1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUSubtarget.h" 20 #include "AMDGPUTargetMachine.h" 21 #include "Utils/AMDGPUBaseInfo.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIInstrInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Support/MathExtras.h" 36 using namespace llvm; 37 38 #include "AMDGPUGenCallingConv.inc" 39 40 static cl::opt<bool> AMDGPUBypassSlowDiv( 41 "amdgpu-bypass-slow-div", 42 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 43 cl::init(true)); 44 45 // Find a larger type to do a load / store of a vector with. 46 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 47 unsigned StoreSize = VT.getStoreSizeInBits(); 48 if (StoreSize <= 32) 49 return EVT::getIntegerVT(Ctx, StoreSize); 50 51 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 52 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 53 } 54 55 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 56 EVT VT = Op.getValueType(); 57 KnownBits Known = DAG.computeKnownBits(Op); 58 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 59 } 60 61 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 62 EVT VT = Op.getValueType(); 63 64 // In order for this to be a signed 24-bit value, bit 23, must 65 // be a sign bit. 66 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 67 } 68 69 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 70 const AMDGPUSubtarget &STI) 71 : TargetLowering(TM), Subtarget(&STI) { 72 // Lower floating point store/load to integer store/load to reduce the number 73 // of patterns in tablegen. 74 setOperationAction(ISD::LOAD, MVT::f32, Promote); 75 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 76 77 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 78 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 79 80 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 81 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 82 83 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 84 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 85 86 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 87 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 88 89 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 90 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 91 92 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 93 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 94 95 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 96 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 97 98 setOperationAction(ISD::LOAD, MVT::i64, Promote); 99 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 100 101 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 102 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 103 104 setOperationAction(ISD::LOAD, MVT::f64, Promote); 105 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 106 107 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 108 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 109 110 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 111 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 112 113 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 114 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 115 116 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 117 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 118 119 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 120 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 121 122 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 123 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 124 125 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 126 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 127 128 // There are no 64-bit extloads. These should be done as a 32-bit extload and 129 // an extension to 64-bit. 130 for (MVT VT : MVT::integer_valuetypes()) { 131 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 132 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 133 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 134 } 135 136 for (MVT VT : MVT::integer_valuetypes()) { 137 if (VT == MVT::i64) 138 continue; 139 140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 144 145 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 149 150 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 154 } 155 156 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 159 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 161 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 162 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 164 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 165 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 168 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 171 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 172 } 173 174 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 175 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 181 182 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 187 188 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 189 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 190 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 193 194 setOperationAction(ISD::STORE, MVT::f32, Promote); 195 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 196 197 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 199 200 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 202 203 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 205 206 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 208 209 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 211 212 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 214 215 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 217 218 setOperationAction(ISD::STORE, MVT::i64, Promote); 219 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 220 221 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 223 224 setOperationAction(ISD::STORE, MVT::f64, Promote); 225 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 226 227 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 228 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 229 230 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 232 233 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 235 236 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 238 239 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 241 242 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 244 245 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 247 248 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 249 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 250 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 251 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 252 253 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 254 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 255 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 256 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 257 258 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 259 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 260 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 261 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 262 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 263 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 264 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 265 266 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 267 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 268 269 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 270 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 271 272 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 273 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 274 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 275 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 276 277 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 278 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 279 280 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 281 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 282 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 283 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 284 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 285 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 286 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 287 288 setOperationAction(ISD::Constant, MVT::i32, Legal); 289 setOperationAction(ISD::Constant, MVT::i64, Legal); 290 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 291 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 292 293 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 294 setOperationAction(ISD::BRIND, MVT::Other, Expand); 295 296 // This is totally unsupported, just custom lower to produce an error. 297 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 298 299 // Library functions. These default to Expand, but we have instructions 300 // for them. 301 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 302 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 303 setOperationAction(ISD::FPOW, MVT::f32, Legal); 304 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 305 setOperationAction(ISD::FABS, MVT::f32, Legal); 306 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 307 setOperationAction(ISD::FRINT, MVT::f32, Legal); 308 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 309 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 310 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 311 312 setOperationAction(ISD::FROUND, MVT::f32, Custom); 313 setOperationAction(ISD::FROUND, MVT::f64, Custom); 314 315 setOperationAction(ISD::FLOG, MVT::f32, Custom); 316 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 317 setOperationAction(ISD::FEXP, MVT::f32, Custom); 318 319 320 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 321 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 322 323 setOperationAction(ISD::FREM, MVT::f32, Custom); 324 setOperationAction(ISD::FREM, MVT::f64, Custom); 325 326 // Expand to fneg + fadd. 327 setOperationAction(ISD::FSUB, MVT::f64, Expand); 328 329 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 330 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 331 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 332 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 333 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 334 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 335 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 336 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 337 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 338 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 339 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 340 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 341 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 342 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 343 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 344 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 345 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 346 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 347 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 350 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 352 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 353 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 354 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 355 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 356 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 357 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 358 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 359 360 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 361 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 362 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 363 364 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 365 for (MVT VT : ScalarIntVTs) { 366 // These should use [SU]DIVREM, so set them to expand 367 setOperationAction(ISD::SDIV, VT, Expand); 368 setOperationAction(ISD::UDIV, VT, Expand); 369 setOperationAction(ISD::SREM, VT, Expand); 370 setOperationAction(ISD::UREM, VT, Expand); 371 372 // GPU does not have divrem function for signed or unsigned. 373 setOperationAction(ISD::SDIVREM, VT, Custom); 374 setOperationAction(ISD::UDIVREM, VT, Custom); 375 376 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 377 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 378 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 379 380 setOperationAction(ISD::BSWAP, VT, Expand); 381 setOperationAction(ISD::CTTZ, VT, Expand); 382 setOperationAction(ISD::CTLZ, VT, Expand); 383 384 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 385 setOperationAction(ISD::ADDC, VT, Legal); 386 setOperationAction(ISD::SUBC, VT, Legal); 387 setOperationAction(ISD::ADDE, VT, Legal); 388 setOperationAction(ISD::SUBE, VT, Legal); 389 } 390 391 // The hardware supports 32-bit FSHR, but not FSHL. 392 setOperationAction(ISD::FSHR, MVT::i32, Legal); 393 394 // The hardware supports 32-bit ROTR, but not ROTL. 395 setOperationAction(ISD::ROTL, MVT::i32, Expand); 396 setOperationAction(ISD::ROTL, MVT::i64, Expand); 397 setOperationAction(ISD::ROTR, MVT::i64, Expand); 398 399 setOperationAction(ISD::MUL, MVT::i64, Expand); 400 setOperationAction(ISD::MULHU, MVT::i64, Expand); 401 setOperationAction(ISD::MULHS, MVT::i64, Expand); 402 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 403 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 404 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 405 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 406 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 407 408 setOperationAction(ISD::SMIN, MVT::i32, Legal); 409 setOperationAction(ISD::UMIN, MVT::i32, Legal); 410 setOperationAction(ISD::SMAX, MVT::i32, Legal); 411 setOperationAction(ISD::UMAX, MVT::i32, Legal); 412 413 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 414 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 415 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 416 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 417 418 static const MVT::SimpleValueType VectorIntTypes[] = { 419 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 420 }; 421 422 for (MVT VT : VectorIntTypes) { 423 // Expand the following operations for the current type by default. 424 setOperationAction(ISD::ADD, VT, Expand); 425 setOperationAction(ISD::AND, VT, Expand); 426 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 427 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 428 setOperationAction(ISD::MUL, VT, Expand); 429 setOperationAction(ISD::MULHU, VT, Expand); 430 setOperationAction(ISD::MULHS, VT, Expand); 431 setOperationAction(ISD::OR, VT, Expand); 432 setOperationAction(ISD::SHL, VT, Expand); 433 setOperationAction(ISD::SRA, VT, Expand); 434 setOperationAction(ISD::SRL, VT, Expand); 435 setOperationAction(ISD::ROTL, VT, Expand); 436 setOperationAction(ISD::ROTR, VT, Expand); 437 setOperationAction(ISD::SUB, VT, Expand); 438 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 439 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 440 setOperationAction(ISD::SDIV, VT, Expand); 441 setOperationAction(ISD::UDIV, VT, Expand); 442 setOperationAction(ISD::SREM, VT, Expand); 443 setOperationAction(ISD::UREM, VT, Expand); 444 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 445 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 446 setOperationAction(ISD::SDIVREM, VT, Custom); 447 setOperationAction(ISD::UDIVREM, VT, Expand); 448 setOperationAction(ISD::SELECT, VT, Expand); 449 setOperationAction(ISD::VSELECT, VT, Expand); 450 setOperationAction(ISD::SELECT_CC, VT, Expand); 451 setOperationAction(ISD::XOR, VT, Expand); 452 setOperationAction(ISD::BSWAP, VT, Expand); 453 setOperationAction(ISD::CTPOP, VT, Expand); 454 setOperationAction(ISD::CTTZ, VT, Expand); 455 setOperationAction(ISD::CTLZ, VT, Expand); 456 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 457 setOperationAction(ISD::SETCC, VT, Expand); 458 } 459 460 static const MVT::SimpleValueType FloatVectorTypes[] = { 461 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 462 }; 463 464 for (MVT VT : FloatVectorTypes) { 465 setOperationAction(ISD::FABS, VT, Expand); 466 setOperationAction(ISD::FMINNUM, VT, Expand); 467 setOperationAction(ISD::FMAXNUM, VT, Expand); 468 setOperationAction(ISD::FADD, VT, Expand); 469 setOperationAction(ISD::FCEIL, VT, Expand); 470 setOperationAction(ISD::FCOS, VT, Expand); 471 setOperationAction(ISD::FDIV, VT, Expand); 472 setOperationAction(ISD::FEXP2, VT, Expand); 473 setOperationAction(ISD::FEXP, VT, Expand); 474 setOperationAction(ISD::FLOG2, VT, Expand); 475 setOperationAction(ISD::FREM, VT, Expand); 476 setOperationAction(ISD::FLOG, VT, Expand); 477 setOperationAction(ISD::FLOG10, VT, Expand); 478 setOperationAction(ISD::FPOW, VT, Expand); 479 setOperationAction(ISD::FFLOOR, VT, Expand); 480 setOperationAction(ISD::FTRUNC, VT, Expand); 481 setOperationAction(ISD::FMUL, VT, Expand); 482 setOperationAction(ISD::FMA, VT, Expand); 483 setOperationAction(ISD::FRINT, VT, Expand); 484 setOperationAction(ISD::FNEARBYINT, VT, Expand); 485 setOperationAction(ISD::FSQRT, VT, Expand); 486 setOperationAction(ISD::FSIN, VT, Expand); 487 setOperationAction(ISD::FSUB, VT, Expand); 488 setOperationAction(ISD::FNEG, VT, Expand); 489 setOperationAction(ISD::VSELECT, VT, Expand); 490 setOperationAction(ISD::SELECT_CC, VT, Expand); 491 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 492 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 493 setOperationAction(ISD::SETCC, VT, Expand); 494 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 495 } 496 497 // This causes using an unrolled select operation rather than expansion with 498 // bit operations. This is in general better, but the alternative using BFI 499 // instructions may be better if the select sources are SGPRs. 500 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 501 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 502 503 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 504 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 505 506 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 507 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 508 509 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 510 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 511 512 // There are no libcalls of any kind. 513 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 514 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 515 516 setSchedulingPreference(Sched::RegPressure); 517 setJumpIsExpensive(true); 518 519 // FIXME: This is only partially true. If we have to do vector compares, any 520 // SGPR pair can be a condition register. If we have a uniform condition, we 521 // are better off doing SALU operations, where there is only one SCC. For now, 522 // we don't have a way of knowing during instruction selection if a condition 523 // will be uniform and we always use vector compares. Assume we are using 524 // vector compares until that is fixed. 525 setHasMultipleConditionRegisters(true); 526 527 setMinCmpXchgSizeInBits(32); 528 setSupportsUnalignedAtomics(false); 529 530 PredictableSelectIsExpensive = false; 531 532 // We want to find all load dependencies for long chains of stores to enable 533 // merging into very wide vectors. The problem is with vectors with > 4 534 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 535 // vectors are a legal type, even though we have to split the loads 536 // usually. When we can more precisely specify load legality per address 537 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 538 // smarter so that they can figure out what to do in 2 iterations without all 539 // N > 4 stores on the same chain. 540 GatherAllAliasesMaxDepth = 16; 541 542 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 543 // about these during lowering. 544 MaxStoresPerMemcpy = 0xffffffff; 545 MaxStoresPerMemmove = 0xffffffff; 546 MaxStoresPerMemset = 0xffffffff; 547 548 // The expansion for 64-bit division is enormous. 