH);
2368 
2369   return FFBH;
2370 }
2371 
2372 // The native instructions return -1 on 0 input. Optimize out a select that
2373 // produces -1 on 0.
2374 //
2375 // TODO: If zero is not undef, we could also do this if the output is compared
2376 // against the bitwidth.
2377 //
2378 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
2379 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond,
2380                                                  SDValue LHS, SDValue RHS,
2381                                                  DAGCombinerInfo &DCI) const {
2382   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2383   if (!CmpRhs || !CmpRhs->isNullValue())
2384     return SDValue();
2385 
2386   SelectionDAG &DAG = DCI.DAG;
2387   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2388   SDValue CmpLHS = Cond.getOperand(0);
2389 
2390   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
2391   if (CCOpcode == ISD::SETEQ &&
2392       isCtlzOpc(RHS.getOpcode()) &&
2393       RHS.getOperand(0) == CmpLHS &&
2394       isNegativeOne(LHS)) {
2395     return getFFBH_U32(*this, DAG, SL, CmpLHS);
2396   }
2397 
2398   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
2399   if (CCOpcode == ISD::SETNE &&
2400       isCtlzOpc(LHS.getOpcode()) &&
2401       LHS.getOperand(0) == CmpLHS &&
2402       isNegativeOne(RHS)) {
2403     return getFFBH_U32(*this, DAG, SL, CmpLHS);
2404   }
2405 
2406   return SDValue();
2407 }
2408 
2409 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
2410                                                    DAGCombinerInfo &DCI) const {
2411   SDValue Cond = N->getOperand(0);
2412   if (Cond.getOpcode() != ISD::SETCC)
2413     return SDValue();
2414 
2415   EVT VT = N->getValueType(0);
2416   SDValue LHS = Cond.getOperand(0);
2417   SDValue RHS = Cond.getOperand(1);
2418   SDValue CC = Cond.getOperand(2);
2419 
2420   SDValue True = N->getOperand(1);
2421   SDValue False = N->getOperand(2);
2422 
2423   if (VT == MVT::f32 && Cond.hasOneUse()) {
2424     SDValue MinMax
2425       = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
2426     // Revisit this node so we can catch min3/max3/med3 patterns.
2427     //DCI.AddToWorklist(MinMax.getNode());
2428     return MinMax;
2429   }
2430 
2431   // There's no reason to not do this if the condition has other uses.
2432   return performCtlzCombine(SDLoc(N), Cond, True, False, DCI);
2433 }
2434 
2435 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2436                                                 DAGCombinerInfo &DCI) const {
2437   SelectionDAG &DAG = DCI.DAG;
2438   SDLoc DL(N);
2439 
2440   switch(N->getOpcode()) {
2441   default:
2442     break;
2443   case ISD::BITCAST: {
2444     EVT DestVT = N->getValueType(0);
2445     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
2446       break;
2447 
2448     // Fold bitcasts of constants.
2449     //
2450     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
2451     // TODO: Generalize and move to DAGCombiner
2452     SDValue Src = N->getOperand(0);
2453     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
2454       assert(Src.getValueType() == MVT::i64);
2455       SDLoc SL(N);
2456       uint64_t CVal = C->getZExtValue();
2457       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
2458                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2459                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2460     }
2461 
2462     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
2463       const APInt &Val = C->getValueAPF().bitcastToAPInt();
2464       SDLoc SL(N);
2465       uint64_t CVal = Val.getZExtValue();
2466       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
2467                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2468                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2469 
2470       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
2471     }
2472 
2473     break;
2474   }
2475   case ISD::SHL: {
2476     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2477       break;
2478 
2479     return performShlCombine(N, DCI);
2480   }
2481   case ISD::SRL: {
2482     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2483       break;
2484 
2485     return performSrlCombine(N, DCI);
2486   }
2487   case ISD::SRA: {
2488     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2489       break;
2490 
2491     return performSraCombine(N, DCI);
2492   }
2493   case ISD::AND: {
2494     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2495       break;
2496 
2497     return performAndCombine(N, DCI);
2498   }
2499   case ISD::MUL:
2500     return performMulCombine(N, DCI);
2501   case AMDGPUISD::MUL_I24:
2502   case AMDGPUISD::MUL_U24: {
2503     SDValue N0 = N->getOperand(0);
2504     SDValue N1 = N->getOperand(1);
2505     simplifyI24(N0, DCI);
2506     simplifyI24(N1, DCI);
2507     return SDValue();
2508   }
2509   case ISD::SELECT:
2510     return performSelectCombine(N, DCI);
2511   case AMDGPUISD::BFE_I32:
2512   case AMDGPUISD::BFE_U32: {
2513     assert(!N->getValueType(0).isVector() &&
2514            "Vector handling of BFE not implemented");
2515     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
2516     if (!Width)
2517       break;
2518 
2519     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
2520     if (WidthVal == 0)
2521       return DAG.getConstant(0, DL, MVT::i32);
2522 
2523     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2524     if (!Offset)
2525       break;
2526 
2527     SDValue BitsFrom = N->getOperand(0);
2528     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
2529 
2530     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
2531 
2532     if (OffsetVal == 0) {
2533       // This is already sign / zero extended, so try to fold away extra BFEs.
