1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUSubtarget.h" 20 #include "AMDGPUTargetMachine.h" 21 #include "Utils/AMDGPUBaseInfo.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIInstrInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Support/MathExtras.h" 36 using namespace llvm; 37 38 #include "AMDGPUGenCallingConv.inc" 39 40 static cl::opt<bool> AMDGPUBypassSlowDiv( 41 "amdgpu-bypass-slow-div", 42 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 43 cl::init(true)); 44 45 // Find a larger type to do a load / store of a vector with. 46 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 47 unsigned StoreSize = VT.getStoreSizeInBits(); 48 if (StoreSize <= 32) 49 return EVT::getIntegerVT(Ctx, StoreSize); 50 51 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 52 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 53 } 54 55 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 56 EVT VT = Op.getValueType(); 57 KnownBits Known = DAG.computeKnownBits(Op); 58 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 59 } 60 61 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 62 EVT VT = Op.getValueType(); 63 64 // In order for this to be a signed 24-bit value, bit 23, must 65 // be a sign bit. 66 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 67 } 68 69 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 70 const AMDGPUSubtarget &STI) 71 : TargetLowering(TM), Subtarget(&STI) { 72 // Lower floating point store/load to integer store/load to reduce the number 73 // of patterns in tablegen. 74 setOperationAction(ISD::LOAD, MVT::f32, Promote); 75 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 76 77 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 78 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 79 80 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 81 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 82 83 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 84 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 85 86 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 87 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 88 89 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 90 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 91 92 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 93 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 94 95 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 96 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 97 98 setOperationAction(ISD::LOAD, MVT::i64, Promote); 99 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 100 101 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 102 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 103 104 setOperationAction(ISD::LOAD, MVT::f64, Promote); 105 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 106 107 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 108 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 109 110 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 111 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 112 113 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 114 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 115 116 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 117 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 118 119 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 120 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 121 122 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 123 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 124 125 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 126 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 127 128 // There are no 64-bit extloads. These should be done as a 32-bit extload and 129 // an extension to 64-bit. 130 for (MVT VT : MVT::integer_valuetypes()) { 131 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 132 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 133 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 134 } 135 136 for (MVT VT : MVT::integer_valuetypes()) { 137 if (VT == MVT::i64) 138 continue; 139 140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 144 145 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 149 150 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 154 } 155 156 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 159 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 161 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 162 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 164 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 165 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 168 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 171 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 172 } 173 174 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 175 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 181 182 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 187 188 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 189 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 190 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 193 194 setOperationAction(ISD::STORE, MVT::f32, Promote); 195 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 196 197 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 199 200 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 202 203 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 205 206 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 208 209 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 211 212 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 214 215 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 217 218 setOperationAction(ISD::STORE, MVT::i64, Promote); 219 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 220 221 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 223 224 setOperationAction(ISD::STORE, MVT::f64, Promote); 225 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 226 227 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 228 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 229 230 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 232 233 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 235 236 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 238 239 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 241 242 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 244 245 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 247 248 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 249 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 250 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 251 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 252 253 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 254 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 255 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 256 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 257 258 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 259 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 260 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 261 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 262 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 263 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 264 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 265 266 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 267 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 268 269 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 270 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 271 272 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 273 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 274 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 275 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 276 277 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 278 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 279 280 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 281 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 282 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 283 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 284 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 285 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 286 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 287 288 setOperationAction(ISD::Constant, MVT::i32, Legal); 289 setOperationAction(ISD::Constant, MVT::i64, Legal); 290 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 291 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 292 293 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 294 setOperationAction(ISD::BRIND, MVT::Other, Expand); 295 296 // This is totally unsupported, just custom lower to produce an error. 297 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 298 299 // Library functions. These default to Expand, but we have instructions 300 // for them. 301 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 302 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 303 setOperationAction(ISD::FPOW, MVT::f32, Legal); 304 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 305 setOperationAction(ISD::FABS, MVT::f32, Legal); 306 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 307 setOperationAction(ISD::FRINT, MVT::f32, Legal); 308 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 309 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 310 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 311 312 setOperationAction(ISD::FROUND, MVT::f32, Custom); 313 setOperationAction(ISD::FROUND, MVT::f64, Custom); 314 315 setOperationAction(ISD::FLOG, MVT::f32, Custom); 316 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 317 setOperationAction(ISD::FEXP, MVT::f32, Custom); 318 319 320 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 321 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 322 323 setOperationAction(ISD::FREM, MVT::f16, Custom); 324 setOperationAction(ISD::FREM, MVT::f32, Custom); 325 setOperationAction(ISD::FREM, MVT::f64, Custom); 326 327 // Expand to fneg + fadd. 328 setOperationAction(ISD::FSUB, MVT::f64, Expand); 329 330 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 331 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 332 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 333 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 334 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 335 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 336 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 337 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 338 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 339 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 340 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 341 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 342 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 343 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 344 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 345 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 346 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 347 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 350 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 352 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 353 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 354 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 355 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 356 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 357 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 358 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 359 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 360 361 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 362 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 363 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 364 365 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 366 for (MVT VT : ScalarIntVTs) { 367 // These should use [SU]DIVREM, so set them to expand 368 setOperationAction(ISD::SDIV, VT, Expand); 369 setOperationAction(ISD::UDIV, VT, Expand); 370 setOperationAction(ISD::SREM, VT, Expand); 371 setOperationAction(ISD::UREM, VT, Expand); 372 373 // GPU does not have divrem function for signed or unsigned. 374 setOperationAction(ISD::SDIVREM, VT, Custom); 375 setOperationAction(ISD::UDIVREM, VT, Custom); 376 377 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 378 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 379 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 380 381 setOperationAction(ISD::BSWAP, VT, Expand); 382 setOperationAction(ISD::CTTZ, VT, Expand); 383 setOperationAction(ISD::CTLZ, VT, Expand); 384 385 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 386 setOperationAction(ISD::ADDC, VT, Legal); 387 setOperationAction(ISD::SUBC, VT, Legal); 388 setOperationAction(ISD::ADDE, VT, Legal); 389 setOperationAction(ISD::SUBE, VT, Legal); 390 } 391 392 // The hardware supports 32-bit FSHR, but not FSHL. 393 setOperationAction(ISD::FSHR, MVT::i32, Legal); 394 395 // The hardware supports 32-bit ROTR, but not ROTL. 396 setOperationAction(ISD::ROTL, MVT::i32, Expand); 397 setOperationAction(ISD::ROTL, MVT::i64, Expand); 398 setOperationAction(ISD::ROTR, MVT::i64, Expand); 399 400 setOperationAction(ISD::MUL, MVT::i64, Expand); 401 setOperationAction(ISD::MULHU, MVT::i64, Expand); 402 setOperationAction(ISD::MULHS, MVT::i64, Expand); 403 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 404 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 405 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 406 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 407 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 408 409 setOperationAction(ISD::SMIN, MVT::i32, Legal); 410 setOperationAction(ISD::UMIN, MVT::i32, Legal); 411 setOperationAction(ISD::SMAX, MVT::i32, Legal); 412 setOperationAction(ISD::UMAX, MVT::i32, Legal); 413 414 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 415 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 416 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 417 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 418 419 static const MVT::SimpleValueType VectorIntTypes[] = { 420 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 421 }; 422 423 for (MVT VT : VectorIntTypes) { 424 // Expand the following operations for the current type by default. 425 setOperationAction(ISD::ADD, VT, Expand); 426 setOperationAction(ISD::AND, VT, Expand); 427 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 428 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 429 setOperationAction(ISD::MUL, VT, Expand); 430 setOperationAction(ISD::MULHU, VT, Expand); 431 setOperationAction(ISD::MULHS, VT, Expand); 432 setOperationAction(ISD::OR, VT, Expand); 433 setOperationAction(ISD::SHL, VT, Expand); 434 setOperationAction(ISD::SRA, VT, Expand); 435 setOperationAction(ISD::SRL, VT, Expand); 436 setOperationAction(ISD::ROTL, VT, Expand); 437 setOperationAction(ISD::ROTR, VT, Expand); 438 setOperationAction(ISD::SUB, VT, Expand); 439 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 440 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 441 setOperationAction(ISD::SDIV, VT, Expand); 442 setOperationAction(ISD::UDIV, VT, Expand); 443 setOperationAction(ISD::SREM, VT, Expand); 444 setOperationAction(ISD::UREM, VT, Expand); 445 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 446 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 447 setOperationAction(ISD::SDIVREM, VT, Expand); 448 setOperationAction(ISD::UDIVREM, VT, Expand); 449 setOperationAction(ISD::SELECT, VT, Expand); 450 setOperationAction(ISD::VSELECT, VT, Expand); 451 setOperationAction(ISD::SELECT_CC, VT, Expand); 452 setOperationAction(ISD::XOR, VT, Expand); 453 setOperationAction(ISD::BSWAP, VT, Expand); 454 setOperationAction(ISD::CTPOP, VT, Expand); 455 setOperationAction(ISD::CTTZ, VT, Expand); 456 setOperationAction(ISD::CTLZ, VT, Expand); 457 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 458 setOperationAction(ISD::SETCC, VT, Expand); 459 } 460 461 static const MVT::SimpleValueType FloatVectorTypes[] = { 462 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 463 }; 464 465 for (MVT VT : FloatVectorTypes) { 466 setOperationAction(ISD::FABS, VT, Expand); 467 setOperationAction(ISD::FMINNUM, VT, Expand); 468 setOperationAction(ISD::FMAXNUM, VT, Expand); 469 setOperationAction(ISD::FADD, VT, Expand); 470 setOperationAction(ISD::FCEIL, VT, Expand); 471 setOperationAction(ISD::FCOS, VT, Expand); 472 setOperationAction(ISD::FDIV, VT, Expand); 473 setOperationAction(ISD::FEXP2, VT, Expand); 474 setOperationAction(ISD::FEXP, VT, Expand); 475 setOperationAction(ISD::FLOG2, VT, Expand); 476 setOperationAction(ISD::FREM, VT, Expand); 477 setOperationAction(ISD::FLOG, VT, Expand); 478 setOperationAction(ISD::FLOG10, VT, Expand); 479 setOperationAction(ISD::FPOW, VT, Expand); 480 setOperationAction(ISD::FFLOOR, VT, Expand); 481 setOperationAction(ISD::FTRUNC, VT, Expand); 482 setOperationAction(ISD::FMUL, VT, Expand); 483 setOperationAction(ISD::FMA, VT, Expand); 484 setOperationAction(ISD::FRINT, VT, Expand); 485 setOperationAction(ISD::FNEARBYINT, VT, Expand); 486 setOperationAction(ISD::FSQRT, VT, Expand); 487 setOperationAction(ISD::FSIN, VT, Expand); 488 setOperationAction(ISD::FSUB, VT, Expand); 489 setOperationAction(ISD::FNEG, VT, Expand); 490 setOperationAction(ISD::VSELECT, VT, Expand); 491 setOperationAction(ISD::SELECT_CC, VT, Expand); 492 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 493 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 494 setOperationAction(ISD::SETCC, VT, Expand); 495 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 496 } 497 498 // This causes using an unrolled select operation rather than expansion with 499 // bit operations. This is in general better, but the alternative using BFI 500 // instructions may be better if the select sources are SGPRs. 501 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 502 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 503 504 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 505 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 506 507 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 508 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 509 510 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 511 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 512 513 // There are no libcalls of any kind. 514 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 515 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 516 517 setSchedulingPreference(Sched::RegPressure); 518 setJumpIsExpensive(true); 519 520 // FIXME: This is only partially true. If we have to do vector compares, any 521 // SGPR pair can be a condition register. If we have a uniform condition, we 522 // are better off doing SALU operations, where there is only one SCC. For now, 523 // we don't have a way of knowing during instruction selection if a condition 524 // will be uniform and we always use vector compares. Assume we are using 525 // vector compares until that is fixed. 526 setHasMultipleConditionRegisters(true); 527 528 setMinCmpXchgSizeInBits(32); 529 setSupportsUnalignedAtomics(false); 530 531 PredictableSelectIsExpensive = false; 532 533 // We want to find all load dependencies for long chains of stores to enable 534 // merging into very wide vectors. The problem is with vectors with > 4 535 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 536 // vectors are a legal type, even though we have to split the loads 537 // usually. When we can more precisely specify load legality per address 538 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 539 // smarter so that they can figure out what to do in 2 iterations without all 540 // N > 4 stores on the same chain. 541 GatherAllAliasesMaxDepth = 16; 542 543 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 544 // about these during lowering. 545 MaxStoresPerMemcpy = 0xffffffff; 546 MaxStoresPerMemmove = 0xffffffff; 547 MaxStoresPerMemset = 0xffffffff; 548 549 // The expansion for 64-bit division is enormous. 