1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 33 using namespace llvm; 34 35 namespace { 36 37 /// Diagnostic information for unimplemented or unsupported feature reporting. 38 class DiagnosticInfoUnsupported : public DiagnosticInfo { 39 private: 40 const Twine &Description; 41 const Function &Fn; 42 43 static int KindID; 44 45 static int getKindID() { 46 if (KindID == 0) 47 KindID = llvm::getNextAvailablePluginDiagnosticKind(); 48 return KindID; 49 } 50 51 public: 52 DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc, 53 DiagnosticSeverity Severity = DS_Error) 54 : DiagnosticInfo(getKindID(), Severity), 55 Description(Desc), 56 Fn(Fn) { } 57 58 const Function &getFunction() const { return Fn; } 59 const Twine &getDescription() const { return Description; } 60 61 void print(DiagnosticPrinter &DP) const override { 62 DP << "unsupported " << getDescription() << " in " << Fn.getName(); 63 } 64 65 static bool classof(const DiagnosticInfo *DI) { 66 return DI->getKind() == getKindID(); 67 } 68 }; 69 70 int DiagnosticInfoUnsupported::KindID = 0; 71 } 72 73 74 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, 75 CCValAssign::LocInfo LocInfo, 76 ISD::ArgFlagsTy ArgFlags, CCState &State) { 77 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), 78 ArgFlags.getOrigAlign()); 79 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 80 81 return true; 82 } 83 84 #include "AMDGPUGenCallingConv.inc" 85 86 // Find a larger type to do a load / store of a vector with. 87 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 88 unsigned StoreSize = VT.getStoreSizeInBits(); 89 if (StoreSize <= 32) 90 return EVT::getIntegerVT(Ctx, StoreSize); 91 92 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 93 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 94 } 95 96 // Type for a vector that will be loaded to. 97 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 98 unsigned StoreSize = VT.getStoreSizeInBits(); 99 if (StoreSize <= 32) 100 return EVT::getIntegerVT(Ctx, 32); 101 102 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 103 } 104 105 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 106 const AMDGPUSubtarget &STI) 107 : TargetLowering(TM), Subtarget(&STI) { 108 setOperationAction(ISD::Constant, MVT::i32, Legal); 109 setOperationAction(ISD::Constant, MVT::i64, Legal); 110 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 111 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 112 113 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 114 setOperationAction(ISD::BRIND, MVT::Other, Expand); 115 116 // We need to custom lower some of the intrinsics 117 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 118 119 // Library functions. These default to Expand, but we have instructions 120 // for them. 121 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 122 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 123 setOperationAction(ISD::FPOW, MVT::f32, Legal); 124 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 125 setOperationAction(ISD::FABS, MVT::f32, Legal); 126 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 127 setOperationAction(ISD::FRINT, MVT::f32, Legal); 128 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 129 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 130 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 131 132 setOperationAction(ISD::FROUND, MVT::f32, Custom); 133 setOperationAction(ISD::FROUND, MVT::f64, Custom); 134 135 setOperationAction(ISD::FREM, MVT::f32, Custom); 136 setOperationAction(ISD::FREM, MVT::f64, Custom); 137 138 // v_mad_f32 does not support denormals according to some sources. 139 if (!Subtarget->hasFP32Denormals()) 140 setOperationAction(ISD::FMAD, MVT::f32, Legal); 141 142 // Expand to fneg + fadd. 143 setOperationAction(ISD::FSUB, MVT::f64, Expand); 144 145 // Lower floating point store/load to integer store/load to reduce the number 146 // of patterns in tablegen. 147 setOperationAction(ISD::STORE, MVT::f32, Promote); 148 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 149 150 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 151 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 152 153 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 154 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 155 156 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 157 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 158 159 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 160 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 161 162 setOperationAction(ISD::STORE, MVT::f64, Promote); 163 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64); 164 165 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 166 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64); 167 168 // Custom lowering of vector stores is required for local address space 169 // stores. 170 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 171 172 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 173 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 174 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 175 176 // XXX: This can be change to Custom, once ExpandVectorStores can 177 // handle 64-bit stores. 178 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 179 180 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 181 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 182 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 183 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 184 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand); 185 186 187 setOperationAction(ISD::LOAD, MVT::f32, Promote); 188 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 189 190 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 191 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 192 193 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 194 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 195 196 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 197 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 198 199 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 200 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 201 202 setOperationAction(ISD::LOAD, MVT::f64, Promote); 203 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64); 204 205 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 206 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64); 207 208 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 209 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 210 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 211 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 212 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 213 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 214 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 215 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 216 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 217 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 218 219 // There are no 64-bit extloads. These should be done as a 32-bit extload and 220 // an extension to 64-bit. 221 for (MVT VT : MVT::integer_valuetypes()) { 222 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 223 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 224 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 225 } 226 227 for (MVT VT : MVT::integer_vector_valuetypes()) { 228 