1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "SIInstrInfo.h" 33 using namespace llvm; 34 35 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 36 CCValAssign::LocInfo LocInfo, 37 ISD::ArgFlagsTy ArgFlags, CCState &State) { 38 MachineFunction &MF = State.getMachineFunction(); 39 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 40 41 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 42 ArgFlags.getOrigAlign()); 43 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 44 return true; 45 } 46 47 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 48 CCValAssign::LocInfo LocInfo, 49 ISD::ArgFlagsTy ArgFlags, CCState &State, 50 const TargetRegisterClass *RC, 51 unsigned NumRegs) { 52 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 53 unsigned RegResult = State.AllocateReg(RegList); 54 if (RegResult == AMDGPU::NoRegister) 55 return false; 56 57 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 58 return true; 59 } 60 61 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 62 CCValAssign::LocInfo LocInfo, 63 ISD::ArgFlagsTy ArgFlags, CCState &State) { 64 switch (LocVT.SimpleTy) { 65 case MVT::i64: 66 case MVT::f64: 67 case MVT::v2i32: 68 case MVT::v2f32: { 69 // Up to SGPR0-SGPR39 70 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 71 &AMDGPU::SGPR_64RegClass, 20); 72 } 73 default: 74 return false; 75 } 76 } 77 78 #include "AMDGPUGenCallingConv.inc" 79 80 // Find a larger type to do a load / store of a vector with. 81 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 82 unsigned StoreSize = VT.getStoreSizeInBits(); 83 if (StoreSize <= 32) 84 return EVT::getIntegerVT(Ctx, StoreSize); 85 86 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 87 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 88 } 89 90 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 91 const AMDGPUSubtarget &STI) 92 : TargetLowering(TM), Subtarget(&STI) { 93 AMDGPUASI = AMDGPU::getAMDGPUAS(TM); 94 // Lower floating point store/load to integer store/load to reduce the number 95 // of patterns in tablegen. 96 setOperationAction(ISD::LOAD, MVT::f32, Promote); 97 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 98 99 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 100 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 101 102 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 103 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 104 105 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 106 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 107 108 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 109 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 110 111 setOperationAction(ISD::LOAD, MVT::i64, Promote); 112 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 113 114 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 115 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 116 117 setOperationAction(ISD::LOAD, MVT::f64, Promote); 118 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 119 120 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 121 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 122 123 // There are no 64-bit extloads. These should be done as a 32-bit extload and 124 // an extension to 64-bit. 125 for (MVT VT : MVT::integer_valuetypes()) { 126 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 127 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 128 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 129 } 130 131 for (MVT VT : MVT::integer_valuetypes()) { 132 if (VT == MVT::i64) 133 continue; 134 135 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 137 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 138 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 139 140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 142 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 144 145 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 146 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 148 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 149 } 150 151 for (MVT VT : MVT::integer_vector_valuetypes()) { 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 153 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 154 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 155 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 156 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 157 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 158 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 160 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 161 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 162 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 163 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 164 } 165 166 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 167 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 168 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 170 171 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 172 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 173 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 174 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 175 176 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 180 181 setOperationAction(ISD::STORE, MVT::f32, Promote); 182 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 183 184 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 185 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 186 187 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 188 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 189 190 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 191 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 192 193 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 194 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 195 196 setOperationAction(ISD::STORE, MVT::i64, Promote); 197 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 198 199 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 200 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 201 202 setOperationAction(ISD::STORE, MVT::f64, Promote); 203 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 204 205 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 206 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 207 208 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 209 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 210 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 211 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 212 213 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 214 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 215 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 216 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 217 218 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 219 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 220 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 221 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 222 223 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 224 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 225 226 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 227 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 228 229 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 230 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 231 232 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 233 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 234 235 236 setOperationAction(ISD::Constant, MVT::i32, Legal); 237 setOperationAction(ISD::Constant, MVT::i64, Legal); 238 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 239 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 240 241 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 242 setOperationAction(ISD::BRIND, MVT::Other, Expand); 243 244 // This is totally unsupported, just custom lower to produce an error. 245 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 246 247 // Library functions. These default to Expand, but we have instructions 248 // for them. 249 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 250 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 251 setOperationAction(ISD::FPOW, MVT::f32, Legal); 252 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 253 setOperationAction(ISD::FABS, MVT::f32, Legal); 254 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 255 setOperationAction(ISD::FRINT, MVT::f32, Legal); 256 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 257 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 258 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 259 260 setOperationAction(ISD::FROUND, MVT::f32, Custom); 261 setOperationAction(ISD::FROUND, MVT::f64, Custom); 262 263 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 264 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 265 266 setOperationAction(ISD::FREM, MVT::f32, Custom); 267 setOperationAction(ISD::FREM, MVT::f64, Custom); 268 269 // v_mad_f32 does not support denormals according to some sources. 270 if (!Subtarget->hasFP32Denormals()) 271 setOperationAction(ISD::FMAD, MVT::f32, Legal); 272 273 // Expand to fneg + fadd. 274 setOperationAction(ISD::FSUB, MVT::f64, Expand); 275 276 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 277 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 278 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 279 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 280 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 281 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 282 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 283 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 284 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 285 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 286 287 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 288 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 289 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 290 setOperationAction(ISD::FRINT, MVT::f64, Custom); 291 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 292 } 293 294 if (!Subtarget->hasBFI()) { 295 // fcopysign can be done in a single instruction with BFI. 296 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 297 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 298 } 299 300 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 301 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 302 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 303 304 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 305 for (MVT VT : ScalarIntVTs) { 306 // These should use [SU]DIVREM, so set them to expand 307 setOperationAction(ISD::SDIV, VT, Expand); 308 setOperationAction(ISD::UDIV, VT, Expand); 309 setOperationAction(ISD::SREM, VT, Expand); 310 setOperationAction(ISD::UREM, VT, Expand); 311 312 // GPU does not have divrem function for signed or unsigned. 313 setOperationAction(ISD::SDIVREM, VT, Custom); 314 setOperationAction(ISD::UDIVREM, VT, Custom); 315 316 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 317 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 318 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 319 320 setOperationAction(ISD::BSWAP, VT, Expand); 321 setOperationAction(ISD::CTTZ, VT, Expand); 322 setOperationAction(ISD::CTLZ, VT, Expand); 323 } 324 325 if (!Subtarget->hasBCNT(32)) 326 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 327 328 if (!Subtarget->hasBCNT(64)) 329 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 330 331 // The hardware supports 32-bit ROTR, but not ROTL. 332 setOperationAction(ISD::ROTL, MVT::i32, Expand); 333 setOperationAction(ISD::ROTL, MVT::i64, Expand); 334 setOperationAction(ISD::ROTR, MVT::i64, Expand); 335 336 setOperationAction(ISD::MUL, MVT::i64, Expand); 337 setOperationAction(ISD::MULHU, MVT::i64, Expand); 338 setOperationAction(ISD::MULHS, MVT::i64, Expand); 339 setOperationAction(ISD::UDIV, MVT::i32, Expand); 340 setOperationAction(ISD::UREM, MVT::i32, Expand); 341 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 342 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 343 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 344 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 345 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 346 347 setOperationAction(ISD::SMIN, MVT::i32, Legal); 348 setOperationAction(ISD::UMIN, MVT::i32, Legal); 349 setOperationAction(ISD::SMAX, MVT::i32, Legal); 350 setOperationAction(ISD::UMAX, MVT::i32, Legal); 351 352 if (Subtarget->hasFFBH()) 353 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 354 355 if (Subtarget->hasFFBL()) 356 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 357 358 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 359 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 360 361 // We only really have 32-bit BFE instructions (and 16-bit on VI). 362 // 363 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 364 // effort to match them now. We want this to be false for i64 cases when the 365 // extraction isn't restricted to the upper or lower half. Ideally we would 366 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 367 // span the midpoint are probably relatively rare, so don't worry about them 368 // for now. 369 if (Subtarget->hasBFE()) 370 setHasExtractBitsInsn(true); 371 372 static const MVT::SimpleValueType VectorIntTypes[] = { 373 MVT::v2i32, MVT::v4i32 374 }; 375 376 for (MVT VT : VectorIntTypes) { 377 // Expand the following operations for the current type by default. 378 setOperationAction(ISD::ADD, VT, Expand); 379 setOperationAction(ISD::AND, VT, Expand); 380 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 381 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 382 setOperationAction(ISD::MUL, VT, Expand); 383 setOperationAction(ISD::MULHU, VT, Expand); 384 setOperationAction(ISD::MULHS, VT, Expand); 385 setOperationAction(ISD::OR, VT, Expand); 386 setOperationAction(ISD::SHL, VT, Expand); 387 setOperationAction(ISD::SRA, VT, Expand); 388 setOperationAction(ISD::SRL, VT, Expand); 389 setOperationAction(ISD::ROTL, VT, Expand); 390 setOperationAction(ISD::ROTR, VT, Expand); 391 setOperationAction(ISD::SUB, VT, Expand); 392 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 393 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 394 setOperationAction(ISD::SDIV, VT, Expand); 395 setOperationAction(ISD::UDIV, VT, Expand); 396 setOperationAction(ISD::SREM, VT, Expand); 397 setOperationAction(ISD::UREM, VT, Expand); 398 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 399 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 400 setOperationAction(ISD::SDIVREM, VT, Custom); 401 setOperationAction(ISD::UDIVREM, VT, Expand); 402 setOperationAction(ISD::ADDC, VT, Expand); 403 setOperationAction(ISD::SUBC, VT, Expand); 404 setOperationAction(ISD::ADDE, VT, Expand); 405 setOperationAction(ISD::SUBE, VT, Expand); 406 setOperationAction(ISD::SELECT, VT, Expand); 407 setOperationAction(ISD::VSELECT, VT, Expand); 408 setOperationAction(ISD::SELECT_CC, VT, Expand); 409 setOperationAction(ISD::XOR, VT, Expand); 410 setOperationAction(ISD::BSWAP, VT, Expand); 411 setOperationAction(ISD::CTPOP, VT, Expand); 412 setOperationAction(ISD::CTTZ, VT, Expand); 413 setOperationAction(ISD::CTLZ, VT, Expand); 414 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 415 } 416 417 static const MVT::SimpleValueType FloatVectorTypes[] = { 418 MVT::v2f32, MVT::v4f32 419 }; 420 421 for (MVT VT : FloatVectorTypes) { 422 setOperationAction(ISD::FABS, VT, Expand); 423 setOperationAction(ISD::FMINNUM, VT, Expand); 424 setOperationAction(ISD::FMAXNUM, VT, Expand); 425 setOperationAction(ISD::FADD, VT, Expand); 426 setOperationAction(ISD::FCEIL, VT, Expand); 427 setOperationAction(ISD::FCOS, VT, Expand); 428 setOperationAction(ISD::FDIV, VT, Expand); 429 setOperationAction(ISD::FEXP2, VT, Expand); 430 setOperationAction(ISD::FLOG2, VT, Expand); 431 setOperationAction(ISD::FREM, VT, Expand); 432 setOperationAction(ISD::FPOW, VT, Expand); 433 setOperationAction(ISD::FFLOOR, VT, Expand); 434 setOperationAction(ISD::FTRUNC, VT, Expand); 435 setOperationAction(ISD::FMUL, VT, Expand); 436 setOperationAction(ISD::FMA, VT, Expand); 437 setOperationAction(ISD::FRINT, VT, Expand); 438 setOperationAction(ISD::FNEARBYINT, VT, Expand); 439 setOperationAction(ISD::FSQRT, VT, Expand); 440 setOperationAction(ISD::FSIN, VT, Expand); 441 setOperationAction(ISD::FSUB, VT, Expand); 442 setOperationAction(ISD::FNEG, VT, Expand); 443 setOperationAction(ISD::VSELECT, VT, Expand); 444 setOperationAction(ISD::SELECT_CC, VT, Expand); 445 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 446 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 447 } 448 449 // This causes using an unrolled select operation rather than expansion with 450 // bit operations. This is in general better, but the alternative using BFI 451 // instructions may be better if the select sources are SGPRs. 