549 if (AMDGPUBypassSlowDiv) 550 addBypassSlowDiv(64, 32); 551 552 setTargetDAGCombine(ISD::BITCAST); 553 setTargetDAGCombine(ISD::SHL); 554 setTargetDAGCombine(ISD::SRA); 555 setTargetDAGCombine(ISD::SRL); 556 setTargetDAGCombine(ISD::TRUNCATE); 557 setTargetDAGCombine(ISD::MUL); 558 setTargetDAGCombine(ISD::MULHU); 559 setTargetDAGCombine(ISD::MULHS); 560 setTargetDAGCombine(ISD::SELECT); 561 setTargetDAGCombine(ISD::SELECT_CC); 562 setTargetDAGCombine(ISD::STORE); 563 setTargetDAGCombine(ISD::FADD); 564 setTargetDAGCombine(ISD::FSUB); 565 setTargetDAGCombine(ISD::FNEG); 566 setTargetDAGCombine(ISD::FABS); 567 setTargetDAGCombine(ISD::AssertZext); 568 setTargetDAGCombine(ISD::AssertSext); 569 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // Target Information 574 //===----------------------------------------------------------------------===// 575 576 LLVM_READNONE 577 static bool fnegFoldsIntoOp(unsigned Opc) { 578 switch (Opc) { 579 case ISD::FADD: 580 case ISD::FSUB: 581 case ISD::FMUL: 582 case ISD::FMA: 583 case ISD::FMAD: 584 case ISD::FMINNUM: 585 case ISD::FMAXNUM: 586 case ISD::FMINNUM_IEEE: 587 case ISD::FMAXNUM_IEEE: 588 case ISD::FSIN: 589 case ISD::FTRUNC: 590 case ISD::FRINT: 591 case ISD::FNEARBYINT: 592 case ISD::FCANONICALIZE: 593 case AMDGPUISD::RCP: 594 case AMDGPUISD::RCP_LEGACY: 595 case AMDGPUISD::RCP_IFLAG: 596 case AMDGPUISD::SIN_HW: 597 case AMDGPUISD::FMUL_LEGACY: 598 case AMDGPUISD::FMIN_LEGACY: 599 case AMDGPUISD::FMAX_LEGACY: 600 case AMDGPUISD::FMED3: 601 return true; 602 default: 603 return false; 604 } 605 } 606 607 /// \p returns true if the operation will definitely need to use a 64-bit 608 /// encoding, and thus will use a VOP3 encoding regardless of the source 609 /// modifiers. 610 LLVM_READONLY 611 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 612 return N->getNumOperands() > 2 || VT == MVT::f64; 613 } 614 615 // Most FP instructions support source modifiers, but this could be refined 616 // slightly. 617 LLVM_READONLY 618 static bool hasSourceMods(const SDNode *N) { 619 if (isa<MemSDNode>(N)) 620 return false; 621 622 switch (N->getOpcode()) { 623 case ISD::CopyToReg: 624 case ISD::SELECT: 625 case ISD::FDIV: 626 case ISD::FREM: 627 case ISD::INLINEASM: 628 case ISD::INLINEASM_BR: 629 case AMDGPUISD::DIV_SCALE: 630 case ISD::INTRINSIC_W_CHAIN: 631 632 // TODO: Should really be looking at the users of the bitcast. These are 633 // problematic because bitcasts are used to legalize all stores to integer 634 // types. 635 case ISD::BITCAST: 636 return false; 637 case ISD::INTRINSIC_WO_CHAIN: { 638 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 639 case Intrinsic::amdgcn_interp_p1: 640 case Intrinsic::amdgcn_interp_p2: 641 case Intrinsic::amdgcn_interp_mov: 642 case Intrinsic::amdgcn_interp_p1_f16: 643 case Intrinsic::amdgcn_interp_p2_f16: 644 return false; 645 default: 646 return true; 647 } 648 } 649 default: 650 return true; 651 } 652 } 653 654 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 655 unsigned CostThreshold) { 656 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 657 // it is truly free to use a source modifier in all cases. If there are 658 // multiple users but for each one will necessitate using VOP3, there will be 659 // a code size increase. Try to avoid increasing code size unless we know it 660 // will save on the instruction count. 661 unsigned NumMayIncreaseSize = 0; 662 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 663 664 // XXX - Should this limit number of uses to check? 665 for (const SDNode *U : N->uses()) { 666 if (!hasSourceMods(U)) 667 return false; 668 669 if (!opMustUseVOP3Encoding(U, VT)) { 670 if (++NumMayIncreaseSize > CostThreshold) 671 return false; 672 } 673 } 674 675 return true; 676 } 677 678 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 679 ISD::NodeType ExtendKind) const { 680 assert(!VT.isVector() && "only scalar expected"); 681 682 // Round to the next multiple of 32-bits. 683 unsigned Size = VT.getSizeInBits(); 684 if (Size <= 32) 685 return MVT::i32; 686 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 687 } 688 689 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 690 return MVT::i32; 691 } 692 693 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 694 return true; 695 } 696 697 // The backend supports 32 and 64 bit floating point immediates. 698 // FIXME: Why are we reporting vectors of FP immediates as legal? 699 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 700 bool ForCodeSize) const { 701 EVT ScalarVT = VT.getScalarType(); 702 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 703 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 704 } 705 706 // We don't want to shrink f64 / f32 constants. 707 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 708 EVT ScalarVT = VT.getScalarType(); 709 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 710 } 711 712 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 713 ISD::LoadExtType ExtTy, 714 EVT NewVT) const { 715 // TODO: This may be worth removing. Check regression tests for diffs. 716 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 717 return false; 718 719 unsigned NewSize = NewVT.getStoreSizeInBits(); 720 721 // If we are reducing to a 32-bit load or a smaller multi-dword load, 722 // this is always better. 723 if (NewSize >= 32) 724 return true; 725 726 EVT OldVT = N->getValueType(0); 727 unsigned OldSize = OldVT.getStoreSizeInBits(); 728 729 MemSDNode *MN = cast<MemSDNode>(N); 730 unsigned AS = MN->getAddressSpace(); 731 // Do not shrink an aligned scalar load to sub-dword. 732 // Scalar engine cannot do sub-dword loads. 733 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 734 (AS == AMDGPUAS::CONSTANT_ADDRESS || 735 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 736 (isa<LoadSDNode>(N) && 737 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 738 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 739 return false; 740 741 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 742 // extloads, so doing one requires using a buffer_load. In cases where we 743 // still couldn't use a scalar load, using the wider load shouldn't really 744 // hurt anything. 745 746 // If the old size already had to be an extload, there's no harm in continuing 747 // to reduce the width. 748 return (OldSize < 32); 749 } 750 751 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 752 const SelectionDAG &DAG, 753 const MachineMemOperand &MMO) const { 754 755 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 756 757 if (LoadTy.getScalarType() == MVT::i32) 758 return false; 759 760 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 761 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 762 763 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 764 return false; 765 766 bool Fast = false; 767 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 768 CastTy, MMO, &Fast) && 769 Fast; 770 } 771 772 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 773 // profitable with the expansion for 64-bit since it's generally good to 774 // speculate things. 775 // FIXME: These should really have the size as a parameter. 776 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 777 return true; 778 } 779 780 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 781 return true; 782 } 783 784 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 785 switch (N->getOpcode()) { 786 default: 787 return false; 788 case ISD::EntryToken: 789 case ISD::TokenFactor: 790 return true; 791 case ISD::INTRINSIC_WO_CHAIN: 792 { 793 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 794 switch (IntrID) { 795 default: 796 return false; 797 case Intrinsic::amdgcn_readfirstlane: 798 case Intrinsic::amdgcn_readlane: 799 return true; 800 } 801 } 802 break; 803 case ISD::LOAD: 804 { 805 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 806 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 807 return true; 808 return false; 809 } 810 break; 811 } 812 } 813 814 SDValue AMDGPUTargetLowering::getNegatedExpression( 815 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 816 NegatibleCost &Cost, unsigned Depth) const { 817 818 switch (Op.getOpcode()) { 819 case ISD::FMA: 820 case ISD::FMAD: { 821 // Negating a fma is not free if it has users without source mods. 822 if (!allUsesHaveSourceMods(Op.getNode())) 823 return SDValue(); 824 break; 825 } 826 default: 827 break; 828 } 829 830 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 831 ForCodeSize, Cost, Depth); 832 } 833 834 //===---------------------------------------------------------------------===// 835 // Target Properties 836 //===---------------------------------------------------------------------===// 837 838 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 839 assert(VT.isFloatingPoint()); 840 841 // Packed operations do not have a fabs modifier. 842 return VT == MVT::f32 || VT == MVT::f64 || 843 (Subtarget->has16BitInsts() && VT == MVT::f16); 844 } 845 846 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 847 assert(VT.isFloatingPoint()); 848 return VT == MVT::f32 || VT == MVT::f64 || 849 (Subtarget->has16BitInsts() && VT == MVT::f16) || 850 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 851 } 852 853 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 854 unsigned NumElem, 855 unsigned AS) const { 856 return true; 857 } 858 859 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 860 // There are few operations which truly have vector input operands. Any vector 861 // operation is going to involve operations on each component, and a 862 // build_vector will be a copy per element, so it always makes sense to use a 863 // build_vector input in place of the extracted element to avoid a copy into a 864 // super register. 865 // 866 // We should probably only do this if all users are extracts only, but this 867 // should be the common case. 868 return true; 869 } 870 871 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 872 // Truncate is just accessing a subregister. 873 874 unsigned SrcSize = Source.getSizeInBits(); 875 unsigned DestSize = Dest.getSizeInBits(); 876 877 return DestSize < SrcSize && DestSize % 32 == 0 ; 878 } 879 880 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 881 // Truncate is just accessing a subregister. 882 883 unsigned SrcSize = Source->getScalarSizeInBits(); 884 unsigned DestSize = Dest->getScalarSizeInBits(); 885 886 if (DestSize== 16 && Subtarget->has16BitInsts()) 887 return SrcSize >= 32; 888 889 return DestSize < SrcSize && DestSize % 32 == 0; 890 } 891 892 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 893 unsigned SrcSize = Src->getScalarSizeInBits(); 894 unsigned DestSize = Dest->getScalarSizeInBits(); 895 896 if (SrcSize == 16 && Subtarget->has16BitInsts()) 897 return DestSize >= 32; 898 899 return SrcSize == 32 && DestSize == 64; 900 } 901 902 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 903 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 904 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 905 // this will enable reducing 64-bit operations the 32-bit, which is always 906 // good. 907 908 if (Src == MVT::i16) 909 return Dest == MVT::i32 ||Dest == MVT::i64 ; 910 911 return Src == MVT::i32 && Dest == MVT::i64; 912 } 913 914 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 915 return isZExtFree(Val.getValueType(), VT2); 916 } 917 918 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 919 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 920 // limited number of native 64-bit operations. Shrinking an operation to fit 921 // in a single 32-bit register should always be helpful. As currently used, 922 // this is much less general than the name suggests, and is only used in 923 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 924 // not profitable, and may actually be harmful. 925 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 926 } 927 928 //===---------------------------------------------------------------------===// 929 // TargetLowering Callbacks 930 //===---------------------------------------------------------------------===// 931 932 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 933 bool IsVarArg) { 934 switch (CC) { 935 case CallingConv::AMDGPU_VS: 936 case CallingConv::AMDGPU_GS: 937 case CallingConv::AMDGPU_PS: 938 case CallingConv::AMDGPU_CS: 939 case CallingConv::AMDGPU_HS: 940 case CallingConv::AMDGPU_ES: 941 case CallingConv::AMDGPU_LS: 942 return CC_AMDGPU; 943 case CallingConv::C: 944 case CallingConv::Fast: 945 case CallingConv::Cold: 946 return CC_AMDGPU_Func; 947 case CallingConv::AMDGPU_KERNEL: 948 case CallingConv::SPIR_KERNEL: 949 default: 950 report_fatal_error("Unsupported calling convention for call"); 951 } 952 } 953 954 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 955 bool IsVarArg) { 956 switch (CC) { 957 case CallingConv::AMDGPU_KERNEL: 958 case CallingConv::SPIR_KERNEL: 959 llvm_unreachable("kernels should not be handled here"); 960 case CallingConv::AMDGPU_VS: 961 case CallingConv::AMDGPU_GS: 962 case CallingConv::AMDGPU_PS: 963 case CallingConv::AMDGPU_CS: 964 case CallingConv::AMDGPU_HS: 965 case CallingConv::AMDGPU_ES: 966 case CallingConv::AMDGPU_LS: 967 return RetCC_SI_Shader; 968 case CallingConv::C: 969 case CallingConv::Fast: 970 case CallingConv::Cold: 971 return RetCC_AMDGPU_Func; 972 default: 973 report_fatal_error("Unsupported calling convention."); 974 } 975 } 976 977 /// The SelectionDAGBuilder will automatically promote function arguments 978 /// with illegal types. However, this does not work for the AMDGPU targets 979 /// since the function arguments are stored in memory as these illegal types. 980 /// In order to handle this properly we need to get the original types sizes 981 /// from the LLVM IR Function and fixup the ISD:InputArg values before 982 /// passing them to AnalyzeFormalArguments() 983 984 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 985 /// input values across multiple registers. Each item in the Ins array 986 /// represents a single value that will be stored in registers. Ins[x].VT is 987 /// the value type of the value that will be stored in the register, so 988 /// whatever SDNode we lower the argument to needs to be this type. 989 /// 990 /// In order to correctly lower the arguments we need to know the size of each 991 /// argument. Since Ins[x].VT gives us the size of the register that will 992 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 993 /// for the orignal function argument so that we can deduce the correct memory 994 /// type to use for Ins[x]. In most cases the correct memory type will be 995 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 996 /// we have a kernel argument of type v8i8, this argument will be split into 997 /// 8 parts and each part will be represented by its own item in the Ins array. 998 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 999 /// the argument before it was split. From this, we deduce that the memory type 1000 /// for each individual part is i8. We pass the memory type as LocVT to the 1001 /// calling convention analysis function and the register type (Ins[x].VT) as 1002 /// the ValVT. 1003 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1004 CCState &State, 1005 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1006 const MachineFunction &MF = State.getMachineFunction(); 1007 const Function &Fn = MF.getFunction(); 1008 LLVMContext &Ctx = Fn.getParent()->getContext(); 1009 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1010 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1011 CallingConv::ID CC = Fn.getCallingConv(); 1012 1013 unsigned MaxAlign = 1; 1014 uint64_t ExplicitArgOffset = 0; 1015 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1016 1017 unsigned InIndex = 0; 1018 1019 for (const Argument &Arg : Fn.args()) { 1020 Type *BaseArgTy = Arg.getType(); 1021 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 1022 MaxAlign = std::max(Align, MaxAlign); 1023 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 1024 1025 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 1026 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 1027 1028 // We're basically throwing away everything passed into us and starting over 1029 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1030 // to us as computed in Ins. 1031 // 1032 // We also need to figure out what type legalization is trying to do to get 1033 // the correct memory offsets. 1034 1035 SmallVector<EVT, 16> ValueVTs; 1036 SmallVector<uint64_t, 16> Offsets; 1037 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1038 1039 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1040 Value != NumValues; ++Value) { 1041 uint64_t BasePartOffset = Offsets[Value]; 1042 1043 EVT ArgVT = ValueVTs[Value]; 1044 EVT MemVT = ArgVT; 1045 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1046 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1047 1048 if (NumRegs == 1) { 1049 // This argument is not split, so the IR type is the memory type. 1050 if (ArgVT.isExtended()) { 1051 // We have an extended type, like i24, so we should just use the 1052 // register type. 1053 MemVT = RegisterVT; 1054 } else { 1055 MemVT = ArgVT; 1056 } 1057 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1058 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1059 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1060 // We have a vector value which has been split into a vector with 1061 // the same scalar type, but fewer elements. This should handle 1062 // all the floating-point vector types. 1063 MemVT = RegisterVT; 1064 } else if (ArgVT.isVector() && 1065 ArgVT.getVectorNumElements() == NumRegs) { 1066 // This arg has been split so that each element is stored in a separate 1067 // register. 1068 MemVT = ArgVT.getScalarType(); 1069 } else if (ArgVT.isExtended()) { 1070 // We have an extended type, like i65. 1071 MemVT = RegisterVT; 1072 } else { 1073 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1074 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1075 if (RegisterVT.isInteger()) { 1076 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1077 } else if (RegisterVT.isVector()) { 1078 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1079 unsigned NumElements = RegisterVT.getVectorNumElements(); 1080 assert(MemoryBits % NumElements == 0); 1081 // This vector type has been split into another vector type with 1082 // a different elements size. 1083 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1084 MemoryBits / NumElements); 1085 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1086 } else { 1087 llvm_unreachable("cannot deduce memory type."); 1088 } 1089 } 1090 1091 // Convert one element vectors to scalar. 1092 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1093 MemVT = MemVT.getScalarType(); 1094 1095 // Round up vec3/vec5 argument. 1096 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1097 assert(MemVT.getVectorNumElements() == 3 || 1098 MemVT.getVectorNumElements() == 5); 1099 MemVT = MemVT.getPow2VectorType(State.getContext()); 1100 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1101 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1102 } 1103 1104 unsigned PartOffset = 0; 1105 for (unsigned i = 0; i != NumRegs; ++i) { 1106 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1107 BasePartOffset + PartOffset, 1108 MemVT.getSimpleVT(), 1109 CCValAssign::Full)); 1110 PartOffset += MemVT.getStoreSize(); 1111 } 1112 } 1113 } 1114 } 1115 1116 SDValue AMDGPUTargetLowering::LowerReturn( 1117 SDValue Chain, CallingConv::ID CallConv, 1118 bool isVarArg, 1119 const SmallVectorImpl<ISD::OutputArg> &Outs, 1120 const SmallVectorImpl<SDValue> &OutVals, 1121 const SDLoc &DL, SelectionDAG &DAG) const { 1122 // FIXME: Fails for r600 tests 1123 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1124 // "wave terminate should not have return values"); 1125 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1126 } 1127 1128 //===---------------------------------------------------------------------===// 1129 // Target specific lowering 1130 //===---------------------------------------------------------------------===// 1131 1132 /// Selects the correct CCAssignFn for a given CallingConvention value. 