1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "SIInstrInfo.h" 32 using namespace llvm; 33 34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 MachineFunction &MF = State.getMachineFunction(); 38 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 39 40 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 41 ArgFlags.getOrigAlign()); 42 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 43 return true; 44 } 45 46 #include "AMDGPUGenCallingConv.inc" 47 48 // Find a larger type to do a load / store of a vector with. 49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 50 unsigned StoreSize = VT.getStoreSizeInBits(); 51 if (StoreSize <= 32) 52 return EVT::getIntegerVT(Ctx, StoreSize); 53 54 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 55 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 56 } 57 58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 59 const AMDGPUSubtarget &STI) 60 : TargetLowering(TM), Subtarget(&STI) { 61 // Lower floating point store/load to integer store/load to reduce the number 62 // of patterns in tablegen. 63 setOperationAction(ISD::LOAD, MVT::f32, Promote); 64 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 65 66 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 67 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 68 69 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 70 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 71 72 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 73 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 74 75 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 76 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 77 78 setOperationAction(ISD::LOAD, MVT::i64, Promote); 79 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 80 81 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 82 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 83 84 setOperationAction(ISD::LOAD, MVT::f64, Promote); 85 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 86 87 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 88 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 89 90 // There are no 64-bit extloads. These should be done as a 32-bit extload and 91 // an extension to 64-bit. 92 for (MVT VT : MVT::integer_valuetypes()) { 93 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 94 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 95 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 96 } 97 98 for (MVT VT : MVT::integer_valuetypes()) { 99 if (VT == MVT::i64) 100 continue; 101 102 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 103 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 104 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 105 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 106 107 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 108 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 109 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 110 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 111 112 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 113 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 114 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 115 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 116 } 117 118 for (MVT VT : MVT::integer_vector_valuetypes()) { 119 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 120 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 121 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 122 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 123 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 124 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 125 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 128 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 129 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 130 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 131 } 132 133 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 134 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 135 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 136 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 137 138 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 139 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 140 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 141 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 142 143 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 145 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 146 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 147 148 setOperationAction(ISD::STORE, MVT::f32, Promote); 149 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 150 151 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 152 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 153 154 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 155 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 156 157 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 158 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 159 160 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 161 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 162 163 setOperationAction(ISD::STORE, MVT::i64, Promote); 164 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 165 166 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 167 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 168 169 setOperationAction(ISD::STORE, MVT::f64, Promote); 170 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 171 172 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 173 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 174 175 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 176 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 177 178 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 179 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 180 181 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 182 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 183 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 184 185 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 186 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 187 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 188 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 189 190 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 191 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 192 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 193 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 194 195 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 196 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 197 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 198 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 199 200 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 201 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 202 203 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 204 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 205 206 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 207 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 208 209 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 210 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 211 212 213 setOperationAction(ISD::Constant, MVT::i32, Legal); 214 setOperationAction(ISD::Constant, MVT::i64, Legal); 215 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 216 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 217 218 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 219 setOperationAction(ISD::BRIND, MVT::Other, Expand); 220 221 // This is totally unsupported, just custom lower to produce an error. 222 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 223 224 // We need to custom lower some of the intrinsics 225 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 226 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 227 228 // Library functions. These default to Expand, but we have instructions 229 // for them. 230 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 231 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 232 setOperationAction(ISD::FPOW, MVT::f32, Legal); 233 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 234 setOperationAction(ISD::FABS, MVT::f32, Legal); 235 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 236 setOperationAction(ISD::FRINT, MVT::f32, Legal); 237 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 238 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 239 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 240 241 setOperationAction(ISD::FROUND, MVT::f32, Custom); 242 setOperationAction(ISD::FROUND, MVT::f64, Custom); 243 244 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 245 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 246 247 setOperationAction(ISD::FREM, MVT::f32, Custom); 248 setOperationAction(ISD::FREM, MVT::f64, Custom); 249 250 // v_mad_f32 does not support denormals according to some sources. 251 if (!Subtarget->hasFP32Denormals()) 252 setOperationAction(ISD::FMAD, MVT::f32, Legal); 253 254 // Expand to fneg + fadd. 255 setOperationAction(ISD::FSUB, MVT::f64, Expand); 256 257 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 258 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 259 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 260 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 261 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 262 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 263 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 264 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 265 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 266 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 267 268 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 269 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 270 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 271 setOperationAction(ISD::FRINT, MVT::f64, Custom); 272 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 273 } 274 275 if (!Subtarget->hasBFI()) { 276 // fcopysign can be done in a single instruction with BFI. 277 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 278 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 279 } 280 281 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 282 283 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 284 for (MVT VT : ScalarIntVTs) { 285 // These should use [SU]DIVREM, so set them to expand 286 setOperationAction(ISD::SDIV, VT, Expand); 287 setOperationAction(ISD::UDIV, VT, Expand); 288 setOperationAction(ISD::SREM, VT, Expand); 289 setOperationAction(ISD::UREM, VT, Expand); 290 291 // GPU does not have divrem function for signed or unsigned. 292 setOperationAction(ISD::SDIVREM, VT, Custom); 293 setOperationAction(ISD::UDIVREM, VT, Custom); 294 295 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 296 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 297 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 298 299 setOperationAction(ISD::BSWAP, VT, Expand); 300 setOperationAction(ISD::CTTZ, VT, Expand); 301 setOperationAction(ISD::CTLZ, VT, Expand); 302 } 303 304 if (!Subtarget->hasBCNT(32)) 305 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 306 307 if (!Subtarget->hasBCNT(64)) 308 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 309 310 // The hardware supports 32-bit ROTR, but not ROTL. 311 setOperationAction(ISD::ROTL, MVT::i32, Expand); 312 setOperationAction(ISD::ROTL, MVT::i64, Expand); 313 setOperationAction(ISD::ROTR, MVT::i64, Expand); 314 315 setOperationAction(ISD::MUL, MVT::i64, Expand); 316 setOperationAction(ISD::MULHU, MVT::i64, Expand); 317 setOperationAction(ISD::MULHS, MVT::i64, Expand); 318 setOperationAction(ISD::UDIV, MVT::i32, Expand); 319 setOperationAction(ISD::UREM, MVT::i32, Expand); 320 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 321 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 322 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 323 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 324 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 325 326 setOperationAction(ISD::SMIN, MVT::i32, Legal); 327 setOperationAction(ISD::UMIN, MVT::i32, Legal); 328 setOperationAction(ISD::SMAX, MVT::i32, Legal); 329 setOperationAction(ISD::UMAX, MVT::i32, Legal); 330 331 if (Subtarget->hasFFBH()) 332 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 333 334 if (Subtarget->hasFFBL()) 335 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 336 337 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 338 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 339 340 // We only really have 32-bit BFE instructions (and 16-bit on VI). 