1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 33 using namespace llvm; 34 35 namespace { 36 37 /// Diagnostic information for unimplemented or unsupported feature reporting. 38 class DiagnosticInfoUnsupported : public DiagnosticInfo { 39 private: 40 const Twine &Description; 41 const Function &Fn; 42 43 static int KindID; 44 45 static int getKindID() { 46 if (KindID == 0) 47 KindID = llvm::getNextAvailablePluginDiagnosticKind(); 48 return KindID; 49 } 50 51 public: 52 DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc, 53 DiagnosticSeverity Severity = DS_Error) 54 : DiagnosticInfo(getKindID(), Severity), 55 Description(Desc), 56 Fn(Fn) { } 57 58 const Function &getFunction() const { return Fn; } 59 const Twine &getDescription() const { return Description; } 60 61 void print(DiagnosticPrinter &DP) const override { 62 DP << "unsupported " << getDescription() << " in " << Fn.getName(); 63 } 64 65 static bool classof(const DiagnosticInfo *DI) { 66 return DI->getKind() == getKindID(); 67 } 68 }; 69 70 int DiagnosticInfoUnsupported::KindID = 0; 71 } 72 73 74 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, 75 CCValAssign::LocInfo LocInfo, 76 ISD::ArgFlagsTy ArgFlags, CCState &State) { 77 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), 78 ArgFlags.getOrigAlign()); 79 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 80 81 return true; 82 } 83 84 #include "AMDGPUGenCallingConv.inc" 85 86 // Find a larger type to do a load / store of a vector with. 87 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 88 unsigned StoreSize = VT.getStoreSizeInBits(); 89 if (StoreSize <= 32) 90 return EVT::getIntegerVT(Ctx, StoreSize); 91 92 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 93 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 94 } 95 96 // Type for a vector that will be loaded to. 97 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 98 unsigned StoreSize = VT.getStoreSizeInBits(); 99 if (StoreSize <= 32) 100 return EVT::getIntegerVT(Ctx, 32); 101 102 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 103 } 104 105 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 106 const AMDGPUSubtarget &STI) 107 : TargetLowering(TM), Subtarget(&STI) { 108 setOperationAction(ISD::Constant, MVT::i32, Legal); 109 setOperationAction(ISD::Constant, MVT::i64, Legal); 110 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 111 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 112 113 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 114 setOperationAction(ISD::BRIND, MVT::Other, Expand); 115 116 // This is totally unsupported, just custom lower to produce an error. 117 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 118 119 // We need to custom lower some of the intrinsics 120 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 121 122 // Library functions. These default to Expand, but we have instructions 123 // for them. 124 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 125 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 126 setOperationAction(ISD::FPOW, MVT::f32, Legal); 127 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 128 setOperationAction(ISD::FABS, MVT::f32, Legal); 129 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 130 setOperationAction(ISD::FRINT, MVT::f32, Legal); 131 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 132 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 133 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 134 135 setOperationAction(ISD::FROUND, MVT::f32, Custom); 136 setOperationAction(ISD::FROUND, MVT::f64, Custom); 137 138 setOperationAction(ISD::FREM, MVT::f32, Custom); 139 setOperationAction(ISD::FREM, MVT::f64, Custom); 140 141 // v_mad_f32 does not support denormals according to some sources. 142 if (!Subtarget->hasFP32Denormals()) 143 setOperationAction(ISD::FMAD, MVT::f32, Legal); 144 145 // Expand to fneg + fadd. 146 setOperationAction(ISD::FSUB, MVT::f64, Expand); 147 148 // Lower floating point store/load to integer store/load to reduce the number 149 // of patterns in tablegen. 150 setOperationAction(ISD::STORE, MVT::f32, Promote); 151 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 152 153 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 154 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 155 156 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 157 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 158 159 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 160 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 161 162 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 163 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 164 165 setOperationAction(ISD::STORE, MVT::f64, Promote); 166 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64); 167 168 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 169 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64); 170 171 // Custom lowering of vector stores is required for local address space 172 // stores. 173 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 174 175 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 176 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 177 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 178 179 // XXX: This can be change to Custom, once ExpandVectorStores can 180 // handle 64-bit stores. 181 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 182 183 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 184 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 185 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 186 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 187 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand); 188 189 190 setOperationAction(ISD::LOAD, MVT::f32, Promote); 191 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 192 193 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 194 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 195 196 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 197 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 198 199 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 200 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 201 202 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 203 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 204 205 setOperationAction(ISD::LOAD, MVT::f64, Promote); 206 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64); 207 208 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 209 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64); 210 211 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 212 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 213 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 214 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 215 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 216 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 217 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 218 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 219 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 220 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 221 222 // There are no 64-bit extloads. These should be done as a 32-bit extload and 223 // an extension to 64-bit. 224 for (MVT VT : MVT::integer_valuetypes()) { 225 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 226 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 227 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 228 } 229 230 for (MVT VT : MVT::integer_vector_valuetypes()) { 231 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 232 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 233 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 234 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 235 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 236 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 237 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 238 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 239 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 240 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 241 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 242 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 243 } 244 245 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 246 247 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 248 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 249 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 250 setOperationAction(ISD::FRINT, MVT::f64, Custom); 251 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 252 } 253 254 if (!Subtarget->hasBFI()) { 255 // fcopysign can be done in a single instruction with BFI. 256 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 257 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 258 } 259 260 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 261 262 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 263 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 264 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 265 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 266 267 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 268 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 269 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 270 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 271 272 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 273 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 274 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 275 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 276 277 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 278 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 279 280 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 281 for (MVT VT : ScalarIntVTs) { 282 setOperationAction(ISD::SREM, VT, Expand); 283 setOperationAction(ISD::SDIV, VT, Expand); 284 285 // GPU does not have divrem function for signed or unsigned. 286 setOperationAction(ISD::SDIVREM, VT, Custom); 287 setOperationAction(ISD::UDIVREM, VT, Custom); 288 289 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 290 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 291 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 292 293 setOperationAction(ISD::BSWAP, VT, Expand); 294 setOperationAction(ISD::CTTZ, VT, Expand); 295 setOperationAction(ISD::CTLZ, VT, Expand); 296 } 297 298 if (!Subtarget->hasBCNT(32)) 299 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 300 301 if (!Subtarget->hasBCNT(64)) 302 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 303 304 // The hardware supports 32-bit ROTR, but not ROTL. 305 setOperationAction(ISD::ROTL, MVT::i32, Expand); 306 setOperationAction(ISD::ROTL, MVT::i64, Expand); 307 setOperationAction(ISD::ROTR, MVT::i64, Expand); 308 309 setOperationAction(ISD::MUL, MVT::i64, Expand); 310 setOperationAction(ISD::MULHU, MVT::i64, Expand); 311 setOperationAction(ISD::MULHS, MVT::i64, Expand); 312 setOperationAction(ISD::UDIV, MVT::i32, Expand); 313 setOperationAction(ISD::UREM, MVT::i32, Expand); 314 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 315 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 316 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 317 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 318 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 319 320 setOperationAction(ISD::SMIN, MVT::i32, Legal); 321 setOperationAction(ISD::UMIN, MVT::i32, Legal); 322 setOperationAction(ISD::SMAX, MVT::i32, Legal); 323 setOperationAction(ISD::UMAX, MVT::i32, Legal); 324 325 if (!Subtarget->hasFFBH()) 326 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 327 328 if (!Subtarget->hasFFBL()) 329 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 330 331 static const MVT::SimpleValueType VectorIntTypes[] = { 332 MVT::v2i32, MVT::v4i32 333 }; 334 335 for (MVT VT : VectorIntTypes) { 336 // Expand the following operations for the current type by default. 