452 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 453 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 454 455 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 456 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 457 458 // There are no libcalls of any kind. 459 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 460 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 461 462 setBooleanContents(ZeroOrNegativeOneBooleanContent); 463 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 464 465 setSchedulingPreference(Sched::RegPressure); 466 setJumpIsExpensive(true); 467 468 // FIXME: This is only partially true. If we have to do vector compares, any 469 // SGPR pair can be a condition register. If we have a uniform condition, we 470 // are better off doing SALU operations, where there is only one SCC. For now, 471 // we don't have a way of knowing during instruction selection if a condition 472 // will be uniform and we always use vector compares. Assume we are using 473 // vector compares until that is fixed. 474 setHasMultipleConditionRegisters(true); 475 476 // SI at least has hardware support for floating point exceptions, but no way 477 // of using or handling them is implemented. They are also optional in OpenCL 478 // (Section 7.3) 479 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 480 481 PredictableSelectIsExpensive = false; 482 483 // We want to find all load dependencies for long chains of stores to enable 484 // merging into very wide vectors. The problem is with vectors with > 4 485 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 486 // vectors are a legal type, even though we have to split the loads 487 // usually. When we can more precisely specify load legality per address 488 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 489 // smarter so that they can figure out what to do in 2 iterations without all 490 // N > 4 stores on the same chain. 491 GatherAllAliasesMaxDepth = 16; 492 493 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 494 // about these during lowering. 495 MaxStoresPerMemcpy = 0xffffffff; 496 MaxStoresPerMemmove = 0xffffffff; 497 MaxStoresPerMemset = 0xffffffff; 498 499 setTargetDAGCombine(ISD::BITCAST); 500 setTargetDAGCombine(ISD::SHL); 501 setTargetDAGCombine(ISD::SRA); 502 setTargetDAGCombine(ISD::SRL); 503 setTargetDAGCombine(ISD::MUL); 504 setTargetDAGCombine(ISD::MULHU); 505 setTargetDAGCombine(ISD::MULHS); 506 setTargetDAGCombine(ISD::SELECT); 507 setTargetDAGCombine(ISD::SELECT_CC); 508 setTargetDAGCombine(ISD::STORE); 509 setTargetDAGCombine(ISD::FADD); 510 setTargetDAGCombine(ISD::FSUB); 511 setTargetDAGCombine(ISD::FNEG); 512 setTargetDAGCombine(ISD::FABS); 513 } 514 515 //===----------------------------------------------------------------------===// 516 // Target Information 517 //===----------------------------------------------------------------------===// 518 519 LLVM_READNONE 520 static bool fnegFoldsIntoOp(unsigned Opc) { 521 switch (Opc) { 522 case ISD::FADD: 523 case ISD::FSUB: 524 case ISD::FMUL: 525 case ISD::FMA: 526 case ISD::FMAD: 527 case ISD::FMINNUM: 528 case ISD::FMAXNUM: 529 case ISD::FSIN: 530 case ISD::FTRUNC: 531 case ISD::FRINT: 532 case ISD::FNEARBYINT: 533 case AMDGPUISD::RCP: 534 case AMDGPUISD::RCP_LEGACY: 535 case AMDGPUISD::SIN_HW: 536 case AMDGPUISD::FMUL_LEGACY: 537 case AMDGPUISD::FMIN_LEGACY: 538 case AMDGPUISD::FMAX_LEGACY: 539 return true; 540 default: 541 return false; 542 } 543 } 544 545 /// \p returns true if the operation will definitely need to use a 64-bit 546 /// encoding, and thus will use a VOP3 encoding regardless of the source 547 /// modifiers. 548 LLVM_READONLY 549 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 550 return N->getNumOperands() > 2 || VT == MVT::f64; 551 } 552 553 // Most FP instructions support source modifiers, but this could be refined 554 // slightly. 555 LLVM_READONLY 556 static bool hasSourceMods(const SDNode *N) { 557 if (isa<MemSDNode>(N)) 558 return false; 559 560 switch (N->getOpcode()) { 561 case ISD::CopyToReg: 562 case ISD::SELECT: 563 case ISD::FDIV: 564 case ISD::FREM: 565 case ISD::INLINEASM: 566 case AMDGPUISD::INTERP_P1: 567 case AMDGPUISD::INTERP_P2: 568 case AMDGPUISD::DIV_SCALE: 569 return false; 570 default: 571 return true; 572 } 573 } 574 575 static bool allUsesHaveSourceMods(const SDNode *N, unsigned CostThreshold = 4) { 576 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 577 // it is truly free to use a source modifier in all cases. If there are 578 // multiple users but for each one will necessitate using VOP3, there will be 579 // a code size increase. Try to avoid increasing code size unless we know it 580 // will save on the instruction count. 581 unsigned NumMayIncreaseSize = 0; 582 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 583 584 // XXX - Should this limit number of uses to check? 585 for (const SDNode *U : N->uses()) { 586 if (!hasSourceMods(U)) 587 return false; 588 589 if (!opMustUseVOP3Encoding(U, VT)) { 590 if (++NumMayIncreaseSize > CostThreshold) 591 return false; 592 } 593 } 594 595 return true; 596 } 597 598 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 599 return MVT::i32; 600 } 601 602 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 603 return true; 604 } 605 606 // The backend supports 32 and 64 bit floating point immediates. 607 // FIXME: Why are we reporting vectors of FP immediates as legal? 608 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 609 EVT ScalarVT = VT.getScalarType(); 610 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 611 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 612 } 613 614 // We don't want to shrink f64 / f32 constants. 615 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 616 EVT ScalarVT = VT.getScalarType(); 617 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 618 } 619 620 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 621 ISD::LoadExtType, 622 EVT NewVT) const { 623 624 unsigned NewSize = NewVT.getStoreSizeInBits(); 625 626 // If we are reducing to a 32-bit load, this is always better. 627 if (NewSize == 32) 628 return true; 629 630 EVT OldVT = N->getValueType(0); 631 unsigned OldSize = OldVT.getStoreSizeInBits(); 632 633 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 634 // extloads, so doing one requires using a buffer_load. In cases where we 635 // still couldn't use a scalar load, using the wider load shouldn't really 636 // hurt anything. 637 638 // If the old size already had to be an extload, there's no harm in continuing 639 // to reduce the width. 640 return (OldSize < 32); 641 } 642 643 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 644 EVT CastTy) const { 645 646 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 647 648 if (LoadTy.getScalarType() == MVT::i32) 649 return false; 650 651 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 652 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 653 654 return (LScalarSize < CastScalarSize) || 655 (CastScalarSize >= 32); 656 } 657 658 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 659 // profitable with the expansion for 64-bit since it's generally good to 660 // speculate things. 661 // FIXME: These should really have the size as a parameter. 662 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 663 return true; 664 } 665 666 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 667 return true; 668 } 669 670 //===---------------------------------------------------------------------===// 671 // Target Properties 672 //===---------------------------------------------------------------------===// 673 674 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 675 assert(VT.isFloatingPoint()); 676 677 // Packed operations do not have a fabs modifier. 678 return VT == MVT::f32 || VT == MVT::f64 || 679 (Subtarget->has16BitInsts() && VT == MVT::f16); 680 } 681 682 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 683 assert(VT.isFloatingPoint()); 684 return VT == MVT::f32 || VT == MVT::f64 || 685 (Subtarget->has16BitInsts() && VT == MVT::f16) || 686 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 687 } 688 689 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 690 unsigned NumElem, 691 unsigned AS) const { 692 return true; 693 } 694 695 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 696 // There are few operations which truly have vector input operands. Any vector 697 // operation is going to involve operations on each component, and a 698 // build_vector will be a copy per element, so it always makes sense to use a 699 // build_vector input in place of the extracted element to avoid a copy into a 700 // super register. 701 // 702 // We should probably only do this if all users are extracts only, but this 703 // should be the common case. 704 return true; 705 } 706 707 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 708 // Truncate is just accessing a subregister. 709 710 unsigned SrcSize = Source.getSizeInBits(); 711 unsigned DestSize = Dest.getSizeInBits(); 712 713 return DestSize < SrcSize && DestSize % 32 == 0 ; 714 } 715 716 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 717 // Truncate is just accessing a subregister. 718 719 unsigned SrcSize = Source->getScalarSizeInBits(); 720 unsigned DestSize = Dest->getScalarSizeInBits(); 721 722 if (DestSize== 16 && Subtarget->has16BitInsts()) 723 return SrcSize >= 32; 724 725 return DestSize < SrcSize && DestSize % 32 == 0; 726 } 727 728 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 729 unsigned SrcSize = Src->getScalarSizeInBits(); 730 unsigned DestSize = Dest->getScalarSizeInBits(); 731 732 if (SrcSize == 16 && Subtarget->has16BitInsts()) 733 return DestSize >= 32; 734 735 return SrcSize == 32 && DestSize == 64; 736 } 737 738 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 739 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 740 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 741 // this will enable reducing 64-bit operations the 32-bit, which is always 742 // good. 743 744 if (Src == MVT::i16) 745 return Dest == MVT::i32 ||Dest == MVT::i64 ; 746 747 return Src == MVT::i32 && Dest == MVT::i64; 748 } 749 750 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 751 return isZExtFree(Val.getValueType(), VT2); 752 } 753 754 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 755 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 756 // limited number of native 64-bit operations. Shrinking an operation to fit 757 // in a single 32-bit register should always be helpful. As currently used, 758 // this is much less general than the name suggests, and is only used in 759 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 760 // not profitable, and may actually be harmful. 761 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 762 } 763 764 //===---------------------------------------------------------------------===// 765 // TargetLowering Callbacks 766 //===---------------------------------------------------------------------===// 767 768 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 769 bool IsVarArg) const { 770 return CC_AMDGPU; 771 } 772 773 /// The SelectionDAGBuilder will automatically promote function arguments 774 /// with illegal types. However, this does not work for the AMDGPU targets 775 /// since the function arguments are stored in memory as these illegal types. 776 /// In order to handle this properly we need to get the original types sizes 777 /// from the LLVM IR Function and fixup the ISD:InputArg values before 778 /// passing them to AnalyzeFormalArguments() 779 780 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 781 /// input values across multiple registers. Each item in the Ins array 782 /// represents a single value that will be stored in regsters. Ins[x].VT is 783 /// the value type of the value that will be stored in the register, so 784 /// whatever SDNode we lower the argument to needs to be this type. 785 /// 786 /// In order to correctly lower the arguments we need to know the size of each 787 /// argument. Since Ins[x].VT gives us the size of the register that will 788 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 789 /// for the orignal function argument so that we can deduce the correct memory 790 /// type to use for Ins[x]. In most cases the correct memory type will be 791 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 792 /// we have a kernel argument of type v8i8, this argument will be split into 793 /// 8 parts and each part will be represented by its own item in the Ins array. 794 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 795 /// the argument before it was split. From this, we deduce that the memory type 796 /// for each individual part is i8. We pass the memory type as LocVT to the 797 /// calling convention analysis function and the register type (Ins[x].VT) as 798 /// the ValVT. 799 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 800 const SmallVectorImpl<ISD::InputArg> &Ins) const { 801 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 802 const ISD::InputArg &In = Ins[i]; 803 EVT MemVT; 804 805 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 806 807 if (!Subtarget->isAmdHsaOS() && 808 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 809 // The ABI says the caller will extend these values to 32-bits. 810 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 811 } else if (NumRegs == 1) { 812 // This argument is not split, so the IR type is the memory type. 813 assert(!In.Flags.isSplit()); 814 if (In.ArgVT.isExtended()) { 815 // We have an extended type, like i24, so we should just use the register type 816 MemVT = In.VT; 817 } else { 818 MemVT = In.ArgVT; 819 } 820 } else if (In.ArgVT.isVector() && In.VT.isVector() && 821 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 822 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 823 // We have a vector value which has been split into a vector with 824 // the same scalar type, but fewer elements. This should handle 825 // all the floating-point vector types. 