341 // 342 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 343 // effort to match them now. We want this to be false for i64 cases when the 344 // extraction isn't restricted to the upper or lower half. Ideally we would 345 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 346 // span the midpoint are probably relatively rare, so don't worry about them 347 // for now. 348 if (Subtarget->hasBFE()) 349 setHasExtractBitsInsn(true); 350 351 static const MVT::SimpleValueType VectorIntTypes[] = { 352 MVT::v2i32, MVT::v4i32 353 }; 354 355 for (MVT VT : VectorIntTypes) { 356 // Expand the following operations for the current type by default. 357 setOperationAction(ISD::ADD, VT, Expand); 358 setOperationAction(ISD::AND, VT, Expand); 359 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 360 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 361 setOperationAction(ISD::MUL, VT, Expand); 362 setOperationAction(ISD::OR, VT, Expand); 363 setOperationAction(ISD::SHL, VT, Expand); 364 setOperationAction(ISD::SRA, VT, Expand); 365 setOperationAction(ISD::SRL, VT, Expand); 366 setOperationAction(ISD::ROTL, VT, Expand); 367 setOperationAction(ISD::ROTR, VT, Expand); 368 setOperationAction(ISD::SUB, VT, Expand); 369 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 370 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 371 setOperationAction(ISD::SDIV, VT, Expand); 372 setOperationAction(ISD::UDIV, VT, Expand); 373 setOperationAction(ISD::SREM, VT, Expand); 374 setOperationAction(ISD::UREM, VT, Expand); 375 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 376 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 377 setOperationAction(ISD::SDIVREM, VT, Custom); 378 setOperationAction(ISD::UDIVREM, VT, Expand); 379 setOperationAction(ISD::ADDC, VT, Expand); 380 setOperationAction(ISD::SUBC, VT, Expand); 381 setOperationAction(ISD::ADDE, VT, Expand); 382 setOperationAction(ISD::SUBE, VT, Expand); 383 setOperationAction(ISD::SELECT, VT, Expand); 384 setOperationAction(ISD::VSELECT, VT, Expand); 385 setOperationAction(ISD::SELECT_CC, VT, Expand); 386 setOperationAction(ISD::XOR, VT, Expand); 387 setOperationAction(ISD::BSWAP, VT, Expand); 388 setOperationAction(ISD::CTPOP, VT, Expand); 389 setOperationAction(ISD::CTTZ, VT, Expand); 390 setOperationAction(ISD::CTLZ, VT, Expand); 391 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 392 } 393 394 static const MVT::SimpleValueType FloatVectorTypes[] = { 395 MVT::v2f32, MVT::v4f32 396 }; 397 398 for (MVT VT : FloatVectorTypes) { 399 setOperationAction(ISD::FABS, VT, Expand); 400 setOperationAction(ISD::FMINNUM, VT, Expand); 401 setOperationAction(ISD::FMAXNUM, VT, Expand); 402 setOperationAction(ISD::FADD, VT, Expand); 403 setOperationAction(ISD::FCEIL, VT, Expand); 404 setOperationAction(ISD::FCOS, VT, Expand); 405 setOperationAction(ISD::FDIV, VT, Expand); 406 setOperationAction(ISD::FEXP2, VT, Expand); 407 setOperationAction(ISD::FLOG2, VT, Expand); 408 setOperationAction(ISD::FREM, VT, Expand); 409 setOperationAction(ISD::FPOW, VT, Expand); 410 setOperationAction(ISD::FFLOOR, VT, Expand); 411 setOperationAction(ISD::FTRUNC, VT, Expand); 412 setOperationAction(ISD::FMUL, VT, Expand); 413 setOperationAction(ISD::FMA, VT, Expand); 414 setOperationAction(ISD::FRINT, VT, Expand); 415 setOperationAction(ISD::FNEARBYINT, VT, Expand); 416 setOperationAction(ISD::FSQRT, VT, Expand); 417 setOperationAction(ISD::FSIN, VT, Expand); 418 setOperationAction(ISD::FSUB, VT, Expand); 419 setOperationAction(ISD::FNEG, VT, Expand); 420 setOperationAction(ISD::VSELECT, VT, Expand); 421 setOperationAction(ISD::SELECT_CC, VT, Expand); 422 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 423 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 424 } 425 426 // This causes using an unrolled select operation rather than expansion with 427 // bit operations. This is in general better, but the alternative using BFI 428 // instructions may be better if the select sources are SGPRs. 429 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 430 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 431 432 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 433 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 434 435 setBooleanContents(ZeroOrNegativeOneBooleanContent); 436 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 437 438 setSchedulingPreference(Sched::RegPressure); 439 setJumpIsExpensive(true); 440 441 // SI at least has hardware support for floating point exceptions, but no way 442 // of using or handling them is implemented. They are also optional in OpenCL 443 // (Section 7.3) 444 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 445 446 PredictableSelectIsExpensive = false; 447 448 // We want to find all load dependencies for long chains of stores to enable 449 // merging into very wide vectors. The problem is with vectors with > 4 450 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 451 // vectors are a legal type, even though we have to split the loads 452 // usually. When we can more precisely specify load legality per address 453 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 454 // smarter so that they can figure out what to do in 2 iterations without all 455 // N > 4 stores on the same chain. 456 GatherAllAliasesMaxDepth = 16; 457 458 // FIXME: Need to really handle these. 459 MaxStoresPerMemcpy = 4096; 460 MaxStoresPerMemmove = 4096; 461 MaxStoresPerMemset = 4096; 462 463 setTargetDAGCombine(ISD::BITCAST); 464 setTargetDAGCombine(ISD::SHL); 465 setTargetDAGCombine(ISD::SRA); 466 setTargetDAGCombine(ISD::SRL); 467 setTargetDAGCombine(ISD::MUL); 468 setTargetDAGCombine(ISD::MULHU); 469 setTargetDAGCombine(ISD::MULHS); 470 setTargetDAGCombine(ISD::SELECT); 471 setTargetDAGCombine(ISD::SELECT_CC); 472 setTargetDAGCombine(ISD::STORE); 473 setTargetDAGCombine(ISD::FADD); 474 setTargetDAGCombine(ISD::FSUB); 475 } 476 477 //===----------------------------------------------------------------------===// 478 // Target Information 479 //===----------------------------------------------------------------------===// 480 481 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 482 return MVT::i32; 483 } 484 485 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 486 return true; 487 } 488 489 // The backend supports 32 and 64 bit floating point immediates. 490 // FIXME: Why are we reporting vectors of FP immediates as legal? 491 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 492 EVT ScalarVT = VT.getScalarType(); 493 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 494 } 495 496 // We don't want to shrink f64 / f32 constants. 497 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 498 EVT ScalarVT = VT.getScalarType(); 499 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 500 } 501 502 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 503 ISD::LoadExtType, 504 EVT NewVT) const { 505 506 unsigned NewSize = NewVT.getStoreSizeInBits(); 507 508 // If we are reducing to a 32-bit load, this is always better. 509 if (NewSize == 32) 510 return true; 511 512 EVT OldVT = N->getValueType(0); 513 unsigned OldSize = OldVT.getStoreSizeInBits(); 514 515 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 516 // extloads, so doing one requires using a buffer_load. In cases where we 517 // still couldn't use a scalar load, using the wider load shouldn't really 518 // hurt anything. 519 520 // If the old size already had to be an extload, there's no harm in continuing 521 // to reduce the width. 522 return (OldSize < 32); 523 } 524 525 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 526 EVT CastTy) const { 527 528 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 529 530 if (LoadTy.getScalarType() == MVT::i32) 531 return false; 532 533 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 534 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 535 536 return (LScalarSize < CastScalarSize) || 537 (CastScalarSize >= 32); 538 } 539 540 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 541 // profitable with the expansion for 64-bit since it's generally good to 542 // speculate things. 543 // FIXME: These should really have the size as a parameter. 544 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 545 return true; 546 } 547 548 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 549 return true; 550 } 551 552 //===---------------------------------------------------------------------===// 553 // Target Properties 554 //===---------------------------------------------------------------------===// 555 556 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 557 assert(VT.isFloatingPoint()); 558 return VT == MVT::f32 || VT == MVT::f64; 559 } 560 561 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 562 assert(VT.isFloatingPoint()); 563 return VT == MVT::f32 || VT == MVT::f64; 564 } 565 566 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 567 unsigned NumElem, 568 unsigned AS) const { 569 return true; 570 } 571 572 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 573 // There are few operations which truly have vector input operands. Any vector 574 // operation is going to involve operations on each component, and a 575 // build_vector will be a copy per element, so it always makes sense to use a 576 // build_vector input in place of the extracted element to avoid a copy into a 577 // super register. 578 // 579 // We should probably only do this if all users are extracts only, but this 580 // should be the common case. 581 return true; 582 } 583 584 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 585 // Truncate is just accessing a subregister. 586 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 587 } 588 589 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 590 // Truncate is just accessing a subregister. 591 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 592 (Dest->getPrimitiveSizeInBits() % 32 == 0); 593 } 594 595 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 596 unsigned SrcSize = Src->getScalarSizeInBits(); 597 unsigned DestSize = Dest->getScalarSizeInBits(); 598 599 return SrcSize == 32 && DestSize == 64; 600 } 601 602 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 603 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 604 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 605 // this will enable reducing 64-bit operations the 32-bit, which is always 606 // good. 607 return Src == MVT::i32 && Dest == MVT::i64; 608 } 609 610 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 611 return isZExtFree(Val.getValueType(), VT2); 612 } 613 614 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 615 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 616 // limited number of native 64-bit operations. Shrinking an operation to fit 617 // in a single 32-bit register should always be helpful. As currently used, 618 // this is much less general than the name suggests, and is only used in 619 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 620 // not profitable, and may actually be harmful. 621 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 622 } 623 624 //===---------------------------------------------------------------------===// 625 // TargetLowering Callbacks 626 //===---------------------------------------------------------------------===// 627 628 /// The SelectionDAGBuilder will automatically promote function arguments 629 /// with illegal types. However, this does not work for the AMDGPU targets 630 /// since the function arguments are stored in memory as these illegal types. 631 /// In order to handle this properly we need to get the original types sizes 632 /// from the LLVM IR Function and fixup the ISD:InputArg values before 633 /// passing them to AnalyzeFormalArguments() 634 635 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 636 /// input values across multiple registers. Each item in the Ins array 637 /// represents a single value that will be stored in regsters. Ins[x].VT is 638 /// the value type of the value that will be stored in the register, so 639 /// whatever SDNode we lower the argument to needs to be this type. 640 /// 641 /// In order to correctly lower the arguments we need to know the size of each 642 /// argument. Since Ins[x].VT gives us the size of the register that will 643 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 644 /// for the orignal function argument so that we can deduce the correct memory 645 /// type to use for Ins[x]. In most cases the correct memory type will be 646 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 647 /// we have a kernel argument of type v8i8, this argument will be split into 648 /// 8 parts and each part will be represented by its own item in the Ins array. 