337 setOperationAction(ISD::ADD, VT, Expand); 338 setOperationAction(ISD::AND, VT, Expand); 339 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 340 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 341 setOperationAction(ISD::MUL, VT, Expand); 342 setOperationAction(ISD::OR, VT, Expand); 343 setOperationAction(ISD::SHL, VT, Expand); 344 setOperationAction(ISD::SRA, VT, Expand); 345 setOperationAction(ISD::SRL, VT, Expand); 346 setOperationAction(ISD::ROTL, VT, Expand); 347 setOperationAction(ISD::ROTR, VT, Expand); 348 setOperationAction(ISD::SUB, VT, Expand); 349 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 350 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 351 setOperationAction(ISD::SDIV, VT, Expand); 352 setOperationAction(ISD::UDIV, VT, Expand); 353 setOperationAction(ISD::SREM, VT, Expand); 354 setOperationAction(ISD::UREM, VT, Expand); 355 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 356 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 357 setOperationAction(ISD::SDIVREM, VT, Custom); 358 setOperationAction(ISD::UDIVREM, VT, Custom); 359 setOperationAction(ISD::ADDC, VT, Expand); 360 setOperationAction(ISD::SUBC, VT, Expand); 361 setOperationAction(ISD::ADDE, VT, Expand); 362 setOperationAction(ISD::SUBE, VT, Expand); 363 setOperationAction(ISD::SELECT, VT, Expand); 364 setOperationAction(ISD::VSELECT, VT, Expand); 365 setOperationAction(ISD::SELECT_CC, VT, Expand); 366 setOperationAction(ISD::XOR, VT, Expand); 367 setOperationAction(ISD::BSWAP, VT, Expand); 368 setOperationAction(ISD::CTPOP, VT, Expand); 369 setOperationAction(ISD::CTTZ, VT, Expand); 370 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 371 setOperationAction(ISD::CTLZ, VT, Expand); 372 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 373 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 374 } 375 376 static const MVT::SimpleValueType FloatVectorTypes[] = { 377 MVT::v2f32, MVT::v4f32 378 }; 379 380 for (MVT VT : FloatVectorTypes) { 381 setOperationAction(ISD::FABS, VT, Expand); 382 setOperationAction(ISD::FMINNUM, VT, Expand); 383 setOperationAction(ISD::FMAXNUM, VT, Expand); 384 setOperationAction(ISD::FADD, VT, Expand); 385 setOperationAction(ISD::FCEIL, VT, Expand); 386 setOperationAction(ISD::FCOS, VT, Expand); 387 setOperationAction(ISD::FDIV, VT, Expand); 388 setOperationAction(ISD::FEXP2, VT, Expand); 389 setOperationAction(ISD::FLOG2, VT, Expand); 390 setOperationAction(ISD::FREM, VT, Expand); 391 setOperationAction(ISD::FPOW, VT, Expand); 392 setOperationAction(ISD::FFLOOR, VT, Expand); 393 setOperationAction(ISD::FTRUNC, VT, Expand); 394 setOperationAction(ISD::FMUL, VT, Expand); 395 setOperationAction(ISD::FMA, VT, Expand); 396 setOperationAction(ISD::FRINT, VT, Expand); 397 setOperationAction(ISD::FNEARBYINT, VT, Expand); 398 setOperationAction(ISD::FSQRT, VT, Expand); 399 setOperationAction(ISD::FSIN, VT, Expand); 400 setOperationAction(ISD::FSUB, VT, Expand); 401 setOperationAction(ISD::FNEG, VT, Expand); 402 setOperationAction(ISD::SELECT, VT, Expand); 403 setOperationAction(ISD::VSELECT, VT, Expand); 404 setOperationAction(ISD::SELECT_CC, VT, Expand); 405 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 406 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 407 } 408 409 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 410 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 411 412 setTargetDAGCombine(ISD::SHL); 413 setTargetDAGCombine(ISD::MUL); 414 setTargetDAGCombine(ISD::SELECT); 415 setTargetDAGCombine(ISD::SELECT_CC); 416 setTargetDAGCombine(ISD::STORE); 417 418 setTargetDAGCombine(ISD::FADD); 419 setTargetDAGCombine(ISD::FSUB); 420 421 setBooleanContents(ZeroOrNegativeOneBooleanContent); 422 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 423 424 setSchedulingPreference(Sched::RegPressure); 425 setJumpIsExpensive(true); 426 427 // SI at least has hardware support for floating point exceptions, but no way 428 // of using or handling them is implemented. They are also optional in OpenCL 429 // (Section 7.3) 430 setHasFloatingPointExceptions(false); 431 432 setSelectIsExpensive(false); 433 PredictableSelectIsExpensive = false; 434 435 setFsqrtIsCheap(true); 436 437 // FIXME: Need to really handle these. 438 MaxStoresPerMemcpy = 4096; 439 MaxStoresPerMemmove = 4096; 440 MaxStoresPerMemset = 4096; 441 } 442 443 //===----------------------------------------------------------------------===// 444 // Target Information 445 //===----------------------------------------------------------------------===// 446 447 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 448 return MVT::i32; 449 } 450 451 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 452 return true; 453 } 454 455 // The backend supports 32 and 64 bit floating point immediates. 456 // FIXME: Why are we reporting vectors of FP immediates as legal? 457 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 458 EVT ScalarVT = VT.getScalarType(); 459 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 460 } 461 462 // We don't want to shrink f64 / f32 constants. 463 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 464 EVT ScalarVT = VT.getScalarType(); 465 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 466 } 467 468 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 469 ISD::LoadExtType, 470 EVT NewVT) const { 471 472 unsigned NewSize = NewVT.getStoreSizeInBits(); 473 474 // If we are reducing to a 32-bit load, this is always better. 475 if (NewSize == 32) 476 return true; 477 478 EVT OldVT = N->getValueType(0); 479 unsigned OldSize = OldVT.getStoreSizeInBits(); 480 481 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 482 // extloads, so doing one requires using a buffer_load. In cases where we 483 // still couldn't use a scalar load, using the wider load shouldn't really 484 // hurt anything. 485 486 // If the old size already had to be an extload, there's no harm in continuing 487 // to reduce the width. 488 return (OldSize < 32); 489 } 490 491 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 492 EVT CastTy) const { 493 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 494 return true; 495 496 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 497 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 498 499 return ((LScalarSize <= CastScalarSize) || 500 (CastScalarSize >= 32) || 501 (LScalarSize < 32)); 502 } 503 504 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 505 // profitable with the expansion for 64-bit since it's generally good to 506 // speculate things. 507 // FIXME: These should really have the size as a parameter. 508 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 509 return true; 510 } 511 512 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 513 return true; 514 } 515 516 //===---------------------------------------------------------------------===// 517 // Target Properties 518 //===---------------------------------------------------------------------===// 519 520 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 521 assert(VT.isFloatingPoint()); 522 return VT == MVT::f32 || VT == MVT::f64; 523 } 524 525 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 526 assert(VT.isFloatingPoint()); 527 return VT == MVT::f32 || VT == MVT::f64; 528 } 529 530 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 531 unsigned NumElem, 532 unsigned AS) const { 533 return true; 534 } 535 536 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 537 // Truncate is just accessing a subregister. 538 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 539 } 540 541 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 542 // Truncate is just accessing a subregister. 543 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 544 (Dest->getPrimitiveSizeInBits() % 32 == 0); 545 } 546 547 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 548 unsigned SrcSize = Src->getScalarSizeInBits(); 549 unsigned DestSize = Dest->getScalarSizeInBits(); 550 551 return SrcSize == 32 && DestSize == 64; 552 } 553 554 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 555 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 556 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 557 // this will enable reducing 64-bit operations the 32-bit, which is always 558 // good. 559 return Src == MVT::i32 && Dest == MVT::i64; 560 } 561 562 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 563 return isZExtFree(Val.getValueType(), VT2); 564 } 565 566 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 567 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 568 // limited number of native 64-bit operations. Shrinking an operation to fit 569 // in a single 32-bit register should always be helpful. As currently used, 570 // this is much less general than the name suggests, and is only used in 571 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 572 // not profitable, and may actually be harmful. 573 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 574 } 575 576 //===---------------------------------------------------------------------===// 577 // TargetLowering Callbacks 578 //===---------------------------------------------------------------------===// 579 580 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 581 const SmallVectorImpl<ISD::InputArg> &Ins) const { 582 583 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 584 } 585 586 SDValue AMDGPUTargetLowering::LowerReturn( 587 SDValue Chain, 588 CallingConv::ID CallConv, 589 bool isVarArg, 590 const SmallVectorImpl<ISD::OutputArg> &Outs, 591 const SmallVectorImpl<SDValue> &OutVals, 592 SDLoc DL, SelectionDAG &DAG) const { 593 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 594 } 595 596 //===---------------------------------------------------------------------===// 597 // Target specific lowering 598 //===---------------------------------------------------------------------===// 599 600 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 601 SmallVectorImpl<SDValue> &InVals) const { 602 SDValue Callee = CLI.Callee; 603 SelectionDAG &DAG = CLI.DAG; 604 605 const Function &Fn = *DAG.getMachineFunction().getFunction(); 606 607 StringRef FuncName("<unknown>"); 608 609 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 610 FuncName = G->getSymbol(); 611 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 612 FuncName = G->getGlobal()->getName(); 613 614 DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName); 615 DAG.getContext()->diagnose(NoCalls); 616 return SDValue(); 617 } 618 619 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 620 SelectionDAG &DAG) const { 621 const Function &Fn = *DAG.getMachineFunction().getFunction(); 622 623 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "dynamic alloca"); 624 DAG.getContext()->diagnose(NoDynamicAlloca); 625 return SDValue(); 626 } 627 628 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 629 SelectionDAG &DAG) const { 630 switch (Op.getOpcode()) { 631 default: 632 Op.getNode()->dump(); 633 llvm_unreachable("Custom lowering code for this" 634 "instruction is not implemented yet!"); 635 break; 636 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 637 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 638 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 639 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); 640 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 641 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 642 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 643 case ISD::FREM: return LowerFREM(Op, DAG); 644 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 645 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 646 case ISD::FRINT: return LowerFRINT(Op, DAG); 647 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 648 case ISD::FROUND: return LowerFROUND(Op, DAG); 649 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 650 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 651 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 652 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 653 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 654 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 655 } 656 return Op; 657 } 658 659 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 660 SmallVectorImpl<SDValue> &Results, 661 SelectionDAG &DAG) const { 662 switch (N->getOpcode()) { 663 case ISD::SIGN_EXTEND_INREG: 664 // Different parts of legalization seem to interpret which type of 665 // sign_extend_inreg is the one to check for custom lowering. The extended 666 // from type is what really matters, but some places check for custom 667 // lowering of the result type. This results in trying to use 668 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 669 // nothing here and let the illegal result integer be handled normally. 