1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "SIInstrInfo.h" 32 using namespace llvm; 33 34 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), 38 ArgFlags.getOrigAlign()); 39 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 40 41 return true; 42 } 43 44 #include "AMDGPUGenCallingConv.inc" 45 46 // Find a larger type to do a load / store of a vector with. 47 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 48 unsigned StoreSize = VT.getStoreSizeInBits(); 49 if (StoreSize <= 32) 50 return EVT::getIntegerVT(Ctx, StoreSize); 51 52 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 53 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 54 } 55 56 // Type for a vector that will be loaded to. 57 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 58 unsigned StoreSize = VT.getStoreSizeInBits(); 59 if (StoreSize <= 32) 60 return EVT::getIntegerVT(Ctx, 32); 61 62 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 // Lower floating point store/load to integer store/load to reduce the number 69 // of patterns in tablegen. 70 setOperationAction(ISD::LOAD, MVT::f32, Promote); 71 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 72 73 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 75 76 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 78 79 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 81 82 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 84 85 setOperationAction(ISD::LOAD, MVT::i64, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 87 88 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 90 91 setOperationAction(ISD::LOAD, MVT::f64, Promote); 92 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 93 94 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 95 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 96 97 // There are no 64-bit extloads. These should be done as a 32-bit extload and 98 // an extension to 64-bit. 99 for (MVT VT : MVT::integer_valuetypes()) { 100 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 101 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 102 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 103 } 104 105 for (MVT VT : MVT::integer_valuetypes()) { 106 if (VT == MVT::i64) 107 continue; 108 109 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 110 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 111 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 112 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 113 114 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 115 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 116 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 117 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 118 119 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 120 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 121 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 122 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 123 } 124 125 for (MVT VT : MVT::integer_vector_valuetypes()) { 126 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 127 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 128 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 129 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 130 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 131 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 132 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 133 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 134 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 135 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 138 } 139 140 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 141 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 142 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 143 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 144 145 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 146 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 147 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 148 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 149 150 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 151 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 152 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 153 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 154 155 setOperationAction(ISD::STORE, MVT::f32, Promote); 156 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 157 158 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 159 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 160 161 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 162 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 163 164 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 165 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 166 167 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 168 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 169 170 setOperationAction(ISD::STORE, MVT::i64, Promote); 171 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 172 173 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 174 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 175 176 setOperationAction(ISD::STORE, MVT::f64, Promote); 177 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 178 179 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 180 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 181 182 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 183 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 184 185 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 186 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 187 188 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 189 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 190 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 191 192 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 193 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 194 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 195 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 196 197 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 198 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 199 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 200 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 201 202 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 203 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 204 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 205 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 206 207 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 208 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 209 210 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 211 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 212 213 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 214 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 215 216 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 217 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 218 219 220 setOperationAction(ISD::Constant, MVT::i32, Legal); 221 setOperationAction(ISD::Constant, MVT::i64, Legal); 222 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 223 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 224 225 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 226 setOperationAction(ISD::BRIND, MVT::Other, Expand); 227 228 // This is totally unsupported, just custom lower to produce an error. 229 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 230 231 // We need to custom lower some of the intrinsics 232 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 233 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 234 235 // Library functions. These default to Expand, but we have instructions 236 // for them. 237 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 238 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 239 setOperationAction(ISD::FPOW, MVT::f32, Legal); 240 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 241 setOperationAction(ISD::FABS, MVT::f32, Legal); 242 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 243 setOperationAction(ISD::FRINT, MVT::f32, Legal); 244 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 245 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 246 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 247 248 setOperationAction(ISD::FROUND, MVT::f32, Custom); 249 setOperationAction(ISD::FROUND, MVT::f64, Custom); 250 251 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 252 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 253 254 setOperationAction(ISD::FREM, MVT::f32, Custom); 255 setOperationAction(ISD::FREM, MVT::f64, Custom); 256 257 // v_mad_f32 does not support denormals according to some sources. 258 if (!Subtarget->hasFP32Denormals()) 259 setOperationAction(ISD::FMAD, MVT::f32, Legal); 260 261 // Expand to fneg + fadd. 262 setOperationAction(ISD::FSUB, MVT::f64, Expand); 263 264 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 265 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 266 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 267 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 268 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 269 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 270 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 271 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 272 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 273 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 274 275 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 276 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 277 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 278 setOperationAction(ISD::FRINT, MVT::f64, Custom); 279 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 280 } 281 282 if (!Subtarget->hasBFI()) { 283 // fcopysign can be done in a single instruction with BFI. 284 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 285 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 286 } 287 288 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 289 290 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 291 for (MVT VT : ScalarIntVTs) { 292 // These should use [SU]DIVREM, so set them to expand 293 setOperationAction(ISD::SDIV, VT, Expand); 294 setOperationAction(ISD::UDIV, VT, Expand); 295 setOperationAction(ISD::SREM, VT, Expand); 296 setOperationAction(ISD::UREM, VT, Expand); 297 298 // GPU does not have divrem function for signed or unsigned. 299 setOperationAction(ISD::SDIVREM, VT, Custom); 300 setOperationAction(ISD::UDIVREM, VT, Custom); 301 302 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 303 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 304 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 305 306 setOperationAction(ISD::BSWAP, VT, Expand); 307 setOperationAction(ISD::CTTZ, VT, Expand); 308 setOperationAction(ISD::CTLZ, VT, Expand); 309 } 310 311 if (!Subtarget->hasBCNT(32)) 312 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 313 314 if (!Subtarget->hasBCNT(64)) 315 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 316 317 // The hardware supports 32-bit ROTR, but not ROTL. 318 setOperationAction(ISD::ROTL, MVT::i32, Expand); 319 setOperationAction(ISD::ROTL, MVT::i64, Expand); 320 setOperationAction(ISD::ROTR, MVT::i64, Expand); 321 322 setOperationAction(ISD::MUL, MVT::i64, Expand); 323 setOperationAction(ISD::MULHU, MVT::i64, Expand); 324 setOperationAction(ISD::MULHS, MVT::i64, Expand); 325 setOperationAction(ISD::UDIV, MVT::i32, Expand); 326 setOperationAction(ISD::UREM, MVT::i32, Expand); 327 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 328 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 329 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 330 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 331 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 332 333 setOperationAction(ISD::SMIN, MVT::i32, Legal); 334 setOperationAction(ISD::UMIN, MVT::i32, Legal); 335 setOperationAction(ISD::SMAX, MVT::i32, Legal); 336 setOperationAction(ISD::UMAX, MVT::i32, Legal); 337 338 if (Subtarget->hasFFBH()) 339 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 340 341 if (Subtarget->hasFFBL()) 342 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 343 344 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 345 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 346 347 // We only really have 32-bit BFE instructions (and 16-bit on VI). 