826 MemVT = In.VT; 827 } else if (In.ArgVT.isVector() && 828 In.ArgVT.getVectorNumElements() == NumRegs) { 829 // This arg has been split so that each element is stored in a separate 830 // register. 831 MemVT = In.ArgVT.getScalarType(); 832 } else if (In.ArgVT.isExtended()) { 833 // We have an extended type, like i65. 834 MemVT = In.VT; 835 } else { 836 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 837 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 838 if (In.VT.isInteger()) { 839 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 840 } else if (In.VT.isVector()) { 841 assert(!In.VT.getScalarType().isFloatingPoint()); 842 unsigned NumElements = In.VT.getVectorNumElements(); 843 assert(MemoryBits % NumElements == 0); 844 // This vector type has been split into another vector type with 845 // a different elements size. 846 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 847 MemoryBits / NumElements); 848 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 849 } else { 850 llvm_unreachable("cannot deduce memory type."); 851 } 852 } 853 854 // Convert one element vectors to scalar. 855 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 856 MemVT = MemVT.getScalarType(); 857 858 if (MemVT.isExtended()) { 859 // This should really only happen if we have vec3 arguments 860 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 861 MemVT = MemVT.getPow2VectorType(State.getContext()); 862 } 863 864 assert(MemVT.isSimple()); 865 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 866 State); 867 } 868 } 869 870 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 871 const SmallVectorImpl<ISD::InputArg> &Ins) const { 872 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 873 } 874 875 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 876 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 877 878 State.AnalyzeReturn(Outs, RetCC_SI); 879 } 880 881 SDValue 882 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 883 bool isVarArg, 884 const SmallVectorImpl<ISD::OutputArg> &Outs, 885 const SmallVectorImpl<SDValue> &OutVals, 886 const SDLoc &DL, SelectionDAG &DAG) const { 887 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 888 } 889 890 //===---------------------------------------------------------------------===// 891 // Target specific lowering 892 //===---------------------------------------------------------------------===// 893 894 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 895 SmallVectorImpl<SDValue> &InVals) const { 896 SDValue Callee = CLI.Callee; 897 SelectionDAG &DAG = CLI.DAG; 898 899 const Function &Fn = *DAG.getMachineFunction().getFunction(); 900 901 StringRef FuncName("<unknown>"); 902 903 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 904 FuncName = G->getSymbol(); 905 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 906 FuncName = G->getGlobal()->getName(); 907 908 DiagnosticInfoUnsupported NoCalls( 909 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 910 DAG.getContext()->diagnose(NoCalls); 911 912 if (!CLI.IsTailCall) { 913 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 914 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 915 } 916 917 return DAG.getEntryNode(); 918 } 919 920 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 921 SelectionDAG &DAG) const { 922 const Function &Fn = *DAG.getMachineFunction().getFunction(); 923 924 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 925 SDLoc(Op).getDebugLoc()); 926 DAG.getContext()->diagnose(NoDynamicAlloca); 927 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 928 return DAG.getMergeValues(Ops, SDLoc()); 929 } 930 931 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 932 SelectionDAG &DAG) const { 933 switch (Op.getOpcode()) { 934 default: 935 Op->print(errs(), &DAG); 936 llvm_unreachable("Custom lowering code for this" 937 "instruction is not implemented yet!"); 938 break; 939 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 940 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 941 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 942 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 943 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 944 case ISD::FREM: return LowerFREM(Op, DAG); 945 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 946 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 947 case ISD::FRINT: return LowerFRINT(Op, DAG); 948 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 949 case ISD::FROUND: return LowerFROUND(Op, DAG); 950 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 951 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 952 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 953 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 954 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 955 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 956 case ISD::CTLZ: 957 case ISD::CTLZ_ZERO_UNDEF: 958 return LowerCTLZ(Op, DAG); 959 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 960 } 961 return Op; 962 } 963 964 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 965 SmallVectorImpl<SDValue> &Results, 966 SelectionDAG &DAG) const { 967 switch (N->getOpcode()) { 968 case ISD::SIGN_EXTEND_INREG: 969 // Different parts of legalization seem to interpret which type of 970 // sign_extend_inreg is the one to check for custom lowering. The extended 971 // from type is what really matters, but some places check for custom 972 // lowering of the result type. This results in trying to use 973 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 974 // nothing here and let the illegal result integer be handled normally. 975 return; 976 default: 977 return; 978 } 979 } 980 981 static bool hasDefinedInitializer(const GlobalValue *GV) { 982 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 983 if (!GVar || !GVar->hasInitializer()) 984 return false; 985 986 return !isa<UndefValue>(GVar->getInitializer()); 987 } 988 989 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 990 SDValue Op, 991 SelectionDAG &DAG) const { 992 993 const DataLayout &DL = DAG.getDataLayout(); 994 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 995 const GlobalValue *GV = G->getGlobal(); 996 997 if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) { 998 // XXX: What does the value of G->getOffset() mean? 999 assert(G->getOffset() == 0 && 1000 "Do not know what to do with an non-zero offset"); 1001 1002 // TODO: We could emit code to handle the initialization somewhere. 1003 if (!hasDefinedInitializer(GV)) { 1004 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1005 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1006 } 1007 } 1008 1009 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1010 DiagnosticInfoUnsupported BadInit( 1011 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1012 DAG.getContext()->diagnose(BadInit); 1013 return SDValue(); 1014 } 1015 1016 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1017 SelectionDAG &DAG) const { 1018 SmallVector<SDValue, 8> Args; 1019 1020 for (const SDUse &U : Op->ops()) 1021 DAG.ExtractVectorElements(U.get(), Args); 1022 1023 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1024 } 1025 1026 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1027 SelectionDAG &DAG) const { 1028 1029 SmallVector<SDValue, 8> Args; 1030 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1031 EVT VT = Op.getValueType(); 1032 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1033 VT.getVectorNumElements()); 1034 1035 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1036 } 1037 1038 /// \brief Generate Min/Max node 1039 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1040 SDValue LHS, SDValue RHS, 1041 SDValue True, SDValue False, 1042 SDValue CC, 1043 DAGCombinerInfo &DCI) const { 1044 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1045 return SDValue(); 1046 1047 SelectionDAG &DAG = DCI.DAG; 1048 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1049 switch (CCOpcode) { 1050 case ISD::SETOEQ: 1051 case ISD::SETONE: 1052 case ISD::SETUNE: 1053 case ISD::SETNE: 1054 case ISD::SETUEQ: 1055 case ISD::SETEQ: 1056 case ISD::SETFALSE: 1057 case ISD::SETFALSE2: 1058 case ISD::SETTRUE: 1059 case ISD::SETTRUE2: 1060 case ISD::SETUO: 1061 case ISD::SETO: 1062 break; 1063 case ISD::SETULE: 1064 case ISD::SETULT: { 1065 if (LHS == True) 1066 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1067 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1068 } 1069 case ISD::SETOLE: 1070 case ISD::SETOLT: 1071 case ISD::SETLE: 1072 case ISD::SETLT: { 1073 // Ordered. Assume ordered for undefined. 1074 1075 // Only do this after legalization to avoid interfering with other combines 1076 // which might occur. 1077 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1078 !DCI.isCalledByLegalizer()) 1079 return SDValue(); 1080 1081 // We need to permute the operands to get the correct NaN behavior. The 1082 // selected operand is the second one based on the failing compare with NaN, 1083 // so permute it based on the compare type the hardware uses. 1084 if (LHS == True) 1085 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1086 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1087 } 1088 case ISD::SETUGE: 1089 case ISD::SETUGT: { 1090 if (LHS == True) 1091 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1092 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1093 } 1094 case ISD::SETGT: 1095 case ISD::SETGE: 1096 case ISD::SETOGE: 1097 case ISD::SETOGT: { 1098 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1099 !DCI.isCalledByLegalizer()) 1100 return SDValue(); 1101 1102 if (LHS == True) 1103 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1104 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1105 } 1106 case ISD::SETCC_INVALID: 1107 llvm_unreachable("Invalid setcc condcode!"); 1108 } 1109 return SDValue(); 1110 } 1111 1112 std::pair<SDValue, SDValue> 1113 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1114 SDLoc SL(Op); 1115 1116 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1117 1118 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1119 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1120 1121 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1122 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1123 1124 return std::make_pair(Lo, Hi); 1125 } 1126 1127 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1128 SDLoc SL(Op); 1129 1130 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1131 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1132 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1133 } 1134 1135 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1136 SDLoc SL(Op); 1137 1138 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1139 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1140 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1141 } 1142 1143 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1144 SelectionDAG &DAG) const { 1145 LoadSDNode *Load = cast<LoadSDNode>(Op); 1146 EVT VT = Op.getValueType(); 1147 1148 1149 // If this is a 2 element vector, we really want to scalarize and not create 1150 // weird 1 element vectors. 1151 if (VT.getVectorNumElements() == 2) 1152 return scalarizeVectorLoad(Load, DAG); 1153 1154 SDValue BasePtr = Load->getBasePtr(); 1155 EVT PtrVT = BasePtr.getValueType(); 1156 EVT MemVT = Load->getMemoryVT(); 1157 SDLoc SL(Op); 1158 1159 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1160 1161 EVT LoVT, HiVT; 1162 EVT LoMemVT, HiMemVT; 1163 SDValue Lo, Hi; 1164 1165 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1166 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1167 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1168 1169 unsigned Size = LoMemVT.getStoreSize(); 1170 unsigned BaseAlign = Load->getAlignment(); 1171 unsigned HiAlign = MinAlign(BaseAlign, Size); 1172 1173 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1174 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1175 BaseAlign, Load->getMemOperand()->getFlags()); 1176 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1177 DAG.getConstant(Size, SL, PtrVT)); 1178 SDValue HiLoad = 1179 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1180 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1181 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1182 1183 SDValue Ops[] = { 1184 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1185 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1186 LoLoad.getValue(1), HiLoad.getValue(1)) 1187 }; 1188 1189 return DAG.getMergeValues(Ops, SL); 1190 } 1191 1192 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1193 SelectionDAG &DAG) const { 1194 StoreSDNode *Store = cast<StoreSDNode>(Op); 1195 SDValue Val = Store->getValue(); 1196 EVT VT = Val.getValueType(); 1197 1198 // If this is a 2 element vector, we really want to scalarize and not create 1199 // weird 1 element vectors. 1200 if (VT.getVectorNumElements() == 2) 1201 return scalarizeVectorStore(Store, DAG); 1202 1203 EVT MemVT = Store->getMemoryVT(); 1204 SDValue Chain = Store->getChain(); 1205 SDValue BasePtr = Store->getBasePtr(); 1206 SDLoc SL(Op); 1207 1208 EVT LoVT, HiVT; 1209 EVT LoMemVT, HiMemVT; 1210 SDValue Lo, Hi; 1211 1212 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1213 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1214 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1215 1216 EVT PtrVT = BasePtr.getValueType(); 1217 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1218 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1219 PtrVT)); 1220 1221 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1222 unsigned BaseAlign = Store->getAlignment(); 1223 unsigned Size = LoMemVT.getStoreSize(); 1224 unsigned HiAlign = MinAlign(BaseAlign, Size); 1225 1226 SDValue LoStore = 1227 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1228 Store->getMemOperand()->getFlags()); 1229 SDValue HiStore = 1230 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1231 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1232 1233 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1234 } 1235 1236 // This is a shortcut for integer division because we have fast i32<->f32 1237 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1238 // float is enough to accurately represent up to a 24-bit signed integer. 