1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "SIInstrInfo.h" 33 using namespace llvm; 34 35 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 36 CCValAssign::LocInfo LocInfo, 37 ISD::ArgFlagsTy ArgFlags, CCState &State) { 38 MachineFunction &MF = State.getMachineFunction(); 39 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 40 41 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 42 ArgFlags.getOrigAlign()); 43 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 44 return true; 45 } 46 47 #include "AMDGPUGenCallingConv.inc" 48 49 // Find a larger type to do a load / store of a vector with. 50 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 51 unsigned StoreSize = VT.getStoreSizeInBits(); 52 if (StoreSize <= 32) 53 return EVT::getIntegerVT(Ctx, StoreSize); 54 55 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 56 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 57 } 58 59 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 60 const AMDGPUSubtarget &STI) 61 : TargetLowering(TM), Subtarget(&STI) { 62 // Lower floating point store/load to integer store/load to reduce the number 63 // of patterns in tablegen. 64 setOperationAction(ISD::LOAD, MVT::f32, Promote); 65 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 66 67 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 68 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 69 70 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 71 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 72 73 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 75 76 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 78 79 setOperationAction(ISD::LOAD, MVT::i64, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 81 82 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 84 85 setOperationAction(ISD::LOAD, MVT::f64, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 87 88 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 90 91 // There are no 64-bit extloads. These should be done as a 32-bit extload and 92 // an extension to 64-bit. 93 for (MVT VT : MVT::integer_valuetypes()) { 94 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 95 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 96 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 97 } 98 99 for (MVT VT : MVT::integer_valuetypes()) { 100 if (VT == MVT::i64) 101 continue; 102 103 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 104 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 105 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 106 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 107 108 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 109 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 110 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 111 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 112 113 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 114 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 115 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 116 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 117 } 118 119 for (MVT VT : MVT::integer_vector_valuetypes()) { 120 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 122 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 123 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 124 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 126 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 127 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 128 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 129 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 130 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 131 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 132 } 133 134 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 135 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 136 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 137 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 138 139 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 140 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 141 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 142 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 143 144 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 145 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 146 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 147 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 148 149 setOperationAction(ISD::STORE, MVT::f32, Promote); 150 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 151 152 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 153 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 154 155 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 156 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 157 158 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 159 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 160 161 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 162 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 163 164 setOperationAction(ISD::STORE, MVT::i64, Promote); 165 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 166 167 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 168 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 169 170 setOperationAction(ISD::STORE, MVT::f64, Promote); 171 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 172 173 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 174 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 175 176 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 177 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 178 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 179 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 180 181 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 182 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 183 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 184 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 185 186 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 187 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 188 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 189 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 190 191 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 192 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 193 194 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 195 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 196 197 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 198 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 199 200 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 201 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 202 203 204 setOperationAction(ISD::Constant, MVT::i32, Legal); 205 setOperationAction(ISD::Constant, MVT::i64, Legal); 206 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 207 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 208 209 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 210 setOperationAction(ISD::BRIND, MVT::Other, Expand); 211 212 // This is totally unsupported, just custom lower to produce an error. 213 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 214 215 // We need to custom lower some of the intrinsics 216 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 217 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 218 219 // Library functions. These default to Expand, but we have instructions 220 // for them. 221 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 222 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 223 setOperationAction(ISD::FPOW, MVT::f32, Legal); 224 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 225 setOperationAction(ISD::FABS, MVT::f32, Legal); 226 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 227 setOperationAction(ISD::FRINT, MVT::f32, Legal); 228 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 229 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 230 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 231 232 setOperationAction(ISD::FROUND, MVT::f32, Custom); 233 setOperationAction(ISD::FROUND, MVT::f64, Custom); 234 235 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 236 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 237 238 setOperationAction(ISD::FREM, MVT::f32, Custom); 239 setOperationAction(ISD::FREM, MVT::f64, Custom); 240 241 // v_mad_f32 does not support denormals according to some sources. 242 if (!Subtarget->hasFP32Denormals()) 243 setOperationAction(ISD::FMAD, MVT::f32, Legal); 244 245 // Expand to fneg + fadd. 246 setOperationAction(ISD::FSUB, MVT::f64, Expand); 247 248 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 249 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 250 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 251 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 252 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 253 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 254 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 255 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 256 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 257 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 258 259 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 260 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 261 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 262 setOperationAction(ISD::FRINT, MVT::f64, Custom); 263 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 264 } 265 266 if (!Subtarget->hasBFI()) { 267 // fcopysign can be done in a single instruction with BFI. 268 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 269 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 270 } 271 272 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 273 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 274 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 275 276 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 277 for (MVT VT : ScalarIntVTs) { 278 // These should use [SU]DIVREM, so set them to expand 279 setOperationAction(ISD::SDIV, VT, Expand); 280 setOperationAction(ISD::UDIV, VT, Expand); 281 setOperationAction(ISD::SREM, VT, Expand); 282 setOperationAction(ISD::UREM, VT, Expand); 283 284 // GPU does not have divrem function for signed or unsigned. 285 setOperationAction(ISD::SDIVREM, VT, Custom); 286 setOperationAction(ISD::UDIVREM, VT, Custom); 287 288 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 289 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 290 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 291 292 setOperationAction(ISD::BSWAP, VT, Expand); 293 setOperationAction(ISD::CTTZ, VT, Expand); 294 setOperationAction(ISD::CTLZ, VT, Expand); 295 } 296 297 if (!Subtarget->hasBCNT(32)) 298 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 299 300 if (!Subtarget->hasBCNT(64)) 301 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 302 303 // The hardware supports 32-bit ROTR, but not ROTL. 304 setOperationAction(ISD::ROTL, MVT::i32, Expand); 305 setOperationAction(ISD::ROTL, MVT::i64, Expand); 306 setOperationAction(ISD::ROTR, MVT::i64, Expand); 307 308 setOperationAction(ISD::MUL, MVT::i64, Expand); 309 setOperationAction(ISD::MULHU, MVT::i64, Expand); 310 setOperationAction(ISD::MULHS, MVT::i64, Expand); 311 setOperationAction(ISD::UDIV, MVT::i32, Expand); 312 setOperationAction(ISD::UREM, MVT::i32, Expand); 313 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 314 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 315 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 316 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 317 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 318 319 setOperationAction(ISD::SMIN, MVT::i32, Legal); 320 setOperationAction(ISD::UMIN, MVT::i32, Legal); 321 setOperationAction(ISD::SMAX, MVT::i32, Legal); 322 setOperationAction(ISD::UMAX, MVT::i32, Legal); 323 324 if (Subtarget->hasFFBH()) 325 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 326 327 if (Subtarget->hasFFBL()) 328 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 329 330 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 331 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 332 333 // We only really have 32-bit BFE instructions (and 16-bit on VI). 334 // 335 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 336 // effort to match them now. We want this to be false for i64 cases when the 337 // extraction isn't restricted to the upper or lower half. Ideally we would 338 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 339 // span the midpoint are probably relatively rare, so don't worry about them 340 // for now. 341 if (Subtarget->hasBFE()) 342 setHasExtractBitsInsn(true); 343 344 static const MVT::SimpleValueType VectorIntTypes[] = { 345 MVT::v2i32, MVT::v4i32 346 }; 347 348 for (MVT VT : VectorIntTypes) { 349 // Expand the following operations for the current type by default. 350 setOperationAction(ISD::ADD, VT, Expand); 351 setOperationAction(ISD::AND, VT, Expand); 352 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 353 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 354 setOperationAction(ISD::MUL, VT, Expand); 355 setOperationAction(ISD::MULHU, VT, Expand); 356 setOperationAction(ISD::MULHS, VT, Expand); 357 setOperationAction(ISD::OR, VT, Expand); 358 setOperationAction(ISD::SHL, VT, Expand); 359 setOperationAction(ISD::SRA, VT, Expand); 360 setOperationAction(ISD::SRL, VT, Expand); 361 setOperationAction(ISD::ROTL, VT, Expand); 362 setOperationAction(ISD::ROTR, VT, Expand); 363 setOperationAction(ISD::SUB, VT, Expand); 364 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 365 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 366 setOperationAction(ISD::SDIV, VT, Expand); 367 setOperationAction(ISD::UDIV, VT, Expand); 368 setOperationAction(ISD::SREM, VT, Expand); 369 setOperationAction(ISD::UREM, VT, Expand); 370 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 371 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 372 setOperationAction(ISD::SDIVREM, VT, Custom); 373 setOperationAction(ISD::UDIVREM, VT, Expand); 374 setOperationAction(ISD::ADDC, VT, Expand); 375 setOperationAction(ISD::SUBC, VT, Expand); 376 setOperationAction(ISD::ADDE, VT, Expand); 377 setOperationAction(ISD::SUBE, VT, Expand); 378 setOperationAction(ISD::SELECT, VT, Expand); 379 setOperationAction(ISD::VSELECT, VT, Expand); 380 setOperationAction(ISD::SELECT_CC, VT, Expand); 381 setOperationAction(ISD::XOR, VT, Expand); 382 setOperationAction(ISD::BSWAP, VT, Expand); 383 setOperationAction(ISD::CTPOP, VT, Expand); 384 setOperationAction(ISD::CTTZ, VT, Expand); 385 setOperationAction(ISD::CTLZ, VT, Expand); 386 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 387 } 388 389 static const MVT::SimpleValueType FloatVectorTypes[] = { 390 MVT::v2f32, MVT::v4f32 391 }; 392 393 for (MVT VT : FloatVectorTypes) { 394 setOperationAction(ISD::FABS, VT, Expand); 395 setOperationAction(ISD::FMINNUM, VT, Expand); 396 setOperationAction(ISD::FMAXNUM, VT, Expand); 397 setOperationAction(ISD::FADD, VT, Expand); 398 setOperationAction(ISD::FCEIL, VT, Expand); 399 setOperationAction(ISD::FCOS, VT, Expand); 400 setOperationAction(ISD::FDIV, VT, Expand); 401 setOperationAction(ISD::FEXP2, VT, Expand); 402 setOperationAction(ISD::FLOG2, VT, Expand); 403 setOperationAction(ISD::FREM, VT, Expand); 404 setOperationAction(ISD::FPOW, VT, Expand); 405 setOperationAction(ISD::FFLOOR, VT, Expand); 406 setOperationAction(ISD::FTRUNC, VT, Expand); 407 setOperationAction(ISD::FMUL, VT, Expand); 408 setOperationAction(ISD::FMA, VT, Expand); 409 setOperationAction(ISD::FRINT, VT, Expand); 410 setOperationAction(ISD::FNEARBYINT, VT, Expand); 411 setOperationAction(ISD::FSQRT, VT, Expand); 412 setOperationAction(ISD::FSIN, VT, Expand); 413 setOperationAction(ISD::FSUB, VT, Expand); 414 setOperationAction(ISD::FNEG, VT, Expand); 415 setOperationAction(ISD::VSELECT, VT, Expand); 416 setOperationAction(ISD::SELECT_CC, VT, Expand); 417 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 418 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 419 } 420 421 // This causes using an unrolled select operation rather than expansion with 422 // bit operations. This is in general better, but the alternative using BFI 423 // instructions may be better if the select sources are SGPRs. 