550 if (AMDGPUBypassSlowDiv) 551 addBypassSlowDiv(64, 32); 552 553 setTargetDAGCombine(ISD::BITCAST); 554 setTargetDAGCombine(ISD::SHL); 555 setTargetDAGCombine(ISD::SRA); 556 setTargetDAGCombine(ISD::SRL); 557 setTargetDAGCombine(ISD::TRUNCATE); 558 setTargetDAGCombine(ISD::MUL); 559 setTargetDAGCombine(ISD::MULHU); 560 setTargetDAGCombine(ISD::MULHS); 561 setTargetDAGCombine(ISD::SELECT); 562 setTargetDAGCombine(ISD::SELECT_CC); 563 setTargetDAGCombine(ISD::STORE); 564 setTargetDAGCombine(ISD::FADD); 565 setTargetDAGCombine(ISD::FSUB); 566 setTargetDAGCombine(ISD::FNEG); 567 setTargetDAGCombine(ISD::FABS); 568 setTargetDAGCombine(ISD::AssertZext); 569 setTargetDAGCombine(ISD::AssertSext); 570 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 571 } 572 573 //===----------------------------------------------------------------------===// 574 // Target Information 575 //===----------------------------------------------------------------------===// 576 577 LLVM_READNONE 578 static bool fnegFoldsIntoOp(unsigned Opc) { 579 switch (Opc) { 580 case ISD::FADD: 581 case ISD::FSUB: 582 case ISD::FMUL: 583 case ISD::FMA: 584 case ISD::FMAD: 585 case ISD::FMINNUM: 586 case ISD::FMAXNUM: 587 case ISD::FMINNUM_IEEE: 588 case ISD::FMAXNUM_IEEE: 589 case ISD::FSIN: 590 case ISD::FTRUNC: 591 case ISD::FRINT: 592 case ISD::FNEARBYINT: 593 case ISD::FCANONICALIZE: 594 case AMDGPUISD::RCP: 595 case AMDGPUISD::RCP_LEGACY: 596 case AMDGPUISD::RCP_IFLAG: 597 case AMDGPUISD::SIN_HW: 598 case AMDGPUISD::FMUL_LEGACY: 599 case AMDGPUISD::FMIN_LEGACY: 600 case AMDGPUISD::FMAX_LEGACY: 601 case AMDGPUISD::FMED3: 602 return true; 603 default: 604 return false; 605 } 606 } 607 608 /// \p returns true if the operation will definitely need to use a 64-bit 609 /// encoding, and thus will use a VOP3 encoding regardless of the source 610 /// modifiers. 611 LLVM_READONLY 612 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 613 return N->getNumOperands() > 2 || VT == MVT::f64; 614 } 615 616 // Most FP instructions support source modifiers, but this could be refined 617 // slightly. 618 LLVM_READONLY 619 static bool hasSourceMods(const SDNode *N) { 620 if (isa<MemSDNode>(N)) 621 return false; 622 623 switch (N->getOpcode()) { 624 case ISD::CopyToReg: 625 case ISD::SELECT: 626 case ISD::FDIV: 627 case ISD::FREM: 628 case ISD::INLINEASM: 629 case ISD::INLINEASM_BR: 630 case AMDGPUISD::DIV_SCALE: 631 case ISD::INTRINSIC_W_CHAIN: 632 633 // TODO: Should really be looking at the users of the bitcast. These are 634 // problematic because bitcasts are used to legalize all stores to integer 635 // types. 636 case ISD::BITCAST: 637 return false; 638 case ISD::INTRINSIC_WO_CHAIN: { 639 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 640 case Intrinsic::amdgcn_interp_p1: 641 case Intrinsic::amdgcn_interp_p2: 642 case Intrinsic::amdgcn_interp_mov: 643 case Intrinsic::amdgcn_interp_p1_f16: 644 case Intrinsic::amdgcn_interp_p2_f16: 645 return false; 646 default: 647 return true; 648 } 649 } 650 default: 651 return true; 652 } 653 } 654 655 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 656 unsigned CostThreshold) { 657 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 658 // it is truly free to use a source modifier in all cases. If there are 659 // multiple users but for each one will necessitate using VOP3, there will be 660 // a code size increase. Try to avoid increasing code size unless we know it 661 // will save on the instruction count. 662 unsigned NumMayIncreaseSize = 0; 663 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 664 665 // XXX - Should this limit number of uses to check? 666 for (const SDNode *U : N->uses()) { 667 if (!hasSourceMods(U)) 668 return false; 669 670 if (!opMustUseVOP3Encoding(U, VT)) { 671 if (++NumMayIncreaseSize > CostThreshold) 672 return false; 673 } 674 } 675 676 return true; 677 } 678 679 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 680 ISD::NodeType ExtendKind) const { 681 assert(!VT.isVector() && "only scalar expected"); 682 683 // Round to the next multiple of 32-bits. 684 unsigned Size = VT.getSizeInBits(); 685 if (Size <= 32) 686 return MVT::i32; 687 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 688 } 689 690 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 691 return MVT::i32; 692 } 693 694 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 695 return true; 696 } 697 698 // The backend supports 32 and 64 bit floating point immediates. 699 // FIXME: Why are we reporting vectors of FP immediates as legal? 700 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 701 bool ForCodeSize) const { 702 EVT ScalarVT = VT.getScalarType(); 703 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 704 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 705 } 706 707 // We don't want to shrink f64 / f32 constants. 708 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 709 EVT ScalarVT = VT.getScalarType(); 710 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 711 } 712 713 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 714 ISD::LoadExtType ExtTy, 715 EVT NewVT) const { 716 // TODO: This may be worth removing. Check regression tests for diffs. 717 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 718 return false; 719 720 unsigned NewSize = NewVT.getStoreSizeInBits(); 721 722 // If we are reducing to a 32-bit load or a smaller multi-dword load, 723 // this is always better. 724 if (NewSize >= 32) 725 return true; 726 727 EVT OldVT = N->getValueType(0); 728 unsigned OldSize = OldVT.getStoreSizeInBits(); 729 730 MemSDNode *MN = cast<MemSDNode>(N); 731 unsigned AS = MN->getAddressSpace(); 732 // Do not shrink an aligned scalar load to sub-dword. 733 // Scalar engine cannot do sub-dword loads. 734 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 735 (AS == AMDGPUAS::CONSTANT_ADDRESS || 736 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 737 (isa<LoadSDNode>(N) && 738 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 739 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 740 return false; 741 742 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 743 // extloads, so doing one requires using a buffer_load. In cases where we 744 // still couldn't use a scalar load, using the wider load shouldn't really 745 // hurt anything. 746 747 // If the old size already had to be an extload, there's no harm in continuing 748 // to reduce the width. 749 return (OldSize < 32); 750 } 751 752 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 753 const SelectionDAG &DAG, 754 const MachineMemOperand &MMO) const { 755 756 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 757 758 if (LoadTy.getScalarType() == MVT::i32) 759 return false; 760 761 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 762 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 763 764 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 765 return false; 766 767 bool Fast = false; 768 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 769 CastTy, MMO, &Fast) && 770 Fast; 771 } 772 773 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 774 // profitable with the expansion for 64-bit since it's generally good to 775 // speculate things. 776 // FIXME: These should really have the size as a parameter. 777 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 778 return true; 779 } 780 781 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 782 return true; 783 } 784 785 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 786 switch (N->getOpcode()) { 787 case ISD::EntryToken: 788 case ISD::TokenFactor: 789 return true; 790 case ISD::INTRINSIC_WO_CHAIN: { 791 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 792 switch (IntrID) { 793 case Intrinsic::amdgcn_readfirstlane: 794 case Intrinsic::amdgcn_readlane: 795 return true; 796 } 797 return false; 798 } 799 case ISD::LOAD: 800 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 801 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 802 return true; 803 return false; 804 } 805 return false; 806 } 807 808 SDValue AMDGPUTargetLowering::getNegatedExpression( 809 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 810 NegatibleCost &Cost, unsigned Depth) const { 811 812 switch (Op.getOpcode()) { 813 case ISD::FMA: 814 case ISD::FMAD: { 815 // Negating a fma is not free if it has users without source mods. 816 if (!allUsesHaveSourceMods(Op.getNode())) 817 return SDValue(); 818 break; 819 } 820 default: 821 break; 822 } 823 824 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 825 ForCodeSize, Cost, Depth); 826 } 827 828 //===---------------------------------------------------------------------===// 829 // Target Properties 830 //===---------------------------------------------------------------------===// 831 832 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 833 assert(VT.isFloatingPoint()); 834 835 // Packed operations do not have a fabs modifier. 836 return VT == MVT::f32 || VT == MVT::f64 || 837 (Subtarget->has16BitInsts() && VT == MVT::f16); 838 } 839 840 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 841 assert(VT.isFloatingPoint()); 842 return VT == MVT::f32 || VT == MVT::f64 || 843 (Subtarget->has16BitInsts() && VT == MVT::f16) || 844 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 845 } 846 847 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 848 unsigned NumElem, 849 unsigned AS) const { 850 return true; 851 } 852 853 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 854 // There are few operations which truly have vector input operands. Any vector 855 // operation is going to involve operations on each component, and a 856 // build_vector will be a copy per element, so it always makes sense to use a 857 // build_vector input in place of the extracted element to avoid a copy into a 858 // super register. 859 // 860 // We should probably only do this if all users are extracts only, but this 861 // should be the common case. 862 return true; 863 } 864 865 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 866 // Truncate is just accessing a subregister. 867 868 unsigned SrcSize = Source.getSizeInBits(); 869 unsigned DestSize = Dest.getSizeInBits(); 870 871 return DestSize < SrcSize && DestSize % 32 == 0 ; 872 } 873 874 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 875 // Truncate is just accessing a subregister. 876 877 unsigned SrcSize = Source->getScalarSizeInBits(); 878 unsigned DestSize = Dest->getScalarSizeInBits(); 879 880 if (DestSize== 16 && Subtarget->has16BitInsts()) 881 return SrcSize >= 32; 882 883 return DestSize < SrcSize && DestSize % 32 == 0; 884 } 885 886 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 887 unsigned SrcSize = Src->getScalarSizeInBits(); 888 unsigned DestSize = Dest->getScalarSizeInBits(); 889 890 if (SrcSize == 16 && Subtarget->has16BitInsts()) 891 return DestSize >= 32; 892 893 return SrcSize == 32 && DestSize == 64; 894 } 895 896 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 897 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 898 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 899 // this will enable reducing 64-bit operations the 32-bit, which is always 900 // good. 901 902 if (Src == MVT::i16) 903 return Dest == MVT::i32 ||Dest == MVT::i64 ; 904 905 return Src == MVT::i32 && Dest == MVT::i64; 906 } 907 908 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 909 return isZExtFree(Val.getValueType(), VT2); 910 } 911 912 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 913 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 914 // limited number of native 64-bit operations. Shrinking an operation to fit 915 // in a single 32-bit register should always be helpful. As currently used, 916 // this is much less general than the name suggests, and is only used in 917 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 918 // not profitable, and may actually be harmful. 919 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 920 } 921 922 //===---------------------------------------------------------------------===// 923 // TargetLowering Callbacks 924 //===---------------------------------------------------------------------===// 925 926 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 927 bool IsVarArg) { 928 switch (CC) { 929 case CallingConv::AMDGPU_VS: 930 case CallingConv::AMDGPU_GS: 931 case CallingConv::AMDGPU_PS: 932 case CallingConv::AMDGPU_CS: 933 case CallingConv::AMDGPU_HS: 934 case CallingConv::AMDGPU_ES: 935 case CallingConv::AMDGPU_LS: 936 return CC_AMDGPU; 937 case CallingConv::C: 938 case CallingConv::Fast: 939 case CallingConv::Cold: 940 return CC_AMDGPU_Func; 941 case CallingConv::AMDGPU_KERNEL: 942 case CallingConv::SPIR_KERNEL: 943 default: 944 report_fatal_error("Unsupported calling convention for call"); 945 } 946 } 947 948 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 949 bool IsVarArg) { 950 switch (CC) { 951 case CallingConv::AMDGPU_KERNEL: 952 case CallingConv::SPIR_KERNEL: 953 llvm_unreachable("kernels should not be handled here"); 954 case CallingConv::AMDGPU_VS: 955 case CallingConv::AMDGPU_GS: 956 case CallingConv::AMDGPU_PS: 957 case CallingConv::AMDGPU_CS: 958 case CallingConv::AMDGPU_HS: 959 case CallingConv::AMDGPU_ES: 960 case CallingConv::AMDGPU_LS: 961 return RetCC_SI_Shader; 962 case CallingConv::C: 963 case CallingConv::Fast: 964 case CallingConv::Cold: 965 return RetCC_AMDGPU_Func; 966 default: 967 report_fatal_error("Unsupported calling convention."); 968 } 969 } 970 971 /// The SelectionDAGBuilder will automatically promote function arguments 972 /// with illegal types. However, this does not work for the AMDGPU targets 973 /// since the function arguments are stored in memory as these illegal types. 974 /// In order to handle this properly we need to get the original types sizes 975 /// from the LLVM IR Function and fixup the ISD:InputArg values before 976 /// passing them to AnalyzeFormalArguments() 977 978 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 979 /// input values across multiple registers. Each item in the Ins array 980 /// represents a single value that will be stored in registers. Ins[x].VT is 981 /// the value type of the value that will be stored in the register, so 982 /// whatever SDNode we lower the argument to needs to be this type. 983 /// 984 /// In order to correctly lower the arguments we need to know the size of each 985 /// argument. Since Ins[x].VT gives us the size of the register that will 986 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 987 /// for the orignal function argument so that we can deduce the correct memory 988 /// type to use for Ins[x]. In most cases the correct memory type will be 989 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 990 /// we have a kernel argument of type v8i8, this argument will be split into 991 /// 8 parts and each part will be represented by its own item in the Ins array. 992 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 993 /// the argument before it was split. From this, we deduce that the memory type 994 /// for each individual part is i8. We pass the memory type as LocVT to the 995 /// calling convention analysis function and the register type (Ins[x].VT) as 996 /// the ValVT. 997 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 998 CCState &State, 999 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1000 const MachineFunction &MF = State.getMachineFunction(); 1001 const Function &Fn = MF.getFunction(); 1002 LLVMContext &Ctx = Fn.getParent()->getContext(); 1003 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1004 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1005 CallingConv::ID CC = Fn.getCallingConv(); 1006 1007 Align MaxAlign = Align(1); 1008 uint64_t ExplicitArgOffset = 0; 1009 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1010 1011 unsigned InIndex = 0; 1012 1013 for (const Argument &Arg : Fn.args()) { 1014 const bool IsByRef = Arg.hasByRefAttr(); 1015 Type *BaseArgTy = Arg.getType(); 1016 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1017 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1018 if (!Alignment) 1019 Alignment = DL.getABITypeAlign(MemArgTy); 1020 MaxAlign = max(Alignment, MaxAlign); 1021 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1022 1023 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1024 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1025 1026 // We're basically throwing away everything passed into us and starting over 1027 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1028 // to us as computed in Ins. 1029 // 1030 // We also need to figure out what type legalization is trying to do to get 1031 // the correct memory offsets. 1032 1033 SmallVector<EVT, 16> ValueVTs; 1034 SmallVector<uint64_t, 16> Offsets; 1035 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1036 1037 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1038 Value != NumValues; ++Value) { 1039 uint64_t BasePartOffset = Offsets[Value]; 1040 1041 EVT ArgVT = ValueVTs[Value]; 1042 EVT MemVT = ArgVT; 1043 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1044 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1045 1046 if (NumRegs == 1) { 1047 // This argument is not split, so the IR type is the memory type. 1048 if (ArgVT.isExtended()) { 1049 // We have an extended type, like i24, so we should just use the 1050 // register type. 1051 MemVT = RegisterVT; 1052 } else { 1053 MemVT = ArgVT; 1054 } 1055 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1056 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1057 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1058 // We have a vector value which has been split into a vector with 1059 // the same scalar type, but fewer elements. This should handle 1060 // all the floating-point vector types. 1061 MemVT = RegisterVT; 1062 } else if (ArgVT.isVector() && 1063 ArgVT.getVectorNumElements() == NumRegs) { 1064 // This arg has been split so that each element is stored in a separate 1065 // register. 1066 MemVT = ArgVT.getScalarType(); 1067 } else if (ArgVT.isExtended()) { 1068 // We have an extended type, like i65. 1069 MemVT = RegisterVT; 1070 } else { 1071 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1072 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1073 if (RegisterVT.isInteger()) { 1074 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1075 } else if (RegisterVT.isVector()) { 1076 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1077 unsigned NumElements = RegisterVT.getVectorNumElements(); 1078 assert(MemoryBits % NumElements == 0); 1079 // This vector type has been split into another vector type with 1080 // a different elements size. 1081 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1082 MemoryBits / NumElements); 1083 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1084 } else { 1085 llvm_unreachable("cannot deduce memory type."); 1086 } 1087 } 1088 1089 // Convert one element vectors to scalar. 1090 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1091 MemVT = MemVT.getScalarType(); 1092 1093 // Round up vec3/vec5 argument. 1094 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1095 assert(MemVT.getVectorNumElements() == 3 || 1096 MemVT.getVectorNumElements() == 5); 1097 MemVT = MemVT.getPow2VectorType(State.getContext()); 1098 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1099 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1100 } 1101 1102 unsigned PartOffset = 0; 1103 for (unsigned i = 0; i != NumRegs; ++i) { 1104 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1105 BasePartOffset + PartOffset, 1106 MemVT.getSimpleVT(), 1107 CCValAssign::Full)); 1108 PartOffset += MemVT.getStoreSize(); 1109 } 1110 } 1111 } 1112 } 1113 1114 SDValue AMDGPUTargetLowering::LowerReturn( 1115 SDValue Chain, CallingConv::ID CallConv, 1116 bool isVarArg, 1117 const SmallVectorImpl<ISD::OutputArg> &Outs, 1118 const SmallVectorImpl<SDValue> &OutVals, 1119 const SDLoc &DL, SelectionDAG &DAG) const { 1120 // FIXME: Fails for r600 tests 1121 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1122 // "wave terminate should not have return values"); 1123 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1124 } 1125 1126 //===---------------------------------------------------------------------===// 1127 // Target specific lowering 1128 //===---------------------------------------------------------------------===// 1129 1130 /// Selects the correct CCAssignFn for a given CallingConvention value. 