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 229 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 230 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 231 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 232 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 233 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 234 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 235 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 236 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 237 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 238 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 239 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 240 } 241 242 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 243 244 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 245 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 246 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 247 setOperationAction(ISD::FRINT, MVT::f64, Custom); 248 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 249 } 250 251 if (!Subtarget->hasBFI()) { 252 // fcopysign can be done in a single instruction with BFI. 253 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 254 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 255 } 256 257 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 258 259 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 260 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 261 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 262 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 263 264 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 265 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 266 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 267 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 268 269 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 270 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 271 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 272 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 273 274 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 275 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 276 277 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 278 for (MVT VT : ScalarIntVTs) { 279 setOperationAction(ISD::SREM, VT, Expand); 280 setOperationAction(ISD::SDIV, VT, Expand); 281 282 // GPU does not have divrem function for signed or unsigned. 283 setOperationAction(ISD::SDIVREM, VT, Custom); 284 setOperationAction(ISD::UDIVREM, VT, Custom); 285 286 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 287 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 288 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 289 290 setOperationAction(ISD::BSWAP, VT, Expand); 291 setOperationAction(ISD::CTTZ, VT, Expand); 292 setOperationAction(ISD::CTLZ, VT, Expand); 293 } 294 295 if (!Subtarget->hasBCNT(32)) 296 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 297 298 if (!Subtarget->hasBCNT(64)) 299 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 300 301 // The hardware supports 32-bit ROTR, but not ROTL. 302 setOperationAction(ISD::ROTL, MVT::i32, Expand); 303 setOperationAction(ISD::ROTL, MVT::i64, Expand); 304 setOperationAction(ISD::ROTR, MVT::i64, Expand); 305 306 setOperationAction(ISD::MUL, MVT::i64, Expand); 307 setOperationAction(ISD::MULHU, MVT::i64, Expand); 308 setOperationAction(ISD::MULHS, MVT::i64, Expand); 309 setOperationAction(ISD::UDIV, MVT::i32, Expand); 310 setOperationAction(ISD::UREM, MVT::i32, Expand); 311 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 312 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 313 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 314 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 315 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 316 317 setOperationAction(ISD::SMIN, MVT::i32, Legal); 318 setOperationAction(ISD::UMIN, MVT::i32, Legal); 319 setOperationAction(ISD::SMAX, MVT::i32, Legal); 320 setOperationAction(ISD::UMAX, MVT::i32, Legal); 321 322 if (!Subtarget->hasFFBH()) 323 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 324 325 if (!Subtarget->hasFFBL()) 326 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 327 328 static const MVT::SimpleValueType VectorIntTypes[] = { 329 MVT::v2i32, MVT::v4i32 330 }; 331 332 for (MVT VT : VectorIntTypes) { 333 // Expand the following operations for the current type by default. 334 setOperationAction(ISD::ADD, VT, Expand); 335 setOperationAction(ISD::AND, VT, Expand); 336 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 337 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 338 setOperationAction(ISD::MUL, VT, Expand); 339 setOperationAction(ISD::OR, VT, Expand); 340 setOperationAction(ISD::SHL, VT, Expand); 341 setOperationAction(ISD::SRA, VT, Expand); 342 setOperationAction(ISD::SRL, VT, Expand); 343 setOperationAction(ISD::ROTL, VT, Expand); 344 setOperationAction(ISD::ROTR, VT, Expand); 345 setOperationAction(ISD::SUB, VT, Expand); 346 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 347 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 348 setOperationAction(ISD::SDIV, VT, Expand); 349 setOperationAction(ISD::UDIV, VT, Expand); 350 setOperationAction(ISD::SREM, VT, Expand); 351 setOperationAction(ISD::UREM, VT, Expand); 352 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 353 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 354 setOperationAction(ISD::SDIVREM, VT, Custom); 355 setOperationAction(ISD::UDIVREM, VT, Custom); 356 setOperationAction(ISD::ADDC, VT, Expand); 357 setOperationAction(ISD::SUBC, VT, Expand); 358 setOperationAction(ISD::ADDE, VT, Expand); 359 setOperationAction(ISD::SUBE, VT, Expand); 360 setOperationAction(ISD::SELECT, VT, Expand); 361 setOperationAction(ISD::VSELECT, VT, Expand); 362 setOperationAction(ISD::SELECT_CC, VT, Expand); 363 setOperationAction(ISD::XOR, VT, Expand); 364 setOperationAction(ISD::BSWAP, VT, Expand); 365 setOperationAction(ISD::CTPOP, VT, Expand); 366 setOperationAction(ISD::CTTZ, VT, Expand); 367 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 368 setOperationAction(ISD::CTLZ, VT, Expand); 369 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 370 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 371 } 372 373 static const MVT::SimpleValueType FloatVectorTypes[] = { 374 MVT::v2f32, MVT::v4f32 375 }; 376 377 for (MVT VT : FloatVectorTypes) { 378 setOperationAction(ISD::FABS, VT, Expand); 379 setOperationAction(ISD::FMINNUM, VT, Expand); 380 setOperationAction(ISD::FMAXNUM, VT, Expand); 381 setOperationAction(ISD::FADD, VT, Expand); 382 setOperationAction(ISD::FCEIL, VT, Expand); 383 setOperationAction(ISD::FCOS, VT, Expand); 384 setOperationAction(ISD::FDIV, VT, Expand); 385 setOperationAction(ISD::FEXP2, VT, Expand); 386 setOperationAction(ISD::FLOG2, VT, Expand); 387 setOperationAction(ISD::FREM, VT, Expand); 388 setOperationAction(ISD::FPOW, VT, Expand); 389 setOperationAction(ISD::FFLOOR, VT, Expand); 390 setOperationAction(ISD::FTRUNC, VT, Expand); 391 setOperationAction(ISD::FMUL, VT, Expand); 392 setOperationAction(ISD::FMA, VT, Expand); 393 setOperationAction(ISD::FRINT, VT, Expand); 394 setOperationAction(ISD::FNEARBYINT, VT, Expand); 395 setOperationAction(ISD::FSQRT, VT, Expand); 396 setOperationAction(ISD::FSIN, VT, Expand); 397 setOperationAction(ISD::FSUB, VT, Expand); 398 