649 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 650 /// the argument before it was split. From this, we deduce that the memory type 651 /// for each individual part is i8. We pass the memory type as LocVT to the 652 /// calling convention analysis function and the register type (Ins[x].VT) as 653 /// the ValVT. 654 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 655 const SmallVectorImpl<ISD::InputArg> &Ins) const { 656 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 657 const ISD::InputArg &In = Ins[i]; 658 EVT MemVT; 659 660 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 661 662 if (!Subtarget->isAmdHsaOS() && 663 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 664 // The ABI says the caller will extend these values to 32-bits. 665 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 666 } else if (NumRegs == 1) { 667 // This argument is not split, so the IR type is the memory type. 668 assert(!In.Flags.isSplit()); 669 if (In.ArgVT.isExtended()) { 670 // We have an extended type, like i24, so we should just use the register type 671 MemVT = In.VT; 672 } else { 673 MemVT = In.ArgVT; 674 } 675 } else if (In.ArgVT.isVector() && In.VT.isVector() && 676 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 677 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 678 // We have a vector value which has been split into a vector with 679 // the same scalar type, but fewer elements. This should handle 680 // all the floating-point vector types. 681 MemVT = In.VT; 682 } else if (In.ArgVT.isVector() && 683 In.ArgVT.getVectorNumElements() == NumRegs) { 684 // This arg has been split so that each element is stored in a separate 685 // register. 686 MemVT = In.ArgVT.getScalarType(); 687 } else if (In.ArgVT.isExtended()) { 688 // We have an extended type, like i65. 689 MemVT = In.VT; 690 } else { 691 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 692 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 693 if (In.VT.isInteger()) { 694 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 695 } else if (In.VT.isVector()) { 696 assert(!In.VT.getScalarType().isFloatingPoint()); 697 unsigned NumElements = In.VT.getVectorNumElements(); 698 assert(MemoryBits % NumElements == 0); 699 // This vector type has been split into another vector type with 700 // a different elements size. 701 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 702 MemoryBits / NumElements); 703 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 704 } else { 705 llvm_unreachable("cannot deduce memory type."); 706 } 707 } 708 709 // Convert one element vectors to scalar. 710 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 711 MemVT = MemVT.getScalarType(); 712 713 if (MemVT.isExtended()) { 714 // This should really only happen if we have vec3 arguments 715 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 716 MemVT = MemVT.getPow2VectorType(State.getContext()); 717 } 718 719 assert(MemVT.isSimple()); 720 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 721 State); 722 } 723 } 724 725 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 726 const SmallVectorImpl<ISD::InputArg> &Ins) const { 727 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 728 } 729 730 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 731 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 732 733 State.AnalyzeReturn(Outs, RetCC_SI); 734 } 735 736 SDValue 737 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 738 bool isVarArg, 739 const SmallVectorImpl<ISD::OutputArg> &Outs, 740 const SmallVectorImpl<SDValue> &OutVals, 741 const SDLoc &DL, SelectionDAG &DAG) const { 742 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 743 } 744 745 //===---------------------------------------------------------------------===// 746 // Target specific lowering 747 //===---------------------------------------------------------------------===// 748 749 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 750 SmallVectorImpl<SDValue> &InVals) const { 751 SDValue Callee = CLI.Callee; 752 SelectionDAG &DAG = CLI.DAG; 753 754 const Function &Fn = *DAG.getMachineFunction().getFunction(); 755 756 StringRef FuncName("<unknown>"); 757 758 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 759 FuncName = G->getSymbol(); 760 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 761 FuncName = G->getGlobal()->getName(); 762 763 DiagnosticInfoUnsupported NoCalls( 764 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 765 DAG.getContext()->diagnose(NoCalls); 766 767 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 768 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 769 770 return DAG.getEntryNode(); 771 } 772 773 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 774 SelectionDAG &DAG) const { 775 const Function &Fn = *DAG.getMachineFunction().getFunction(); 776 777 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 778 SDLoc(Op).getDebugLoc()); 779 DAG.getContext()->diagnose(NoDynamicAlloca); 780 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 781 return DAG.getMergeValues(Ops, SDLoc()); 782 } 783 784 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 785 SelectionDAG &DAG) const { 786 switch (Op.getOpcode()) { 787 default: 788 Op->dump(&DAG); 789 llvm_unreachable("Custom lowering code for this" 790 "instruction is not implemented yet!"); 791 break; 792 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 793 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 794 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 795 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 796 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 797 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 798 case ISD::FREM: return LowerFREM(Op, DAG); 799 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 800 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 801 case ISD::FRINT: return LowerFRINT(Op, DAG); 802 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 803 case ISD::FROUND: return LowerFROUND(Op, DAG); 804 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 805 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 806 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 807 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 808 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 809 case ISD::CTLZ: 810 case ISD::CTLZ_ZERO_UNDEF: 811 return LowerCTLZ(Op, DAG); 812 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 813 } 814 return Op; 815 } 816 817 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 818 SmallVectorImpl<SDValue> &Results, 819 SelectionDAG &DAG) const { 820 switch (N->getOpcode()) { 821 case ISD::SIGN_EXTEND_INREG: 822 // Different parts of legalization seem to interpret which type of 823 // sign_extend_inreg is the one to check for custom lowering. The extended 824 // from type is what really matters, but some places check for custom 825 // lowering of the result type. This results in trying to use 826 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 827 // nothing here and let the illegal result integer be handled normally. 828 return; 829 default: 830 return; 831 } 832 } 833 834 static bool hasDefinedInitializer(const GlobalValue *GV) { 835 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 836 if (!GVar || !GVar->hasInitializer()) 837 return false; 838 839 return !isa<UndefValue>(GVar->getInitializer()); 840 } 841 842 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 843 SDValue Op, 844 SelectionDAG &DAG) const { 845 846 const DataLayout &DL = DAG.getDataLayout(); 847 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 848 const GlobalValue *GV = G->getGlobal(); 849 850 switch (G->getAddressSpace()) { 851 case AMDGPUAS::LOCAL_ADDRESS: { 852 // XXX: What does the value of G->getOffset() mean? 853 assert(G->getOffset() == 0 && 854 "Do not know what to do with an non-zero offset"); 855 856 // TODO: We could emit code to handle the initialization somewhere. 857 if (hasDefinedInitializer(GV)) 858 break; 859 860 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 861 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 862 } 863 } 864 865 const Function &Fn = *DAG.getMachineFunction().getFunction(); 866 DiagnosticInfoUnsupported BadInit( 867 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 868 DAG.getContext()->diagnose(BadInit); 869 return SDValue(); 870 } 871 872 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 873 SelectionDAG &DAG) const { 874 SmallVector<SDValue, 8> Args; 875 876 for (const SDUse &U : Op->ops()) 877 DAG.ExtractVectorElements(U.get(), Args); 878 879 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 880 } 881 882 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 883 SelectionDAG &DAG) const { 884 885 SmallVector<SDValue, 8> Args; 886 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 887 EVT VT = Op.getValueType(); 888 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 889 VT.getVectorNumElements()); 890 891 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 892 } 893 894 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 895 SelectionDAG &DAG) const { 896 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 897 SDLoc DL(Op); 898 EVT VT = Op.getValueType(); 899 900 switch (IntrinsicID) { 901 default: return Op; 902 case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name. 903 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 904 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 905 906 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 907 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 908 Op.getOperand(1), 909 Op.getOperand(2), 910 Op.getOperand(3)); 911 912 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 913 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 914 Op.getOperand(1), 915 Op.getOperand(2), 916 Op.getOperand(3)); 917 } 918 } 919 920 /// \brief Generate Min/Max node 921 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT, 922 SDValue LHS, SDValue RHS, 923 SDValue True, SDValue False, 924 SDValue CC, 925 DAGCombinerInfo &DCI) const { 926 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 927 return SDValue(); 928 929 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 930 return SDValue(); 931 932 SelectionDAG &DAG = DCI.DAG; 933 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 934 switch (CCOpcode) { 935 case ISD::SETOEQ: 936 case ISD::SETONE: 937 case ISD::SETUNE: 938 case ISD::SETNE: 939 case ISD::SETUEQ: 940 case ISD::SETEQ: 941 case ISD::SETFALSE: 942 case ISD::SETFALSE2: 943 case ISD::SETTRUE: 944 case ISD::SETTRUE2: 945 case ISD::SETUO: 946 case ISD::SETO: 947 break; 948 case ISD::SETULE: 949 case ISD::SETULT: { 950 if (LHS == True) 951 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 952 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 953 } 954 case ISD::SETOLE: 955 case ISD::SETOLT: 956 case ISD::SETLE: 957 case ISD::SETLT: { 958 // Ordered. Assume ordered for undefined. 959 960 // Only do this after legalization to avoid interfering with other combines 961 // which might occur. 962 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 963 !DCI.isCalledByLegalizer()) 964 return SDValue(); 965 966 // We need to permute the operands to get the correct NaN behavior. The 967 // selected operand is the second one based on the failing compare with NaN, 968 // so permute it based on the compare type the hardware uses. 969 if (LHS == True) 970 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 971 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 972 } 973 case ISD::SETUGE: 974 case ISD::SETUGT: { 975 if (LHS == True) 976 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 977 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 978 } 979 case ISD::SETGT: 980 case ISD::SETGE: 981 case ISD::SETOGE: 982 case ISD::SETOGT: { 983 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 984 !DCI.isCalledByLegalizer()) 985 return SDValue(); 986 987 if (LHS == True) 988 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 989 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 990 } 991 case ISD::SETCC_INVALID: 992 llvm_unreachable("Invalid setcc condcode!"); 993 } 994 return SDValue(); 995 } 996 997 std::pair<SDValue, SDValue> 998 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 999 SDLoc SL(Op); 1000 1001 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1002 1003 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1004 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1005 1006 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1007 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1008 1009 return std::make_pair(Lo, Hi); 1010 } 1011 1012 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1013 SDLoc SL(Op); 1014 1015 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1016 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1017 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1018 } 1019 1020 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1021 SDLoc SL(Op); 1022 1023 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1024 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1025 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1026 } 1027 1028 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1029 SelectionDAG &DAG) const { 1030 LoadSDNode *Load = cast<LoadSDNode>(Op); 1031 EVT VT = Op.getValueType(); 1032 1033 1034 // If this is a 2 element vector, we really want to scalarize and not create 1035 // weird 1 element vectors. 