1131 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1132 bool IsVarArg) { 1133 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1134 } 1135 1136 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1137 bool IsVarArg) { 1138 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1139 } 1140 1141 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1142 SelectionDAG &DAG, 1143 MachineFrameInfo &MFI, 1144 int ClobberedFI) const { 1145 SmallVector<SDValue, 8> ArgChains; 1146 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1147 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1148 1149 // Include the original chain at the beginning of the list. When this is 1150 // used by target LowerCall hooks, this helps legalize find the 1151 // CALLSEQ_BEGIN node. 1152 ArgChains.push_back(Chain); 1153 1154 // Add a chain value for each stack argument corresponding 1155 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1156 UE = DAG.getEntryNode().getNode()->use_end(); 1157 U != UE; ++U) { 1158 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1159 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1160 if (FI->getIndex() < 0) { 1161 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1162 int64_t InLastByte = InFirstByte; 1163 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1164 1165 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1166 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1167 ArgChains.push_back(SDValue(L, 1)); 1168 } 1169 } 1170 } 1171 } 1172 1173 // Build a tokenfactor for all the chains. 1174 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1175 } 1176 1177 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1178 SmallVectorImpl<SDValue> &InVals, 1179 StringRef Reason) const { 1180 SDValue Callee = CLI.Callee; 1181 SelectionDAG &DAG = CLI.DAG; 1182 1183 const Function &Fn = DAG.getMachineFunction().getFunction(); 1184 1185 StringRef FuncName("<unknown>"); 1186 1187 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1188 FuncName = G->getSymbol(); 1189 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1190 FuncName = G->getGlobal()->getName(); 1191 1192 DiagnosticInfoUnsupported NoCalls( 1193 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1194 DAG.getContext()->diagnose(NoCalls); 1195 1196 if (!CLI.IsTailCall) { 1197 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1198 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1199 } 1200 1201 return DAG.getEntryNode(); 1202 } 1203 1204 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1205 SmallVectorImpl<SDValue> &InVals) const { 1206 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1207 } 1208 1209 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1210 SelectionDAG &DAG) const { 1211 const Function &Fn = DAG.getMachineFunction().getFunction(); 1212 1213 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1214 SDLoc(Op).getDebugLoc()); 1215 DAG.getContext()->diagnose(NoDynamicAlloca); 1216 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1217 return DAG.getMergeValues(Ops, SDLoc()); 1218 } 1219 1220 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1221 SelectionDAG &DAG) const { 1222 switch (Op.getOpcode()) { 1223 default: 1224 Op->print(errs(), &DAG); 1225 llvm_unreachable("Custom lowering code for this " 1226 "instruction is not implemented yet!"); 1227 break; 1228 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1229 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1230 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1231 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1232 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1233 case ISD::FREM: return LowerFREM(Op, DAG); 1234 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1235 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1236 case ISD::FRINT: return LowerFRINT(Op, DAG); 1237 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1238 case ISD::FROUND: return LowerFROUND(Op, DAG); 1239 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1240 case ISD::FLOG: 1241 return LowerFLOG(Op, DAG, numbers::ln2f); 1242 case ISD::FLOG10: 1243 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1244 case ISD::FEXP: 1245 return lowerFEXP(Op, DAG); 1246 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1247 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1248 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1249 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1250 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1251 case ISD::CTTZ: 1252 case ISD::CTTZ_ZERO_UNDEF: 1253 case ISD::CTLZ: 1254 case ISD::CTLZ_ZERO_UNDEF: 1255 return LowerCTLZ_CTTZ(Op, DAG); 1256 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1257 } 1258 return Op; 1259 } 1260 1261 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1262 SmallVectorImpl<SDValue> &Results, 1263 SelectionDAG &DAG) const { 1264 switch (N->getOpcode()) { 1265 case ISD::SIGN_EXTEND_INREG: 1266 // Different parts of legalization seem to interpret which type of 1267 // sign_extend_inreg is the one to check for custom lowering. The extended 1268 // from type is what really matters, but some places check for custom 1269 // lowering of the result type. This results in trying to use 1270 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1271 // nothing here and let the illegal result integer be handled normally. 1272 return; 1273 default: 1274 return; 1275 } 1276 } 1277 1278 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1279 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1280 if (!GVar || !GVar->hasInitializer()) 1281 return false; 1282 1283 return !isa<UndefValue>(GVar->getInitializer()); 1284 } 1285 1286 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1287 SDValue Op, 1288 SelectionDAG &DAG) const { 1289 1290 const DataLayout &DL = DAG.getDataLayout(); 1291 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1292 const GlobalValue *GV = G->getGlobal(); 1293 1294 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1295 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1296 if (!MFI->isEntryFunction()) { 1297 SDLoc DL(Op); 1298 const Function &Fn = DAG.getMachineFunction().getFunction(); 1299 DiagnosticInfoUnsupported BadLDSDecl( 1300 Fn, "local memory global used by non-kernel function", 1301 DL.getDebugLoc(), DS_Warning); 1302 DAG.getContext()->diagnose(BadLDSDecl); 1303 1304 // We currently don't have a way to correctly allocate LDS objects that 1305 // aren't directly associated with a kernel. We do force inlining of 1306 // functions that use local objects. However, if these dead functions are 1307 // not eliminated, we don't want a compile time error. Just emit a warning 1308 // and a trap, since there should be no callable path here. 1309 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1310 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1311 Trap, DAG.getRoot()); 1312 DAG.setRoot(OutputChain); 1313 return DAG.getUNDEF(Op.getValueType()); 1314 } 1315 1316 // XXX: What does the value of G->getOffset() mean? 1317 assert(G->getOffset() == 0 && 1318 "Do not know what to do with an non-zero offset"); 1319 1320 // TODO: We could emit code to handle the initialization somewhere. 1321 if (!hasDefinedInitializer(GV)) { 1322 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1323 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1324 } 1325 } 1326 1327 const Function &Fn = DAG.getMachineFunction().getFunction(); 1328 DiagnosticInfoUnsupported BadInit( 1329 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1330 DAG.getContext()->diagnose(BadInit); 1331 return SDValue(); 1332 } 1333 1334 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1335 SelectionDAG &DAG) const { 1336 SmallVector<SDValue, 8> Args; 1337 1338 EVT VT = Op.getValueType(); 1339 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1340 SDLoc SL(Op); 1341 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1342 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1343 1344 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1345 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1346 } 1347 1348 for (const SDUse &U : Op->ops()) 1349 DAG.ExtractVectorElements(U.get(), Args); 1350 1351 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1352 } 1353 1354 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1355 SelectionDAG &DAG) const { 1356 1357 SmallVector<SDValue, 8> Args; 1358 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1359 EVT VT = Op.getValueType(); 1360 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1361 VT.getVectorNumElements()); 1362 1363 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1364 } 1365 1366 /// Generate Min/Max node 1367 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1368 SDValue LHS, SDValue RHS, 1369 SDValue True, SDValue False, 1370 SDValue CC, 1371 DAGCombinerInfo &DCI) const { 1372 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1373 return SDValue(); 1374 1375 SelectionDAG &DAG = DCI.DAG; 1376 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1377 switch (CCOpcode) { 1378 case ISD::SETOEQ: 1379 case ISD::SETONE: 1380 case ISD::SETUNE: 1381 case ISD::SETNE: 1382 case ISD::SETUEQ: 1383 case ISD::SETEQ: 1384 case ISD::SETFALSE: 1385 case ISD::SETFALSE2: 1386 case ISD::SETTRUE: 1387 case ISD::SETTRUE2: 1388 case ISD::SETUO: 1389 case ISD::SETO: 1390 break; 1391 case ISD::SETULE: 1392 case ISD::SETULT: { 1393 if (LHS == True) 1394 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1395 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1396 } 1397 case ISD::SETOLE: 1398 case ISD::SETOLT: 1399 case ISD::SETLE: 1400 case ISD::SETLT: { 1401 // Ordered. Assume ordered for undefined. 1402 1403 // Only do this after legalization to avoid interfering with other combines 1404 // which might occur. 1405 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1406 !DCI.isCalledByLegalizer()) 1407 return SDValue(); 1408 1409 // We need to permute the operands to get the correct NaN behavior. The 1410 // selected operand is the second one based on the failing compare with NaN, 1411 // so permute it based on the compare type the hardware uses. 1412 if (LHS == True) 1413 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1414 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1415 } 1416 case ISD::SETUGE: 1417 case ISD::SETUGT: { 1418 if (LHS == True) 1419 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1420 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1421 } 1422 case ISD::SETGT: 1423 case ISD::SETGE: 1424 case ISD::SETOGE: 1425 case ISD::SETOGT: { 1426 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1427 !DCI.isCalledByLegalizer()) 1428 return SDValue(); 1429 1430 if (LHS == True) 1431 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1432 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1433 } 1434 case ISD::SETCC_INVALID: 1435 llvm_unreachable("Invalid setcc condcode!"); 1436 } 1437 return SDValue(); 1438 } 1439 1440 std::pair<SDValue, SDValue> 1441 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1442 SDLoc SL(Op); 1443 1444 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1445 1446 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1447 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1448 1449 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1450 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1451 1452 return std::make_pair(Lo, Hi); 1453 } 1454 1455 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1456 SDLoc SL(Op); 1457 1458 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1459 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1460 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1461 } 1462 1463 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1464 SDLoc SL(Op); 1465 1466 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1467 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1468 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1469 } 1470 1471 // Split a vector type into two parts. The first part is a power of two vector. 1472 // The second part is whatever is left over, and is a scalar if it would 1473 // otherwise be a 1-vector. 1474 std::pair<EVT, EVT> 1475 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1476 EVT LoVT, HiVT; 1477 EVT EltVT = VT.getVectorElementType(); 1478 unsigned NumElts = VT.getVectorNumElements(); 1479 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1480 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1481 HiVT = NumElts - LoNumElts == 1 1482 ? EltVT 1483 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1484 return std::make_pair(LoVT, HiVT); 1485 } 1486 1487 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1488 // scalar. 1489 std::pair<SDValue, SDValue> 1490 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1491 const EVT &LoVT, const EVT &HiVT, 1492 SelectionDAG &DAG) const { 1493 assert(LoVT.getVectorNumElements() + 1494 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1495 N.getValueType().getVectorNumElements() && 1496 "More vector elements requested than available!"); 1497 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1498 DAG.getVectorIdxConstant(0, DL)); 1499 SDValue Hi = DAG.getNode( 1500 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1501 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1502 return std::make_pair(Lo, Hi); 1503 } 1504 1505 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1506 SelectionDAG &DAG) const { 1507 LoadSDNode *Load = cast<LoadSDNode>(Op); 1508 EVT VT = Op.getValueType(); 1509 SDLoc SL(Op); 1510 1511 1512 // If this is a 2 element vector, we really want to scalarize and not create 1513 // weird 1 element vectors. 1514 if (VT.getVectorNumElements() == 2) { 1515 SDValue Ops[2]; 1516 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1517 return DAG.getMergeValues(Ops, SL); 1518 } 1519 1520 SDValue BasePtr = Load->getBasePtr(); 1521 EVT MemVT = Load->getMemoryVT(); 1522 1523 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1524 1525 EVT LoVT, HiVT; 1526 EVT LoMemVT, HiMemVT; 1527 SDValue Lo, Hi; 1528 1529 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1530 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1531 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1532 1533 unsigned Size = LoMemVT.getStoreSize(); 1534 unsigned BaseAlign = Load->getAlignment(); 1535 unsigned HiAlign = MinAlign(BaseAlign, Size); 1536 1537 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1538 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1539 BaseAlign, Load->getMemOperand()->getFlags()); 1540 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1541 SDValue HiLoad = 1542 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1543 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1544 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1545 1546 SDValue Join; 1547 if (LoVT == HiVT) { 1548 // This is the case that the vector is power of two so was evenly split. 1549 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1550 } else { 1551 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1552 DAG.getVectorIdxConstant(0, SL)); 1553 Join = DAG.getNode( 1554 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1555 VT, Join, HiLoad, 1556 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1557 } 1558 1559 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1560 LoLoad.getValue(1), HiLoad.getValue(1))}; 1561 1562 return DAG.getMergeValues(Ops, SL); 1563 } 1564 1565 // Widen a vector load from vec3 to vec4. 1566 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1567 SelectionDAG &DAG) const { 1568 LoadSDNode *Load = cast<LoadSDNode>(Op); 1569 EVT VT = Op.getValueType(); 1570 assert(VT.getVectorNumElements() == 3); 1571 SDValue BasePtr = Load->getBasePtr(); 1572 EVT MemVT = Load->getMemoryVT(); 1573 SDLoc SL(Op); 1574 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1575 unsigned BaseAlign = Load->getAlignment(); 1576 1577 EVT WideVT = 1578 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1579 EVT WideMemVT = 1580 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1581 SDValue WideLoad = DAG.getExtLoad( 1582 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1583 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1584 return DAG.getMergeValues( 1585 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1586 DAG.getVectorIdxConstant(0, SL)), 1587 WideLoad.getValue(1)}, 1588 SL); 1589 } 1590 1591 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1592 SelectionDAG &DAG) const { 1593 StoreSDNode *Store = cast<StoreSDNode>(Op); 1594 SDValue Val = Store->getValue(); 1595 EVT VT = Val.getValueType(); 1596 1597 // If this is a 2 element vector, we really want to scalarize and not create 1598 // weird 1 element vectors. 1599 if (VT.getVectorNumElements() == 2) 1600 return scalarizeVectorStore(Store, DAG); 1601 1602 EVT MemVT = Store->getMemoryVT(); 1603 SDValue Chain = Store->getChain(); 1604 SDValue BasePtr = Store->getBasePtr(); 1605 SDLoc SL(Op); 1606 1607 EVT LoVT, HiVT; 1608 EVT LoMemVT, HiMemVT; 1609 SDValue Lo, Hi; 1610 1611 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1612 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1613 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1614 1615 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1616 1617 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1618 unsigned BaseAlign = Store->getAlignment(); 1619 unsigned Size = LoMemVT.getStoreSize(); 1620 unsigned HiAlign = MinAlign(BaseAlign, Size); 1621 1622 SDValue LoStore = 1623 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1624 Store->getMemOperand()->getFlags()); 1625 SDValue HiStore = 1626 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1627 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1628 1629 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1630 } 1631 1632 // This is a shortcut for integer division because we have fast i32<->f32 1633 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1634 // float is enough to accurately represent up to a 24-bit signed integer. 1635 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1636 bool Sign) const { 1637 SDLoc DL(Op); 1638 EVT VT = Op.getValueType(); 1639 SDValue LHS = Op.getOperand(0); 1640 SDValue RHS = Op.getOperand(1); 1641 MVT IntVT = MVT::i32; 1642 MVT FltVT = MVT::f32; 1643 1644 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1645 if (LHSSignBits < 9) 1646 return SDValue(); 1647 1648 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1649 if (RHSSignBits < 9) 1650 return SDValue(); 1651 1652 unsigned BitSize = VT.getSizeInBits(); 1653 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1654 unsigned DivBits = BitSize - SignBits; 1655 if (Sign) 1656 ++DivBits; 1657 1658 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1659 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1660 1661 SDValue jq = DAG.getConstant(1, DL, IntVT); 1662 1663 if (Sign) { 1664 // char|short jq = ia ^ ib; 1665 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1666 1667 // jq = jq >> (bitsize - 2) 1668 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1669 DAG.getConstant(BitSize - 2, DL, VT)); 1670 1671 // jq = jq | 0x1 1672 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1673 } 1674 1675 // int ia = (int)LHS; 1676 SDValue ia = LHS; 1677 1678 // int ib, (int)RHS; 1679 SDValue ib = RHS; 1680 1681 // float fa = (float)ia; 1682 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1683 1684 // float fb = (float)ib; 1685 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1686 1687 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1688 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1689 1690 // fq = trunc(fq); 1691 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1692 1693 // float fqneg = -fq; 1694 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1695 1696 MachineFunction &MF = DAG.getMachineFunction(); 1697 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1698 1699 // float fr = mad(fqneg, fb, fa); 1700 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1701 (unsigned)ISD::FMA : 1702 !MFI->getMode().allFP32Denormals() ? 