1133 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1134 bool IsVarArg) { 1135 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1136 } 1137 1138 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1139 bool IsVarArg) { 1140 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1141 } 1142 1143 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1144 SelectionDAG &DAG, 1145 MachineFrameInfo &MFI, 1146 int ClobberedFI) const { 1147 SmallVector<SDValue, 8> ArgChains; 1148 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1149 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1150 1151 // Include the original chain at the beginning of the list. When this is 1152 // used by target LowerCall hooks, this helps legalize find the 1153 // CALLSEQ_BEGIN node. 1154 ArgChains.push_back(Chain); 1155 1156 // Add a chain value for each stack argument corresponding 1157 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1158 UE = DAG.getEntryNode().getNode()->use_end(); 1159 U != UE; ++U) { 1160 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1161 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1162 if (FI->getIndex() < 0) { 1163 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1164 int64_t InLastByte = InFirstByte; 1165 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1166 1167 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1168 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1169 ArgChains.push_back(SDValue(L, 1)); 1170 } 1171 } 1172 } 1173 } 1174 1175 // Build a tokenfactor for all the chains. 1176 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1177 } 1178 1179 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1180 SmallVectorImpl<SDValue> &InVals, 1181 StringRef Reason) const { 1182 SDValue Callee = CLI.Callee; 1183 SelectionDAG &DAG = CLI.DAG; 1184 1185 const Function &Fn = DAG.getMachineFunction().getFunction(); 1186 1187 StringRef FuncName("<unknown>"); 1188 1189 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1190 FuncName = G->getSymbol(); 1191 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1192 FuncName = G->getGlobal()->getName(); 1193 1194 DiagnosticInfoUnsupported NoCalls( 1195 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1196 DAG.getContext()->diagnose(NoCalls); 1197 1198 if (!CLI.IsTailCall) { 1199 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1200 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1201 } 1202 1203 return DAG.getEntryNode(); 1204 } 1205 1206 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1207 SmallVectorImpl<SDValue> &InVals) const { 1208 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1209 } 1210 1211 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1212 SelectionDAG &DAG) const { 1213 const Function &Fn = DAG.getMachineFunction().getFunction(); 1214 1215 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1216 SDLoc(Op).getDebugLoc()); 1217 DAG.getContext()->diagnose(NoDynamicAlloca); 1218 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1219 return DAG.getMergeValues(Ops, SDLoc()); 1220 } 1221 1222 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1223 SelectionDAG &DAG) const { 1224 switch (Op.getOpcode()) { 1225 default: 1226 Op->print(errs(), &DAG); 1227 llvm_unreachable("Custom lowering code for this" 1228 "instruction is not implemented yet!"); 1229 break; 1230 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1231 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1232 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1233 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1234 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1235 case ISD::FREM: return LowerFREM(Op, DAG); 1236 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1237 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1238 case ISD::FRINT: return LowerFRINT(Op, DAG); 1239 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1240 case ISD::FROUND: return LowerFROUND(Op, DAG); 1241 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1242 case ISD::FLOG: 1243 return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef); 1244 case ISD::FLOG10: 1245 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1246 case ISD::FEXP: 1247 return lowerFEXP(Op, DAG); 1248 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1249 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1250 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1251 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1252 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1253 case ISD::CTTZ: 1254 case ISD::CTTZ_ZERO_UNDEF: 1255 case ISD::CTLZ: 1256 case ISD::CTLZ_ZERO_UNDEF: 1257 return LowerCTLZ_CTTZ(Op, DAG); 1258 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1259 } 1260 return Op; 1261 } 1262 1263 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1264 SmallVectorImpl<SDValue> &Results, 1265 SelectionDAG &DAG) const { 1266 switch (N->getOpcode()) { 1267 case ISD::SIGN_EXTEND_INREG: 1268 // Different parts of legalization seem to interpret which type of 1269 // sign_extend_inreg is the one to check for custom lowering. The extended 1270 // from type is what really matters, but some places check for custom 1271 // lowering of the result type. This results in trying to use 1272 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1273 // nothing here and let the illegal result integer be handled normally. 1274 return; 1275 default: 1276 return; 1277 } 1278 } 1279 1280 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1281 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1282 if (!GVar || !GVar->hasInitializer()) 1283 return false; 1284 1285 return !isa<UndefValue>(GVar->getInitializer()); 1286 } 1287 1288 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1289 SDValue Op, 1290 SelectionDAG &DAG) const { 1291 1292 const DataLayout &DL = DAG.getDataLayout(); 1293 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1294 const GlobalValue *GV = G->getGlobal(); 1295 1296 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1297 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1298 if (!MFI->isEntryFunction()) { 1299 SDLoc DL(Op); 1300 const Function &Fn = DAG.getMachineFunction().getFunction(); 1301 DiagnosticInfoUnsupported BadLDSDecl( 1302 Fn, "local memory global used by non-kernel function", 1303 DL.getDebugLoc(), DS_Warning); 1304 DAG.getContext()->diagnose(BadLDSDecl); 1305 1306 // We currently don't have a way to correctly allocate LDS objects that 1307 // aren't directly associated with a kernel. We do force inlining of 1308 // functions that use local objects. However, if these dead functions are 1309 // not eliminated, we don't want a compile time error. Just emit a warning 1310 // and a trap, since there should be no callable path here. 1311 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1312 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1313 Trap, DAG.getRoot()); 1314 DAG.setRoot(OutputChain); 1315 return DAG.getUNDEF(Op.getValueType()); 1316 } 1317 1318 // XXX: What does the value of G->getOffset() mean? 1319 assert(G->getOffset() == 0 && 1320 "Do not know what to do with an non-zero offset"); 1321 1322 // TODO: We could emit code to handle the initialization somewhere. 1323 if (!hasDefinedInitializer(GV)) { 1324 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1325 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1326 } 1327 } 1328 1329 const Function &Fn = DAG.getMachineFunction().getFunction(); 1330 DiagnosticInfoUnsupported BadInit( 1331 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1332 DAG.getContext()->diagnose(BadInit); 1333 return SDValue(); 1334 } 1335 1336 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1337 SelectionDAG &DAG) const { 1338 SmallVector<SDValue, 8> Args; 1339 1340 EVT VT = Op.getValueType(); 1341 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1342 SDLoc SL(Op); 1343 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1344 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1345 1346 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1347 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1348 } 1349 1350 for (const SDUse &U : Op->ops()) 1351 DAG.ExtractVectorElements(U.get(), Args); 1352 1353 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1354 } 1355 1356 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1357 SelectionDAG &DAG) const { 1358 1359 SmallVector<SDValue, 8> Args; 1360 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1361 EVT VT = Op.getValueType(); 1362 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1363 VT.getVectorNumElements()); 1364 1365 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1366 } 1367 1368 /// Generate Min/Max node 1369 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1370 SDValue LHS, SDValue RHS, 1371 SDValue True, SDValue False, 1372 SDValue CC, 1373 DAGCombinerInfo &DCI) const { 1374 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1375 return SDValue(); 1376 1377 SelectionDAG &DAG = DCI.DAG; 1378 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1379 switch (CCOpcode) { 1380 case ISD::SETOEQ: 1381 case ISD::SETONE: 1382 case ISD::SETUNE: 1383 case ISD::SETNE: 1384 case ISD::SETUEQ: 1385 case ISD::SETEQ: 1386 case ISD::SETFALSE: 1387 case ISD::SETFALSE2: 1388 case ISD::SETTRUE: 1389 case ISD::SETTRUE2: 1390 case ISD::SETUO: 1391 case ISD::SETO: 1392 break; 1393 case ISD::SETULE: 1394 case ISD::SETULT: { 1395 if (LHS == True) 1396 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1397 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1398 } 1399 case ISD::SETOLE: 1400 case ISD::SETOLT: 1401 case ISD::SETLE: 1402 case ISD::SETLT: { 1403 // Ordered. Assume ordered for undefined. 1404 1405 // Only do this after legalization to avoid interfering with other combines 1406 // which might occur. 1407 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1408 !DCI.isCalledByLegalizer()) 1409 return SDValue(); 1410 1411 // We need to permute the operands to get the correct NaN behavior. The 1412 // selected operand is the second one based on the failing compare with NaN, 1413 // so permute it based on the compare type the hardware uses. 1414 if (LHS == True) 1415 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1416 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1417 } 1418 case ISD::SETUGE: 1419 case ISD::SETUGT: { 1420 if (LHS == True) 1421 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1422 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1423 } 1424 case ISD::SETGT: 1425 case ISD::SETGE: 1426 case ISD::SETOGE: 1427 case ISD::SETOGT: { 1428 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1429 !DCI.isCalledByLegalizer()) 1430 return SDValue(); 1431 1432 if (LHS == True) 1433 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1434 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1435 } 1436 case ISD::SETCC_INVALID: 1437 llvm_unreachable("Invalid setcc condcode!"); 1438 } 1439 return SDValue(); 1440 } 1441 1442 std::pair<SDValue, SDValue> 1443 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1444 SDLoc SL(Op); 1445 1446 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1447 1448 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1449 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1450 1451 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1452 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1453 1454 return std::make_pair(Lo, Hi); 1455 } 1456 1457 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1458 SDLoc SL(Op); 1459 1460 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1461 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1462 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1463 } 1464 1465 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1466 SDLoc SL(Op); 1467 1468 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1469 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1470 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1471 } 1472 1473 // Split a vector type into two parts. The first part is a power of two vector. 1474 // The second part is whatever is left over, and is a scalar if it would 1475 // otherwise be a 1-vector. 1476 std::pair<EVT, EVT> 1477 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1478 EVT LoVT, HiVT; 1479 EVT EltVT = VT.getVectorElementType(); 1480 unsigned NumElts = VT.getVectorNumElements(); 1481 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1482 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1483 HiVT = NumElts - LoNumElts == 1 1484 ? EltVT 1485 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1486 return std::make_pair(LoVT, HiVT); 1487 } 1488 1489 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1490 // scalar. 1491 std::pair<SDValue, SDValue> 1492 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1493 const EVT &LoVT, const EVT &HiVT, 1494 SelectionDAG &DAG) const { 1495 assert(LoVT.getVectorNumElements() + 1496 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1497 N.getValueType().getVectorNumElements() && 1498 "More vector elements requested than available!"); 1499 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1500 DAG.getVectorIdxConstant(0, DL)); 1501 SDValue Hi = DAG.getNode( 1502 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1503 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1504 return std::make_pair(Lo, Hi); 1505 } 1506 1507 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1508 SelectionDAG &DAG) const { 1509 LoadSDNode *Load = cast<LoadSDNode>(Op); 1510 EVT VT = Op.getValueType(); 1511 SDLoc SL(Op); 1512 1513 1514 // If this is a 2 element vector, we really want to scalarize and not create 1515 // weird 1 element vectors. 1516 if (VT.getVectorNumElements() == 2) { 1517 SDValue Ops[2]; 1518 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1519 return DAG.getMergeValues(Ops, SL); 1520 } 1521 1522 SDValue BasePtr = Load->getBasePtr(); 1523 EVT MemVT = Load->getMemoryVT(); 1524 1525 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1526 1527 EVT LoVT, HiVT; 1528 EVT LoMemVT, HiMemVT; 1529 SDValue Lo, Hi; 1530 1531 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1532 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1533 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1534 1535 unsigned Size = LoMemVT.getStoreSize(); 1536 unsigned BaseAlign = Load->getAlignment(); 1537 unsigned HiAlign = MinAlign(BaseAlign, Size); 1538 1539 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1540 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1541 BaseAlign, Load->getMemOperand()->getFlags()); 1542 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1543 SDValue HiLoad = 1544 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1545 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1546 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1547 1548 SDValue Join; 1549 if (LoVT == HiVT) { 1550 // This is the case that the vector is power of two so was evenly split. 1551 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1552 } else { 1553 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1554 DAG.getVectorIdxConstant(0, SL)); 1555 Join = DAG.getNode( 1556 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1557 VT, Join, HiLoad, 1558 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1559 } 1560 1561 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1562 LoLoad.getValue(1), HiLoad.getValue(1))}; 1563 1564 return DAG.getMergeValues(Ops, SL); 1565 } 1566 1567 // Widen a vector load from vec3 to vec4. 1568 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1569 SelectionDAG &DAG) const { 1570 LoadSDNode *Load = cast<LoadSDNode>(Op); 1571 EVT VT = Op.getValueType(); 1572 assert(VT.getVectorNumElements() == 3); 1573 SDValue BasePtr = Load->getBasePtr(); 1574 EVT MemVT = Load->getMemoryVT(); 1575 SDLoc SL(Op); 1576 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1577 unsigned BaseAlign = Load->getAlignment(); 1578 1579 EVT WideVT = 1580 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1581 EVT WideMemVT = 1582 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1583 SDValue WideLoad = DAG.getExtLoad( 1584 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1585 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1586 return DAG.getMergeValues( 1587 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1588 DAG.getVectorIdxConstant(0, SL)), 1589 WideLoad.getValue(1)}, 1590 SL); 1591 } 1592 1593 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1594 SelectionDAG &DAG) const { 1595 StoreSDNode *Store = cast<StoreSDNode>(Op); 1596 SDValue Val = Store->getValue(); 1597 EVT VT = Val.getValueType(); 1598 1599 // If this is a 2 element vector, we really want to scalarize and not create 1600 // weird 1 element vectors. 1601 if (VT.getVectorNumElements() == 2) 1602 return scalarizeVectorStore(Store, DAG); 1603 1604 EVT MemVT = Store->getMemoryVT(); 1605 SDValue Chain = Store->getChain(); 1606 SDValue BasePtr = Store->getBasePtr(); 1607 SDLoc SL(Op); 1608 1609 EVT LoVT, HiVT; 1610 EVT LoMemVT, HiMemVT; 1611 SDValue Lo, Hi; 1612 1613 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1614 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1615 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1616 1617 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1618 1619 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1620 unsigned BaseAlign = Store->getAlignment(); 1621 unsigned Size = LoMemVT.getStoreSize(); 1622 unsigned HiAlign = MinAlign(BaseAlign, Size); 1623 1624 SDValue LoStore = 1625 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1626 Store->getMemOperand()->getFlags()); 1627 SDValue HiStore = 1628 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1629 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1630 1631 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1632 } 1633 1634 // This is a shortcut for integer division because we have fast i32<->f32 1635 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1636 // float is enough to accurately represent up to a 24-bit signed integer. 1637 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1638 bool Sign) const { 1639 SDLoc DL(Op); 1640 EVT VT = Op.getValueType(); 1641 SDValue LHS = Op.getOperand(0); 1642 SDValue RHS = Op.getOperand(1); 1643 MVT IntVT = MVT::i32; 1644 MVT FltVT = MVT::f32; 1645 1646 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1647 if (LHSSignBits < 9) 1648 return SDValue(); 1649 1650 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1651 if (RHSSignBits < 9) 1652 return SDValue(); 1653 1654 unsigned BitSize = VT.getSizeInBits(); 1655 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1656 unsigned DivBits = BitSize - SignBits; 1657 if (Sign) 1658 ++DivBits; 1659 1660 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1661 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1662 1663 SDValue jq = DAG.getConstant(1, DL, IntVT); 1664 1665 if (Sign) { 1666 // char|short jq = ia ^ ib; 1667 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1668 1669 // jq = jq >> (bitsize - 2) 1670 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1671 DAG.getConstant(BitSize - 2, DL, VT)); 1672 1673 // jq = jq | 0x1 1674 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1675 } 1676 1677 // int ia = (int)LHS; 1678 SDValue ia = LHS; 1679 1680 // int ib, (int)RHS; 1681 SDValue ib = RHS; 1682 1683 // float fa = (float)ia; 1684 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1685 1686 // float fb = (float)ib; 1687 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1688 1689 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1690 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1691 1692 // fq = trunc(fq); 1693 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1694 1695 // float fqneg = -fq; 1696 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1697 1698 MachineFunction &MF = DAG.getMachineFunction(); 1699 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1700 1701 // float fr = mad(fqneg, fb, fa); 1702 unsigned OpCode = !MFI->getMode().allFP32Denormals() ? 