670 return; 671 case ISD::LOAD: { 672 SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode(); 673 if (!Node) 674 return; 675 676 Results.push_back(SDValue(Node, 0)); 677 Results.push_back(SDValue(Node, 1)); 678 // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode 679 // function 680 DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1)); 681 return; 682 } 683 case ISD::STORE: { 684 SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG); 685 if (Lowered.getNode()) 686 Results.push_back(Lowered); 687 return; 688 } 689 default: 690 return; 691 } 692 } 693 694 // FIXME: This implements accesses to initialized globals in the constant 695 // address space by copying them to private and accessing that. It does not 696 // properly handle illegal types or vectors. The private vector loads are not 697 // scalarized, and the illegal scalars hit an assertion. This technique will not 698 // work well with large initializers, and this should eventually be 699 // removed. Initialized globals should be placed into a data section that the 700 // runtime will load into a buffer before the kernel is executed. Uses of the 701 // global need to be replaced with a pointer loaded from an implicit kernel 702 // argument into this buffer holding the copy of the data, which will remove the 703 // need for any of this. 704 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 705 const GlobalValue *GV, 706 const SDValue &InitPtr, 707 SDValue Chain, 708 SelectionDAG &DAG) const { 709 const DataLayout &TD = DAG.getDataLayout(); 710 SDLoc DL(InitPtr); 711 Type *InitTy = Init->getType(); 712 713 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 714 EVT VT = EVT::getEVT(InitTy); 715 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 716 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 717 MachinePointerInfo(UndefValue::get(PtrTy)), false, 718 false, TD.getPrefTypeAlignment(InitTy)); 719 } 720 721 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 722 EVT VT = EVT::getEVT(CFP->getType()); 723 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 724 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 725 MachinePointerInfo(UndefValue::get(PtrTy)), false, 726 false, TD.getPrefTypeAlignment(CFP->getType())); 727 } 728 729 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 730 const StructLayout *SL = TD.getStructLayout(ST); 731 732 EVT PtrVT = InitPtr.getValueType(); 733 SmallVector<SDValue, 8> Chains; 734 735 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 736 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 737 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 738 739 Constant *Elt = Init->getAggregateElement(I); 740 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 741 } 742 743 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 744 } 745 746 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 747 EVT PtrVT = InitPtr.getValueType(); 748 749 unsigned NumElements; 750 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 751 NumElements = AT->getNumElements(); 752 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 753 NumElements = VT->getNumElements(); 754 else 755 llvm_unreachable("Unexpected type"); 756 757 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 758 SmallVector<SDValue, 8> Chains; 759 for (unsigned i = 0; i < NumElements; ++i) { 760 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 761 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 762 763 Constant *Elt = Init->getAggregateElement(i); 764 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 765 } 766 767 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 768 } 769 770 if (isa<UndefValue>(Init)) { 771 EVT VT = EVT::getEVT(InitTy); 772 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 773 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 774 MachinePointerInfo(UndefValue::get(PtrTy)), false, 775 false, TD.getPrefTypeAlignment(InitTy)); 776 } 777 778 Init->dump(); 779 llvm_unreachable("Unhandled constant initializer"); 780 } 781 782 static bool hasDefinedInitializer(const GlobalValue *GV) { 783 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 784 if (!GVar || !GVar->hasInitializer()) 785 return false; 786 787 if (isa<UndefValue>(GVar->getInitializer())) 788 return false; 789 790 return true; 791 } 792 793 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 794 SDValue Op, 795 SelectionDAG &DAG) const { 796 797 const DataLayout &DL = DAG.getDataLayout(); 798 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 799 const GlobalValue *GV = G->getGlobal(); 800 801 switch (G->getAddressSpace()) { 802 case AMDGPUAS::LOCAL_ADDRESS: { 803 // XXX: What does the value of G->getOffset() mean? 804 assert(G->getOffset() == 0 && 805 "Do not know what to do with an non-zero offset"); 806 807 // TODO: We could emit code to handle the initialization somewhere. 808 if (hasDefinedInitializer(GV)) 809 break; 810 811 unsigned Offset; 812 if (MFI->LocalMemoryObjects.count(GV) == 0) { 813 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 814 Offset = MFI->LDSSize; 815 MFI->LocalMemoryObjects[GV] = Offset; 816 // XXX: Account for alignment? 817 MFI->LDSSize += Size; 818 } else { 819 Offset = MFI->LocalMemoryObjects[GV]; 820 } 821 822 return DAG.getConstant(Offset, SDLoc(Op), 823 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 824 } 825 case AMDGPUAS::CONSTANT_ADDRESS: { 826 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 827 Type *EltType = GV->getType()->getElementType(); 828 unsigned Size = DL.getTypeAllocSize(EltType); 829 unsigned Alignment = DL.getPrefTypeAlignment(EltType); 830 831 MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS); 832 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 833 834 int FI = FrameInfo->CreateStackObject(Size, Alignment, false); 835 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT); 836 837 const GlobalVariable *Var = cast<GlobalVariable>(GV); 838 if (!Var->hasInitializer()) { 839 // This has no use, but bugpoint will hit it. 840 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 841 } 842 843 const Constant *Init = Var->getInitializer(); 844 SmallVector<SDNode*, 8> WorkList; 845 846 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(), 847 E = DAG.getEntryNode()->use_end(); I != E; ++I) { 848 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD) 849 continue; 850 WorkList.push_back(*I); 851 } 852 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG); 853 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(), 854 E = WorkList.end(); I != E; ++I) { 855 SmallVector<SDValue, 8> Ops; 856 Ops.push_back(Chain); 857 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) { 858 Ops.push_back((*I)->getOperand(i)); 859 } 860 DAG.UpdateNodeOperands(*I, Ops); 861 } 862 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 863 } 864 } 865 866 const Function &Fn = *DAG.getMachineFunction().getFunction(); 867 DiagnosticInfoUnsupported BadInit(Fn, 868 "initializer for address space"); 869 DAG.getContext()->diagnose(BadInit); 870 return SDValue(); 871 } 872 873 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 874 SelectionDAG &DAG) const { 875 SmallVector<SDValue, 8> Args; 876 877 for (const SDUse &U : Op->ops()) 878 DAG.ExtractVectorElements(U.get(), Args); 879 880 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 881 } 882 883 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 884 SelectionDAG &DAG) const { 885 886 SmallVector<SDValue, 8> Args; 887 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 888 EVT VT = Op.getValueType(); 889 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 890 VT.getVectorNumElements()); 891 892 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 893 } 894 895 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op, 896 SelectionDAG &DAG) const { 897 898 MachineFunction &MF = DAG.getMachineFunction(); 899 const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering(); 900 901 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 902 903 unsigned FrameIndex = FIN->getIndex(); 904 unsigned IgnoredFrameReg; 905 unsigned Offset = 906 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); 907 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), 908 Op.getValueType()); 909 } 910 911 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 912 SelectionDAG &DAG) const { 913 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 914 SDLoc DL(Op); 915 EVT VT = Op.getValueType(); 916 917 switch (IntrinsicID) { 918 default: return Op; 919 case AMDGPUIntrinsic::AMDGPU_abs: 920 case AMDGPUIntrinsic::AMDIL_abs: // Legacy name. 921 return LowerIntrinsicIABS(Op, DAG); 922 case AMDGPUIntrinsic::AMDGPU_lrp: 923 return LowerIntrinsicLRP(Op, DAG); 924 925 case AMDGPUIntrinsic::AMDGPU_clamp: 926 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 927 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 928 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 929 930 case Intrinsic::AMDGPU_div_scale: { 931 // 3rd parameter required to be a constant. 932 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3)); 933 if (!Param) 934 return DAG.getUNDEF(VT); 935 936 // Translate to the operands expected by the machine instruction. The 937 // first parameter must be the same as the first instruction. 938 SDValue Numerator = Op.getOperand(1); 939 SDValue Denominator = Op.getOperand(2); 940 941 // Note this order is opposite of the machine instruction's operations, 942 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 943 // intrinsic has the numerator as the first operand to match a normal 944 // division operation. 945 946 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 947 948 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 949 Denominator, Numerator); 950 } 951 952 case Intrinsic::AMDGPU_div_fmas: 953 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 954 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 955 Op.getOperand(4)); 956 957 case Intrinsic::AMDGPU_div_fixup: 958 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 959 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 960 961 case Intrinsic::AMDGPU_trig_preop: 962 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, 963 Op.getOperand(1), Op.getOperand(2)); 964 965 case Intrinsic::AMDGPU_rcp: 966 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 967 968 case Intrinsic::AMDGPU_rsq: 969 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 970 971 case AMDGPUIntrinsic::AMDGPU_legacy_rsq: 972 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); 973 974 case Intrinsic::AMDGPU_rsq_clamped: 975 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 976 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 977 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 978 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 979 980 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 981 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 982 DAG.getConstantFP(Max, DL, VT)); 983 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 984 DAG.getConstantFP(Min, DL, VT)); 985 } else { 986 return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1)); 987 } 988 989 case Intrinsic::AMDGPU_ldexp: 990 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 991 Op.getOperand(2)); 992 993 case AMDGPUIntrinsic::AMDGPU_imax: 994 return DAG.getNode(ISD::SMAX, DL, VT, Op.getOperand(1), 995 Op.getOperand(2)); 996 case AMDGPUIntrinsic::AMDGPU_umax: 997 return DAG.getNode(ISD::UMAX, DL, VT, Op.getOperand(1), 998 Op.getOperand(2)); 999 case AMDGPUIntrinsic::AMDGPU_imin: 1000 return DAG.getNode(ISD::SMIN, DL, VT, Op.getOperand(1), 1001 Op.getOperand(2)); 1002 case AMDGPUIntrinsic::AMDGPU_umin: 1003 return DAG.getNode(ISD::UMIN, DL, VT, Op.getOperand(1), 1004 Op.getOperand(2)); 1005 1006 case AMDGPUIntrinsic::AMDGPU_umul24: 1007 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, 