1703 (unsigned)ISD::FMAD : 1704 (unsigned)AMDGPUISD::FMAD_FTZ; 1705 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1706 1707 // int iq = (int)fq; 1708 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1709 1710 // fr = fabs(fr); 1711 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1712 1713 // fb = fabs(fb); 1714 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1715 1716 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1717 1718 // int cv = fr >= fb; 1719 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1720 1721 // jq = (cv ? jq : 0); 1722 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1723 1724 // dst = iq + jq; 1725 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1726 1727 // Rem needs compensation, it's easier to recompute it 1728 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1729 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1730 1731 // Truncate to number of bits this divide really is. 1732 if (Sign) { 1733 SDValue InRegSize 1734 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1735 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1736 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1737 } else { 1738 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1739 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1740 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1741 } 1742 1743 return DAG.getMergeValues({ Div, Rem }, DL); 1744 } 1745 1746 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1747 SelectionDAG &DAG, 1748 SmallVectorImpl<SDValue> &Results) const { 1749 SDLoc DL(Op); 1750 EVT VT = Op.getValueType(); 1751 1752 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1753 1754 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1755 1756 SDValue One = DAG.getConstant(1, DL, HalfVT); 1757 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1758 1759 //HiLo split 1760 SDValue LHS = Op.getOperand(0); 1761 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1762 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1763 1764 SDValue RHS = Op.getOperand(1); 1765 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1766 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1767 1768 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1769 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1770 1771 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1772 LHS_Lo, RHS_Lo); 1773 1774 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1775 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1776 1777 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1778 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1779 return; 1780 } 1781 1782 if (isTypeLegal(MVT::i64)) { 1783 MachineFunction &MF = DAG.getMachineFunction(); 1784 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1785 1786 // Compute denominator reciprocal. 1787 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1788 (unsigned)ISD::FMA : 1789 !MFI->getMode().allFP32Denormals() ? 1790 (unsigned)ISD::FMAD : 1791 (unsigned)AMDGPUISD::FMAD_FTZ; 1792 1793 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1794 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1795 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1796 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1797 Cvt_Lo); 1798 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1799 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1800 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1801 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1802 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1803 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1804 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1805 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1806 Mul1); 1807 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1808 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1809 SDValue Rcp64 = DAG.getBitcast(VT, 1810 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1811 1812 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1813 SDValue One64 = DAG.getConstant(1, DL, VT); 1814 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1815 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1816 1817 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1818 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1819 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1820 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1821 Zero); 1822 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1823 One); 1824 1825 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1826 Mulhi1_Lo, Zero1); 1827 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1828 Mulhi1_Hi, Add1_Lo.getValue(1)); 1829 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1830 SDValue Add1 = DAG.getBitcast(VT, 1831 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1832 1833 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1834 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1835 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1836 Zero); 1837 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1838 One); 1839 1840 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1841 Mulhi2_Lo, Zero1); 1842 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1843 Mulhi2_Hi, Add1_Lo.getValue(1)); 1844 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1845 Zero, Add2_Lo.getValue(1)); 1846 SDValue Add2 = DAG.getBitcast(VT, 1847 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1848 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1849 1850 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1851 1852 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1853 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1854 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1855 Mul3_Lo, Zero1); 1856 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1857 Mul3_Hi, Sub1_Lo.getValue(1)); 1858 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1859 SDValue Sub1 = DAG.getBitcast(VT, 1860 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1861 1862 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1863 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1864 ISD::SETUGE); 1865 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1866 ISD::SETUGE); 1867 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1868 1869 // TODO: Here and below portions of the code can be enclosed into if/endif. 1870 // Currently control flow is unconditional and we have 4 selects after 1871 // potential endif to substitute PHIs. 1872 1873 // if C3 != 0 ... 1874 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1875 RHS_Lo, Zero1); 1876 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1877 RHS_Hi, Sub1_Lo.getValue(1)); 1878 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1879 Zero, Sub2_Lo.getValue(1)); 1880 SDValue Sub2 = DAG.getBitcast(VT, 1881 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1882 1883 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1884 1885 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1886 ISD::SETUGE); 1887 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1888 ISD::SETUGE); 1889 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1890 1891 // if (C6 != 0) 1892 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1893 1894 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1895 RHS_Lo, Zero1); 1896 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1897 RHS_Hi, Sub2_Lo.getValue(1)); 1898 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1899 Zero, Sub3_Lo.getValue(1)); 1900 SDValue Sub3 = DAG.getBitcast(VT, 1901 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1902 1903 // endif C6 1904 // endif C3 1905 1906 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1907 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1908 1909 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1910 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1911 1912 Results.push_back(Div); 1913 Results.push_back(Rem); 1914 1915 return; 1916 } 1917 1918 // r600 expandion. 1919 // Get Speculative values 1920 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1921 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1922 1923 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1924 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1925 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1926 1927 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1928 SDValue DIV_Lo = Zero; 1929 1930 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1931 1932 for (unsigned i = 0; i < halfBitWidth; ++i) { 1933 const unsigned bitPos = halfBitWidth - i - 1; 1934 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1935 // Get value of high bit 1936 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1937 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1938 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1939 1940 // Shift 1941 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1942 // Add LHS high bit 1943 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1944 1945 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1946 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1947 1948 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1949 1950 // Update REM 1951 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1952 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1953 } 1954 1955 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1956 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1957 Results.push_back(DIV); 1958 Results.push_back(REM); 1959 } 1960 1961 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1962 SelectionDAG &DAG) const { 1963 SDLoc DL(Op); 1964 EVT VT = Op.getValueType(); 1965 1966 if (VT == MVT::i64) { 1967 SmallVector<SDValue, 2> Results; 1968 LowerUDIVREM64(Op, DAG, Results); 1969 return DAG.getMergeValues(Results, DL); 1970 } 1971 1972 if (VT == MVT::i32) { 1973 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1974 return Res; 1975 } 1976 1977 SDValue X = Op.getOperand(0); 1978 SDValue Y = Op.getOperand(1); 1979 1980 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 1981 // algorithm used here. 1982 1983 // Initial estimate of inv(y). 1984 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 1985 1986 // One round of UNR. 1987 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 1988 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 1989 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 1990 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 1991 1992 // Quotient/remainder estimate. 1993 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 1994 SDValue R = 1995 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 1996 1997 // First quotient/remainder refinement. 1998 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1999 SDValue One = DAG.getConstant(1, DL, VT); 2000 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2001 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2002 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2003 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2004 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2005 2006 // Second quotient/remainder refinement. 2007 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2008 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2009 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2010 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2011 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2012 2013 return DAG.getMergeValues({Q, R}, DL); 2014 } 2015 2016 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2017 SelectionDAG &DAG) const { 2018 SDLoc DL(Op); 2019 EVT VT = Op.getValueType(); 2020 2021 SDValue LHS = Op.getOperand(0); 2022 SDValue RHS = Op.getOperand(1); 2023 2024 SDValue Zero = DAG.getConstant(0, DL, VT); 2025 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2026 2027 if (VT == MVT::i32) { 2028 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2029 return Res; 2030 } 2031 2032 if (VT == MVT::i64 && 2033 DAG.ComputeNumSignBits(LHS) > 32 && 2034 DAG.ComputeNumSignBits(RHS) > 32) { 2035 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2036 2037 //HiLo split 2038 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2039 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2040 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2041 LHS_Lo, RHS_Lo); 2042 SDValue Res[2] = { 2043 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2044 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2045 }; 2046 return DAG.getMergeValues(Res, DL); 2047 } 2048 2049 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2050 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2051 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2052 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2053 2054 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2055 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2056 2057 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2058 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2059 2060 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2061 SDValue Rem = Div.getValue(1); 2062 2063 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2064 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2065 2066 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2067 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2068 2069 SDValue Res[2] = { 2070 Div, 2071 Rem 2072 }; 2073 return DAG.getMergeValues(Res, DL); 2074 } 2075 2076 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2077 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2078 SDLoc SL(Op); 2079 EVT VT = Op.getValueType(); 2080 auto Flags = Op->getFlags(); 2081 SDValue X = Op.getOperand(0); 2082 SDValue Y = Op.getOperand(1); 2083 2084 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2085 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2086 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2087 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2088 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2089 } 2090 2091 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2092 SDLoc SL(Op); 2093 SDValue Src = Op.getOperand(0); 2094 2095 // result = trunc(src) 2096 // if (src > 0.0 && src != result) 2097 // result += 1.0 2098 2099 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2100 2101 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2102 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2103 2104 EVT SetCCVT = 2105 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2106 2107 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2108 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2109 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2110 2111 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2112 // TODO: Should this propagate fast-math-flags? 2113 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2114 } 2115 2116 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2117 SelectionDAG &DAG) { 2118 const unsigned FractBits = 52; 2119 const unsigned ExpBits = 11; 2120 2121 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2122 Hi, 2123 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2124 DAG.getConstant(ExpBits, SL, MVT::i32)); 2125 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2126 DAG.getConstant(1023, SL, MVT::i32)); 2127 2128 return Exp; 2129 } 2130 2131 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2132 SDLoc SL(Op); 2133 SDValue Src = Op.getOperand(0); 2134 2135 assert(Op.getValueType() == MVT::f64); 2136 2137 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2138 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2139 2140 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2141 2142 // Extract the upper half, since this is where we will find the sign and 2143 // exponent. 2144 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2145 2146 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2147 2148 const unsigned FractBits = 52; 2149 2150 // Extract the sign bit. 2151 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2152 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2153 2154 // Extend back to 64-bits. 2155 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2156 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2157 2158 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2159 const SDValue FractMask 2160 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2161 2162 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2163 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2164 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2165 2166 EVT SetCCVT = 2167 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2168 2169 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2170 2171 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2172 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2173 2174 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2175 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2176 2177 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2178 } 2179 2180 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2181 SDLoc SL(Op); 2182 SDValue Src = Op.getOperand(0); 2183 2184 assert(Op.getValueType() == MVT::f64); 2185 2186 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2187 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2188 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2189 2190 // TODO: Should this propagate fast-math-flags? 2191 2192 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2193 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2194 2195 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2196 2197 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2198 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2199 2200 EVT SetCCVT = 2201 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2202 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2203 2204 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2205 } 2206 2207 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2208 // FNEARBYINT and FRINT are the same, except in their handling of FP 2209 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2210 // rint, so just treat them as equivalent. 2211 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2212 } 2213 2214 // XXX - May require not supporting f32 denormals? 2215 2216 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2217 // compare and vselect end up producing worse code than scalarizing the whole 2218 // operation. 2219 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2220 SDLoc SL(Op); 2221 SDValue X = Op.getOperand(0); 2222 EVT VT = Op.getValueType(); 2223 2224 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2225 2226 // TODO: Should this propagate fast-math-flags? 2227 2228 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2229 2230 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2231 2232 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2233 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2234 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2235 2236 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2237 2238 EVT SetCCVT = 2239 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2240 2241 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2242 2243 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2244 2245 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2246 } 2247 2248 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2249 SDLoc SL(Op); 2250 SDValue Src = Op.getOperand(0); 2251 2252 // result = trunc(src); 2253 // if (src < 0.0 && src != result) 2254 // result += -1.0. 2255 2256 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2257 2258 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2259 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2260 2261 EVT SetCCVT = 2262 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2263 2264 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2265 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2266 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2267 2268 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2269 // TODO: Should this propagate fast-math-flags? 