1703 (unsigned)ISD::FMAD : 1704 (unsigned)AMDGPUISD::FMAD_FTZ; 1705 1706 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1707 1708 // int iq = (int)fq; 1709 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1710 1711 // fr = fabs(fr); 1712 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1713 1714 // fb = fabs(fb); 1715 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1716 1717 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1718 1719 // int cv = fr >= fb; 1720 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1721 1722 // jq = (cv ? jq : 0); 1723 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1724 1725 // dst = iq + jq; 1726 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1727 1728 // Rem needs compensation, it's easier to recompute it 1729 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1730 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1731 1732 // Truncate to number of bits this divide really is. 1733 if (Sign) { 1734 SDValue InRegSize 1735 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1736 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1737 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1738 } else { 1739 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1740 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1741 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1742 } 1743 1744 return DAG.getMergeValues({ Div, Rem }, DL); 1745 } 1746 1747 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1748 SelectionDAG &DAG, 1749 SmallVectorImpl<SDValue> &Results) const { 1750 SDLoc DL(Op); 1751 EVT VT = Op.getValueType(); 1752 1753 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1754 1755 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1756 1757 SDValue One = DAG.getConstant(1, DL, HalfVT); 1758 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1759 1760 //HiLo split 1761 SDValue LHS = Op.getOperand(0); 1762 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1763 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1764 1765 SDValue RHS = Op.getOperand(1); 1766 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1767 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1768 1769 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1770 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1771 1772 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1773 LHS_Lo, RHS_Lo); 1774 1775 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1776 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1777 1778 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1779 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1780 return; 1781 } 1782 1783 if (isTypeLegal(MVT::i64)) { 1784 MachineFunction &MF = DAG.getMachineFunction(); 1785 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1786 1787 // Compute denominator reciprocal. 1788 unsigned FMAD = !MFI->getMode().allFP32Denormals() ? 1789 (unsigned)ISD::FMAD : 1790 (unsigned)AMDGPUISD::FMAD_FTZ; 1791 1792 1793 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1794 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1795 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1796 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1797 Cvt_Lo); 1798 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1799 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1800 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1801 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1802 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1803 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1804 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1805 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1806 Mul1); 1807 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1808 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1809 SDValue Rcp64 = DAG.getBitcast(VT, 1810 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1811 1812 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1813 SDValue One64 = DAG.getConstant(1, DL, VT); 1814 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1815 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1816 1817 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1818 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1819 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1820 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1821 Zero); 1822 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1823 One); 1824 1825 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1826 Mulhi1_Lo, Zero1); 1827 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1828 Mulhi1_Hi, Add1_Lo.getValue(1)); 1829 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1830 SDValue Add1 = DAG.getBitcast(VT, 1831 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1832 1833 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1834 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1835 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1836 Zero); 1837 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1838 One); 1839 1840 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1841 Mulhi2_Lo, Zero1); 1842 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1843 Mulhi2_Hi, Add1_Lo.getValue(1)); 1844 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1845 Zero, Add2_Lo.getValue(1)); 1846 SDValue Add2 = DAG.getBitcast(VT, 1847 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1848 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1849 1850 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1851 1852 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1853 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1854 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1855 Mul3_Lo, Zero1); 1856 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1857 Mul3_Hi, Sub1_Lo.getValue(1)); 1858 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1859 SDValue Sub1 = DAG.getBitcast(VT, 1860 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1861 1862 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1863 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1864 ISD::SETUGE); 1865 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1866 ISD::SETUGE); 1867 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1868 1869 // TODO: Here and below portions of the code can be enclosed into if/endif. 1870 // Currently control flow is unconditional and we have 4 selects after 1871 // potential endif to substitute PHIs. 1872 1873 // if C3 != 0 ... 1874 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1875 RHS_Lo, Zero1); 1876 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1877 RHS_Hi, Sub1_Lo.getValue(1)); 1878 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1879 Zero, Sub2_Lo.getValue(1)); 1880 SDValue Sub2 = DAG.getBitcast(VT, 1881 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1882 1883 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1884 1885 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1886 ISD::SETUGE); 1887 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1888 ISD::SETUGE); 1889 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1890 1891 // if (C6 != 0) 1892 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1893 1894 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1895 RHS_Lo, Zero1); 1896 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1897 RHS_Hi, Sub2_Lo.getValue(1)); 1898 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1899 Zero, Sub3_Lo.getValue(1)); 1900 SDValue Sub3 = DAG.getBitcast(VT, 1901 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1902 1903 // endif C6 1904 // endif C3 1905 1906 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1907 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1908 1909 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1910 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1911 1912 Results.push_back(Div); 1913 Results.push_back(Rem); 1914 1915 return; 1916 } 1917 1918 // r600 expandion. 1919 // Get Speculative values 1920 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1921 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1922 1923 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1924 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1925 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1926 1927 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1928 SDValue DIV_Lo = Zero; 1929 1930 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1931 1932 for (unsigned i = 0; i < halfBitWidth; ++i) { 1933 const unsigned bitPos = halfBitWidth - i - 1; 1934 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1935 // Get value of high bit 1936 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1937 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1938 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1939 1940 // Shift 1941 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1942 // Add LHS high bit 1943 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1944 1945 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1946 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1947 1948 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1949 1950 // Update REM 1951 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1952 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1953 } 1954 1955 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1956 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1957 Results.push_back(DIV); 1958 Results.push_back(REM); 1959 } 1960 1961 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1962 SelectionDAG &DAG) const { 1963 SDLoc DL(Op); 1964 EVT VT = Op.getValueType(); 1965 1966 if (VT == MVT::i64) { 1967 SmallVector<SDValue, 2> Results; 1968 LowerUDIVREM64(Op, DAG, Results); 1969 return DAG.getMergeValues(Results, DL); 1970 } 1971 1972 if (VT == MVT::i32) { 1973 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1974 return Res; 1975 } 1976 1977 SDValue Num = Op.getOperand(0); 1978 SDValue Den = Op.getOperand(1); 1979 1980 // RCP = URECIP(Den) = 2^32 / Den + e 1981 // e is rounding error. 1982 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1983 1984 // RCP_LO = mul(RCP, Den) */ 1985 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1986 1987 // RCP_HI = mulhu (RCP, Den) */ 1988 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1989 1990 // NEG_RCP_LO = -RCP_LO 1991 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1992 RCP_LO); 1993 1994 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1995 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1996 NEG_RCP_LO, RCP_LO, 1997 ISD::SETEQ); 1998 // Calculate the rounding error from the URECIP instruction 1999 // E = mulhu(ABS_RCP_LO, RCP) 2000 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 2001 2002 // RCP_A_E = RCP + E 2003 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 2004 2005 // RCP_S_E = RCP - E 2006 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 2007 2008 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 2009 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 2010 RCP_A_E, RCP_S_E, 2011 ISD::SETEQ); 2012 // Quotient = mulhu(Tmp0, Num) 2013 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 2014 2015 // Num_S_Remainder = Quotient * Den 2016 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 2017 2018 // Remainder = Num - Num_S_Remainder 2019 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 2020 2021 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 2022 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 2023 DAG.getConstant(-1, DL, VT), 2024 DAG.getConstant(0, DL, VT), 2025 ISD::SETUGE); 2026 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 2027 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 2028 Num_S_Remainder, 2029 DAG.getConstant(-1, DL, VT), 2030 DAG.getConstant(0, DL, VT), 2031 ISD::SETUGE); 2032 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 2033 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 2034 Remainder_GE_Zero); 2035 2036 // Calculate Division result: 2037 2038 // Quotient_A_One = Quotient + 1 2039 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 2040 DAG.getConstant(1, DL, VT)); 2041 2042 // Quotient_S_One = Quotient - 1 2043 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 2044 DAG.getConstant(1, DL, VT)); 2045 2046 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 2047 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 2048 Quotient, Quotient_A_One, ISD::SETEQ); 2049 2050 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 2051 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 2052 Quotient_S_One, Div, ISD::SETEQ); 2053 2054 // Calculate Rem result: 2055 2056 // Remainder_S_Den = Remainder - Den 2057 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 2058 2059 // Remainder_A_Den = Remainder + Den 2060 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 2061 2062 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 2063 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 2064 Remainder, Remainder_S_Den, ISD::SETEQ); 2065 2066 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 2067 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 2068 Remainder_A_Den, Rem, ISD::SETEQ); 2069 SDValue Ops[2] = { 2070 Div, 2071 Rem 2072 }; 2073 return DAG.getMergeValues(Ops, DL); 2074 } 2075 2076 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2077 SelectionDAG &DAG) const { 2078 SDLoc DL(Op); 2079 EVT VT = Op.getValueType(); 2080 2081 SDValue LHS = Op.getOperand(0); 2082 SDValue RHS = Op.getOperand(1); 2083 2084 SDValue Zero = DAG.getConstant(0, DL, VT); 2085 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2086 2087 if (VT == MVT::i32) { 2088 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2089 return Res; 2090 } 2091 2092 if (VT == MVT::i64 && 2093 DAG.ComputeNumSignBits(LHS) > 32 && 2094 DAG.ComputeNumSignBits(RHS) > 32) { 2095 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2096 2097 //HiLo split 2098 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2099 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2100 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2101 LHS_Lo, RHS_Lo); 2102 SDValue Res[2] = { 2103 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2104 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2105 }; 2106 return DAG.getMergeValues(Res, DL); 2107 } 2108 2109 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2110 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2111 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2112 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2113 2114 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2115 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2116 2117 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2118 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2119 2120 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2121 SDValue Rem = Div.getValue(1); 2122 2123 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2124 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2125 2126 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2127 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2128 2129 SDValue Res[2] = { 2130 Div, 2131 Rem 2132 }; 2133 return DAG.getMergeValues(Res, DL); 2134 } 2135 2136 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2137 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2138 SDLoc SL(Op); 2139 EVT VT = Op.getValueType(); 2140 SDValue X = Op.getOperand(0); 2141 SDValue Y = Op.getOperand(1); 2142 2143 // TODO: Should this propagate fast-math-flags? 2144 2145 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2146 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2147 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2148 2149 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2150 } 2151 2152 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2153 SDLoc SL(Op); 2154 SDValue Src = Op.getOperand(0); 2155 2156 // result = trunc(src) 2157 // if (src > 0.0 && src != result) 2158 // result += 1.0 2159 2160 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2161 2162 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2163 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2164 2165 EVT SetCCVT = 2166 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2167 2168 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2169 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2170 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2171 2172 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2173 // TODO: Should this propagate fast-math-flags? 2174 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2175 } 2176 2177 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2178 SelectionDAG &DAG) { 2179 const unsigned FractBits = 52; 2180 const unsigned ExpBits = 11; 2181 2182 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2183 Hi, 2184 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2185 DAG.getConstant(ExpBits, SL, MVT::i32)); 2186 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2187 DAG.getConstant(1023, SL, MVT::i32)); 2188 2189 return Exp; 2190 } 2191 2192 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2193 SDLoc SL(Op); 2194 SDValue Src = Op.getOperand(0); 2195 2196 assert(Op.getValueType() == MVT::f64); 2197 2198 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2199 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2200 2201 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2202 2203 // Extract the upper half, since this is where we will find the sign and 2204 // exponent. 2205 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2206 2207 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2208 2209 const unsigned FractBits = 52; 2210 2211 // Extract the sign bit. 2212 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2213 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2214 2215 // Extend back to 64-bits. 2216 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2217 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2218 2219 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2220 const SDValue FractMask 2221 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2222 2223 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2224 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2225 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2226 2227 EVT SetCCVT = 2228 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2229 2230 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2231 2232 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2233 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2234 2235 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2236 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2237 2238 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2239 } 2240 2241 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2242 SDLoc SL(Op); 2243 SDValue Src = Op.getOperand(0); 2244 2245 assert(Op.getValueType() == MVT::f64); 2246 2247 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2248 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2249 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2250 2251 // TODO: Should this propagate fast-math-flags? 2252 2253 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2254 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2255 2256 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2257 2258 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2259 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2260 2261 EVT SetCCVT = 2262 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2263 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2264 2265 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2266 } 2267 2268 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2269 // FNEARBYINT and FRINT are the same, except in their handling of FP 2270 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2271 // rint, so just treat them as equivalent. 2272 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2273 } 2274 2275 // XXX - May require not supporting f32 denormals? 2276 2277 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2278 // compare and vselect end up producing worse code than scalarizing the whole 2279 // operation. 2280 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2281 SDLoc SL(Op); 2282 SDValue X = Op.getOperand(0); 2283 EVT VT = Op.getValueType(); 2284 2285 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2286 2287 // TODO: Should this propagate fast-math-flags? 2288 2289 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2290 2291 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2292 2293 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2294 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2295 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2296 2297 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2298 2299 EVT SetCCVT = 2300 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2301 2302 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2303 2304 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2305 2306 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2307 } 2308 2309 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2310 SDLoc SL(Op); 2311 SDValue Src = Op.getOperand(0); 2312 2313 // result = trunc(src); 2314 // if (src < 0.0 && src != result) 2315 // result += -1.0. 