424 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 425 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 426 427 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 428 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 429 430 // There are no libcalls of any kind. 431 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 432 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 433 434 setBooleanContents(ZeroOrNegativeOneBooleanContent); 435 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 436 437 setSchedulingPreference(Sched::RegPressure); 438 setJumpIsExpensive(true); 439 440 // FIXME: This is only partially true. If we have to do vector compares, any 441 // SGPR pair can be a condition register. If we have a uniform condition, we 442 // are better off doing SALU operations, where there is only one SCC. For now, 443 // we don't have a way of knowing during instruction selection if a condition 444 // will be uniform and we always use vector compares. Assume we are using 445 // vector compares until that is fixed. 446 setHasMultipleConditionRegisters(true); 447 448 // SI at least has hardware support for floating point exceptions, but no way 449 // of using or handling them is implemented. They are also optional in OpenCL 450 // (Section 7.3) 451 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 452 453 PredictableSelectIsExpensive = false; 454 455 // We want to find all load dependencies for long chains of stores to enable 456 // merging into very wide vectors. The problem is with vectors with > 4 457 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 458 // vectors are a legal type, even though we have to split the loads 459 // usually. When we can more precisely specify load legality per address 460 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 461 // smarter so that they can figure out what to do in 2 iterations without all 462 // N > 4 stores on the same chain. 463 GatherAllAliasesMaxDepth = 16; 464 465 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 466 // about these during lowering. 467 MaxStoresPerMemcpy = 0xffffffff; 468 MaxStoresPerMemmove = 0xffffffff; 469 MaxStoresPerMemset = 0xffffffff; 470 471 setTargetDAGCombine(ISD::BITCAST); 472 setTargetDAGCombine(ISD::SHL); 473 setTargetDAGCombine(ISD::SRA); 474 setTargetDAGCombine(ISD::SRL); 475 setTargetDAGCombine(ISD::MUL); 476 setTargetDAGCombine(ISD::MULHU); 477 setTargetDAGCombine(ISD::MULHS); 478 setTargetDAGCombine(ISD::SELECT); 479 setTargetDAGCombine(ISD::SELECT_CC); 480 setTargetDAGCombine(ISD::STORE); 481 setTargetDAGCombine(ISD::FADD); 482 setTargetDAGCombine(ISD::FSUB); 483 setTargetDAGCombine(ISD::FNEG); 484 setTargetDAGCombine(ISD::FABS); 485 } 486 487 //===----------------------------------------------------------------------===// 488 // Target Information 489 //===----------------------------------------------------------------------===// 490 491 LLVM_READNONE 492 static bool fnegFoldsIntoOp(unsigned Opc) { 493 switch (Opc) { 494 case ISD::FADD: 495 case ISD::FSUB: 496 case ISD::FMUL: 497 case ISD::FMA: 498 case ISD::FMAD: 499 case ISD::FMINNUM: 500 case ISD::FMAXNUM: 501 case ISD::FSIN: 502 case ISD::FTRUNC: 503 case ISD::FRINT: 504 case ISD::FNEARBYINT: 505 case AMDGPUISD::RCP: 506 case AMDGPUISD::RCP_LEGACY: 507 case AMDGPUISD::SIN_HW: 508 case AMDGPUISD::FMUL_LEGACY: 509 case AMDGPUISD::FMIN_LEGACY: 510 case AMDGPUISD::FMAX_LEGACY: 511 return true; 512 default: 513 return false; 514 } 515 } 516 517 /// \p returns true if the operation will definitely need to use a 64-bit 518 /// encoding, and thus will use a VOP3 encoding regardless of the source 519 /// modifiers. 520 LLVM_READONLY 521 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 522 return N->getNumOperands() > 2 || VT == MVT::f64; 523 } 524 525 // Most FP instructions support source modifiers, but this could be refined 526 // slightly. 527 LLVM_READONLY 528 static bool hasSourceMods(const SDNode *N) { 529 if (isa<MemSDNode>(N)) 530 return false; 531 532 switch (N->getOpcode()) { 533 case ISD::CopyToReg: 534 case ISD::SELECT: 535 case ISD::FDIV: 536 case ISD::FREM: 537 case ISD::INLINEASM: 538 case AMDGPUISD::INTERP_P1: 539 case AMDGPUISD::INTERP_P2: 540 case AMDGPUISD::DIV_SCALE: 541 return false; 542 default: 543 return true; 544 } 545 } 546 547 static bool allUsesHaveSourceMods(const SDNode *N, unsigned CostThreshold = 4) { 548 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 549 // it is truly free to use a source modifier in all cases. If there are 550 // multiple users but for each one will necessitate using VOP3, there will be 551 // a code size increase. Try to avoid increasing code size unless we know it 552 // will save on the instruction count. 553 unsigned NumMayIncreaseSize = 0; 554 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 555 556 // XXX - Should this limit number of uses to check? 557 for (const SDNode *U : N->uses()) { 558 if (!hasSourceMods(U)) 559 return false; 560 561 if (!opMustUseVOP3Encoding(U, VT)) { 562 if (++NumMayIncreaseSize > CostThreshold) 563 return false; 564 } 565 } 566 567 return true; 568 } 569 570 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 571 return MVT::i32; 572 } 573 574 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 575 return true; 576 } 577 578 // The backend supports 32 and 64 bit floating point immediates. 579 // FIXME: Why are we reporting vectors of FP immediates as legal? 580 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 581 EVT ScalarVT = VT.getScalarType(); 582 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 583 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 584 } 585 586 // We don't want to shrink f64 / f32 constants. 587 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 588 EVT ScalarVT = VT.getScalarType(); 589 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 590 } 591 592 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 593 ISD::LoadExtType, 594 EVT NewVT) const { 595 596 unsigned NewSize = NewVT.getStoreSizeInBits(); 597 598 // If we are reducing to a 32-bit load, this is always better. 599 if (NewSize == 32) 600 return true; 601 602 EVT OldVT = N->getValueType(0); 603 unsigned OldSize = OldVT.getStoreSizeInBits(); 604 605 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 606 // extloads, so doing one requires using a buffer_load. In cases where we 607 // still couldn't use a scalar load, using the wider load shouldn't really 608 // hurt anything. 609 610 // If the old size already had to be an extload, there's no harm in continuing 611 // to reduce the width. 612 return (OldSize < 32); 613 } 614 615 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 616 EVT CastTy) const { 617 618 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 619 620 if (LoadTy.getScalarType() == MVT::i32) 621 return false; 622 623 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 624 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 625 626 return (LScalarSize < CastScalarSize) || 627 (CastScalarSize >= 32); 628 } 629 630 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 631 // profitable with the expansion for 64-bit since it's generally good to 632 // speculate things. 633 // FIXME: These should really have the size as a parameter. 634 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 635 return true; 636 } 637 638 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 639 return true; 640 } 641 642 //===---------------------------------------------------------------------===// 643 // Target Properties 644 //===---------------------------------------------------------------------===// 645 646 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 647 assert(VT.isFloatingPoint()); 648 649 // Packed operations do not have a fabs modifier. 650 return VT == MVT::f32 || VT == MVT::f64 || 651 (Subtarget->has16BitInsts() && VT == MVT::f16); 652 } 653 654 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 655 assert(VT.isFloatingPoint()); 656 return VT == MVT::f32 || VT == MVT::f64 || 657 (Subtarget->has16BitInsts() && VT == MVT::f16) || 658 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 659 } 660 661 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 662 unsigned NumElem, 663 unsigned AS) const { 664 return true; 665 } 666 667 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 668 // There are few operations which truly have vector input operands. Any vector 669 // operation is going to involve operations on each component, and a 670 // build_vector will be a copy per element, so it always makes sense to use a 671 // build_vector input in place of the extracted element to avoid a copy into a 672 // super register. 673 // 674 // We should probably only do this if all users are extracts only, but this 675 // should be the common case. 676 return true; 677 } 678 679 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 680 // Truncate is just accessing a subregister. 681 682 unsigned SrcSize = Source.getSizeInBits(); 683 unsigned DestSize = Dest.getSizeInBits(); 684 685 return DestSize < SrcSize && DestSize % 32 == 0 ; 686 } 687 688 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 689 // Truncate is just accessing a subregister. 690 691 unsigned SrcSize = Source->getScalarSizeInBits(); 692 unsigned DestSize = Dest->getScalarSizeInBits(); 693 694 if (DestSize== 16 && Subtarget->has16BitInsts()) 695 return SrcSize >= 32; 696 697 return DestSize < SrcSize && DestSize % 32 == 0; 698 } 699 700 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 701 unsigned SrcSize = Src->getScalarSizeInBits(); 702 unsigned DestSize = Dest->getScalarSizeInBits(); 703 704 if (SrcSize == 16 && Subtarget->has16BitInsts()) 705 return DestSize >= 32; 706 707 return SrcSize == 32 && DestSize == 64; 708 } 709 710 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 711 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 712 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 713 // this will enable reducing 64-bit operations the 32-bit, which is always 714 // good. 715 716 if (Src == MVT::i16) 717 return Dest == MVT::i32 ||Dest == MVT::i64 ; 718 719 return Src == MVT::i32 && Dest == MVT::i64; 720 } 721 722 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 723 return isZExtFree(Val.getValueType(), VT2); 724 } 725 726 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 727 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 728 // limited number of native 64-bit operations. Shrinking an operation to fit 729 // in a single 32-bit register should always be helpful. As currently used, 730 // this is much less general than the name suggests, and is only used in 731 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 732 // not profitable, and may actually be harmful. 733 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 734 } 735 736 //===---------------------------------------------------------------------===// 737 // TargetLowering Callbacks 738 //===---------------------------------------------------------------------===// 739 740 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 741 bool IsVarArg) const { 742 return CC_AMDGPU; 743 } 744 745 /// The SelectionDAGBuilder will automatically promote function arguments 746 /// with illegal types. However, this does not work for the AMDGPU targets 747 /// since the function arguments are stored in memory as these illegal types. 748 /// In order to handle this properly we need to get the original types sizes 749 /// from the LLVM IR Function and fixup the ISD:InputArg values before 750 /// passing them to AnalyzeFormalArguments() 751 752 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 753 /// input values across multiple registers. Each item in the Ins array 754 /// represents a single value that will be stored in regsters. Ins[x].VT is 755 /// the value type of the value that will be stored in the register, so 756 /// whatever SDNode we lower the argument to needs to be this type. 757 /// 758 /// In order to correctly lower the arguments we need to know the size of each 759 /// argument. Since Ins[x].VT gives us the size of the register that will 760 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 761 /// for the orignal function argument so that we can deduce the correct memory 762 /// type to use for Ins[x]. In most cases the correct memory type will be 763 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 764 /// we have a kernel argument of type v8i8, this argument will be split into 765 /// 8 parts and each part will be represented by its own item in the Ins array. 766 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 767 /// the argument before it was split. From this, we deduce that the memory type 768 /// for each individual part is i8. We pass the memory type as LocVT to the 769 /// calling convention analysis function and the register type (Ins[x].VT) as 770 /// the ValVT. 771 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 772 const SmallVectorImpl<ISD::InputArg> &Ins) const { 773 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 774 const ISD::InputArg &In = Ins[i]; 775 EVT MemVT; 776 777 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 778 779 if (!Subtarget->isAmdHsaOS() && 780 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 781 // The ABI says the caller will extend these values to 32-bits. 782 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 783 } else if (NumRegs == 1) { 784 // This argument is not split, so the IR type is the memory type. 785 assert(!In.Flags.isSplit()); 786 if (In.ArgVT.isExtended()) { 787 // We have an extended type, like i24, so we should just use the register type 788 MemVT = In.VT; 789 } else { 790 MemVT = In.ArgVT; 791 } 792 } else if (In.ArgVT.isVector() && In.VT.isVector() && 793 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 794 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 795 // We have a vector value which has been split into a vector with 796 // the same scalar type, but fewer elements. This should handle 797 // all the floating-point vector types. 798 MemVT = In.VT; 799 } else if (In.ArgVT.isVector() && 800 In.ArgVT.getVectorNumElements() == NumRegs) { 801 // This arg has been split so that each element is stored in a separate 802 // register. 803 MemVT = In.ArgVT.getScalarType(); 804 } else if (In.ArgVT.isExtended()) { 805 // We have an extended type, like i65. 