2270 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2271 } 2272 2273 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2274 double Log2BaseInverted) const { 2275 EVT VT = Op.getValueType(); 2276 2277 SDLoc SL(Op); 2278 SDValue Operand = Op.getOperand(0); 2279 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2280 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2281 2282 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2283 } 2284 2285 // exp2(M_LOG2E_F * f); 2286 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2287 EVT VT = Op.getValueType(); 2288 SDLoc SL(Op); 2289 SDValue Src = Op.getOperand(0); 2290 2291 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2292 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2293 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2294 } 2295 2296 static bool isCtlzOpc(unsigned Opc) { 2297 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2298 } 2299 2300 static bool isCttzOpc(unsigned Opc) { 2301 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2302 } 2303 2304 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2305 SDLoc SL(Op); 2306 SDValue Src = Op.getOperand(0); 2307 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2308 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2309 2310 unsigned ISDOpc, NewOpc; 2311 if (isCtlzOpc(Op.getOpcode())) { 2312 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2313 NewOpc = AMDGPUISD::FFBH_U32; 2314 } else if (isCttzOpc(Op.getOpcode())) { 2315 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2316 NewOpc = AMDGPUISD::FFBL_B32; 2317 } else 2318 llvm_unreachable("Unexpected OPCode!!!"); 2319 2320 2321 if (ZeroUndef && Src.getValueType() == MVT::i32) 2322 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2323 2324 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2325 2326 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2327 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2328 2329 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2330 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2331 2332 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2333 *DAG.getContext(), MVT::i32); 2334 2335 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2336 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2337 2338 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2339 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2340 2341 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2342 SDValue Add, NewOpr; 2343 if (isCtlzOpc(Op.getOpcode())) { 2344 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2345 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2346 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2347 } else { 2348 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2349 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2350 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2351 } 2352 2353 if (!ZeroUndef) { 2354 // Test if the full 64-bit input is zero. 2355 2356 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2357 // which we probably don't want. 2358 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2359 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2360 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2361 2362 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2363 // with the same cycles, otherwise it is slower. 2364 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2365 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2366 2367 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2368 2369 // The instruction returns -1 for 0 input, but the defined intrinsic 2370 // behavior is to return the number of bits. 2371 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2372 SrcIsZero, Bits32, NewOpr); 2373 } 2374 2375 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2376 } 2377 2378 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2379 bool Signed) const { 2380 // Unsigned 2381 // cul2f(ulong u) 2382 //{ 2383 // uint lz = clz(u); 2384 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2385 // u = (u << lz) & 0x7fffffffffffffffUL; 2386 // ulong t = u & 0xffffffffffUL; 2387 // uint v = (e << 23) | (uint)(u >> 40); 2388 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2389 // return as_float(v + r); 2390 //} 2391 // Signed 2392 // cl2f(long l) 2393 //{ 2394 // long s = l >> 63; 2395 // float r = cul2f((l + s) ^ s); 2396 // return s ? -r : r; 2397 //} 2398 2399 SDLoc SL(Op); 2400 SDValue Src = Op.getOperand(0); 2401 SDValue L = Src; 2402 2403 SDValue S; 2404 if (Signed) { 2405 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2406 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2407 2408 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2409 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2410 } 2411 2412 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2413 *DAG.getContext(), MVT::f32); 2414 2415 2416 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2417 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2418 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2419 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2420 2421 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2422 SDValue E = DAG.getSelect(SL, MVT::i32, 2423 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2424 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2425 ZeroI32); 2426 2427 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2428 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2429 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2430 2431 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2432 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2433 2434 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2435 U, DAG.getConstant(40, SL, MVT::i64)); 2436 2437 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2438 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2439 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2440 2441 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2442 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2443 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2444 2445 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2446 2447 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2448 2449 SDValue R = DAG.getSelect(SL, MVT::i32, 2450 RCmp, 2451 One, 2452 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2453 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2454 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2455 2456 if (!Signed) 2457 return R; 2458 2459 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2460 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2461 } 2462 2463 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2464 bool Signed) const { 2465 SDLoc SL(Op); 2466 SDValue Src = Op.getOperand(0); 2467 2468 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2469 2470 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2471 DAG.getConstant(0, SL, MVT::i32)); 2472 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2473 DAG.getConstant(1, SL, MVT::i32)); 2474 2475 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2476 SL, MVT::f64, Hi); 2477 2478 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2479 2480 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2481 DAG.getConstant(32, SL, MVT::i32)); 2482 // TODO: Should this propagate fast-math-flags? 2483 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2484 } 2485 2486 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2487 SelectionDAG &DAG) const { 2488 // TODO: Factor out code common with LowerSINT_TO_FP. 2489 EVT DestVT = Op.getValueType(); 2490 SDValue Src = Op.getOperand(0); 2491 EVT SrcVT = Src.getValueType(); 2492 2493 if (SrcVT == MVT::i16) { 2494 if (DestVT == MVT::f16) 2495 return Op; 2496 SDLoc DL(Op); 2497 2498 // Promote src to i32 2499 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2500 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2501 } 2502 2503 assert(SrcVT == MVT::i64 && "operation should be legal"); 2504 2505 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2506 SDLoc DL(Op); 2507 2508 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2509 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2510 SDValue FPRound = 2511 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2512 2513 return FPRound; 2514 } 2515 2516 if (DestVT == MVT::f32) 2517 return LowerINT_TO_FP32(Op, DAG, false); 2518 2519 assert(DestVT == MVT::f64); 2520 return LowerINT_TO_FP64(Op, DAG, false); 2521 } 2522 2523 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2524 SelectionDAG &DAG) const { 2525 EVT DestVT = Op.getValueType(); 2526 2527 SDValue Src = Op.getOperand(0); 2528 EVT SrcVT = Src.getValueType(); 2529 2530 if (SrcVT == MVT::i16) { 2531 if (DestVT == MVT::f16) 2532 return Op; 2533 2534 SDLoc DL(Op); 2535 // Promote src to i32 2536 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2537 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2538 } 2539 2540 assert(SrcVT == MVT::i64 && "operation should be legal"); 2541 2542 // TODO: Factor out code common with LowerUINT_TO_FP. 2543 2544 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2545 SDLoc DL(Op); 2546 SDValue Src = Op.getOperand(0); 2547 2548 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2549 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2550 SDValue FPRound = 2551 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2552 2553 return FPRound; 2554 } 2555 2556 if (DestVT == MVT::f32) 2557 return LowerINT_TO_FP32(Op, DAG, true); 2558 2559 assert(DestVT == MVT::f64); 2560 return LowerINT_TO_FP64(Op, DAG, true); 2561 } 2562 2563 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2564 bool Signed) const { 2565 SDLoc SL(Op); 2566 2567 SDValue Src = Op.getOperand(0); 2568 2569 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2570 2571 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2572 MVT::f64); 2573 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2574 MVT::f64); 2575 // TODO: Should this propagate fast-math-flags? 2576 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2577 2578 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2579 2580 2581 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2582 2583 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2584 MVT::i32, FloorMul); 2585 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2586 2587 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2588 2589 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2590 } 2591 2592 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2593 SDLoc DL(Op); 2594 SDValue N0 = Op.getOperand(0); 2595 2596 // Convert to target node to get known bits 2597 if (N0.getValueType() == MVT::f32) 2598 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2599 2600 if (getTargetMachine().Options.UnsafeFPMath) { 2601 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2602 return SDValue(); 2603 } 2604 2605 assert(N0.getSimpleValueType() == MVT::f64); 2606 2607 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2608 const unsigned ExpMask = 0x7ff; 2609 const unsigned ExpBiasf64 = 1023; 2610 const unsigned ExpBiasf16 = 15; 2611 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2612 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2613 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2614 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2615 DAG.getConstant(32, DL, MVT::i64)); 2616 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2617 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2618 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2619 DAG.getConstant(20, DL, MVT::i64)); 2620 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2621 DAG.getConstant(ExpMask, DL, MVT::i32)); 2622 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2623 // add the f16 bias (15) to get the biased exponent for the f16 format. 2624 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2625 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2626 2627 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2628 DAG.getConstant(8, DL, MVT::i32)); 2629 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2630 DAG.getConstant(0xffe, DL, MVT::i32)); 2631 2632 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2633 DAG.getConstant(0x1ff, DL, MVT::i32)); 2634 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2635 2636 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2637 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2638 2639 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2640 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2641 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2642 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2643 2644 // N = M | (E << 12); 2645 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2646 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2647 DAG.getConstant(12, DL, MVT::i32))); 2648 2649 // B = clamp(1-E, 0, 13); 2650 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2651 One, E); 2652 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2653 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2654 DAG.getConstant(13, DL, MVT::i32)); 2655 2656 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2657 DAG.getConstant(0x1000, DL, MVT::i32)); 2658 2659 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2660 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2661 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2662 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2663 2664 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2665 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2666 DAG.getConstant(0x7, DL, MVT::i32)); 2667 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2668 DAG.getConstant(2, DL, MVT::i32)); 2669 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2670 One, Zero, ISD::SETEQ); 2671 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2672 One, Zero, ISD::SETGT); 2673 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2674 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2675 2676 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2677 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2678 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2679 I, V, ISD::SETEQ); 2680 2681 // Extract the sign bit. 2682 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2683 DAG.getConstant(16, DL, MVT::i32)); 2684 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2685 DAG.getConstant(0x8000, DL, MVT::i32)); 2686 2687 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2688 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2689 } 2690 2691 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2692 SelectionDAG &DAG) const { 2693 SDValue Src = Op.getOperand(0); 2694 2695 // TODO: Factor out code common with LowerFP_TO_UINT. 2696 2697 EVT SrcVT = Src.getValueType(); 2698 if (SrcVT == MVT::f16 || 2699 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2700 SDLoc DL(Op); 2701 2702 SDValue FpToInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i32, Src); 2703 return DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, FpToInt32); 2704 } 2705 2706 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2707 return LowerFP64_TO_INT(Op, DAG, true); 2708 2709 return SDValue(); 2710 } 2711 2712 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2713 SelectionDAG &DAG) const { 2714 SDValue Src = Op.getOperand(0); 2715 2716 // TODO: Factor out code common with LowerFP_TO_SINT. 2717 2718 EVT SrcVT = Src.getValueType(); 2719 if (SrcVT == MVT::f16 || 2720 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2721 SDLoc DL(Op); 2722 2723 SDValue FpToUInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i32, Src); 2724 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, FpToUInt32); 2725 } 2726 2727 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2728 return LowerFP64_TO_INT(Op, DAG, false); 2729 2730 return SDValue(); 2731 } 2732 2733 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2734 SelectionDAG &DAG) const { 2735 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2736 MVT VT = Op.getSimpleValueType(); 2737 MVT ScalarVT = VT.getScalarType(); 2738 2739 assert(VT.isVector()); 2740 2741 SDValue Src = Op.getOperand(0); 2742 SDLoc DL(Op); 2743 2744 // TODO: Don't scalarize on Evergreen? 2745 unsigned NElts = VT.getVectorNumElements(); 2746 SmallVector<SDValue, 8> Args; 2747 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2748 2749 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2750 for (unsigned I = 0; I < NElts; ++I) 2751 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2752 2753 return DAG.getBuildVector(VT, DL, Args); 2754 } 2755 2756 //===----------------------------------------------------------------------===// 2757 // Custom DAG optimizations 2758 //===----------------------------------------------------------------------===// 2759 2760 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2761 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2762 } 2763 2764 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2765 EVT VT = Op.getValueType(); 2766 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2767 // as unsigned 24-bit values. 