1008 Op.getOperand(1), Op.getOperand(2)); 1009 1010 case AMDGPUIntrinsic::AMDGPU_imul24: 1011 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, 1012 Op.getOperand(1), Op.getOperand(2)); 1013 1014 case AMDGPUIntrinsic::AMDGPU_umad24: 1015 return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT, 1016 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 1017 1018 case AMDGPUIntrinsic::AMDGPU_imad24: 1019 return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT, 1020 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 1021 1022 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0: 1023 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1)); 1024 1025 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1: 1026 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1)); 1027 1028 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2: 1029 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1)); 1030 1031 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3: 1032 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1)); 1033 1034 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 1035 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 1036 Op.getOperand(1), 1037 Op.getOperand(2), 1038 Op.getOperand(3)); 1039 1040 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 1041 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 1042 Op.getOperand(1), 1043 Op.getOperand(2), 1044 Op.getOperand(3)); 1045 1046 case AMDGPUIntrinsic::AMDGPU_bfi: 1047 return DAG.getNode(AMDGPUISD::BFI, DL, VT, 1048 Op.getOperand(1), 1049 Op.getOperand(2), 1050 Op.getOperand(3)); 1051 1052 case AMDGPUIntrinsic::AMDGPU_bfm: 1053 return DAG.getNode(AMDGPUISD::BFM, DL, VT, 1054 Op.getOperand(1), 1055 Op.getOperand(2)); 1056 1057 case AMDGPUIntrinsic::AMDGPU_brev: 1058 return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1)); 1059 1060 case Intrinsic::AMDGPU_class: 1061 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 1062 Op.getOperand(1), Op.getOperand(2)); 1063 1064 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 1065 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 1066 1067 case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name. 1068 return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1)); 1069 case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name. 1070 return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1)); 1071 } 1072 } 1073 1074 ///IABS(a) = SMAX(sub(0, a), a) 1075 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op, 1076 SelectionDAG &DAG) const { 1077 SDLoc DL(Op); 1078 EVT VT = Op.getValueType(); 1079 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1080 Op.getOperand(1)); 1081 1082 return DAG.getNode(ISD::SMAX, DL, VT, Neg, Op.getOperand(1)); 1083 } 1084 1085 /// Linear Interpolation 1086 /// LRP(a, b, c) = muladd(a, b, (1 - a) * c) 1087 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op, 1088 SelectionDAG &DAG) const { 1089 SDLoc DL(Op); 1090 EVT VT = Op.getValueType(); 1091 SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT, 1092 DAG.getConstantFP(1.0f, DL, MVT::f32), 1093 Op.getOperand(1)); 1094 SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA, 1095 Op.getOperand(3)); 1096 return DAG.getNode(ISD::FADD, DL, VT, 1097 DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)), 1098 OneSubAC); 1099 } 1100 1101 /// \brief Generate Min/Max node 1102 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, 1103 EVT VT, 1104 SDValue LHS, 1105 SDValue RHS, 1106 SDValue True, 1107 SDValue False, 1108 SDValue CC, 1109 DAGCombinerInfo &DCI) const { 1110 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 1111 return SDValue(); 1112 1113 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1114 return SDValue(); 1115 1116 SelectionDAG &DAG = DCI.DAG; 1117 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1118 switch (CCOpcode) { 1119 case ISD::SETOEQ: 1120 case ISD::SETONE: 1121 case ISD::SETUNE: 1122 case ISD::SETNE: 1123 case ISD::SETUEQ: 1124 case ISD::SETEQ: 1125 case ISD::SETFALSE: 1126 case ISD::SETFALSE2: 1127 case ISD::SETTRUE: 1128 case ISD::SETTRUE2: 1129 case ISD::SETUO: 1130 case ISD::SETO: 1131 break; 1132 case ISD::SETULE: 1133 case ISD::SETULT: { 1134 if (LHS == True) 1135 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1136 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1137 } 1138 case ISD::SETOLE: 1139 case ISD::SETOLT: 1140 case ISD::SETLE: 1141 case ISD::SETLT: { 1142 // Ordered. Assume ordered for undefined. 1143 1144 // Only do this after legalization to avoid interfering with other combines 1145 // which might occur. 1146 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1147 !DCI.isCalledByLegalizer()) 1148 return SDValue(); 1149 1150 // We need to permute the operands to get the correct NaN behavior. The 1151 // selected operand is the second one based on the failing compare with NaN, 1152 // so permute it based on the compare type the hardware uses. 1153 if (LHS == True) 1154 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1155 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1156 } 1157 case ISD::SETUGE: 1158 case ISD::SETUGT: { 1159 if (LHS == True) 1160 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1161 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1162 } 1163 case ISD::SETGT: 1164 case ISD::SETGE: 1165 case ISD::SETOGE: 1166 case ISD::SETOGT: { 1167 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1168 !DCI.isCalledByLegalizer()) 1169 return SDValue(); 1170 1171 if (LHS == True) 1172 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1173 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1174 } 1175 case ISD::SETCC_INVALID: 1176 llvm_unreachable("Invalid setcc condcode!"); 1177 } 1178 return SDValue(); 1179 } 1180 1181 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op, 1182 SelectionDAG &DAG) const { 1183 LoadSDNode *Load = cast<LoadSDNode>(Op); 1184 EVT MemVT = Load->getMemoryVT(); 1185 EVT MemEltVT = MemVT.getVectorElementType(); 1186 1187 EVT LoadVT = Op.getValueType(); 1188 EVT EltVT = LoadVT.getVectorElementType(); 1189 EVT PtrVT = Load->getBasePtr().getValueType(); 1190 1191 unsigned NumElts = Load->getMemoryVT().getVectorNumElements(); 1192 SmallVector<SDValue, 8> Loads; 1193 SmallVector<SDValue, 8> Chains; 1194 1195 SDLoc SL(Op); 1196 unsigned MemEltSize = MemEltVT.getStoreSize(); 1197 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1198 1199 for (unsigned i = 0; i < NumElts; ++i) { 1200 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(), 1201 DAG.getConstant(i * MemEltSize, SL, PtrVT)); 1202 1203 SDValue NewLoad 1204 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT, 1205 Load->getChain(), Ptr, 1206 SrcValue.getWithOffset(i * MemEltSize), 1207 MemEltVT, Load->isVolatile(), Load->isNonTemporal(), 1208 Load->isInvariant(), Load->getAlignment()); 1209 Loads.push_back(NewLoad.getValue(0)); 1210 Chains.push_back(NewLoad.getValue(1)); 1211 } 1212 1213 SDValue Ops[] = { 1214 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads), 1215 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains) 1216 }; 1217 1218 return DAG.getMergeValues(Ops, SL); 1219 } 1220 1221 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1222 SelectionDAG &DAG) const { 1223 EVT VT = Op.getValueType(); 1224 1225 // If this is a 2 element vector, we really want to scalarize and not create 1226 // weird 1 element vectors. 1227 if (VT.getVectorNumElements() == 2) 1228 return ScalarizeVectorLoad(Op, DAG); 1229 1230 LoadSDNode *Load = cast<LoadSDNode>(Op); 1231 SDValue BasePtr = Load->getBasePtr(); 1232 EVT PtrVT = BasePtr.getValueType(); 1233 EVT MemVT = Load->getMemoryVT(); 1234 SDLoc SL(Op); 1235 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1236 1237 EVT LoVT, HiVT; 1238 EVT LoMemVT, HiMemVT; 1239 SDValue Lo, Hi; 1240 1241 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1242 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1243 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1244 SDValue LoLoad 1245 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1246 Load->getChain(), BasePtr, 1247 SrcValue, 1248 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1249 Load->isInvariant(), Load->getAlignment()); 1250 1251 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1252 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1253 PtrVT)); 1254 1255 SDValue HiLoad 1256 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1257 Load->getChain(), HiPtr, 1258 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1259 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1260 Load->isInvariant(), Load->getAlignment()); 1261 1262 SDValue Ops[] = { 1263 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1264 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1265 LoLoad.getValue(1), HiLoad.getValue(1)) 1266 }; 1267 1268 return DAG.getMergeValues(Ops, SL); 1269 } 1270 1271 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1272 SelectionDAG &DAG) const { 1273 StoreSDNode *Store = cast<StoreSDNode>(Op); 1274 EVT MemVT = Store->getMemoryVT(); 1275 unsigned MemBits = MemVT.getSizeInBits(); 1276 1277 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1278 // truncating store into an i32 store. 1279 // XXX: We could also handle optimize other vector bitwidths. 1280 if (!MemVT.isVector() || MemBits > 32) { 1281 return SDValue(); 1282 } 1283 1284 SDLoc DL(Op); 1285 SDValue Value = Store->getValue(); 1286 EVT VT = Value.getValueType(); 1287 EVT ElemVT = VT.getVectorElementType(); 1288 SDValue Ptr = Store->getBasePtr(); 1289 EVT MemEltVT = MemVT.getVectorElementType(); 1290 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1291 unsigned MemNumElements = MemVT.getVectorNumElements(); 1292 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1293 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1294 1295 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1296 1297 SDValue PackedValue; 1298 for (unsigned i = 0; i < MemNumElements; ++i) { 1299 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1300 DAG.getConstant(i, DL, MVT::i32)); 1301 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1302 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1303 1304 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1305 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1306 1307 if (i == 0) { 1308 PackedValue = Elt; 1309 } else { 1310 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1311 } 1312 } 1313 1314 if (PackedSize < 32) { 1315 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1316 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1317 Store->getMemOperand()->getPointerInfo(), 1318 PackedVT, 1319 Store->isNonTemporal(), Store->isVolatile(), 1320 Store->getAlignment()); 1321 } 1322 1323 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1324 Store->getMemOperand()->getPointerInfo(), 1325 Store->isVolatile(), Store->isNonTemporal(), 1326 Store->getAlignment()); 1327 } 1328 1329 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op, 1330 SelectionDAG &DAG) const { 1331 StoreSDNode *Store = cast<StoreSDNode>(Op); 1332 EVT MemEltVT = Store->getMemoryVT().getVectorElementType(); 1333 EVT EltVT = Store->getValue().getValueType().getVectorElementType(); 1334 EVT PtrVT = Store->getBasePtr().getValueType(); 1335 unsigned NumElts = Store->getMemoryVT().getVectorNumElements(); 1336 SDLoc SL(Op); 1337 1338 SmallVector<SDValue, 8> Chains; 1339 1340 unsigned EltSize = MemEltVT.getStoreSize(); 1341 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1342 1343 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1344 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 1345 Store->getValue(), 1346 DAG.getConstant(i, SL, MVT::i32)); 1347 1348 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT); 1349 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset); 1350 SDValue NewStore = 1351 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr, 1352 SrcValue.getWithOffset(i * EltSize), 1353 MemEltVT, Store->isNonTemporal(), Store->isVolatile(), 1354 Store->getAlignment()); 1355 Chains.push_back(NewStore); 1356 } 1357 1358 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains); 1359 } 1360 1361 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1362 SelectionDAG &DAG) const { 1363 StoreSDNode *Store = cast<StoreSDNode>(Op); 1364 SDValue Val = Store->getValue(); 1365 EVT VT = Val.getValueType(); 1366 1367 // If this is a 2 element vector, we really want to scalarize and not create 1368 // weird 1 element vectors. 