806 MemVT = In.VT; 807 } else { 808 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 809 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 810 if (In.VT.isInteger()) { 811 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 812 } else if (In.VT.isVector()) { 813 assert(!In.VT.getScalarType().isFloatingPoint()); 814 unsigned NumElements = In.VT.getVectorNumElements(); 815 assert(MemoryBits % NumElements == 0); 816 // This vector type has been split into another vector type with 817 // a different elements size. 818 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 819 MemoryBits / NumElements); 820 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 821 } else { 822 llvm_unreachable("cannot deduce memory type."); 823 } 824 } 825 826 // Convert one element vectors to scalar. 827 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 828 MemVT = MemVT.getScalarType(); 829 830 if (MemVT.isExtended()) { 831 // This should really only happen if we have vec3 arguments 832 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 833 MemVT = MemVT.getPow2VectorType(State.getContext()); 834 } 835 836 assert(MemVT.isSimple()); 837 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 838 State); 839 } 840 } 841 842 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 843 const SmallVectorImpl<ISD::InputArg> &Ins) const { 844 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 845 } 846 847 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 848 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 849 850 State.AnalyzeReturn(Outs, RetCC_SI); 851 } 852 853 SDValue 854 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 855 bool isVarArg, 856 const SmallVectorImpl<ISD::OutputArg> &Outs, 857 const SmallVectorImpl<SDValue> &OutVals, 858 const SDLoc &DL, SelectionDAG &DAG) const { 859 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 860 } 861 862 //===---------------------------------------------------------------------===// 863 // Target specific lowering 864 //===---------------------------------------------------------------------===// 865 866 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 867 SmallVectorImpl<SDValue> &InVals) const { 868 SDValue Callee = CLI.Callee; 869 SelectionDAG &DAG = CLI.DAG; 870 871 const Function &Fn = *DAG.getMachineFunction().getFunction(); 872 873 StringRef FuncName("<unknown>"); 874 875 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 876 FuncName = G->getSymbol(); 877 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 878 FuncName = G->getGlobal()->getName(); 879 880 DiagnosticInfoUnsupported NoCalls( 881 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 882 DAG.getContext()->diagnose(NoCalls); 883 884 if (!CLI.IsTailCall) { 885 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 886 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 887 } 888 889 return DAG.getEntryNode(); 890 } 891 892 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 893 SelectionDAG &DAG) const { 894 const Function &Fn = *DAG.getMachineFunction().getFunction(); 895 896 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 897 SDLoc(Op).getDebugLoc()); 898 DAG.getContext()->diagnose(NoDynamicAlloca); 899 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 900 return DAG.getMergeValues(Ops, SDLoc()); 901 } 902 903 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 904 SelectionDAG &DAG) const { 905 switch (Op.getOpcode()) { 906 default: 907 Op->print(errs(), &DAG); 908 llvm_unreachable("Custom lowering code for this" 909 "instruction is not implemented yet!"); 910 break; 911 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 912 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 913 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 914 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 915 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 916 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 917 case ISD::FREM: return LowerFREM(Op, DAG); 918 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 919 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 920 case ISD::FRINT: return LowerFRINT(Op, DAG); 921 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 922 case ISD::FROUND: return LowerFROUND(Op, DAG); 923 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 924 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 925 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 926 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 927 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 928 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 929 case ISD::CTLZ: 930 case ISD::CTLZ_ZERO_UNDEF: 931 return LowerCTLZ(Op, DAG); 932 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 933 } 934 return Op; 935 } 936 937 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 938 SmallVectorImpl<SDValue> &Results, 939 SelectionDAG &DAG) const { 940 switch (N->getOpcode()) { 941 case ISD::SIGN_EXTEND_INREG: 942 // Different parts of legalization seem to interpret which type of 943 // sign_extend_inreg is the one to check for custom lowering. The extended 944 // from type is what really matters, but some places check for custom 945 // lowering of the result type. This results in trying to use 946 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 947 // nothing here and let the illegal result integer be handled normally. 948 return; 949 default: 950 return; 951 } 952 } 953 954 static bool hasDefinedInitializer(const GlobalValue *GV) { 955 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 956 if (!GVar || !GVar->hasInitializer()) 957 return false; 958 959 return !isa<UndefValue>(GVar->getInitializer()); 960 } 961 962 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 963 SDValue Op, 964 SelectionDAG &DAG) const { 965 966 const DataLayout &DL = DAG.getDataLayout(); 967 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 968 const GlobalValue *GV = G->getGlobal(); 969 970 switch (G->getAddressSpace()) { 971 case AMDGPUAS::LOCAL_ADDRESS: { 972 // XXX: What does the value of G->getOffset() mean? 973 assert(G->getOffset() == 0 && 974 "Do not know what to do with an non-zero offset"); 975 976 // TODO: We could emit code to handle the initialization somewhere. 977 if (hasDefinedInitializer(GV)) 978 break; 979 980 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 981 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 982 } 983 } 984 985 const Function &Fn = *DAG.getMachineFunction().getFunction(); 986 DiagnosticInfoUnsupported BadInit( 987 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 988 DAG.getContext()->diagnose(BadInit); 989 return SDValue(); 990 } 991 992 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 993 SelectionDAG &DAG) const { 994 SmallVector<SDValue, 8> Args; 995 996 for (const SDUse &U : Op->ops()) 997 DAG.ExtractVectorElements(U.get(), Args); 998 999 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1000 } 1001 1002 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1003 SelectionDAG &DAG) const { 1004 1005 SmallVector<SDValue, 8> Args; 1006 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1007 EVT VT = Op.getValueType(); 1008 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1009 VT.getVectorNumElements()); 1010 1011 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1012 } 1013 1014 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 1015 SelectionDAG &DAG) const { 1016 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1017 SDLoc DL(Op); 1018 EVT VT = Op.getValueType(); 1019 1020 switch (IntrinsicID) { 1021 default: return Op; 1022 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 1023 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 1024 Op.getOperand(1), 1025 Op.getOperand(2), 1026 Op.getOperand(3)); 1027 1028 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 1029 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 1030 Op.getOperand(1), 1031 Op.getOperand(2), 1032 Op.getOperand(3)); 1033 } 1034 } 1035 1036 /// \brief Generate Min/Max node 1037 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1038 SDValue LHS, SDValue RHS, 1039 SDValue True, SDValue False, 1040 SDValue CC, 1041 DAGCombinerInfo &DCI) const { 1042 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1043 return SDValue(); 1044 1045 SelectionDAG &DAG = DCI.DAG; 1046 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1047 switch (CCOpcode) { 1048 case ISD::SETOEQ: 1049 case ISD::SETONE: 1050 case ISD::SETUNE: 1051 case ISD::SETNE: 1052 case ISD::SETUEQ: 1053 case ISD::SETEQ: 1054 case ISD::SETFALSE: 1055 case ISD::SETFALSE2: 1056 case ISD::SETTRUE: 1057 case ISD::SETTRUE2: 1058 case ISD::SETUO: 1059 case ISD::SETO: 1060 break; 1061 case ISD::SETULE: 1062 case ISD::SETULT: { 1063 if (LHS == True) 1064 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1065 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1066 } 1067 case ISD::SETOLE: 1068 case ISD::SETOLT: 1069 case ISD::SETLE: 1070 case ISD::SETLT: { 1071 // Ordered. Assume ordered for undefined. 1072 1073 // Only do this after legalization to avoid interfering with other combines 1074 // which might occur. 1075 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1076 !DCI.isCalledByLegalizer()) 1077 return SDValue(); 1078 1079 // We need to permute the operands to get the correct NaN behavior. The 1080 // selected operand is the second one based on the failing compare with NaN, 1081 // so permute it based on the compare type the hardware uses. 1082 if (LHS == True) 1083 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1084 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1085 } 1086 case ISD::SETUGE: 1087 case ISD::SETUGT: { 1088 if (LHS == True) 1089 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1090 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1091 } 1092 case ISD::SETGT: 1093 case ISD::SETGE: 1094 case ISD::SETOGE: 1095 case ISD::SETOGT: { 1096 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1097 !DCI.isCalledByLegalizer()) 1098 return SDValue(); 1099 1100 if (LHS == True) 1101 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1102 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1103 } 1104 case ISD::SETCC_INVALID: 1105 llvm_unreachable("Invalid setcc condcode!"); 1106 } 1107 return SDValue(); 1108 } 1109 1110 std::pair<SDValue, SDValue> 1111 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1112 SDLoc SL(Op); 1113 1114 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1115 1116 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1117 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1118 1119 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1120 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1121 1122 return std::make_pair(Lo, Hi); 1123 } 1124 1125 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1126 SDLoc SL(Op); 1127 1128 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1129 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1130 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1131 } 1132 1133 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1134 SDLoc SL(Op); 1135 1136 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1137 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1138 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1139 } 1140 1141 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1142 SelectionDAG &DAG) const { 1143 LoadSDNode *Load = cast<LoadSDNode>(Op); 1144 EVT VT = Op.getValueType(); 1145 1146 1147 // If this is a 2 element vector, we really want to scalarize and not create 1148 // weird 1 element vectors. 1149 if (VT.getVectorNumElements() == 2) 1150 return scalarizeVectorLoad(Load, DAG); 1151 1152 SDValue BasePtr = Load->getBasePtr(); 1153 EVT PtrVT = BasePtr.getValueType(); 1154 EVT MemVT = Load->getMemoryVT(); 1155 SDLoc SL(Op); 1156 1157 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1158 1159 EVT LoVT, HiVT; 1160 EVT LoMemVT, HiMemVT; 1161 SDValue Lo, Hi; 1162 1163 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1164 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1165 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1166 1167 unsigned Size = LoMemVT.getStoreSize(); 1168 unsigned BaseAlign = Load->getAlignment(); 1169 unsigned HiAlign = MinAlign(BaseAlign, Size); 1170 1171 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1172 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1173 BaseAlign, Load->getMemOperand()->getFlags()); 1174 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1175 DAG.getConstant(Size, SL, PtrVT)); 1176 SDValue HiLoad = 1177 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1178 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1179 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1180 1181 SDValue Ops[] = { 1182 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1183 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1184 LoLoad.getValue(1), HiLoad.getValue(1)) 1185 }; 1186 1187 return DAG.getMergeValues(Ops, SL); 1188 } 1189 1190 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1191 SelectionDAG &DAG) const { 1192 StoreSDNode *Store = cast<StoreSDNode>(Op); 1193 SDValue Val = Store->getValue(); 1194 EVT VT = Val.getValueType(); 1195 1196 // If this is a 2 element vector, we really want to scalarize and not create 1197 // weird 1 element vectors. 1198 if (VT.getVectorNumElements() == 2) 1199 return scalarizeVectorStore(Store, DAG); 1200 1201 EVT MemVT = Store->getMemoryVT(); 1202 SDValue Chain = Store->getChain(); 1203 SDValue BasePtr = Store->getBasePtr(); 1204 SDLoc SL(Op); 1205 1206 EVT LoVT, HiVT; 1207 EVT LoMemVT, HiMemVT; 1208 SDValue Lo, Hi; 1209 1210 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1211 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1212 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1213 1214 EVT PtrVT = BasePtr.getValueType(); 1215 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1216 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1217 PtrVT)); 1218 1219 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1220 unsigned BaseAlign = Store->getAlignment(); 1221 unsigned Size = LoMemVT.getStoreSize(); 1222 unsigned HiAlign = MinAlign(BaseAlign, Size); 1223 1224 SDValue LoStore = 1225 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1226 Store->getMemOperand()->getFlags()); 1227 SDValue HiStore = 1228 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1229 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1230 1231 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1232 } 1233 1234 // This is a shortcut for integer division because we have fast i32<->f32 1235 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1236 // float is enough to accurately represent up to a 24-bit signed integer. 