2768 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2769 } 2770 2771 static SDValue simplifyI24(SDNode *Node24, 2772 TargetLowering::DAGCombinerInfo &DCI) { 2773 SelectionDAG &DAG = DCI.DAG; 2774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2775 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2776 2777 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2778 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2779 unsigned NewOpcode = Node24->getOpcode(); 2780 if (IsIntrin) { 2781 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2782 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2783 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2784 } 2785 2786 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2787 2788 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2789 // the operands to have other uses, but will only perform simplifications that 2790 // involve bypassing some nodes for this user. 2791 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2792 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2793 if (DemandedLHS || DemandedRHS) 2794 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2795 DemandedLHS ? DemandedLHS : LHS, 2796 DemandedRHS ? DemandedRHS : RHS); 2797 2798 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2799 // operands if this node is the only user. 2800 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2801 return SDValue(Node24, 0); 2802 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2803 return SDValue(Node24, 0); 2804 2805 return SDValue(); 2806 } 2807 2808 template <typename IntTy> 2809 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2810 uint32_t Width, const SDLoc &DL) { 2811 if (Width + Offset < 32) { 2812 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2813 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2814 return DAG.getConstant(Result, DL, MVT::i32); 2815 } 2816 2817 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2818 } 2819 2820 static bool hasVolatileUser(SDNode *Val) { 2821 for (SDNode *U : Val->uses()) { 2822 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2823 if (M->isVolatile()) 2824 return true; 2825 } 2826 } 2827 2828 return false; 2829 } 2830 2831 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2832 // i32 vectors are the canonical memory type. 2833 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2834 return false; 2835 2836 if (!VT.isByteSized()) 2837 return false; 2838 2839 unsigned Size = VT.getStoreSize(); 2840 2841 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2842 return false; 2843 2844 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2845 return false; 2846 2847 return true; 2848 } 2849 2850 // Replace load of an illegal type with a store of a bitcast to a friendlier 2851 // type. 2852 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2853 DAGCombinerInfo &DCI) const { 2854 if (!DCI.isBeforeLegalize()) 2855 return SDValue(); 2856 2857 LoadSDNode *LN = cast<LoadSDNode>(N); 2858 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2859 return SDValue(); 2860 2861 SDLoc SL(N); 2862 SelectionDAG &DAG = DCI.DAG; 2863 EVT VT = LN->getMemoryVT(); 2864 2865 unsigned Size = VT.getStoreSize(); 2866 Align Alignment = LN->getAlign(); 2867 if (Alignment < Size && isTypeLegal(VT)) { 2868 bool IsFast; 2869 unsigned AS = LN->getAddressSpace(); 2870 2871 // Expand unaligned loads earlier than legalization. Due to visitation order 2872 // problems during legalization, the emitted instructions to pack and unpack 2873 // the bytes again are not eliminated in the case of an unaligned copy. 2874 if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(), 2875 LN->getMemOperand()->getFlags(), 2876 &IsFast)) { 2877 SDValue Ops[2]; 2878 2879 if (VT.isVector()) 2880 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2881 else 2882 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2883 2884 return DAG.getMergeValues(Ops, SDLoc(N)); 2885 } 2886 2887 if (!IsFast) 2888 return SDValue(); 2889 } 2890 2891 if (!shouldCombineMemoryType(VT)) 2892 return SDValue(); 2893 2894 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2895 2896 SDValue NewLoad 2897 = DAG.getLoad(NewVT, SL, LN->getChain(), 2898 LN->getBasePtr(), LN->getMemOperand()); 2899 2900 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2901 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2902 return SDValue(N, 0); 2903 } 2904 2905 // Replace store of an illegal type with a store of a bitcast to a friendlier 2906 // type. 2907 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2908 DAGCombinerInfo &DCI) const { 2909 if (!DCI.isBeforeLegalize()) 2910 return SDValue(); 2911 2912 StoreSDNode *SN = cast<StoreSDNode>(N); 2913 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 2914 return SDValue(); 2915 2916 EVT VT = SN->getMemoryVT(); 2917 unsigned Size = VT.getStoreSize(); 2918 2919 SDLoc SL(N); 2920 SelectionDAG &DAG = DCI.DAG; 2921 Align Alignment = SN->getAlign(); 2922 if (Alignment < Size && isTypeLegal(VT)) { 2923 bool IsFast; 2924 unsigned AS = SN->getAddressSpace(); 2925 2926 // Expand unaligned stores earlier than legalization. Due to visitation 2927 // order problems during legalization, the emitted instructions to pack and 2928 // unpack the bytes again are not eliminated in the case of an unaligned 2929 // copy. 2930 if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(), 2931 SN->getMemOperand()->getFlags(), 2932 &IsFast)) { 2933 if (VT.isVector()) 2934 return scalarizeVectorStore(SN, DAG); 2935 2936 return expandUnalignedStore(SN, DAG); 2937 } 2938 2939 if (!IsFast) 2940 return SDValue(); 2941 } 2942 2943 if (!shouldCombineMemoryType(VT)) 2944 return SDValue(); 2945 2946 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2947 SDValue Val = SN->getValue(); 2948 2949 //DCI.AddToWorklist(Val.getNode()); 2950 2951 bool OtherUses = !Val.hasOneUse(); 2952 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2953 if (OtherUses) { 2954 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2955 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2956 } 2957 2958 return DAG.getStore(SN->getChain(), SL, CastVal, 2959 SN->getBasePtr(), SN->getMemOperand()); 2960 } 2961 2962 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2963 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2964 // issues. 2965 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2966 DAGCombinerInfo &DCI) const { 2967 SelectionDAG &DAG = DCI.DAG; 2968 SDValue N0 = N->getOperand(0); 2969 2970 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2971 // (vt2 (truncate (assertzext vt0:x, vt1))) 2972 if (N0.getOpcode() == ISD::TRUNCATE) { 2973 SDValue N1 = N->getOperand(1); 2974 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2975 SDLoc SL(N); 2976 2977 SDValue Src = N0.getOperand(0); 2978 EVT SrcVT = Src.getValueType(); 2979 if (SrcVT.bitsGE(ExtVT)) { 2980 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2981 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2982 } 2983 } 2984 2985 return SDValue(); 2986 } 2987 2988 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 2989 SDNode *N, DAGCombinerInfo &DCI) const { 2990 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2991 switch (IID) { 2992 case Intrinsic::amdgcn_mul_i24: 2993 case Intrinsic::amdgcn_mul_u24: 2994 return simplifyI24(N, DCI); 2995 case Intrinsic::amdgcn_fract: 2996 case Intrinsic::amdgcn_rsq: 2997 case Intrinsic::amdgcn_rcp_legacy: 2998 case Intrinsic::amdgcn_rsq_legacy: 2999 case Intrinsic::amdgcn_rsq_clamp: 3000 case Intrinsic::amdgcn_ldexp: { 3001 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3002 SDValue Src = N->getOperand(1); 3003 return Src.isUndef() ? Src : SDValue(); 3004 } 3005 default: 3006 return SDValue(); 3007 } 3008 } 3009 3010 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3011 /// binary operation \p Opc to it with the corresponding constant operands. 3012 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3013 DAGCombinerInfo &DCI, const SDLoc &SL, 3014 unsigned Opc, SDValue LHS, 3015 uint32_t ValLo, uint32_t ValHi) const { 3016 SelectionDAG &DAG = DCI.DAG; 3017 SDValue Lo, Hi; 3018 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3019 3020 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3021 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3022 3023 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3024 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3025 3026 // Re-visit the ands. It's possible we eliminated one of them and it could 3027 // simplify the vector. 3028 DCI.AddToWorklist(Lo.getNode()); 3029 DCI.AddToWorklist(Hi.getNode()); 3030 3031 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3032 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3033 } 3034 3035 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3036 DAGCombinerInfo &DCI) const { 3037 EVT VT = N->getValueType(0); 3038 3039 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3040 if (!RHS) 3041 return SDValue(); 3042 3043 SDValue LHS = N->getOperand(0); 3044 unsigned RHSVal = RHS->getZExtValue(); 3045 if (!RHSVal) 3046 return LHS; 3047 3048 SDLoc SL(N); 3049 SelectionDAG &DAG = DCI.DAG; 3050 3051 switch (LHS->getOpcode()) { 3052 default: 3053 break; 3054 case ISD::ZERO_EXTEND: 3055 case ISD::SIGN_EXTEND: 3056 case ISD::ANY_EXTEND: { 3057 SDValue X = LHS->getOperand(0); 3058 3059 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3060 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3061 // Prefer build_vector as the canonical form if packed types are legal. 3062 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3063 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3064 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3065 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3066 } 3067 3068 // shl (ext x) => zext (shl x), if shift does not overflow int 3069 if (VT != MVT::i64) 3070 break; 3071 KnownBits Known = DAG.computeKnownBits(X); 3072 unsigned LZ = Known.countMinLeadingZeros(); 3073 if (LZ < RHSVal) 3074 break; 3075 EVT XVT = X.getValueType(); 3076 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3077 return DAG.getZExtOrTrunc(Shl, SL, VT); 3078 } 3079 } 3080 3081 if (VT != MVT::i64) 3082 return SDValue(); 3083 3084 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3085 3086 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3087 // common case, splitting this into a move and a 32-bit shift is faster and 3088 // the same code size. 3089 if (RHSVal < 32) 3090 return SDValue(); 3091 3092 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3093 3094 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3095 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3096 3097 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3098 3099 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3100 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3101 } 3102 3103 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3104 DAGCombinerInfo &DCI) const { 3105 if (N->getValueType(0) != MVT::i64) 3106 return SDValue(); 3107 3108 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3109 if (!RHS) 3110 return SDValue(); 3111 3112 SelectionDAG &DAG = DCI.DAG; 3113 SDLoc SL(N); 3114 unsigned RHSVal = RHS->getZExtValue(); 3115 3116 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3117 if (RHSVal == 32) { 3118 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3119 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3120 DAG.getConstant(31, SL, MVT::i32)); 3121 3122 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3123 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3124 } 3125 3126 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3127 if (RHSVal == 63) { 3128 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3129 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3130 DAG.getConstant(31, SL, MVT::i32)); 3131 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3132 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3133 } 3134 3135 return SDValue(); 3136 } 3137 3138 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3139 DAGCombinerInfo &DCI) const { 3140 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3141 if (!RHS) 3142 return SDValue(); 3143 3144 EVT VT = N->getValueType(0); 3145 SDValue LHS = N->getOperand(0); 3146 unsigned ShiftAmt = RHS->getZExtValue(); 3147 SelectionDAG &DAG = DCI.DAG; 3148 SDLoc SL(N); 3149 3150 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3151 // this improves the ability to match BFE patterns in isel. 3152 if (LHS.getOpcode() == ISD::AND) { 3153 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3154 if (Mask->getAPIntValue().isShiftedMask() && 3155 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3156 return DAG.getNode( 3157 ISD::AND, SL, VT, 3158 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3159 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3160 } 3161 } 3162 } 3163 3164 if (VT != MVT::i64) 3165 return SDValue(); 3166 3167 if (ShiftAmt < 32) 3168 return SDValue(); 3169 3170 // srl i64:x, C for C >= 32 3171 // => 3172 // build_pair (srl hi_32(x), C - 32), 0 3173 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3174 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3175 3176 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3177 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3178 3179 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3180 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3181 3182 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3183 3184 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3185 } 3186 3187 SDValue AMDGPUTargetLowering::performTruncateCombine( 3188 SDNode *N, DAGCombinerInfo &DCI) const { 3189 SDLoc SL(N); 3190 SelectionDAG &DAG = DCI.DAG; 3191 EVT VT = N->getValueType(0); 3192 SDValue Src = N->getOperand(0); 3193 3194 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3195 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3196 SDValue Vec = Src.getOperand(0); 3197 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3198 SDValue Elt0 = Vec.getOperand(0); 3199 EVT EltVT = Elt0.getValueType(); 3200 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3201 if (EltVT.isFloatingPoint()) { 3202 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3203 EltVT.changeTypeToInteger(), Elt0); 3204 } 3205 3206 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3207 } 3208 } 3209 } 3210 3211 // Equivalent of above for accessing the high element of a vector as an 3212 // integer operation. 3213 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3214 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3215 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3216 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3217 SDValue BV = stripBitcast(Src.getOperand(0)); 3218 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3219 BV.getValueType().getVectorNumElements() == 2) { 3220 SDValue SrcElt = BV.getOperand(1); 3221 EVT SrcEltVT = SrcElt.getValueType(); 3222 if (SrcEltVT.isFloatingPoint()) { 3223 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3224 SrcEltVT.changeTypeToInteger(), SrcElt); 3225 } 3226 3227 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3228 } 3229 } 3230 } 3231 } 3232 3233 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3234 // 3235 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3236 // i16 (trunc (srl (i32 (trunc x), K))) 3237 if (VT.getScalarSizeInBits() < 32) { 3238 EVT SrcVT = Src.getValueType(); 3239 if (SrcVT.getScalarSizeInBits() > 32 && 3240 (Src.getOpcode() == ISD::SRL || 3241 Src.getOpcode() == ISD::SRA || 3242 Src.getOpcode() == ISD::SHL)) { 3243 SDValue Amt = Src.getOperand(1); 3244 KnownBits Known = DAG.computeKnownBits(Amt); 3245 unsigned Size = VT.getScalarSizeInBits(); 3246 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3247 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3248 EVT MidVT = VT.isVector() ? 3249 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3250 VT.getVectorNumElements()) : MVT::i32; 3251 3252 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3253 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3254 Src.getOperand(0)); 3255 DCI.AddToWorklist(Trunc.getNode()); 3256 3257 if (Amt.getValueType() != NewShiftVT) { 3258 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3259 DCI.AddToWorklist(Amt.getNode()); 3260 } 3261 3262 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3263 Trunc, Amt); 3264 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3265 } 3266 } 3267 } 3268 3269 return SDValue(); 3270 } 3271 3272 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3273 // instructions. If we only match on the legalized i64 mul expansion, 3274 // SimplifyDemandedBits will be unable to remove them because there will be 3275 // multiple uses due to the separate mul + mulh[su]. 3276 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3277 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3278 if (Size <= 32) { 3279 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3280 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3281 } 3282 3283 // Because we want to eliminate extension instructions before the 3284 // operation, we need to create a single user here (i.e. not the separate 3285 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3286 3287 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3288 3289 SDValue Mul = DAG.getNode(MulOpc, SL, 3290 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3291 3292 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3293 Mul.getValue(0), Mul.getValue(1)); 3294 } 3295 3296 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3297 DAGCombinerInfo &DCI) const { 3298 EVT VT = N->getValueType(0); 3299 3300 unsigned Size = VT.getSizeInBits(); 3301 if (VT.isVector() || Size > 64) 3302 return SDValue(); 3303 3304 // There are i16 integer mul/mad. 3305 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3306 return SDValue(); 3307 3308 SelectionDAG &DAG = DCI.DAG; 3309 SDLoc DL(N); 3310 3311 SDValue N0 = N->getOperand(0); 3312 SDValue N1 = N->getOperand(1); 3313 3314 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3315 // in the source into any_extends if the result of the mul is truncated. Since 3316 // we can assume the high bits are whatever we want, use the underlying value 3317 // to avoid the unknown high bits from interfering. 3318 if (N0.getOpcode() == ISD::ANY_EXTEND) 3319 N0 = N0.getOperand(0); 3320 3321 if (N1.getOpcode() == ISD::ANY_EXTEND) 3322 N1 = N1.getOperand(0); 3323 3324 SDValue Mul; 3325 3326 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3327 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3328 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3329 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3330 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3331 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3332 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3333 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3334 } else { 3335 return SDValue(); 3336 } 3337 3338 // We need to use sext even for MUL_U24, because MUL_U24 is used 3339 // for signed multiply of 8 and 16-bit types. 3340 return DAG.getSExtOrTrunc(Mul, DL, VT); 3341 } 3342 3343 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3344 DAGCombinerInfo &DCI) const { 3345 EVT VT = N->getValueType(0); 3346 3347 if (!Subtarget->hasMulI24() || VT.isVector()) 3348 return SDValue(); 3349 3350 SelectionDAG &DAG = DCI.DAG; 3351 SDLoc DL(N); 3352 3353 SDValue N0 = N->getOperand(0); 3354 SDValue N1 = N->getOperand(1); 3355 3356 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3357 return SDValue(); 3358 3359 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3360 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3361 3362 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3363 DCI.AddToWorklist(Mulhi.getNode()); 3364 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3365 } 3366 3367 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3368 DAGCombinerInfo &DCI) const { 3369 EVT VT = N->getValueType(0); 3370 3371 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3372 return SDValue(); 3373 3374 SelectionDAG &DAG = DCI.DAG; 3375 SDLoc DL(N); 3376 3377 SDValue N0 = N->getOperand(0); 3378 SDValue N1 = N->getOperand(1); 3379 3380 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3381 return SDValue(); 3382 3383 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3384 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3385 3386 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3387 DCI.AddToWorklist(Mulhi.getNode()); 3388 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3389 } 3390 3391 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3392 SDNode *N, DAGCombinerInfo &DCI) const { 3393 SelectionDAG &DAG = DCI.DAG; 3394 3395 // Simplify demanded bits before splitting into multiple users. 3396 if (SDValue V = simplifyI24(N, DCI)) 3397 return V; 3398 3399 SDValue N0 = N->getOperand(0); 3400 SDValue N1 = N->getOperand(1); 3401 3402 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3403 3404 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3405 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3406 3407 SDLoc SL(N); 3408 3409 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3410 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3411 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3412 } 3413 3414 static bool isNegativeOne(SDValue Val) { 3415 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3416 return C->isAllOnesValue(); 3417 return false; 3418 } 3419 3420 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3421 SDValue Op, 3422 const SDLoc &DL, 3423 unsigned Opc) const { 3424 EVT VT = Op.getValueType(); 3425 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3426 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3427 LegalVT != MVT::i16)) 3428 return SDValue(); 3429 3430 if (VT != MVT::i32) 3431 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3432 3433 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3434 if (VT != MVT::i32) 3435 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3436 3437 return FFBX; 3438 } 3439 3440 // The native instructions return -1 on 0 input. Optimize out a select that 3441 // produces -1 on 0. 3442 // 3443 // TODO: If zero is not undef, we could also do this if the output is compared 3444 // against the bitwidth. 