setOperationAction(ISD::FNEG, VT, Expand); 399 setOperationAction(ISD::SELECT, VT, Expand); 400 setOperationAction(ISD::VSELECT, VT, Expand); 401 setOperationAction(ISD::SELECT_CC, VT, Expand); 402 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 403 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 404 } 405 406 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 407 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 408 409 setTargetDAGCombine(ISD::MUL); 410 setTargetDAGCombine(ISD::SELECT); 411 setTargetDAGCombine(ISD::SELECT_CC); 412 setTargetDAGCombine(ISD::STORE); 413 414 setTargetDAGCombine(ISD::FADD); 415 setTargetDAGCombine(ISD::FSUB); 416 417 setBooleanContents(ZeroOrNegativeOneBooleanContent); 418 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 419 420 setSchedulingPreference(Sched::RegPressure); 421 setJumpIsExpensive(true); 422 423 // SI at least has hardware support for floating point exceptions, but no way 424 // of using or handling them is implemented. They are also optional in OpenCL 425 // (Section 7.3) 426 setHasFloatingPointExceptions(false); 427 428 setSelectIsExpensive(false); 429 PredictableSelectIsExpensive = false; 430 431 // There are no integer divide instructions, and these expand to a pretty 432 // large sequence of instructions. 433 setIntDivIsCheap(false); 434 setPow2SDivIsCheap(false); 435 setFsqrtIsCheap(true); 436 437 // FIXME: Need to really handle these. 438 MaxStoresPerMemcpy = 4096; 439 MaxStoresPerMemmove = 4096; 440 MaxStoresPerMemset = 4096; 441 } 442 443 //===----------------------------------------------------------------------===// 444 // Target Information 445 //===----------------------------------------------------------------------===// 446 447 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 448 return MVT::i32; 449 } 450 451 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 452 return true; 453 } 454 455 // The backend supports 32 and 64 bit floating point immediates. 456 // FIXME: Why are we reporting vectors of FP immediates as legal? 457 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 458 EVT ScalarVT = VT.getScalarType(); 459 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 460 } 461 462 // We don't want to shrink f64 / f32 constants. 463 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 464 EVT ScalarVT = VT.getScalarType(); 465 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 466 } 467 468 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 469 ISD::LoadExtType, 470 EVT NewVT) const { 471 472 unsigned NewSize = NewVT.getStoreSizeInBits(); 473 474 // If we are reducing to a 32-bit load, this is always better. 475 if (NewSize == 32) 476 return true; 477 478 EVT OldVT = N->getValueType(0); 479 unsigned OldSize = OldVT.getStoreSizeInBits(); 480 481 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 482 // extloads, so doing one requires using a buffer_load. In cases where we 483 // still couldn't use a scalar load, using the wider load shouldn't really 484 // hurt anything. 485 486 // If the old size already had to be an extload, there's no harm in continuing 487 // to reduce the width. 488 return (OldSize < 32); 489 } 490 491 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 492 EVT CastTy) const { 493 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 494 return true; 495 496 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 497 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 498 499 return ((LScalarSize <= CastScalarSize) || 500 (CastScalarSize >= 32) || 501 (LScalarSize < 32)); 502 } 503 504 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 505 // profitable with the expansion for 64-bit since it's generally good to 506 // speculate things. 507 // FIXME: These should really have the size as a parameter. 508 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 509 return true; 510 } 511 512 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 513 return true; 514 } 515 516 //===---------------------------------------------------------------------===// 517 // Target Properties 518 //===---------------------------------------------------------------------===// 519 520 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 521 assert(VT.isFloatingPoint()); 522 return VT == MVT::f32 || VT == MVT::f64; 523 } 524 525 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 526 assert(VT.isFloatingPoint()); 527 return VT == MVT::f32 || VT == MVT::f64; 528 } 529 530 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 531 unsigned NumElem, 532 unsigned AS) const { 533 return true; 534 } 535 536 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 537 // Truncate is just accessing a subregister. 538 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 539 } 540 541 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 542 // Truncate is just accessing a subregister. 543 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 544 (Dest->getPrimitiveSizeInBits() % 32 == 0); 545 } 546 547 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 548 unsigned SrcSize = Src->getScalarSizeInBits(); 549 unsigned DestSize = Dest->getScalarSizeInBits(); 550 551 return SrcSize == 32 && DestSize == 64; 552 } 553 554 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 555 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 556 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 557 // this will enable reducing 64-bit operations the 32-bit, which is always 558 // good. 559 return Src == MVT::i32 && Dest == MVT::i64; 560 } 561 562 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 563 return isZExtFree(Val.getValueType(), VT2); 564 } 565 566 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 567 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 568 // limited number of native 64-bit operations. Shrinking an operation to fit 569 // in a single 32-bit register should always be helpful. As currently used, 570 // this is much less general than the name suggests, and is only used in 571 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 572 // not profitable, and may actually be harmful. 573 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 574 } 575 576 //===---------------------------------------------------------------------===// 577 // TargetLowering Callbacks 578 //===---------------------------------------------------------------------===// 579 580 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 581 const SmallVectorImpl<ISD::InputArg> &Ins) const { 582 583 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 584 } 585 586 SDValue AMDGPUTargetLowering::LowerReturn( 587 SDValue Chain, 588 CallingConv::ID CallConv, 589 bool isVarArg, 590 const SmallVectorImpl<ISD::OutputArg> &Outs, 591 const SmallVectorImpl<SDValue> &OutVals, 592 SDLoc DL, SelectionDAG &DAG) const { 593 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 594 } 595 596 //===---------------------------------------------------------------------===// 597 // Target specific lowering 598 //===---------------------------------------------------------------------===// 599 600 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 601 SmallVectorImpl<SDValue> &InVals) const { 602 SDValue Callee = CLI.Callee; 603 SelectionDAG &DAG = CLI.DAG; 604 605 const Function &Fn = *DAG.getMachineFunction().getFunction(); 606 607 StringRef FuncName("<unknown>"); 608 609 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 