1239 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1240 bool Sign) const { 1241 SDLoc DL(Op); 1242 EVT VT = Op.getValueType(); 1243 SDValue LHS = Op.getOperand(0); 1244 SDValue RHS = Op.getOperand(1); 1245 MVT IntVT = MVT::i32; 1246 MVT FltVT = MVT::f32; 1247 1248 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1249 if (LHSSignBits < 9) 1250 return SDValue(); 1251 1252 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1253 if (RHSSignBits < 9) 1254 return SDValue(); 1255 1256 unsigned BitSize = VT.getSizeInBits(); 1257 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1258 unsigned DivBits = BitSize - SignBits; 1259 if (Sign) 1260 ++DivBits; 1261 1262 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1263 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1264 1265 SDValue jq = DAG.getConstant(1, DL, IntVT); 1266 1267 if (Sign) { 1268 // char|short jq = ia ^ ib; 1269 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1270 1271 // jq = jq >> (bitsize - 2) 1272 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1273 DAG.getConstant(BitSize - 2, DL, VT)); 1274 1275 // jq = jq | 0x1 1276 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1277 } 1278 1279 // int ia = (int)LHS; 1280 SDValue ia = LHS; 1281 1282 // int ib, (int)RHS; 1283 SDValue ib = RHS; 1284 1285 // float fa = (float)ia; 1286 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1287 1288 // float fb = (float)ib; 1289 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1290 1291 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1292 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1293 1294 // fq = trunc(fq); 1295 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1296 1297 // float fqneg = -fq; 1298 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1299 1300 // float fr = mad(fqneg, fb, fa); 1301 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1302 (unsigned)AMDGPUISD::FMAD_FTZ : 1303 (unsigned)ISD::FMAD; 1304 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1305 1306 // int iq = (int)fq; 1307 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1308 1309 // fr = fabs(fr); 1310 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1311 1312 // fb = fabs(fb); 1313 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1314 1315 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1316 1317 // int cv = fr >= fb; 1318 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1319 1320 // jq = (cv ? jq : 0); 1321 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1322 1323 // dst = iq + jq; 1324 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1325 1326 // Rem needs compensation, it's easier to recompute it 1327 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1328 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1329 1330 // Truncate to number of bits this divide really is. 1331 if (Sign) { 1332 SDValue InRegSize 1333 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1334 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1335 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1336 } else { 1337 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1338 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1339 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1340 } 1341 1342 return DAG.getMergeValues({ Div, Rem }, DL); 1343 } 1344 1345 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1346 SelectionDAG &DAG, 1347 SmallVectorImpl<SDValue> &Results) const { 1348 assert(Op.getValueType() == MVT::i64); 1349 1350 SDLoc DL(Op); 1351 EVT VT = Op.getValueType(); 1352 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1353 1354 SDValue one = DAG.getConstant(1, DL, HalfVT); 1355 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1356 1357 //HiLo split 1358 SDValue LHS = Op.getOperand(0); 1359 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1360 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1361 1362 SDValue RHS = Op.getOperand(1); 1363 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1364 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1365 1366 if (VT == MVT::i64 && 1367 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1368 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1369 1370 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1371 LHS_Lo, RHS_Lo); 1372 1373 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1374 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1375 1376 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1377 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1378 return; 1379 } 1380 1381 // Get Speculative values 1382 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1383 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1384 1385 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1386 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1387 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1388 1389 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1390 SDValue DIV_Lo = zero; 1391 1392 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1393 1394 for (unsigned i = 0; i < halfBitWidth; ++i) { 1395 const unsigned bitPos = halfBitWidth - i - 1; 1396 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1397 // Get value of high bit 1398 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1399 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1400 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1401 1402 // Shift 1403 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1404 // Add LHS high bit 1405 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1406 1407 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1408 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1409 1410 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1411 1412 // Update REM 1413 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1414 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1415 } 1416 1417 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1418 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1419 Results.push_back(DIV); 1420 Results.push_back(REM); 1421 } 1422 1423 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1424 SelectionDAG &DAG) const { 1425 SDLoc DL(Op); 1426 EVT VT = Op.getValueType(); 1427 1428 if (VT == MVT::i64) { 1429 SmallVector<SDValue, 2> Results; 1430 LowerUDIVREM64(Op, DAG, Results); 1431 return DAG.getMergeValues(Results, DL); 1432 } 1433 1434 if (VT == MVT::i32) { 1435 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1436 return Res; 1437 } 1438 1439 SDValue Num = Op.getOperand(0); 1440 SDValue Den = Op.getOperand(1); 1441 1442 // RCP = URECIP(Den) = 2^32 / Den + e 1443 // e is rounding error. 1444 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1445 1446 // RCP_LO = mul(RCP, Den) */ 1447 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1448 1449 // RCP_HI = mulhu (RCP, Den) */ 1450 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1451 1452 // NEG_RCP_LO = -RCP_LO 1453 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1454 RCP_LO); 1455 1456 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1457 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1458 NEG_RCP_LO, RCP_LO, 1459 ISD::SETEQ); 1460 // Calculate the rounding error from the URECIP instruction 1461 // E = mulhu(ABS_RCP_LO, RCP) 1462 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1463 1464 // RCP_A_E = RCP + E 1465 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1466 1467 // RCP_S_E = RCP - E 1468 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1469 1470 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1471 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1472 RCP_A_E, RCP_S_E, 1473 ISD::SETEQ); 1474 // Quotient = mulhu(Tmp0, Num) 1475 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1476 1477 // Num_S_Remainder = Quotient * Den 1478 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1479 1480 // Remainder = Num - Num_S_Remainder 1481 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1482 1483 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1484 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1485 DAG.getConstant(-1, DL, VT), 1486 DAG.getConstant(0, DL, VT), 1487 ISD::SETUGE); 1488 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1489 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1490 Num_S_Remainder, 1491 DAG.getConstant(-1, DL, VT), 1492 DAG.getConstant(0, DL, VT), 1493 ISD::SETUGE); 1494 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1495 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1496 Remainder_GE_Zero); 1497 1498 // Calculate Division result: 1499 1500 // Quotient_A_One = Quotient + 1 1501 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1502 DAG.getConstant(1, DL, VT)); 1503 1504 // Quotient_S_One = Quotient - 1 1505 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1506 DAG.getConstant(1, DL, VT)); 1507 1508 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1509 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1510 Quotient, Quotient_A_One, ISD::SETEQ); 1511 1512 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1513 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1514 Quotient_S_One, Div, ISD::SETEQ); 1515 1516 // Calculate Rem result: 1517 1518 // Remainder_S_Den = Remainder - Den 1519 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1520 1521 // Remainder_A_Den = Remainder + Den 1522 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1523 1524 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1525 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1526 Remainder, Remainder_S_Den, ISD::SETEQ); 1527 1528 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1529 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1530 Remainder_A_Den, Rem, ISD::SETEQ); 1531 SDValue Ops[2] = { 1532 Div, 1533 Rem 1534 }; 1535 return DAG.getMergeValues(Ops, DL); 1536 } 1537 1538 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1539 SelectionDAG &DAG) const { 1540 SDLoc DL(Op); 1541 EVT VT = Op.getValueType(); 1542 1543 SDValue LHS = Op.getOperand(0); 1544 SDValue RHS = Op.getOperand(1); 1545 1546 SDValue Zero = DAG.getConstant(0, DL, VT); 1547 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1548 1549 if (VT == MVT::i32) { 1550 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1551 return Res; 1552 } 1553 1554 if (VT == MVT::i64 && 1555 DAG.ComputeNumSignBits(LHS) > 32 && 1556 DAG.ComputeNumSignBits(RHS) > 32) { 1557 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1558 1559 //HiLo split 1560 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1561 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1562 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1563 LHS_Lo, RHS_Lo); 1564 SDValue Res[2] = { 1565 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1566 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1567 }; 1568 return DAG.getMergeValues(Res, DL); 1569 } 1570 1571 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1572 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1573 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1574 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1575 1576 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1577 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1578 1579 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1580 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1581 1582 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1583 SDValue Rem = Div.getValue(1); 1584 1585 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1586 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1587 1588 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1589 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1590 1591 SDValue Res[2] = { 1592 Div, 1593 Rem 1594 }; 1595 return DAG.getMergeValues(Res, DL); 1596 } 1597 1598 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1599 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1600 SDLoc SL(Op); 1601 EVT VT = Op.getValueType(); 1602 SDValue X = Op.getOperand(0); 1603 SDValue Y = Op.getOperand(1); 1604 1605 // TODO: Should this propagate fast-math-flags? 1606 1607 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1608 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1609 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1610 1611 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1612 } 1613 1614 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1615 SDLoc SL(Op); 1616 SDValue Src = Op.getOperand(0); 1617 1618 // result = trunc(src) 1619 // if (src > 0.0 && src != result) 1620 // result += 1.0 1621 1622 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1623 1624 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1625 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1626 1627 EVT SetCCVT = 1628 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1629 1630 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1631 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1632 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1633 1634 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1635 // TODO: Should this propagate fast-math-flags? 1636 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1637 } 1638 1639 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1640 SelectionDAG &DAG) { 1641 const unsigned FractBits = 52; 1642 const unsigned ExpBits = 11; 1643 1644 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1645 Hi, 1646 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1647 DAG.getConstant(ExpBits, SL, MVT::i32)); 1648 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1649 DAG.getConstant(1023, SL, MVT::i32)); 1650 1651 return Exp; 1652 } 1653 1654 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1655 SDLoc SL(Op); 1656 SDValue Src = Op.getOperand(0); 1657 1658 assert(Op.getValueType() == MVT::f64); 1659 1660 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1661 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1662 1663 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1664 1665 // Extract the upper half, since this is where we will find the sign and 1666 // exponent. 1667 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1668 1669 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1670 1671 const unsigned FractBits = 52; 1672 1673 // Extract the sign bit. 1674 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1675 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1676 1677 // Extend back to to 64-bits. 1678 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1679 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1680 1681 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1682 const SDValue FractMask 1683 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1684 1685 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1686 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1687 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1688 1689 EVT SetCCVT = 1690 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1691 1692 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1693 1694 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1695 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1696 1697 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1698 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1699 1700 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1701 } 1702 1703 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1704 SDLoc SL(Op); 1705 SDValue Src = Op.getOperand(0); 1706 1707 assert(Op.getValueType() == MVT::f64); 1708 1709 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1710 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1711 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1712 1713 // TODO: Should this propagate fast-math-flags? 1714 1715 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1716 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1717 1718 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1719 1720 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1721 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1722 1723 EVT SetCCVT = 1724 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1725 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1726 1727 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1728 } 1729 1730 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1731 // FNEARBYINT and FRINT are the same, except in their handling of FP 1732 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1733 // rint, so just treat them as equivalent. 