3445 // 3446 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3447 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3448 SDValue LHS, SDValue RHS, 3449 DAGCombinerInfo &DCI) const { 3450 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3451 if (!CmpRhs || !CmpRhs->isNullValue()) 3452 return SDValue(); 3453 3454 SelectionDAG &DAG = DCI.DAG; 3455 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3456 SDValue CmpLHS = Cond.getOperand(0); 3457 3458 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3459 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3460 if (CCOpcode == ISD::SETEQ && 3461 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3462 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3463 unsigned Opc = 3464 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3465 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3466 } 3467 3468 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3469 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3470 if (CCOpcode == ISD::SETNE && 3471 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3472 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3473 unsigned Opc = 3474 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3475 3476 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3477 } 3478 3479 return SDValue(); 3480 } 3481 3482 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3483 unsigned Op, 3484 const SDLoc &SL, 3485 SDValue Cond, 3486 SDValue N1, 3487 SDValue N2) { 3488 SelectionDAG &DAG = DCI.DAG; 3489 EVT VT = N1.getValueType(); 3490 3491 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3492 N1.getOperand(0), N2.getOperand(0)); 3493 DCI.AddToWorklist(NewSelect.getNode()); 3494 return DAG.getNode(Op, SL, VT, NewSelect); 3495 } 3496 3497 // Pull a free FP operation out of a select so it may fold into uses. 3498 // 3499 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3500 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3501 // 3502 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3503 // select c, (fabs x), +k -> fabs (select c, x, k) 3504 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3505 SDValue N) { 3506 SelectionDAG &DAG = DCI.DAG; 3507 SDValue Cond = N.getOperand(0); 3508 SDValue LHS = N.getOperand(1); 3509 SDValue RHS = N.getOperand(2); 3510 3511 EVT VT = N.getValueType(); 3512 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3513 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3514 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3515 SDLoc(N), Cond, LHS, RHS); 3516 } 3517 3518 bool Inv = false; 3519 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3520 std::swap(LHS, RHS); 3521 Inv = true; 3522 } 3523 3524 // TODO: Support vector constants. 3525 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3526 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3527 SDLoc SL(N); 3528 // If one side is an fneg/fabs and the other is a constant, we can push the 3529 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3530 SDValue NewLHS = LHS.getOperand(0); 3531 SDValue NewRHS = RHS; 3532 3533 // Careful: if the neg can be folded up, don't try to pull it back down. 3534 bool ShouldFoldNeg = true; 3535 3536 if (NewLHS.hasOneUse()) { 3537 unsigned Opc = NewLHS.getOpcode(); 3538 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3539 ShouldFoldNeg = false; 3540 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3541 ShouldFoldNeg = false; 3542 } 3543 3544 if (ShouldFoldNeg) { 3545 if (LHS.getOpcode() == ISD::FNEG) 3546 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3547 else if (CRHS->isNegative()) 3548 return SDValue(); 3549 3550 if (Inv) 3551 std::swap(NewLHS, NewRHS); 3552 3553 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3554 Cond, NewLHS, NewRHS); 3555 DCI.AddToWorklist(NewSelect.getNode()); 3556 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3557 } 3558 } 3559 3560 return SDValue(); 3561 } 3562 3563 3564 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3565 DAGCombinerInfo &DCI) const { 3566 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3567 return Folded; 3568 3569 SDValue Cond = N->getOperand(0); 3570 if (Cond.getOpcode() != ISD::SETCC) 3571 return SDValue(); 3572 3573 EVT VT = N->getValueType(0); 3574 SDValue LHS = Cond.getOperand(0); 3575 SDValue RHS = Cond.getOperand(1); 3576 SDValue CC = Cond.getOperand(2); 3577 3578 SDValue True = N->getOperand(1); 3579 SDValue False = N->getOperand(2); 3580 3581 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3582 SelectionDAG &DAG = DCI.DAG; 3583 if (DAG.isConstantValueOfAnyType(True) && 3584 !DAG.isConstantValueOfAnyType(False)) { 3585 // Swap cmp + select pair to move constant to false input. 3586 // This will allow using VOPC cndmasks more often. 3587 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3588 3589 SDLoc SL(N); 3590 ISD::CondCode NewCC = 3591 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3592 3593 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3594 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3595 } 3596 3597 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3598 SDValue MinMax 3599 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3600 // Revisit this node so we can catch min3/max3/med3 patterns. 3601 //DCI.AddToWorklist(MinMax.getNode()); 3602 return MinMax; 3603 } 3604 } 3605 3606 // There's no reason to not do this if the condition has other uses. 3607 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3608 } 3609 3610 static bool isInv2Pi(const APFloat &APF) { 3611 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3612 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3613 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3614 3615 return APF.bitwiseIsEqual(KF16) || 3616 APF.bitwiseIsEqual(KF32) || 3617 APF.bitwiseIsEqual(KF64); 3618 } 3619 3620 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3621 // additional cost to negate them. 3622 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3623 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3624 if (C->isZero() && !C->isNegative()) 3625 return true; 3626 3627 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3628 return true; 3629 } 3630 3631 return false; 3632 } 3633 3634 static unsigned inverseMinMax(unsigned Opc) { 3635 switch (Opc) { 3636 case ISD::FMAXNUM: 3637 return ISD::FMINNUM; 3638 case ISD::FMINNUM: 3639 return ISD::FMAXNUM; 3640 case ISD::FMAXNUM_IEEE: 3641 return ISD::FMINNUM_IEEE; 3642 case ISD::FMINNUM_IEEE: 3643 return ISD::FMAXNUM_IEEE; 3644 case AMDGPUISD::FMAX_LEGACY: 3645 return AMDGPUISD::FMIN_LEGACY; 3646 case AMDGPUISD::FMIN_LEGACY: 3647 return AMDGPUISD::FMAX_LEGACY; 3648 default: 3649 llvm_unreachable("invalid min/max opcode"); 3650 } 3651 } 3652 3653 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3654 DAGCombinerInfo &DCI) const { 3655 SelectionDAG &DAG = DCI.DAG; 3656 SDValue N0 = N->getOperand(0); 3657 EVT VT = N->getValueType(0); 3658 3659 unsigned Opc = N0.getOpcode(); 3660 3661 // If the input has multiple uses and we can either fold the negate down, or 3662 // the other uses cannot, give up. This both prevents unprofitable 3663 // transformations and infinite loops: we won't repeatedly try to fold around 3664 // a negate that has no 'good' form. 3665 if (N0.hasOneUse()) { 3666 // This may be able to fold into the source, but at a code size cost. Don't 3667 // fold if the fold into the user is free. 3668 if (allUsesHaveSourceMods(N, 0)) 3669 return SDValue(); 3670 } else { 3671 if (fnegFoldsIntoOp(Opc) && 3672 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3673 return SDValue(); 3674 } 3675 3676 SDLoc SL(N); 3677 switch (Opc) { 3678 case ISD::FADD: { 3679 if (!mayIgnoreSignedZero(N0)) 3680 return SDValue(); 3681 3682 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3683 SDValue LHS = N0.getOperand(0); 3684 SDValue RHS = N0.getOperand(1); 3685 3686 if (LHS.getOpcode() != ISD::FNEG) 3687 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3688 else 3689 LHS = LHS.getOperand(0); 3690 3691 if (RHS.getOpcode() != ISD::FNEG) 3692 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3693 else 3694 RHS = RHS.getOperand(0); 3695 3696 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3697 if (Res.getOpcode() != ISD::FADD) 3698 return SDValue(); // Op got folded away. 3699 if (!N0.hasOneUse()) 3700 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3701 return Res; 3702 } 3703 case ISD::FMUL: 3704 case AMDGPUISD::FMUL_LEGACY: { 3705 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3706 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3707 SDValue LHS = N0.getOperand(0); 3708 SDValue RHS = N0.getOperand(1); 3709 3710 if (LHS.getOpcode() == ISD::FNEG) 3711 LHS = LHS.getOperand(0); 3712 else if (RHS.getOpcode() == ISD::FNEG) 3713 RHS = RHS.getOperand(0); 3714 else 3715 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3716 3717 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3718 if (Res.getOpcode() != Opc) 3719 return SDValue(); // Op got folded away. 3720 if (!N0.hasOneUse()) 3721 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3722 return Res; 3723 } 3724 case ISD::FMA: 3725 case ISD::FMAD: { 3726 if (!mayIgnoreSignedZero(N0)) 3727 return SDValue(); 3728 3729 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3730 SDValue LHS = N0.getOperand(0); 3731 SDValue MHS = N0.getOperand(1); 3732 SDValue RHS = N0.getOperand(2); 3733 3734 if (LHS.getOpcode() == ISD::FNEG) 3735 LHS = LHS.getOperand(0); 3736 else if (MHS.getOpcode() == ISD::FNEG) 3737 MHS = MHS.getOperand(0); 3738 else 3739 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3740 3741 if (RHS.getOpcode() != ISD::FNEG) 3742 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3743 else 3744 RHS = RHS.getOperand(0); 3745 3746 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3747 if (Res.getOpcode() != Opc) 3748 return SDValue(); // Op got folded away. 3749 if (!N0.hasOneUse()) 3750 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3751 return Res; 3752 } 3753 case ISD::FMAXNUM: 3754 case ISD::FMINNUM: 3755 case ISD::FMAXNUM_IEEE: 3756 case ISD::FMINNUM_IEEE: 3757 case AMDGPUISD::FMAX_LEGACY: 3758 case AMDGPUISD::FMIN_LEGACY: { 3759 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3760 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3761 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3762 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3763 3764 SDValue LHS = N0.getOperand(0); 3765 SDValue RHS = N0.getOperand(1); 3766 3767 // 0 doesn't have a negated inline immediate. 3768 // TODO: This constant check should be generalized to other operations. 3769 if (isConstantCostlierToNegate(RHS)) 3770 return SDValue(); 3771 3772 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3773 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3774 unsigned Opposite = inverseMinMax(Opc); 3775 3776 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3777 if (Res.getOpcode() != Opposite) 3778 return SDValue(); // Op got folded away. 3779 if (!N0.hasOneUse()) 3780 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3781 return Res; 3782 } 3783 case AMDGPUISD::FMED3: { 3784 SDValue Ops[3]; 3785 for (unsigned I = 0; I < 3; ++I) 3786 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3787 3788 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3789 if (Res.getOpcode() != AMDGPUISD::FMED3) 3790 return SDValue(); // Op got folded away. 3791 3792 if (!N0.hasOneUse()) { 3793 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3794 DAG.ReplaceAllUsesWith(N0, Neg); 3795 3796 for (SDNode *U : Neg->uses()) 3797 DCI.AddToWorklist(U); 3798 } 3799 3800 return Res; 3801 } 3802 case ISD::FP_EXTEND: 3803 case ISD::FTRUNC: 3804 case ISD::FRINT: 3805 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3806 case ISD::FSIN: 3807 case ISD::FCANONICALIZE: 3808 case AMDGPUISD::RCP: 3809 case AMDGPUISD::RCP_LEGACY: 3810 case AMDGPUISD::RCP_IFLAG: 3811 case AMDGPUISD::SIN_HW: { 3812 SDValue CvtSrc = N0.getOperand(0); 3813 if (CvtSrc.getOpcode() == ISD::FNEG) { 3814 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3815 // (fneg (rcp (fneg x))) -> (rcp x) 3816 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3817 } 3818 3819 if (!N0.hasOneUse()) 3820 return SDValue(); 3821 3822 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3823 // (fneg (rcp x)) -> (rcp (fneg x)) 3824 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3825 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3826 } 3827 case ISD::FP_ROUND: { 3828 SDValue CvtSrc = N0.getOperand(0); 3829 3830 if (CvtSrc.getOpcode() == ISD::FNEG) { 3831 // (fneg (fp_round (fneg x))) -> (fp_round x) 3832 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3833 CvtSrc.getOperand(0), N0.getOperand(1)); 3834 } 3835 3836 if (!N0.hasOneUse()) 3837 return SDValue(); 3838 3839 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3840 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3841 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3842 } 3843 case ISD::FP16_TO_FP: { 3844 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3845 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3846 // Put the fneg back as a legal source operation that can be matched later. 3847 SDLoc SL(N); 3848 3849 SDValue Src = N0.getOperand(0); 3850 EVT SrcVT = Src.getValueType(); 3851 3852 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3853 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3854 DAG.getConstant(0x8000, SL, SrcVT)); 3855 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3856 } 3857 default: 3858 return SDValue(); 3859 } 3860 } 3861 3862 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3863 DAGCombinerInfo &DCI) const { 3864 SelectionDAG &DAG = DCI.DAG; 3865 SDValue N0 = N->getOperand(0); 3866 3867 if (!N0.hasOneUse()) 3868 return SDValue(); 3869 3870 switch (N0.getOpcode()) { 3871 case ISD::FP16_TO_FP: { 3872 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3873 SDLoc SL(N); 3874 SDValue Src = N0.getOperand(0); 3875 EVT SrcVT = Src.getValueType(); 3876 3877 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3878 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3879 DAG.getConstant(0x7fff, SL, SrcVT)); 3880 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3881 } 3882 default: 3883 return SDValue(); 3884 } 3885 } 3886 3887 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3888 DAGCombinerInfo &DCI) const { 3889 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3890 if (!CFP) 3891 return SDValue(); 3892 3893 // XXX - Should this flush denormals? 3894 const APFloat &Val = CFP->getValueAPF(); 3895 APFloat One(Val.getSemantics(), "1.0"); 3896 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3897 } 3898 3899 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3900 DAGCombinerInfo &DCI) const { 3901 SelectionDAG &DAG = DCI.DAG; 3902 SDLoc DL(N); 3903 3904 switch(N->getOpcode()) { 3905 default: 3906 break; 3907 case ISD::BITCAST: { 3908 EVT DestVT = N->getValueType(0); 3909 3910 // Push casts through vector builds. This helps avoid emitting a large 3911 // number of copies when materializing floating point vector constants. 3912 // 3913 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3914 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3915 if (DestVT.isVector()) { 3916 SDValue Src = N->getOperand(0); 3917 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3918 EVT SrcVT = Src.getValueType(); 3919 unsigned NElts = DestVT.getVectorNumElements(); 3920 3921 if (SrcVT.getVectorNumElements() == NElts) { 3922 EVT DestEltVT = DestVT.getVectorElementType(); 3923 3924 SmallVector<SDValue, 8> CastedElts; 3925 SDLoc SL(N); 3926 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3927 SDValue Elt = Src.getOperand(I); 3928 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3929 } 3930 3931 return DAG.getBuildVector(DestVT, SL, CastedElts); 3932 } 3933 } 3934 } 3935 3936 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 3937 break; 3938 3939 // Fold bitcasts of constants. 3940 // 3941 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3942 // TODO: Generalize and move to DAGCombiner 3943 SDValue Src = N->getOperand(0); 3944 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3945 SDLoc SL(N); 3946 uint64_t CVal = C->getZExtValue(); 3947 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3948 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3949 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3950 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3951 } 3952 3953 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3954 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3955 SDLoc SL(N); 3956 uint64_t CVal = Val.getZExtValue(); 3957 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3958 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3959 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3960 3961 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3962 } 3963 3964 break; 3965 } 3966 case ISD::SHL: { 3967 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3968 break; 3969 3970 return performShlCombine(N, DCI); 3971 } 3972 case ISD::SRL: { 3973 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3974 break; 3975 3976 return performSrlCombine(N, DCI); 3977 } 3978 case ISD::SRA: { 3979 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3980 break; 3981 3982 return performSraCombine(N, DCI); 3983 } 3984 case ISD::TRUNCATE: 3985 return performTruncateCombine(N, DCI); 3986 case ISD::MUL: 3987 return performMulCombine(N, DCI); 3988 case ISD::MULHS: 3989 return performMulhsCombine(N, DCI); 3990 case ISD::MULHU: 3991 return performMulhuCombine(N, DCI); 3992 case AMDGPUISD::MUL_I24: 3993 case AMDGPUISD::MUL_U24: 3994 case AMDGPUISD::MULHI_I24: 3995 case AMDGPUISD::MULHI_U24: { 3996 if (SDValue V = simplifyI24(N, DCI)) 3997 return V; 3998 return SDValue(); 3999 } 4000 case AMDGPUISD::MUL_LOHI_I24: 4001 case AMDGPUISD::MUL_LOHI_U24: 4002 return performMulLoHi24Combine(N, DCI); 4003 case ISD::SELECT: 4004 return performSelectCombine(N, DCI); 4005 case ISD::FNEG: 4006 return performFNegCombine(N, DCI); 4007 case ISD::FABS: 4008 return performFAbsCombine(N, DCI); 4009 case AMDGPUISD::BFE_I32: 4010 case AMDGPUISD::BFE_U32: { 4011 assert(!N->getValueType(0).isVector() && 4012 "Vector handling of BFE not implemented"); 4013 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4014 if (!Width) 4015 break; 4016 4017 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4018 if (WidthVal == 0) 4019 return DAG.getConstant(0, DL, MVT::i32); 4020 4021 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4022 if (!Offset) 4023 break; 4024 4025 SDValue BitsFrom = N->getOperand(0); 4026 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4027 4028 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4029 4030 if (OffsetVal == 0) { 4031 // This is already sign / zero extended, so try to fold away extra BFEs. 4032 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4033 4034 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4035 if (OpSignBits >= SignBits) 4036 return BitsFrom; 4037 4038 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4039 if (Signed) { 4040 // This is a sign_extend_inreg. Replace it to take advantage of existing 4041 // DAG Combines. If not eliminated, we will match back to BFE during 4042 // selection. 4043 4044 // TODO: The sext_inreg of extended types ends, although we can could 4045 // handle them in a single BFE. 4046 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4047 DAG.getValueType(SmallVT)); 4048 } 4049 4050 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4051 } 4052 4053 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4054 if (Signed) { 4055 return constantFoldBFE<int32_t>(DAG, 4056 CVal->getSExtValue(), 4057 OffsetVal, 4058 WidthVal, 4059 DL); 4060 } 4061 4062 return constantFoldBFE<uint32_t>(DAG, 4063 CVal->getZExtValue(), 4064 OffsetVal, 4065 WidthVal, 4066 DL); 4067 } 4068 4069 if ((OffsetVal + WidthVal) >= 32 && 4070 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4071 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4072 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4073 BitsFrom, ShiftVal); 4074 } 4075 4076 if (BitsFrom.hasOneUse()) { 4077 APInt Demanded = APInt::getBitsSet(32, 4078 OffsetVal, 4079 OffsetVal + WidthVal); 4080 4081 KnownBits Known; 4082 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4083 !DCI.isBeforeLegalizeOps()); 4084 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4085 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4086 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4087 DCI.CommitTargetLoweringOpt(TLO); 4088 } 4089 } 4090 4091 break; 4092 } 4093 case ISD::LOAD: 4094 return performLoadCombine(N, DCI); 4095 case ISD::STORE: 4096 return performStoreCombine(N, DCI); 4097 case AMDGPUISD::RCP: 4098 case AMDGPUISD::RCP_IFLAG: 4099 return performRcpCombine(N, DCI); 4100 case ISD::AssertZext: 4101 case ISD::AssertSext: 4102 return performAssertSZExtCombine(N, DCI); 4103 case ISD::INTRINSIC_WO_CHAIN: 4104 return performIntrinsicWOChainCombine(N, DCI); 4105 } 4106 return SDValue(); 4107 } 4108 4109 //===----------------------------------------------------------------------===// 4110 // Helper functions 4111 //===----------------------------------------------------------------------===// 4112 4113 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4114 const TargetRegisterClass *RC, 4115 Register Reg, EVT VT, 4116 const SDLoc &SL, 4117 bool RawReg) const { 4118 MachineFunction &MF = DAG.getMachineFunction(); 4119 MachineRegisterInfo &MRI = MF.getRegInfo(); 4120 Register VReg; 4121 4122 if (!MRI.isLiveIn(Reg)) { 4123 VReg = MRI.createVirtualRegister(RC); 4124 MRI.addLiveIn(Reg, VReg); 4125 } else { 4126 VReg = MRI.getLiveInVirtReg(Reg); 4127 } 4128 4129 if (RawReg) 4130 return DAG.getRegister(VReg, VT); 4131 4132 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4133 } 4134 4135 // This may be called multiple times, and nothing prevents creating multiple 4136 // objects at the same offset. See if we already defined this object. 