348 // 349 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 350 // effort to match them now. We want this to be false for i64 cases when the 351 // extraction isn't restricted to the upper or lower half. Ideally we would 352 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 353 // span the midpoint are probably relatively rare, so don't worry about them 354 // for now. 355 if (Subtarget->hasBFE()) 356 setHasExtractBitsInsn(true); 357 358 static const MVT::SimpleValueType VectorIntTypes[] = { 359 MVT::v2i32, MVT::v4i32 360 }; 361 362 for (MVT VT : VectorIntTypes) { 363 // Expand the following operations for the current type by default. 364 setOperationAction(ISD::ADD, VT, Expand); 365 setOperationAction(ISD::AND, VT, Expand); 366 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 367 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 368 setOperationAction(ISD::MUL, VT, Expand); 369 setOperationAction(ISD::OR, VT, Expand); 370 setOperationAction(ISD::SHL, VT, Expand); 371 setOperationAction(ISD::SRA, VT, Expand); 372 setOperationAction(ISD::SRL, VT, Expand); 373 setOperationAction(ISD::ROTL, VT, Expand); 374 setOperationAction(ISD::ROTR, VT, Expand); 375 setOperationAction(ISD::SUB, VT, Expand); 376 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 377 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 378 setOperationAction(ISD::SDIV, VT, Expand); 379 setOperationAction(ISD::UDIV, VT, Expand); 380 setOperationAction(ISD::SREM, VT, Expand); 381 setOperationAction(ISD::UREM, VT, Expand); 382 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 383 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 384 setOperationAction(ISD::SDIVREM, VT, Custom); 385 setOperationAction(ISD::UDIVREM, VT, Expand); 386 setOperationAction(ISD::ADDC, VT, Expand); 387 setOperationAction(ISD::SUBC, VT, Expand); 388 setOperationAction(ISD::ADDE, VT, Expand); 389 setOperationAction(ISD::SUBE, VT, Expand); 390 setOperationAction(ISD::SELECT, VT, Expand); 391 setOperationAction(ISD::VSELECT, VT, Expand); 392 setOperationAction(ISD::SELECT_CC, VT, Expand); 393 setOperationAction(ISD::XOR, VT, Expand); 394 setOperationAction(ISD::BSWAP, VT, Expand); 395 setOperationAction(ISD::CTPOP, VT, Expand); 396 setOperationAction(ISD::CTTZ, VT, Expand); 397 setOperationAction(ISD::CTLZ, VT, Expand); 398 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 399 } 400 401 static const MVT::SimpleValueType FloatVectorTypes[] = { 402 MVT::v2f32, MVT::v4f32 403 }; 404 405 for (MVT VT : FloatVectorTypes) { 406 setOperationAction(ISD::FABS, VT, Expand); 407 setOperationAction(ISD::FMINNUM, VT, Expand); 408 setOperationAction(ISD::FMAXNUM, VT, Expand); 409 setOperationAction(ISD::FADD, VT, Expand); 410 setOperationAction(ISD::FCEIL, VT, Expand); 411 setOperationAction(ISD::FCOS, VT, Expand); 412 setOperationAction(ISD::FDIV, VT, Expand); 413 setOperationAction(ISD::FEXP2, VT, Expand); 414 setOperationAction(ISD::FLOG2, VT, Expand); 415 setOperationAction(ISD::FREM, VT, Expand); 416 setOperationAction(ISD::FPOW, VT, Expand); 417 setOperationAction(ISD::FFLOOR, VT, Expand); 418 setOperationAction(ISD::FTRUNC, VT, Expand); 419 setOperationAction(ISD::FMUL, VT, Expand); 420 setOperationAction(ISD::FMA, VT, Expand); 421 setOperationAction(ISD::FRINT, VT, Expand); 422 setOperationAction(ISD::FNEARBYINT, VT, Expand); 423 setOperationAction(ISD::FSQRT, VT, Expand); 424 setOperationAction(ISD::FSIN, VT, Expand); 425 setOperationAction(ISD::FSUB, VT, Expand); 426 setOperationAction(ISD::FNEG, VT, Expand); 427 setOperationAction(ISD::VSELECT, VT, Expand); 428 setOperationAction(ISD::SELECT_CC, VT, Expand); 429 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 430 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 431 } 432 433 // This causes using an unrolled select operation rather than expansion with 434 // bit operations. This is in general better, but the alternative using BFI 435 // instructions may be better if the select sources are SGPRs. 436 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 437 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 438 439 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 440 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 441 442 setBooleanContents(ZeroOrNegativeOneBooleanContent); 443 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 444 445 setSchedulingPreference(Sched::RegPressure); 446 setJumpIsExpensive(true); 447 448 // SI at least has hardware support for floating point exceptions, but no way 449 // of using or handling them is implemented. They are also optional in OpenCL 450 // (Section 7.3) 451 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 452 453 setSelectIsExpensive(false); 454 PredictableSelectIsExpensive = false; 455 456 setFsqrtIsCheap(true); 457 458 // We want to find all load dependencies for long chains of stores to enable 459 // merging into very wide vectors. The problem is with vectors with > 4 460 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 461 // vectors are a legal type, even though we have to split the loads 462 // usually. When we can more precisely specify load legality per address 463 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 464 // smarter so that they can figure out what to do in 2 iterations without all 465 // N > 4 stores on the same chain. 466 GatherAllAliasesMaxDepth = 16; 467 468 // FIXME: Need to really handle these. 469 MaxStoresPerMemcpy = 4096; 470 MaxStoresPerMemmove = 4096; 471 MaxStoresPerMemset = 4096; 472 473 setTargetDAGCombine(ISD::BITCAST); 474 setTargetDAGCombine(ISD::AND); 475 setTargetDAGCombine(ISD::SHL); 476 setTargetDAGCombine(ISD::SRA); 477 setTargetDAGCombine(ISD::SRL); 478 setTargetDAGCombine(ISD::MUL); 479 setTargetDAGCombine(ISD::SELECT); 480 setTargetDAGCombine(ISD::SELECT_CC); 481 setTargetDAGCombine(ISD::STORE); 482 setTargetDAGCombine(ISD::FADD); 483 setTargetDAGCombine(ISD::FSUB); 484 } 485 486 //===----------------------------------------------------------------------===// 487 // Target Information 488 //===----------------------------------------------------------------------===// 489 490 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 491 return MVT::i32; 492 } 493 494 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 495 return true; 496 } 497 498 // The backend supports 32 and 64 bit floating point immediates. 499 // FIXME: Why are we reporting vectors of FP immediates as legal? 500 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 501 EVT ScalarVT = VT.getScalarType(); 502 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 503 } 504 505 // We don't want to shrink f64 / f32 constants. 506 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 507 EVT ScalarVT = VT.getScalarType(); 508 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 509 } 510 511 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 512 ISD::LoadExtType, 513 EVT NewVT) const { 514 515 unsigned NewSize = NewVT.getStoreSizeInBits(); 516 517 // If we are reducing to a 32-bit load, this is always better. 518 if (NewSize == 32) 519 return true; 520 521 EVT OldVT = N->getValueType(0); 522 unsigned OldSize = OldVT.getStoreSizeInBits(); 523 524 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 525 // extloads, so doing one requires using a buffer_load. In cases where we 526 // still couldn't use a scalar load, using the wider load shouldn't really 527 // hurt anything. 528 529 // If the old size already had to be an extload, there's no harm in continuing 530 // to reduce the width. 531 return (OldSize < 32); 532 } 533 534 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 535 EVT CastTy) const { 536 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 537 return true; 538 539 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 540 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 541 542 return ((LScalarSize <= CastScalarSize) || 543 (CastScalarSize >= 32) || 544 (LScalarSize < 32)); 545 } 546 547 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 548 // profitable with the expansion for 64-bit since it's generally good to 549 // speculate things. 550 // FIXME: These should really have the size as a parameter. 551 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 552 return true; 553 } 554 555 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 556 return true; 557 } 558 559 //===---------------------------------------------------------------------===// 560 // Target Properties 561 //===---------------------------------------------------------------------===// 562 563 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 564 assert(VT.isFloatingPoint()); 565 return VT == MVT::f32 || VT == MVT::f64; 566 } 567 568 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 569 assert(VT.isFloatingPoint()); 570 return VT == MVT::f32 || VT == MVT::f64; 571 } 572 573 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 574 unsigned NumElem, 575 unsigned AS) const { 576 return true; 577 } 578 579 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 580 // There are few operations which truly have vector input operands. Any vector 581 // operation is going to involve operations on each component, and a 582 // build_vector will be a copy per element, so it always makes sense to use a 583 // build_vector input in place of the extracted element to avoid a copy into a 584 // super register. 585 // 586 // We should probably only do this if all users are extracts only, but this 587 // should be the common case. 588 return true; 589 } 590 591 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 592 // Truncate is just accessing a subregister. 593 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 594 } 595 596 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 597 // Truncate is just accessing a subregister. 598 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 599 (Dest->getPrimitiveSizeInBits() % 32 == 0); 600 } 601 602 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 603 unsigned SrcSize = Src->getScalarSizeInBits(); 604 unsigned DestSize = Dest->getScalarSizeInBits(); 605 606 return SrcSize == 32 && DestSize == 64; 607 } 608 609 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 610 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 611 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 612 // this will enable reducing 64-bit operations the 32-bit, which is always 613 // good. 614 return Src == MVT::i32 && Dest == MVT::i64; 615 } 616 617 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 618 return isZExtFree(Val.getValueType(), VT2); 619 } 620 621 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 622 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 623 // limited number of native 64-bit operations. Shrinking an operation to fit 624 // in a single 32-bit register should always be helpful. As currently used, 625 // this is much less general than the name suggests, and is only used in 626 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 627 // not profitable, and may actually be harmful. 