610 FuncName = G->getSymbol(); 611 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 612 FuncName = G->getGlobal()->getName(); 613 614 DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName); 615 DAG.getContext()->diagnose(NoCalls); 616 return SDValue(); 617 } 618 619 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 620 SelectionDAG &DAG) const { 621 switch (Op.getOpcode()) { 622 default: 623 Op.getNode()->dump(); 624 llvm_unreachable("Custom lowering code for this" 625 "instruction is not implemented yet!"); 626 break; 627 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 628 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 629 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 630 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); 631 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 632 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 633 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 634 case ISD::FREM: return LowerFREM(Op, DAG); 635 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 636 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 637 case ISD::FRINT: return LowerFRINT(Op, DAG); 638 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 639 case ISD::FROUND: return LowerFROUND(Op, DAG); 640 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 641 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 642 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 643 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 644 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 645 } 646 return Op; 647 } 648 649 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 650 SmallVectorImpl<SDValue> &Results, 651 SelectionDAG &DAG) const { 652 switch (N->getOpcode()) { 653 case ISD::SIGN_EXTEND_INREG: 654 // Different parts of legalization seem to interpret which type of 655 // sign_extend_inreg is the one to check for custom lowering. The extended 656 // from type is what really matters, but some places check for custom 657 // lowering of the result type. This results in trying to use 658 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 659 // nothing here and let the illegal result integer be handled normally. 660 return; 661 case ISD::LOAD: { 662 SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode(); 663 if (!Node) 664 return; 665 666 Results.push_back(SDValue(Node, 0)); 667 Results.push_back(SDValue(Node, 1)); 668 // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode 669 // function 670 DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1)); 671 return; 672 } 673 case ISD::STORE: { 674 SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG); 675 if (Lowered.getNode()) 676 Results.push_back(Lowered); 677 return; 678 } 679 default: 680 return; 681 } 682 } 683 684 // FIXME: This implements accesses to initialized globals in the constant 685 // address space by copying them to private and accessing that. It does not 686 // properly handle illegal types or vectors. The private vector loads are not 687 // scalarized, and the illegal scalars hit an assertion. This technique will not 688 // work well with large initializers, and this should eventually be 689 // removed. Initialized globals should be placed into a data section that the 690 // runtime will load into a buffer before the kernel is executed. Uses of the 691 // global need to be replaced with a pointer loaded from an implicit kernel 692 // argument into this buffer holding the copy of the data, which will remove the 693 // need for any of this. 694 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 695 const GlobalValue *GV, 696 const SDValue &InitPtr, 697 SDValue Chain, 698 SelectionDAG &DAG) const { 699 const DataLayout &TD = DAG.getDataLayout(); 700 SDLoc DL(InitPtr); 701 Type *InitTy = Init->getType(); 702 703 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 704 EVT VT = EVT::getEVT(InitTy); 705 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 706 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 707 MachinePointerInfo(UndefValue::get(PtrTy)), false, 708 false, TD.getPrefTypeAlignment(InitTy)); 709 } 710 711 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 712 EVT VT = EVT::getEVT(CFP->getType()); 713 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 714 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 715 MachinePointerInfo(UndefValue::get(PtrTy)), false, 716 false, TD.getPrefTypeAlignment(CFP->getType())); 717 } 718 719 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 720 const StructLayout *SL = TD.getStructLayout(ST); 721 722 EVT PtrVT = InitPtr.getValueType(); 723 SmallVector<SDValue, 8> Chains; 724 725 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 726 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 727 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 728 729 Constant *Elt = Init->getAggregateElement(I); 730 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 731 } 732 733 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 734 } 735 736 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 737 EVT PtrVT = InitPtr.getValueType(); 738 739 unsigned NumElements; 740 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 741 NumElements = AT->getNumElements(); 742 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 743 NumElements = VT->getNumElements(); 744 else 745 llvm_unreachable("Unexpected type"); 746 747 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 748 SmallVector<SDValue, 8> Chains; 749 for (unsigned i = 0; i < NumElements; ++i) { 750 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 751 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 752 753 Constant *Elt = Init->getAggregateElement(i); 754 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 755 } 756 757 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 758 } 759 760 if (isa<UndefValue>(Init)) { 761 EVT VT = EVT::getEVT(InitTy); 762 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 763 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 764 MachinePointerInfo(UndefValue::get(PtrTy)), false, 765 false, TD.getPrefTypeAlignment(InitTy)); 766 } 767 768 Init->dump(); 769 llvm_unreachable("Unhandled constant initializer"); 770 } 771 772 static bool hasDefinedInitializer(const GlobalValue *GV) { 773 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 774 if (!GVar || !GVar->hasInitializer()) 775 return false; 776 777 if (isa<UndefValue>(GVar->getInitializer())) 778 return false; 779 780 return true; 781 } 782 783 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 784 SDValue Op, 785 SelectionDAG &DAG) const { 786 787 const DataLayout &DL = DAG.getDataLayout(); 788 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 789 const GlobalValue *GV = G->getGlobal(); 790 791 switch (G->getAddressSpace()) { 792 case AMDGPUAS::LOCAL_ADDRESS: { 793 // XXX: What does the value of G->getOffset() mean? 794 assert(G->getOffset() == 0 && 795 "Do not know what to do with an non-zero offset"); 796 797 // TODO: We could emit code to handle the initialization somewhere. 798 if (hasDefinedInitializer(GV)) 799 break; 800 801 unsigned Offset; 802 if (MFI->LocalMemoryObjects.count(GV) == 0) { 803 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 804 Offset = MFI->LDSSize; 805 MFI->LocalMemoryObjects[GV] = Offset; 806 // XXX: Account for alignment? 