1036 if (VT.getVectorNumElements() == 2) 1037 return scalarizeVectorLoad(Load, DAG); 1038 1039 SDValue BasePtr = Load->getBasePtr(); 1040 EVT PtrVT = BasePtr.getValueType(); 1041 EVT MemVT = Load->getMemoryVT(); 1042 SDLoc SL(Op); 1043 1044 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1045 1046 EVT LoVT, HiVT; 1047 EVT LoMemVT, HiMemVT; 1048 SDValue Lo, Hi; 1049 1050 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1051 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1052 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1053 1054 unsigned Size = LoMemVT.getStoreSize(); 1055 unsigned BaseAlign = Load->getAlignment(); 1056 unsigned HiAlign = MinAlign(BaseAlign, Size); 1057 1058 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1059 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1060 BaseAlign, Load->getMemOperand()->getFlags()); 1061 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1062 DAG.getConstant(Size, SL, PtrVT)); 1063 SDValue HiLoad = 1064 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1065 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1066 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1067 1068 SDValue Ops[] = { 1069 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1070 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1071 LoLoad.getValue(1), HiLoad.getValue(1)) 1072 }; 1073 1074 return DAG.getMergeValues(Ops, SL); 1075 } 1076 1077 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1078 SelectionDAG &DAG) const { 1079 StoreSDNode *Store = cast<StoreSDNode>(Op); 1080 SDValue Val = Store->getValue(); 1081 EVT VT = Val.getValueType(); 1082 1083 // If this is a 2 element vector, we really want to scalarize and not create 1084 // weird 1 element vectors. 1085 if (VT.getVectorNumElements() == 2) 1086 return scalarizeVectorStore(Store, DAG); 1087 1088 EVT MemVT = Store->getMemoryVT(); 1089 SDValue Chain = Store->getChain(); 1090 SDValue BasePtr = Store->getBasePtr(); 1091 SDLoc SL(Op); 1092 1093 EVT LoVT, HiVT; 1094 EVT LoMemVT, HiMemVT; 1095 SDValue Lo, Hi; 1096 1097 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1098 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1099 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1100 1101 EVT PtrVT = BasePtr.getValueType(); 1102 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1103 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1104 PtrVT)); 1105 1106 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1107 unsigned BaseAlign = Store->getAlignment(); 1108 unsigned Size = LoMemVT.getStoreSize(); 1109 unsigned HiAlign = MinAlign(BaseAlign, Size); 1110 1111 SDValue LoStore = 1112 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1113 Store->getMemOperand()->getFlags()); 1114 SDValue HiStore = 1115 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1116 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1117 1118 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1119 } 1120 1121 // This is a shortcut for integer division because we have fast i32<->f32 1122 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1123 // float is enough to accurately represent up to a 24-bit signed integer. 1124 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1125 bool Sign) const { 1126 SDLoc DL(Op); 1127 EVT VT = Op.getValueType(); 1128 SDValue LHS = Op.getOperand(0); 1129 SDValue RHS = Op.getOperand(1); 1130 MVT IntVT = MVT::i32; 1131 MVT FltVT = MVT::f32; 1132 1133 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1134 if (LHSSignBits < 9) 1135 return SDValue(); 1136 1137 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1138 if (RHSSignBits < 9) 1139 return SDValue(); 1140 1141 unsigned BitSize = VT.getSizeInBits(); 1142 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1143 unsigned DivBits = BitSize - SignBits; 1144 if (Sign) 1145 ++DivBits; 1146 1147 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1148 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1149 1150 SDValue jq = DAG.getConstant(1, DL, IntVT); 1151 1152 if (Sign) { 1153 // char|short jq = ia ^ ib; 1154 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1155 1156 // jq = jq >> (bitsize - 2) 1157 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1158 DAG.getConstant(BitSize - 2, DL, VT)); 1159 1160 // jq = jq | 0x1 1161 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1162 } 1163 1164 // int ia = (int)LHS; 1165 SDValue ia = LHS; 1166 1167 // int ib, (int)RHS; 1168 SDValue ib = RHS; 1169 1170 // float fa = (float)ia; 1171 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1172 1173 // float fb = (float)ib; 1174 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1175 1176 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1177 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1178 1179 // fq = trunc(fq); 1180 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1181 1182 // float fqneg = -fq; 1183 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1184 1185 // float fr = mad(fqneg, fb, fa); 1186 SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa); 1187 1188 // int iq = (int)fq; 1189 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1190 1191 // fr = fabs(fr); 1192 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1193 1194 // fb = fabs(fb); 1195 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1196 1197 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1198 1199 // int cv = fr >= fb; 1200 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1201 1202 // jq = (cv ? jq : 0); 1203 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1204 1205 // dst = iq + jq; 1206 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1207 1208 // Rem needs compensation, it's easier to recompute it 1209 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1210 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1211 1212 // Truncate to number of bits this divide really is. 1213 if (Sign) { 1214 SDValue InRegSize 1215 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1216 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1217 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1218 } else { 1219 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1220 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1221 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1222 } 1223 1224 return DAG.getMergeValues({ Div, Rem }, DL); 1225 } 1226 1227 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1228 SelectionDAG &DAG, 1229 SmallVectorImpl<SDValue> &Results) const { 1230 assert(Op.getValueType() == MVT::i64); 1231 1232 SDLoc DL(Op); 1233 EVT VT = Op.getValueType(); 1234 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1235 1236 SDValue one = DAG.getConstant(1, DL, HalfVT); 1237 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1238 1239 //HiLo split 1240 SDValue LHS = Op.getOperand(0); 1241 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1242 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1243 1244 SDValue RHS = Op.getOperand(1); 1245 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1246 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1247 1248 if (VT == MVT::i64 && 1249 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1250 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1251 1252 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1253 LHS_Lo, RHS_Lo); 1254 1255 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1256 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1257 1258 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1259 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1260 return; 1261 } 1262 1263 // Get Speculative values 1264 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1265 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1266 1267 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1268 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1269 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1270 1271 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1272 SDValue DIV_Lo = zero; 1273 1274 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1275 1276 for (unsigned i = 0; i < halfBitWidth; ++i) { 1277 const unsigned bitPos = halfBitWidth - i - 1; 1278 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1279 // Get value of high bit 1280 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1281 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1282 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1283 1284 // Shift 1285 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1286 // Add LHS high bit 1287 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1288 1289 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1290 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1291 1292 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1293 1294 // Update REM 1295 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1296 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1297 } 1298 1299 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1300 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1301 Results.push_back(DIV); 1302 Results.push_back(REM); 1303 } 1304 1305 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1306 SelectionDAG &DAG) const { 1307 SDLoc DL(Op); 1308 EVT VT = Op.getValueType(); 1309 1310 if (VT == MVT::i64) { 1311 SmallVector<SDValue, 2> Results; 1312 LowerUDIVREM64(Op, DAG, Results); 1313 return DAG.getMergeValues(Results, DL); 1314 } 1315 1316 if (VT == MVT::i32) { 1317 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1318 return Res; 1319 } 1320 1321 SDValue Num = Op.getOperand(0); 1322 SDValue Den = Op.getOperand(1); 1323 1324 // RCP = URECIP(Den) = 2^32 / Den + e 1325 // e is rounding error. 1326 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1327 1328 // RCP_LO = mul(RCP, Den) */ 1329 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1330 1331 // RCP_HI = mulhu (RCP, Den) */ 1332 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1333 1334 // NEG_RCP_LO = -RCP_LO 1335 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1336 RCP_LO); 1337 1338 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1339 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1340 NEG_RCP_LO, RCP_LO, 1341 ISD::SETEQ); 1342 // Calculate the rounding error from the URECIP instruction 1343 // E = mulhu(ABS_RCP_LO, RCP) 1344 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1345 1346 // RCP_A_E = RCP + E 1347 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1348 1349 // RCP_S_E = RCP - E 1350 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1351 1352 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1353 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1354 RCP_A_E, RCP_S_E, 1355 ISD::SETEQ); 1356 // Quotient = mulhu(Tmp0, Num) 1357 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1358 1359 // Num_S_Remainder = Quotient * Den 1360 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1361 1362 // Remainder = Num - Num_S_Remainder 1363 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1364 1365 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1366 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1367 DAG.getConstant(-1, DL, VT), 1368 DAG.getConstant(0, DL, VT), 1369 ISD::SETUGE); 1370 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1371 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1372 Num_S_Remainder, 1373 DAG.getConstant(-1, DL, VT), 1374 DAG.getConstant(0, DL, VT), 1375 ISD::SETUGE); 1376 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1377 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1378 Remainder_GE_Zero); 1379 1380 // Calculate Division result: 1381 1382 // Quotient_A_One = Quotient + 1 1383 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1384 DAG.getConstant(1, DL, VT)); 1385 1386 // Quotient_S_One = Quotient - 1 1387 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1388 DAG.getConstant(1, DL, VT)); 1389 1390 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1391 