628 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 629 } 630 631 //===---------------------------------------------------------------------===// 632 // TargetLowering Callbacks 633 //===---------------------------------------------------------------------===// 634 635 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 636 const SmallVectorImpl<ISD::InputArg> &Ins) const { 637 638 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 639 } 640 641 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 642 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 643 644 State.AnalyzeReturn(Outs, RetCC_SI); 645 } 646 647 SDValue AMDGPUTargetLowering::LowerReturn( 648 SDValue Chain, 649 CallingConv::ID CallConv, 650 bool isVarArg, 651 const SmallVectorImpl<ISD::OutputArg> &Outs, 652 const SmallVectorImpl<SDValue> &OutVals, 653 SDLoc DL, SelectionDAG &DAG) const { 654 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 655 } 656 657 //===---------------------------------------------------------------------===// 658 // Target specific lowering 659 //===---------------------------------------------------------------------===// 660 661 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 662 SmallVectorImpl<SDValue> &InVals) const { 663 SDValue Callee = CLI.Callee; 664 SelectionDAG &DAG = CLI.DAG; 665 666 const Function &Fn = *DAG.getMachineFunction().getFunction(); 667 668 StringRef FuncName("<unknown>"); 669 670 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 671 FuncName = G->getSymbol(); 672 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 673 FuncName = G->getGlobal()->getName(); 674 675 DiagnosticInfoUnsupported NoCalls( 676 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 677 DAG.getContext()->diagnose(NoCalls); 678 679 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 680 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 681 682 return DAG.getEntryNode(); 683 } 684 685 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 686 SelectionDAG &DAG) const { 687 const Function &Fn = *DAG.getMachineFunction().getFunction(); 688 689 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 690 SDLoc(Op).getDebugLoc()); 691 DAG.getContext()->diagnose(NoDynamicAlloca); 692 return SDValue(); 693 } 694 695 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 696 SelectionDAG &DAG) const { 697 switch (Op.getOpcode()) { 698 default: 699 Op->dump(&DAG); 700 llvm_unreachable("Custom lowering code for this" 701 "instruction is not implemented yet!"); 702 break; 703 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 704 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 705 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 706 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 707 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 708 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 709 case ISD::FREM: return LowerFREM(Op, DAG); 710 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 711 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 712 case ISD::FRINT: return LowerFRINT(Op, DAG); 713 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 714 case ISD::FROUND: return LowerFROUND(Op, DAG); 715 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 716 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 717 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 718 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 719 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 720 case ISD::CTLZ: 721 case ISD::CTLZ_ZERO_UNDEF: 722 return LowerCTLZ(Op, DAG); 723 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 724 } 725 return Op; 726 } 727 728 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 729 SmallVectorImpl<SDValue> &Results, 730 SelectionDAG &DAG) const { 731 switch (N->getOpcode()) { 732 case ISD::SIGN_EXTEND_INREG: 733 // Different parts of legalization seem to interpret which type of 734 // sign_extend_inreg is the one to check for custom lowering. The extended 735 // from type is what really matters, but some places check for custom 736 // lowering of the result type. This results in trying to use 737 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 738 // nothing here and let the illegal result integer be handled normally. 739 return; 740 default: 741 return; 742 } 743 } 744 745 // FIXME: This implements accesses to initialized globals in the constant 746 // address space by copying them to private and accessing that. It does not 747 // properly handle illegal types or vectors. The private vector loads are not 748 // scalarized, and the illegal scalars hit an assertion. This technique will not 749 // work well with large initializers, and this should eventually be 750 // removed. Initialized globals should be placed into a data section that the 751 // runtime will load into a buffer before the kernel is executed. Uses of the 752 // global need to be replaced with a pointer loaded from an implicit kernel 753 // argument into this buffer holding the copy of the data, which will remove the 754 // need for any of this. 755 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 756 const GlobalValue *GV, 757 const SDValue &InitPtr, 758 SDValue Chain, 759 SelectionDAG &DAG) const { 760 const DataLayout &TD = DAG.getDataLayout(); 761 SDLoc DL(InitPtr); 762 Type *InitTy = Init->getType(); 763 764 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 765 EVT VT = EVT::getEVT(InitTy); 766 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 767 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 768 MachinePointerInfo(UndefValue::get(PtrTy)), false, 769 false, TD.getPrefTypeAlignment(InitTy)); 770 } 771 772 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 773 EVT VT = EVT::getEVT(CFP->getType()); 774 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 775 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 776 MachinePointerInfo(UndefValue::get(PtrTy)), false, 777 false, TD.getPrefTypeAlignment(CFP->getType())); 778 } 779 780 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 781 const StructLayout *SL = TD.getStructLayout(ST); 782 783 EVT PtrVT = InitPtr.getValueType(); 784 SmallVector<SDValue, 8> Chains; 785 786 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 787 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 788 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 789 790 Constant *Elt = Init->getAggregateElement(I); 791 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 792 } 793 794 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 795 } 796 797 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 798 EVT PtrVT = InitPtr.getValueType(); 799 800 unsigned NumElements; 801 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 802 NumElements = AT->getNumElements(); 803 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 804 NumElements = VT->getNumElements(); 805 else 806 llvm_unreachable("Unexpected type"); 807 808 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 809 SmallVector<SDValue, 8> Chains; 810 for (unsigned i = 0; i < NumElements; ++i) { 811 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 812 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 813 814 Constant *Elt = Init->getAggregateElement(i); 815 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 816 } 817 818 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 819 } 820 821 if (isa<UndefValue>(Init)) { 822 EVT VT = EVT::getEVT(InitTy); 823 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 824 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 825 MachinePointerInfo(UndefValue::get(PtrTy)), false, 826 false, TD.getPrefTypeAlignment(InitTy)); 827 } 828 829 Init->dump(); 830 llvm_unreachable("Unhandled constant initializer"); 831 } 832 833 static bool hasDefinedInitializer(const GlobalValue *GV) { 834 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 835 if (!GVar || !GVar->hasInitializer()) 836 return false; 837 838 return !isa<UndefValue>(GVar->getInitializer()); 839 } 840 841 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 842 SDValue Op, 843 SelectionDAG &DAG) const { 844 845 const DataLayout &DL = DAG.getDataLayout(); 846 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 847 const GlobalValue *GV = G->getGlobal(); 848 849 switch (G->getAddressSpace()) { 850 case AMDGPUAS::CONSTANT_ADDRESS: { 851 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 852 SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(G), ConstPtrVT); 853 return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(G), ConstPtrVT, GA); 854 } 855 case AMDGPUAS::LOCAL_ADDRESS: { 856 // XXX: What does the value of G->getOffset() mean? 857 assert(G->getOffset() == 0 && 858 "Do not know what to do with an non-zero offset"); 859 860 // TODO: We could emit code to handle the initialization somewhere. 861 if (hasDefinedInitializer(GV)) 862 break; 863 864 unsigned Offset; 865 if (MFI->LocalMemoryObjects.count(GV) == 0) { 866 unsigned Align = GV->getAlignment(); 867 if (Align == 0) 868 Align = DL.getABITypeAlignment(GV->getValueType()); 869 870 /// TODO: We should sort these to minimize wasted space due to alignment 871 /// padding. Currently the padding is decided by the first encountered use 872 /// during lowering. 873 Offset = MFI->LDSSize = alignTo(MFI->LDSSize, Align); 874 MFI->LocalMemoryObjects[GV] = Offset; 875 MFI->LDSSize += DL.getTypeAllocSize(GV->getValueType()); 876 } else { 877 Offset = MFI->LocalMemoryObjects[GV]; 878 } 879 880 return DAG.getConstant(Offset, SDLoc(Op), 881 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 882 } 883 } 884 885 const Function &Fn = *DAG.getMachineFunction().getFunction(); 886 DiagnosticInfoUnsupported BadInit( 887 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 888 DAG.getContext()->diagnose(BadInit); 889 return SDValue(); 890 } 891 892 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 893 SelectionDAG &DAG) const { 894 SmallVector<SDValue, 8> Args; 895 896 for (const SDUse &U : Op->ops()) 897 DAG.ExtractVectorElements(U.get(), Args); 898 899 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 900 } 901 902 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 903 SelectionDAG &DAG) const { 904 905 SmallVector<SDValue, 8> Args; 906 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 907 EVT VT = Op.getValueType(); 908 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 909 VT.getVectorNumElements()); 910 911 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 912 } 913 914 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 915 SelectionDAG &DAG) const { 916 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 917 SDLoc DL(Op); 918 EVT VT = Op.getValueType(); 919 920 switch (IntrinsicID) { 921 default: return Op; 922 case AMDGPUIntrinsic::AMDGPU_clamp: 923 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 924 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 925 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 926 927 case Intrinsic::AMDGPU_ldexp: // Legacy name 928 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 929 Op.getOperand(2)); 930 931 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 932 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 933 Op.getOperand(1), 934 Op.getOperand(2), 935 Op.getOperand(3)); 936 937 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 938 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 939 Op.getOperand(1), 940 Op.getOperand(2), 941 Op.getOperand(3)); 942 943 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 944 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 945 946 case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name 947 return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1)); 948 } 949 } 950 951 /// \brief Generate Min/Max node 952 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, 953 EVT VT, 954 SDValue LHS, 955 SDValue RHS, 956 SDValue True, 957 SDValue False, 958 SDValue CC, 959 DAGCombinerInfo &DCI) const { 960 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 961 return SDValue(); 962 963 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 964 return SDValue(); 965 966 SelectionDAG &DAG = DCI.DAG; 967 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 968 switch (CCOpcode) { 969 case ISD::SETOEQ: 970 case ISD::SETONE: 971 case ISD::SETUNE: 972 case ISD::SETNE: 973 case ISD::SETUEQ: 974 case ISD::SETEQ: 975 case ISD::SETFALSE: 976 case ISD::SETFALSE2: 977 case ISD::SETTRUE: 978 case ISD::SETTRUE2: 979 case ISD::SETUO: 980 case ISD::SETO: 981 break; 982 case ISD::SETULE: 983 case ISD::SETULT: { 984 if (LHS == True) 985 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 986 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 987 } 988 case ISD::SETOLE: 989 case ISD::SETOLT: 990 case ISD::SETLE: 991 case ISD::SETLT: { 992 // Ordered. Assume ordered for undefined. 993 994 // Only do this after legalization to avoid interfering with other combines 995 // which might occur. 