2534       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
2535 
2536       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
2537       if (OpSignBits >= SignBits)
2538         return BitsFrom;
2539 
2540       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
2541       if (Signed) {
2542         // This is a sign_extend_inreg. Replace it to take advantage of existing
2543         // DAG Combines. If not eliminated, we will match back to BFE during
2544         // selection.
2545 
2546         // TODO: The sext_inreg of extended types ends, although we can could
2547         // handle them in a single BFE.
2548         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
2549                            DAG.getValueType(SmallVT));
2550       }
2551 
2552       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
2553     }
2554 
2555     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
2556       if (Signed) {
2557         return constantFoldBFE<int32_t>(DAG,
2558                                         CVal->getSExtValue(),
2559                                         OffsetVal,
2560                                         WidthVal,
2561                                         DL);
2562       }
2563 
2564       return constantFoldBFE<uint32_t>(DAG,
2565                                        CVal->getZExtValue(),
2566                                        OffsetVal,
2567                                        WidthVal,
2568                                        DL);
2569     }
2570 
2571     if ((OffsetVal + WidthVal) >= 32) {
2572       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
2573       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2574                          BitsFrom, ShiftVal);
2575     }
2576 
2577     if (BitsFrom.hasOneUse()) {
2578       APInt Demanded = APInt::getBitsSet(32,
2579                                          OffsetVal,
2580                                          OffsetVal + WidthVal);
2581 
2582       APInt KnownZero, KnownOne;
2583       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2584                                             !DCI.isBeforeLegalizeOps());
2585       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2586       if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2587           TLI.SimplifyDemandedBits(BitsFrom, Demanded,
2588                                    KnownZero, KnownOne, TLO)) {
2589         DCI.CommitTargetLoweringOpt(TLO);
2590       }
2591     }
2592 
2593     break;
2594   }
2595   case ISD::LOAD:
2596     return performLoadCombine(N, DCI);
2597   case ISD::STORE:
2598     return performStoreCombine(N, DCI);
2599   }
2600   return SDValue();
2601 }
2602 
2603 //===----------------------------------------------------------------------===//
2604 // Helper functions
2605 //===----------------------------------------------------------------------===//
2606 
2607 void AMDGPUTargetLowering::getOriginalFunctionArgs(
2608                                SelectionDAG &DAG,
2609                                const Function *F,
2610                                const SmallVectorImpl<ISD::InputArg> &Ins,
2611                                SmallVectorImpl<ISD::InputArg> &OrigIns) const {
2612 
2613   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
2614     if (Ins[i].ArgVT == Ins[i].VT) {
2615       OrigIns.push_back(Ins[i]);
2616       continue;
2617     }
2618 
2619     EVT VT;
2620     if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
2621       // Vector has been split into scalars.
2622       VT = Ins[i].ArgVT.getVectorElementType();
2623     } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
2624                Ins[i].ArgVT.getVectorElementType() !=
2625                Ins[i].VT.getVectorElementType()) {
2626       // Vector elements have been promoted
2627       VT = Ins[i].ArgVT;
2628     } else {
2629       // Vector has been spilt into smaller vectors.