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1392 Quotient, Quotient_A_One, ISD::SETEQ); 1393 1394 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1395 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1396 Quotient_S_One, Div, ISD::SETEQ); 1397 1398 // Calculate Rem result: 1399 1400 // Remainder_S_Den = Remainder - Den 1401 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1402 1403 // Remainder_A_Den = Remainder + Den 1404 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1405 1406 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1407 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1408 Remainder, Remainder_S_Den, ISD::SETEQ); 1409 1410 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1411 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1412 Remainder_A_Den, Rem, ISD::SETEQ); 1413 SDValue Ops[2] = { 1414 Div, 1415 Rem 1416 }; 1417 return DAG.getMergeValues(Ops, DL); 1418 } 1419 1420 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1421 SelectionDAG &DAG) const { 1422 SDLoc DL(Op); 1423 EVT VT = Op.getValueType(); 1424 1425 SDValue LHS = Op.getOperand(0); 1426 SDValue RHS = Op.getOperand(1); 1427 1428 SDValue Zero = DAG.getConstant(0, DL, VT); 1429 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1430 1431 if (VT == MVT::i32) { 1432 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1433 return Res; 1434 } 1435 1436 if (VT == MVT::i64 && 1437 DAG.ComputeNumSignBits(LHS) > 32 && 1438 DAG.ComputeNumSignBits(RHS) > 32) { 1439 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1440 1441 //HiLo split 1442 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1443 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1444 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1445 LHS_Lo, RHS_Lo); 1446 SDValue Res[2] = { 1447 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1448 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1449 }; 1450 return DAG.getMergeValues(Res, DL); 1451 } 1452 1453 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1454 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1455 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1456 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1457 1458 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1459 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1460 1461 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1462 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1463 1464 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1465 SDValue Rem = Div.getValue(1); 1466 1467 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1468 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1469 1470 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1471 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1472 1473 SDValue Res[2] = { 1474 Div, 1475 Rem 1476 }; 1477 return DAG.getMergeValues(Res, DL); 1478 } 1479 1480 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1481 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1482 SDLoc SL(Op); 1483 EVT VT = Op.getValueType(); 1484 SDValue X = Op.getOperand(0); 1485 SDValue Y = Op.getOperand(1); 1486 1487 // TODO: Should this propagate fast-math-flags? 1488 1489 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1490 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1491 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1492 1493 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1494 } 1495 1496 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1497 SDLoc SL(Op); 1498 SDValue Src = Op.getOperand(0); 1499 1500 // result = trunc(src) 1501 // if (src > 0.0 && src != result) 1502 // result += 1.0 1503 1504 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1505 1506 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1507 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1508 1509 EVT SetCCVT = 1510 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1511 1512 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1513 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1514 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1515 1516 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1517 // TODO: Should this propagate fast-math-flags? 1518 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1519 } 1520 1521 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1522 SelectionDAG &DAG) { 1523 const unsigned FractBits = 52; 1524 const unsigned ExpBits = 11; 1525 1526 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1527 Hi, 1528 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1529 DAG.getConstant(ExpBits, SL, MVT::i32)); 1530 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1531 DAG.getConstant(1023, SL, MVT::i32)); 1532 1533 return Exp; 1534 } 1535 1536 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1537 SDLoc SL(Op); 1538 SDValue Src = Op.getOperand(0); 1539 1540 assert(Op.getValueType() == MVT::f64); 1541 1542 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1543 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1544 1545 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1546 1547 // Extract the upper half, since this is where we will find the sign and 1548 // exponent. 1549 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1550 1551 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1552 1553 const unsigned FractBits = 52; 1554 1555 // Extract the sign bit. 1556 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1557 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1558 1559 // Extend back to to 64-bits. 1560 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1561 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1562 1563 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1564 const SDValue FractMask 1565 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1566 1567 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1568 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1569 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1570 1571 EVT SetCCVT = 1572 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1573 1574 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1575 1576 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1577 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1578 1579 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1580 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1581 1582 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1583 } 1584 1585 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1586 SDLoc SL(Op); 1587 SDValue Src = Op.getOperand(0); 1588 1589 assert(Op.getValueType() == MVT::f64); 1590 1591 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 1592 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1593 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1594 1595 // TODO: Should this propagate fast-math-flags? 1596 1597 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1598 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1599 1600 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1601 1602 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 1603 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1604 1605 EVT SetCCVT = 1606 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1607 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1608 1609 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1610 } 1611 1612 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1613 // FNEARBYINT and FRINT are the same, except in their handling of FP 1614 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1615 // rint, so just treat them as equivalent. 1616 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1617 } 1618 1619 // XXX - May require not supporting f32 denormals? 1620 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1621 SDLoc SL(Op); 1622 SDValue X = Op.getOperand(0); 1623 1624 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1625 1626 // TODO: Should this propagate fast-math-flags? 1627 1628 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1629 1630 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1631 1632 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1633 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1634 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1635 1636 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1637 1638 EVT SetCCVT = 1639 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1640 1641 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1642 1643 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1644 1645 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1646 } 1647 1648 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1649 SDLoc SL(Op); 1650 SDValue X = Op.getOperand(0); 1651 1652 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1653 1654 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1655 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1656 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1657 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1658 EVT SetCCVT = 1659 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1660 1661 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1662 1663 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1664 1665 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1666 1667 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1668 MVT::i64); 1669 1670 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1671 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1672 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1673 MVT::i64), 1674 Exp); 1675 1676 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1677 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1678 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1679 ISD::SETNE); 1680 1681 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1682 D, DAG.getConstant(0, SL, MVT::i64)); 1683 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1684 1685 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1686 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1687 1688 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1689 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1690 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1691 1692 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1693 ExpEqNegOne, 1694 DAG.getConstantFP(1.0, SL, MVT::f64), 1695 DAG.getConstantFP(0.0, SL, MVT::f64)); 1696 1697 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1698 1699 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1700 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1701 1702 return K; 1703 } 1704 1705 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1706 EVT VT = Op.getValueType(); 1707 1708 if (VT == MVT::f32) 1709 return LowerFROUND32(Op, DAG); 1710 1711 if (VT == MVT::f64) 1712 return LowerFROUND64(Op, DAG); 1713 1714 llvm_unreachable("unhandled type"); 1715 } 1716 1717 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1718 SDLoc SL(Op); 1719 SDValue Src = Op.getOperand(0); 1720 1721 // result = trunc(src); 1722 // if (src < 0.0 && src != result) 1723 // result += -1.0. 1724 1725 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1726 1727 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1728 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1729 1730 EVT SetCCVT = 1731 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1732 1733 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1734 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1735 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1736 1737 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1738 // TODO: Should this propagate fast-math-flags? 1739 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1740 } 1741 1742 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1743 SDLoc SL(Op); 1744 SDValue Src = Op.getOperand(0); 1745 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1746 1747 if (ZeroUndef && Src.getValueType() == MVT::i32) 1748 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1749 1750 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1751 1752 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1753 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1754 1755 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1756 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1757 1758 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1759 *DAG.getContext(), MVT::i32); 1760 1761 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1762 1763 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1764 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1765 1766 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1767 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1768 1769 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1770 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1771 1772 if (!ZeroUndef) { 1773 // Test if the full 64-bit input is zero. 1774 1775 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1776 // which we probably don't want. 1777 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1778 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1779 1780 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1781 // with the same cycles, otherwise it is slower. 