996 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 997 !DCI.isCalledByLegalizer()) 998 return SDValue(); 999 1000 // We need to permute the operands to get the correct NaN behavior. The 1001 // selected operand is the second one based on the failing compare with NaN, 1002 // so permute it based on the compare type the hardware uses. 1003 if (LHS == True) 1004 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1005 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1006 } 1007 case ISD::SETUGE: 1008 case ISD::SETUGT: { 1009 if (LHS == True) 1010 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1011 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1012 } 1013 case ISD::SETGT: 1014 case ISD::SETGE: 1015 case ISD::SETOGE: 1016 case ISD::SETOGT: { 1017 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1018 !DCI.isCalledByLegalizer()) 1019 return SDValue(); 1020 1021 if (LHS == True) 1022 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1023 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1024 } 1025 case ISD::SETCC_INVALID: 1026 llvm_unreachable("Invalid setcc condcode!"); 1027 } 1028 return SDValue(); 1029 } 1030 1031 std::pair<SDValue, SDValue> 1032 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1033 SDLoc SL(Op); 1034 1035 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1036 1037 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1038 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1039 1040 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1041 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1042 1043 return std::make_pair(Lo, Hi); 1044 } 1045 1046 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1047 SDLoc SL(Op); 1048 1049 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1050 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1051 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1052 } 1053 1054 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1055 SDLoc SL(Op); 1056 1057 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1058 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1059 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1060 } 1061 1062 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1063 SelectionDAG &DAG) const { 1064 LoadSDNode *Load = cast<LoadSDNode>(Op); 1065 EVT VT = Op.getValueType(); 1066 1067 1068 // If this is a 2 element vector, we really want to scalarize and not create 1069 // weird 1 element vectors. 1070 if (VT.getVectorNumElements() == 2) 1071 return scalarizeVectorLoad(Load, DAG); 1072 1073 SDValue BasePtr = Load->getBasePtr(); 1074 EVT PtrVT = BasePtr.getValueType(); 1075 EVT MemVT = Load->getMemoryVT(); 1076 SDLoc SL(Op); 1077 1078 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1079 1080 EVT LoVT, HiVT; 1081 EVT LoMemVT, HiMemVT; 1082 SDValue Lo, Hi; 1083 1084 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1085 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1086 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1087 1088 unsigned Size = LoMemVT.getStoreSize(); 1089 unsigned BaseAlign = Load->getAlignment(); 1090 unsigned HiAlign = MinAlign(BaseAlign, Size); 1091 1092 SDValue LoLoad 1093 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1094 Load->getChain(), BasePtr, 1095 SrcValue, 1096 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1097 Load->isInvariant(), BaseAlign); 1098 1099 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1100 DAG.getConstant(Size, SL, PtrVT)); 1101 1102 SDValue HiLoad 1103 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1104 Load->getChain(), HiPtr, 1105 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1106 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1107 Load->isInvariant(), HiAlign); 1108 1109 SDValue Ops[] = { 1110 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1111 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1112 LoLoad.getValue(1), HiLoad.getValue(1)) 1113 }; 1114 1115 return DAG.getMergeValues(Ops, SL); 1116 } 1117 1118 // FIXME: This isn't doing anything for SI. This should be used in a target 1119 // combine during type legalization. 1120 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1121 SelectionDAG &DAG) const { 1122 StoreSDNode *Store = cast<StoreSDNode>(Op); 1123 EVT MemVT = Store->getMemoryVT(); 1124 unsigned MemBits = MemVT.getSizeInBits(); 1125 1126 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1127 // truncating store into an i32 store. 1128 // XXX: We could also handle optimize other vector bitwidths. 1129 if (!MemVT.isVector() || MemBits > 32) { 1130 return SDValue(); 1131 } 1132 1133 SDLoc DL(Op); 1134 SDValue Value = Store->getValue(); 1135 EVT VT = Value.getValueType(); 1136 EVT ElemVT = VT.getVectorElementType(); 1137 SDValue Ptr = Store->getBasePtr(); 1138 EVT MemEltVT = MemVT.getVectorElementType(); 1139 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1140 unsigned MemNumElements = MemVT.getVectorNumElements(); 1141 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1142 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1143 1144 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1145 1146 SDValue PackedValue; 1147 for (unsigned i = 0; i < MemNumElements; ++i) { 1148 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1149 DAG.getConstant(i, DL, MVT::i32)); 1150 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1151 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1152 1153 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1154 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1155 1156 if (i == 0) { 1157 PackedValue = Elt; 1158 } else { 1159 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1160 } 1161 } 1162 1163 if (PackedSize < 32) { 1164 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1165 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1166 Store->getMemOperand()->getPointerInfo(), 1167 PackedVT, 1168 Store->isNonTemporal(), Store->isVolatile(), 1169 Store->getAlignment()); 1170 } 1171 1172 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1173 Store->getMemOperand()->getPointerInfo(), 1174 Store->isVolatile(), Store->isNonTemporal(), 1175 Store->getAlignment()); 1176 } 1177 1178 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1179 SelectionDAG &DAG) const { 1180 StoreSDNode *Store = cast<StoreSDNode>(Op); 1181 SDValue Val = Store->getValue(); 1182 EVT VT = Val.getValueType(); 1183 1184 // If this is a 2 element vector, we really want to scalarize and not create 1185 // weird 1 element vectors. 1186 if (VT.getVectorNumElements() == 2) 1187 return scalarizeVectorStore(Store, DAG); 1188 1189 EVT MemVT = Store->getMemoryVT(); 1190 SDValue Chain = Store->getChain(); 1191 SDValue BasePtr = Store->getBasePtr(); 1192 SDLoc SL(Op); 1193 1194 EVT LoVT, HiVT; 1195 EVT LoMemVT, HiMemVT; 1196 SDValue Lo, Hi; 1197 1198 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1199 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1200 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1201 1202 EVT PtrVT = BasePtr.getValueType(); 1203 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1204 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1205 PtrVT)); 1206 1207 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1208 unsigned BaseAlign = Store->getAlignment(); 1209 unsigned Size = LoMemVT.getStoreSize(); 1210 unsigned HiAlign = MinAlign(BaseAlign, Size); 1211 1212 SDValue LoStore 1213 = DAG.getTruncStore(Chain, SL, Lo, 1214 BasePtr, 1215 SrcValue, 1216 LoMemVT, 1217 Store->isNonTemporal(), 1218 Store->isVolatile(), 1219 BaseAlign); 1220 SDValue HiStore 1221 = DAG.getTruncStore(Chain, SL, Hi, 1222 HiPtr, 1223 SrcValue.getWithOffset(Size), 1224 HiMemVT, 1225 Store->isNonTemporal(), 1226 Store->isVolatile(), 1227 HiAlign); 1228 1229 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1230 } 1231 1232 // This is a shortcut for integer division because we have fast i32<->f32 1233 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1234 // float is enough to accurately represent up to a 24-bit signed integer. 1235 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1236 bool Sign) const { 1237 SDLoc DL(Op); 1238 EVT VT = Op.getValueType(); 1239 SDValue LHS = Op.getOperand(0); 1240 SDValue RHS = Op.getOperand(1); 1241 MVT IntVT = MVT::i32; 1242 MVT FltVT = MVT::f32; 1243 1244 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1245 if (LHSSignBits < 9) 1246 return SDValue(); 1247 1248 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1249 if (RHSSignBits < 9) 1250 return SDValue(); 1251 1252 unsigned BitSize = VT.getSizeInBits(); 1253 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1254 unsigned DivBits = BitSize - SignBits; 1255 if (Sign) 1256 ++DivBits; 1257 1258 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1259 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1260 1261 SDValue jq = DAG.getConstant(1, DL, IntVT); 1262 1263 if (Sign) { 1264 // char|short jq = ia ^ ib; 1265 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1266 1267 // jq = jq >> (bitsize - 2) 1268 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1269 DAG.getConstant(BitSize - 2, DL, VT)); 1270 1271 // jq = jq | 0x1 1272 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1273 } 1274 1275 // int ia = (int)LHS; 1276 SDValue ia = LHS; 1277 1278 // int ib, (int)RHS; 1279 SDValue ib = RHS; 1280 1281 // float fa = (float)ia; 1282 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1283 1284 // float fb = (float)ib; 1285 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1286 1287 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1288 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1289 1290 // fq = trunc(fq); 1291 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1292 1293 // float fqneg = -fq; 1294 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1295 1296 // float fr = mad(fqneg, fb, fa); 1297 SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa); 1298 1299 // int iq = (int)fq; 1300 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1301 1302 // fr = fabs(fr); 1303 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1304 1305 // fb = fabs(fb); 1306 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1307 1308 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1309 1310 // int cv = fr >= fb; 1311 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1312 1313 // jq = (cv ? jq : 0); 1314 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1315 1316 // dst = iq + jq; 1317 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1318 1319 // Rem needs compensation, it's easier to recompute it 1320 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1321 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1322 1323 // Truncate to number of bits this divide really is. 1324 if (Sign) { 1325 SDValue InRegSize 1326 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1327 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1328 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1329 } else { 1330 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1331 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1332 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1333 } 1334 1335 return DAG.getMergeValues({ Div, Rem }, DL); 1336 } 1337 1338 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1339 SelectionDAG &DAG, 1340 SmallVectorImpl<SDValue> &Results) const { 1341 assert(Op.getValueType() == MVT::i64); 1342 1343 SDLoc DL(Op); 1344 EVT VT = Op.getValueType(); 1345 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1346 1347 SDValue one = DAG.getConstant(1, DL, HalfVT); 1348 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1349 1350 //HiLo split 1351 SDValue LHS = Op.getOperand(0); 1352 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1353 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1354 1355 SDValue RHS = Op.getOperand(1); 1356 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1357 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1358 1359 if (VT == MVT::i64 && 1360 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1361 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1362 1363 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1364 LHS_Lo, RHS_Lo); 1365 1366 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1367 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1368 1369 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1370 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1371 return; 1372 } 1373 1374 // Get Speculative values 1375 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1376 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1377 1378 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1379 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1380 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1381 1382 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1383 SDValue DIV_Lo = zero; 1384 1385 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1386 1387 for (unsigned i = 0; i < halfBitWidth; ++i) { 1388 const unsigned bitPos = halfBitWidth - i - 1; 1389 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1390 // Get value of high bit 1391 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1392 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1393 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1394 1395 // Shift 1396 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1397 // Add LHS high bit 1398 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1399 1400 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1401 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1402 1403 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1404 1405 // Update REM 1406 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1407 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1408 } 1409 1410 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1411 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1412 Results.push_back(DIV); 1413 Results.push_back(REM); 1414 } 1415 1416 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1417 SelectionDAG &DAG) const { 1418 SDLoc DL(Op); 1419 EVT VT = Op.getValueType(); 1420 1421 if (VT == MVT::i64) { 1422 SmallVector<SDValue, 2> Results; 1423 LowerUDIVREM64(Op, DAG, Results); 1424 return DAG.getMergeValues(Results, DL); 1425 } 1426 1427 if (VT == MVT::i32) { 1428 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1429 return Res; 1430 } 1431 1432 SDValue Num = Op.getOperand(0); 1433 SDValue Den = Op.getOperand(1); 1434 1435 // RCP = URECIP(Den) = 2^32 / Den + e 1436 // e is rounding error. 