2316 2317 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2318 2319 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2320 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2321 2322 EVT SetCCVT = 2323 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2324 2325 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2326 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2327 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2328 2329 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2330 // TODO: Should this propagate fast-math-flags? 2331 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2332 } 2333 2334 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2335 double Log2BaseInverted) const { 2336 EVT VT = Op.getValueType(); 2337 2338 SDLoc SL(Op); 2339 SDValue Operand = Op.getOperand(0); 2340 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2341 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2342 2343 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2344 } 2345 2346 // exp2(M_LOG2E_F * f); 2347 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2348 EVT VT = Op.getValueType(); 2349 SDLoc SL(Op); 2350 SDValue Src = Op.getOperand(0); 2351 2352 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2353 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2354 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2355 } 2356 2357 static bool isCtlzOpc(unsigned Opc) { 2358 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2359 } 2360 2361 static bool isCttzOpc(unsigned Opc) { 2362 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2363 } 2364 2365 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2366 SDLoc SL(Op); 2367 SDValue Src = Op.getOperand(0); 2368 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2369 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2370 2371 unsigned ISDOpc, NewOpc; 2372 if (isCtlzOpc(Op.getOpcode())) { 2373 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2374 NewOpc = AMDGPUISD::FFBH_U32; 2375 } else if (isCttzOpc(Op.getOpcode())) { 2376 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2377 NewOpc = AMDGPUISD::FFBL_B32; 2378 } else 2379 llvm_unreachable("Unexpected OPCode!!!"); 2380 2381 2382 if (ZeroUndef && Src.getValueType() == MVT::i32) 2383 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2384 2385 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2386 2387 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2388 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2389 2390 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2391 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2392 2393 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2394 *DAG.getContext(), MVT::i32); 2395 2396 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2397 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2398 2399 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2400 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2401 2402 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2403 SDValue Add, NewOpr; 2404 if (isCtlzOpc(Op.getOpcode())) { 2405 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2406 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2407 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2408 } else { 2409 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2410 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2411 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2412 } 2413 2414 if (!ZeroUndef) { 2415 // Test if the full 64-bit input is zero. 2416 2417 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2418 // which we probably don't want. 2419 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2420 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2421 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2422 2423 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2424 // with the same cycles, otherwise it is slower. 2425 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2426 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2427 2428 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2429 2430 // The instruction returns -1 for 0 input, but the defined intrinsic 2431 // behavior is to return the number of bits. 2432 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2433 SrcIsZero, Bits32, NewOpr); 2434 } 2435 2436 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2437 } 2438 2439 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2440 bool Signed) const { 2441 // Unsigned 2442 // cul2f(ulong u) 2443 //{ 2444 // uint lz = clz(u); 2445 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2446 // u = (u << lz) & 0x7fffffffffffffffUL; 2447 // ulong t = u & 0xffffffffffUL; 2448 // uint v = (e << 23) | (uint)(u >> 40); 2449 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2450 // return as_float(v + r); 2451 //} 2452 // Signed 2453 // cl2f(long l) 2454 //{ 2455 // long s = l >> 63; 2456 // float r = cul2f((l + s) ^ s); 2457 // return s ? -r : r; 2458 //} 2459 2460 SDLoc SL(Op); 2461 SDValue Src = Op.getOperand(0); 2462 SDValue L = Src; 2463 2464 SDValue S; 2465 if (Signed) { 2466 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2467 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2468 2469 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2470 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2471 } 2472 2473 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2474 *DAG.getContext(), MVT::f32); 2475 2476 2477 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2478 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2479 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2480 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2481 2482 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2483 SDValue E = DAG.getSelect(SL, MVT::i32, 2484 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2485 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2486 ZeroI32); 2487 2488 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2489 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2490 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2491 2492 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2493 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2494 2495 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2496 U, DAG.getConstant(40, SL, MVT::i64)); 2497 2498 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2499 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2500 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2501 2502 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2503 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2504 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2505 2506 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2507 2508 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2509 2510 SDValue R = DAG.getSelect(SL, MVT::i32, 2511 RCmp, 2512 One, 2513 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2514 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2515 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2516 2517 if (!Signed) 2518 return R; 2519 2520 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2521 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2522 } 2523 2524 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2525 bool Signed) const { 2526 SDLoc SL(Op); 2527 SDValue Src = Op.getOperand(0); 2528 2529 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2530 2531 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2532 DAG.getConstant(0, SL, MVT::i32)); 2533 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2534 DAG.getConstant(1, SL, MVT::i32)); 2535 2536 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2537 SL, MVT::f64, Hi); 2538 2539 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2540 2541 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2542 DAG.getConstant(32, SL, MVT::i32)); 2543 // TODO: Should this propagate fast-math-flags? 2544 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2545 } 2546 2547 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2548 SelectionDAG &DAG) const { 2549 // TODO: Factor out code common with LowerSINT_TO_FP. 2550 EVT DestVT = Op.getValueType(); 2551 SDValue Src = Op.getOperand(0); 2552 EVT SrcVT = Src.getValueType(); 2553 2554 if (SrcVT == MVT::i16) { 2555 if (DestVT == MVT::f16) 2556 return Op; 2557 SDLoc DL(Op); 2558 2559 // Promote src to i32 2560 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2561 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2562 } 2563 2564 assert(SrcVT == MVT::i64 && "operation should be legal"); 2565 2566 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2567 SDLoc DL(Op); 2568 2569 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2570 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2571 SDValue FPRound = 2572 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2573 2574 return FPRound; 2575 } 2576 2577 if (DestVT == MVT::f32) 2578 return LowerINT_TO_FP32(Op, DAG, false); 2579 2580 assert(DestVT == MVT::f64); 2581 return LowerINT_TO_FP64(Op, DAG, false); 2582 } 2583 2584 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2585 SelectionDAG &DAG) const { 2586 EVT DestVT = Op.getValueType(); 2587 2588 SDValue Src = Op.getOperand(0); 2589 EVT SrcVT = Src.getValueType(); 2590 2591 if (SrcVT == MVT::i16) { 2592 if (DestVT == MVT::f16) 2593 return Op; 2594 2595 SDLoc DL(Op); 2596 // Promote src to i32 2597 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2598 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2599 } 2600 2601 assert(SrcVT == MVT::i64 && "operation should be legal"); 2602 2603 // TODO: Factor out code common with LowerUINT_TO_FP. 2604 2605 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2606 SDLoc DL(Op); 2607 SDValue Src = Op.getOperand(0); 2608 2609 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2610 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2611 SDValue FPRound = 2612 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2613 2614 return FPRound; 2615 } 2616 2617 if (DestVT == MVT::f32) 2618 return LowerINT_TO_FP32(Op, DAG, true); 2619 2620 assert(DestVT == MVT::f64); 2621 return LowerINT_TO_FP64(Op, DAG, true); 2622 } 2623 2624 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2625 bool Signed) const { 2626 SDLoc SL(Op); 2627 2628 SDValue Src = Op.getOperand(0); 2629 2630 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2631 2632 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2633 MVT::f64); 2634 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2635 MVT::f64); 2636 // TODO: Should this propagate fast-math-flags? 2637 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2638 2639 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2640 2641 2642 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2643 2644 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2645 MVT::i32, FloorMul); 2646 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2647 2648 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2649 2650 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2651 } 2652 2653 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2654 SDLoc DL(Op); 2655 SDValue N0 = Op.getOperand(0); 2656 2657 // Convert to target node to get known bits 2658 if (N0.getValueType() == MVT::f32) 2659 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2660 2661 if (getTargetMachine().Options.UnsafeFPMath) { 2662 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2663 return SDValue(); 2664 } 2665 2666 assert(N0.getSimpleValueType() == MVT::f64); 2667 2668 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2669 const unsigned ExpMask = 0x7ff; 2670 const unsigned ExpBiasf64 = 1023; 2671 const unsigned ExpBiasf16 = 15; 2672 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2673 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2674 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2675 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2676 DAG.getConstant(32, DL, MVT::i64)); 2677 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2678 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2679 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2680 DAG.getConstant(20, DL, MVT::i64)); 2681 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2682 DAG.getConstant(ExpMask, DL, MVT::i32)); 2683 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2684 // add the f16 bias (15) to get the biased exponent for the f16 format. 2685 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2686 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2687 2688 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2689 DAG.getConstant(8, DL, MVT::i32)); 2690 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2691 DAG.getConstant(0xffe, DL, MVT::i32)); 2692 2693 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2694 DAG.getConstant(0x1ff, DL, MVT::i32)); 2695 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2696 2697 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2698 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2699 2700 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2701 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2702 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2703 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2704 2705 // N = M | (E << 12); 2706 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2707 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2708 DAG.getConstant(12, DL, MVT::i32))); 2709 2710 // B = clamp(1-E, 0, 13); 2711 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2712 One, E); 2713 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2714 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2715 DAG.getConstant(13, DL, MVT::i32)); 2716 2717 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2718 DAG.getConstant(0x1000, DL, MVT::i32)); 2719 2720 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2721 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2722 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2723 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2724 2725 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2726 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2727 DAG.getConstant(0x7, DL, MVT::i32)); 2728 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2729 DAG.getConstant(2, DL, MVT::i32)); 2730 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2731 One, Zero, ISD::SETEQ); 2732 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2733 One, Zero, ISD::SETGT); 2734 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2735 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2736 2737 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2738 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2739 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2740 I, V, ISD::SETEQ); 2741 2742 // Extract the sign bit. 2743 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2744 DAG.getConstant(16, DL, MVT::i32)); 2745 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2746 DAG.getConstant(0x8000, DL, MVT::i32)); 2747 2748 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2749 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2750 } 2751 2752 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2753 SelectionDAG &DAG) const { 2754 SDValue Src = Op.getOperand(0); 2755 2756 // TODO: Factor out code common with LowerFP_TO_UINT. 2757 2758 EVT SrcVT = Src.getValueType(); 2759 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2760 SDLoc DL(Op); 2761 2762 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2763 SDValue FpToInt32 = 2764 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2765 2766 return FpToInt32; 2767 } 2768 2769 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2770 return LowerFP64_TO_INT(Op, DAG, true); 2771 2772 return SDValue(); 2773 } 2774 2775 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2776 SelectionDAG &DAG) const { 2777 SDValue Src = Op.getOperand(0); 2778 2779 // TODO: Factor out code common with LowerFP_TO_SINT. 2780 2781 EVT SrcVT = Src.getValueType(); 2782 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2783 SDLoc DL(Op); 2784 2785 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2786 SDValue FpToInt32 = 2787 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2788 2789 return FpToInt32; 2790 } 2791 2792 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2793 return LowerFP64_TO_INT(Op, DAG, false); 2794 2795 return SDValue(); 2796 } 2797 2798 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2799 SelectionDAG &DAG) const { 2800 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2801 MVT VT = Op.getSimpleValueType(); 2802 MVT ScalarVT = VT.getScalarType(); 2803 2804 assert(VT.isVector()); 2805 2806 SDValue Src = Op.getOperand(0); 2807 SDLoc DL(Op); 2808 2809 // TODO: Don't scalarize on Evergreen? 2810 unsigned NElts = VT.getVectorNumElements(); 2811 SmallVector<SDValue, 8> Args; 2812 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2813 2814 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2815 for (unsigned I = 0; I < NElts; ++I) 2816 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2817 2818 return DAG.getBuildVector(VT, DL, Args); 2819 } 2820 2821 //===----------------------------------------------------------------------===// 2822 // Custom DAG optimizations 2823 //===----------------------------------------------------------------------===// 2824 2825 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2826 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2827 } 2828 2829 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2830 EVT VT = Op.getValueType(); 2831 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2832 // as unsigned 24-bit values. 