1734 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1735 } 1736 1737 // XXX - May require not supporting f32 denormals? 1738 1739 // Don't handle v2f16. The extra instructions to scalarize and repack around the 1740 // compare and vselect end up producing worse code than scalarizing the whole 1741 // operation. 1742 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 1743 SDLoc SL(Op); 1744 SDValue X = Op.getOperand(0); 1745 EVT VT = Op.getValueType(); 1746 1747 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 1748 1749 // TODO: Should this propagate fast-math-flags? 1750 1751 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 1752 1753 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 1754 1755 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 1756 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 1757 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 1758 1759 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 1760 1761 EVT SetCCVT = 1762 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1763 1764 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1765 1766 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 1767 1768 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 1769 } 1770 1771 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1772 SDLoc SL(Op); 1773 SDValue X = Op.getOperand(0); 1774 1775 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1776 1777 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1778 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1779 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1780 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1781 EVT SetCCVT = 1782 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1783 1784 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1785 1786 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1787 1788 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1789 1790 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1791 MVT::i64); 1792 1793 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1794 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1795 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1796 MVT::i64), 1797 Exp); 1798 1799 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1800 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1801 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1802 ISD::SETNE); 1803 1804 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1805 D, DAG.getConstant(0, SL, MVT::i64)); 1806 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1807 1808 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1809 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1810 1811 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1812 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1813 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1814 1815 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1816 ExpEqNegOne, 1817 DAG.getConstantFP(1.0, SL, MVT::f64), 1818 DAG.getConstantFP(0.0, SL, MVT::f64)); 1819 1820 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1821 1822 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1823 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1824 1825 return K; 1826 } 1827 1828 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1829 EVT VT = Op.getValueType(); 1830 1831 if (VT == MVT::f32 || VT == MVT::f16) 1832 return LowerFROUND32_16(Op, DAG); 1833 1834 if (VT == MVT::f64) 1835 return LowerFROUND64(Op, DAG); 1836 1837 llvm_unreachable("unhandled type"); 1838 } 1839 1840 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1841 SDLoc SL(Op); 1842 SDValue Src = Op.getOperand(0); 1843 1844 // result = trunc(src); 1845 // if (src < 0.0 && src != result) 1846 // result += -1.0. 1847 1848 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1849 1850 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1851 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1852 1853 EVT SetCCVT = 1854 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1855 1856 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1857 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1858 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1859 1860 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1861 // TODO: Should this propagate fast-math-flags? 1862 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1863 } 1864 1865 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1866 SDLoc SL(Op); 1867 SDValue Src = Op.getOperand(0); 1868 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1869 1870 if (ZeroUndef && Src.getValueType() == MVT::i32) 1871 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1872 1873 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1874 1875 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1876 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1877 1878 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1879 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1880 1881 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1882 *DAG.getContext(), MVT::i32); 1883 1884 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1885 1886 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1887 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1888 1889 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1890 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1891 1892 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1893 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1894 1895 if (!ZeroUndef) { 1896 // Test if the full 64-bit input is zero. 1897 1898 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1899 // which we probably don't want. 1900 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1901 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1902 1903 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1904 // with the same cycles, otherwise it is slower. 1905 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1906 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1907 1908 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1909 1910 // The instruction returns -1 for 0 input, but the defined intrinsic 1911 // behavior is to return the number of bits. 1912 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1913 SrcIsZero, Bits32, NewCtlz); 1914 } 1915 1916 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1917 } 1918 1919 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1920 bool Signed) const { 1921 // Unsigned 1922 // cul2f(ulong u) 1923 //{ 1924 // uint lz = clz(u); 1925 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1926 // u = (u << lz) & 0x7fffffffffffffffUL; 1927 // ulong t = u & 0xffffffffffUL; 1928 // uint v = (e << 23) | (uint)(u >> 40); 1929 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1930 // return as_float(v + r); 1931 //} 1932 // Signed 1933 // cl2f(long l) 1934 //{ 1935 // long s = l >> 63; 1936 // float r = cul2f((l + s) ^ s); 1937 // return s ? -r : r; 1938 //} 1939 1940 SDLoc SL(Op); 1941 SDValue Src = Op.getOperand(0); 1942 SDValue L = Src; 1943 1944 SDValue S; 1945 if (Signed) { 1946 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1947 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1948 1949 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1950 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1951 } 1952 1953 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1954 *DAG.getContext(), MVT::f32); 1955 1956 1957 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1958 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1959 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1960 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1961 1962 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1963 SDValue E = DAG.getSelect(SL, MVT::i32, 1964 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1965 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1966 ZeroI32); 1967 1968 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1969 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1970 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1971 1972 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1973 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1974 1975 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1976 U, DAG.getConstant(40, SL, MVT::i64)); 1977 1978 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1979 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1980 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1981 1982 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1983 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1984 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 1985 1986 SDValue One = DAG.getConstant(1, SL, MVT::i32); 1987 1988 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 1989 1990 SDValue R = DAG.getSelect(SL, MVT::i32, 1991 RCmp, 1992 One, 1993 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 1994 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 1995 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 1996 1997 if (!Signed) 1998 return R; 1999 2000 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2001 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2002 } 2003 2004 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2005 bool Signed) const { 2006 SDLoc SL(Op); 2007 SDValue Src = Op.getOperand(0); 2008 2009 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2010 2011 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2012 DAG.getConstant(0, SL, MVT::i32)); 2013 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2014 DAG.getConstant(1, SL, MVT::i32)); 2015 2016 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2017 SL, MVT::f64, Hi); 2018 2019 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2020 2021 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2022 DAG.getConstant(32, SL, MVT::i32)); 2023 // TODO: Should this propagate fast-math-flags? 2024 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2025 } 2026 2027 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2028 SelectionDAG &DAG) const { 2029 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2030 "operation should be legal"); 2031 2032 // TODO: Factor out code common with LowerSINT_TO_FP. 2033 2034 EVT DestVT = Op.getValueType(); 2035 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2036 SDLoc DL(Op); 2037 SDValue Src = Op.getOperand(0); 2038 2039 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2040 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2041 SDValue FPRound = 2042 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2043 2044 return FPRound; 2045 } 2046 2047 if (DestVT == MVT::f32) 2048 return LowerINT_TO_FP32(Op, DAG, false); 2049 2050 assert(DestVT == MVT::f64); 2051 return LowerINT_TO_FP64(Op, DAG, false); 2052 } 2053 2054 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2055 SelectionDAG &DAG) const { 2056 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2057 "operation should be legal"); 2058 2059 // TODO: Factor out code common with LowerUINT_TO_FP. 2060 2061 EVT DestVT = Op.getValueType(); 2062 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2063 SDLoc DL(Op); 2064 SDValue Src = Op.getOperand(0); 2065 2066 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2067 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2068 SDValue FPRound = 2069 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2070 2071 return FPRound; 2072 } 2073 2074 if (DestVT == MVT::f32) 2075 return LowerINT_TO_FP32(Op, DAG, true); 2076 2077 assert(DestVT == MVT::f64); 2078 return LowerINT_TO_FP64(Op, DAG, true); 2079 } 2080 2081 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2082 bool Signed) const { 2083 SDLoc SL(Op); 2084 2085 SDValue Src = Op.getOperand(0); 2086 2087 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2088 2089 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2090 MVT::f64); 2091 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2092 MVT::f64); 2093 // TODO: Should this propagate fast-math-flags? 2094 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2095 2096 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2097 2098 2099 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2100 2101 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2102 MVT::i32, FloorMul); 2103 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2104 2105 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2106 2107 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2108 } 2109 2110 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2111 SDLoc DL(Op); 2112 SDValue N0 = Op.getOperand(0); 2113 2114 // Convert to target node to get known bits 2115 if (N0.getValueType() == MVT::f32) 2116 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2117 2118 if (getTargetMachine().Options.UnsafeFPMath) { 2119 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2120 return SDValue(); 2121 } 2122 2123 assert(N0.getSimpleValueType() == MVT::f64); 2124 2125 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2126 const unsigned ExpMask = 0x7ff; 2127 const unsigned ExpBiasf64 = 1023; 2128 const unsigned ExpBiasf16 = 15; 2129 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2130 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2131 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2132 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2133 DAG.getConstant(32, DL, MVT::i64)); 2134 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2135 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2136 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2137 DAG.getConstant(20, DL, MVT::i64)); 2138 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2139 DAG.getConstant(ExpMask, DL, MVT::i32)); 2140 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2141 // add the f16 bias (15) to get the biased exponent for the f16 format. 