1437 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1438 1439 // RCP_LO = mul(RCP, Den) */ 1440 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1441 1442 // RCP_HI = mulhu (RCP, Den) */ 1443 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1444 1445 // NEG_RCP_LO = -RCP_LO 1446 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1447 RCP_LO); 1448 1449 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1450 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1451 NEG_RCP_LO, RCP_LO, 1452 ISD::SETEQ); 1453 // Calculate the rounding error from the URECIP instruction 1454 // E = mulhu(ABS_RCP_LO, RCP) 1455 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1456 1457 // RCP_A_E = RCP + E 1458 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1459 1460 // RCP_S_E = RCP - E 1461 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1462 1463 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1464 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1465 RCP_A_E, RCP_S_E, 1466 ISD::SETEQ); 1467 // Quotient = mulhu(Tmp0, Num) 1468 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1469 1470 // Num_S_Remainder = Quotient * Den 1471 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1472 1473 // Remainder = Num - Num_S_Remainder 1474 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1475 1476 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1477 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1478 DAG.getConstant(-1, DL, VT), 1479 DAG.getConstant(0, DL, VT), 1480 ISD::SETUGE); 1481 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1482 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1483 Num_S_Remainder, 1484 DAG.getConstant(-1, DL, VT), 1485 DAG.getConstant(0, DL, VT), 1486 ISD::SETUGE); 1487 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1488 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1489 Remainder_GE_Zero); 1490 1491 // Calculate Division result: 1492 1493 // Quotient_A_One = Quotient + 1 1494 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1495 DAG.getConstant(1, DL, VT)); 1496 1497 // Quotient_S_One = Quotient - 1 1498 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1499 DAG.getConstant(1, DL, VT)); 1500 1501 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1502 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1503 Quotient, Quotient_A_One, ISD::SETEQ); 1504 1505 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1506 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1507 Quotient_S_One, Div, ISD::SETEQ); 1508 1509 // Calculate Rem result: 1510 1511 // Remainder_S_Den = Remainder - Den 1512 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1513 1514 // Remainder_A_Den = Remainder + Den 1515 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1516 1517 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1518 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1519 Remainder, Remainder_S_Den, ISD::SETEQ); 1520 1521 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1522 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1523 Remainder_A_Den, Rem, ISD::SETEQ); 1524 SDValue Ops[2] = { 1525 Div, 1526 Rem 1527 }; 1528 return DAG.getMergeValues(Ops, DL); 1529 } 1530 1531 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1532 SelectionDAG &DAG) const { 1533 SDLoc DL(Op); 1534 EVT VT = Op.getValueType(); 1535 1536 SDValue LHS = Op.getOperand(0); 1537 SDValue RHS = Op.getOperand(1); 1538 1539 SDValue Zero = DAG.getConstant(0, DL, VT); 1540 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1541 1542 if (VT == MVT::i32) { 1543 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1544 return Res; 1545 } 1546 1547 if (VT == MVT::i64 && 1548 DAG.ComputeNumSignBits(LHS) > 32 && 1549 DAG.ComputeNumSignBits(RHS) > 32) { 1550 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1551 1552 //HiLo split 1553 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1554 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1555 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1556 LHS_Lo, RHS_Lo); 1557 SDValue Res[2] = { 1558 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1559 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1560 }; 1561 return DAG.getMergeValues(Res, DL); 1562 } 1563 1564 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1565 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1566 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1567 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1568 1569 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1570 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1571 1572 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1573 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1574 1575 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1576 SDValue Rem = Div.getValue(1); 1577 1578 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1579 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1580 1581 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1582 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1583 1584 SDValue Res[2] = { 1585 Div, 1586 Rem 1587 }; 1588 return DAG.getMergeValues(Res, DL); 1589 } 1590 1591 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1592 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1593 SDLoc SL(Op); 1594 EVT VT = Op.getValueType(); 1595 SDValue X = Op.getOperand(0); 1596 SDValue Y = Op.getOperand(1); 1597 1598 // TODO: Should this propagate fast-math-flags? 1599 1600 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1601 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1602 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1603 1604 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1605 } 1606 1607 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1608 SDLoc SL(Op); 1609 SDValue Src = Op.getOperand(0); 1610 1611 // result = trunc(src) 1612 // if (src > 0.0 && src != result) 1613 // result += 1.0 1614 1615 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1616 1617 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1618 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1619 1620 EVT SetCCVT = 1621 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1622 1623 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1624 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1625 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1626 1627 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1628 // TODO: Should this propagate fast-math-flags? 1629 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1630 } 1631 1632 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { 1633 const unsigned FractBits = 52; 1634 const unsigned ExpBits = 11; 1635 1636 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1637 Hi, 1638 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1639 DAG.getConstant(ExpBits, SL, MVT::i32)); 1640 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1641 DAG.getConstant(1023, SL, MVT::i32)); 1642 1643 return Exp; 1644 } 1645 1646 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1647 SDLoc SL(Op); 1648 SDValue Src = Op.getOperand(0); 1649 1650 assert(Op.getValueType() == MVT::f64); 1651 1652 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1653 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1654 1655 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1656 1657 // Extract the upper half, since this is where we will find the sign and 1658 // exponent. 1659 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1660 1661 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1662 1663 const unsigned FractBits = 52; 1664 1665 // Extract the sign bit. 1666 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1667 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1668 1669 // Extend back to to 64-bits. 1670 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1671 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1672 1673 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1674 const SDValue FractMask 1675 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1676 1677 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1678 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1679 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1680 1681 EVT SetCCVT = 1682 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1683 1684 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1685 1686 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1687 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1688 1689 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1690 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1691 1692 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1693 } 1694 1695 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1696 SDLoc SL(Op); 1697 SDValue Src = Op.getOperand(0); 1698 1699 assert(Op.getValueType() == MVT::f64); 1700 1701 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 1702 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1703 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1704 1705 // TODO: Should this propagate fast-math-flags? 1706 1707 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1708 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1709 1710 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1711 1712 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 1713 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1714 1715 EVT SetCCVT = 1716 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1717 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1718 1719 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1720 } 1721 1722 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1723 // FNEARBYINT and FRINT are the same, except in their handling of FP 1724 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1725 // rint, so just treat them as equivalent. 1726 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1727 } 1728 1729 // XXX - May require not supporting f32 denormals? 1730 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1731 SDLoc SL(Op); 1732 SDValue X = Op.getOperand(0); 1733 1734 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1735 1736 // TODO: Should this propagate fast-math-flags? 