2630       VT = Ins[i].VT;
2631     }
2632 
2633     ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
2634                       Ins[i].OrigArgIndex, Ins[i].PartOffset);
2635     OrigIns.push_back(Arg);
2636   }
2637 }
2638 
2639 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2640                                                   const TargetRegisterClass *RC,
2641                                                    unsigned Reg, EVT VT) const {
2642   MachineFunction &MF = DAG.getMachineFunction();
2643   MachineRegisterInfo &MRI = MF.getRegInfo();
2644   unsigned VirtualRegister;
2645   if (!MRI.isLiveIn(Reg)) {
2646     VirtualRegister = MRI.createVirtualRegister(RC);
2647     MRI.addLiveIn(Reg, VirtualRegister);
2648   } else {
2649     VirtualRegister = MRI.getLiveInVirtReg(Reg);
2650   }
2651   return DAG.getRegister(VirtualRegister, VT);
2652 }
2653 
2654 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
2655     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
2656   uint64_t ArgOffset = MFI->ABIArgOffset;
2657   switch (Param) {
2658   case GRID_DIM:
2659     return ArgOffset;
2660   case GRID_OFFSET:
2661     return ArgOffset + 4;
2662   }
2663   llvm_unreachable("unexpected implicit parameter type");
2664 }
2665 
2666 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2667 
2668 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2669   switch ((AMDGPUISD::NodeType)Opcode) {
2670   case AMDGPUISD::FIRST_NUMBER: break;
2671   // AMDIL DAG nodes
2672   NODE_NAME_CASE(CALL);
2673   NODE_NAME_CASE(UMUL);
2674   NODE_NAME_CASE(BRANCH_COND);
2675 
2676   // AMDGPU DAG nodes
2677   NODE_NAME_CASE(ENDPGM)
2678   NODE_NAME_CASE(RETURN)
2679   NODE_NAME_CASE(DWORDADDR)
2680   NODE_NAME_CASE(FRACT)
2681   NODE_NAME_CASE(CLAMP)
2682   NODE_NAME_CASE(COS_HW)
2683   NODE_NAME_CASE(SIN_HW)
2684   NODE_NAME_CASE(FMAX_LEGACY)
2685   NODE_NAME_CASE(FMIN_LEGACY)
2686   NODE_NAME_CASE(FMAX3)
2687   NODE_NAME_CASE(SMAX3)
2688   NODE_NAME_CASE(UMAX3)
2689   NODE_NAME_CASE(FMIN3)
2690   NODE_NAME_CASE(SMIN3)
2691   NODE_NAME_CASE(UMIN3)
2692   NODE_NAME_CASE(FMED3)
2693   NODE_NAME_CASE(SMED3)
2694   NODE_NAME_CASE(UMED3)
2695   NODE_NAME_CASE(URECIP)
2696   NODE_NAME_CASE(DIV_SCALE)
2697   NODE_NAME_CASE(DIV_FMAS)
2698   NODE_NAME_CASE(DIV_FIXUP)
2699   NODE_NAME_CASE(TRIG_PREOP)
2700   NODE_NAME_CASE(RCP)
2701   NODE_NAME_CASE(RSQ)
2702   NODE_NAME_CASE(RSQ_LEGACY)
2703   NODE_NAME_CASE(RSQ_CLAMP)
2704   NODE_NAME_CASE(LDEXP)
2705   NODE_NAME_CASE(FP_CLASS)
2706   NODE_NAME_CASE(DOT4)
2707   NODE_NAME_CASE(CARRY)
2708   NODE_NAME_CASE(BORROW)
2709   NODE_NAME_CASE(BFE_U32)
2710   NODE_NAME_CASE(BFE_I32)
2711   NODE_NAME_CASE(BFI)
2712   NODE_NAME_CASE(BFM)
2713   NODE_NAME_CASE(FFBH_U32)
2714   NODE_NAME_CASE(FFBH_I32)
2715   NODE_NAME_CASE(MUL_U24)
2716   NODE_NAME_CASE(MUL_I24)
2717   NODE_NAME_CASE(MAD_U24)
2718   NODE_NAME_CASE(MAD_I24)
2719   NODE_NAME_CASE(TEXTURE_FETCH)
2720   NODE_NAME_CASE(EXPORT)
2721   NODE_NAME_CASE(CONST_ADDRESS)
2722   NODE_NAME_CASE(REGISTER_LOAD)
2723   NODE_NAME_CASE(REGISTER_STORE)
2724   NODE_NAME_CASE(LOAD_INPUT)
2725   NODE_NAME_CASE(SAMPLE)
2726   NODE_NAME_CASE(SAMPLEB)
2727   NODE_NAME_CASE(SAMPLED)
2728   NODE_NAME_CASE(SAMPLEL)
2729   NODE_NAME_CASE(CVT_F32_UBYTE0)
2730   NODE_NAME_CASE(CVT_F32_UBYTE1)
2731   NODE_NAME_CASE(CVT_F32_UBYTE2)
2732   NODE_NAME_CASE(CVT_F32_UBYTE3)
2733   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
2734   NODE_NAME_CASE(CONST_DATA_PTR)
2735   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
2736   NODE_NAME_CASE(KILL)
2737   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
2738   NODE_NAME_CASE(SENDMSG)
2739   NODE_NAME_CASE(INTERP_MOV)
2740   NODE_NAME_CASE(INTERP_P1)
2741   NODE_NAME_CASE(INTERP_P2)
2742   NODE_NAME_CASE(STORE_MSKOR)