1782 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1783 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1784 1785 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1786 1787 // The instruction returns -1 for 0 input, but the defined intrinsic 1788 // behavior is to return the number of bits. 1789 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1790 SrcIsZero, Bits32, NewCtlz); 1791 } 1792 1793 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1794 } 1795 1796 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1797 bool Signed) const { 1798 // Unsigned 1799 // cul2f(ulong u) 1800 //{ 1801 // uint lz = clz(u); 1802 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1803 // u = (u << lz) & 0x7fffffffffffffffUL; 1804 // ulong t = u & 0xffffffffffUL; 1805 // uint v = (e << 23) | (uint)(u >> 40); 1806 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1807 // return as_float(v + r); 1808 //} 1809 // Signed 1810 // cl2f(long l) 1811 //{ 1812 // long s = l >> 63; 1813 // float r = cul2f((l + s) ^ s); 1814 // return s ? -r : r; 1815 //} 1816 1817 SDLoc SL(Op); 1818 SDValue Src = Op.getOperand(0); 1819 SDValue L = Src; 1820 1821 SDValue S; 1822 if (Signed) { 1823 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1824 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1825 1826 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1827 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1828 } 1829 1830 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1831 *DAG.getContext(), MVT::f32); 1832 1833 1834 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1835 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1836 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1837 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1838 1839 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1840 SDValue E = DAG.getSelect(SL, MVT::i32, 1841 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1842 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1843 ZeroI32); 1844 1845 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1846 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1847 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1848 1849 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1850 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1851 1852 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1853 U, DAG.getConstant(40, SL, MVT::i64)); 1854 1855 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1856 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1857 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1858 1859 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1860 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1861 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 1862 1863 SDValue One = DAG.getConstant(1, SL, MVT::i32); 1864 1865 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 1866 1867 SDValue R = DAG.getSelect(SL, MVT::i32, 1868 RCmp, 1869 One, 1870 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 1871 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 1872 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 1873 1874 if (!Signed) 1875 return R; 1876 1877 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 1878 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 1879 } 1880 1881 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 1882 bool Signed) const { 1883 SDLoc SL(Op); 1884 SDValue Src = Op.getOperand(0); 1885 1886 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1887 1888 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1889 DAG.getConstant(0, SL, MVT::i32)); 1890 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1891 DAG.getConstant(1, SL, MVT::i32)); 1892 1893 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 1894 SL, MVT::f64, Hi); 1895 1896 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 1897 1898 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 1899 DAG.getConstant(32, SL, MVT::i32)); 1900 // TODO: Should this propagate fast-math-flags? 1901 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 1902 } 1903 1904 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 1905 SelectionDAG &DAG) const { 1906 assert(Op.getOperand(0).getValueType() == MVT::i64 && 1907 "operation should be legal"); 1908 1909 EVT DestVT = Op.getValueType(); 1910 1911 if (DestVT == MVT::f32) 1912 return LowerINT_TO_FP32(Op, DAG, false); 1913 1914 assert(DestVT == MVT::f64); 1915 return LowerINT_TO_FP64(Op, DAG, false); 1916 } 1917 1918 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 1919 SelectionDAG &DAG) const { 1920 assert(Op.getOperand(0).getValueType() == MVT::i64 && 1921 "operation should be legal"); 1922 1923 EVT DestVT = Op.getValueType(); 1924 if (DestVT == MVT::f32) 1925 return LowerINT_TO_FP32(Op, DAG, true); 1926 1927 assert(DestVT == MVT::f64); 1928 return LowerINT_TO_FP64(Op, DAG, true); 1929 } 1930 1931 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 1932 bool Signed) const { 1933 SDLoc SL(Op); 1934 1935 SDValue Src = Op.getOperand(0); 1936 1937 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1938 1939 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 1940 MVT::f64); 1941 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 1942 MVT::f64); 1943 // TODO: Should this propagate fast-math-flags? 1944 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 1945 1946 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 1947 1948 1949 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 1950 1951 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 1952 MVT::i32, FloorMul); 1953 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 1954 1955 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 1956 1957 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 1958 } 1959 1960 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 1961 SelectionDAG &DAG) const { 1962 SDValue Src = Op.getOperand(0); 1963 1964 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 1965 return LowerFP64_TO_INT(Op, DAG, true); 1966 1967 return SDValue(); 1968 } 1969 1970 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 1971 SelectionDAG &DAG) const { 1972 SDValue Src = Op.getOperand(0); 1973 1974 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 1975 return LowerFP64_TO_INT(Op, DAG, false); 1976 1977 return SDValue(); 1978 } 1979 1980 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1981 SelectionDAG &DAG) const { 1982 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1983 MVT VT = Op.getSimpleValueType(); 1984 MVT ScalarVT = VT.getScalarType(); 1985 1986 assert(VT.isVector()); 1987 1988 SDValue Src = Op.getOperand(0); 1989 SDLoc DL(Op); 1990 1991 // TODO: Don't scalarize on Evergreen? 1992 unsigned NElts = VT.getVectorNumElements(); 1993 SmallVector<SDValue, 8> Args; 1994 DAG.ExtractVectorElements(Src, Args, 0, NElts); 1995 1996 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 1997 for (unsigned I = 0; I < NElts; ++I) 1998 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 1999 2000 return DAG.getBuildVector(VT, DL, Args); 2001 } 2002 2003 //===----------------------------------------------------------------------===// 2004 // Custom DAG optimizations 2005 //===----------------------------------------------------------------------===// 2006 2007 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2008 APInt KnownZero, KnownOne; 2009 EVT VT = Op.getValueType(); 2010 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2011 2012 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2013 } 2014 2015 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2016 EVT VT = Op.getValueType(); 2017 2018 // In order for this to be a signed 24-bit value, bit 23, must 2019 // be a sign bit. 2020 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2021 // as unsigned 24-bit values. 2022 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2023 } 2024 2025 static bool simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2026 2027 SelectionDAG &DAG = DCI.DAG; 2028 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2029 EVT VT = Op.getValueType(); 2030 2031 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2032 APInt KnownZero, KnownOne; 2033 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2034 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) { 2035 DCI.CommitTargetLoweringOpt(TLO); 2036 return true; 2037 } 2038 2039 return false; 2040 } 2041 2042 template <typename IntTy> 2043 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2044 uint32_t Width, const SDLoc &DL) { 2045 if (Width + Offset < 32) { 2046 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2047 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2048 return DAG.getConstant(Result, DL, MVT::i32); 2049 } 2050 2051 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2052 } 2053 2054 static bool hasVolatileUser(SDNode *Val) { 2055 for (SDNode *U : Val->uses()) { 2056 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2057 if (M->isVolatile()) 2058 return true; 2059 } 2060 } 2061 2062 return false; 2063 } 2064 2065 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2066 // i32 vectors are the canonical memory type. 2067 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2068 return false; 2069 2070 if (!VT.isByteSized()) 2071 return false; 2072 2073 unsigned Size = VT.getStoreSize(); 2074 2075 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2076 return false; 2077 2078 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2079 return false; 2080 2081 return true; 2082 } 2083 2084 // Replace load of an illegal type with a store of a bitcast to a friendlier 2085 // type. 2086 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2087 DAGCombinerInfo &DCI) const { 2088 if (!DCI.isBeforeLegalize()) 2089 return SDValue(); 2090 2091 LoadSDNode *LN = cast<LoadSDNode>(N); 2092 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2093 return SDValue(); 2094 2095 SDLoc SL(N); 2096 SelectionDAG &DAG = DCI.DAG; 2097 EVT VT = LN->getMemoryVT(); 2098 2099 unsigned Size = VT.getStoreSize(); 2100 unsigned Align = LN->getAlignment(); 2101 if (Align < Size && isTypeLegal(VT)) { 2102 bool IsFast; 2103 unsigned AS = LN->getAddressSpace(); 2104 2105 // Expand unaligned loads earlier than legalization. Due to visitation order 2106 // problems during legalization, the emitted instructions to pack and unpack 2107 // the bytes again are not eliminated in the case of an unaligned copy. 2108 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2109 if (VT.isVector()) 2110 return scalarizeVectorLoad(LN, DAG); 2111 2112 SDValue Ops[2]; 2113 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2114 return DAG.getMergeValues(Ops, SDLoc(N)); 2115 } 2116 2117 if (!IsFast) 2118 return SDValue(); 2119 } 2120 2121 if (!shouldCombineMemoryType(VT)) 2122 return SDValue(); 2123 2124 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2125 2126 SDValue NewLoad 2127 = DAG.getLoad(NewVT, SL, LN->getChain(), 2128 LN->getBasePtr(), LN->getMemOperand()); 2129 2130 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2131 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2132 return SDValue(N, 0); 2133 } 2134 2135 // Replace store of an illegal type with a store of a bitcast to a friendlier 2136 // type. 2137 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2138 DAGCombinerInfo &DCI) const { 2139 if (!DCI.isBeforeLegalize()) 2140 return SDValue(); 2141 2142 StoreSDNode *SN = cast<StoreSDNode>(N); 2143 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2144 return SDValue(); 2145 2146 EVT VT = SN->getMemoryVT(); 2147 unsigned Size = VT.getStoreSize(); 2148 2149 SDLoc SL(N); 2150 SelectionDAG &DAG = DCI.DAG; 2151 unsigned Align = SN->getAlignment(); 2152 if (Align < Size && isTypeLegal(VT)) { 2153 bool IsFast; 2154 unsigned AS = SN->getAddressSpace(); 2155 2156 // Expand unaligned stores earlier than legalization. Due to visitation 2157 // order problems during legalization, the emitted instructions to pack and 2158 // unpack the bytes again are not eliminated in the case of an unaligned 2159 // copy. 2160 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2161 if (VT.isVector()) 2162 return scalarizeVectorStore(SN, DAG); 2163 2164 return expandUnalignedStore(SN, DAG); 2165 } 2166 2167 if (!IsFast) 2168 return SDValue(); 2169 } 2170 2171 if (!shouldCombineMemoryType(VT)) 2172 return SDValue(); 2173 2174 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2175 SDValue Val = SN->getValue(); 2176 2177 //DCI.AddToWorklist(Val.getNode()); 2178 2179 bool OtherUses = !Val.hasOneUse(); 2180 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2181 if (OtherUses) { 2182 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2183 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2184 } 2185 2186 return DAG.getStore(SN->getChain(), SL, CastVal, 2187 SN->getBasePtr(), SN->getMemOperand()); 2188 } 2189 2190 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2191 /// binary operation \p Opc to it with the corresponding constant operands. 