4137 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4138 int64_t Offset) { 4139 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4140 if (MFI.getObjectOffset(I) == Offset) { 4141 assert(MFI.getObjectSize(I) == Size); 4142 return I; 4143 } 4144 } 4145 4146 return MFI.CreateFixedObject(Size, Offset, true); 4147 } 4148 4149 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4150 EVT VT, 4151 const SDLoc &SL, 4152 int64_t Offset) const { 4153 MachineFunction &MF = DAG.getMachineFunction(); 4154 MachineFrameInfo &MFI = MF.getFrameInfo(); 4155 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4156 4157 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4158 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4159 4160 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4161 MachineMemOperand::MODereferenceable | 4162 MachineMemOperand::MOInvariant); 4163 } 4164 4165 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4166 const SDLoc &SL, 4167 SDValue Chain, 4168 SDValue ArgVal, 4169 int64_t Offset) const { 4170 MachineFunction &MF = DAG.getMachineFunction(); 4171 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4172 4173 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4174 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4175 MachineMemOperand::MODereferenceable); 4176 return Store; 4177 } 4178 4179 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4180 const TargetRegisterClass *RC, 4181 EVT VT, const SDLoc &SL, 4182 const ArgDescriptor &Arg) const { 4183 assert(Arg && "Attempting to load missing argument"); 4184 4185 SDValue V = Arg.isRegister() ? 4186 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4187 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4188 4189 if (!Arg.isMasked()) 4190 return V; 4191 4192 unsigned Mask = Arg.getMask(); 4193 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4194 V = DAG.getNode(ISD::SRL, SL, VT, V, 4195 DAG.getShiftAmountConstant(Shift, VT, SL)); 4196 return DAG.getNode(ISD::AND, SL, VT, V, 4197 DAG.getConstant(Mask >> Shift, SL, VT)); 4198 } 4199 4200 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4201 const MachineFunction &MF, const ImplicitParameter Param) const { 4202 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4203 const AMDGPUSubtarget &ST = 4204 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4205 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4206 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4207 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4208 ExplicitArgOffset; 4209 switch (Param) { 4210 case GRID_DIM: 4211 return ArgOffset; 4212 case GRID_OFFSET: 4213 return ArgOffset + 4; 4214 } 4215 llvm_unreachable("unexpected implicit parameter type"); 4216 } 4217 4218 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4219 4220 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4221 switch ((AMDGPUISD::NodeType)Opcode) { 4222 case AMDGPUISD::FIRST_NUMBER: break; 4223 // AMDIL DAG nodes 4224 NODE_NAME_CASE(UMUL); 4225 NODE_NAME_CASE(BRANCH_COND); 4226 4227 // AMDGPU DAG nodes 4228 NODE_NAME_CASE(IF) 4229 NODE_NAME_CASE(ELSE) 4230 NODE_NAME_CASE(LOOP) 4231 NODE_NAME_CASE(CALL) 4232 NODE_NAME_CASE(TC_RETURN) 4233 NODE_NAME_CASE(TRAP) 4234 NODE_NAME_CASE(RET_FLAG) 4235 NODE_NAME_CASE(RETURN_TO_EPILOG) 4236 NODE_NAME_CASE(ENDPGM) 4237 NODE_NAME_CASE(DWORDADDR) 4238 NODE_NAME_CASE(FRACT) 4239 NODE_NAME_CASE(SETCC) 4240 NODE_NAME_CASE(SETREG) 4241 NODE_NAME_CASE(DENORM_MODE) 4242 NODE_NAME_CASE(FMA_W_CHAIN) 4243 NODE_NAME_CASE(FMUL_W_CHAIN) 4244 NODE_NAME_CASE(CLAMP) 4245 NODE_NAME_CASE(COS_HW) 4246 NODE_NAME_CASE(SIN_HW) 4247 NODE_NAME_CASE(FMAX_LEGACY) 4248 NODE_NAME_CASE(FMIN_LEGACY) 4249 NODE_NAME_CASE(FMAX3) 4250 NODE_NAME_CASE(SMAX3) 4251 NODE_NAME_CASE(UMAX3) 4252 NODE_NAME_CASE(FMIN3) 4253 NODE_NAME_CASE(SMIN3) 4254 NODE_NAME_CASE(UMIN3) 4255 NODE_NAME_CASE(FMED3) 4256 NODE_NAME_CASE(SMED3) 4257 NODE_NAME_CASE(UMED3) 4258 NODE_NAME_CASE(FDOT2) 4259 NODE_NAME_CASE(URECIP) 4260 NODE_NAME_CASE(DIV_SCALE) 4261 NODE_NAME_CASE(DIV_FMAS) 4262 NODE_NAME_CASE(DIV_FIXUP) 4263 NODE_NAME_CASE(FMAD_FTZ) 4264 NODE_NAME_CASE(RCP) 4265 NODE_NAME_CASE(RSQ) 4266 NODE_NAME_CASE(RCP_LEGACY) 4267 NODE_NAME_CASE(RCP_IFLAG) 4268 NODE_NAME_CASE(FMUL_LEGACY) 4269 NODE_NAME_CASE(RSQ_CLAMP) 4270 NODE_NAME_CASE(LDEXP) 4271 NODE_NAME_CASE(FP_CLASS) 4272 NODE_NAME_CASE(DOT4) 4273 NODE_NAME_CASE(CARRY) 4274 NODE_NAME_CASE(BORROW) 4275 NODE_NAME_CASE(BFE_U32) 4276 NODE_NAME_CASE(BFE_I32) 4277 NODE_NAME_CASE(BFI) 4278 NODE_NAME_CASE(BFM) 4279 NODE_NAME_CASE(FFBH_U32) 4280 NODE_NAME_CASE(FFBH_I32) 4281 NODE_NAME_CASE(FFBL_B32) 4282 NODE_NAME_CASE(MUL_U24) 4283 NODE_NAME_CASE(MUL_I24) 4284 NODE_NAME_CASE(MULHI_U24) 4285 NODE_NAME_CASE(MULHI_I24) 4286 NODE_NAME_CASE(MUL_LOHI_U24) 4287 NODE_NAME_CASE(MUL_LOHI_I24) 4288 NODE_NAME_CASE(MAD_U24) 4289 NODE_NAME_CASE(MAD_I24) 4290 NODE_NAME_CASE(MAD_I64_I32) 4291 NODE_NAME_CASE(MAD_U64_U32) 4292 NODE_NAME_CASE(PERM) 4293 NODE_NAME_CASE(TEXTURE_FETCH) 4294 NODE_NAME_CASE(R600_EXPORT) 4295 NODE_NAME_CASE(CONST_ADDRESS) 4296 NODE_NAME_CASE(REGISTER_LOAD) 4297 NODE_NAME_CASE(REGISTER_STORE) 4298 NODE_NAME_CASE(SAMPLE) 4299 NODE_NAME_CASE(SAMPLEB) 4300 NODE_NAME_CASE(SAMPLED) 4301 NODE_NAME_CASE(SAMPLEL) 4302 NODE_NAME_CASE(CVT_F32_UBYTE0) 4303 NODE_NAME_CASE(CVT_F32_UBYTE1) 4304 NODE_NAME_CASE(CVT_F32_UBYTE2) 4305 NODE_NAME_CASE(CVT_F32_UBYTE3) 4306 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4307 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4308 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4309 NODE_NAME_CASE(CVT_PK_I16_I32) 4310 NODE_NAME_CASE(CVT_PK_U16_U32) 4311 NODE_NAME_CASE(FP_TO_FP16) 4312 NODE_NAME_CASE(FP16_ZEXT) 4313 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4314 NODE_NAME_CASE(CONST_DATA_PTR) 4315 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4316 NODE_NAME_CASE(LDS) 4317 NODE_NAME_CASE(DUMMY_CHAIN) 4318 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4319 NODE_NAME_CASE(LOAD_D16_HI) 4320 NODE_NAME_CASE(LOAD_D16_LO) 4321 NODE_NAME_CASE(LOAD_D16_HI_I8) 4322 NODE_NAME_CASE(LOAD_D16_HI_U8) 4323 NODE_NAME_CASE(LOAD_D16_LO_I8) 4324 NODE_NAME_CASE(LOAD_D16_LO_U8) 4325 NODE_NAME_CASE(STORE_MSKOR) 4326 NODE_NAME_CASE(LOAD_CONSTANT) 4327 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4328 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4329 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4330 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4331 NODE_NAME_CASE(DS_ORDERED_COUNT) 4332 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4333 NODE_NAME_CASE(ATOMIC_INC) 4334 NODE_NAME_CASE(ATOMIC_DEC) 4335 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4336 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4337 NODE_NAME_CASE(BUFFER_LOAD) 4338 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4339 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4340 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4341 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4342 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4343 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4344 NODE_NAME_CASE(SBUFFER_LOAD) 4345 NODE_NAME_CASE(BUFFER_STORE) 4346 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4347 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4348 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4349 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4350 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4351 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4352 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4353 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4354 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4355 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4356 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4357 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4358 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4359 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4360 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4361 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4362 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4363 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4364 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4365 4366 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4367 } 4368 return nullptr; 4369 } 4370 4371 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4372 SelectionDAG &DAG, int Enabled, 4373 int &RefinementSteps, 4374 bool &UseOneConstNR, 4375 bool Reciprocal) const { 4376 EVT VT = Operand.getValueType(); 4377 4378 if (VT == MVT::f32) { 4379 RefinementSteps = 0; 4380 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4381 } 4382 4383 // TODO: There is also f64 rsq instruction, but the documentation is less 4384 // clear on its precision. 4385 4386 return SDValue(); 4387 } 4388 4389 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4390 SelectionDAG &DAG, int Enabled, 4391 int &RefinementSteps) const { 4392 EVT VT = Operand.getValueType(); 4393 4394 if (VT == MVT::f32) { 4395 // Reciprocal, < 1 ulp error. 4396 // 4397 // This reciprocal approximation converges to < 0.5 ulp error with one 4398 // newton rhapson performed with two fused multiple adds (FMAs). 4399 4400 RefinementSteps = 0; 4401 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4402 } 4403 4404 // TODO: There is also f64 rcp instruction, but the documentation is less 4405 // clear on its precision. 4406 4407 return SDValue(); 4408 } 4409 4410 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4411 const SDValue Op, KnownBits &Known, 4412 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4413 4414 Known.resetAll(); // Don't know anything. 4415 4416 unsigned Opc = Op.getOpcode(); 4417 4418 switch (Opc) { 4419 default: 4420 break; 4421 case AMDGPUISD::CARRY: 4422 case AMDGPUISD::BORROW: { 4423 Known.Zero = APInt::getHighBitsSet(32, 31); 4424 break; 4425 } 4426 4427 case AMDGPUISD::BFE_I32: 4428 case AMDGPUISD::BFE_U32: { 4429 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4430 if (!CWidth) 4431 return; 4432 4433 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4434 4435 if (Opc == AMDGPUISD::BFE_U32) 4436 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4437 4438 break; 4439 } 4440 case AMDGPUISD::FP_TO_FP16: 4441 case AMDGPUISD::FP16_ZEXT: { 4442 unsigned BitWidth = Known.getBitWidth(); 4443 4444 // High bits are zero. 4445 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4446 break; 4447 } 4448 case AMDGPUISD::MUL_U24: 4449 case AMDGPUISD::MUL_I24: { 4450 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4451 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4452 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4453 RHSKnown.countMinTrailingZeros(); 4454 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4455 // Skip extra check if all bits are known zeros. 4456 if (TrailZ >= 32) 4457 break; 4458 4459 // Truncate to 24 bits. 4460 LHSKnown = LHSKnown.trunc(24); 4461 RHSKnown = RHSKnown.trunc(24); 4462 4463 if (Opc == AMDGPUISD::MUL_I24) { 4464 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4465 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4466 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4467 if (MaxValBits >= 32) 4468 break; 4469 bool LHSNegative = LHSKnown.isNegative(); 4470 bool LHSNonNegative = LHSKnown.isNonNegative(); 4471 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4472 bool RHSNegative = RHSKnown.isNegative(); 4473 bool RHSNonNegative = RHSKnown.isNonNegative(); 4474 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4475 4476 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4477 Known.Zero.setHighBits(32 - MaxValBits); 4478 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4479 Known.One.setHighBits(32 - MaxValBits); 4480 } else { 4481 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4482 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4483 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4484 if (MaxValBits >= 32) 4485 break; 4486 Known.Zero.setHighBits(32 - MaxValBits); 4487 } 4488 break; 4489 } 4490 case AMDGPUISD::PERM: { 4491 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4492 if (!CMask) 4493 return; 4494 4495 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4496 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4497 unsigned Sel = CMask->getZExtValue(); 4498 4499 for (unsigned I = 0; I < 32; I += 8) { 4500 unsigned SelBits = Sel & 0xff; 4501 if (SelBits < 4) { 4502 SelBits *= 8; 4503 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4504 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4505 } else if (SelBits < 7) { 4506 SelBits = (SelBits & 3) * 8; 4507 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4508 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4509 } else if (SelBits == 0x0c) { 4510 Known.Zero |= 0xFFull << I; 4511 } else if (SelBits > 0x0c) { 4512 Known.One |= 0xFFull << I; 4513 } 4514 Sel >>= 8; 4515 } 4516 break; 4517 } 4518 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4519 Known.Zero.setHighBits(24); 4520 break; 4521 } 4522 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4523 Known.Zero.setHighBits(16); 4524 break; 4525 } 4526 case AMDGPUISD::LDS: { 4527 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4528 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4529 4530 Known.Zero.setHighBits(16); 4531 Known.Zero.setLowBits(Log2(Alignment)); 4532 break; 4533 } 4534 case ISD::INTRINSIC_WO_CHAIN: { 4535 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4536 switch (IID) { 4537 case Intrinsic::amdgcn_mbcnt_lo: 4538 case Intrinsic::amdgcn_mbcnt_hi: { 4539 const GCNSubtarget &ST = 4540 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4541 // These return at most the wavefront size - 1. 4542 unsigned Size = Op.getValueType().getSizeInBits(); 4543 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4544 break; 4545 } 4546 default: 4547 break; 4548 } 4549 } 4550 } 4551 } 4552 4553 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4554 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4555 unsigned Depth) const { 4556 switch (Op.getOpcode()) { 4557 case AMDGPUISD::BFE_I32: { 4558 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4559 if (!Width) 4560 return 1; 4561 4562 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4563 if (!isNullConstant(Op.getOperand(1))) 4564 return SignBits; 4565 4566 // TODO: Could probably figure something out with non-0 offsets. 4567 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4568 return std::max(SignBits, Op0SignBits); 4569 } 4570 4571 case AMDGPUISD::BFE_U32: { 4572 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4573 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4574 } 4575 4576 case AMDGPUISD::CARRY: 4577 case AMDGPUISD::BORROW: 4578 return 31; 4579 case AMDGPUISD::BUFFER_LOAD_BYTE: 4580 return 25; 4581 case AMDGPUISD::BUFFER_LOAD_SHORT: 4582 return 17; 4583 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4584 return 24; 4585 case AMDGPUISD::BUFFER_LOAD_USHORT: 4586 return 16; 4587 case AMDGPUISD::FP_TO_FP16: 4588 case AMDGPUISD::FP16_ZEXT: 4589 return 16; 4590 default: 4591 return 1; 4592 } 4593 } 4594 4595 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4596 GISelKnownBits &Analysis, Register R, 4597 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4598 unsigned Depth) const { 4599 const MachineInstr *MI = MRI.getVRegDef(R); 4600 if (!MI) 4601 return 1; 4602 4603 // TODO: Check range metadata on MMO. 4604 switch (MI->getOpcode()) { 4605 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4606 return 25; 4607 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4608 return 17; 4609 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4610 return 24; 4611 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4612 return 16; 4613 default: 4614 return 1; 4615 } 4616 } 4617 4618 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4619 const SelectionDAG &DAG, 4620 bool SNaN, 4621 unsigned Depth) const { 4622 unsigned Opcode = Op.getOpcode(); 4623 switch (Opcode) { 4624 case AMDGPUISD::FMIN_LEGACY: 4625 case AMDGPUISD::FMAX_LEGACY: { 4626 if (SNaN) 4627 return true; 4628 4629 // TODO: Can check no nans on one of the operands for each one, but which 4630 // one? 4631 return false; 4632 } 4633 case AMDGPUISD::FMUL_LEGACY: 4634 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4635 if (SNaN) 4636 return true; 4637 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4638 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4639 } 4640 case AMDGPUISD::FMED3: 4641 case AMDGPUISD::FMIN3: 4642 case AMDGPUISD::FMAX3: 4643 case AMDGPUISD::FMAD_FTZ: { 4644 if (SNaN) 4645 return true; 4646 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4647 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4648 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4649 } 4650 case AMDGPUISD::CVT_F32_UBYTE0: 4651 case AMDGPUISD::CVT_F32_UBYTE1: 4652 case AMDGPUISD::CVT_F32_UBYTE2: 4653 case AMDGPUISD::CVT_F32_UBYTE3: 4654 return true; 4655 4656 case AMDGPUISD::RCP: 4657 case AMDGPUISD::RSQ: 4658 case AMDGPUISD::RCP_LEGACY: 4659 case AMDGPUISD::RSQ_CLAMP: { 4660 if (SNaN) 4661 return true; 4662 4663 // TODO: Need is known positive check. 4664 return false; 4665 } 4666 case AMDGPUISD::LDEXP: 4667 case AMDGPUISD::FRACT: { 4668 if (SNaN) 4669 return true; 4670 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4671 } 4672 case AMDGPUISD::DIV_SCALE: 4673 case AMDGPUISD::DIV_FMAS: 4674 case AMDGPUISD::DIV_FIXUP: 4675 // TODO: Refine on operands. 4676 return SNaN; 4677 case AMDGPUISD::SIN_HW: 4678 case AMDGPUISD::COS_HW: { 4679 // TODO: Need check for infinity 4680 return SNaN; 4681 } 4682 case ISD::INTRINSIC_WO_CHAIN: { 4683 unsigned IntrinsicID 4684 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4685 // TODO: Handle more intrinsics 4686 switch (IntrinsicID) { 4687 case Intrinsic::amdgcn_cubeid: 4688 return true; 4689 4690 case Intrinsic::amdgcn_frexp_mant: { 4691 if (SNaN) 4692 return true; 4693 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4694 } 4695 case Intrinsic::amdgcn_cvt_pkrtz: { 4696 if (SNaN) 4697 return true; 4698 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4699 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4700 } 4701 case Intrinsic::amdgcn_rcp: 4702 case Intrinsic::amdgcn_rsq: 4703 case Intrinsic::amdgcn_rcp_legacy: 4704 case Intrinsic::amdgcn_rsq_legacy: 4705 case Intrinsic::amdgcn_rsq_clamp: { 4706 if (SNaN) 4707 return true; 4708 4709 // TODO: Need is known positive check. 4710 return false; 4711 } 4712 case Intrinsic::amdgcn_trig_preop: 4713 case Intrinsic::amdgcn_fdot2: 4714 // TODO: Refine on operand 4715 return SNaN; 4716 default: 4717 return false; 4718 } 4719 } 4720 default: 4721 return false; 4722 } 4723 } 4724 4725 TargetLowering::AtomicExpansionKind 4726 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4727 switch (RMW->getOperation()) { 4728 case AtomicRMWInst::Nand: 4729 case AtomicRMWInst::FAdd: 4730 case AtomicRMWInst::FSub: 4731 return AtomicExpansionKind::CmpXChg; 4732 default: 4733 return AtomicExpansionKind::None; 4734 } 4735 } 4736