2833 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2834 } 2835 2836 static SDValue simplifyI24(SDNode *Node24, 2837 TargetLowering::DAGCombinerInfo &DCI) { 2838 SelectionDAG &DAG = DCI.DAG; 2839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2840 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2841 2842 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2843 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2844 unsigned NewOpcode = Node24->getOpcode(); 2845 if (IsIntrin) { 2846 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2847 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2848 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2849 } 2850 2851 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2852 2853 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2854 // the operands to have other uses, but will only perform simplifications that 2855 // involve bypassing some nodes for this user. 2856 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2857 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2858 if (DemandedLHS || DemandedRHS) 2859 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2860 DemandedLHS ? DemandedLHS : LHS, 2861 DemandedRHS ? DemandedRHS : RHS); 2862 2863 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2864 // operands if this node is the only user. 2865 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2866 return SDValue(Node24, 0); 2867 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2868 return SDValue(Node24, 0); 2869 2870 return SDValue(); 2871 } 2872 2873 template <typename IntTy> 2874 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2875 uint32_t Width, const SDLoc &DL) { 2876 if (Width + Offset < 32) { 2877 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2878 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2879 return DAG.getConstant(Result, DL, MVT::i32); 2880 } 2881 2882 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2883 } 2884 2885 static bool hasVolatileUser(SDNode *Val) { 2886 for (SDNode *U : Val->uses()) { 2887 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2888 if (M->isVolatile()) 2889 return true; 2890 } 2891 } 2892 2893 return false; 2894 } 2895 2896 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2897 // i32 vectors are the canonical memory type. 2898 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2899 return false; 2900 2901 if (!VT.isByteSized()) 2902 return false; 2903 2904 unsigned Size = VT.getStoreSize(); 2905 2906 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2907 return false; 2908 2909 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2910 return false; 2911 2912 return true; 2913 } 2914 2915 // Replace load of an illegal type with a store of a bitcast to a friendlier 2916 // type. 2917 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2918 DAGCombinerInfo &DCI) const { 2919 if (!DCI.isBeforeLegalize()) 2920 return SDValue(); 2921 2922 LoadSDNode *LN = cast<LoadSDNode>(N); 2923 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2924 return SDValue(); 2925 2926 SDLoc SL(N); 2927 SelectionDAG &DAG = DCI.DAG; 2928 EVT VT = LN->getMemoryVT(); 2929 2930 unsigned Size = VT.getStoreSize(); 2931 unsigned Align = LN->getAlignment(); 2932 if (Align < Size && isTypeLegal(VT)) { 2933 bool IsFast; 2934 unsigned AS = LN->getAddressSpace(); 2935 2936 // Expand unaligned loads earlier than legalization. Due to visitation order 2937 // problems during legalization, the emitted instructions to pack and unpack 2938 // the bytes again are not eliminated in the case of an unaligned copy. 2939 if (!allowsMisalignedMemoryAccesses( 2940 VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { 2941 SDValue Ops[2]; 2942 2943 if (VT.isVector()) 2944 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2945 else 2946 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2947 2948 return DAG.getMergeValues(Ops, SDLoc(N)); 2949 } 2950 2951 if (!IsFast) 2952 return SDValue(); 2953 } 2954 2955 if (!shouldCombineMemoryType(VT)) 2956 return SDValue(); 2957 2958 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2959 2960 SDValue NewLoad 2961 = DAG.getLoad(NewVT, SL, LN->getChain(), 2962 LN->getBasePtr(), LN->getMemOperand()); 2963 2964 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2965 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2966 return SDValue(N, 0); 2967 } 2968 2969 // Replace store of an illegal type with a store of a bitcast to a friendlier 2970 // type. 2971 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2972 DAGCombinerInfo &DCI) const { 2973 if (!DCI.isBeforeLegalize()) 2974 return SDValue(); 2975 2976 StoreSDNode *SN = cast<StoreSDNode>(N); 2977 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2978 return SDValue(); 2979 2980 EVT VT = SN->getMemoryVT(); 2981 unsigned Size = VT.getStoreSize(); 2982 2983 SDLoc SL(N); 2984 SelectionDAG &DAG = DCI.DAG; 2985 unsigned Align = SN->getAlignment(); 2986 if (Align < Size && isTypeLegal(VT)) { 2987 bool IsFast; 2988 unsigned AS = SN->getAddressSpace(); 2989 2990 // Expand unaligned stores earlier than legalization. Due to visitation 2991 // order problems during legalization, the emitted instructions to pack and 2992 // unpack the bytes again are not eliminated in the case of an unaligned 2993 // copy. 2994 if (!allowsMisalignedMemoryAccesses( 2995 VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { 2996 if (VT.isVector()) 2997 return scalarizeVectorStore(SN, DAG); 2998 2999 return expandUnalignedStore(SN, DAG); 3000 } 3001 3002 if (!IsFast) 3003 return SDValue(); 3004 } 3005 3006 if (!shouldCombineMemoryType(VT)) 3007 return SDValue(); 3008 3009 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3010 SDValue Val = SN->getValue(); 3011 3012 //DCI.AddToWorklist(Val.getNode()); 3013 3014 bool OtherUses = !Val.hasOneUse(); 3015 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 3016 if (OtherUses) { 3017 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3018 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3019 } 3020 3021 return DAG.getStore(SN->getChain(), SL, CastVal, 3022 SN->getBasePtr(), SN->getMemOperand()); 3023 } 3024 3025 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3026 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3027 // issues. 3028 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3029 DAGCombinerInfo &DCI) const { 3030 SelectionDAG &DAG = DCI.DAG; 3031 SDValue N0 = N->getOperand(0); 3032 3033 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3034 // (vt2 (truncate (assertzext vt0:x, vt1))) 3035 if (N0.getOpcode() == ISD::TRUNCATE) { 3036 SDValue N1 = N->getOperand(1); 3037 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3038 SDLoc SL(N); 3039 3040 SDValue Src = N0.getOperand(0); 3041 EVT SrcVT = Src.getValueType(); 3042 if (SrcVT.bitsGE(ExtVT)) { 3043 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3044 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3045 } 3046 } 3047 3048 return SDValue(); 3049 } 3050 3051 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3052 SDNode *N, DAGCombinerInfo &DCI) const { 3053 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3054 switch (IID) { 3055 case Intrinsic::amdgcn_mul_i24: 3056 case Intrinsic::amdgcn_mul_u24: 3057 return simplifyI24(N, DCI); 3058 case Intrinsic::amdgcn_fract: 3059 case Intrinsic::amdgcn_rsq: 3060 case Intrinsic::amdgcn_rcp_legacy: 3061 case Intrinsic::amdgcn_rsq_legacy: 3062 case Intrinsic::amdgcn_rsq_clamp: 3063 case Intrinsic::amdgcn_ldexp: { 3064 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3065 SDValue Src = N->getOperand(1); 3066 return Src.isUndef() ? Src : SDValue(); 3067 } 3068 default: 3069 return SDValue(); 3070 } 3071 } 3072 3073 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3074 /// binary operation \p Opc to it with the corresponding constant operands. 3075 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3076 DAGCombinerInfo &DCI, const SDLoc &SL, 3077 unsigned Opc, SDValue LHS, 3078 uint32_t ValLo, uint32_t ValHi) const { 3079 SelectionDAG &DAG = DCI.DAG; 3080 SDValue Lo, Hi; 3081 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3082 3083 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3084 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3085 3086 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3087 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3088 3089 // Re-visit the ands. It's possible we eliminated one of them and it could 3090 // simplify the vector. 3091 DCI.AddToWorklist(Lo.getNode()); 3092 DCI.AddToWorklist(Hi.getNode()); 3093 3094 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3095 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3096 } 3097 3098 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3099 DAGCombinerInfo &DCI) const { 3100 EVT VT = N->getValueType(0); 3101 3102 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3103 if (!RHS) 3104 return SDValue(); 3105 3106 SDValue LHS = N->getOperand(0); 3107 unsigned RHSVal = RHS->getZExtValue(); 3108 if (!RHSVal) 3109 return LHS; 3110 3111 SDLoc SL(N); 3112 SelectionDAG &DAG = DCI.DAG; 3113 3114 switch (LHS->getOpcode()) { 3115 default: 3116 break; 3117 case ISD::ZERO_EXTEND: 3118 case ISD::SIGN_EXTEND: 3119 case ISD::ANY_EXTEND: { 3120 SDValue X = LHS->getOperand(0); 3121 3122 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3123 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3124 // Prefer build_vector as the canonical form if packed types are legal. 3125 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3126 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3127 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3128 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3129 } 3130 3131 // shl (ext x) => zext (shl x), if shift does not overflow int 3132 if (VT != MVT::i64) 3133 break; 3134 KnownBits Known = DAG.computeKnownBits(X); 3135 unsigned LZ = Known.countMinLeadingZeros(); 3136 if (LZ < RHSVal) 3137 break; 3138 EVT XVT = X.getValueType(); 3139 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3140 return DAG.getZExtOrTrunc(Shl, SL, VT); 3141 } 3142 } 3143 3144 if (VT != MVT::i64) 3145 return SDValue(); 3146 3147 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3148 3149 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3150 // common case, splitting this into a move and a 32-bit shift is faster and 3151 // the same code size. 3152 if (RHSVal < 32) 3153 return SDValue(); 3154 3155 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3156 3157 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3158 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3159 3160 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3161 3162 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3163 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3164 } 3165 3166 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3167 DAGCombinerInfo &DCI) const { 3168 if (N->getValueType(0) != MVT::i64) 3169 return SDValue(); 3170 3171 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3172 if (!RHS) 3173 return SDValue(); 3174 3175 SelectionDAG &DAG = DCI.DAG; 3176 SDLoc SL(N); 3177 unsigned RHSVal = RHS->getZExtValue(); 3178 3179 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3180 if (RHSVal == 32) { 3181 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3182 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3183 DAG.getConstant(31, SL, MVT::i32)); 3184 3185 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3186 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3187 } 3188 3189 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3190 if (RHSVal == 63) { 3191 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3192 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3193 DAG.getConstant(31, SL, MVT::i32)); 3194 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3195 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3196 } 3197 3198 return SDValue(); 3199 } 3200 3201 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3202 DAGCombinerInfo &DCI) const { 3203 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3204 if (!RHS) 3205 return SDValue(); 3206 3207 EVT VT = N->getValueType(0); 3208 SDValue LHS = N->getOperand(0); 3209 unsigned ShiftAmt = RHS->getZExtValue(); 3210 SelectionDAG &DAG = DCI.DAG; 3211 SDLoc SL(N); 3212 3213 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3214 // this improves the ability to match BFE patterns in isel. 3215 if (LHS.getOpcode() == ISD::AND) { 3216 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3217 if (Mask->getAPIntValue().isShiftedMask() && 3218 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3219 return DAG.getNode( 3220 ISD::AND, SL, VT, 3221 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3222 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3223 } 3224 } 3225 } 3226 3227 if (VT != MVT::i64) 3228 return SDValue(); 3229 3230 if (ShiftAmt < 32) 3231 return SDValue(); 3232 3233 // srl i64:x, C for C >= 32 3234 // => 3235 // build_pair (srl hi_32(x), C - 32), 0 3236 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3237 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3238 3239 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3240 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3241 3242 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3243 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3244 3245 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3246 3247 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3248 } 3249 3250 SDValue AMDGPUTargetLowering::performTruncateCombine( 3251 SDNode *N, DAGCombinerInfo &DCI) const { 3252 SDLoc SL(N); 3253 SelectionDAG &DAG = DCI.DAG; 3254 EVT VT = N->getValueType(0); 3255 SDValue Src = N->getOperand(0); 3256 3257 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3258 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3259 SDValue Vec = Src.getOperand(0); 3260 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3261 SDValue Elt0 = Vec.getOperand(0); 3262 EVT EltVT = Elt0.getValueType(); 3263 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3264 if (EltVT.isFloatingPoint()) { 3265 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3266 EltVT.changeTypeToInteger(), Elt0); 3267 } 3268 3269 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3270 } 3271 } 3272 } 3273 3274 // Equivalent of above for accessing the high element of a vector as an 3275 // integer operation. 3276 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3277 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3278 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3279 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3280 SDValue BV = stripBitcast(Src.getOperand(0)); 3281 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3282 BV.getValueType().getVectorNumElements() == 2) { 3283 SDValue SrcElt = BV.getOperand(1); 3284 EVT SrcEltVT = SrcElt.getValueType(); 3285 if (SrcEltVT.isFloatingPoint()) { 3286 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3287 SrcEltVT.changeTypeToInteger(), SrcElt); 3288 } 3289 3290 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3291 } 3292 } 3293 } 3294 } 3295 3296 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3297 // 3298 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3299 // i16 (trunc (srl (i32 (trunc x), K))) 3300 if (VT.getScalarSizeInBits() < 32) { 3301 EVT SrcVT = Src.getValueType(); 3302 if (SrcVT.getScalarSizeInBits() > 32 && 3303 (Src.getOpcode() == ISD::SRL || 3304 Src.getOpcode() == ISD::SRA || 3305 Src.getOpcode() == ISD::SHL)) { 3306 SDValue Amt = Src.getOperand(1); 3307 KnownBits Known = DAG.computeKnownBits(Amt); 3308 unsigned Size = VT.getScalarSizeInBits(); 3309 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3310 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3311 EVT MidVT = VT.isVector() ? 3312 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3313 VT.getVectorNumElements()) : MVT::i32; 3314 3315 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3316 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3317 Src.getOperand(0)); 3318 DCI.AddToWorklist(Trunc.getNode()); 3319 3320 if (Amt.getValueType() != NewShiftVT) { 3321 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3322 DCI.AddToWorklist(Amt.getNode()); 3323 } 3324 3325 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3326 Trunc, Amt); 3327 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3328 } 3329 } 3330 } 3331 3332 return SDValue(); 3333 } 3334 3335 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3336 // instructions. If we only match on the legalized i64 mul expansion, 3337 // SimplifyDemandedBits will be unable to remove them because there will be 3338 // multiple uses due to the separate mul + mulh[su]. 3339 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3340 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3341 if (Size <= 32) { 3342 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3343 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3344 } 3345 3346 // Because we want to eliminate extension instructions before the 3347 // operation, we need to create a single user here (i.e. not the separate 3348 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3349 3350 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3351 3352 SDValue Mul = DAG.getNode(MulOpc, SL, 3353 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3354 3355 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3356 Mul.getValue(0), Mul.getValue(1)); 3357 } 3358 3359 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3360 DAGCombinerInfo &DCI) const { 3361 EVT VT = N->getValueType(0); 3362 3363 unsigned Size = VT.getSizeInBits(); 3364 if (VT.isVector() || Size > 64) 3365 return SDValue(); 3366 3367 // There are i16 integer mul/mad. 3368 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3369 return SDValue(); 3370 3371 SelectionDAG &DAG = DCI.DAG; 3372 SDLoc DL(N); 3373 3374 SDValue N0 = N->getOperand(0); 3375 SDValue N1 = N->getOperand(1); 3376 3377 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3378 // in the source into any_extends if the result of the mul is truncated. Since 3379 // we can assume the high bits are whatever we want, use the underlying value 3380 // to avoid the unknown high bits from interfering. 3381 if (N0.getOpcode() == ISD::ANY_EXTEND) 3382 N0 = N0.getOperand(0); 3383 3384 if (N1.getOpcode() == ISD::ANY_EXTEND) 3385 N1 = N1.getOperand(0); 3386 3387 SDValue Mul; 3388 3389 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3390 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3391 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3392 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3393 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3394 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3395 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3396 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3397 } else { 3398 return SDValue(); 3399 } 3400 3401 // We need to use sext even for MUL_U24, because MUL_U24 is used 3402 // for signed multiply of 8 and 16-bit types. 3403 return DAG.getSExtOrTrunc(Mul, DL, VT); 3404 } 3405 3406 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3407 DAGCombinerInfo &DCI) const { 3408 EVT VT = N->getValueType(0); 3409 3410 if (!Subtarget->hasMulI24() || VT.isVector()) 3411 return SDValue(); 3412 3413 SelectionDAG &DAG = DCI.DAG; 3414 SDLoc DL(N); 3415 3416 SDValue N0 = N->getOperand(0); 3417 SDValue N1 = N->getOperand(1); 3418 3419 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3420 return SDValue(); 3421 3422 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3423 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3424 3425 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3426 DCI.AddToWorklist(Mulhi.getNode()); 3427 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3428 } 3429 3430 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3431 DAGCombinerInfo &DCI) const { 3432 EVT VT = N->getValueType(0); 3433 3434 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3435 return SDValue(); 3436 3437 SelectionDAG &DAG = DCI.DAG; 3438 SDLoc DL(N); 3439 3440 SDValue N0 = N->getOperand(0); 3441 SDValue N1 = N->getOperand(1); 3442 3443 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3444 return SDValue(); 3445 3446 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3447 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3448 3449 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3450 DCI.AddToWorklist(Mulhi.getNode()); 3451 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3452 } 3453 3454 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3455 SDNode *N, DAGCombinerInfo &DCI) const { 3456 SelectionDAG &DAG = DCI.DAG; 3457 3458 // Simplify demanded bits before splitting into multiple users. 3459 if (SDValue V = simplifyI24(N, DCI)) 3460 return V; 3461 3462 SDValue N0 = N->getOperand(0); 3463 SDValue N1 = N->getOperand(1); 3464 3465 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3466 3467 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3468 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3469 3470 SDLoc SL(N); 3471 3472 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3473 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3474 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3475 } 3476 3477 static bool isNegativeOne(SDValue Val) { 3478 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3479 return C->isAllOnesValue(); 3480 return false; 3481 } 3482 3483 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3484 SDValue Op, 3485 const SDLoc &DL, 3486 unsigned Opc) const { 3487 EVT VT = Op.getValueType(); 3488 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3489 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3490 LegalVT != MVT::i16)) 3491 return SDValue(); 3492 3493 if (VT != MVT::i32) 3494 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3495 3496 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3497 if (VT != MVT::i32) 3498 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3499 3500 return FFBX; 3501 } 3502 3503 // The native instructions return -1 on 0 input. Optimize out a select that 3504 // produces -1 on 0. 3505 // 3506 // TODO: If zero is not undef, we could also do this if the output is compared 3507 // against the bitwidth. 