2192 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2193 DAGCombinerInfo &DCI, const SDLoc &SL, 2194 unsigned Opc, SDValue LHS, 2195 uint32_t ValLo, uint32_t ValHi) const { 2196 SelectionDAG &DAG = DCI.DAG; 2197 SDValue Lo, Hi; 2198 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2199 2200 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2201 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2202 2203 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2204 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2205 2206 // Re-visit the ands. It's possible we eliminated one of them and it could 2207 // simplify the vector. 2208 DCI.AddToWorklist(Lo.getNode()); 2209 DCI.AddToWorklist(Hi.getNode()); 2210 2211 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2212 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2213 } 2214 2215 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2216 DAGCombinerInfo &DCI) const { 2217 if (N->getValueType(0) != MVT::i64) 2218 return SDValue(); 2219 2220 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2221 2222 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2223 // common case, splitting this into a move and a 32-bit shift is faster and 2224 // the same code size. 2225 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2226 if (!RHS) 2227 return SDValue(); 2228 2229 unsigned RHSVal = RHS->getZExtValue(); 2230 if (RHSVal < 32) 2231 return SDValue(); 2232 2233 SDValue LHS = N->getOperand(0); 2234 2235 SDLoc SL(N); 2236 SelectionDAG &DAG = DCI.DAG; 2237 2238 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2239 2240 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2241 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2242 2243 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2244 2245 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2246 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2247 } 2248 2249 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2250 DAGCombinerInfo &DCI) const { 2251 if (N->getValueType(0) != MVT::i64) 2252 return SDValue(); 2253 2254 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2255 if (!RHS) 2256 return SDValue(); 2257 2258 SelectionDAG &DAG = DCI.DAG; 2259 SDLoc SL(N); 2260 unsigned RHSVal = RHS->getZExtValue(); 2261 2262 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2263 if (RHSVal == 32) { 2264 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2265 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2266 DAG.getConstant(31, SL, MVT::i32)); 2267 2268 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2269 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2270 } 2271 2272 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2273 if (RHSVal == 63) { 2274 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2275 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2276 DAG.getConstant(31, SL, MVT::i32)); 2277 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2278 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2279 } 2280 2281 return SDValue(); 2282 } 2283 2284 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2285 DAGCombinerInfo &DCI) const { 2286 if (N->getValueType(0) != MVT::i64) 2287 return SDValue(); 2288 2289 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2290 if (!RHS) 2291 return SDValue(); 2292 2293 unsigned ShiftAmt = RHS->getZExtValue(); 2294 if (ShiftAmt < 32) 2295 return SDValue(); 2296 2297 // srl i64:x, C for C >= 32 2298 // => 2299 // build_pair (srl hi_32(x), C - 32), 0 2300 2301 SelectionDAG &DAG = DCI.DAG; 2302 SDLoc SL(N); 2303 2304 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2305 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2306 2307 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2308 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2309 VecOp, One); 2310 2311 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2312 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2313 2314 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2315 2316 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2317 } 2318 2319 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2320 // instructions. If we only match on the legalized i64 mul expansion, 2321 // SimplifyDemandedBits will be unable to remove them because there will be 2322 // multiple uses due to the separate mul + mulh[su]. 2323 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2324 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2325 if (Size <= 32) { 2326 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2327 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2328 } 2329 2330 // Because we want to eliminate extension instructions before the 2331 // operation, we need to create a single user here (i.e. not the separate 2332 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2333 2334 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2335 2336 SDValue Mul = DAG.getNode(MulOpc, SL, 2337 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 2338 2339 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 2340 Mul.getValue(0), Mul.getValue(1)); 2341 } 2342 2343 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2344 DAGCombinerInfo &DCI) const { 2345 EVT VT = N->getValueType(0); 2346 2347 unsigned Size = VT.getSizeInBits(); 2348 if (VT.isVector() || Size > 64) 2349 return SDValue(); 2350 2351 SelectionDAG &DAG = DCI.DAG; 2352 SDLoc DL(N); 2353 2354 SDValue N0 = N->getOperand(0); 2355 SDValue N1 = N->getOperand(1); 2356 SDValue Mul; 2357 2358 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2359 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2360 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2361 Mul = getMul24(DAG, DL, N0, N1, Size, false); 2362 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2363 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2364 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2365 Mul = getMul24(DAG, DL, N0, N1, Size, true); 2366 } else { 2367 return SDValue(); 2368 } 2369 2370 // We need to use sext even for MUL_U24, because MUL_U24 is used 2371 // for signed multiply of 8 and 16-bit types. 2372 return DAG.getSExtOrTrunc(Mul, DL, VT); 2373 } 2374 2375 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 2376 DAGCombinerInfo &DCI) const { 2377 EVT VT = N->getValueType(0); 2378 2379 if (!Subtarget->hasMulI24() || VT.isVector()) 2380 return SDValue(); 2381 2382 SelectionDAG &DAG = DCI.DAG; 2383 SDLoc DL(N); 2384 2385 SDValue N0 = N->getOperand(0); 2386 SDValue N1 = N->getOperand(1); 2387 2388 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 2389 return SDValue(); 2390 2391 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2392 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2393 2394 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 2395 DCI.AddToWorklist(Mulhi.getNode()); 2396 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 2397 } 2398 2399 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 2400 DAGCombinerInfo &DCI) const { 2401 EVT VT = N->getValueType(0); 2402 2403 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 2404 return SDValue(); 2405 2406 SelectionDAG &DAG = DCI.DAG; 2407 SDLoc DL(N); 2408 2409 SDValue N0 = N->getOperand(0); 2410 SDValue N1 = N->getOperand(1); 2411 2412 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 2413 return SDValue(); 2414 2415 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2416 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2417 2418 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 2419 DCI.AddToWorklist(Mulhi.getNode()); 2420 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 2421 } 2422 2423 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 2424 SDNode *N, DAGCombinerInfo &DCI) const { 2425 SelectionDAG &DAG = DCI.DAG; 2426 2427 SDValue N0 = N->getOperand(0); 2428 SDValue N1 = N->getOperand(1); 2429 2430 // Simplify demanded bits before splitting into multiple users. 2431 if (simplifyI24(N0, DCI) || simplifyI24(N1, DCI)) 2432 return SDValue(); 2433 2434 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 2435 2436 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2437 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 2438 2439 SDLoc SL(N); 2440 2441 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 2442 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 2443 return DAG.getMergeValues({ MulLo, MulHi }, SL); 2444 } 2445 2446 static bool isNegativeOne(SDValue Val) { 2447 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2448 return C->isAllOnesValue(); 2449 return false; 2450 } 2451 2452 static bool isCtlzOpc(unsigned Opc) { 2453 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2454 } 2455 2456 // Get FFBH node if the incoming op may have been type legalized from a smaller 2457 // type VT. 2458 // Need to match pre-legalized type because the generic legalization inserts the 2459 // add/sub between the select and compare. 2460 static SDValue getFFBH_U32(const TargetLowering &TLI, SelectionDAG &DAG, 2461 const SDLoc &SL, SDValue Op) { 2462 EVT VT = Op.getValueType(); 2463 EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2464 if (LegalVT != MVT::i32) 2465 return SDValue(); 2466 2467 if (VT != MVT::i32) 2468 Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op); 2469 2470 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op); 2471 if (VT != MVT::i32) 2472 FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH); 2473 2474 return FFBH; 2475 } 2476 2477 // The native instructions return -1 on 0 input. Optimize out a select that 2478 // produces -1 on 0. 2479 // 2480 // TODO: If zero is not undef, we could also do this if the output is compared 2481 // against the bitwidth. 2482 // 2483 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2484 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2485 SDValue LHS, SDValue RHS, 2486 DAGCombinerInfo &DCI) const { 2487 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2488 if (!CmpRhs || !CmpRhs->isNullValue()) 2489 return SDValue(); 2490 2491 SelectionDAG &DAG = DCI.DAG; 2492 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2493 SDValue CmpLHS = Cond.getOperand(0); 2494 2495 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2496 if (CCOpcode == ISD::SETEQ && 2497 isCtlzOpc(RHS.getOpcode()) && 2498 RHS.getOperand(0) == CmpLHS && 2499 isNegativeOne(LHS)) { 2500 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2501 } 2502 2503 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2504 if (CCOpcode == ISD::SETNE && 2505 isCtlzOpc(LHS.getOpcode()) && 2506 LHS.getOperand(0) == CmpLHS && 2507 isNegativeOne(RHS)) { 2508 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2509 } 2510 2511 return SDValue(); 2512 } 2513 2514 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2515 DAGCombinerInfo &DCI) const { 2516 SDValue Cond = N->getOperand(0); 2517 if (Cond.getOpcode() != ISD::SETCC) 2518 return SDValue(); 2519 2520 EVT VT = N->getValueType(0); 2521 SDValue LHS = Cond.getOperand(0); 2522 SDValue RHS = Cond.getOperand(1); 2523 SDValue CC = Cond.getOperand(2); 2524 2525 SDValue True = N->getOperand(1); 2526 SDValue False = N->getOperand(2); 2527 2528 if (VT == MVT::f32 && Cond.hasOneUse()) { 2529 SDValue MinMax 2530 = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2531 // Revisit this node so we can catch min3/max3/med3 patterns. 2532 //DCI.AddToWorklist(MinMax.getNode()); 2533 return MinMax; 2534 } 2535 2536 // There's no reason to not do this if the condition has other uses. 2537 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2538 } 2539 2540 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2541 DAGCombinerInfo &DCI) const { 2542 SelectionDAG &DAG = DCI.DAG; 2543 SDLoc DL(N); 2544 2545 switch(N->getOpcode()) { 2546 default: 2547 break; 2548 case ISD::BITCAST: { 2549 EVT DestVT = N->getValueType(0); 2550 2551 // Push casts through vector builds. This helps avoid emitting a large 2552 // number of copies when materializing floating point vector constants. 