1369 if (VT.getVectorNumElements() == 2) 1370 return ScalarizeVectorStore(Op, DAG); 1371 1372 EVT MemVT = Store->getMemoryVT(); 1373 SDValue Chain = Store->getChain(); 1374 SDValue BasePtr = Store->getBasePtr(); 1375 SDLoc SL(Op); 1376 1377 EVT LoVT, HiVT; 1378 EVT LoMemVT, HiMemVT; 1379 SDValue Lo, Hi; 1380 1381 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1382 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1383 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1384 1385 EVT PtrVT = BasePtr.getValueType(); 1386 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1387 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1388 PtrVT)); 1389 1390 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1391 SDValue LoStore 1392 = DAG.getTruncStore(Chain, SL, Lo, 1393 BasePtr, 1394 SrcValue, 1395 LoMemVT, 1396 Store->isNonTemporal(), 1397 Store->isVolatile(), 1398 Store->getAlignment()); 1399 SDValue HiStore 1400 = DAG.getTruncStore(Chain, SL, Hi, 1401 HiPtr, 1402 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1403 HiMemVT, 1404 Store->isNonTemporal(), 1405 Store->isVolatile(), 1406 Store->getAlignment()); 1407 1408 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1409 } 1410 1411 1412 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1413 SDLoc DL(Op); 1414 LoadSDNode *Load = cast<LoadSDNode>(Op); 1415 ISD::LoadExtType ExtType = Load->getExtensionType(); 1416 EVT VT = Op.getValueType(); 1417 EVT MemVT = Load->getMemoryVT(); 1418 1419 if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) { 1420 assert(VT == MVT::i1 && "Only i1 non-extloads expected"); 1421 // FIXME: Copied from PPC 1422 // First, load into 32 bits, then truncate to 1 bit. 1423 1424 SDValue Chain = Load->getChain(); 1425 SDValue BasePtr = Load->getBasePtr(); 1426 MachineMemOperand *MMO = Load->getMemOperand(); 1427 1428 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 1429 BasePtr, MVT::i8, MMO); 1430 1431 SDValue Ops[] = { 1432 DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD), 1433 NewLD.getValue(1) 1434 }; 1435 1436 return DAG.getMergeValues(Ops, DL); 1437 } 1438 1439 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS || 1440 Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS || 1441 ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32)) 1442 return SDValue(); 1443 1444 // <SI && AS=PRIVATE && EXTLOAD && size < 32bit, 1445 // register (2-)byte extract. 1446 1447 // Get Register holding the target. 1448 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(), 1449 DAG.getConstant(2, DL, MVT::i32)); 1450 // Load the Register. 1451 SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(), 1452 Load->getChain(), Ptr, 1453 DAG.getTargetConstant(0, DL, MVT::i32), 1454 Op.getOperand(2)); 1455 1456 // Get offset within the register. 1457 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, 1458 Load->getBasePtr(), 1459 DAG.getConstant(0x3, DL, MVT::i32)); 1460 1461 // Bit offset of target byte (byteIdx * 8). 1462 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1463 DAG.getConstant(3, DL, MVT::i32)); 1464 1465 // Shift to the right. 1466 Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt); 1467 1468 // Eliminate the upper bits by setting them to ... 1469 EVT MemEltVT = MemVT.getScalarType(); 1470 1471 // ... ones. 1472 if (ExtType == ISD::SEXTLOAD) { 1473 SDValue MemEltVTNode = DAG.getValueType(MemEltVT); 1474 1475 SDValue Ops[] = { 1476 DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode), 1477 Load->getChain() 1478 }; 1479 1480 return DAG.getMergeValues(Ops, DL); 1481 } 1482 1483 // ... or zeros. 1484 SDValue Ops[] = { 1485 DAG.getZeroExtendInReg(Ret, DL, MemEltVT), 1486 Load->getChain() 1487 }; 1488 1489 return DAG.getMergeValues(Ops, DL); 1490 } 1491 1492 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1493 SDLoc DL(Op); 1494 SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG); 1495 if (Result.getNode()) { 1496 return Result; 1497 } 1498 1499 StoreSDNode *Store = cast<StoreSDNode>(Op); 1500 SDValue Chain = Store->getChain(); 1501 if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1502 Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && 1503 Store->getValue().getValueType().isVector()) { 1504 return ScalarizeVectorStore(Op, DAG); 1505 } 1506 1507 EVT MemVT = Store->getMemoryVT(); 1508 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS && 1509 MemVT.bitsLT(MVT::i32)) { 1510 unsigned Mask = 0; 1511 if (Store->getMemoryVT() == MVT::i8) { 1512 Mask = 0xff; 1513 } else if (Store->getMemoryVT() == MVT::i16) { 1514 Mask = 0xffff; 1515 } 1516 SDValue BasePtr = Store->getBasePtr(); 1517 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr, 1518 DAG.getConstant(2, DL, MVT::i32)); 1519 SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32, 1520 Chain, Ptr, 1521 DAG.getTargetConstant(0, DL, MVT::i32)); 1522 1523 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr, 1524 DAG.getConstant(0x3, DL, MVT::i32)); 1525 1526 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1527 DAG.getConstant(3, DL, MVT::i32)); 1528 1529 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, 1530 Store->getValue()); 1531 1532 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); 1533 1534 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, 1535 MaskedValue, ShiftAmt); 1536 1537 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, 1538 DAG.getConstant(Mask, DL, MVT::i32), 1539 ShiftAmt); 1540 DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask, 1541 DAG.getConstant(0xffffffff, DL, MVT::i32)); 1542 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); 1543 1544 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); 1545 return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, 1546 Chain, Value, Ptr, 1547 DAG.getTargetConstant(0, DL, MVT::i32)); 1548 } 1549 return SDValue(); 1550 } 1551 1552 // This is a shortcut for integer division because we have fast i32<->f32 1553 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1554 // float is enough to accurately represent up to a 24-bit integer. 1555 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const { 1556 SDLoc DL(Op); 1557 EVT VT = Op.getValueType(); 1558 SDValue LHS = Op.getOperand(0); 1559 SDValue RHS = Op.getOperand(1); 1560 MVT IntVT = MVT::i32; 1561 MVT FltVT = MVT::f32; 1562 1563 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1564 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1565 1566 if (VT.isVector()) { 1567 unsigned NElts = VT.getVectorNumElements(); 1568 IntVT = MVT::getVectorVT(MVT::i32, NElts); 1569 FltVT = MVT::getVectorVT(MVT::f32, NElts); 1570 } 1571 1572 unsigned BitSize = VT.getScalarType().getSizeInBits(); 1573 1574 SDValue jq = DAG.getConstant(1, DL, IntVT); 1575 1576 if (sign) { 1577 // char|short jq = ia ^ ib; 1578 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1579 1580 // jq = jq >> (bitsize - 2) 1581 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1582 DAG.getConstant(BitSize - 2, DL, VT)); 1583 1584 // jq = jq | 0x1 1585 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1586 1587 // jq = (int)jq 1588 jq = DAG.getSExtOrTrunc(jq, DL, IntVT); 1589 } 1590 1591 // int ia = (int)LHS; 1592 SDValue ia = sign ? 1593 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT); 1594 1595 // int ib, (int)RHS; 1596 SDValue ib = sign ? 1597 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT); 1598 1599 // float fa = (float)ia; 1600 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1601 1602 // float fb = (float)ib; 1603 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1604 1605 // float fq = native_divide(fa, fb); 1606 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1607 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1608 1609 // fq = trunc(fq); 1610 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1611 1612 // float fqneg = -fq; 1613 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1614 1615 // float fr = mad(fqneg, fb, fa); 1616 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT, 1617 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa); 1618 1619 // int iq = (int)fq; 1620 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1621 1622 // fr = fabs(fr); 1623 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1624 1625 // fb = fabs(fb); 1626 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1627 1628 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1629 1630 // int cv = fr >= fb; 1631 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1632 1633 // jq = (cv ? jq : 0); 1634 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1635 1636 // dst = trunc/extend to legal type 1637 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT); 1638 1639 // dst = iq + jq; 1640 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1641 1642 // Rem needs compensation, it's easier to recompute it 1643 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1644 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1645 1646 SDValue Res[2] = { 1647 Div, 1648 Rem 1649 }; 1650 return DAG.getMergeValues(Res, DL); 1651 } 1652 1653 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1654 SelectionDAG &DAG, 1655 SmallVectorImpl<SDValue> &Results) const { 1656 assert(Op.getValueType() == MVT::i64); 1657 1658 SDLoc DL(Op); 1659 EVT VT = Op.getValueType(); 1660 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1661 1662 SDValue one = DAG.getConstant(1, DL, HalfVT); 1663 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1664 1665 //HiLo split 1666 SDValue LHS = Op.getOperand(0); 1667 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1668 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1669 1670 SDValue RHS = Op.getOperand(1); 1671 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1672 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1673 1674 if (VT == MVT::i64 && 1675 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1676 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1677 1678 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1679 LHS_Lo, RHS_Lo); 1680 1681 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero); 1682 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero); 1683 Results.push_back(DIV); 1684 Results.push_back(REM); 1685 return; 1686 } 1687 1688 // Get Speculative values 1689 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1690 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1691 1692 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1693 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero); 1694 1695 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1696 SDValue DIV_Lo = zero; 1697 1698 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1699 1700 for (unsigned i = 0; i < halfBitWidth; ++i) { 1701 const unsigned bitPos = halfBitWidth - i - 1; 1702 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1703 // Get value of high bit 1704 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1705 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1706 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1707 1708 // Shift 1709 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1710 // Add LHS high bit 1711 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1712 1713 SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT); 1714 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1715 1716 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1717 1718 // Update REM 1719 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1720 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1721 } 1722 1723 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi); 1724 Results.push_back(DIV); 1725 Results.push_back(REM); 1726 } 1727 1728 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1729 SelectionDAG &DAG) const { 1730 SDLoc DL(Op); 1731 EVT VT = Op.getValueType(); 1732 1733 if (VT == MVT::i64) { 1734 SmallVector<SDValue, 2> Results; 1735 LowerUDIVREM64(Op, DAG, Results); 1736 return DAG.getMergeValues(Results, DL); 1737 } 1738 1739 SDValue Num = Op.getOperand(0); 1740 SDValue Den = Op.getOperand(1); 1741 1742 if (VT == MVT::i32) { 1743 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) && 1744 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) { 1745 // TODO: We technically could do this for i64, but shouldn't that just be 1746 // handled by something generally reducing 64-bit division on 32-bit 1747 // values to 32-bit? 1748 return LowerDIVREM24(Op, DAG, false); 1749 } 1750 } 1751 1752 // RCP = URECIP(Den) = 2^32 / Den + e 1753 // e is rounding error. 