1237 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1238 bool Sign) const { 1239 SDLoc DL(Op); 1240 EVT VT = Op.getValueType(); 1241 SDValue LHS = Op.getOperand(0); 1242 SDValue RHS = Op.getOperand(1); 1243 MVT IntVT = MVT::i32; 1244 MVT FltVT = MVT::f32; 1245 1246 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1247 if (LHSSignBits < 9) 1248 return SDValue(); 1249 1250 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1251 if (RHSSignBits < 9) 1252 return SDValue(); 1253 1254 unsigned BitSize = VT.getSizeInBits(); 1255 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1256 unsigned DivBits = BitSize - SignBits; 1257 if (Sign) 1258 ++DivBits; 1259 1260 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1261 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1262 1263 SDValue jq = DAG.getConstant(1, DL, IntVT); 1264 1265 if (Sign) { 1266 // char|short jq = ia ^ ib; 1267 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1268 1269 // jq = jq >> (bitsize - 2) 1270 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1271 DAG.getConstant(BitSize - 2, DL, VT)); 1272 1273 // jq = jq | 0x1 1274 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1275 } 1276 1277 // int ia = (int)LHS; 1278 SDValue ia = LHS; 1279 1280 // int ib, (int)RHS; 1281 SDValue ib = RHS; 1282 1283 // float fa = (float)ia; 1284 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1285 1286 // float fb = (float)ib; 1287 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1288 1289 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1290 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1291 1292 // fq = trunc(fq); 1293 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1294 1295 // float fqneg = -fq; 1296 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1297 1298 // float fr = mad(fqneg, fb, fa); 1299 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1300 (unsigned)AMDGPUISD::FMAD_FTZ : 1301 (unsigned)ISD::FMAD; 1302 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1303 1304 // int iq = (int)fq; 1305 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1306 1307 // fr = fabs(fr); 1308 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1309 1310 // fb = fabs(fb); 1311 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1312 1313 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1314 1315 // int cv = fr >= fb; 1316 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1317 1318 // jq = (cv ? jq : 0); 1319 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1320 1321 // dst = iq + jq; 1322 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1323 1324 // Rem needs compensation, it's easier to recompute it 1325 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1326 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1327 1328 // Truncate to number of bits this divide really is. 1329 if (Sign) { 1330 SDValue InRegSize 1331 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1332 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1333 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1334 } else { 1335 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1336 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1337 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1338 } 1339 1340 return DAG.getMergeValues({ Div, Rem }, DL); 1341 } 1342 1343 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1344 SelectionDAG &DAG, 1345 SmallVectorImpl<SDValue> &Results) const { 1346 assert(Op.getValueType() == MVT::i64); 1347 1348 SDLoc DL(Op); 1349 EVT VT = Op.getValueType(); 1350 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1351 1352 SDValue one = DAG.getConstant(1, DL, HalfVT); 1353 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1354 1355 //HiLo split 1356 SDValue LHS = Op.getOperand(0); 1357 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1358 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1359 1360 SDValue RHS = Op.getOperand(1); 1361 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1362 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1363 1364 if (VT == MVT::i64 && 1365 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1366 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1367 1368 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1369 LHS_Lo, RHS_Lo); 1370 1371 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1372 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1373 1374 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1375 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1376 return; 1377 } 1378 1379 // Get Speculative values 1380 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1381 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1382 1383 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1384 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1385 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1386 1387 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1388 SDValue DIV_Lo = zero; 1389 1390 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1391 1392 for (unsigned i = 0; i < halfBitWidth; ++i) { 1393 const unsigned bitPos = halfBitWidth - i - 1; 1394 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1395 // Get value of high bit 1396 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1397 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1398 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1399 1400 // Shift 1401 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1402 // Add LHS high bit 1403 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1404 1405 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1406 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1407 1408 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1409 1410 // Update REM 1411 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1412 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1413 } 1414 1415 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1416 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1417 Results.push_back(DIV); 1418 Results.push_back(REM); 1419 } 1420 1421 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1422 SelectionDAG &DAG) const { 1423 SDLoc DL(Op); 1424 EVT VT = Op.getValueType(); 1425 1426 if (VT == MVT::i64) { 1427 SmallVector<SDValue, 2> Results; 1428 LowerUDIVREM64(Op, DAG, Results); 1429 return DAG.getMergeValues(Results, DL); 1430 } 1431 1432 if (VT == MVT::i32) { 1433 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1434 return Res; 1435 } 1436 1437 SDValue Num = Op.getOperand(0); 1438 SDValue Den = Op.getOperand(1); 1439 1440 // RCP = URECIP(Den) = 2^32 / Den + e 1441 // e is rounding error. 1442 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1443 1444 // RCP_LO = mul(RCP, Den) */ 1445 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1446 1447 // RCP_HI = mulhu (RCP, Den) */ 1448 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1449 1450 // NEG_RCP_LO = -RCP_LO 1451 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1452 RCP_LO); 1453 1454 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1455 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1456 NEG_RCP_LO, RCP_LO, 1457 ISD::SETEQ); 1458 // Calculate the rounding error from the URECIP instruction 1459 // E = mulhu(ABS_RCP_LO, RCP) 1460 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1461 1462 // RCP_A_E = RCP + E 1463 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1464 1465 // RCP_S_E = RCP - E 1466 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1467 1468 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1469 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1470 RCP_A_E, RCP_S_E, 1471 ISD::SETEQ); 1472 // Quotient = mulhu(Tmp0, Num) 1473 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1474 1475 // Num_S_Remainder = Quotient * Den 1476 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1477 1478 // Remainder = Num - Num_S_Remainder 1479 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1480 1481 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1482 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1483 DAG.getConstant(-1, DL, VT), 1484 DAG.getConstant(0, DL, VT), 1485 ISD::SETUGE); 1486 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1487 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1488 Num_S_Remainder, 1489 DAG.getConstant(-1, DL, VT), 1490 DAG.getConstant(0, DL, VT), 1491 ISD::SETUGE); 1492 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1493 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1494 Remainder_GE_Zero); 1495 1496 // Calculate Division result: 1497 1498 // Quotient_A_One = Quotient + 1 1499 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1500 DAG.getConstant(1, DL, VT)); 1501 1502 // Quotient_S_One = Quotient - 1 1503 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1504 DAG.getConstant(1, DL, VT)); 1505 1506 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1507 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1508 Quotient, Quotient_A_One, ISD::SETEQ); 1509 1510 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1511 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1512 Quotient_S_One, Div, ISD::SETEQ); 1513 1514 // Calculate Rem result: 1515 1516 // Remainder_S_Den = Remainder - Den 1517 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1518 1519 // Remainder_A_Den = Remainder + Den 1520 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1521 1522 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1523 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1524 Remainder, Remainder_S_Den, ISD::SETEQ); 1525 1526 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1527 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1528 Remainder_A_Den, Rem, ISD::SETEQ); 1529 SDValue Ops[2] = { 1530 Div, 1531 Rem 1532 }; 1533 return DAG.getMergeValues(Ops, DL); 1534 } 1535 1536 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1537 SelectionDAG &DAG) const { 1538 SDLoc DL(Op); 1539 EVT VT = Op.getValueType(); 1540 1541 SDValue LHS = Op.getOperand(0); 1542 SDValue RHS = Op.getOperand(1); 1543 1544 SDValue Zero = DAG.getConstant(0, DL, VT); 1545 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1546 1547 if (VT == MVT::i32) { 1548 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1549 return Res; 1550 } 1551 1552 if (VT == MVT::i64 && 1553 DAG.ComputeNumSignBits(LHS) > 32 && 1554 DAG.ComputeNumSignBits(RHS) > 32) { 1555 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1556 1557 //HiLo split 1558 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1559 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1560 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1561 LHS_Lo, RHS_Lo); 1562 SDValue Res[2] = { 1563 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1564 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1565 }; 1566 return DAG.getMergeValues(Res, DL); 1567 } 1568 1569 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1570 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1571 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1572 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1573 1574 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1575 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1576 1577 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1578 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1579 1580 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1581 SDValue Rem = Div.getValue(1); 1582 1583 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1584 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1585 1586 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1587 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1588 1589 SDValue Res[2] = { 1590 Div, 1591 Rem 1592 }; 1593 return DAG.getMergeValues(Res, DL); 1594 } 1595 1596 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1597 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1598 SDLoc SL(Op); 1599 EVT VT = Op.getValueType(); 1600 SDValue X = Op.getOperand(0); 1601 SDValue Y = Op.getOperand(1); 1602 1603 // TODO: Should this propagate fast-math-flags? 1604 1605 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1606 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1607 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1608 1609 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1610 } 1611 1612 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1613 SDLoc SL(Op); 1614 SDValue Src = Op.getOperand(0); 1615 1616 // result = trunc(src) 1617 // if (src > 0.0 && src != result) 1618 // result += 1.0 1619 1620 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1621 1622 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1623 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1624 1625 EVT SetCCVT = 1626 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1627 1628 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1629 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1630 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1631 1632 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1633 // TODO: Should this propagate fast-math-flags? 1634 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1635 } 1636 1637 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1638 SelectionDAG &DAG) { 1639 const unsigned FractBits = 52; 1640 const unsigned ExpBits = 11; 1641 1642 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1643 Hi, 1644 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1645 DAG.getConstant(ExpBits, SL, MVT::i32)); 1646 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1647 DAG.getConstant(1023, SL, MVT::i32)); 1648 1649 return Exp; 1650 } 1651 1652 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1653 SDLoc SL(Op); 1654 SDValue Src = Op.getOperand(0); 1655 1656 assert(Op.getValueType() == MVT::f64); 1657 1658 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1659 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1660 1661 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1662 1663 // Extract the upper half, since this is where we will find the sign and 1664 // exponent. 1665 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1666 1667 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1668 1669 const unsigned FractBits = 52; 1670 1671 // Extract the sign bit. 1672 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1673 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1674 1675 // Extend back to to 64-bits. 1676 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1677 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1678 1679 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1680 const SDValue FractMask 1681 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1682 1683 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1684 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1685 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1686 1687 EVT SetCCVT = 1688 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1689 1690 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1691 1692 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1693 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1694 1695 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1696 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1697 1698 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1699 } 1700 1701 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1702 SDLoc SL(Op); 1703 SDValue Src = Op.getOperand(0); 1704 1705 assert(Op.getValueType() == MVT::f64); 1706 1707 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1708 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1709 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1710 1711 // TODO: Should this propagate fast-math-flags? 1712 1713 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1714 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1715 1716 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1717 1718 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1719 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1720 1721 EVT SetCCVT = 1722 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1723 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1724 1725 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1726 } 1727 1728 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1729 // FNEARBYINT and FRINT are the same, except in their handling of FP 1730 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1731 // rint, so just treat them as equivalent. 