2553 // 2554 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 2555 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 2556 if (DestVT.isVector()) { 2557 SDValue Src = N->getOperand(0); 2558 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2559 EVT SrcVT = Src.getValueType(); 2560 unsigned NElts = DestVT.getVectorNumElements(); 2561 2562 if (SrcVT.getVectorNumElements() == NElts) { 2563 EVT DestEltVT = DestVT.getVectorElementType(); 2564 2565 SmallVector<SDValue, 8> CastedElts; 2566 SDLoc SL(N); 2567 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 2568 SDValue Elt = Src.getOperand(I); 2569 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 2570 } 2571 2572 return DAG.getBuildVector(DestVT, SL, CastedElts); 2573 } 2574 } 2575 } 2576 2577 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 2578 break; 2579 2580 // Fold bitcasts of constants. 2581 // 2582 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 2583 // TODO: Generalize and move to DAGCombiner 2584 SDValue Src = N->getOperand(0); 2585 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 2586 assert(Src.getValueType() == MVT::i64); 2587 SDLoc SL(N); 2588 uint64_t CVal = C->getZExtValue(); 2589 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 2590 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2591 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2592 } 2593 2594 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 2595 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 2596 SDLoc SL(N); 2597 uint64_t CVal = Val.getZExtValue(); 2598 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2599 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2600 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2601 2602 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 2603 } 2604 2605 break; 2606 } 2607 case ISD::SHL: { 2608 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2609 break; 2610 2611 return performShlCombine(N, DCI); 2612 } 2613 case ISD::SRL: { 2614 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2615 break; 2616 2617 return performSrlCombine(N, DCI); 2618 } 2619 case ISD::SRA: { 2620 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2621 break; 2622 2623 return performSraCombine(N, DCI); 2624 } 2625 case ISD::MUL: 2626 return performMulCombine(N, DCI); 2627 case ISD::MULHS: 2628 return performMulhsCombine(N, DCI); 2629 case ISD::MULHU: 2630 return performMulhuCombine(N, DCI); 2631 case AMDGPUISD::MUL_I24: 2632 case AMDGPUISD::MUL_U24: 2633 case AMDGPUISD::MULHI_I24: 2634 case AMDGPUISD::MULHI_U24: { 2635 SDValue N0 = N->getOperand(0); 2636 SDValue N1 = N->getOperand(1); 2637 simplifyI24(N0, DCI); 2638 simplifyI24(N1, DCI); 2639 return SDValue(); 2640 } 2641 case AMDGPUISD::MUL_LOHI_I24: 2642 case AMDGPUISD::MUL_LOHI_U24: 2643 return performMulLoHi24Combine(N, DCI); 2644 case ISD::SELECT: 2645 return performSelectCombine(N, DCI); 2646 case AMDGPUISD::BFE_I32: 2647 case AMDGPUISD::BFE_U32: { 2648 assert(!N->getValueType(0).isVector() && 2649 "Vector handling of BFE not implemented"); 2650 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2651 if (!Width) 2652 break; 2653 2654 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2655 if (WidthVal == 0) 2656 return DAG.getConstant(0, DL, MVT::i32); 2657 2658 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2659 if (!Offset) 2660 break; 2661 2662 SDValue BitsFrom = N->getOperand(0); 2663 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2664 2665 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2666 2667 if (OffsetVal == 0) { 2668 // This is already sign / zero extended, so try to fold away extra BFEs. 2669 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2670 2671 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2672 if (OpSignBits >= SignBits) 2673 return BitsFrom; 2674 2675 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2676 if (Signed) { 2677 // This is a sign_extend_inreg. Replace it to take advantage of existing 2678 // DAG Combines. If not eliminated, we will match back to BFE during 2679 // selection. 2680 2681 // TODO: The sext_inreg of extended types ends, although we can could 2682 // handle them in a single BFE. 2683 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2684 DAG.getValueType(SmallVT)); 2685 } 2686 2687 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2688 } 2689 2690 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2691 if (Signed) { 2692 return constantFoldBFE<int32_t>(DAG, 2693 CVal->getSExtValue(), 2694 OffsetVal, 2695 WidthVal, 2696 DL); 2697 } 2698 2699 return constantFoldBFE<uint32_t>(DAG, 2700 CVal->getZExtValue(), 2701 OffsetVal, 2702 WidthVal, 2703 DL); 2704 } 2705 2706 if ((OffsetVal + WidthVal) >= 32) { 2707 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2708 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2709 BitsFrom, ShiftVal); 2710 } 2711 2712 if (BitsFrom.hasOneUse()) { 2713 APInt Demanded = APInt::getBitsSet(32, 2714 OffsetVal, 2715 OffsetVal + WidthVal); 2716 2717 APInt KnownZero, KnownOne; 2718 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2719 !DCI.isBeforeLegalizeOps()); 2720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2721 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2722 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2723 KnownZero, KnownOne, TLO)) { 2724 DCI.CommitTargetLoweringOpt(TLO); 2725 } 2726 } 2727 2728 break; 2729 } 2730 case ISD::LOAD: 2731 return performLoadCombine(N, DCI); 2732 case ISD::STORE: 2733 return performStoreCombine(N, DCI); 2734 } 2735 return SDValue(); 2736 } 2737 2738 //===----------------------------------------------------------------------===// 2739 // Helper functions 2740 //===----------------------------------------------------------------------===// 2741 2742 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2743 const TargetRegisterClass *RC, 2744 unsigned Reg, EVT VT) const { 2745 MachineFunction &MF = DAG.getMachineFunction(); 2746 MachineRegisterInfo &MRI = MF.getRegInfo(); 2747 unsigned VirtualRegister; 2748 if (!MRI.isLiveIn(Reg)) { 2749 VirtualRegister = MRI.createVirtualRegister(RC); 2750 MRI.addLiveIn(Reg, VirtualRegister); 2751 } else { 2752 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2753 } 2754 return DAG.getRegister(VirtualRegister, VT); 2755 } 2756 2757 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2758 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2759 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 2760 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 2761 switch (Param) { 2762 case GRID_DIM: 2763 return ArgOffset; 2764 case GRID_OFFSET: 2765 return ArgOffset + 4; 2766 } 2767 llvm_unreachable("unexpected implicit parameter type"); 2768 } 2769 2770 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2771 2772 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2773 switch ((AMDGPUISD::NodeType)Opcode) { 2774 case AMDGPUISD::FIRST_NUMBER: break; 2775 // AMDIL DAG nodes 2776 NODE_NAME_CASE(CALL); 2777 NODE_NAME_CASE(UMUL); 2778 NODE_NAME_CASE(BRANCH_COND); 2779 2780 // AMDGPU DAG nodes 2781 NODE_NAME_CASE(ENDPGM) 2782 NODE_NAME_CASE(RETURN) 2783 NODE_NAME_CASE(DWORDADDR) 2784 NODE_NAME_CASE(FRACT) 2785 NODE_NAME_CASE(SETCC) 2786 NODE_NAME_CASE(CLAMP) 2787 NODE_NAME_CASE(COS_HW) 2788 NODE_NAME_CASE(SIN_HW) 2789 NODE_NAME_CASE(FMAX_LEGACY) 2790 NODE_NAME_CASE(FMIN_LEGACY) 2791 NODE_NAME_CASE(FMAX3) 2792 NODE_NAME_CASE(SMAX3) 2793 NODE_NAME_CASE(UMAX3) 2794 NODE_NAME_CASE(FMIN3) 2795 NODE_NAME_CASE(SMIN3) 2796 NODE_NAME_CASE(UMIN3) 2797 NODE_NAME_CASE(FMED3) 2798 NODE_NAME_CASE(SMED3) 2799 NODE_NAME_CASE(UMED3) 2800 NODE_NAME_CASE(URECIP) 2801 NODE_NAME_CASE(DIV_SCALE) 2802 NODE_NAME_CASE(DIV_FMAS) 2803 NODE_NAME_CASE(DIV_FIXUP) 2804 NODE_NAME_CASE(TRIG_PREOP) 2805 NODE_NAME_CASE(RCP) 2806 NODE_NAME_CASE(RSQ) 2807 NODE_NAME_CASE(RCP_LEGACY) 2808 NODE_NAME_CASE(RSQ_LEGACY) 2809 NODE_NAME_CASE(FMUL_LEGACY) 2810 NODE_NAME_CASE(RSQ_CLAMP) 2811 NODE_NAME_CASE(LDEXP) 2812 NODE_NAME_CASE(FP_CLASS) 2813 NODE_NAME_CASE(DOT4) 2814 NODE_NAME_CASE(CARRY) 2815 NODE_NAME_CASE(BORROW) 2816 NODE_NAME_CASE(BFE_U32) 2817 NODE_NAME_CASE(BFE_I32) 2818 NODE_NAME_CASE(BFI) 2819 NODE_NAME_CASE(BFM) 2820 NODE_NAME_CASE(FFBH_U32) 2821 NODE_NAME_CASE(FFBH_I32) 2822 NODE_NAME_CASE(MUL_U24) 2823 NODE_NAME_CASE(MUL_I24) 2824 NODE_NAME_CASE(MULHI_U24) 2825 NODE_NAME_CASE(MULHI_I24) 2826 NODE_NAME_CASE(MUL_LOHI_U24) 2827 NODE_NAME_CASE(MUL_LOHI_I24) 2828 NODE_NAME_CASE(MAD_U24) 2829 NODE_NAME_CASE(MAD_I24) 2830 NODE_NAME_CASE(TEXTURE_FETCH) 2831 NODE_NAME_CASE(EXPORT) 2832 NODE_NAME_CASE(CONST_ADDRESS) 2833 NODE_NAME_CASE(REGISTER_LOAD) 2834 NODE_NAME_CASE(REGISTER_STORE) 2835 NODE_NAME_CASE(LOAD_INPUT) 2836 NODE_NAME_CASE(SAMPLE) 2837 NODE_NAME_CASE(SAMPLEB) 2838 NODE_NAME_CASE(SAMPLED) 2839 NODE_NAME_CASE(SAMPLEL) 2840 NODE_NAME_CASE(CVT_F32_UBYTE0) 2841 NODE_NAME_CASE(CVT_F32_UBYTE1) 2842 NODE_NAME_CASE(CVT_F32_UBYTE2) 2843 NODE_NAME_CASE(CVT_F32_UBYTE3) 2844 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2845 NODE_NAME_CASE(CONST_DATA_PTR) 2846 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 2847 NODE_NAME_CASE(KILL) 2848 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2849 NODE_NAME_CASE(SENDMSG) 2850 NODE_NAME_CASE(INTERP_MOV) 2851 NODE_NAME_CASE(INTERP_P1) 2852 NODE_NAME_CASE(INTERP_P2) 2853 NODE_NAME_CASE(STORE_MSKOR) 2854 NODE_NAME_CASE(LOAD_CONSTANT) 2855 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2856 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 2857 NODE_NAME_CASE(ATOMIC_INC) 2858 NODE_NAME_CASE(ATOMIC_DEC) 2859 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2860 } 2861 return nullptr; 2862 } 2863 2864 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2865 DAGCombinerInfo &DCI, 2866 unsigned &RefinementSteps, 2867 bool &UseOneConstNR) const { 2868 SelectionDAG &DAG = DCI.DAG; 2869 EVT VT = Operand.getValueType(); 2870 2871 if (VT == MVT::f32) { 2872 RefinementSteps = 0; 2873 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2874 } 2875 2876 // TODO: There is also f64 rsq instruction, but the documentation is less 2877 // clear on its precision. 2878 2879 return SDValue(); 2880 } 2881 2882 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2883 DAGCombinerInfo &DCI, 2884 unsigned &RefinementSteps) const { 2885 SelectionDAG &DAG = DCI.DAG; 2886 EVT VT = Operand.getValueType(); 2887 2888 if (VT == MVT::f32) { 2889 // Reciprocal, < 1 ulp error. 2890 // 2891 // This reciprocal approximation converges to < 0.5 ulp error with one 2892 // newton rhapson performed with two fused multiple adds (FMAs). 2893 2894 RefinementSteps = 0; 2895 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2896 } 2897 2898 // TODO: There is also f64 rcp instruction, but the documentation is less 2899 // clear on its precision. 2900 2901 return SDValue(); 2902 } 2903 2904 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2905 const SDValue Op, 2906 APInt &KnownZero, 2907 APInt &KnownOne, 2908 const SelectionDAG &DAG, 2909 unsigned Depth) const { 2910 2911 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2912 2913 APInt KnownZero2; 2914 APInt KnownOne2; 2915 unsigned Opc = Op.getOpcode(); 2916 2917 switch (Opc) { 2918 default: 2919 break; 2920 case AMDGPUISD::CARRY: 2921 case AMDGPUISD::BORROW: { 2922 KnownZero = APInt::getHighBitsSet(32, 31); 2923 break; 2924 } 2925 2926 case AMDGPUISD::BFE_I32: 2927 case AMDGPUISD::BFE_U32: { 2928 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2929 if (!CWidth) 2930 return; 2931 2932 unsigned BitWidth = 32; 2933 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2934 2935 if (Opc == AMDGPUISD::BFE_U32) 2936 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2937 2938 break; 2939 } 2940 } 2941 } 2942 2943 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2944 SDValue Op, 2945 const SelectionDAG &DAG, 2946 unsigned Depth) const { 2947 switch (Op.getOpcode()) { 2948 case AMDGPUISD::BFE_I32: { 2949 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2950 if (!Width) 2951 return 1; 2952 2953 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2954 if (!isNullConstant(Op.getOperand(1))) 2955 return SignBits; 2956 2957 // TODO: Could probably figure something out with non-0 offsets. 2958 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2959 return std::max(SignBits, Op0SignBits); 2960 } 2961 2962 case AMDGPUISD::BFE_U32: { 2963 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2964 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2965 } 2966 2967 case AMDGPUISD::CARRY: 2968 case AMDGPUISD::BORROW: 2969 return 31; 2970 2971 default: 2972 return 1; 2973 } 2974 } 2975