1754 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1755 1756 // RCP_LO = mul(RCP, Den) */ 1757 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1758 1759 // RCP_HI = mulhu (RCP, Den) */ 1760 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1761 1762 // NEG_RCP_LO = -RCP_LO 1763 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1764 RCP_LO); 1765 1766 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1767 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1768 NEG_RCP_LO, RCP_LO, 1769 ISD::SETEQ); 1770 // Calculate the rounding error from the URECIP instruction 1771 // E = mulhu(ABS_RCP_LO, RCP) 1772 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1773 1774 // RCP_A_E = RCP + E 1775 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1776 1777 // RCP_S_E = RCP - E 1778 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1779 1780 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1781 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1782 RCP_A_E, RCP_S_E, 1783 ISD::SETEQ); 1784 // Quotient = mulhu(Tmp0, Num) 1785 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1786 1787 // Num_S_Remainder = Quotient * Den 1788 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1789 1790 // Remainder = Num - Num_S_Remainder 1791 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1792 1793 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1794 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1795 DAG.getConstant(-1, DL, VT), 1796 DAG.getConstant(0, DL, VT), 1797 ISD::SETUGE); 1798 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1799 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1800 Num_S_Remainder, 1801 DAG.getConstant(-1, DL, VT), 1802 DAG.getConstant(0, DL, VT), 1803 ISD::SETUGE); 1804 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1805 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1806 Remainder_GE_Zero); 1807 1808 // Calculate Division result: 1809 1810 // Quotient_A_One = Quotient + 1 1811 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1812 DAG.getConstant(1, DL, VT)); 1813 1814 // Quotient_S_One = Quotient - 1 1815 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1816 DAG.getConstant(1, DL, VT)); 1817 1818 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1819 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1820 Quotient, Quotient_A_One, ISD::SETEQ); 1821 1822 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1823 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1824 Quotient_S_One, Div, ISD::SETEQ); 1825 1826 // Calculate Rem result: 1827 1828 // Remainder_S_Den = Remainder - Den 1829 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1830 1831 // Remainder_A_Den = Remainder + Den 1832 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1833 1834 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1835 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1836 Remainder, Remainder_S_Den, ISD::SETEQ); 1837 1838 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1839 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1840 Remainder_A_Den, Rem, ISD::SETEQ); 1841 SDValue Ops[2] = { 1842 Div, 1843 Rem 1844 }; 1845 return DAG.getMergeValues(Ops, DL); 1846 } 1847 1848 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1849 SelectionDAG &DAG) const { 1850 SDLoc DL(Op); 1851 EVT VT = Op.getValueType(); 1852 1853 SDValue LHS = Op.getOperand(0); 1854 SDValue RHS = Op.getOperand(1); 1855 1856 SDValue Zero = DAG.getConstant(0, DL, VT); 1857 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1858 1859 if (VT == MVT::i32 && 1860 DAG.ComputeNumSignBits(LHS) > 8 && 1861 DAG.ComputeNumSignBits(RHS) > 8) { 1862 return LowerDIVREM24(Op, DAG, true); 1863 } 1864 if (VT == MVT::i64 && 1865 DAG.ComputeNumSignBits(LHS) > 32 && 1866 DAG.ComputeNumSignBits(RHS) > 32) { 1867 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1868 1869 //HiLo split 1870 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1871 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1872 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1873 LHS_Lo, RHS_Lo); 1874 SDValue Res[2] = { 1875 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1876 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1877 }; 1878 return DAG.getMergeValues(Res, DL); 1879 } 1880 1881 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1882 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1883 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1884 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1885 1886 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1887 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1888 1889 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1890 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1891 1892 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1893 SDValue Rem = Div.getValue(1); 1894 1895 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1896 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1897 1898 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1899 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1900 1901 SDValue Res[2] = { 1902 Div, 1903 Rem 1904 }; 1905 return DAG.getMergeValues(Res, DL); 1906 } 1907 1908 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1909 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1910 SDLoc SL(Op); 1911 EVT VT = Op.getValueType(); 1912 SDValue X = Op.getOperand(0); 1913 SDValue Y = Op.getOperand(1); 1914 1915 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1916 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1917 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1918 1919 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1920 } 1921 1922 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1923 SDLoc SL(Op); 1924 SDValue Src = Op.getOperand(0); 1925 1926 // result = trunc(src) 1927 // if (src > 0.0 && src != result) 1928 // result += 1.0 1929 1930 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1931 1932 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1933 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1934 1935 EVT SetCCVT = 1936 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1937 1938 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1939 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1940 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1941 1942 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1943 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1944 } 1945 1946 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { 1947 const unsigned FractBits = 52; 1948 const unsigned ExpBits = 11; 1949 1950 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1951 Hi, 1952 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1953 DAG.getConstant(ExpBits, SL, MVT::i32)); 1954 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1955 DAG.getConstant(1023, SL, MVT::i32)); 1956 1957 return Exp; 1958 } 1959 1960 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1961 SDLoc SL(Op); 1962 SDValue Src = Op.getOperand(0); 1963 1964 assert(Op.getValueType() == MVT::f64); 1965 1966 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1967 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1968 1969 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1970 1971 // Extract the upper half, since this is where we will find the sign and 1972 // exponent. 1973 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1974 1975 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1976 1977 const unsigned FractBits = 52; 1978 1979 // Extract the sign bit. 1980 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1981 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1982 1983 // Extend back to to 64-bits. 1984 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 1985 Zero, SignBit); 1986 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1987 1988 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1989 const SDValue FractMask 1990 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1991 1992 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1993 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1994 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1995 1996 EVT SetCCVT = 1997 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1998 1999 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2000 2001 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2002 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2003 2004 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2005 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2006 2007 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2008 } 2009 2010 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2011 SDLoc SL(Op); 2012 SDValue Src = Op.getOperand(0); 2013 2014 assert(Op.getValueType() == MVT::f64); 2015 2016 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 2017 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2018 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2019 2020 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2021 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2022 2023 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2024 2025 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 2026 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2027 2028 EVT SetCCVT = 2029 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2030 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2031 2032 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2033 } 2034 2035 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2036 // FNEARBYINT and FRINT are the same, except in their handling of FP 2037 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2038 // rint, so just treat them as equivalent. 2039 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2040 } 2041 2042 // XXX - May require not supporting f32 denormals? 2043 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 2044 SDLoc SL(Op); 2045 SDValue X = Op.getOperand(0); 2046 2047 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 2048 2049 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 2050 2051 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 2052 2053 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 2054 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 2055 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 2056 2057 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 2058 2059 EVT SetCCVT = 2060 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 2061 2062 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2063 2064 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 2065 2066 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 2067 } 2068 2069 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2070 SDLoc SL(Op); 2071 SDValue X = Op.getOperand(0); 2072 2073 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2074 2075 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2076 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2077 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2078 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2079 EVT SetCCVT = 2080 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2081 2082 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2083 2084 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2085 2086 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2087 2088 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2089 MVT::i64); 2090 2091 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2092 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2093 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2094 MVT::i64), 2095 Exp); 2096 2097 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2098 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2099 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2100 ISD::SETNE); 2101 2102 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2103 D, DAG.getConstant(0, SL, MVT::i64)); 2104 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2105 2106 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2107 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2108 2109 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2110 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2111 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2112 2113 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2114 ExpEqNegOne, 2115 DAG.getConstantFP(1.0, SL, MVT::f64), 2116 DAG.getConstantFP(0.0, SL, MVT::f64)); 2117 2118 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2119 2120 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2121 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2122 2123 return K; 2124 } 2125 2126 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2127 EVT VT = Op.getValueType(); 2128 2129 if (VT == MVT::f32) 2130 return LowerFROUND32(Op, DAG); 2131 2132 if (VT == MVT::f64) 2133 return LowerFROUND64(Op, DAG); 2134 2135 llvm_unreachable("unhandled type"); 2136 } 2137 2138 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2139 SDLoc SL(Op); 2140 SDValue Src = Op.getOperand(0); 2141 2142 // result = trunc(src); 2143 // if (src < 0.0 && src != result) 2144 // result += -1.0. 