1737 1738 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1739 1740 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1741 1742 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1743 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1744 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1745 1746 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1747 1748 EVT SetCCVT = 1749 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1750 1751 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1752 1753 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1754 1755 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1756 } 1757 1758 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1759 SDLoc SL(Op); 1760 SDValue X = Op.getOperand(0); 1761 1762 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1763 1764 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1765 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1766 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1767 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1768 EVT SetCCVT = 1769 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1770 1771 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1772 1773 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1774 1775 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1776 1777 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1778 MVT::i64); 1779 1780 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1781 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1782 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1783 MVT::i64), 1784 Exp); 1785 1786 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1787 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1788 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1789 ISD::SETNE); 1790 1791 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1792 D, DAG.getConstant(0, SL, MVT::i64)); 1793 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1794 1795 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1796 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1797 1798 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1799 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1800 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1801 1802 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1803 ExpEqNegOne, 1804 DAG.getConstantFP(1.0, SL, MVT::f64), 1805 DAG.getConstantFP(0.0, SL, MVT::f64)); 1806 1807 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1808 1809 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1810 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1811 1812 return K; 1813 } 1814 1815 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1816 EVT VT = Op.getValueType(); 1817 1818 if (VT == MVT::f32) 1819 return LowerFROUND32(Op, DAG); 1820 1821 if (VT == MVT::f64) 1822 return LowerFROUND64(Op, DAG); 1823 1824 llvm_unreachable("unhandled type"); 1825 } 1826 1827 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1828 SDLoc SL(Op); 1829 SDValue Src = Op.getOperand(0); 1830 1831 // result = trunc(src); 1832 // if (src < 0.0 && src != result) 1833 // result += -1.0. 1834 1835 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1836 1837 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1838 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1839 1840 EVT SetCCVT = 1841 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1842 1843 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1844 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1845 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1846 1847 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1848 // TODO: Should this propagate fast-math-flags? 1849 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1850 } 1851 1852 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1853 SDLoc SL(Op); 1854 SDValue Src = Op.getOperand(0); 1855 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1856 1857 if (ZeroUndef && Src.getValueType() == MVT::i32) 1858 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1859 1860 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1861 1862 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1863 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1864 1865 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1866 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1867 1868 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1869 *DAG.getContext(), MVT::i32); 1870 1871 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1872 1873 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1874 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1875 1876 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1877 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1878 1879 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1880 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1881 1882 if (!ZeroUndef) { 1883 // Test if the full 64-bit input is zero. 1884 1885 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1886 // which we probably don't want. 1887 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1888 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1889 1890 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1891 // with the same cycles, otherwise it is slower. 1892 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1893 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1894 1895 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1896 1897 // The instruction returns -1 for 0 input, but the defined intrinsic 1898 // behavior is to return the number of bits. 1899 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1900 SrcIsZero, Bits32, NewCtlz); 1901 } 1902 1903 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1904 } 1905 1906 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1907 bool Signed) const { 1908 // Unsigned 1909 // cul2f(ulong u) 1910 //{ 1911 // uint lz = clz(u); 1912 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1913 // u = (u << lz) & 0x7fffffffffffffffUL; 1914 // ulong t = u & 0xffffffffffUL; 1915 // uint v = (e << 23) | (uint)(u >> 40); 1916 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1917 // return as_float(v + r); 1918 //} 1919 // Signed 1920 // cl2f(long l) 1921 //{ 1922 // long s = l >> 63; 1923 // float r = cul2f((l + s) ^ s); 1924 // return s ? -r : r; 1925 //} 1926 1927 SDLoc SL(Op); 1928 SDValue Src = Op.getOperand(0); 1929 SDValue L = Src; 1930 1931 SDValue S; 1932 if (Signed) { 1933 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1934 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1935 1936 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1937 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1938 } 1939 1940 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1941 *DAG.getContext(), MVT::f32); 1942 1943 1944 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1945 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1946 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1947 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1948 1949 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1950 SDValue E = DAG.getSelect(SL, MVT::i32, 1951 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1952 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1953 ZeroI32); 1954 1955 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1956 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1957 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1958 1959 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1960 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1961 1962 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1963 U, DAG.getConstant(40, SL, MVT::i64)); 1964 1965 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1966 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1967 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1968 1969 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1970 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1971 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 1972 1973 SDValue One = DAG.getConstant(1, SL, MVT::i32); 1974 1975 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 1976 1977 SDValue R = DAG.getSelect(SL, MVT::i32, 1978 RCmp, 1979 One, 1980 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 1981 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 1982 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 1983 1984 if (!Signed) 1985 return R; 1986 1987 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 1988 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 1989 } 1990 1991 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 1992 bool Signed) const { 1993 SDLoc SL(Op); 1994 SDValue Src = Op.getOperand(0); 1995 1996 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1997 1998 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1999 DAG.getConstant(0, SL, MVT::i32)); 2000 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2001 DAG.getConstant(1, SL, MVT::i32)); 2002 2003 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2004 SL, MVT::f64, Hi); 2005 2006 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2007 2008 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2009 DAG.getConstant(32, SL, MVT::i32)); 2010 // TODO: Should this propagate fast-math-flags? 2011 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2012 } 2013 2014 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2015 SelectionDAG &DAG) const { 2016 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2017 "operation should be legal"); 2018 2019 EVT DestVT = Op.getValueType(); 2020 if (DestVT == MVT::f64) 2021 return LowerINT_TO_FP64(Op, DAG, false); 2022 2023 if (DestVT == MVT::f32) 2024 return LowerINT_TO_FP32(Op, DAG, false); 2025 2026 return SDValue(); 2027 } 2028 2029 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2030 SelectionDAG &DAG) const { 2031 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2032 "operation should be legal"); 2033 2034 EVT DestVT = Op.getValueType(); 2035 if (DestVT == MVT::f32) 2036 return LowerINT_TO_FP32(Op, DAG, true); 2037 2038 if (DestVT == MVT::f64) 2039 return LowerINT_TO_FP64(Op, DAG, true); 2040 2041 return SDValue(); 2042 } 2043 2044 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2045 bool Signed) const { 2046 SDLoc SL(Op); 2047 2048 SDValue Src = Op.getOperand(0); 2049 2050 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2051 2052 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2053 MVT::f64); 2054 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2055 MVT::f64); 2056 // TODO: Should this propagate fast-math-flags? 2057 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2058 2059 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2060 2061 2062 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2063 2064 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2065 MVT::i32, FloorMul); 2066 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2067 2068 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2069 2070 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2071 } 2072 2073 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2074 SelectionDAG &DAG) const { 2075 SDValue Src = Op.getOperand(0); 2076 2077 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2078 return LowerFP64_TO_INT(Op, DAG, true); 2079 2080 return SDValue(); 2081 } 2082 2083 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2084 SelectionDAG &DAG) const { 2085 SDValue Src = Op.getOperand(0); 2086 2087 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2088 return LowerFP64_TO_INT(Op, DAG, false); 2089 2090 return SDValue(); 2091 } 2092 2093 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2094 SelectionDAG &DAG) const { 2095 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2096 MVT VT = Op.getSimpleValueType(); 2097 MVT ScalarVT = VT.getScalarType(); 2098 2099 if (!VT.isVector()) 2100 return SDValue(); 2101 2102 SDValue Src = Op.getOperand(0); 2103 SDLoc DL(Op); 2104 2105 // TODO: Don't scalarize on Evergreen? 2106 unsigned NElts = VT.getVectorNumElements(); 2107 SmallVector<SDValue, 8> Args; 2108 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2109 2110 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2111 for (unsigned I = 0; I < NElts; ++I) 2112 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2113 2114 return DAG.getBuildVector(VT, DL, Args); 2115 } 2116 2117 //===----------------------------------------------------------------------===// 2118 // Custom DAG optimizations 2119 //===----------------------------------------------------------------------===// 2120 2121 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2122 APInt KnownZero, KnownOne; 2123 EVT VT = Op.getValueType(); 2124 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2125 2126 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2127 } 2128 2129 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2130 EVT VT = Op.getValueType(); 2131 2132 // In order for this to be a signed 24-bit value, bit 23, must 2133 // be a sign bit. 2134 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2135 // as unsigned 24-bit values. 