3508 // 3509 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3510 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3511 SDValue LHS, SDValue RHS, 3512 DAGCombinerInfo &DCI) const { 3513 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3514 if (!CmpRhs || !CmpRhs->isNullValue()) 3515 return SDValue(); 3516 3517 SelectionDAG &DAG = DCI.DAG; 3518 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3519 SDValue CmpLHS = Cond.getOperand(0); 3520 3521 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3522 AMDGPUISD::FFBH_U32; 3523 3524 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3525 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3526 if (CCOpcode == ISD::SETEQ && 3527 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3528 RHS.getOperand(0) == CmpLHS && 3529 isNegativeOne(LHS)) { 3530 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3531 } 3532 3533 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3534 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3535 if (CCOpcode == ISD::SETNE && 3536 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3537 LHS.getOperand(0) == CmpLHS && 3538 isNegativeOne(RHS)) { 3539 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3540 } 3541 3542 return SDValue(); 3543 } 3544 3545 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3546 unsigned Op, 3547 const SDLoc &SL, 3548 SDValue Cond, 3549 SDValue N1, 3550 SDValue N2) { 3551 SelectionDAG &DAG = DCI.DAG; 3552 EVT VT = N1.getValueType(); 3553 3554 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3555 N1.getOperand(0), N2.getOperand(0)); 3556 DCI.AddToWorklist(NewSelect.getNode()); 3557 return DAG.getNode(Op, SL, VT, NewSelect); 3558 } 3559 3560 // Pull a free FP operation out of a select so it may fold into uses. 3561 // 3562 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3563 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3564 // 3565 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3566 // select c, (fabs x), +k -> fabs (select c, x, k) 3567 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3568 SDValue N) { 3569 SelectionDAG &DAG = DCI.DAG; 3570 SDValue Cond = N.getOperand(0); 3571 SDValue LHS = N.getOperand(1); 3572 SDValue RHS = N.getOperand(2); 3573 3574 EVT VT = N.getValueType(); 3575 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3576 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3577 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3578 SDLoc(N), Cond, LHS, RHS); 3579 } 3580 3581 bool Inv = false; 3582 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3583 std::swap(LHS, RHS); 3584 Inv = true; 3585 } 3586 3587 // TODO: Support vector constants. 3588 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3589 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3590 SDLoc SL(N); 3591 // If one side is an fneg/fabs and the other is a constant, we can push the 3592 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3593 SDValue NewLHS = LHS.getOperand(0); 3594 SDValue NewRHS = RHS; 3595 3596 // Careful: if the neg can be folded up, don't try to pull it back down. 3597 bool ShouldFoldNeg = true; 3598 3599 if (NewLHS.hasOneUse()) { 3600 unsigned Opc = NewLHS.getOpcode(); 3601 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3602 ShouldFoldNeg = false; 3603 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3604 ShouldFoldNeg = false; 3605 } 3606 3607 if (ShouldFoldNeg) { 3608 if (LHS.getOpcode() == ISD::FNEG) 3609 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3610 else if (CRHS->isNegative()) 3611 return SDValue(); 3612 3613 if (Inv) 3614 std::swap(NewLHS, NewRHS); 3615 3616 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3617 Cond, NewLHS, NewRHS); 3618 DCI.AddToWorklist(NewSelect.getNode()); 3619 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3620 } 3621 } 3622 3623 return SDValue(); 3624 } 3625 3626 3627 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3628 DAGCombinerInfo &DCI) const { 3629 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3630 return Folded; 3631 3632 SDValue Cond = N->getOperand(0); 3633 if (Cond.getOpcode() != ISD::SETCC) 3634 return SDValue(); 3635 3636 EVT VT = N->getValueType(0); 3637 SDValue LHS = Cond.getOperand(0); 3638 SDValue RHS = Cond.getOperand(1); 3639 SDValue CC = Cond.getOperand(2); 3640 3641 SDValue True = N->getOperand(1); 3642 SDValue False = N->getOperand(2); 3643 3644 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3645 SelectionDAG &DAG = DCI.DAG; 3646 if (DAG.isConstantValueOfAnyType(True) && 3647 !DAG.isConstantValueOfAnyType(False)) { 3648 // Swap cmp + select pair to move constant to false input. 3649 // This will allow using VOPC cndmasks more often. 3650 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3651 3652 SDLoc SL(N); 3653 ISD::CondCode NewCC = 3654 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3655 3656 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3657 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3658 } 3659 3660 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3661 SDValue MinMax 3662 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3663 // Revisit this node so we can catch min3/max3/med3 patterns. 3664 //DCI.AddToWorklist(MinMax.getNode()); 3665 return MinMax; 3666 } 3667 } 3668 3669 // There's no reason to not do this if the condition has other uses. 3670 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3671 } 3672 3673 static bool isInv2Pi(const APFloat &APF) { 3674 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3675 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3676 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3677 3678 return APF.bitwiseIsEqual(KF16) || 3679 APF.bitwiseIsEqual(KF32) || 3680 APF.bitwiseIsEqual(KF64); 3681 } 3682 3683 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3684 // additional cost to negate them. 3685 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3686 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3687 if (C->isZero() && !C->isNegative()) 3688 return true; 3689 3690 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3691 return true; 3692 } 3693 3694 return false; 3695 } 3696 3697 static unsigned inverseMinMax(unsigned Opc) { 3698 switch (Opc) { 3699 case ISD::FMAXNUM: 3700 return ISD::FMINNUM; 3701 case ISD::FMINNUM: 3702 return ISD::FMAXNUM; 3703 case ISD::FMAXNUM_IEEE: 3704 return ISD::FMINNUM_IEEE; 3705 case ISD::FMINNUM_IEEE: 3706 return ISD::FMAXNUM_IEEE; 3707 case AMDGPUISD::FMAX_LEGACY: 3708 return AMDGPUISD::FMIN_LEGACY; 3709 case AMDGPUISD::FMIN_LEGACY: 3710 return AMDGPUISD::FMAX_LEGACY; 3711 default: 3712 llvm_unreachable("invalid min/max opcode"); 3713 } 3714 } 3715 3716 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3717 DAGCombinerInfo &DCI) const { 3718 SelectionDAG &DAG = DCI.DAG; 3719 SDValue N0 = N->getOperand(0); 3720 EVT VT = N->getValueType(0); 3721 3722 unsigned Opc = N0.getOpcode(); 3723 3724 // If the input has multiple uses and we can either fold the negate down, or 3725 // the other uses cannot, give up. This both prevents unprofitable 3726 // transformations and infinite loops: we won't repeatedly try to fold around 3727 // a negate that has no 'good' form. 3728 if (N0.hasOneUse()) { 3729 // This may be able to fold into the source, but at a code size cost. Don't 3730 // fold if the fold into the user is free. 3731 if (allUsesHaveSourceMods(N, 0)) 3732 return SDValue(); 3733 } else { 3734 if (fnegFoldsIntoOp(Opc) && 3735 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3736 return SDValue(); 3737 } 3738 3739 SDLoc SL(N); 3740 switch (Opc) { 3741 case ISD::FADD: { 3742 if (!mayIgnoreSignedZero(N0)) 3743 return SDValue(); 3744 3745 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3746 SDValue LHS = N0.getOperand(0); 3747 SDValue RHS = N0.getOperand(1); 3748 3749 if (LHS.getOpcode() != ISD::FNEG) 3750 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3751 else 3752 LHS = LHS.getOperand(0); 3753 3754 if (RHS.getOpcode() != ISD::FNEG) 3755 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3756 else 3757 RHS = RHS.getOperand(0); 3758 3759 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3760 if (Res.getOpcode() != ISD::FADD) 3761 return SDValue(); // Op got folded away. 3762 if (!N0.hasOneUse()) 3763 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3764 return Res; 3765 } 3766 case ISD::FMUL: 3767 case AMDGPUISD::FMUL_LEGACY: { 3768 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3769 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3770 SDValue LHS = N0.getOperand(0); 3771 SDValue RHS = N0.getOperand(1); 3772 3773 if (LHS.getOpcode() == ISD::FNEG) 3774 LHS = LHS.getOperand(0); 3775 else if (RHS.getOpcode() == ISD::FNEG) 3776 RHS = RHS.getOperand(0); 3777 else 3778 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3779 3780 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3781 if (Res.getOpcode() != Opc) 3782 return SDValue(); // Op got folded away. 3783 if (!N0.hasOneUse()) 3784 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3785 return Res; 3786 } 3787 case ISD::FMA: 3788 case ISD::FMAD: { 3789 if (!mayIgnoreSignedZero(N0)) 3790 return SDValue(); 3791 3792 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3793 SDValue LHS = N0.getOperand(0); 3794 SDValue MHS = N0.getOperand(1); 3795 SDValue RHS = N0.getOperand(2); 3796 3797 if (LHS.getOpcode() == ISD::FNEG) 3798 LHS = LHS.getOperand(0); 3799 else if (MHS.getOpcode() == ISD::FNEG) 3800 MHS = MHS.getOperand(0); 3801 else 3802 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3803 3804 if (RHS.getOpcode() != ISD::FNEG) 3805 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3806 else 3807 RHS = RHS.getOperand(0); 3808 3809 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3810 if (Res.getOpcode() != Opc) 3811 return SDValue(); // Op got folded away. 3812 if (!N0.hasOneUse()) 3813 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3814 return Res; 3815 } 3816 case ISD::FMAXNUM: 3817 case ISD::FMINNUM: 3818 case ISD::FMAXNUM_IEEE: 3819 case ISD::FMINNUM_IEEE: 3820 case AMDGPUISD::FMAX_LEGACY: 3821 case AMDGPUISD::FMIN_LEGACY: { 3822 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3823 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3824 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3825 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3826 3827 SDValue LHS = N0.getOperand(0); 3828 SDValue RHS = N0.getOperand(1); 3829 3830 // 0 doesn't have a negated inline immediate. 3831 // TODO: This constant check should be generalized to other operations. 3832 if (isConstantCostlierToNegate(RHS)) 3833 return SDValue(); 3834 3835 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3836 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3837 unsigned Opposite = inverseMinMax(Opc); 3838 3839 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3840 if (Res.getOpcode() != Opposite) 3841 return SDValue(); // Op got folded away. 3842 if (!N0.hasOneUse()) 3843 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3844 return Res; 3845 } 3846 case AMDGPUISD::FMED3: { 3847 SDValue Ops[3]; 3848 for (unsigned I = 0; I < 3; ++I) 3849 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3850 3851 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3852 if (Res.getOpcode() != AMDGPUISD::FMED3) 3853 return SDValue(); // Op got folded away. 3854 if (!N0.hasOneUse()) 3855 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3856 return Res; 3857 } 3858 case ISD::FP_EXTEND: 3859 case ISD::FTRUNC: 3860 case ISD::FRINT: 3861 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3862 case ISD::FSIN: 3863 case ISD::FCANONICALIZE: 3864 case AMDGPUISD::RCP: 3865 case AMDGPUISD::RCP_LEGACY: 3866 case AMDGPUISD::RCP_IFLAG: 3867 case AMDGPUISD::SIN_HW: { 3868 SDValue CvtSrc = N0.getOperand(0); 3869 if (CvtSrc.getOpcode() == ISD::FNEG) { 3870 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3871 // (fneg (rcp (fneg x))) -> (rcp x) 3872 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3873 } 3874 3875 if (!N0.hasOneUse()) 3876 return SDValue(); 3877 3878 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3879 // (fneg (rcp x)) -> (rcp (fneg x)) 3880 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3881 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3882 } 3883 case ISD::FP_ROUND: { 3884 SDValue CvtSrc = N0.getOperand(0); 3885 3886 if (CvtSrc.getOpcode() == ISD::FNEG) { 3887 // (fneg (fp_round (fneg x))) -> (fp_round x) 3888 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3889 CvtSrc.getOperand(0), N0.getOperand(1)); 3890 } 3891 3892 if (!N0.hasOneUse()) 3893 return SDValue(); 3894 3895 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3896 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3897 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3898 } 3899 case ISD::FP16_TO_FP: { 3900 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3901 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3902 // Put the fneg back as a legal source operation that can be matched later. 3903 SDLoc SL(N); 3904 3905 SDValue Src = N0.getOperand(0); 3906 EVT SrcVT = Src.getValueType(); 3907 3908 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3909 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3910 DAG.getConstant(0x8000, SL, SrcVT)); 3911 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3912 } 3913 default: 3914 return SDValue(); 3915 } 3916 } 3917 3918 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3919 DAGCombinerInfo &DCI) const { 3920 SelectionDAG &DAG = DCI.DAG; 3921 SDValue N0 = N->getOperand(0); 3922 3923 if (!N0.hasOneUse()) 3924 return SDValue(); 3925 3926 switch (N0.getOpcode()) { 3927 case ISD::FP16_TO_FP: { 3928 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3929 SDLoc SL(N); 3930 SDValue Src = N0.getOperand(0); 3931 EVT SrcVT = Src.getValueType(); 3932 3933 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3934 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3935 DAG.getConstant(0x7fff, SL, SrcVT)); 3936 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3937 } 3938 default: 3939 return SDValue(); 3940 } 3941 } 3942 3943 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3944 DAGCombinerInfo &DCI) const { 3945 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3946 if (!CFP) 3947 return SDValue(); 3948 3949 // XXX - Should this flush denormals? 3950 const APFloat &Val = CFP->getValueAPF(); 3951 APFloat One(Val.getSemantics(), "1.0"); 3952 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3953 } 3954 3955 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3956 DAGCombinerInfo &DCI) const { 3957 SelectionDAG &DAG = DCI.DAG; 3958 SDLoc DL(N); 3959 3960 switch(N->getOpcode()) { 3961 default: 3962 break; 3963 case ISD::BITCAST: { 3964 EVT DestVT = N->getValueType(0); 3965 3966 // Push casts through vector builds. This helps avoid emitting a large 3967 // number of copies when materializing floating point vector constants. 3968 // 3969 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3970 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3971 if (DestVT.isVector()) { 3972 SDValue Src = N->getOperand(0); 3973 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3974 EVT SrcVT = Src.getValueType(); 3975 unsigned NElts = DestVT.getVectorNumElements(); 3976 3977 if (SrcVT.getVectorNumElements() == NElts) { 3978 EVT DestEltVT = DestVT.getVectorElementType(); 3979 3980 SmallVector<SDValue, 8> CastedElts; 3981 SDLoc SL(N); 3982 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3983 SDValue Elt = Src.getOperand(I); 3984 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3985 } 3986 3987 return DAG.getBuildVector(DestVT, SL, CastedElts); 3988 } 3989 } 3990 } 3991 3992 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3993 break; 3994 3995 // Fold bitcasts of constants. 3996 // 3997 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3998 // TODO: Generalize and move to DAGCombiner 3999 SDValue Src = N->getOperand(0); 4000 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 4001 if (Src.getValueType() == MVT::i64) { 4002 SDLoc SL(N); 4003 uint64_t CVal = C->getZExtValue(); 4004 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4005 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4006 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4007 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 4008 } 4009 } 4010 4011 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 4012 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 4013 SDLoc SL(N); 4014 uint64_t CVal = Val.getZExtValue(); 4015 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4016 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4017 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4018 4019 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 4020 } 4021 4022 break; 4023 } 4024 case ISD::SHL: { 4025 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4026 break; 4027 4028 return performShlCombine(N, DCI); 4029 } 4030 case ISD::SRL: { 4031 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4032 break; 4033 4034 return performSrlCombine(N, DCI); 4035 } 4036 case ISD::SRA: { 4037 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4038 break; 4039 4040 return performSraCombine(N, DCI); 4041 } 4042 case ISD::TRUNCATE: 4043 return performTruncateCombine(N, DCI); 4044 case ISD::MUL: 4045 return performMulCombine(N, DCI); 4046 case ISD::MULHS: 4047 return performMulhsCombine(N, DCI); 4048 case ISD::MULHU: 4049 return performMulhuCombine(N, DCI); 4050 case AMDGPUISD::MUL_I24: 4051 case AMDGPUISD::MUL_U24: 4052 case AMDGPUISD::MULHI_I24: 4053 case AMDGPUISD::MULHI_U24: { 4054 if (SDValue V = simplifyI24(N, DCI)) 4055 return V; 4056 return SDValue(); 4057 } 4058 case AMDGPUISD::MUL_LOHI_I24: 4059 case AMDGPUISD::MUL_LOHI_U24: 4060 return performMulLoHi24Combine(N, DCI); 4061 case ISD::SELECT: 4062 return performSelectCombine(N, DCI); 4063 case ISD::FNEG: 4064 return performFNegCombine(N, DCI); 4065 case ISD::FABS: 4066 return performFAbsCombine(N, DCI); 4067 case AMDGPUISD::BFE_I32: 4068 case AMDGPUISD::BFE_U32: { 4069 assert(!N->getValueType(0).isVector() && 4070 "Vector handling of BFE not implemented"); 4071 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4072 if (!Width) 4073 break; 4074 4075 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4076 if (WidthVal == 0) 4077 return DAG.getConstant(0, DL, MVT::i32); 4078 4079 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4080 if (!Offset) 4081 break; 4082 4083 SDValue BitsFrom = N->getOperand(0); 4084 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4085 4086 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4087 4088 if (OffsetVal == 0) { 4089 // This is already sign / zero extended, so try to fold away extra BFEs. 4090 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4091 4092 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4093 if (OpSignBits >= SignBits) 4094 return BitsFrom; 4095 4096 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4097 if (Signed) { 4098 // This is a sign_extend_inreg. Replace it to take advantage of existing 4099 // DAG Combines. If not eliminated, we will match back to BFE during 4100 // selection. 4101 4102 // TODO: The sext_inreg of extended types ends, although we can could 4103 // handle them in a single BFE. 4104 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4105 DAG.getValueType(SmallVT)); 4106 } 4107 4108 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4109 } 4110 4111 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4112 if (Signed) { 4113 return constantFoldBFE<int32_t>(DAG, 4114 CVal->getSExtValue(), 4115 OffsetVal, 4116 WidthVal, 4117 DL); 4118 } 4119 4120 return constantFoldBFE<uint32_t>(DAG, 4121 CVal->getZExtValue(), 4122 OffsetVal, 4123 WidthVal, 4124 DL); 4125 } 4126 4127 if ((OffsetVal + WidthVal) >= 32 && 4128 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4129 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4130 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4131 BitsFrom, ShiftVal); 4132 } 4133 4134 if (BitsFrom.hasOneUse()) { 4135 APInt Demanded = APInt::getBitsSet(32, 4136 OffsetVal, 4137 OffsetVal + WidthVal); 4138 4139 KnownBits Known; 4140 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4141 !DCI.isBeforeLegalizeOps()); 4142 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4143 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4144 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4145 DCI.CommitTargetLoweringOpt(TLO); 4146 } 4147 } 4148 4149 break; 4150 } 4151 case ISD::LOAD: 4152 return performLoadCombine(N, DCI); 4153 case ISD::STORE: 4154 return performStoreCombine(N, DCI); 4155 case AMDGPUISD::RCP: 4156 case AMDGPUISD::RCP_IFLAG: 4157 return performRcpCombine(N, DCI); 4158 case ISD::AssertZext: 4159 case ISD::AssertSext: 4160 return performAssertSZExtCombine(N, DCI); 4161 case ISD::INTRINSIC_WO_CHAIN: 4162 return performIntrinsicWOChainCombine(N, DCI); 4163 } 4164 return SDValue(); 4165 } 4166 4167 //===----------------------------------------------------------------------===// 4168 // Helper functions 4169 //===----------------------------------------------------------------------===// 4170 4171 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4172 const TargetRegisterClass *RC, 4173 Register Reg, EVT VT, 4174 const SDLoc &SL, 4175 bool RawReg) const { 4176 MachineFunction &MF = DAG.getMachineFunction(); 4177 MachineRegisterInfo &MRI = MF.getRegInfo(); 4178 Register VReg; 4179 4180 if (!MRI.isLiveIn(Reg)) { 4181 VReg = MRI.createVirtualRegister(RC); 4182 MRI.addLiveIn(Reg, VReg); 4183 } else { 4184 VReg = MRI.getLiveInVirtReg(Reg); 4185 } 4186 4187 if (RawReg) 4188 return DAG.getRegister(VReg, VT); 4189 4190 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4191 } 4192 4193 // This may be called multiple times, and nothing prevents creating multiple 4194 // objects at the same offset. See if we already defined this object. 