2145 2146 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2147 2148 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2149 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2150 2151 EVT SetCCVT = 2152 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2153 2154 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2155 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2156 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2157 2158 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2159 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2160 } 2161 2162 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2163 bool Signed) const { 2164 SDLoc SL(Op); 2165 SDValue Src = Op.getOperand(0); 2166 2167 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2168 2169 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2170 DAG.getConstant(0, SL, MVT::i32)); 2171 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2172 DAG.getConstant(1, SL, MVT::i32)); 2173 2174 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2175 SL, MVT::f64, Hi); 2176 2177 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2178 2179 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2180 DAG.getConstant(32, SL, MVT::i32)); 2181 2182 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2183 } 2184 2185 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2186 SelectionDAG &DAG) const { 2187 SDValue S0 = Op.getOperand(0); 2188 if (S0.getValueType() != MVT::i64) 2189 return SDValue(); 2190 2191 EVT DestVT = Op.getValueType(); 2192 if (DestVT == MVT::f64) 2193 return LowerINT_TO_FP64(Op, DAG, false); 2194 2195 assert(DestVT == MVT::f32); 2196 2197 SDLoc DL(Op); 2198 2199 // f32 uint_to_fp i64 2200 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2201 DAG.getConstant(0, DL, MVT::i32)); 2202 SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo); 2203 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2204 DAG.getConstant(1, DL, MVT::i32)); 2205 SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi); 2206 FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi, 2207 DAG.getConstantFP(4294967296.0f, DL, MVT::f32)); // 2^32 2208 return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi); 2209 } 2210 2211 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2212 SelectionDAG &DAG) const { 2213 SDValue Src = Op.getOperand(0); 2214 if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64) 2215 return LowerINT_TO_FP64(Op, DAG, true); 2216 2217 return SDValue(); 2218 } 2219 2220 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2221 bool Signed) const { 2222 SDLoc SL(Op); 2223 2224 SDValue Src = Op.getOperand(0); 2225 2226 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2227 2228 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2229 MVT::f64); 2230 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2231 MVT::f64); 2232 2233 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2234 2235 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2236 2237 2238 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2239 2240 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2241 MVT::i32, FloorMul); 2242 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2243 2244 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi); 2245 2246 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2247 } 2248 2249 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2250 SelectionDAG &DAG) const { 2251 SDValue Src = Op.getOperand(0); 2252 2253 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2254 return LowerFP64_TO_INT(Op, DAG, true); 2255 2256 return SDValue(); 2257 } 2258 2259 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2260 SelectionDAG &DAG) const { 2261 SDValue Src = Op.getOperand(0); 2262 2263 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2264 return LowerFP64_TO_INT(Op, DAG, false); 2265 2266 return SDValue(); 2267 } 2268 2269 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2270 SelectionDAG &DAG) const { 2271 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2272 MVT VT = Op.getSimpleValueType(); 2273 MVT ScalarVT = VT.getScalarType(); 2274 2275 if (!VT.isVector()) 2276 return SDValue(); 2277 2278 SDValue Src = Op.getOperand(0); 2279 SDLoc DL(Op); 2280 2281 // TODO: Don't scalarize on Evergreen? 2282 unsigned NElts = VT.getVectorNumElements(); 2283 SmallVector<SDValue, 8> Args; 2284 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2285 2286 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2287 for (unsigned I = 0; I < NElts; ++I) 2288 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2289 2290 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args); 2291 } 2292 2293 //===----------------------------------------------------------------------===// 2294 // Custom DAG optimizations 2295 //===----------------------------------------------------------------------===// 2296 2297 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2298 APInt KnownZero, KnownOne; 2299 EVT VT = Op.getValueType(); 2300 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2301 2302 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2303 } 2304 2305 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2306 EVT VT = Op.getValueType(); 2307 2308 // In order for this to be a signed 24-bit value, bit 23, must 2309 // be a sign bit. 2310 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2311 // as unsigned 24-bit values. 2312 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2313 } 2314 2315 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2316 2317 SelectionDAG &DAG = DCI.DAG; 2318 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2319 EVT VT = Op.getValueType(); 2320 2321 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2322 APInt KnownZero, KnownOne; 2323 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2324 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2325 DCI.CommitTargetLoweringOpt(TLO); 2326 } 2327 2328 template <typename IntTy> 2329 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, 2330 uint32_t Offset, uint32_t Width, SDLoc DL) { 2331 if (Width + Offset < 32) { 2332 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2333 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2334 return DAG.getConstant(Result, DL, MVT::i32); 2335 } 2336 2337 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2338 } 2339 2340 static bool usesAllNormalStores(SDNode *LoadVal) { 2341 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2342 if (!ISD::isNormalStore(*I)) 2343 return false; 2344 } 2345 2346 return true; 2347 } 2348 2349 // If we have a copy of an illegal type, replace it with a load / store of an 2350 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2351 // instructions emitted when handling extloads and truncstores. Ideally we could 2352 // recognize the pack / unpack pattern to eliminate it. 2353 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2354 DAGCombinerInfo &DCI) const { 2355 if (!DCI.isBeforeLegalize()) 2356 return SDValue(); 2357 2358 StoreSDNode *SN = cast<StoreSDNode>(N); 2359 SDValue Value = SN->getValue(); 2360 EVT VT = Value.getValueType(); 2361 2362 if (isTypeLegal(VT) || SN->isVolatile() || 2363 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2364 return SDValue(); 2365 2366 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2367 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2368 return SDValue(); 2369 2370 EVT MemVT = LoadVal->getMemoryVT(); 2371 2372 SDLoc SL(N); 2373 SelectionDAG &DAG = DCI.DAG; 2374 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2375 2376 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2377 LoadVT, SL, 2378 LoadVal->getChain(), 2379 LoadVal->getBasePtr(), 2380 LoadVal->getOffset(), 2381 LoadVT, 2382 LoadVal->getMemOperand()); 2383 2384 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2385 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2386 2387 return DAG.getStore(SN->getChain(), SL, NewLoad, 2388 SN->getBasePtr(), SN->getMemOperand()); 2389 } 2390 2391 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2392 DAGCombinerInfo &DCI) const { 2393 if (N->getValueType(0) != MVT::i64) 2394 return SDValue(); 2395 2396 // i64 (shl x, 32) -> (build_pair 0, x) 2397 2398 // Doing this with moves theoretically helps MI optimizations that understand 2399 // copies. 2 v_mov_b32_e32 will have the same code size / cycle count as 2400 // v_lshl_b64. In the SALU case, I think this is slightly worse since it 2401 // doubles the code size and I'm unsure about cycle count. 2402 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2403 if (!RHS || RHS->getZExtValue() != 32) 2404 return SDValue(); 2405 2406 SDValue LHS = N->getOperand(0); 2407 2408 SDLoc SL(N); 2409 SelectionDAG &DAG = DCI.DAG; 2410 2411 // Extract low 32-bits. 2412 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2413 2414 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2415 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, Zero, Lo); 2416 } 2417 2418 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2419 DAGCombinerInfo &DCI) const { 2420 EVT VT = N->getValueType(0); 2421 2422 if (VT.isVector() || VT.getSizeInBits() > 32) 2423 return SDValue(); 2424 2425 SelectionDAG &DAG = DCI.DAG; 2426 SDLoc DL(N); 2427 2428 SDValue N0 = N->getOperand(0); 2429 SDValue N1 = N->getOperand(1); 2430 SDValue Mul; 2431 2432 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2433 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2434 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2435 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2436 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2437 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2438 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2439 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2440 } else { 2441 return SDValue(); 2442 } 2443 2444 // We need to use sext even for MUL_U24, because MUL_U24 is used 2445 // for signed multiply of 8 and 16-bit types. 