1732 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1733 } 1734 1735 // XXX - May require not supporting f32 denormals? 1736 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1737 SDLoc SL(Op); 1738 SDValue X = Op.getOperand(0); 1739 1740 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1741 1742 // TODO: Should this propagate fast-math-flags? 1743 1744 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1745 1746 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1747 1748 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1749 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1750 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1751 1752 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1753 1754 EVT SetCCVT = 1755 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1756 1757 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1758 1759 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1760 1761 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1762 } 1763 1764 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1765 SDLoc SL(Op); 1766 SDValue X = Op.getOperand(0); 1767 1768 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1769 1770 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1771 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1772 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1773 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1774 EVT SetCCVT = 1775 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1776 1777 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1778 1779 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1780 1781 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1782 1783 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1784 MVT::i64); 1785 1786 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1787 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1788 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1789 MVT::i64), 1790 Exp); 1791 1792 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1793 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1794 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1795 ISD::SETNE); 1796 1797 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1798 D, DAG.getConstant(0, SL, MVT::i64)); 1799 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1800 1801 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1802 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1803 1804 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1805 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1806 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1807 1808 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1809 ExpEqNegOne, 1810 DAG.getConstantFP(1.0, SL, MVT::f64), 1811 DAG.getConstantFP(0.0, SL, MVT::f64)); 1812 1813 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1814 1815 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1816 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1817 1818 return K; 1819 } 1820 1821 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1822 EVT VT = Op.getValueType(); 1823 1824 if (VT == MVT::f32) 1825 return LowerFROUND32(Op, DAG); 1826 1827 if (VT == MVT::f64) 1828 return LowerFROUND64(Op, DAG); 1829 1830 llvm_unreachable("unhandled type"); 1831 } 1832 1833 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1834 SDLoc SL(Op); 1835 SDValue Src = Op.getOperand(0); 1836 1837 // result = trunc(src); 1838 // if (src < 0.0 && src != result) 1839 // result += -1.0. 1840 1841 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1842 1843 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1844 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1845 1846 EVT SetCCVT = 1847 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1848 1849 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1850 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1851 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1852 1853 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1854 // TODO: Should this propagate fast-math-flags? 1855 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1856 } 1857 1858 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1859 SDLoc SL(Op); 1860 SDValue Src = Op.getOperand(0); 1861 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1862 1863 if (ZeroUndef && Src.getValueType() == MVT::i32) 1864 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1865 1866 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1867 1868 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1869 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1870 1871 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1872 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1873 1874 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1875 *DAG.getContext(), MVT::i32); 1876 1877 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1878 1879 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1880 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1881 1882 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1883 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1884 1885 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1886 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1887 1888 if (!ZeroUndef) { 1889 // Test if the full 64-bit input is zero. 1890 1891 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1892 // which we probably don't want. 1893 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1894 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1895 1896 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1897 // with the same cycles, otherwise it is slower. 1898 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1899 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1900 1901 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1902 1903 // The instruction returns -1 for 0 input, but the defined intrinsic 1904 // behavior is to return the number of bits. 1905 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1906 SrcIsZero, Bits32, NewCtlz); 1907 } 1908 1909 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1910 } 1911 1912 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1913 bool Signed) const { 1914 // Unsigned 1915 // cul2f(ulong u) 1916 //{ 1917 // uint lz = clz(u); 1918 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1919 // u = (u << lz) & 0x7fffffffffffffffUL; 1920 // ulong t = u & 0xffffffffffUL; 1921 // uint v = (e << 23) | (uint)(u >> 40); 1922 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1923 // return as_float(v + r); 1924 //} 1925 // Signed 1926 // cl2f(long l) 1927 //{ 1928 // long s = l >> 63; 1929 // float r = cul2f((l + s) ^ s); 1930 // return s ? -r : r; 1931 //} 1932 1933 SDLoc SL(Op); 1934 SDValue Src = Op.getOperand(0); 1935 SDValue L = Src; 1936 1937 SDValue S; 1938 if (Signed) { 1939 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1940 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1941 1942 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1943 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1944 } 1945 1946 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1947 *DAG.getContext(), MVT::f32); 1948 1949 1950 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1951 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1952 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1953 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1954 1955 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1956 SDValue E = DAG.getSelect(SL, MVT::i32, 1957 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1958 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1959 ZeroI32); 1960 1961 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1962 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1963 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1964 1965 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1966 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1967 1968 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1969 U, DAG.getConstant(40, SL, MVT::i64)); 1970 1971 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1972 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1973 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1974 1975 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1976 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1977 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 1978 1979 SDValue One = DAG.getConstant(1, SL, MVT::i32); 1980 1981 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 1982 1983 SDValue R = DAG.getSelect(SL, MVT::i32, 1984 RCmp, 1985 One, 1986 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 1987 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 1988 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 1989 1990 if (!Signed) 1991 return R; 1992 1993 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 1994 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 1995 } 1996 1997 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 1998 bool Signed) const { 1999 SDLoc SL(Op); 2000 SDValue Src = Op.getOperand(0); 2001 2002 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2003 2004 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2005 DAG.getConstant(0, SL, MVT::i32)); 2006 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2007 DAG.getConstant(1, SL, MVT::i32)); 2008 2009 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2010 SL, MVT::f64, Hi); 2011 2012 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2013 2014 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2015 DAG.getConstant(32, SL, MVT::i32)); 2016 // TODO: Should this propagate fast-math-flags? 2017 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2018 } 2019 2020 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2021 SelectionDAG &DAG) const { 2022 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2023 "operation should be legal"); 2024 2025 // TODO: Factor out code common with LowerSINT_TO_FP. 2026 2027 EVT DestVT = Op.getValueType(); 2028 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2029 SDLoc DL(Op); 2030 SDValue Src = Op.getOperand(0); 2031 2032 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2033 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2034 SDValue FPRound = 2035 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2036 2037 return FPRound; 2038 } 2039 2040 if (DestVT == MVT::f32) 2041 return LowerINT_TO_FP32(Op, DAG, false); 2042 2043 assert(DestVT == MVT::f64); 2044 return LowerINT_TO_FP64(Op, DAG, false); 2045 } 2046 2047 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2048 SelectionDAG &DAG) const { 2049 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2050 "operation should be legal"); 2051 2052 // TODO: Factor out code common with LowerUINT_TO_FP. 2053 2054 EVT DestVT = Op.getValueType(); 2055 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2056 SDLoc DL(Op); 2057 SDValue Src = Op.getOperand(0); 2058 2059 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2060 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2061 SDValue FPRound = 2062 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2063 2064 return FPRound; 2065 } 2066 2067 if (DestVT == MVT::f32) 2068 return LowerINT_TO_FP32(Op, DAG, true); 2069 2070 assert(DestVT == MVT::f64); 2071 return LowerINT_TO_FP64(Op, DAG, true); 2072 } 2073 2074 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2075 bool Signed) const { 2076 SDLoc SL(Op); 2077 2078 SDValue Src = Op.getOperand(0); 2079 2080 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2081 2082 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2083 MVT::f64); 2084 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2085 MVT::f64); 2086 // TODO: Should this propagate fast-math-flags? 2087 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2088 2089 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2090 2091 2092 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2093 2094 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2095 MVT::i32, FloorMul); 2096 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2097 2098 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2099 2100 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2101 } 2102 2103 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2104 SDLoc DL(Op); 2105 SDValue N0 = Op.getOperand(0); 2106 2107 // Convert to target node to get known bits 2108 if (N0.getValueType() == MVT::f32) 2109 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2110 2111 if (getTargetMachine().Options.UnsafeFPMath) { 2112 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2113 return SDValue(); 2114 } 2115 2116 assert(N0.getSimpleValueType() == MVT::f64); 2117 2118 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2119 const unsigned ExpMask = 0x7ff; 2120 const unsigned ExpBiasf64 = 1023; 2121 const unsigned ExpBiasf16 = 15; 2122 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2123 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2124 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2125 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2126 DAG.getConstant(32, DL, MVT::i64)); 2127 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2128 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2129 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2130 DAG.getConstant(20, DL, MVT::i64)); 2131 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2132 DAG.getConstant(ExpMask, DL, MVT::i32)); 2133 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2134 // add the f16 bias (15) to get the biased exponent for the f16 format. 