807 MFI->LDSSize += Size; 808 } else { 809 Offset = MFI->LocalMemoryObjects[GV]; 810 } 811 812 return DAG.getConstant(Offset, SDLoc(Op), 813 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 814 } 815 case AMDGPUAS::CONSTANT_ADDRESS: { 816 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 817 Type *EltType = GV->getType()->getElementType(); 818 unsigned Size = DL.getTypeAllocSize(EltType); 819 unsigned Alignment = DL.getPrefTypeAlignment(EltType); 820 821 MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS); 822 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 823 824 int FI = FrameInfo->CreateStackObject(Size, Alignment, false); 825 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT); 826 827 const GlobalVariable *Var = cast<GlobalVariable>(GV); 828 if (!Var->hasInitializer()) { 829 // This has no use, but bugpoint will hit it. 830 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 831 } 832 833 const Constant *Init = Var->getInitializer(); 834 SmallVector<SDNode*, 8> WorkList; 835 836 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(), 837 E = DAG.getEntryNode()->use_end(); I != E; ++I) { 838 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD) 839 continue; 840 WorkList.push_back(*I); 841 } 842 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG); 843 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(), 844 E = WorkList.end(); I != E; ++I) { 845 SmallVector<SDValue, 8> Ops; 846 Ops.push_back(Chain); 847 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) { 848 Ops.push_back((*I)->getOperand(i)); 849 } 850 DAG.UpdateNodeOperands(*I, Ops); 851 } 852 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 853 } 854 } 855 856 const Function &Fn = *DAG.getMachineFunction().getFunction(); 857 DiagnosticInfoUnsupported BadInit(Fn, 858 "initializer for address space"); 859 DAG.getContext()->diagnose(BadInit); 860 return SDValue(); 861 } 862 863 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 864 SelectionDAG &DAG) const { 865 SmallVector<SDValue, 8> Args; 866 867 for (const SDUse &U : Op->ops()) 868 DAG.ExtractVectorElements(U.get(), Args); 869 870 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 871 } 872 873 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 874 SelectionDAG &DAG) const { 875 876 SmallVector<SDValue, 8> Args; 877 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 878 EVT VT = Op.getValueType(); 879 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 880 VT.getVectorNumElements()); 881 882 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 883 } 884 885 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op, 886 SelectionDAG &DAG) const { 887 888 MachineFunction &MF = DAG.getMachineFunction(); 889 const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering(); 890 891 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 892 893 unsigned FrameIndex = FIN->getIndex(); 894 unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex); 895 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), 896 Op.getValueType()); 897 } 898 899 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 900 SelectionDAG &DAG) const { 901 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 902 SDLoc DL(Op); 903 EVT VT = Op.getValueType(); 904 905 switch (IntrinsicID) { 906 default: return Op; 907 case AMDGPUIntrinsic::AMDGPU_abs: 908 case AMDGPUIntrinsic::AMDIL_abs: // Legacy name. 909 return LowerIntrinsicIABS(Op, DAG); 910 case AMDGPUIntrinsic::AMDGPU_lrp: 911 return LowerIntrinsicLRP(Op, DAG); 912 913 case AMDGPUIntrinsic::AMDGPU_clamp: 914 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 915 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 916 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 917 918 case Intrinsic::AMDGPU_div_scale: { 919 // 3rd parameter required to be a constant. 920 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3)); 921 if (!Param) 922 return DAG.getUNDEF(VT); 923 924 // Translate to the operands expected by the machine instruction. The 925 // first parameter must be the same as the first instruction. 926 SDValue Numerator = Op.getOperand(1); 927 SDValue Denominator = Op.getOperand(2); 928 929 // Note this order is opposite of the machine instruction's operations, 930 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 931 // intrinsic has the numerator as the first operand to match a normal 932 // division operation. 933 934 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 935 936 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 937 Denominator, Numerator); 938 } 939 940 case Intrinsic::AMDGPU_div_fmas: 941 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 942 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 943 Op.getOperand(4)); 944 945 case Intrinsic::AMDGPU_div_fixup: 946 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 947 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 948 949 case Intrinsic::AMDGPU_trig_preop: 950 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, 951 Op.getOperand(1), Op.getOperand(2)); 952 953 case Intrinsic::AMDGPU_rcp: 954 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 955 956 case Intrinsic::AMDGPU_rsq: 957 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 958 959 case AMDGPUIntrinsic::AMDGPU_legacy_rsq: 960 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); 961 962 case Intrinsic::AMDGPU_rsq_clamped: 963 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 964 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 965 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 966 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 967 968 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 969 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 970 DAG.getConstantFP(Max, DL, VT)); 971 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 972 DAG.getConstantFP(Min, DL, VT)); 973 } else { 974 return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1)); 975 } 976 977 case Intrinsic::AMDGPU_ldexp: 978 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 979 Op.getOperand(2)); 980 981 case AMDGPUIntrinsic::AMDGPU_imax: 982 return DAG.getNode(ISD::SMAX, DL, VT, Op.getOperand(1), 983 Op.getOperand(2)); 984 case AMDGPUIntrinsic::AMDGPU_umax: 985 return DAG.getNode(ISD::UMAX, DL, VT, Op.getOperand(1), 986 Op.getOperand(2)); 987 case AMDGPUIntrinsic::AMDGPU_imin: 988 return DAG.getNode(ISD::SMIN, DL, VT, Op.getOperand(1), 989 Op.getOperand(2)); 990 case AMDGPUIntrinsic::AMDGPU_umin: 991 return DAG.getNode(ISD::UMIN, DL, VT, Op.getOperand(1), 992 Op.getOperand(2)); 993 994 case AMDGPUIntrinsic::AMDGPU_umul24: 995 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, 996 Op.getOperand(1), Op.getOperand(2)); 997 998 case AMDGPUIntrinsic::AMDGPU_imul24: 999 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, 1000 Op.getOperand(1), Op.getOperand(2)); 1001 1002 case AMDGPUIntrinsic::AMDGPU_umad24: 1003 return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT, 1004 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 1005 1006 case AMDGPUIntrinsic::AMDGPU_imad24: 1007 return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT, 1008 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 1009 1010 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0: 1011 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1)); 1012 1013 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1: 1014 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1)); 