2142 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2143 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2144 2145 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2146 DAG.getConstant(8, DL, MVT::i32)); 2147 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2148 DAG.getConstant(0xffe, DL, MVT::i32)); 2149 2150 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2151 DAG.getConstant(0x1ff, DL, MVT::i32)); 2152 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2153 2154 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2155 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2156 2157 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2158 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2159 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2160 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2161 2162 // N = M | (E << 12); 2163 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2164 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2165 DAG.getConstant(12, DL, MVT::i32))); 2166 2167 // B = clamp(1-E, 0, 13); 2168 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2169 One, E); 2170 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2171 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2172 DAG.getConstant(13, DL, MVT::i32)); 2173 2174 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2175 DAG.getConstant(0x1000, DL, MVT::i32)); 2176 2177 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2178 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2179 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2180 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2181 2182 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2183 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2184 DAG.getConstant(0x7, DL, MVT::i32)); 2185 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2186 DAG.getConstant(2, DL, MVT::i32)); 2187 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2188 One, Zero, ISD::SETEQ); 2189 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2190 One, Zero, ISD::SETGT); 2191 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2192 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2193 2194 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2195 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2196 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2197 I, V, ISD::SETEQ); 2198 2199 // Extract the sign bit. 2200 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2201 DAG.getConstant(16, DL, MVT::i32)); 2202 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2203 DAG.getConstant(0x8000, DL, MVT::i32)); 2204 2205 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2206 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2207 } 2208 2209 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2210 SelectionDAG &DAG) const { 2211 SDValue Src = Op.getOperand(0); 2212 2213 // TODO: Factor out code common with LowerFP_TO_UINT. 2214 2215 EVT SrcVT = Src.getValueType(); 2216 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2217 SDLoc DL(Op); 2218 2219 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2220 SDValue FpToInt32 = 2221 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2222 2223 return FpToInt32; 2224 } 2225 2226 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2227 return LowerFP64_TO_INT(Op, DAG, true); 2228 2229 return SDValue(); 2230 } 2231 2232 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2233 SelectionDAG &DAG) const { 2234 SDValue Src = Op.getOperand(0); 2235 2236 // TODO: Factor out code common with LowerFP_TO_SINT. 2237 2238 EVT SrcVT = Src.getValueType(); 2239 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2240 SDLoc DL(Op); 2241 2242 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2243 SDValue FpToInt32 = 2244 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2245 2246 return FpToInt32; 2247 } 2248 2249 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2250 return LowerFP64_TO_INT(Op, DAG, false); 2251 2252 return SDValue(); 2253 } 2254 2255 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2256 SelectionDAG &DAG) const { 2257 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2258 MVT VT = Op.getSimpleValueType(); 2259 MVT ScalarVT = VT.getScalarType(); 2260 2261 assert(VT.isVector()); 2262 2263 SDValue Src = Op.getOperand(0); 2264 SDLoc DL(Op); 2265 2266 // TODO: Don't scalarize on Evergreen? 2267 unsigned NElts = VT.getVectorNumElements(); 2268 SmallVector<SDValue, 8> Args; 2269 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2270 2271 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2272 for (unsigned I = 0; I < NElts; ++I) 2273 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2274 2275 return DAG.getBuildVector(VT, DL, Args); 2276 } 2277 2278 //===----------------------------------------------------------------------===// 2279 // Custom DAG optimizations 2280 //===----------------------------------------------------------------------===// 2281 2282 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2283 APInt KnownZero, KnownOne; 2284 EVT VT = Op.getValueType(); 2285 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2286 2287 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2288 } 2289 2290 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2291 EVT VT = Op.getValueType(); 2292 2293 // In order for this to be a signed 24-bit value, bit 23, must 2294 // be a sign bit. 2295 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2296 // as unsigned 24-bit values. 2297 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2298 } 2299 2300 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2301 TargetLowering::DAGCombinerInfo &DCI) { 2302 2303 SelectionDAG &DAG = DCI.DAG; 2304 SDValue Op = Node24->getOperand(OpIdx); 2305 EVT VT = Op.getValueType(); 2306 2307 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2308 APInt KnownZero, KnownOne; 2309 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2310 if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI)) 2311 return true; 2312 2313 return false; 2314 } 2315 2316 template <typename IntTy> 2317 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2318 uint32_t Width, const SDLoc &DL) { 2319 if (Width + Offset < 32) { 2320 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2321 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2322 return DAG.getConstant(Result, DL, MVT::i32); 2323 } 2324 2325 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2326 } 2327 2328 static bool hasVolatileUser(SDNode *Val) { 2329 for (SDNode *U : Val->uses()) { 2330 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2331 if (M->isVolatile()) 2332 return true; 2333 } 2334 } 2335 2336 return false; 2337 } 2338 2339 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2340 // i32 vectors are the canonical memory type. 2341 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2342 return false; 2343 2344 if (!VT.isByteSized()) 2345 return false; 2346 2347 unsigned Size = VT.getStoreSize(); 2348 2349 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2350 return false; 2351 2352 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2353 return false; 2354 2355 return true; 2356 } 2357 2358 // Replace load of an illegal type with a store of a bitcast to a friendlier 2359 // type. 2360 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2361 DAGCombinerInfo &DCI) const { 2362 if (!DCI.isBeforeLegalize()) 2363 return SDValue(); 2364 2365 LoadSDNode *LN = cast<LoadSDNode>(N); 2366 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2367 return SDValue(); 2368 2369 SDLoc SL(N); 2370 SelectionDAG &DAG = DCI.DAG; 2371 EVT VT = LN->getMemoryVT(); 2372 2373 unsigned Size = VT.getStoreSize(); 2374 unsigned Align = LN->getAlignment(); 2375 if (Align < Size && isTypeLegal(VT)) { 2376 bool IsFast; 2377 unsigned AS = LN->getAddressSpace(); 2378 2379 // Expand unaligned loads earlier than legalization. Due to visitation order 2380 // problems during legalization, the emitted instructions to pack and unpack 2381 // the bytes again are not eliminated in the case of an unaligned copy. 2382 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2383 if (VT.isVector()) 2384 return scalarizeVectorLoad(LN, DAG); 2385 2386 SDValue Ops[2]; 2387 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2388 return DAG.getMergeValues(Ops, SDLoc(N)); 2389 } 2390 2391 if (!IsFast) 2392 return SDValue(); 2393 } 2394 2395 if (!shouldCombineMemoryType(VT)) 2396 return SDValue(); 2397 2398 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2399 2400 SDValue NewLoad 2401 = DAG.getLoad(NewVT, SL, LN->getChain(), 2402 LN->getBasePtr(), LN->getMemOperand()); 2403 2404 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2405 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2406 return SDValue(N, 0); 2407 } 2408 2409 // Replace store of an illegal type with a store of a bitcast to a friendlier 2410 // type. 2411 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2412 DAGCombinerInfo &DCI) const { 2413 if (!DCI.isBeforeLegalize()) 2414 return SDValue(); 2415 2416 StoreSDNode *SN = cast<StoreSDNode>(N); 2417 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2418 return SDValue(); 2419 2420 EVT VT = SN->getMemoryVT(); 2421 unsigned Size = VT.getStoreSize(); 2422 2423 SDLoc SL(N); 2424 SelectionDAG &DAG = DCI.DAG; 2425 unsigned Align = SN->getAlignment(); 2426 if (Align < Size && isTypeLegal(VT)) { 2427 bool IsFast; 2428 unsigned AS = SN->getAddressSpace(); 2429 2430 // Expand unaligned stores earlier than legalization. Due to visitation 2431 // order problems during legalization, the emitted instructions to pack and 2432 // unpack the bytes again are not eliminated in the case of an unaligned 2433 // copy. 2434 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2435 if (VT.isVector()) 2436 return scalarizeVectorStore(SN, DAG); 2437 2438 return expandUnalignedStore(SN, DAG); 2439 } 2440 2441 if (!IsFast) 2442 return SDValue(); 2443 } 2444 2445 if (!shouldCombineMemoryType(VT)) 2446 return SDValue(); 2447 2448 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2449 SDValue Val = SN->getValue(); 2450 2451 //DCI.AddToWorklist(Val.getNode()); 2452 2453 bool OtherUses = !Val.hasOneUse(); 2454 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2455 if (OtherUses) { 2456 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2457 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2458 } 2459 2460 return DAG.getStore(SN->getChain(), SL, CastVal, 2461 SN->getBasePtr(), SN->getMemOperand()); 2462 } 2463 2464 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, 2465 DAGCombinerInfo &DCI) const { 2466 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 2467 if (!CSrc) 2468 return SDValue(); 2469 2470 const APFloat &F = CSrc->getValueAPF(); 2471 APFloat Zero = APFloat::getZero(F.getSemantics()); 2472 APFloat::cmpResult Cmp0 = F.compare(Zero); 2473 if (Cmp0 == APFloat::cmpLessThan || 2474 (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { 2475 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 2476 } 2477 2478 APFloat One(F.getSemantics(), "1.0"); 2479 APFloat::cmpResult Cmp1 = F.compare(One); 2480 if (Cmp1 == APFloat::cmpGreaterThan) 2481 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 2482 2483 return SDValue(CSrc, 0); 2484 } 2485 2486 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2487 /// binary operation \p Opc to it with the corresponding constant operands. 2488 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2489 DAGCombinerInfo &DCI, const SDLoc &SL, 2490 unsigned Opc, SDValue LHS, 2491 uint32_t ValLo, uint32_t ValHi) const { 2492 SelectionDAG &DAG = DCI.DAG; 2493 SDValue Lo, Hi; 2494 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2495 2496 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2497 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2498 2499 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2500 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2501 2502 // Re-visit the ands. It's possible we eliminated one of them and it could 2503 // simplify the vector. 2504 DCI.AddToWorklist(Lo.getNode()); 2505 DCI.AddToWorklist(Hi.getNode()); 2506 2507 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2508 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2509 } 2510 2511 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2512 DAGCombinerInfo &DCI) const { 2513 if (N->getValueType(0) != MVT::i64) 2514 return SDValue(); 2515 2516 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2517 2518 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2519 // common case, splitting this into a move and a 32-bit shift is faster and 2520 // the same code size. 2521 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2522 if (!RHS) 2523 return SDValue(); 2524 2525 unsigned RHSVal = RHS->getZExtValue(); 2526 if (RHSVal < 32) 2527 return SDValue(); 2528 2529 SDValue LHS = N->getOperand(0); 2530 2531 SDLoc SL(N); 2532 SelectionDAG &DAG = DCI.DAG; 2533 2534 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2535 2536 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2537 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2538 2539 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2540 2541 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2542 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2543 } 2544 2545 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2546 DAGCombinerInfo &DCI) const { 2547 if (N->getValueType(0) != MVT::i64) 2548 return SDValue(); 2549 2550 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2551 if (!RHS) 2552 return SDValue(); 2553 2554 SelectionDAG &DAG = DCI.DAG; 2555 SDLoc SL(N); 2556 unsigned RHSVal = RHS->getZExtValue(); 2557 2558 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2559 if (RHSVal == 32) { 2560 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2561 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2562 DAG.getConstant(31, SL, MVT::i32)); 2563 2564 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2565 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2566 } 2567 2568 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2569 if (RHSVal == 63) { 2570 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2571 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2572 DAG.getConstant(31, SL, MVT::i32)); 2573 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2574 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2575 } 2576 2577 return SDValue(); 2578 } 2579 2580 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2581 DAGCombinerInfo &DCI) const { 2582 if (N->getValueType(0) != MVT::i64) 2583 return SDValue(); 2584 2585 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2586 if (!RHS) 2587 return SDValue(); 2588 2589 unsigned ShiftAmt = RHS->getZExtValue(); 2590 if (ShiftAmt < 32) 2591 return SDValue(); 2592 2593 // srl i64:x, C for C >= 32 2594 // => 2595 // build_pair (srl hi_32(x), C - 32), 0 2596 2597 SelectionDAG &DAG = DCI.DAG; 2598 SDLoc SL(N); 2599 2600 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2601 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2602 2603 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2604 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2605 VecOp, One); 2606 2607 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2608 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2609 2610 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2611 2612 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2613 } 2614 2615 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2616 // instructions. If we only match on the legalized i64 mul expansion, 2617 // SimplifyDemandedBits will be unable to remove them because there will be 2618 // multiple uses due to the separate mul + mulh[su]. 2619 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2620 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2621 if (Size <= 32) { 2622 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2623 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2624 } 2625 2626 // Because we want to eliminate extension instructions before the 2627 // operation, we need to create a single user here (i.e. not the separate 2628 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2629 2630 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2631 2632 SDValue Mul = DAG.getNode(MulOpc, SL, 2633 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 2634 2635 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 2636 Mul.getValue(0), Mul.getValue(1)); 2637 } 2638 2639 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2640 DAGCombinerInfo &DCI) const { 2641 EVT VT = N->getValueType(0); 2642 2643 unsigned Size = VT.getSizeInBits(); 2644 if (VT.isVector() || Size > 64) 2645 return SDValue(); 2646 2647 // There are i16 integer mul/mad. 2648 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 2649 return SDValue(); 2650 2651 SelectionDAG &DAG = DCI.DAG; 2652 SDLoc DL(N); 2653 2654 SDValue N0 = N->getOperand(0); 2655 SDValue N1 = N->getOperand(1); 2656 SDValue Mul; 2657 2658 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2659 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2660 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2661 Mul = getMul24(DAG, DL, N0, N1, Size, false); 2662 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2663 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2664 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2665 Mul = getMul24(DAG, DL, N0, N1, Size, true); 2666 } else { 2667 return SDValue(); 2668 } 2669 2670 // We need to use sext even for MUL_U24, because MUL_U24 is used 2671 // for signed multiply of 8 and 16-bit types. 