2135 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2136 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2137 2138 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2139 DAG.getConstant(8, DL, MVT::i32)); 2140 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2141 DAG.getConstant(0xffe, DL, MVT::i32)); 2142 2143 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2144 DAG.getConstant(0x1ff, DL, MVT::i32)); 2145 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2146 2147 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2148 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2149 2150 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2151 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2152 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2153 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2154 2155 // N = M | (E << 12); 2156 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2157 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2158 DAG.getConstant(12, DL, MVT::i32))); 2159 2160 // B = clamp(1-E, 0, 13); 2161 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2162 One, E); 2163 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2164 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2165 DAG.getConstant(13, DL, MVT::i32)); 2166 2167 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2168 DAG.getConstant(0x1000, DL, MVT::i32)); 2169 2170 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2171 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2172 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2173 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2174 2175 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2176 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2177 DAG.getConstant(0x7, DL, MVT::i32)); 2178 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2179 DAG.getConstant(2, DL, MVT::i32)); 2180 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2181 One, Zero, ISD::SETEQ); 2182 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2183 One, Zero, ISD::SETGT); 2184 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2185 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2186 2187 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2188 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2189 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2190 I, V, ISD::SETEQ); 2191 2192 // Extract the sign bit. 2193 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2194 DAG.getConstant(16, DL, MVT::i32)); 2195 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2196 DAG.getConstant(0x8000, DL, MVT::i32)); 2197 2198 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2199 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2200 } 2201 2202 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2203 SelectionDAG &DAG) const { 2204 SDValue Src = Op.getOperand(0); 2205 2206 // TODO: Factor out code common with LowerFP_TO_UINT. 2207 2208 EVT SrcVT = Src.getValueType(); 2209 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2210 SDLoc DL(Op); 2211 2212 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2213 SDValue FpToInt32 = 2214 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2215 2216 return FpToInt32; 2217 } 2218 2219 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2220 return LowerFP64_TO_INT(Op, DAG, true); 2221 2222 return SDValue(); 2223 } 2224 2225 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2226 SelectionDAG &DAG) const { 2227 SDValue Src = Op.getOperand(0); 2228 2229 // TODO: Factor out code common with LowerFP_TO_SINT. 2230 2231 EVT SrcVT = Src.getValueType(); 2232 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2233 SDLoc DL(Op); 2234 2235 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2236 SDValue FpToInt32 = 2237 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2238 2239 return FpToInt32; 2240 } 2241 2242 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2243 return LowerFP64_TO_INT(Op, DAG, false); 2244 2245 return SDValue(); 2246 } 2247 2248 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2249 SelectionDAG &DAG) const { 2250 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2251 MVT VT = Op.getSimpleValueType(); 2252 MVT ScalarVT = VT.getScalarType(); 2253 2254 assert(VT.isVector()); 2255 2256 SDValue Src = Op.getOperand(0); 2257 SDLoc DL(Op); 2258 2259 // TODO: Don't scalarize on Evergreen? 2260 unsigned NElts = VT.getVectorNumElements(); 2261 SmallVector<SDValue, 8> Args; 2262 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2263 2264 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2265 for (unsigned I = 0; I < NElts; ++I) 2266 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2267 2268 return DAG.getBuildVector(VT, DL, Args); 2269 } 2270 2271 //===----------------------------------------------------------------------===// 2272 // Custom DAG optimizations 2273 //===----------------------------------------------------------------------===// 2274 2275 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2276 APInt KnownZero, KnownOne; 2277 EVT VT = Op.getValueType(); 2278 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2279 2280 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2281 } 2282 2283 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2284 EVT VT = Op.getValueType(); 2285 2286 // In order for this to be a signed 24-bit value, bit 23, must 2287 // be a sign bit. 2288 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2289 // as unsigned 24-bit values. 2290 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2291 } 2292 2293 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2294 TargetLowering::DAGCombinerInfo &DCI) { 2295 2296 SelectionDAG &DAG = DCI.DAG; 2297 SDValue Op = Node24->getOperand(OpIdx); 2298 EVT VT = Op.getValueType(); 2299 2300 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2301 APInt KnownZero, KnownOne; 2302 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2303 if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI)) 2304 return true; 2305 2306 return false; 2307 } 2308 2309 template <typename IntTy> 2310 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2311 uint32_t Width, const SDLoc &DL) { 2312 if (Width + Offset < 32) { 2313 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2314 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2315 return DAG.getConstant(Result, DL, MVT::i32); 2316 } 2317 2318 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2319 } 2320 2321 static bool hasVolatileUser(SDNode *Val) { 2322 for (SDNode *U : Val->uses()) { 2323 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2324 if (M->isVolatile()) 2325 return true; 2326 } 2327 } 2328 2329 return false; 2330 } 2331 2332 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2333 // i32 vectors are the canonical memory type. 2334 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2335 return false; 2336 2337 if (!VT.isByteSized()) 2338 return false; 2339 2340 unsigned Size = VT.getStoreSize(); 2341 2342 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2343 return false; 2344 2345 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2346 return false; 2347 2348 return true; 2349 } 2350 2351 // Replace load of an illegal type with a store of a bitcast to a friendlier 2352 // type. 2353 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2354 DAGCombinerInfo &DCI) const { 2355 if (!DCI.isBeforeLegalize()) 2356 return SDValue(); 2357 2358 LoadSDNode *LN = cast<LoadSDNode>(N); 2359 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2360 return SDValue(); 2361 2362 SDLoc SL(N); 2363 SelectionDAG &DAG = DCI.DAG; 2364 EVT VT = LN->getMemoryVT(); 2365 2366 unsigned Size = VT.getStoreSize(); 2367 unsigned Align = LN->getAlignment(); 2368 if (Align < Size && isTypeLegal(VT)) { 2369 bool IsFast; 2370 unsigned AS = LN->getAddressSpace(); 2371 2372 // Expand unaligned loads earlier than legalization. Due to visitation order 2373 // problems during legalization, the emitted instructions to pack and unpack 2374 // the bytes again are not eliminated in the case of an unaligned copy. 2375 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2376 if (VT.isVector()) 2377 return scalarizeVectorLoad(LN, DAG); 2378 2379 SDValue Ops[2]; 2380 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2381 return DAG.getMergeValues(Ops, SDLoc(N)); 2382 } 2383 2384 if (!IsFast) 2385 return SDValue(); 2386 } 2387 2388 if (!shouldCombineMemoryType(VT)) 2389 return SDValue(); 2390 2391 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2392 2393 SDValue NewLoad 2394 = DAG.getLoad(NewVT, SL, LN->getChain(), 2395 LN->getBasePtr(), LN->getMemOperand()); 2396 2397 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2398 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2399 return SDValue(N, 0); 2400 } 2401 2402 // Replace store of an illegal type with a store of a bitcast to a friendlier 2403 // type. 2404 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2405 DAGCombinerInfo &DCI) const { 2406 if (!DCI.isBeforeLegalize()) 2407 return SDValue(); 2408 2409 StoreSDNode *SN = cast<StoreSDNode>(N); 2410 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2411 return SDValue(); 2412 2413 EVT VT = SN->getMemoryVT(); 2414 unsigned Size = VT.getStoreSize(); 2415 2416 SDLoc SL(N); 2417 SelectionDAG &DAG = DCI.DAG; 2418 unsigned Align = SN->getAlignment(); 2419 if (Align < Size && isTypeLegal(VT)) { 2420 bool IsFast; 2421 unsigned AS = SN->getAddressSpace(); 2422 2423 // Expand unaligned stores earlier than legalization. Due to visitation 2424 // order problems during legalization, the emitted instructions to pack and 2425 // unpack the bytes again are not eliminated in the case of an unaligned 2426 // copy. 2427 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2428 if (VT.isVector()) 2429 return scalarizeVectorStore(SN, DAG); 2430 2431 return expandUnalignedStore(SN, DAG); 2432 } 2433 2434 if (!IsFast) 2435 return SDValue(); 2436 } 2437 2438 if (!shouldCombineMemoryType(VT)) 2439 return SDValue(); 2440 2441 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2442 SDValue Val = SN->getValue(); 2443 2444 //DCI.AddToWorklist(Val.getNode()); 2445 2446 bool OtherUses = !Val.hasOneUse(); 2447 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2448 if (OtherUses) { 2449 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2450 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2451 } 2452 2453 return DAG.getStore(SN->getChain(), SL, CastVal, 2454 SN->getBasePtr(), SN->getMemOperand()); 2455 } 2456 2457 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, 2458 DAGCombinerInfo &DCI) const { 2459 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 2460 if (!CSrc) 2461 return SDValue(); 2462 2463 const APFloat &F = CSrc->getValueAPF(); 2464 APFloat Zero = APFloat::getZero(F.getSemantics()); 2465 APFloat::cmpResult Cmp0 = F.compare(Zero); 2466 if (Cmp0 == APFloat::cmpLessThan || 2467 (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { 2468 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 2469 } 2470 2471 APFloat One(F.getSemantics(), "1.0"); 2472 APFloat::cmpResult Cmp1 = F.compare(One); 2473 if (Cmp1 == APFloat::cmpGreaterThan) 2474 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 2475 2476 return SDValue(CSrc, 0); 2477 } 2478 2479 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2480 /// binary operation \p Opc to it with the corresponding constant operands. 2481 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2482 DAGCombinerInfo &DCI, const SDLoc &SL, 2483 unsigned Opc, SDValue LHS, 2484 uint32_t ValLo, uint32_t ValHi) const { 2485 SelectionDAG &DAG = DCI.DAG; 2486 SDValue Lo, Hi; 2487 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2488 2489 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2490 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2491 2492 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2493 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2494 2495 // Re-visit the ands. It's possible we eliminated one of them and it could 2496 // simplify the vector. 2497 DCI.AddToWorklist(Lo.getNode()); 2498 DCI.AddToWorklist(Hi.getNode()); 2499 2500 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2501 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2502 } 2503 2504 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2505 DAGCombinerInfo &DCI) const { 2506 if (N->getValueType(0) != MVT::i64) 2507 return SDValue(); 2508 2509 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2510 2511 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2512 // common case, splitting this into a move and a 32-bit shift is faster and 2513 // the same code size. 2514 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2515 if (!RHS) 2516 return SDValue(); 2517 2518 unsigned RHSVal = RHS->getZExtValue(); 2519 if (RHSVal < 32) 2520 return SDValue(); 2521 2522 SDValue LHS = N->getOperand(0); 2523 2524 SDLoc SL(N); 2525 SelectionDAG &DAG = DCI.DAG; 2526 2527 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2528 2529 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2530 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2531 2532 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2533 2534 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2535 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2536 } 2537 2538 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2539 DAGCombinerInfo &DCI) const { 2540 if (N->getValueType(0) != MVT::i64) 2541 return SDValue(); 2542 2543 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2544 if (!RHS) 2545 return SDValue(); 2546 2547 SelectionDAG &DAG = DCI.DAG; 2548 SDLoc SL(N); 2549 unsigned RHSVal = RHS->getZExtValue(); 2550 2551 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2552 if (RHSVal == 32) { 2553 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2554 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2555 DAG.getConstant(31, SL, MVT::i32)); 2556 2557 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2558 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2559 } 2560 2561 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2562 if (RHSVal == 63) { 2563 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2564 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2565 DAG.getConstant(31, SL, MVT::i32)); 2566 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2567 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2568 } 2569 2570 return SDValue(); 2571 } 2572 2573 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2574 DAGCombinerInfo &DCI) const { 2575 if (N->getValueType(0) != MVT::i64) 2576 return SDValue(); 2577 2578 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2579 if (!RHS) 2580 return SDValue(); 2581 2582 unsigned ShiftAmt = RHS->getZExtValue(); 2583 if (ShiftAmt < 32) 2584 return SDValue(); 2585 2586 // srl i64:x, C for C >= 32 2587 // => 2588 // build_pair (srl hi_32(x), C - 32), 0 2589 2590 SelectionDAG &DAG = DCI.DAG; 2591 SDLoc SL(N); 2592 2593 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2594 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2595 2596 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2597 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2598 VecOp, One); 2599 2600 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2601 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2602 2603 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2604 2605 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2606 } 2607 2608 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2609 // instructions. If we only match on the legalized i64 mul expansion, 2610 // SimplifyDemandedBits will be unable to remove them because there will be 2611 // multiple uses due to the separate mul + mulh[su]. 2612 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2613 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2614 if (Size <= 32) { 2615 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2616 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2617 } 2618 2619 // Because we want to eliminate extension instructions before the 2620 // operation, we need to create a single user here (i.e. not the separate 2621 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2622 2623 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2624 2625 SDValue Mul = DAG.getNode(MulOpc, SL, 2626 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 2627 2628 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 2629 Mul.getValue(0), Mul.getValue(1)); 2630 } 2631 2632 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2633 DAGCombinerInfo &DCI) const { 2634 EVT VT = N->getValueType(0); 2635 2636 unsigned Size = VT.getSizeInBits(); 2637 if (VT.isVector() || Size > 64) 2638 return SDValue(); 2639 2640 // There are i16 integer mul/mad. 2641 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 2642 return SDValue(); 2643 2644 SelectionDAG &DAG = DCI.DAG; 2645 SDLoc DL(N); 2646 2647 SDValue N0 = N->getOperand(0); 2648 SDValue N1 = N->getOperand(1); 2649 SDValue Mul; 2650 2651 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2652 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2653 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2654 Mul = getMul24(DAG, DL, N0, N1, Size, false); 2655 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2656 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2657 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2658 Mul = getMul24(DAG, DL, N0, N1, Size, true); 2659 } else { 2660 return SDValue(); 2661 } 2662 2663 // We need to use sext even for MUL_U24, because MUL_U24 is used 2664 // for signed multiply of 8 and 16-bit types. 