1015 1016 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2: 1017 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1)); 1018 1019 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3: 1020 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1)); 1021 1022 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 1023 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 1024 Op.getOperand(1), 1025 Op.getOperand(2), 1026 Op.getOperand(3)); 1027 1028 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 1029 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 1030 Op.getOperand(1), 1031 Op.getOperand(2), 1032 Op.getOperand(3)); 1033 1034 case AMDGPUIntrinsic::AMDGPU_bfi: 1035 return DAG.getNode(AMDGPUISD::BFI, DL, VT, 1036 Op.getOperand(1), 1037 Op.getOperand(2), 1038 Op.getOperand(3)); 1039 1040 case AMDGPUIntrinsic::AMDGPU_bfm: 1041 return DAG.getNode(AMDGPUISD::BFM, DL, VT, 1042 Op.getOperand(1), 1043 Op.getOperand(2)); 1044 1045 case AMDGPUIntrinsic::AMDGPU_brev: 1046 return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1)); 1047 1048 case Intrinsic::AMDGPU_class: 1049 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 1050 Op.getOperand(1), Op.getOperand(2)); 1051 1052 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 1053 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 1054 1055 case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name. 1056 return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1)); 1057 case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name. 1058 return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1)); 1059 } 1060 } 1061 1062 ///IABS(a) = SMAX(sub(0, a), a) 1063 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op, 1064 SelectionDAG &DAG) const { 1065 SDLoc DL(Op); 1066 EVT VT = Op.getValueType(); 1067 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1068 Op.getOperand(1)); 1069 1070 return DAG.getNode(ISD::SMAX, DL, VT, Neg, Op.getOperand(1)); 1071 } 1072 1073 /// Linear Interpolation 1074 /// LRP(a, b, c) = muladd(a, b, (1 - a) * c) 1075 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op, 1076 SelectionDAG &DAG) const { 1077 SDLoc DL(Op); 1078 EVT VT = Op.getValueType(); 1079 SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT, 1080 DAG.getConstantFP(1.0f, DL, MVT::f32), 1081 Op.getOperand(1)); 1082 SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA, 1083 Op.getOperand(3)); 1084 return DAG.getNode(ISD::FADD, DL, VT, 1085 DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)), 1086 OneSubAC); 1087 } 1088 1089 /// \brief Generate Min/Max node 1090 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, 1091 EVT VT, 1092 SDValue LHS, 1093 SDValue RHS, 1094 SDValue True, 1095 SDValue False, 1096 SDValue CC, 1097 DAGCombinerInfo &DCI) const { 1098 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 1099 return SDValue(); 1100 1101 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1102 return SDValue(); 1103 1104 SelectionDAG &DAG = DCI.DAG; 1105 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1106 switch (CCOpcode) { 1107 case ISD::SETOEQ: 1108 case ISD::SETONE: 1109 case ISD::SETUNE: 1110 case ISD::SETNE: 1111 case ISD::SETUEQ: 1112 case ISD::SETEQ: 1113 case ISD::SETFALSE: 1114 case ISD::SETFALSE2: 1115 case ISD::SETTRUE: 1116 case ISD::SETTRUE2: 1117 case ISD::SETUO: 1118 case ISD::SETO: 1119 break; 1120 case ISD::SETULE: 1121 case ISD::SETULT: { 1122 if (LHS == True) 1123 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1124 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1125 } 1126 case ISD::SETOLE: 1127 case ISD::SETOLT: 1128 case ISD::SETLE: 1129 case ISD::SETLT: { 1130 // Ordered. Assume ordered for undefined. 1131 1132 // Only do this after legalization to avoid interfering with other combines 1133 // which might occur. 1134 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1135 !DCI.isCalledByLegalizer()) 1136 return SDValue(); 1137 1138 // We need to permute the operands to get the correct NaN behavior. The 1139 // selected operand is the second one based on the failing compare with NaN, 1140 // so permute it based on the compare type the hardware uses. 1141 if (LHS == True) 1142 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1143 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1144 } 1145 case ISD::SETUGE: 1146 case ISD::SETUGT: { 1147 if (LHS == True) 1148 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1149 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1150 } 1151 case ISD::SETGT: 1152 case ISD::SETGE: 1153 case ISD::SETOGE: 1154 case ISD::SETOGT: { 1155 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1156 !DCI.isCalledByLegalizer()) 1157 return SDValue(); 1158 1159 if (LHS == True) 1160 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1161 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1162 } 1163 case ISD::SETCC_INVALID: 1164 llvm_unreachable("Invalid setcc condcode!"); 1165 } 1166 return SDValue(); 1167 } 1168 1169 // FIXME: Remove this when combines added to DAGCombiner. 1170 SDValue AMDGPUTargetLowering::CombineIMinMax(SDLoc DL, 1171 EVT VT, 1172 SDValue LHS, 1173 SDValue RHS, 1174 SDValue True, 1175 SDValue False, 1176 SDValue CC, 1177 SelectionDAG &DAG) const { 1178 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1179 return SDValue(); 1180 1181 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1182 switch (CCOpcode) { 1183 case ISD::SETULE: 1184 case ISD::SETULT: { 1185 unsigned Opc = (LHS == True) ? ISD::UMIN : ISD::UMAX; 1186 return DAG.getNode(Opc, DL, VT, LHS, RHS); 1187 } 1188 case ISD::SETLE: 1189 case ISD::SETLT: { 1190 unsigned Opc = (LHS == True) ? ISD::SMIN : ISD::SMAX; 1191 return DAG.getNode(Opc, DL, VT, LHS, RHS); 1192 } 1193 case ISD::SETGT: 1194 case ISD::SETGE: { 1195 unsigned Opc = (LHS == True) ? ISD::SMAX : ISD::SMIN; 1196 return DAG.getNode(Opc, DL, VT, LHS, RHS); 1197 } 1198 case ISD::SETUGE: 1199 case ISD::SETUGT: { 1200 unsigned Opc = (LHS == True) ? ISD::UMAX : ISD::UMIN; 1201 return DAG.getNode(Opc, DL, VT, LHS, RHS); 1202 } 1203 default: 1204 return SDValue(); 1205 } 1206 } 1207 1208 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op, 1209 SelectionDAG &DAG) const { 1210 LoadSDNode *Load = cast<LoadSDNode>(Op); 1211 EVT MemVT = Load->getMemoryVT(); 1212 EVT MemEltVT = MemVT.getVectorElementType(); 1213 1214 EVT LoadVT = Op.getValueType(); 1215 EVT EltVT = LoadVT.getVectorElementType(); 1216 EVT PtrVT = Load->getBasePtr().getValueType(); 1217 1218 unsigned NumElts = Load->getMemoryVT().getVectorNumElements(); 1219 SmallVector<SDValue, 8> Loads; 1220 SmallVector<SDValue, 8> Chains; 1221 1222 SDLoc SL(Op); 1223 unsigned MemEltSize = MemEltVT.getStoreSize(); 1224 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1225 1226 for (unsigned i = 0; i < NumElts; ++i) { 1227 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(), 1228 DAG.getConstant(i * MemEltSize, SL, PtrVT)); 1229 1230 SDValue NewLoad 1231 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT, 1232 Load->getChain(), Ptr, 1233 SrcValue.getWithOffset(i * MemEltSize), 1234 MemEltVT, Load->isVolatile(), Load->isNonTemporal(), 1235 Load->isInvariant(), Load->getAlignment()); 1236 Loads.push_back(NewLoad.getValue(0)); 1237 Chains.push_back(NewLoad.getValue(1)); 1238 } 1239 1240 SDValue Ops[] = { 1241 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads), 1242 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains) 1243 }; 1244 1245 return DAG.getMergeValues(Ops, SL); 1246 } 1247 1248 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1249 SelectionDAG &DAG) const { 1250 EVT VT = Op.getValueType(); 1251 1252 // If this is a 2 element vector, we really want to scalarize and not create 1253 // weird 1 element vectors. 