2672 return DAG.getSExtOrTrunc(Mul, DL, VT); 2673 } 2674 2675 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 2676 DAGCombinerInfo &DCI) const { 2677 EVT VT = N->getValueType(0); 2678 2679 if (!Subtarget->hasMulI24() || VT.isVector()) 2680 return SDValue(); 2681 2682 SelectionDAG &DAG = DCI.DAG; 2683 SDLoc DL(N); 2684 2685 SDValue N0 = N->getOperand(0); 2686 SDValue N1 = N->getOperand(1); 2687 2688 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 2689 return SDValue(); 2690 2691 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2692 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2693 2694 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 2695 DCI.AddToWorklist(Mulhi.getNode()); 2696 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 2697 } 2698 2699 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 2700 DAGCombinerInfo &DCI) const { 2701 EVT VT = N->getValueType(0); 2702 2703 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 2704 return SDValue(); 2705 2706 SelectionDAG &DAG = DCI.DAG; 2707 SDLoc DL(N); 2708 2709 SDValue N0 = N->getOperand(0); 2710 SDValue N1 = N->getOperand(1); 2711 2712 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 2713 return SDValue(); 2714 2715 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2716 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2717 2718 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 2719 DCI.AddToWorklist(Mulhi.getNode()); 2720 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 2721 } 2722 2723 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 2724 SDNode *N, DAGCombinerInfo &DCI) const { 2725 SelectionDAG &DAG = DCI.DAG; 2726 2727 // Simplify demanded bits before splitting into multiple users. 2728 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 2729 return SDValue(); 2730 2731 SDValue N0 = N->getOperand(0); 2732 SDValue N1 = N->getOperand(1); 2733 2734 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 2735 2736 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2737 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 2738 2739 SDLoc SL(N); 2740 2741 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 2742 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 2743 return DAG.getMergeValues({ MulLo, MulHi }, SL); 2744 } 2745 2746 static bool isNegativeOne(SDValue Val) { 2747 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2748 return C->isAllOnesValue(); 2749 return false; 2750 } 2751 2752 static bool isCtlzOpc(unsigned Opc) { 2753 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2754 } 2755 2756 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG, 2757 SDValue Op, 2758 const SDLoc &DL) const { 2759 EVT VT = Op.getValueType(); 2760 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 2761 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 2762 LegalVT != MVT::i16)) 2763 return SDValue(); 2764 2765 if (VT != MVT::i32) 2766 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 2767 2768 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op); 2769 if (VT != MVT::i32) 2770 FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH); 2771 2772 return FFBH; 2773 } 2774 2775 // The native instructions return -1 on 0 input. Optimize out a select that 2776 // produces -1 on 0. 2777 // 2778 // TODO: If zero is not undef, we could also do this if the output is compared 2779 // against the bitwidth. 2780 // 2781 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2782 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2783 SDValue LHS, SDValue RHS, 2784 DAGCombinerInfo &DCI) const { 2785 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2786 if (!CmpRhs || !CmpRhs->isNullValue()) 2787 return SDValue(); 2788 2789 SelectionDAG &DAG = DCI.DAG; 2790 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2791 SDValue CmpLHS = Cond.getOperand(0); 2792 2793 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2794 if (CCOpcode == ISD::SETEQ && 2795 isCtlzOpc(RHS.getOpcode()) && 2796 RHS.getOperand(0) == CmpLHS && 2797 isNegativeOne(LHS)) { 2798 return getFFBH_U32(DAG, CmpLHS, SL); 2799 } 2800 2801 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2802 if (CCOpcode == ISD::SETNE && 2803 isCtlzOpc(LHS.getOpcode()) && 2804 LHS.getOperand(0) == CmpLHS && 2805 isNegativeOne(RHS)) { 2806 return getFFBH_U32(DAG, CmpLHS, SL); 2807 } 2808 2809 return SDValue(); 2810 } 2811 2812 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 2813 unsigned Op, 2814 const SDLoc &SL, 2815 SDValue Cond, 2816 SDValue N1, 2817 SDValue N2) { 2818 SelectionDAG &DAG = DCI.DAG; 2819 EVT VT = N1.getValueType(); 2820 2821 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 2822 N1.getOperand(0), N2.getOperand(0)); 2823 DCI.AddToWorklist(NewSelect.getNode()); 2824 return DAG.getNode(Op, SL, VT, NewSelect); 2825 } 2826 2827 // Pull a free FP operation out of a select so it may fold into uses. 2828 // 2829 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 2830 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 2831 // 2832 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 2833 // select c, (fabs x), +k -> fabs (select c, x, k) 2834 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 2835 SDValue N) { 2836 SelectionDAG &DAG = DCI.DAG; 2837 SDValue Cond = N.getOperand(0); 2838 SDValue LHS = N.getOperand(1); 2839 SDValue RHS = N.getOperand(2); 2840 2841 EVT VT = N.getValueType(); 2842 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 2843 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 2844 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 2845 SDLoc(N), Cond, LHS, RHS); 2846 } 2847 2848 bool Inv = false; 2849 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 2850 std::swap(LHS, RHS); 2851 Inv = true; 2852 } 2853 2854 // TODO: Support vector constants. 2855 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 2856 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 2857 SDLoc SL(N); 2858 // If one side is an fneg/fabs and the other is a constant, we can push the 2859 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 2860 SDValue NewLHS = LHS.getOperand(0); 2861 SDValue NewRHS = RHS; 2862 2863 // Careful: if the neg can be folded up, don't try to pull it back down. 2864 bool ShouldFoldNeg = true; 2865 2866 if (NewLHS.hasOneUse()) { 2867 unsigned Opc = NewLHS.getOpcode(); 2868 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 2869 ShouldFoldNeg = false; 2870 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 2871 ShouldFoldNeg = false; 2872 } 2873 2874 if (ShouldFoldNeg) { 2875 if (LHS.getOpcode() == ISD::FNEG) 2876 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 2877 else if (CRHS->isNegative()) 2878 return SDValue(); 2879 2880 if (Inv) 2881 std::swap(NewLHS, NewRHS); 2882 2883 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 2884 Cond, NewLHS, NewRHS); 2885 DCI.AddToWorklist(NewSelect.getNode()); 2886 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 2887 } 2888 } 2889 2890 return SDValue(); 2891 } 2892 2893 2894 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2895 DAGCombinerInfo &DCI) const { 2896 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 2897 return Folded; 2898 2899 SDValue Cond = N->getOperand(0); 2900 if (Cond.getOpcode() != ISD::SETCC) 2901 return SDValue(); 2902 2903 EVT VT = N->getValueType(0); 2904 SDValue LHS = Cond.getOperand(0); 2905 SDValue RHS = Cond.getOperand(1); 2906 SDValue CC = Cond.getOperand(2); 2907 2908 SDValue True = N->getOperand(1); 2909 SDValue False = N->getOperand(2); 2910 2911 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 2912 SelectionDAG &DAG = DCI.DAG; 2913 if ((DAG.isConstantValueOfAnyType(True) || 2914 DAG.isConstantValueOfAnyType(True)) && 2915 (!DAG.isConstantValueOfAnyType(False) && 2916 !DAG.isConstantValueOfAnyType(False))) { 2917 // Swap cmp + select pair to move constant to false input. 2918 // This will allow using VOPC cndmasks more often. 2919 // select (setcc x, y), k, x -> select (setcc y, x) x, x 2920 2921 SDLoc SL(N); 2922 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 2923 LHS.getValueType().isInteger()); 2924 2925 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 2926 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 2927 } 2928 2929 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 2930 SDValue MinMax 2931 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2932 // Revisit this node so we can catch min3/max3/med3 patterns. 2933 //DCI.AddToWorklist(MinMax.getNode()); 2934 return MinMax; 2935 } 2936 } 2937 2938 // There's no reason to not do this if the condition has other uses. 2939 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2940 } 2941 2942 static bool isConstantFPZero(SDValue N) { 2943 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) 2944 return C->isZero() && !C->isNegative(); 2945 return false; 2946 } 2947 2948 static unsigned inverseMinMax(unsigned Opc) { 2949 switch (Opc) { 2950 case ISD::FMAXNUM: 2951 return ISD::FMINNUM; 2952 case ISD::FMINNUM: 2953 return ISD::FMAXNUM; 2954 case AMDGPUISD::FMAX_LEGACY: 2955 return AMDGPUISD::FMIN_LEGACY; 2956 case AMDGPUISD::FMIN_LEGACY: 2957 return AMDGPUISD::FMAX_LEGACY; 2958 default: 2959 llvm_unreachable("invalid min/max opcode"); 2960 } 2961 } 2962 2963 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 2964 DAGCombinerInfo &DCI) const { 2965 SelectionDAG &DAG = DCI.DAG; 2966 SDValue N0 = N->getOperand(0); 2967 EVT VT = N->getValueType(0); 2968 2969 unsigned Opc = N0.getOpcode(); 2970 2971 // If the input has multiple uses and we can either fold the negate down, or 2972 // the other uses cannot, give up. This both prevents unprofitable 2973 // transformations and infinite loops: we won't repeatedly try to fold around 2974 // a negate that has no 'good' form. 2975 if (N0.hasOneUse()) { 2976 // This may be able to fold into the source, but at a code size cost. Don't 2977 // fold if the fold into the user is free. 2978 if (allUsesHaveSourceMods(N, 0)) 2979 return SDValue(); 2980 } else { 2981 if (fnegFoldsIntoOp(Opc) && 2982 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 2983 return SDValue(); 2984 } 2985 2986 SDLoc SL(N); 2987 switch (Opc) { 2988 case ISD::FADD: { 2989 if (!mayIgnoreSignedZero(N0)) 2990 return SDValue(); 2991 2992 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 2993 SDValue LHS = N0.getOperand(0); 2994 SDValue RHS = N0.getOperand(1); 2995 2996 if (LHS.getOpcode() != ISD::FNEG) 2997 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 2998 else 2999 LHS = LHS.getOperand(0); 3000 3001 if (RHS.getOpcode() != ISD::FNEG) 3002 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3003 else 3004 RHS = RHS.getOperand(0); 3005 3006 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3007 if (!N0.hasOneUse()) 3008 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3009 return Res; 3010 } 3011 case ISD::FMUL: 3012 case AMDGPUISD::FMUL_LEGACY: { 3013 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3014 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3015 SDValue LHS = N0.getOperand(0); 3016 SDValue RHS = N0.getOperand(1); 3017 3018 if (LHS.getOpcode() == ISD::FNEG) 3019 LHS = LHS.getOperand(0); 3020 else if (RHS.getOpcode() == ISD::FNEG) 3021 RHS = RHS.getOperand(0); 3022 else 3023 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3024 3025 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3026 if (!N0.hasOneUse()) 3027 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3028 return Res; 3029 } 3030 case ISD::FMA: 3031 case ISD::FMAD: { 3032 if (!mayIgnoreSignedZero(N0)) 3033 return SDValue(); 3034 3035 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3036 SDValue LHS = N0.getOperand(0); 3037 SDValue MHS = N0.getOperand(1); 3038 SDValue RHS = N0.getOperand(2); 3039 3040 if (LHS.getOpcode() == ISD::FNEG) 3041 LHS = LHS.getOperand(0); 3042 else if (MHS.getOpcode() == ISD::FNEG) 3043 MHS = MHS.getOperand(0); 3044 else 3045 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3046 3047 if (RHS.getOpcode() != ISD::FNEG) 3048 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3049 else 3050 RHS = RHS.getOperand(0); 3051 3052 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3053 if (!N0.hasOneUse()) 3054 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3055 return Res; 3056 } 3057 case ISD::FMAXNUM: 3058 case ISD::FMINNUM: 3059 case AMDGPUISD::FMAX_LEGACY: 3060 case AMDGPUISD::FMIN_LEGACY: { 3061 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3062 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3063 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3064 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3065 3066 SDValue LHS = N0.getOperand(0); 3067 SDValue RHS = N0.getOperand(1); 3068 3069 // 0 doesn't have a negated inline immediate. 3070 // TODO: Shouldn't fold 1/2pi either, and should be generalized to other 3071 // operations. 3072 if (isConstantFPZero(RHS)) 3073 return SDValue(); 3074 3075 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3076 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3077 unsigned Opposite = inverseMinMax(Opc); 3078 3079 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3080 if (!N0.hasOneUse()) 3081 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3082 return Res; 3083 } 3084 case ISD::FP_EXTEND: 3085 case ISD::FTRUNC: 3086 case ISD::FRINT: 3087 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3088 case ISD::FSIN: 3089 case AMDGPUISD::RCP: 3090 case AMDGPUISD::RCP_LEGACY: 3091 case AMDGPUISD::SIN_HW: { 3092 SDValue CvtSrc = N0.getOperand(0); 3093 if (CvtSrc.getOpcode() == ISD::FNEG) { 3094 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3095 // (fneg (rcp (fneg x))) -> (rcp x) 3096 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3097 } 3098 3099 if (!N0.hasOneUse()) 3100 return SDValue(); 3101 3102 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3103 // (fneg (rcp x)) -> (rcp (fneg x)) 3104 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3105 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3106 } 3107 case ISD::FP_ROUND: { 3108 SDValue CvtSrc = N0.getOperand(0); 3109 3110 if (CvtSrc.getOpcode() == ISD::FNEG) { 3111 // (fneg (fp_round (fneg x))) -> (fp_round x) 3112 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3113 CvtSrc.getOperand(0), N0.getOperand(1)); 3114 } 3115 3116 if (!N0.hasOneUse()) 3117 return SDValue(); 3118 3119 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3120 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3121 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3122 } 3123 case ISD::FP16_TO_FP: { 3124 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3125 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3126 // Put the fneg back as a legal source operation that can be matched later. 