2136 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2137 } 2138 2139 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2140 2141 SelectionDAG &DAG = DCI.DAG; 2142 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2143 EVT VT = Op.getValueType(); 2144 2145 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2146 APInt KnownZero, KnownOne; 2147 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2148 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2149 DCI.CommitTargetLoweringOpt(TLO); 2150 } 2151 2152 template <typename IntTy> 2153 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, 2154 uint32_t Offset, uint32_t Width, SDLoc DL) { 2155 if (Width + Offset < 32) { 2156 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2157 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2158 return DAG.getConstant(Result, DL, MVT::i32); 2159 } 2160 2161 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2162 } 2163 2164 static bool usesAllNormalStores(SDNode *LoadVal) { 2165 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2166 if (!ISD::isNormalStore(*I)) 2167 return false; 2168 } 2169 2170 return true; 2171 } 2172 2173 // If we have a copy of an illegal type, replace it with a load / store of an 2174 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2175 // instructions emitted when handling extloads and truncstores. Ideally we could 2176 // recognize the pack / unpack pattern to eliminate it. 2177 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2178 DAGCombinerInfo &DCI) const { 2179 if (!DCI.isBeforeLegalize()) 2180 return SDValue(); 2181 2182 StoreSDNode *SN = cast<StoreSDNode>(N); 2183 SDValue Value = SN->getValue(); 2184 EVT VT = Value.getValueType(); 2185 2186 if (isTypeLegal(VT) || SN->isVolatile() || 2187 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2188 return SDValue(); 2189 2190 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2191 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2192 return SDValue(); 2193 2194 EVT MemVT = LoadVal->getMemoryVT(); 2195 2196 SDLoc SL(N); 2197 SelectionDAG &DAG = DCI.DAG; 2198 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2199 2200 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2201 LoadVT, SL, 2202 LoadVal->getChain(), 2203 LoadVal->getBasePtr(), 2204 LoadVal->getOffset(), 2205 LoadVT, 2206 LoadVal->getMemOperand()); 2207 2208 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2209 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2210 2211 return DAG.getStore(SN->getChain(), SL, NewLoad, 2212 SN->getBasePtr(), SN->getMemOperand()); 2213 } 2214 2215 // TODO: Should repeat for other bit ops. 2216 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N, 2217 DAGCombinerInfo &DCI) const { 2218 if (N->getValueType(0) != MVT::i64) 2219 return SDValue(); 2220 2221 // Break up 64-bit and of a constant into two 32-bit ands. This will typically 2222 // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer 2223 // combine opportunities since most 64-bit operations are decomposed this way. 2224 // TODO: We won't want this for SALU especially if it is an inline immediate. 2225 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2226 if (!RHS) 2227 return SDValue(); 2228 2229 uint64_t Val = RHS->getZExtValue(); 2230 if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) { 2231 // If either half of the constant is 0, this is really a 32-bit and, so 2232 // split it. If we can re-use the full materialized constant, keep it. 2233 return SDValue(); 2234 } 2235 2236 SDLoc SL(N); 2237 SelectionDAG &DAG = DCI.DAG; 2238 2239 SDValue Lo, Hi; 2240 std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG); 2241 2242 SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32); 2243 SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32); 2244 2245 SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS); 2246 SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS); 2247 2248 // Re-visit the ands. It's possible we eliminated one of them and it could 2249 // simplify the vector. 2250 DCI.AddToWorklist(Lo.getNode()); 2251 DCI.AddToWorklist(Hi.getNode()); 2252 2253 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2254 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2255 } 2256 2257 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2258 DAGCombinerInfo &DCI) const { 2259 if (N->getValueType(0) != MVT::i64) 2260 return SDValue(); 2261 2262 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2263 2264 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2265 // common case, splitting this into a move and a 32-bit shift is faster and 2266 // the same code size. 2267 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2268 if (!RHS) 2269 return SDValue(); 2270 2271 unsigned RHSVal = RHS->getZExtValue(); 2272 if (RHSVal < 32) 2273 return SDValue(); 2274 2275 SDValue LHS = N->getOperand(0); 2276 2277 SDLoc SL(N); 2278 SelectionDAG &DAG = DCI.DAG; 2279 2280 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2281 2282 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2283 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2284 2285 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2286 2287 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2288 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2289 } 2290 2291 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2292 DAGCombinerInfo &DCI) const { 2293 if (N->getValueType(0) != MVT::i64) 2294 return SDValue(); 2295 2296 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2297 if (!RHS) 2298 return SDValue(); 2299 2300 SelectionDAG &DAG = DCI.DAG; 2301 SDLoc SL(N); 2302 unsigned RHSVal = RHS->getZExtValue(); 2303 2304 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2305 if (RHSVal == 32) { 2306 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2307 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2308 DAG.getConstant(31, SL, MVT::i32)); 2309 2310 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2311 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2312 } 2313 2314 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2315 if (RHSVal == 63) { 2316 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2317 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2318 DAG.getConstant(31, SL, MVT::i32)); 2319 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2320 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2321 } 2322 2323 return SDValue(); 2324 } 2325 2326 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2327 DAGCombinerInfo &DCI) const { 2328 if (N->getValueType(0) != MVT::i64) 2329 return SDValue(); 2330 2331 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2332 if (!RHS) 2333 return SDValue(); 2334 2335 unsigned ShiftAmt = RHS->getZExtValue(); 2336 if (ShiftAmt < 32) 2337 return SDValue(); 2338 2339 // srl i64:x, C for C >= 32 2340 // => 2341 // build_pair (srl hi_32(x), C - 32), 0 2342 2343 SelectionDAG &DAG = DCI.DAG; 2344 SDLoc SL(N); 2345 2346 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2347 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2348 2349 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2350 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2351 VecOp, One); 2352 2353 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2354 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2355 2356 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2357 2358 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2359 } 2360 2361 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2362 DAGCombinerInfo &DCI) const { 2363 EVT VT = N->getValueType(0); 2364 2365 if (VT.isVector() || VT.getSizeInBits() > 32) 2366 return SDValue(); 2367 2368 SelectionDAG &DAG = DCI.DAG; 2369 SDLoc DL(N); 2370 2371 SDValue N0 = N->getOperand(0); 2372 SDValue N1 = N->getOperand(1); 2373 SDValue Mul; 2374 2375 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2376 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2377 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2378 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2379 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2380 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2381 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2382 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2383 } else { 2384 return SDValue(); 2385 } 2386 2387 // We need to use sext even for MUL_U24, because MUL_U24 is used 2388 // for signed multiply of 8 and 16-bit types. 2389 return DAG.getSExtOrTrunc(Mul, DL, VT); 2390 } 2391 2392 static bool isNegativeOne(SDValue Val) { 2393 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2394 return C->isAllOnesValue(); 2395 return false; 2396 } 2397 2398 static bool isCtlzOpc(unsigned Opc) { 2399 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2400 } 2401 2402 // Get FFBH node if the incoming op may have been type legalized from a smaller 2403 // type VT. 2404 // Need to match pre-legalized type because the generic legalization inserts the 2405 // add/sub between the select and compare. 2406 static SDValue getFFBH_U32(const TargetLowering &TLI, 2407 SelectionDAG &DAG, SDLoc SL, SDValue Op) { 2408 EVT VT = Op.getValueType(); 2409 EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2410 if (LegalVT != MVT::i32) 2411 return SDValue(); 2412 2413 if (VT != MVT::i32) 2414 Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op); 2415 2416 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op); 2417 if (VT != MVT::i32) 2418 FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH); 2419 2420 return FFBH; 2421 } 2422 2423 // The native instructions return -1 on 0 input. Optimize out a select that 2424 // produces -1 on 0. 2425 // 2426 // TODO: If zero is not undef, we could also do this if the output is compared 2427 // against the bitwidth. 2428 // 2429 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2430 SDValue AMDGPUTargetLowering::performCtlzCombine(SDLoc SL, 2431 SDValue Cond, 2432 SDValue LHS, 2433 SDValue RHS, 2434 DAGCombinerInfo &DCI) const { 2435 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2436 if (!CmpRhs || !CmpRhs->isNullValue()) 2437 return SDValue(); 2438 2439 SelectionDAG &DAG = DCI.DAG; 2440 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2441 SDValue CmpLHS = Cond.getOperand(0); 2442 2443 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2444 if (CCOpcode == ISD::SETEQ && 2445 isCtlzOpc(RHS.getOpcode()) && 2446 RHS.getOperand(0) == CmpLHS && 2447 isNegativeOne(LHS)) { 2448 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2449 } 2450 2451 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2452 if (CCOpcode == ISD::SETNE && 2453 isCtlzOpc(LHS.getOpcode()) && 2454 LHS.getOperand(0) == CmpLHS && 2455 isNegativeOne(RHS)) { 2456 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2457 } 2458 2459 return SDValue(); 2460 } 2461 2462 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2463 DAGCombinerInfo &DCI) const { 2464 SDValue Cond = N->getOperand(0); 2465 if (Cond.getOpcode() != ISD::SETCC) 2466 return SDValue(); 2467 2468 EVT VT = N->getValueType(0); 2469 SDValue LHS = Cond.getOperand(0); 2470 SDValue RHS = Cond.getOperand(1); 2471 SDValue CC = Cond.getOperand(2); 2472 2473 SDValue True = N->getOperand(1); 2474 SDValue False = N->getOperand(2); 2475 2476 if (VT == MVT::f32 && Cond.hasOneUse()) { 2477 SDValue MinMax 2478 = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2479 // Revisit this node so we can catch min3/max3/med3 patterns. 2480 //DCI.AddToWorklist(MinMax.getNode()); 2481 return MinMax; 2482 } 2483 2484 // There's no reason to not do this if the condition has other uses. 2485 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2486 } 2487 2488 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2489 DAGCombinerInfo &DCI) const { 2490 SelectionDAG &DAG = DCI.DAG; 2491 SDLoc DL(N); 2492 2493 switch(N->getOpcode()) { 2494 default: 2495 break; 2496 case ISD::BITCAST: { 2497 EVT DestVT = N->getValueType(0); 2498 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 2499 break; 2500 2501 // Fold bitcasts of constants. 