4195 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4196 int64_t Offset) { 4197 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4198 if (MFI.getObjectOffset(I) == Offset) { 4199 assert(MFI.getObjectSize(I) == Size); 4200 return I; 4201 } 4202 } 4203 4204 return MFI.CreateFixedObject(Size, Offset, true); 4205 } 4206 4207 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4208 EVT VT, 4209 const SDLoc &SL, 4210 int64_t Offset) const { 4211 MachineFunction &MF = DAG.getMachineFunction(); 4212 MachineFrameInfo &MFI = MF.getFrameInfo(); 4213 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4214 4215 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4216 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4217 4218 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4219 MachineMemOperand::MODereferenceable | 4220 MachineMemOperand::MOInvariant); 4221 } 4222 4223 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4224 const SDLoc &SL, 4225 SDValue Chain, 4226 SDValue ArgVal, 4227 int64_t Offset) const { 4228 MachineFunction &MF = DAG.getMachineFunction(); 4229 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4230 4231 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4232 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4233 MachineMemOperand::MODereferenceable); 4234 return Store; 4235 } 4236 4237 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4238 const TargetRegisterClass *RC, 4239 EVT VT, const SDLoc &SL, 4240 const ArgDescriptor &Arg) const { 4241 assert(Arg && "Attempting to load missing argument"); 4242 4243 SDValue V = Arg.isRegister() ? 4244 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4245 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4246 4247 if (!Arg.isMasked()) 4248 return V; 4249 4250 unsigned Mask = Arg.getMask(); 4251 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4252 V = DAG.getNode(ISD::SRL, SL, VT, V, 4253 DAG.getShiftAmountConstant(Shift, VT, SL)); 4254 return DAG.getNode(ISD::AND, SL, VT, V, 4255 DAG.getConstant(Mask >> Shift, SL, VT)); 4256 } 4257 4258 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4259 const MachineFunction &MF, const ImplicitParameter Param) const { 4260 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4261 const AMDGPUSubtarget &ST = 4262 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4263 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4264 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4265 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4266 ExplicitArgOffset; 4267 switch (Param) { 4268 case GRID_DIM: 4269 return ArgOffset; 4270 case GRID_OFFSET: 4271 return ArgOffset + 4; 4272 } 4273 llvm_unreachable("unexpected implicit parameter type"); 4274 } 4275 4276 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4277 4278 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4279 switch ((AMDGPUISD::NodeType)Opcode) { 4280 case AMDGPUISD::FIRST_NUMBER: break; 4281 // AMDIL DAG nodes 4282 NODE_NAME_CASE(UMUL); 4283 NODE_NAME_CASE(BRANCH_COND); 4284 4285 // AMDGPU DAG nodes 4286 NODE_NAME_CASE(IF) 4287 NODE_NAME_CASE(ELSE) 4288 NODE_NAME_CASE(LOOP) 4289 NODE_NAME_CASE(CALL) 4290 NODE_NAME_CASE(TC_RETURN) 4291 NODE_NAME_CASE(TRAP) 4292 NODE_NAME_CASE(RET_FLAG) 4293 NODE_NAME_CASE(RETURN_TO_EPILOG) 4294 NODE_NAME_CASE(ENDPGM) 4295 NODE_NAME_CASE(DWORDADDR) 4296 NODE_NAME_CASE(FRACT) 4297 NODE_NAME_CASE(SETCC) 4298 NODE_NAME_CASE(SETREG) 4299 NODE_NAME_CASE(DENORM_MODE) 4300 NODE_NAME_CASE(FMA_W_CHAIN) 4301 NODE_NAME_CASE(FMUL_W_CHAIN) 4302 NODE_NAME_CASE(CLAMP) 4303 NODE_NAME_CASE(COS_HW) 4304 NODE_NAME_CASE(SIN_HW) 4305 NODE_NAME_CASE(FMAX_LEGACY) 4306 NODE_NAME_CASE(FMIN_LEGACY) 4307 NODE_NAME_CASE(FMAX3) 4308 NODE_NAME_CASE(SMAX3) 4309 NODE_NAME_CASE(UMAX3) 4310 NODE_NAME_CASE(FMIN3) 4311 NODE_NAME_CASE(SMIN3) 4312 NODE_NAME_CASE(UMIN3) 4313 NODE_NAME_CASE(FMED3) 4314 NODE_NAME_CASE(SMED3) 4315 NODE_NAME_CASE(UMED3) 4316 NODE_NAME_CASE(FDOT2) 4317 NODE_NAME_CASE(URECIP) 4318 NODE_NAME_CASE(DIV_SCALE) 4319 NODE_NAME_CASE(DIV_FMAS) 4320 NODE_NAME_CASE(DIV_FIXUP) 4321 NODE_NAME_CASE(FMAD_FTZ) 4322 NODE_NAME_CASE(TRIG_PREOP) 4323 NODE_NAME_CASE(RCP) 4324 NODE_NAME_CASE(RSQ) 4325 NODE_NAME_CASE(RCP_LEGACY) 4326 NODE_NAME_CASE(RCP_IFLAG) 4327 NODE_NAME_CASE(FMUL_LEGACY) 4328 NODE_NAME_CASE(RSQ_CLAMP) 4329 NODE_NAME_CASE(LDEXP) 4330 NODE_NAME_CASE(FP_CLASS) 4331 NODE_NAME_CASE(DOT4) 4332 NODE_NAME_CASE(CARRY) 4333 NODE_NAME_CASE(BORROW) 4334 NODE_NAME_CASE(BFE_U32) 4335 NODE_NAME_CASE(BFE_I32) 4336 NODE_NAME_CASE(BFI) 4337 NODE_NAME_CASE(BFM) 4338 NODE_NAME_CASE(FFBH_U32) 4339 NODE_NAME_CASE(FFBH_I32) 4340 NODE_NAME_CASE(FFBL_B32) 4341 NODE_NAME_CASE(MUL_U24) 4342 NODE_NAME_CASE(MUL_I24) 4343 NODE_NAME_CASE(MULHI_U24) 4344 NODE_NAME_CASE(MULHI_I24) 4345 NODE_NAME_CASE(MUL_LOHI_U24) 4346 NODE_NAME_CASE(MUL_LOHI_I24) 4347 NODE_NAME_CASE(MAD_U24) 4348 NODE_NAME_CASE(MAD_I24) 4349 NODE_NAME_CASE(MAD_I64_I32) 4350 NODE_NAME_CASE(MAD_U64_U32) 4351 NODE_NAME_CASE(PERM) 4352 NODE_NAME_CASE(TEXTURE_FETCH) 4353 NODE_NAME_CASE(R600_EXPORT) 4354 NODE_NAME_CASE(CONST_ADDRESS) 4355 NODE_NAME_CASE(REGISTER_LOAD) 4356 NODE_NAME_CASE(REGISTER_STORE) 4357 NODE_NAME_CASE(SAMPLE) 4358 NODE_NAME_CASE(SAMPLEB) 4359 NODE_NAME_CASE(SAMPLED) 4360 NODE_NAME_CASE(SAMPLEL) 4361 NODE_NAME_CASE(CVT_F32_UBYTE0) 4362 NODE_NAME_CASE(CVT_F32_UBYTE1) 4363 NODE_NAME_CASE(CVT_F32_UBYTE2) 4364 NODE_NAME_CASE(CVT_F32_UBYTE3) 4365 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4366 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4367 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4368 NODE_NAME_CASE(CVT_PK_I16_I32) 4369 NODE_NAME_CASE(CVT_PK_U16_U32) 4370 NODE_NAME_CASE(FP_TO_FP16) 4371 NODE_NAME_CASE(FP16_ZEXT) 4372 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4373 NODE_NAME_CASE(CONST_DATA_PTR) 4374 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4375 NODE_NAME_CASE(LDS) 4376 NODE_NAME_CASE(DUMMY_CHAIN) 4377 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4378 NODE_NAME_CASE(LOAD_D16_HI) 4379 NODE_NAME_CASE(LOAD_D16_LO) 4380 NODE_NAME_CASE(LOAD_D16_HI_I8) 4381 NODE_NAME_CASE(LOAD_D16_HI_U8) 4382 NODE_NAME_CASE(LOAD_D16_LO_I8) 4383 NODE_NAME_CASE(LOAD_D16_LO_U8) 4384 NODE_NAME_CASE(STORE_MSKOR) 4385 NODE_NAME_CASE(LOAD_CONSTANT) 4386 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4387 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4388 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4389 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4390 NODE_NAME_CASE(DS_ORDERED_COUNT) 4391 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4392 NODE_NAME_CASE(ATOMIC_INC) 4393 NODE_NAME_CASE(ATOMIC_DEC) 4394 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4395 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4396 NODE_NAME_CASE(BUFFER_LOAD) 4397 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4398 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4399 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4400 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4401 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4402 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4403 NODE_NAME_CASE(SBUFFER_LOAD) 4404 NODE_NAME_CASE(BUFFER_STORE) 4405 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4406 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4407 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4408 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4409 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4410 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4411 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4412 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4413 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4414 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4415 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4416 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4417 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4418 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4419 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4420 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4421 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4422 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4423 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) 4424 NODE_NAME_CASE(ATOMIC_PK_FADD) 4425 4426 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4427 } 4428 return nullptr; 4429 } 4430 4431 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4432 SelectionDAG &DAG, int Enabled, 4433 int &RefinementSteps, 4434 bool &UseOneConstNR, 4435 bool Reciprocal) const { 4436 EVT VT = Operand.getValueType(); 4437 4438 if (VT == MVT::f32) { 4439 RefinementSteps = 0; 4440 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4441 } 4442 4443 // TODO: There is also f64 rsq instruction, but the documentation is less 4444 // clear on its precision. 4445 4446 return SDValue(); 4447 } 4448 4449 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4450 SelectionDAG &DAG, int Enabled, 4451 int &RefinementSteps) const { 4452 EVT VT = Operand.getValueType(); 4453 4454 if (VT == MVT::f32) { 4455 // Reciprocal, < 1 ulp error. 4456 // 4457 // This reciprocal approximation converges to < 0.5 ulp error with one 4458 // newton rhapson performed with two fused multiple adds (FMAs). 4459 4460 RefinementSteps = 0; 4461 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4462 } 4463 4464 // TODO: There is also f64 rcp instruction, but the documentation is less 4465 // clear on its precision. 4466 4467 return SDValue(); 4468 } 4469 4470 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4471 const SDValue Op, KnownBits &Known, 4472 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4473 4474 Known.resetAll(); // Don't know anything. 4475 4476 unsigned Opc = Op.getOpcode(); 4477 4478 switch (Opc) { 4479 default: 4480 break; 4481 case AMDGPUISD::CARRY: 4482 case AMDGPUISD::BORROW: { 4483 Known.Zero = APInt::getHighBitsSet(32, 31); 4484 break; 4485 } 4486 4487 case AMDGPUISD::BFE_I32: 4488 case AMDGPUISD::BFE_U32: { 4489 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4490 if (!CWidth) 4491 return; 4492 4493 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4494 4495 if (Opc == AMDGPUISD::BFE_U32) 4496 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4497 4498 break; 4499 } 4500 case AMDGPUISD::FP_TO_FP16: 4501 case AMDGPUISD::FP16_ZEXT: { 4502 unsigned BitWidth = Known.getBitWidth(); 4503 4504 // High bits are zero. 4505 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4506 break; 4507 } 4508 case AMDGPUISD::MUL_U24: 4509 case AMDGPUISD::MUL_I24: { 4510 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4511 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4512 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4513 RHSKnown.countMinTrailingZeros(); 4514 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4515 // Skip extra check if all bits are known zeros. 4516 if (TrailZ >= 32) 4517 break; 4518 4519 // Truncate to 24 bits. 4520 LHSKnown = LHSKnown.trunc(24); 4521 RHSKnown = RHSKnown.trunc(24); 4522 4523 if (Opc == AMDGPUISD::MUL_I24) { 4524 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4525 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4526 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4527 if (MaxValBits >= 32) 4528 break; 4529 bool LHSNegative = LHSKnown.isNegative(); 4530 bool LHSNonNegative = LHSKnown.isNonNegative(); 4531 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4532 bool RHSNegative = RHSKnown.isNegative(); 4533 bool RHSNonNegative = RHSKnown.isNonNegative(); 4534 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4535 4536 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4537 Known.Zero.setHighBits(32 - MaxValBits); 4538 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4539 Known.One.setHighBits(32 - MaxValBits); 4540 } else { 4541 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4542 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4543 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4544 if (MaxValBits >= 32) 4545 break; 4546 Known.Zero.setHighBits(32 - MaxValBits); 4547 } 4548 break; 4549 } 4550 case AMDGPUISD::PERM: { 4551 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4552 if (!CMask) 4553 return; 4554 4555 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4556 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4557 unsigned Sel = CMask->getZExtValue(); 4558 4559 for (unsigned I = 0; I < 32; I += 8) { 4560 unsigned SelBits = Sel & 0xff; 4561 if (SelBits < 4) { 4562 SelBits *= 8; 4563 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4564 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4565 } else if (SelBits < 7) { 4566 SelBits = (SelBits & 3) * 8; 4567 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4568 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4569 } else if (SelBits == 0x0c) { 4570 Known.Zero |= 0xFFull << I; 4571 } else if (SelBits > 0x0c) { 4572 Known.One |= 0xFFull << I; 4573 } 4574 Sel >>= 8; 4575 } 4576 break; 4577 } 4578 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4579 Known.Zero.setHighBits(24); 4580 break; 4581 } 4582 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4583 Known.Zero.setHighBits(16); 4584 break; 4585 } 4586 case AMDGPUISD::LDS: { 4587 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4588 unsigned Align = GA->getGlobal()->getAlignment(); 4589 4590 Known.Zero.setHighBits(16); 4591 if (Align) 4592 Known.Zero.setLowBits(Log2_32(Align)); 4593 break; 4594 } 4595 case ISD::INTRINSIC_WO_CHAIN: { 4596 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4597 switch (IID) { 4598 case Intrinsic::amdgcn_mbcnt_lo: 4599 case Intrinsic::amdgcn_mbcnt_hi: { 4600 const GCNSubtarget &ST = 4601 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4602 // These return at most the wavefront size - 1. 4603 unsigned Size = Op.getValueType().getSizeInBits(); 4604 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4605 break; 4606 } 4607 default: 4608 break; 4609 } 4610 } 4611 } 4612 } 4613 4614 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4615 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4616 unsigned Depth) const { 4617 switch (Op.getOpcode()) { 4618 case AMDGPUISD::BFE_I32: { 4619 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4620 if (!Width) 4621 return 1; 4622 4623 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4624 if (!isNullConstant(Op.getOperand(1))) 4625 return SignBits; 4626 4627 // TODO: Could probably figure something out with non-0 offsets. 4628 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4629 return std::max(SignBits, Op0SignBits); 4630 } 4631 4632 case AMDGPUISD::BFE_U32: { 4633 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4634 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4635 } 4636 4637 case AMDGPUISD::CARRY: 4638 case AMDGPUISD::BORROW: 4639 return 31; 4640 case AMDGPUISD::BUFFER_LOAD_BYTE: 4641 return 25; 4642 case AMDGPUISD::BUFFER_LOAD_SHORT: 4643 return 17; 4644 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4645 return 24; 4646 case AMDGPUISD::BUFFER_LOAD_USHORT: 4647 return 16; 4648 case AMDGPUISD::FP_TO_FP16: 4649 case AMDGPUISD::FP16_ZEXT: 4650 return 16; 4651 default: 4652 return 1; 4653 } 4654 } 4655 4656 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4657 GISelKnownBits &Analysis, Register R, 4658 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4659 unsigned Depth) const { 4660 const MachineInstr *MI = MRI.getVRegDef(R); 4661 if (!MI) 4662 return 1; 4663 4664 // TODO: Check range metadata on MMO. 4665 switch (MI->getOpcode()) { 4666 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4667 return 25; 4668 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4669 return 17; 4670 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4671 return 24; 4672 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4673 return 16; 4674 default: 4675 return 1; 4676 } 4677 } 4678 4679 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4680 const SelectionDAG &DAG, 4681 bool SNaN, 4682 unsigned Depth) const { 4683 unsigned Opcode = Op.getOpcode(); 4684 switch (Opcode) { 4685 case AMDGPUISD::FMIN_LEGACY: 4686 case AMDGPUISD::FMAX_LEGACY: { 4687 if (SNaN) 4688 return true; 4689 4690 // TODO: Can check no nans on one of the operands for each one, but which 4691 // one? 4692 return false; 4693 } 4694 case AMDGPUISD::FMUL_LEGACY: 4695 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4696 if (SNaN) 4697 return true; 4698 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4699 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4700 } 4701 case AMDGPUISD::FMED3: 4702 case AMDGPUISD::FMIN3: 4703 case AMDGPUISD::FMAX3: 4704 case AMDGPUISD::FMAD_FTZ: { 4705 if (SNaN) 4706 return true; 4707 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4708 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4709 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4710 } 4711 case AMDGPUISD::CVT_F32_UBYTE0: 4712 case AMDGPUISD::CVT_F32_UBYTE1: 4713 case AMDGPUISD::CVT_F32_UBYTE2: 4714 case AMDGPUISD::CVT_F32_UBYTE3: 4715 return true; 4716 4717 case AMDGPUISD::RCP: 4718 case AMDGPUISD::RSQ: 4719 case AMDGPUISD::RCP_LEGACY: 4720 case AMDGPUISD::RSQ_CLAMP: { 4721 if (SNaN) 4722 return true; 4723 4724 // TODO: Need is known positive check. 4725 return false; 4726 } 4727 case AMDGPUISD::LDEXP: 4728 case AMDGPUISD::FRACT: { 4729 if (SNaN) 4730 return true; 4731 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4732 } 4733 case AMDGPUISD::DIV_SCALE: 4734 case AMDGPUISD::DIV_FMAS: 4735 case AMDGPUISD::DIV_FIXUP: 4736 case AMDGPUISD::TRIG_PREOP: 4737 // TODO: Refine on operands. 4738 return SNaN; 4739 case AMDGPUISD::SIN_HW: 4740 case AMDGPUISD::COS_HW: { 4741 // TODO: Need check for infinity 4742 return SNaN; 4743 } 4744 case ISD::INTRINSIC_WO_CHAIN: { 4745 unsigned IntrinsicID 4746 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4747 // TODO: Handle more intrinsics 4748 switch (IntrinsicID) { 4749 case Intrinsic::amdgcn_cubeid: 4750 return true; 4751 4752 case Intrinsic::amdgcn_frexp_mant: { 4753 if (SNaN) 4754 return true; 4755 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4756 } 4757 case Intrinsic::amdgcn_cvt_pkrtz: { 4758 if (SNaN) 4759 return true; 4760 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4761 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4762 } 4763 case Intrinsic::amdgcn_rcp: 4764 case Intrinsic::amdgcn_rsq: 4765 case Intrinsic::amdgcn_rcp_legacy: 4766 case Intrinsic::amdgcn_rsq_legacy: 4767 case Intrinsic::amdgcn_rsq_clamp: { 4768 if (SNaN) 4769 return true; 4770 4771 // TODO: Need is known positive check. 4772 return false; 4773 } 4774 case Intrinsic::amdgcn_fdot2: 4775 // TODO: Refine on operand 4776 return SNaN; 4777 default: 4778 return false; 4779 } 4780 } 4781 default: 4782 return false; 4783 } 4784 } 4785 4786 TargetLowering::AtomicExpansionKind 4787 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4788 switch (RMW->getOperation()) { 4789 case AtomicRMWInst::Nand: 4790 case AtomicRMWInst::FAdd: 4791 case AtomicRMWInst::FSub: 4792 return AtomicExpansionKind::CmpXChg; 4793 default: 4794 return AtomicExpansionKind::None; 4795 } 4796 } 4797