3127 SDLoc SL(N); 3128 3129 SDValue Src = N0.getOperand(0); 3130 EVT SrcVT = Src.getValueType(); 3131 3132 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3133 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3134 DAG.getConstant(0x8000, SL, SrcVT)); 3135 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3136 } 3137 default: 3138 return SDValue(); 3139 } 3140 } 3141 3142 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3143 DAGCombinerInfo &DCI) const { 3144 SelectionDAG &DAG = DCI.DAG; 3145 SDValue N0 = N->getOperand(0); 3146 3147 if (!N0.hasOneUse()) 3148 return SDValue(); 3149 3150 switch (N0.getOpcode()) { 3151 case ISD::FP16_TO_FP: { 3152 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3153 SDLoc SL(N); 3154 SDValue Src = N0.getOperand(0); 3155 EVT SrcVT = Src.getValueType(); 3156 3157 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3158 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3159 DAG.getConstant(0x7fff, SL, SrcVT)); 3160 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3161 } 3162 default: 3163 return SDValue(); 3164 } 3165 } 3166 3167 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3168 DAGCombinerInfo &DCI) const { 3169 SelectionDAG &DAG = DCI.DAG; 3170 SDLoc DL(N); 3171 3172 switch(N->getOpcode()) { 3173 default: 3174 break; 3175 case ISD::BITCAST: { 3176 EVT DestVT = N->getValueType(0); 3177 3178 // Push casts through vector builds. This helps avoid emitting a large 3179 // number of copies when materializing floating point vector constants. 3180 // 3181 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3182 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3183 if (DestVT.isVector()) { 3184 SDValue Src = N->getOperand(0); 3185 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3186 EVT SrcVT = Src.getValueType(); 3187 unsigned NElts = DestVT.getVectorNumElements(); 3188 3189 if (SrcVT.getVectorNumElements() == NElts) { 3190 EVT DestEltVT = DestVT.getVectorElementType(); 3191 3192 SmallVector<SDValue, 8> CastedElts; 3193 SDLoc SL(N); 3194 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3195 SDValue Elt = Src.getOperand(I); 3196 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3197 } 3198 3199 return DAG.getBuildVector(DestVT, SL, CastedElts); 3200 } 3201 } 3202 } 3203 3204 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3205 break; 3206 3207 // Fold bitcasts of constants. 3208 // 3209 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3210 // TODO: Generalize and move to DAGCombiner 3211 SDValue Src = N->getOperand(0); 3212 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3213 assert(Src.getValueType() == MVT::i64); 3214 SDLoc SL(N); 3215 uint64_t CVal = C->getZExtValue(); 3216 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3217 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3218 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3219 } 3220 3221 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3222 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3223 SDLoc SL(N); 3224 uint64_t CVal = Val.getZExtValue(); 3225 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3226 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3227 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3228 3229 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3230 } 3231 3232 break; 3233 } 3234 case ISD::SHL: { 3235 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3236 break; 3237 3238 return performShlCombine(N, DCI); 3239 } 3240 case ISD::SRL: { 3241 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3242 break; 3243 3244 return performSrlCombine(N, DCI); 3245 } 3246 case ISD::SRA: { 3247 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3248 break; 3249 3250 return performSraCombine(N, DCI); 3251 } 3252 case ISD::MUL: 3253 return performMulCombine(N, DCI); 3254 case ISD::MULHS: 3255 return performMulhsCombine(N, DCI); 3256 case ISD::MULHU: 3257 return performMulhuCombine(N, DCI); 3258 case AMDGPUISD::MUL_I24: 3259 case AMDGPUISD::MUL_U24: 3260 case AMDGPUISD::MULHI_I24: 3261 case AMDGPUISD::MULHI_U24: { 3262 // If the first call to simplify is successfull, then N may end up being 3263 // deleted, so we shouldn't call simplifyI24 again. 3264 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3265 return SDValue(); 3266 } 3267 case AMDGPUISD::MUL_LOHI_I24: 3268 case AMDGPUISD::MUL_LOHI_U24: 3269 return performMulLoHi24Combine(N, DCI); 3270 case ISD::SELECT: 3271 return performSelectCombine(N, DCI); 3272 case ISD::FNEG: 3273 return performFNegCombine(N, DCI); 3274 case ISD::FABS: 3275 return performFAbsCombine(N, DCI); 3276 case AMDGPUISD::BFE_I32: 3277 case AMDGPUISD::BFE_U32: { 3278 assert(!N->getValueType(0).isVector() && 3279 "Vector handling of BFE not implemented"); 3280 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3281 if (!Width) 3282 break; 3283 3284 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3285 if (WidthVal == 0) 3286 return DAG.getConstant(0, DL, MVT::i32); 3287 3288 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3289 if (!Offset) 3290 break; 3291 3292 SDValue BitsFrom = N->getOperand(0); 3293 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3294 3295 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3296 3297 if (OffsetVal == 0) { 3298 // This is already sign / zero extended, so try to fold away extra BFEs. 3299 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3300 3301 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3302 if (OpSignBits >= SignBits) 3303 return BitsFrom; 3304 3305 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3306 if (Signed) { 3307 // This is a sign_extend_inreg. Replace it to take advantage of existing 3308 // DAG Combines. If not eliminated, we will match back to BFE during 3309 // selection. 3310 3311 // TODO: The sext_inreg of extended types ends, although we can could 3312 // handle them in a single BFE. 3313 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3314 DAG.getValueType(SmallVT)); 3315 } 3316 3317 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3318 } 3319 3320 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3321 if (Signed) { 3322 return constantFoldBFE<int32_t>(DAG, 3323 CVal->getSExtValue(), 3324 OffsetVal, 3325 WidthVal, 3326 DL); 3327 } 3328 3329 return constantFoldBFE<uint32_t>(DAG, 3330 CVal->getZExtValue(), 3331 OffsetVal, 3332 WidthVal, 3333 DL); 3334 } 3335 3336 if ((OffsetVal + WidthVal) >= 32) { 3337 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3338 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3339 BitsFrom, ShiftVal); 3340 } 3341 3342 if (BitsFrom.hasOneUse()) { 3343 APInt Demanded = APInt::getBitsSet(32, 3344 OffsetVal, 3345 OffsetVal + WidthVal); 3346 3347 APInt KnownZero, KnownOne; 3348 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3349 !DCI.isBeforeLegalizeOps()); 3350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3351 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 3352 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 3353 KnownZero, KnownOne, TLO)) { 3354 DCI.CommitTargetLoweringOpt(TLO); 3355 } 3356 } 3357 3358 break; 3359 } 3360 case ISD::LOAD: 3361 return performLoadCombine(N, DCI); 3362 case ISD::STORE: 3363 return performStoreCombine(N, DCI); 3364 case AMDGPUISD::CLAMP: 3365 return performClampCombine(N, DCI); 3366 case AMDGPUISD::RCP: { 3367 if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 3368 // XXX - Should this flush denormals? 3369 const APFloat &Val = CFP->getValueAPF(); 3370 APFloat One(Val.getSemantics(), "1.0"); 3371 return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3372 } 3373 3374 break; 3375 } 3376 } 3377 return SDValue(); 3378 } 3379 3380 //===----------------------------------------------------------------------===// 3381 // Helper functions 3382 //===----------------------------------------------------------------------===// 3383 3384 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3385 const TargetRegisterClass *RC, 3386 unsigned Reg, EVT VT) const { 3387 MachineFunction &MF = DAG.getMachineFunction(); 3388 MachineRegisterInfo &MRI = MF.getRegInfo(); 3389 unsigned VirtualRegister; 3390 if (!MRI.isLiveIn(Reg)) { 3391 VirtualRegister = MRI.createVirtualRegister(RC); 3392 MRI.addLiveIn(Reg, VirtualRegister); 3393 } else { 3394 VirtualRegister = MRI.getLiveInVirtReg(Reg); 3395 } 3396 return DAG.getRegister(VirtualRegister, VT); 3397 } 3398 3399 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 3400 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 3401 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 3402 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 3403 switch (Param) { 3404 case GRID_DIM: 3405 return ArgOffset; 3406 case GRID_OFFSET: 3407 return ArgOffset + 4; 3408 } 3409 llvm_unreachable("unexpected implicit parameter type"); 3410 } 3411 3412 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 3413 3414 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 3415 switch ((AMDGPUISD::NodeType)Opcode) { 3416 case AMDGPUISD::FIRST_NUMBER: break; 3417 // AMDIL DAG nodes 3418 NODE_NAME_CASE(UMUL); 3419 NODE_NAME_CASE(BRANCH_COND); 3420 3421 // AMDGPU DAG nodes 3422 NODE_NAME_CASE(IF) 3423 NODE_NAME_CASE(ELSE) 3424 NODE_NAME_CASE(LOOP) 3425 NODE_NAME_CASE(CALL) 3426 NODE_NAME_CASE(RET_FLAG) 3427 NODE_NAME_CASE(RETURN_TO_EPILOG) 3428 NODE_NAME_CASE(ENDPGM) 3429 NODE_NAME_CASE(DWORDADDR) 3430 NODE_NAME_CASE(FRACT) 3431 NODE_NAME_CASE(SETCC) 3432 NODE_NAME_CASE(SETREG) 3433 NODE_NAME_CASE(FMA_W_CHAIN) 3434 NODE_NAME_CASE(FMUL_W_CHAIN) 3435 NODE_NAME_CASE(CLAMP) 3436 NODE_NAME_CASE(COS_HW) 3437 NODE_NAME_CASE(SIN_HW) 3438 NODE_NAME_CASE(FMAX_LEGACY) 3439 NODE_NAME_CASE(FMIN_LEGACY) 3440 NODE_NAME_CASE(FMAX3) 3441 NODE_NAME_CASE(SMAX3) 3442 NODE_NAME_CASE(UMAX3) 3443 NODE_NAME_CASE(FMIN3) 3444 NODE_NAME_CASE(SMIN3) 3445 NODE_NAME_CASE(UMIN3) 3446 NODE_NAME_CASE(FMED3) 3447 NODE_NAME_CASE(SMED3) 3448 NODE_NAME_CASE(UMED3) 3449 NODE_NAME_CASE(URECIP) 3450 NODE_NAME_CASE(DIV_SCALE) 3451 NODE_NAME_CASE(DIV_FMAS) 3452 NODE_NAME_CASE(DIV_FIXUP) 3453 NODE_NAME_CASE(FMAD_FTZ) 3454 NODE_NAME_CASE(TRIG_PREOP) 3455 NODE_NAME_CASE(RCP) 3456 NODE_NAME_CASE(RSQ) 3457 NODE_NAME_CASE(RCP_LEGACY) 3458 NODE_NAME_CASE(RSQ_LEGACY) 3459 NODE_NAME_CASE(FMUL_LEGACY) 3460 NODE_NAME_CASE(RSQ_CLAMP) 3461 NODE_NAME_CASE(LDEXP) 3462 NODE_NAME_CASE(FP_CLASS) 3463 NODE_NAME_CASE(DOT4) 3464 NODE_NAME_CASE(CARRY) 3465 NODE_NAME_CASE(BORROW) 3466 NODE_NAME_CASE(BFE_U32) 3467 NODE_NAME_CASE(BFE_I32) 3468 NODE_NAME_CASE(BFI) 3469 NODE_NAME_CASE(BFM) 3470 NODE_NAME_CASE(FFBH_U32) 3471 NODE_NAME_CASE(FFBH_I32) 3472 NODE_NAME_CASE(MUL_U24) 3473 NODE_NAME_CASE(MUL_I24) 3474 NODE_NAME_CASE(MULHI_U24) 3475 NODE_NAME_CASE(MULHI_I24) 3476 NODE_NAME_CASE(MUL_LOHI_U24) 3477 NODE_NAME_CASE(MUL_LOHI_I24) 3478 NODE_NAME_CASE(MAD_U24) 3479 NODE_NAME_CASE(MAD_I24) 3480 NODE_NAME_CASE(TEXTURE_FETCH) 3481 NODE_NAME_CASE(EXPORT) 3482 NODE_NAME_CASE(EXPORT_DONE) 3483 NODE_NAME_CASE(R600_EXPORT) 3484 NODE_NAME_CASE(CONST_ADDRESS) 3485 NODE_NAME_CASE(REGISTER_LOAD) 3486 NODE_NAME_CASE(REGISTER_STORE) 3487 NODE_NAME_CASE(SAMPLE) 3488 NODE_NAME_CASE(SAMPLEB) 3489 NODE_NAME_CASE(SAMPLED) 3490 NODE_NAME_CASE(SAMPLEL) 3491 NODE_NAME_CASE(CVT_F32_UBYTE0) 3492 NODE_NAME_CASE(CVT_F32_UBYTE1) 3493 NODE_NAME_CASE(CVT_F32_UBYTE2) 3494 NODE_NAME_CASE(CVT_F32_UBYTE3) 3495 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 3496 NODE_NAME_CASE(FP_TO_FP16) 3497 NODE_NAME_CASE(FP16_ZEXT) 3498 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3499 NODE_NAME_CASE(CONST_DATA_PTR) 3500 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3501 NODE_NAME_CASE(KILL) 3502 NODE_NAME_CASE(DUMMY_CHAIN) 3503 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3504 NODE_NAME_CASE(SENDMSG) 3505 NODE_NAME_CASE(SENDMSGHALT) 3506 NODE_NAME_CASE(INTERP_MOV) 3507 NODE_NAME_CASE(INTERP_P1) 3508 NODE_NAME_CASE(INTERP_P2) 3509 NODE_NAME_CASE(STORE_MSKOR) 3510 NODE_NAME_CASE(LOAD_CONSTANT) 3511 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3512 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3513 NODE_NAME_CASE(ATOMIC_INC) 3514 NODE_NAME_CASE(ATOMIC_DEC) 3515 NODE_NAME_CASE(BUFFER_LOAD) 3516 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 3517 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3518 } 3519 return nullptr; 3520 } 3521 3522 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3523 SelectionDAG &DAG, int Enabled, 3524 int &RefinementSteps, 3525 bool &UseOneConstNR, 3526 bool Reciprocal) const { 3527 EVT VT = Operand.getValueType(); 3528 3529 if (VT == MVT::f32) { 3530 RefinementSteps = 0; 3531 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3532 } 3533 3534 // TODO: There is also f64 rsq instruction, but the documentation is less 3535 // clear on its precision. 3536 3537 return SDValue(); 3538 } 3539 3540 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3541 SelectionDAG &DAG, int Enabled, 3542 int &RefinementSteps) const { 3543 EVT VT = Operand.getValueType(); 3544 3545 if (VT == MVT::f32) { 3546 // Reciprocal, < 1 ulp error. 3547 // 3548 // This reciprocal approximation converges to < 0.5 ulp error with one 3549 // newton rhapson performed with two fused multiple adds (FMAs). 3550 3551 RefinementSteps = 0; 3552 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3553 } 3554 3555 // TODO: There is also f64 rcp instruction, but the documentation is less 3556 // clear on its precision. 3557 3558 return SDValue(); 3559 } 3560 3561 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3562 const SDValue Op, APInt &KnownZero, APInt &KnownOne, 3563 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 3564 3565 unsigned BitWidth = KnownZero.getBitWidth(); 3566 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. 3567 3568 APInt KnownZero2; 3569 APInt KnownOne2; 3570 unsigned Opc = Op.getOpcode(); 3571 3572 switch (Opc) { 3573 default: 3574 break; 3575 case AMDGPUISD::CARRY: 3576 case AMDGPUISD::BORROW: { 3577 KnownZero = APInt::getHighBitsSet(32, 31); 3578 break; 3579 } 3580 3581 case AMDGPUISD::BFE_I32: 3582 case AMDGPUISD::BFE_U32: { 3583 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3584 if (!CWidth) 3585 return; 3586 3587 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3588 3589 if (Opc == AMDGPUISD::BFE_U32) 3590 KnownZero = APInt::getHighBitsSet(32, 32 - Width); 3591 3592 break; 3593 } 3594 case AMDGPUISD::FP_TO_FP16: 3595 case AMDGPUISD::FP16_ZEXT: { 3596 unsigned BitWidth = KnownZero.getBitWidth(); 3597 3598 // High bits are zero. 3599 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 3600 break; 3601 } 3602 } 3603 } 3604 3605 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3606 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3607 unsigned Depth) const { 3608 switch (Op.getOpcode()) { 3609 case AMDGPUISD::BFE_I32: { 3610 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3611 if (!Width) 3612 return 1; 3613 3614 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3615 if (!isNullConstant(Op.getOperand(1))) 3616 return SignBits; 3617 3618 // TODO: Could probably figure something out with non-0 offsets. 3619 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3620 return std::max(SignBits, Op0SignBits); 3621 } 3622 3623 case AMDGPUISD::BFE_U32: { 3624 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3625 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3626 } 3627 3628 case AMDGPUISD::CARRY: 3629 case AMDGPUISD::BORROW: 3630 return 31; 3631 case AMDGPUISD::FP_TO_FP16: 3632 case AMDGPUISD::FP16_ZEXT: 3633 return 16; 3634 default: 3635 return 1; 3636 } 3637 } 3638