2446 return DAG.getSExtOrTrunc(Mul, DL, VT); 2447 } 2448 2449 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2450 DAGCombinerInfo &DCI) const { 2451 SelectionDAG &DAG = DCI.DAG; 2452 SDLoc DL(N); 2453 2454 switch(N->getOpcode()) { 2455 default: 2456 break; 2457 case ISD::SHL: { 2458 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2459 break; 2460 2461 return performShlCombine(N, DCI); 2462 } 2463 case ISD::MUL: 2464 return performMulCombine(N, DCI); 2465 case AMDGPUISD::MUL_I24: 2466 case AMDGPUISD::MUL_U24: { 2467 SDValue N0 = N->getOperand(0); 2468 SDValue N1 = N->getOperand(1); 2469 simplifyI24(N0, DCI); 2470 simplifyI24(N1, DCI); 2471 return SDValue(); 2472 } 2473 case ISD::SELECT: { 2474 SDValue Cond = N->getOperand(0); 2475 if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) { 2476 EVT VT = N->getValueType(0); 2477 SDValue LHS = Cond.getOperand(0); 2478 SDValue RHS = Cond.getOperand(1); 2479 SDValue CC = Cond.getOperand(2); 2480 2481 SDValue True = N->getOperand(1); 2482 SDValue False = N->getOperand(2); 2483 2484 if (VT == MVT::f32) 2485 return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI); 2486 } 2487 2488 break; 2489 } 2490 case AMDGPUISD::BFE_I32: 2491 case AMDGPUISD::BFE_U32: { 2492 assert(!N->getValueType(0).isVector() && 2493 "Vector handling of BFE not implemented"); 2494 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2495 if (!Width) 2496 break; 2497 2498 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2499 if (WidthVal == 0) 2500 return DAG.getConstant(0, DL, MVT::i32); 2501 2502 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2503 if (!Offset) 2504 break; 2505 2506 SDValue BitsFrom = N->getOperand(0); 2507 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2508 2509 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2510 2511 if (OffsetVal == 0) { 2512 // This is already sign / zero extended, so try to fold away extra BFEs. 2513 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2514 2515 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2516 if (OpSignBits >= SignBits) 2517 return BitsFrom; 2518 2519 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2520 if (Signed) { 2521 // This is a sign_extend_inreg. Replace it to take advantage of existing 2522 // DAG Combines. If not eliminated, we will match back to BFE during 2523 // selection. 2524 2525 // TODO: The sext_inreg of extended types ends, although we can could 2526 // handle them in a single BFE. 2527 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2528 DAG.getValueType(SmallVT)); 2529 } 2530 2531 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2532 } 2533 2534 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2535 if (Signed) { 2536 return constantFoldBFE<int32_t>(DAG, 2537 CVal->getSExtValue(), 2538 OffsetVal, 2539 WidthVal, 2540 DL); 2541 } 2542 2543 return constantFoldBFE<uint32_t>(DAG, 2544 CVal->getZExtValue(), 2545 OffsetVal, 2546 WidthVal, 2547 DL); 2548 } 2549 2550 if ((OffsetVal + WidthVal) >= 32) { 2551 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2552 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2553 BitsFrom, ShiftVal); 2554 } 2555 2556 if (BitsFrom.hasOneUse()) { 2557 APInt Demanded = APInt::getBitsSet(32, 2558 OffsetVal, 2559 OffsetVal + WidthVal); 2560 2561 APInt KnownZero, KnownOne; 2562 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2563 !DCI.isBeforeLegalizeOps()); 2564 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2565 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2566 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2567 KnownZero, KnownOne, TLO)) { 2568 DCI.CommitTargetLoweringOpt(TLO); 2569 } 2570 } 2571 2572 break; 2573 } 2574 2575 case ISD::STORE: 2576 return performStoreCombine(N, DCI); 2577 } 2578 return SDValue(); 2579 } 2580 2581 //===----------------------------------------------------------------------===// 2582 // Helper functions 2583 //===----------------------------------------------------------------------===// 2584 2585 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2586 SelectionDAG &DAG, 2587 const Function *F, 2588 const SmallVectorImpl<ISD::InputArg> &Ins, 2589 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2590 2591 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2592 if (Ins[i].ArgVT == Ins[i].VT) { 2593 OrigIns.push_back(Ins[i]); 2594 continue; 2595 } 2596 2597 EVT VT; 2598 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2599 // Vector has been split into scalars. 2600 VT = Ins[i].ArgVT.getVectorElementType(); 2601 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2602 Ins[i].ArgVT.getVectorElementType() != 2603 Ins[i].VT.getVectorElementType()) { 2604 // Vector elements have been promoted 2605 VT = Ins[i].ArgVT; 2606 } else { 2607 // Vector has been spilt into smaller vectors. 2608 VT = Ins[i].VT; 2609 } 2610 2611 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2612 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2613 OrigIns.push_back(Arg); 2614 } 2615 } 2616 2617 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const { 2618 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2619 return CFP->isExactlyValue(1.0); 2620 } 2621 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 2622 return C->isAllOnesValue(); 2623 } 2624 return false; 2625 } 2626 2627 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const { 2628 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2629 return CFP->getValueAPF().isZero(); 2630 } 2631 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 2632 return C->isNullValue(); 2633 } 2634 return false; 2635 } 2636 2637 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2638 const TargetRegisterClass *RC, 2639 unsigned Reg, EVT VT) const { 2640 MachineFunction &MF = DAG.getMachineFunction(); 2641 MachineRegisterInfo &MRI = MF.getRegInfo(); 2642 unsigned VirtualRegister; 2643 if (!MRI.isLiveIn(Reg)) { 2644 VirtualRegister = MRI.createVirtualRegister(RC); 2645 MRI.addLiveIn(Reg, VirtualRegister); 2646 } else { 2647 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2648 } 2649 return DAG.getRegister(VirtualRegister, VT); 2650 } 2651 2652 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2653 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2654 uint64_t ArgOffset = MFI->ABIArgOffset; 2655 switch (Param) { 2656 case GRID_DIM: 2657 return ArgOffset; 2658 case GRID_OFFSET: 2659 return ArgOffset + 4; 2660 } 2661 llvm_unreachable("unexpected implicit parameter type"); 2662 } 2663 2664 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2665 2666 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2667 switch ((AMDGPUISD::NodeType)Opcode) { 2668 case AMDGPUISD::FIRST_NUMBER: break; 2669 // AMDIL DAG nodes 2670 NODE_NAME_CASE(CALL); 2671 NODE_NAME_CASE(UMUL); 2672 NODE_NAME_CASE(RET_FLAG); 2673 NODE_NAME_CASE(BRANCH_COND); 2674 2675 // AMDGPU DAG nodes 2676 NODE_NAME_CASE(DWORDADDR) 2677 NODE_NAME_CASE(FRACT) 2678 NODE_NAME_CASE(CLAMP) 2679 NODE_NAME_CASE(COS_HW) 2680 NODE_NAME_CASE(SIN_HW) 2681 NODE_NAME_CASE(FMAX_LEGACY) 2682 NODE_NAME_CASE(FMIN_LEGACY) 2683 NODE_NAME_CASE(FMAX3) 2684 NODE_NAME_CASE(SMAX3) 2685 NODE_NAME_CASE(UMAX3) 2686 NODE_NAME_CASE(FMIN3) 2687 NODE_NAME_CASE(SMIN3) 2688 NODE_NAME_CASE(UMIN3) 2689 NODE_NAME_CASE(URECIP) 2690 NODE_NAME_CASE(DIV_SCALE) 2691 NODE_NAME_CASE(DIV_FMAS) 2692 NODE_NAME_CASE(DIV_FIXUP) 2693 NODE_NAME_CASE(TRIG_PREOP) 2694 NODE_NAME_CASE(RCP) 2695 NODE_NAME_CASE(RSQ) 2696 NODE_NAME_CASE(RSQ_LEGACY) 2697 NODE_NAME_CASE(RSQ_CLAMPED) 2698 NODE_NAME_CASE(LDEXP) 2699 NODE_NAME_CASE(FP_CLASS) 2700 NODE_NAME_CASE(DOT4) 2701 NODE_NAME_CASE(CARRY) 2702 NODE_NAME_CASE(BORROW) 2703 NODE_NAME_CASE(BFE_U32) 2704 NODE_NAME_CASE(BFE_I32) 2705 NODE_NAME_CASE(BFI) 2706 NODE_NAME_CASE(BFM) 2707 NODE_NAME_CASE(BREV) 2708 NODE_NAME_CASE(MUL_U24) 2709 NODE_NAME_CASE(MUL_I24) 2710 NODE_NAME_CASE(MAD_U24) 2711 NODE_NAME_CASE(MAD_I24) 2712 NODE_NAME_CASE(TEXTURE_FETCH) 2713 NODE_NAME_CASE(EXPORT) 2714 NODE_NAME_CASE(CONST_ADDRESS) 2715 NODE_NAME_CASE(REGISTER_LOAD) 2716 NODE_NAME_CASE(REGISTER_STORE) 2717 NODE_NAME_CASE(LOAD_CONSTANT) 2718 NODE_NAME_CASE(LOAD_INPUT) 2719 NODE_NAME_CASE(SAMPLE) 2720 NODE_NAME_CASE(SAMPLEB) 2721 NODE_NAME_CASE(SAMPLED) 2722 NODE_NAME_CASE(SAMPLEL) 2723 NODE_NAME_CASE(CVT_F32_UBYTE0) 2724 NODE_NAME_CASE(CVT_F32_UBYTE1) 2725 NODE_NAME_CASE(CVT_F32_UBYTE2) 2726 NODE_NAME_CASE(CVT_F32_UBYTE3) 2727 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2728 NODE_NAME_CASE(CONST_DATA_PTR) 2729 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2730 NODE_NAME_CASE(SENDMSG) 2731 NODE_NAME_CASE(INTERP_MOV) 2732 NODE_NAME_CASE(INTERP_P1) 2733 NODE_NAME_CASE(INTERP_P2) 2734 NODE_NAME_CASE(STORE_MSKOR) 2735 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2736 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2737 } 2738 return nullptr; 2739 } 2740 2741 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2742 DAGCombinerInfo &DCI, 2743 unsigned &RefinementSteps, 2744 bool &UseOneConstNR) const { 2745 SelectionDAG &DAG = DCI.DAG; 2746 EVT VT = Operand.getValueType(); 2747 2748 if (VT == MVT::f32) { 2749 RefinementSteps = 0; 2750 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2751 } 2752 2753 // TODO: There is also f64 rsq instruction, but the documentation is less 2754 // clear on its precision. 2755 2756 return SDValue(); 2757 } 2758 2759 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2760 DAGCombinerInfo &DCI, 2761 unsigned &RefinementSteps) const { 2762 SelectionDAG &DAG = DCI.DAG; 2763 EVT VT = Operand.getValueType(); 2764 2765 if (VT == MVT::f32) { 2766 // Reciprocal, < 1 ulp error. 2767 // 2768 // This reciprocal approximation converges to < 0.5 ulp error with one 2769 // newton rhapson performed with two fused multiple adds (FMAs). 2770 2771 RefinementSteps = 0; 2772 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2773 } 2774 2775 // TODO: There is also f64 rcp instruction, but the documentation is less 2776 // clear on its precision. 2777 2778 return SDValue(); 2779 } 2780 2781 static void computeKnownBitsForMinMax(const SDValue Op0, 2782 const SDValue Op1, 2783 APInt &KnownZero, 2784 APInt &KnownOne, 2785 const SelectionDAG &DAG, 2786 unsigned Depth) { 2787 APInt Op0Zero, Op0One; 2788 APInt Op1Zero, Op1One; 2789 DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth); 2790 DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth); 2791 2792 KnownZero = Op0Zero & Op1Zero; 2793 KnownOne = Op0One & Op1One; 2794 } 2795 2796 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2797 const SDValue Op, 2798 APInt &KnownZero, 2799 APInt &KnownOne, 2800 const SelectionDAG &DAG, 2801 unsigned Depth) const { 2802 2803 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2804 2805 APInt KnownZero2; 2806 APInt KnownOne2; 2807 unsigned Opc = Op.getOpcode(); 2808 2809 switch (Opc) { 2810 default: 2811 break; 2812 case ISD::INTRINSIC_WO_CHAIN: { 2813 // FIXME: The intrinsic should just use the node. 2814 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 2815 case AMDGPUIntrinsic::AMDGPU_imax: 2816 case AMDGPUIntrinsic::AMDGPU_umax: 2817 case AMDGPUIntrinsic::AMDGPU_imin: 2818 case AMDGPUIntrinsic::AMDGPU_umin: 2819 computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2), 2820 KnownZero, KnownOne, DAG, Depth); 2821 break; 2822 default: 2823 break; 2824 } 2825 2826 break; 2827 } 2828 case AMDGPUISD::CARRY: 2829 case AMDGPUISD::BORROW: { 2830 KnownZero = APInt::getHighBitsSet(32, 31); 2831 break; 2832 } 2833 2834 case AMDGPUISD::BFE_I32: 2835 case AMDGPUISD::BFE_U32: { 2836 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2837 if (!CWidth) 2838 return; 2839 2840 unsigned BitWidth = 32; 2841 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2842 2843 if (Opc == AMDGPUISD::BFE_U32) 2844 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2845 2846 break; 2847 } 2848 } 2849 } 2850 2851 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2852 SDValue Op, 2853 const SelectionDAG &DAG, 2854 unsigned Depth) const { 2855 switch (Op.getOpcode()) { 2856 case AMDGPUISD::BFE_I32: { 2857 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2858 if (!Width) 2859 return 1; 2860 2861 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2862 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2863 if (!Offset || !Offset->isNullValue()) 2864 return SignBits; 2865 2866 // TODO: Could probably figure something out with non-0 offsets. 2867 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2868 return std::max(SignBits, Op0SignBits); 2869 } 2870 2871 case AMDGPUISD::BFE_U32: { 2872 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2873 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2874 } 2875 2876 case AMDGPUISD::CARRY: 2877 case AMDGPUISD::BORROW: 2878 return 31; 2879 2880 default: 2881 return 1; 2882 } 2883 } 2884