1254 if (VT.getVectorNumElements() == 2) 1255 return ScalarizeVectorLoad(Op, DAG); 1256 1257 LoadSDNode *Load = cast<LoadSDNode>(Op); 1258 SDValue BasePtr = Load->getBasePtr(); 1259 EVT PtrVT = BasePtr.getValueType(); 1260 EVT MemVT = Load->getMemoryVT(); 1261 SDLoc SL(Op); 1262 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1263 1264 EVT LoVT, HiVT; 1265 EVT LoMemVT, HiMemVT; 1266 SDValue Lo, Hi; 1267 1268 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1269 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1270 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1271 SDValue LoLoad 1272 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1273 Load->getChain(), BasePtr, 1274 SrcValue, 1275 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1276 Load->isInvariant(), Load->getAlignment()); 1277 1278 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1279 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1280 PtrVT)); 1281 1282 SDValue HiLoad 1283 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1284 Load->getChain(), HiPtr, 1285 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1286 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1287 Load->isInvariant(), Load->getAlignment()); 1288 1289 SDValue Ops[] = { 1290 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1291 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1292 LoLoad.getValue(1), HiLoad.getValue(1)) 1293 }; 1294 1295 return DAG.getMergeValues(Ops, SL); 1296 } 1297 1298 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1299 SelectionDAG &DAG) const { 1300 StoreSDNode *Store = cast<StoreSDNode>(Op); 1301 EVT MemVT = Store->getMemoryVT(); 1302 unsigned MemBits = MemVT.getSizeInBits(); 1303 1304 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1305 // truncating store into an i32 store. 1306 // XXX: We could also handle optimize other vector bitwidths. 1307 if (!MemVT.isVector() || MemBits > 32) { 1308 return SDValue(); 1309 } 1310 1311 SDLoc DL(Op); 1312 SDValue Value = Store->getValue(); 1313 EVT VT = Value.getValueType(); 1314 EVT ElemVT = VT.getVectorElementType(); 1315 SDValue Ptr = Store->getBasePtr(); 1316 EVT MemEltVT = MemVT.getVectorElementType(); 1317 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1318 unsigned MemNumElements = MemVT.getVectorNumElements(); 1319 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1320 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1321 1322 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1323 1324 SDValue PackedValue; 1325 for (unsigned i = 0; i < MemNumElements; ++i) { 1326 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1327 DAG.getConstant(i, DL, MVT::i32)); 1328 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1329 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1330 1331 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1332 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1333 1334 if (i == 0) { 1335 PackedValue = Elt; 1336 } else { 1337 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1338 } 1339 } 1340 1341 if (PackedSize < 32) { 1342 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1343 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1344 Store->getMemOperand()->getPointerInfo(), 1345 PackedVT, 1346 Store->isNonTemporal(), Store->isVolatile(), 1347 Store->getAlignment()); 1348 } 1349 1350 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1351 Store->getMemOperand()->getPointerInfo(), 1352 Store->isVolatile(), Store->isNonTemporal(), 1353 Store->getAlignment()); 1354 } 1355 1356 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op, 1357 SelectionDAG &DAG) const { 1358 StoreSDNode *Store = cast<StoreSDNode>(Op); 1359 EVT MemEltVT = Store->getMemoryVT().getVectorElementType(); 1360 EVT EltVT = Store->getValue().getValueType().getVectorElementType(); 1361 EVT PtrVT = Store->getBasePtr().getValueType(); 1362 unsigned NumElts = Store->getMemoryVT().getVectorNumElements(); 1363 SDLoc SL(Op); 1364 1365 SmallVector<SDValue, 8> Chains; 1366 1367 unsigned EltSize = MemEltVT.getStoreSize(); 1368 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1369 1370 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1371 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 1372 Store->getValue(), 1373 DAG.getConstant(i, SL, MVT::i32)); 1374 1375 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT); 1376 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset); 1377 SDValue NewStore = 1378 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr, 1379 SrcValue.getWithOffset(i * EltSize), 1380 MemEltVT, Store->isNonTemporal(), Store->isVolatile(), 1381 Store->getAlignment()); 1382 Chains.push_back(NewStore); 1383 } 1384 1385 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains); 1386 } 1387 1388 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1389 SelectionDAG &DAG) const { 1390 StoreSDNode *Store = cast<StoreSDNode>(Op); 1391 SDValue Val = Store->getValue(); 1392 EVT VT = Val.getValueType(); 1393 1394 // If this is a 2 element vector, we really want to scalarize and not create 1395 // weird 1 element vectors. 1396 if (VT.getVectorNumElements() == 2) 1397 return ScalarizeVectorStore(Op, DAG); 1398 1399 EVT MemVT = Store->getMemoryVT(); 1400 SDValue Chain = Store->getChain(); 1401 SDValue BasePtr = Store->getBasePtr(); 1402 SDLoc SL(Op); 1403 1404 EVT LoVT, HiVT; 1405 EVT LoMemVT, HiMemVT; 1406 SDValue Lo, Hi; 1407 1408 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1409 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1410 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1411 1412 EVT PtrVT = BasePtr.getValueType(); 1413 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1414 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1415 PtrVT)); 1416 1417 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1418 SDValue LoStore 1419 = DAG.getTruncStore(Chain, SL, Lo, 1420 BasePtr, 1421 SrcValue, 1422 LoMemVT, 1423 Store->isNonTemporal(), 1424 Store->isVolatile(), 1425 Store->getAlignment()); 1426 SDValue HiStore 1427 = DAG.getTruncStore(Chain, SL, Hi, 1428 HiPtr, 1429 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1430 HiMemVT, 1431 Store->isNonTemporal(), 1432 Store->isVolatile(), 1433 Store->getAlignment()); 1434 1435 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1436 } 1437 1438 1439 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1440 SDLoc DL(Op); 1441 LoadSDNode *Load = cast<LoadSDNode>(Op); 1442 ISD::LoadExtType ExtType = Load->getExtensionType(); 1443 EVT VT = Op.getValueType(); 1444 EVT MemVT = Load->getMemoryVT(); 1445 1446 if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) { 1447 assert(VT == MVT::i1 && "Only i1 non-extloads expected"); 1448 // FIXME: Copied from PPC 1449 // First, load into 32 bits, then truncate to 1 bit. 1450 1451 SDValue Chain = Load->getChain(); 1452 SDValue BasePtr = Load->getBasePtr(); 1453 MachineMemOperand *MMO = Load->getMemOperand(); 1454 1455 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 1456 BasePtr, MVT::i8, MMO); 1457 1458 SDValue Ops[] = { 1459 DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD), 1460 NewLD.getValue(1) 1461 }; 1462 1463 return DAG.getMergeValues(Ops, DL); 1464 } 1465 1466 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS || 1467 Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS || 1468 ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32)) 1469 return SDValue(); 1470 1471 // <SI && AS=PRIVATE && EXTLOAD && size < 32bit, 1472 // register (2-)byte extract. 