2665 return DAG.getSExtOrTrunc(Mul, DL, VT); 2666 } 2667 2668 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 2669 DAGCombinerInfo &DCI) const { 2670 EVT VT = N->getValueType(0); 2671 2672 if (!Subtarget->hasMulI24() || VT.isVector()) 2673 return SDValue(); 2674 2675 SelectionDAG &DAG = DCI.DAG; 2676 SDLoc DL(N); 2677 2678 SDValue N0 = N->getOperand(0); 2679 SDValue N1 = N->getOperand(1); 2680 2681 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 2682 return SDValue(); 2683 2684 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2685 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2686 2687 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 2688 DCI.AddToWorklist(Mulhi.getNode()); 2689 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 2690 } 2691 2692 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 2693 DAGCombinerInfo &DCI) const { 2694 EVT VT = N->getValueType(0); 2695 2696 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 2697 return SDValue(); 2698 2699 SelectionDAG &DAG = DCI.DAG; 2700 SDLoc DL(N); 2701 2702 SDValue N0 = N->getOperand(0); 2703 SDValue N1 = N->getOperand(1); 2704 2705 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 2706 return SDValue(); 2707 2708 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2709 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2710 2711 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 2712 DCI.AddToWorklist(Mulhi.getNode()); 2713 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 2714 } 2715 2716 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 2717 SDNode *N, DAGCombinerInfo &DCI) const { 2718 SelectionDAG &DAG = DCI.DAG; 2719 2720 // Simplify demanded bits before splitting into multiple users. 2721 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 2722 return SDValue(); 2723 2724 SDValue N0 = N->getOperand(0); 2725 SDValue N1 = N->getOperand(1); 2726 2727 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 2728 2729 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2730 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 2731 2732 SDLoc SL(N); 2733 2734 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 2735 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 2736 return DAG.getMergeValues({ MulLo, MulHi }, SL); 2737 } 2738 2739 static bool isNegativeOne(SDValue Val) { 2740 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2741 return C->isAllOnesValue(); 2742 return false; 2743 } 2744 2745 static bool isCtlzOpc(unsigned Opc) { 2746 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2747 } 2748 2749 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG, 2750 SDValue Op, 2751 const SDLoc &DL) const { 2752 EVT VT = Op.getValueType(); 2753 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 2754 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 2755 LegalVT != MVT::i16)) 2756 return SDValue(); 2757 2758 if (VT != MVT::i32) 2759 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 2760 2761 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op); 2762 if (VT != MVT::i32) 2763 FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH); 2764 2765 return FFBH; 2766 } 2767 2768 // The native instructions return -1 on 0 input. Optimize out a select that 2769 // produces -1 on 0. 2770 // 2771 // TODO: If zero is not undef, we could also do this if the output is compared 2772 // against the bitwidth. 2773 // 2774 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2775 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2776 SDValue LHS, SDValue RHS, 2777 DAGCombinerInfo &DCI) const { 2778 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2779 if (!CmpRhs || !CmpRhs->isNullValue()) 2780 return SDValue(); 2781 2782 SelectionDAG &DAG = DCI.DAG; 2783 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2784 SDValue CmpLHS = Cond.getOperand(0); 2785 2786 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2787 if (CCOpcode == ISD::SETEQ && 2788 isCtlzOpc(RHS.getOpcode()) && 2789 RHS.getOperand(0) == CmpLHS && 2790 isNegativeOne(LHS)) { 2791 return getFFBH_U32(DAG, CmpLHS, SL); 2792 } 2793 2794 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2795 if (CCOpcode == ISD::SETNE && 2796 isCtlzOpc(LHS.getOpcode()) && 2797 LHS.getOperand(0) == CmpLHS && 2798 isNegativeOne(RHS)) { 2799 return getFFBH_U32(DAG, CmpLHS, SL); 2800 } 2801 2802 return SDValue(); 2803 } 2804 2805 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 2806 unsigned Op, 2807 const SDLoc &SL, 2808 SDValue Cond, 2809 SDValue N1, 2810 SDValue N2) { 2811 SelectionDAG &DAG = DCI.DAG; 2812 EVT VT = N1.getValueType(); 2813 2814 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 2815 N1.getOperand(0), N2.getOperand(0)); 2816 DCI.AddToWorklist(NewSelect.getNode()); 2817 return DAG.getNode(Op, SL, VT, NewSelect); 2818 } 2819 2820 // Pull a free FP operation out of a select so it may fold into uses. 2821 // 2822 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 2823 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 2824 // 2825 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 2826 // select c, (fabs x), +k -> fabs (select c, x, k) 2827 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 2828 SDValue N) { 2829 SelectionDAG &DAG = DCI.DAG; 2830 SDValue Cond = N.getOperand(0); 2831 SDValue LHS = N.getOperand(1); 2832 SDValue RHS = N.getOperand(2); 2833 2834 EVT VT = N.getValueType(); 2835 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 2836 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 2837 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 2838 SDLoc(N), Cond, LHS, RHS); 2839 } 2840 2841 bool Inv = false; 2842 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 2843 std::swap(LHS, RHS); 2844 Inv = true; 2845 } 2846 2847 // TODO: Support vector constants. 2848 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 2849 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 2850 SDLoc SL(N); 2851 // If one side is an fneg/fabs and the other is a constant, we can push the 2852 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 2853 SDValue NewLHS = LHS.getOperand(0); 2854 SDValue NewRHS = RHS; 2855 2856 // Careful: if the neg can be folded up, don't try to pull it back down. 2857 bool ShouldFoldNeg = true; 2858 2859 if (NewLHS.hasOneUse()) { 2860 unsigned Opc = NewLHS.getOpcode(); 2861 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 2862 ShouldFoldNeg = false; 2863 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 2864 ShouldFoldNeg = false; 2865 } 2866 2867 if (ShouldFoldNeg) { 2868 if (LHS.getOpcode() == ISD::FNEG) 2869 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 2870 else if (CRHS->isNegative()) 2871 return SDValue(); 2872 2873 if (Inv) 2874 std::swap(NewLHS, NewRHS); 2875 2876 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 2877 Cond, NewLHS, NewRHS); 2878 DCI.AddToWorklist(NewSelect.getNode()); 2879 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 2880 } 2881 } 2882 2883 return SDValue(); 2884 } 2885 2886 2887 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2888 DAGCombinerInfo &DCI) const { 2889 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 2890 return Folded; 2891 2892 SDValue Cond = N->getOperand(0); 2893 if (Cond.getOpcode() != ISD::SETCC) 2894 return SDValue(); 2895 2896 EVT VT = N->getValueType(0); 2897 SDValue LHS = Cond.getOperand(0); 2898 SDValue RHS = Cond.getOperand(1); 2899 SDValue CC = Cond.getOperand(2); 2900 2901 SDValue True = N->getOperand(1); 2902 SDValue False = N->getOperand(2); 2903 2904 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 2905 SelectionDAG &DAG = DCI.DAG; 2906 if ((DAG.isConstantValueOfAnyType(True) || 2907 DAG.isConstantValueOfAnyType(True)) && 2908 (!DAG.isConstantValueOfAnyType(False) && 2909 !DAG.isConstantValueOfAnyType(False))) { 2910 // Swap cmp + select pair to move constant to false input. 2911 // This will allow using VOPC cndmasks more often. 2912 // select (setcc x, y), k, x -> select (setcc y, x) x, x 2913 2914 SDLoc SL(N); 2915 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 2916 LHS.getValueType().isInteger()); 2917 2918 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 2919 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 2920 } 2921 2922 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 2923 SDValue MinMax 2924 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2925 // Revisit this node so we can catch min3/max3/med3 patterns. 2926 //DCI.AddToWorklist(MinMax.getNode()); 2927 return MinMax; 2928 } 2929 } 2930 2931 // There's no reason to not do this if the condition has other uses. 2932 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2933 } 2934 2935 static bool isConstantFPZero(SDValue N) { 2936 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) 2937 return C->isZero() && !C->isNegative(); 2938 return false; 2939 } 2940 2941 static unsigned inverseMinMax(unsigned Opc) { 2942 switch (Opc) { 2943 case ISD::FMAXNUM: 2944 return ISD::FMINNUM; 2945 case ISD::FMINNUM: 2946 return ISD::FMAXNUM; 2947 case AMDGPUISD::FMAX_LEGACY: 2948 return AMDGPUISD::FMIN_LEGACY; 2949 case AMDGPUISD::FMIN_LEGACY: 2950 return AMDGPUISD::FMAX_LEGACY; 2951 default: 2952 llvm_unreachable("invalid min/max opcode"); 2953 } 2954 } 2955 2956 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 2957 DAGCombinerInfo &DCI) const { 2958 SelectionDAG &DAG = DCI.DAG; 2959 SDValue N0 = N->getOperand(0); 2960 EVT VT = N->getValueType(0); 2961 2962 unsigned Opc = N0.getOpcode(); 2963 2964 // If the input has multiple uses and we can either fold the negate down, or 2965 // the other uses cannot, give up. This both prevents unprofitable 2966 // transformations and infinite loops: we won't repeatedly try to fold around 2967 // a negate that has no 'good' form. 2968 if (N0.hasOneUse()) { 2969 // This may be able to fold into the source, but at a code size cost. Don't 2970 // fold if the fold into the user is free. 2971 if (allUsesHaveSourceMods(N, 0)) 2972 return SDValue(); 2973 } else { 2974 if (fnegFoldsIntoOp(Opc) && 2975 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 2976 return SDValue(); 2977 } 2978 2979 SDLoc SL(N); 2980 switch (Opc) { 2981 case ISD::FADD: { 2982 if (!mayIgnoreSignedZero(N0)) 2983 return SDValue(); 2984 2985 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 2986 SDValue LHS = N0.getOperand(0); 2987 SDValue RHS = N0.getOperand(1); 2988 2989 if (LHS.getOpcode() != ISD::FNEG) 2990 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 2991 else 2992 LHS = LHS.getOperand(0); 2993 2994 if (RHS.getOpcode() != ISD::FNEG) 2995 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 2996 else 2997 RHS = RHS.getOperand(0); 2998 2999 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3000 if (!N0.hasOneUse()) 3001 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3002 return Res; 3003 } 3004 case ISD::FMUL: 3005 case AMDGPUISD::FMUL_LEGACY: { 3006 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3007 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3008 SDValue LHS = N0.getOperand(0); 3009 SDValue RHS = N0.getOperand(1); 3010 3011 if (LHS.getOpcode() == ISD::FNEG) 3012 LHS = LHS.getOperand(0); 3013 else if (RHS.getOpcode() == ISD::FNEG) 3014 RHS = RHS.getOperand(0); 3015 else 3016 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3017 3018 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3019 if (!N0.hasOneUse()) 3020 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3021 return Res; 3022 } 3023 case ISD::FMA: 3024 case ISD::FMAD: { 3025 if (!mayIgnoreSignedZero(N0)) 3026 return SDValue(); 3027 3028 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3029 SDValue LHS = N0.getOperand(0); 3030 SDValue MHS = N0.getOperand(1); 3031 SDValue RHS = N0.getOperand(2); 3032 3033 if (LHS.getOpcode() == ISD::FNEG) 3034 LHS = LHS.getOperand(0); 3035 else if (MHS.getOpcode() == ISD::FNEG) 3036 MHS = MHS.getOperand(0); 3037 else 3038 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3039 3040 if (RHS.getOpcode() != ISD::FNEG) 3041 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3042 else 3043 RHS = RHS.getOperand(0); 3044 3045 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3046 if (!N0.hasOneUse()) 3047 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3048 return Res; 3049 } 3050 case ISD::FMAXNUM: 3051 case ISD::FMINNUM: 3052 case AMDGPUISD::FMAX_LEGACY: 3053 case AMDGPUISD::FMIN_LEGACY: { 3054 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3055 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3056 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3057 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3058 3059 SDValue LHS = N0.getOperand(0); 3060 SDValue RHS = N0.getOperand(1); 3061 3062 // 0 doesn't have a negated inline immediate. 3063 // TODO: Shouldn't fold 1/2pi either, and should be generalized to other 3064 // operations. 3065 if (isConstantFPZero(RHS)) 3066 return SDValue(); 3067 3068 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3069 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3070 unsigned Opposite = inverseMinMax(Opc); 3071 3072 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3073 if (!N0.hasOneUse()) 3074 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3075 return Res; 3076 } 3077 case ISD::FP_EXTEND: 3078 case ISD::FTRUNC: 3079 case ISD::FRINT: 3080 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3081 case ISD::FSIN: 3082 case AMDGPUISD::RCP: 3083 case AMDGPUISD::RCP_LEGACY: 3084 case AMDGPUISD::SIN_HW: { 3085 SDValue CvtSrc = N0.getOperand(0); 3086 if (CvtSrc.getOpcode() == ISD::FNEG) { 3087 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3088 // (fneg (rcp (fneg x))) -> (rcp x) 3089 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3090 } 3091 3092 if (!N0.hasOneUse()) 3093 return SDValue(); 3094 3095 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3096 // (fneg (rcp x)) -> (rcp (fneg x)) 3097 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3098 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3099 } 3100 case ISD::FP_ROUND: { 3101 SDValue CvtSrc = N0.getOperand(0); 3102 3103 if (CvtSrc.getOpcode() == ISD::FNEG) { 3104 // (fneg (fp_round (fneg x))) -> (fp_round x) 3105 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3106 CvtSrc.getOperand(0), N0.getOperand(1)); 3107 } 3108 3109 if (!N0.hasOneUse()) 3110 return SDValue(); 3111 3112 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3113 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3114 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3115 } 3116 case ISD::FP16_TO_FP: { 3117 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3118 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3119 // Put the fneg back as a legal source operation that can be matched later. 