2502 // 2503 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 2504 // TODO: Generalize and move to DAGCombiner 2505 SDValue Src = N->getOperand(0); 2506 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 2507 assert(Src.getValueType() == MVT::i64); 2508 SDLoc SL(N); 2509 uint64_t CVal = C->getZExtValue(); 2510 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 2511 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2512 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2513 } 2514 2515 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 2516 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 2517 SDLoc SL(N); 2518 uint64_t CVal = Val.getZExtValue(); 2519 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2520 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2521 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2522 2523 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 2524 } 2525 2526 break; 2527 } 2528 case ISD::SHL: { 2529 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2530 break; 2531 2532 return performShlCombine(N, DCI); 2533 } 2534 case ISD::SRL: { 2535 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2536 break; 2537 2538 return performSrlCombine(N, DCI); 2539 } 2540 case ISD::SRA: { 2541 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2542 break; 2543 2544 return performSraCombine(N, DCI); 2545 } 2546 case ISD::AND: { 2547 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2548 break; 2549 2550 return performAndCombine(N, DCI); 2551 } 2552 case ISD::MUL: 2553 return performMulCombine(N, DCI); 2554 case AMDGPUISD::MUL_I24: 2555 case AMDGPUISD::MUL_U24: { 2556 SDValue N0 = N->getOperand(0); 2557 SDValue N1 = N->getOperand(1); 2558 simplifyI24(N0, DCI); 2559 simplifyI24(N1, DCI); 2560 return SDValue(); 2561 } 2562 case ISD::SELECT: 2563 return performSelectCombine(N, DCI); 2564 case AMDGPUISD::BFE_I32: 2565 case AMDGPUISD::BFE_U32: { 2566 assert(!N->getValueType(0).isVector() && 2567 "Vector handling of BFE not implemented"); 2568 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2569 if (!Width) 2570 break; 2571 2572 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2573 if (WidthVal == 0) 2574 return DAG.getConstant(0, DL, MVT::i32); 2575 2576 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2577 if (!Offset) 2578 break; 2579 2580 SDValue BitsFrom = N->getOperand(0); 2581 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2582 2583 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2584 2585 if (OffsetVal == 0) { 2586 // This is already sign / zero extended, so try to fold away extra BFEs. 2587 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2588 2589 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2590 if (OpSignBits >= SignBits) 2591 return BitsFrom; 2592 2593 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2594 if (Signed) { 2595 // This is a sign_extend_inreg. Replace it to take advantage of existing 2596 // DAG Combines. If not eliminated, we will match back to BFE during 2597 // selection. 2598 2599 // TODO: The sext_inreg of extended types ends, although we can could 2600 // handle them in a single BFE. 2601 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2602 DAG.getValueType(SmallVT)); 2603 } 2604 2605 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2606 } 2607 2608 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2609 if (Signed) { 2610 return constantFoldBFE<int32_t>(DAG, 2611 CVal->getSExtValue(), 2612 OffsetVal, 2613 WidthVal, 2614 DL); 2615 } 2616 2617 return constantFoldBFE<uint32_t>(DAG, 2618 CVal->getZExtValue(), 2619 OffsetVal, 2620 WidthVal, 2621 DL); 2622 } 2623 2624 if ((OffsetVal + WidthVal) >= 32) { 2625 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2626 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2627 BitsFrom, ShiftVal); 2628 } 2629 2630 if (BitsFrom.hasOneUse()) { 2631 APInt Demanded = APInt::getBitsSet(32, 2632 OffsetVal, 2633 OffsetVal + WidthVal); 2634 2635 APInt KnownZero, KnownOne; 2636 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2637 !DCI.isBeforeLegalizeOps()); 2638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2639 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2640 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2641 KnownZero, KnownOne, TLO)) { 2642 DCI.CommitTargetLoweringOpt(TLO); 2643 } 2644 } 2645 2646 break; 2647 } 2648 2649 case ISD::STORE: 2650 return performStoreCombine(N, DCI); 2651 } 2652 return SDValue(); 2653 } 2654 2655 //===----------------------------------------------------------------------===// 2656 // Helper functions 2657 //===----------------------------------------------------------------------===// 2658 2659 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2660 SelectionDAG &DAG, 2661 const Function *F, 2662 const SmallVectorImpl<ISD::InputArg> &Ins, 2663 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2664 2665 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2666 if (Ins[i].ArgVT == Ins[i].VT) { 2667 OrigIns.push_back(Ins[i]); 2668 continue; 2669 } 2670 2671 EVT VT; 2672 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2673 // Vector has been split into scalars. 2674 VT = Ins[i].ArgVT.getVectorElementType(); 2675 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2676 Ins[i].ArgVT.getVectorElementType() != 2677 Ins[i].VT.getVectorElementType()) { 2678 // Vector elements have been promoted 2679 VT = Ins[i].ArgVT; 2680 } else { 2681 // Vector has been spilt into smaller vectors. 2682 VT = Ins[i].VT; 2683 } 2684 2685 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2686 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2687 OrigIns.push_back(Arg); 2688 } 2689 } 2690 2691 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2692 const TargetRegisterClass *RC, 2693 unsigned Reg, EVT VT) const { 2694 MachineFunction &MF = DAG.getMachineFunction(); 2695 MachineRegisterInfo &MRI = MF.getRegInfo(); 2696 unsigned VirtualRegister; 2697 if (!MRI.isLiveIn(Reg)) { 2698 VirtualRegister = MRI.createVirtualRegister(RC); 2699 MRI.addLiveIn(Reg, VirtualRegister); 2700 } else { 2701 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2702 } 2703 return DAG.getRegister(VirtualRegister, VT); 2704 } 2705 2706 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2707 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2708 uint64_t ArgOffset = MFI->ABIArgOffset; 2709 switch (Param) { 2710 case GRID_DIM: 2711 return ArgOffset; 2712 case GRID_OFFSET: 2713 return ArgOffset + 4; 2714 } 2715 llvm_unreachable("unexpected implicit parameter type"); 2716 } 2717 2718 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2719 2720 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2721 switch ((AMDGPUISD::NodeType)Opcode) { 2722 case AMDGPUISD::FIRST_NUMBER: break; 2723 // AMDIL DAG nodes 2724 NODE_NAME_CASE(CALL); 2725 NODE_NAME_CASE(UMUL); 2726 NODE_NAME_CASE(RET_FLAG); 2727 NODE_NAME_CASE(BRANCH_COND); 2728 2729 // AMDGPU DAG nodes 2730 NODE_NAME_CASE(DWORDADDR) 2731 NODE_NAME_CASE(FRACT) 2732 NODE_NAME_CASE(CLAMP) 2733 NODE_NAME_CASE(COS_HW) 2734 NODE_NAME_CASE(SIN_HW) 2735 NODE_NAME_CASE(FMAX_LEGACY) 2736 NODE_NAME_CASE(FMIN_LEGACY) 2737 NODE_NAME_CASE(FMAX3) 2738 NODE_NAME_CASE(SMAX3) 2739 NODE_NAME_CASE(UMAX3) 2740 NODE_NAME_CASE(FMIN3) 2741 NODE_NAME_CASE(SMIN3) 2742 NODE_NAME_CASE(UMIN3) 2743 NODE_NAME_CASE(FMED3) 2744 NODE_NAME_CASE(SMED3) 2745 NODE_NAME_CASE(UMED3) 2746 NODE_NAME_CASE(URECIP) 2747 NODE_NAME_CASE(DIV_SCALE) 2748 NODE_NAME_CASE(DIV_FMAS) 2749 NODE_NAME_CASE(DIV_FIXUP) 2750 NODE_NAME_CASE(TRIG_PREOP) 2751 NODE_NAME_CASE(RCP) 2752 NODE_NAME_CASE(RSQ) 2753 NODE_NAME_CASE(RSQ_LEGACY) 2754 NODE_NAME_CASE(RSQ_CLAMP) 2755 NODE_NAME_CASE(LDEXP) 2756 NODE_NAME_CASE(FP_CLASS) 2757 NODE_NAME_CASE(DOT4) 2758 NODE_NAME_CASE(CARRY) 2759 NODE_NAME_CASE(BORROW) 2760 NODE_NAME_CASE(BFE_U32) 2761 NODE_NAME_CASE(BFE_I32) 2762 NODE_NAME_CASE(BFI) 2763 NODE_NAME_CASE(BFM) 2764 NODE_NAME_CASE(FFBH_U32) 2765 NODE_NAME_CASE(MUL_U24) 2766 NODE_NAME_CASE(MUL_I24) 2767 NODE_NAME_CASE(MAD_U24) 2768 NODE_NAME_CASE(MAD_I24) 2769 NODE_NAME_CASE(TEXTURE_FETCH) 2770 NODE_NAME_CASE(EXPORT) 2771 NODE_NAME_CASE(CONST_ADDRESS) 2772 NODE_NAME_CASE(REGISTER_LOAD) 2773 NODE_NAME_CASE(REGISTER_STORE) 2774 NODE_NAME_CASE(LOAD_INPUT) 2775 NODE_NAME_CASE(SAMPLE) 2776 NODE_NAME_CASE(SAMPLEB) 2777 NODE_NAME_CASE(SAMPLED) 2778 NODE_NAME_CASE(SAMPLEL) 2779 NODE_NAME_CASE(CVT_F32_UBYTE0) 2780 NODE_NAME_CASE(CVT_F32_UBYTE1) 2781 NODE_NAME_CASE(CVT_F32_UBYTE2) 2782 NODE_NAME_CASE(CVT_F32_UBYTE3) 2783 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2784 NODE_NAME_CASE(CONST_DATA_PTR) 2785 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2786 NODE_NAME_CASE(SENDMSG) 2787 NODE_NAME_CASE(INTERP_MOV) 2788 NODE_NAME_CASE(INTERP_P1) 2789 NODE_NAME_CASE(INTERP_P2) 2790 NODE_NAME_CASE(STORE_MSKOR) 2791 NODE_NAME_CASE(LOAD_CONSTANT) 2792 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2793 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 2794 NODE_NAME_CASE(ATOMIC_INC) 2795 NODE_NAME_CASE(ATOMIC_DEC) 2796 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2797 } 2798 return nullptr; 2799 } 2800 2801 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2802 DAGCombinerInfo &DCI, 2803 unsigned &RefinementSteps, 2804 bool &UseOneConstNR) const { 2805 SelectionDAG &DAG = DCI.DAG; 2806 EVT VT = Operand.getValueType(); 2807 2808 if (VT == MVT::f32) { 2809 RefinementSteps = 0; 2810 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2811 } 2812 2813 // TODO: There is also f64 rsq instruction, but the documentation is less 2814 // clear on its precision. 2815 2816 return SDValue(); 2817 } 2818 2819 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2820 DAGCombinerInfo &DCI, 2821 unsigned &RefinementSteps) const { 2822 SelectionDAG &DAG = DCI.DAG; 2823 EVT VT = Operand.getValueType(); 2824 2825 if (VT == MVT::f32) { 2826 // Reciprocal, < 1 ulp error. 2827 // 2828 // This reciprocal approximation converges to < 0.5 ulp error with one 2829 // newton rhapson performed with two fused multiple adds (FMAs). 2830 2831 RefinementSteps = 0; 2832 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2833 } 2834 2835 // TODO: There is also f64 rcp instruction, but the documentation is less 2836 // clear on its precision. 2837 2838 return SDValue(); 2839 } 2840 2841 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2842 const SDValue Op, 2843 APInt &KnownZero, 2844 APInt &KnownOne, 2845 const SelectionDAG &DAG, 2846 unsigned Depth) const { 2847 2848 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2849 2850 APInt KnownZero2; 2851 APInt KnownOne2; 2852 unsigned Opc = Op.getOpcode(); 2853 2854 switch (Opc) { 2855 default: 2856 break; 2857 case AMDGPUISD::CARRY: 2858 case AMDGPUISD::BORROW: { 2859 KnownZero = APInt::getHighBitsSet(32, 31); 2860 break; 2861 } 2862 2863 case AMDGPUISD::BFE_I32: 2864 case AMDGPUISD::BFE_U32: { 2865 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2866 if (!CWidth) 2867 return; 2868 2869 unsigned BitWidth = 32; 2870 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2871 2872 if (Opc == AMDGPUISD::BFE_U32) 2873 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2874 2875 break; 2876 } 2877 } 2878 } 2879 2880 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2881 SDValue Op, 2882 const SelectionDAG &DAG, 2883 unsigned Depth) const { 2884 switch (Op.getOpcode()) { 2885 case AMDGPUISD::BFE_I32: { 2886 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2887 if (!Width) 2888 return 1; 2889 2890 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2891 if (!isNullConstant(Op.getOperand(1))) 2892 return SignBits; 2893 2894 // TODO: Could probably figure something out with non-0 offsets. 2895 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2896 return std::max(SignBits, Op0SignBits); 2897 } 2898 2899 case AMDGPUISD::BFE_U32: { 2900 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2901 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2902 } 2903 2904 case AMDGPUISD::CARRY: 2905 case AMDGPUISD::BORROW: 2906 return 31; 2907 2908 default: 2909 return 1; 2910 } 2911 } 2912