2743   NODE_NAME_CASE(LOAD_CONSTANT)
2744   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
2745   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
2746   NODE_NAME_CASE(ATOMIC_INC)
2747   NODE_NAME_CASE(ATOMIC_DEC)
2748   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
2749   }
2750   return nullptr;
2751 }
2752 
2753 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
2754                                                DAGCombinerInfo &DCI,
2755                                                unsigned &RefinementSteps,
2756                                                bool &UseOneConstNR) const {
2757   SelectionDAG &DAG = DCI.DAG;
2758   EVT VT = Operand.getValueType();
2759 
2760   if (VT == MVT::f32) {
2761     RefinementSteps = 0;
2762     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
2763   }
2764 
2765   // TODO: There is also f64 rsq instruction, but the documentation is less
2766   // clear on its precision.
2767 
2768   return SDValue();
2769 }
2770 
2771 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
2772                                                DAGCombinerInfo &DCI,
2773                                                unsigned &RefinementSteps) const {
2774   SelectionDAG &DAG = DCI.DAG;
2775   EVT VT = Operand.getValueType();
2776 
2777   if (VT == MVT::f32) {
2778     // Reciprocal, < 1 ulp error.
2779     //
2780     // This reciprocal approximation converges to < 0.5 ulp error with one
2781     // newton rhapson performed with two fused multiple adds (FMAs).
2782 
2783     RefinementSteps = 0;
2784     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
2785   }
2786 
2787   // TODO: There is also f64 rcp instruction, but the documentation is less
2788   // clear on its precision.
2789 
2790   return SDValue();
2791 }
2792 
2793 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
2794   const SDValue Op,
2795   APInt &KnownZero,
2796   APInt &KnownOne,
2797   const SelectionDAG &DAG,
2798   unsigned Depth) const {
2799 
2800   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
2801 
2802   APInt KnownZero2;
2803   APInt KnownOne2;
2804   unsigned Opc = Op.getOpcode();
2805 
2806   switch (Opc) {
2807   default:
2808     break;
2809   case AMDGPUISD::CARRY:
2810   case AMDGPUISD::BORROW: {
2811     KnownZero = APInt::getHighBitsSet(32, 31);
2812     break;
2813   }
2814 
2815   case AMDGPUISD::BFE_I32:
2816   case AMDGPUISD::BFE_U32: {
2817     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2818     if (!CWidth)
2819       return;
2820 
2821     unsigned BitWidth = 32;
2822     uint32_t Width = CWidth->getZExtValue() & 0x1f;
2823 
2824     if (Opc == AMDGPUISD::BFE_U32)
2825       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
2826 
2827     break;
2828   }
2829   }
2830 }
2831 
2832 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
2833   SDValue Op,
2834   const SelectionDAG &DAG,
2835   unsigned Depth) const {
2836   switch (Op.getOpcode()) {
2837   case AMDGPUISD::BFE_I32: {
2838     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2839     if (!Width)
2840       return 1;
2841 
2842     unsigned SignBits = 32 - Width->getZExtValue() + 1;
2843     if (!isNullConstant(Op.getOperand(1)))
2844       return SignBits;
2845 
2846     // TODO: Could probably figure something out with non-0 offsets.
2847     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2848     return std::max(SignBits, Op0SignBits);
2849   }
2850 
2851   case AMDGPUISD::BFE_U32: {
2852     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2853     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
2854   }
2855 
2856   case AMDGPUISD::CARRY:
2857   case AMDGPUISD::BORROW:
2858     return 31;
2859 
2860   default:
2861     return 1;
2862   }
2863 }
2864