3120 SDLoc SL(N); 3121 3122 SDValue Src = N0.getOperand(0); 3123 EVT SrcVT = Src.getValueType(); 3124 3125 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3126 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3127 DAG.getConstant(0x8000, SL, SrcVT)); 3128 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3129 } 3130 default: 3131 return SDValue(); 3132 } 3133 } 3134 3135 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3136 DAGCombinerInfo &DCI) const { 3137 SelectionDAG &DAG = DCI.DAG; 3138 SDValue N0 = N->getOperand(0); 3139 3140 if (!N0.hasOneUse()) 3141 return SDValue(); 3142 3143 switch (N0.getOpcode()) { 3144 case ISD::FP16_TO_FP: { 3145 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3146 SDLoc SL(N); 3147 SDValue Src = N0.getOperand(0); 3148 EVT SrcVT = Src.getValueType(); 3149 3150 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3151 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3152 DAG.getConstant(0x7fff, SL, SrcVT)); 3153 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3154 } 3155 default: 3156 return SDValue(); 3157 } 3158 } 3159 3160 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3161 DAGCombinerInfo &DCI) const { 3162 SelectionDAG &DAG = DCI.DAG; 3163 SDLoc DL(N); 3164 3165 switch(N->getOpcode()) { 3166 default: 3167 break; 3168 case ISD::BITCAST: { 3169 EVT DestVT = N->getValueType(0); 3170 3171 // Push casts through vector builds. This helps avoid emitting a large 3172 // number of copies when materializing floating point vector constants. 3173 // 3174 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3175 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3176 if (DestVT.isVector()) { 3177 SDValue Src = N->getOperand(0); 3178 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3179 EVT SrcVT = Src.getValueType(); 3180 unsigned NElts = DestVT.getVectorNumElements(); 3181 3182 if (SrcVT.getVectorNumElements() == NElts) { 3183 EVT DestEltVT = DestVT.getVectorElementType(); 3184 3185 SmallVector<SDValue, 8> CastedElts; 3186 SDLoc SL(N); 3187 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3188 SDValue Elt = Src.getOperand(I); 3189 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3190 } 3191 3192 return DAG.getBuildVector(DestVT, SL, CastedElts); 3193 } 3194 } 3195 } 3196 3197 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3198 break; 3199 3200 // Fold bitcasts of constants. 3201 // 3202 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3203 // TODO: Generalize and move to DAGCombiner 3204 SDValue Src = N->getOperand(0); 3205 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3206 assert(Src.getValueType() == MVT::i64); 3207 SDLoc SL(N); 3208 uint64_t CVal = C->getZExtValue(); 3209 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3210 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3211 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3212 } 3213 3214 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3215 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3216 SDLoc SL(N); 3217 uint64_t CVal = Val.getZExtValue(); 3218 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3219 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3220 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3221 3222 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3223 } 3224 3225 break; 3226 } 3227 case ISD::SHL: { 3228 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3229 break; 3230 3231 return performShlCombine(N, DCI); 3232 } 3233 case ISD::SRL: { 3234 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3235 break; 3236 3237 return performSrlCombine(N, DCI); 3238 } 3239 case ISD::SRA: { 3240 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3241 break; 3242 3243 return performSraCombine(N, DCI); 3244 } 3245 case ISD::MUL: 3246 return performMulCombine(N, DCI); 3247 case ISD::MULHS: 3248 return performMulhsCombine(N, DCI); 3249 case ISD::MULHU: 3250 return performMulhuCombine(N, DCI); 3251 case AMDGPUISD::MUL_I24: 3252 case AMDGPUISD::MUL_U24: 3253 case AMDGPUISD::MULHI_I24: 3254 case AMDGPUISD::MULHI_U24: { 3255 // If the first call to simplify is successfull, then N may end up being 3256 // deleted, so we shouldn't call simplifyI24 again. 3257 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3258 return SDValue(); 3259 } 3260 case AMDGPUISD::MUL_LOHI_I24: 3261 case AMDGPUISD::MUL_LOHI_U24: 3262 return performMulLoHi24Combine(N, DCI); 3263 case ISD::SELECT: 3264 return performSelectCombine(N, DCI); 3265 case ISD::FNEG: 3266 return performFNegCombine(N, DCI); 3267 case ISD::FABS: 3268 return performFAbsCombine(N, DCI); 3269 case AMDGPUISD::BFE_I32: 3270 case AMDGPUISD::BFE_U32: { 3271 assert(!N->getValueType(0).isVector() && 3272 "Vector handling of BFE not implemented"); 3273 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3274 if (!Width) 3275 break; 3276 3277 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3278 if (WidthVal == 0) 3279 return DAG.getConstant(0, DL, MVT::i32); 3280 3281 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3282 if (!Offset) 3283 break; 3284 3285 SDValue BitsFrom = N->getOperand(0); 3286 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3287 3288 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3289 3290 if (OffsetVal == 0) { 3291 // This is already sign / zero extended, so try to fold away extra BFEs. 3292 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3293 3294 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3295 if (OpSignBits >= SignBits) 3296 return BitsFrom; 3297 3298 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3299 if (Signed) { 3300 // This is a sign_extend_inreg. Replace it to take advantage of existing 3301 // DAG Combines. If not eliminated, we will match back to BFE during 3302 // selection. 3303 3304 // TODO: The sext_inreg of extended types ends, although we can could 3305 // handle them in a single BFE. 3306 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3307 DAG.getValueType(SmallVT)); 3308 } 3309 3310 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3311 } 3312 3313 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3314 if (Signed) { 3315 return constantFoldBFE<int32_t>(DAG, 3316 CVal->getSExtValue(), 3317 OffsetVal, 3318 WidthVal, 3319 DL); 3320 } 3321 3322 return constantFoldBFE<uint32_t>(DAG, 3323 CVal->getZExtValue(), 3324 OffsetVal, 3325 WidthVal, 3326 DL); 3327 } 3328 3329 if ((OffsetVal + WidthVal) >= 32) { 3330 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3331 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3332 BitsFrom, ShiftVal); 3333 } 3334 3335 if (BitsFrom.hasOneUse()) { 3336 APInt Demanded = APInt::getBitsSet(32, 3337 OffsetVal, 3338 OffsetVal + WidthVal); 3339 3340 APInt KnownZero, KnownOne; 3341 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3342 !DCI.isBeforeLegalizeOps()); 3343 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3344 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 3345 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 3346 KnownZero, KnownOne, TLO)) { 3347 DCI.CommitTargetLoweringOpt(TLO); 3348 } 3349 } 3350 3351 break; 3352 } 3353 case ISD::LOAD: 3354 return performLoadCombine(N, DCI); 3355 case ISD::STORE: 3356 return performStoreCombine(N, DCI); 3357 case AMDGPUISD::CLAMP: 3358 return performClampCombine(N, DCI); 3359 case AMDGPUISD::RCP: { 3360 if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 3361 // XXX - Should this flush denormals? 3362 const APFloat &Val = CFP->getValueAPF(); 3363 APFloat One(Val.getSemantics(), "1.0"); 3364 return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3365 } 3366 3367 break; 3368 } 3369 } 3370 return SDValue(); 3371 } 3372 3373 //===----------------------------------------------------------------------===// 3374 // Helper functions 3375 //===----------------------------------------------------------------------===// 3376 3377 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3378 const TargetRegisterClass *RC, 3379 unsigned Reg, EVT VT) const { 3380 MachineFunction &MF = DAG.getMachineFunction(); 3381 MachineRegisterInfo &MRI = MF.getRegInfo(); 3382 unsigned VirtualRegister; 3383 if (!MRI.isLiveIn(Reg)) { 3384 VirtualRegister = MRI.createVirtualRegister(RC); 3385 MRI.addLiveIn(Reg, VirtualRegister); 3386 } else { 3387 VirtualRegister = MRI.getLiveInVirtReg(Reg); 3388 } 3389 return DAG.getRegister(VirtualRegister, VT); 3390 } 3391 3392 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 3393 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 3394 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 3395 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 3396 switch (Param) { 3397 case GRID_DIM: 3398 return ArgOffset; 3399 case GRID_OFFSET: 3400 return ArgOffset + 4; 3401 } 3402 llvm_unreachable("unexpected implicit parameter type"); 3403 } 3404 3405 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 3406 3407 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 3408 switch ((AMDGPUISD::NodeType)Opcode) { 3409 case AMDGPUISD::FIRST_NUMBER: break; 3410 // AMDIL DAG nodes 3411 NODE_NAME_CASE(UMUL); 3412 NODE_NAME_CASE(BRANCH_COND); 3413 3414 // AMDGPU DAG nodes 3415 NODE_NAME_CASE(IF) 3416 NODE_NAME_CASE(ELSE) 3417 NODE_NAME_CASE(LOOP) 3418 NODE_NAME_CASE(CALL) 3419 NODE_NAME_CASE(RET_FLAG) 3420 NODE_NAME_CASE(RETURN_TO_EPILOG) 3421 NODE_NAME_CASE(ENDPGM) 3422 NODE_NAME_CASE(DWORDADDR) 3423 NODE_NAME_CASE(FRACT) 3424 NODE_NAME_CASE(SETCC) 3425 NODE_NAME_CASE(SETREG) 3426 NODE_NAME_CASE(FMA_W_CHAIN) 3427 NODE_NAME_CASE(FMUL_W_CHAIN) 3428 NODE_NAME_CASE(CLAMP) 3429 NODE_NAME_CASE(COS_HW) 3430 NODE_NAME_CASE(SIN_HW) 3431 NODE_NAME_CASE(FMAX_LEGACY) 3432 NODE_NAME_CASE(FMIN_LEGACY) 3433 NODE_NAME_CASE(FMAX3) 3434 NODE_NAME_CASE(SMAX3) 3435 NODE_NAME_CASE(UMAX3) 3436 NODE_NAME_CASE(FMIN3) 3437 NODE_NAME_CASE(SMIN3) 3438 NODE_NAME_CASE(UMIN3) 3439 NODE_NAME_CASE(FMED3) 3440 NODE_NAME_CASE(SMED3) 3441 NODE_NAME_CASE(UMED3) 3442 NODE_NAME_CASE(URECIP) 3443 NODE_NAME_CASE(DIV_SCALE) 3444 NODE_NAME_CASE(DIV_FMAS) 3445 NODE_NAME_CASE(DIV_FIXUP) 3446 NODE_NAME_CASE(FMAD_FTZ) 3447 NODE_NAME_CASE(TRIG_PREOP) 3448 NODE_NAME_CASE(RCP) 3449 NODE_NAME_CASE(RSQ) 3450 NODE_NAME_CASE(RCP_LEGACY) 3451 NODE_NAME_CASE(RSQ_LEGACY) 3452 NODE_NAME_CASE(FMUL_LEGACY) 3453 NODE_NAME_CASE(RSQ_CLAMP) 3454 NODE_NAME_CASE(LDEXP) 3455 NODE_NAME_CASE(FP_CLASS) 3456 NODE_NAME_CASE(DOT4) 3457 NODE_NAME_CASE(CARRY) 3458 NODE_NAME_CASE(BORROW) 3459 NODE_NAME_CASE(BFE_U32) 3460 NODE_NAME_CASE(BFE_I32) 3461 NODE_NAME_CASE(BFI) 3462 NODE_NAME_CASE(BFM) 3463 NODE_NAME_CASE(FFBH_U32) 3464 NODE_NAME_CASE(FFBH_I32) 3465 NODE_NAME_CASE(MUL_U24) 3466 NODE_NAME_CASE(MUL_I24) 3467 NODE_NAME_CASE(MULHI_U24) 3468 NODE_NAME_CASE(MULHI_I24) 3469 NODE_NAME_CASE(MUL_LOHI_U24) 3470 NODE_NAME_CASE(MUL_LOHI_I24) 3471 NODE_NAME_CASE(MAD_U24) 3472 NODE_NAME_CASE(MAD_I24) 3473 NODE_NAME_CASE(TEXTURE_FETCH) 3474 NODE_NAME_CASE(EXPORT) 3475 NODE_NAME_CASE(EXPORT_DONE) 3476 NODE_NAME_CASE(R600_EXPORT) 3477 NODE_NAME_CASE(CONST_ADDRESS) 3478 NODE_NAME_CASE(REGISTER_LOAD) 3479 NODE_NAME_CASE(REGISTER_STORE) 3480 NODE_NAME_CASE(LOAD_INPUT) 3481 NODE_NAME_CASE(SAMPLE) 3482 NODE_NAME_CASE(SAMPLEB) 3483 NODE_NAME_CASE(SAMPLED) 3484 NODE_NAME_CASE(SAMPLEL) 3485 NODE_NAME_CASE(CVT_F32_UBYTE0) 3486 NODE_NAME_CASE(CVT_F32_UBYTE1) 3487 NODE_NAME_CASE(CVT_F32_UBYTE2) 3488 NODE_NAME_CASE(CVT_F32_UBYTE3) 3489 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 3490 NODE_NAME_CASE(FP_TO_FP16) 3491 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3492 NODE_NAME_CASE(CONST_DATA_PTR) 3493 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3494 NODE_NAME_CASE(KILL) 3495 NODE_NAME_CASE(DUMMY_CHAIN) 3496 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3497 NODE_NAME_CASE(SENDMSG) 3498 NODE_NAME_CASE(SENDMSGHALT) 3499 NODE_NAME_CASE(INTERP_MOV) 3500 NODE_NAME_CASE(INTERP_P1) 3501 NODE_NAME_CASE(INTERP_P2) 3502 NODE_NAME_CASE(STORE_MSKOR) 3503 NODE_NAME_CASE(LOAD_CONSTANT) 3504 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3505 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3506 NODE_NAME_CASE(ATOMIC_INC) 3507 NODE_NAME_CASE(ATOMIC_DEC) 3508 NODE_NAME_CASE(BUFFER_LOAD) 3509 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 3510 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3511 } 3512 return nullptr; 3513 } 3514 3515 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3516 SelectionDAG &DAG, int Enabled, 3517 int &RefinementSteps, 3518 bool &UseOneConstNR, 3519 bool Reciprocal) const { 3520 EVT VT = Operand.getValueType(); 3521 3522 if (VT == MVT::f32) { 3523 RefinementSteps = 0; 3524 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3525 } 3526 3527 // TODO: There is also f64 rsq instruction, but the documentation is less 3528 // clear on its precision. 3529 3530 return SDValue(); 3531 } 3532 3533 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3534 SelectionDAG &DAG, int Enabled, 3535 int &RefinementSteps) const { 3536 EVT VT = Operand.getValueType(); 3537 3538 if (VT == MVT::f32) { 3539 // Reciprocal, < 1 ulp error. 3540 // 3541 // This reciprocal approximation converges to < 0.5 ulp error with one 3542 // newton rhapson performed with two fused multiple adds (FMAs). 3543 3544 RefinementSteps = 0; 3545 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3546 } 3547 3548 // TODO: There is also f64 rcp instruction, but the documentation is less 3549 // clear on its precision. 3550 3551 return SDValue(); 3552 } 3553 3554 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3555 const SDValue Op, 3556 APInt &KnownZero, 3557 APInt &KnownOne, 3558 const SelectionDAG &DAG, 3559 unsigned Depth) const { 3560 3561 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 3562 3563 APInt KnownZero2; 3564 APInt KnownOne2; 3565 unsigned Opc = Op.getOpcode(); 3566 3567 switch (Opc) { 3568 default: 3569 break; 3570 case AMDGPUISD::CARRY: 3571 case AMDGPUISD::BORROW: { 3572 KnownZero = APInt::getHighBitsSet(32, 31); 3573 break; 3574 } 3575 3576 case AMDGPUISD::BFE_I32: 3577 case AMDGPUISD::BFE_U32: { 3578 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3579 if (!CWidth) 3580 return; 3581 3582 unsigned BitWidth = 32; 3583 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3584 3585 if (Opc == AMDGPUISD::BFE_U32) 3586 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 3587 3588 break; 3589 } 3590 case AMDGPUISD::FP_TO_FP16: { 3591 unsigned BitWidth = KnownZero.getBitWidth(); 3592 3593 // High bits are zero. 3594 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 3595 break; 3596 } 3597 } 3598 } 3599 3600 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3601 SDValue Op, 3602 const SelectionDAG &DAG, 3603 unsigned Depth) const { 3604 switch (Op.getOpcode()) { 3605 case AMDGPUISD::BFE_I32: { 3606 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3607 if (!Width) 3608 return 1; 3609 3610 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3611 if (!isNullConstant(Op.getOperand(1))) 3612 return SignBits; 3613 3614 // TODO: Could probably figure something out with non-0 offsets. 3615 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3616 return std::max(SignBits, Op0SignBits); 3617 } 3618 3619 case AMDGPUISD::BFE_U32: { 3620 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3621 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3622 } 3623 3624 case AMDGPUISD::CARRY: 3625 case AMDGPUISD::BORROW: 3626 return 31; 3627 3628 default: 3629 return 1; 3630 } 3631 } 3632