1473 1474 // Get Register holding the target. 1475 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(), 1476 DAG.getConstant(2, DL, MVT::i32)); 1477 // Load the Register. 1478 SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(), 1479 Load->getChain(), Ptr, 1480 DAG.getTargetConstant(0, DL, MVT::i32), 1481 Op.getOperand(2)); 1482 1483 // Get offset within the register. 1484 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, 1485 Load->getBasePtr(), 1486 DAG.getConstant(0x3, DL, MVT::i32)); 1487 1488 // Bit offset of target byte (byteIdx * 8). 1489 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1490 DAG.getConstant(3, DL, MVT::i32)); 1491 1492 // Shift to the right. 1493 Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt); 1494 1495 // Eliminate the upper bits by setting them to ... 1496 EVT MemEltVT = MemVT.getScalarType(); 1497 1498 // ... ones. 1499 if (ExtType == ISD::SEXTLOAD) { 1500 SDValue MemEltVTNode = DAG.getValueType(MemEltVT); 1501 1502 SDValue Ops[] = { 1503 DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode), 1504 Load->getChain() 1505 }; 1506 1507 return DAG.getMergeValues(Ops, DL); 1508 } 1509 1510 // ... or zeros. 1511 SDValue Ops[] = { 1512 DAG.getZeroExtendInReg(Ret, DL, MemEltVT), 1513 Load->getChain() 1514 }; 1515 1516 return DAG.getMergeValues(Ops, DL); 1517 } 1518 1519 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1520 SDLoc DL(Op); 1521 SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG); 1522 if (Result.getNode()) { 1523 return Result; 1524 } 1525 1526 StoreSDNode *Store = cast<StoreSDNode>(Op); 1527 SDValue Chain = Store->getChain(); 1528 if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1529 Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && 1530 Store->getValue().getValueType().isVector()) { 1531 return ScalarizeVectorStore(Op, DAG); 1532 } 1533 1534 EVT MemVT = Store->getMemoryVT(); 1535 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS && 1536 MemVT.bitsLT(MVT::i32)) { 1537 unsigned Mask = 0; 1538 if (Store->getMemoryVT() == MVT::i8) { 1539 Mask = 0xff; 1540 } else if (Store->getMemoryVT() == MVT::i16) { 1541 Mask = 0xffff; 1542 } 1543 SDValue BasePtr = Store->getBasePtr(); 1544 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr, 1545 DAG.getConstant(2, DL, MVT::i32)); 1546 SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32, 1547 Chain, Ptr, 1548 DAG.getTargetConstant(0, DL, MVT::i32)); 1549 1550 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr, 1551 DAG.getConstant(0x3, DL, MVT::i32)); 1552 1553 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1554 DAG.getConstant(3, DL, MVT::i32)); 1555 1556 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, 1557 Store->getValue()); 1558 1559 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); 1560 1561 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, 1562 MaskedValue, ShiftAmt); 1563 1564 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, 1565 DAG.getConstant(Mask, DL, MVT::i32), 1566 ShiftAmt); 1567 DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask, 1568 DAG.getConstant(0xffffffff, DL, MVT::i32)); 1569 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); 1570 1571 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); 1572 return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, 1573 Chain, Value, Ptr, 1574 DAG.getTargetConstant(0, DL, MVT::i32)); 1575 } 1576 return SDValue(); 1577 } 1578 1579 // This is a shortcut for integer division because we have fast i32<->f32 1580 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1581 // float is enough to accurately represent up to a 24-bit integer. 1582 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const { 1583 SDLoc DL(Op); 1584 EVT VT = Op.getValueType(); 1585 SDValue LHS = Op.getOperand(0); 1586 SDValue RHS = Op.getOperand(1); 1587 MVT IntVT = MVT::i32; 1588 MVT FltVT = MVT::f32; 1589 1590 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1591 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1592 1593 if (VT.isVector()) { 1594 unsigned NElts = VT.getVectorNumElements(); 1595 IntVT = MVT::getVectorVT(MVT::i32, NElts); 1596 FltVT = MVT::getVectorVT(MVT::f32, NElts); 1597 } 1598 1599 unsigned BitSize = VT.getScalarType().getSizeInBits(); 1600 1601 SDValue jq = DAG.getConstant(1, DL, IntVT); 1602 1603 if (sign) { 1604 // char|short jq = ia ^ ib; 1605 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1606 1607 // jq = jq >> (bitsize - 2) 1608 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1609 DAG.getConstant(BitSize - 2, DL, VT)); 1610 1611 // jq = jq | 0x1 1612 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1613 1614 // jq = (int)jq 1615 jq = DAG.getSExtOrTrunc(jq, DL, IntVT); 1616 } 1617 1618 // int ia = (int)LHS; 1619 SDValue ia = sign ? 1620 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT); 1621 1622 // int ib, (int)RHS; 1623 SDValue ib = sign ? 1624 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT); 1625 1626 // float fa = (float)ia; 1627 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1628 1629 // float fb = (float)ib; 1630 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1631 1632 // float fq = native_divide(fa, fb); 1633 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1634 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1635 1636 // fq = trunc(fq); 1637 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1638 1639 // float fqneg = -fq; 1640 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1641 1642 // float fr = mad(fqneg, fb, fa); 1643 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT, 1644 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa); 1645 1646 // int iq = (int)fq; 1647 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1648 1649 // fr = fabs(fr); 1650 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1651 1652 // fb = fabs(fb); 1653 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1654 1655 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1656 1657 // int cv = fr >= fb; 1658 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1659 1660 // jq = (cv ? jq : 0); 1661 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1662 1663 // dst = trunc/extend to legal type 1664 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT); 1665 1666 // dst = iq + jq; 1667 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1668 1669 // Rem needs compensation, it's easier to recompute it 1670 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1671 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1672 1673 SDValue Res[2] = { 1674 Div, 1675 Rem 1676 }; 1677 return DAG.getMergeValues(Res, DL); 1678 } 1679 1680 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1681 SelectionDAG &DAG, 1682 SmallVectorImpl<SDValue> &Results) const { 1683 assert(Op.getValueType() == MVT::i64); 1684 1685 SDLoc DL(Op); 1686 EVT VT = Op.getValueType(); 1687 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1688 1689 SDValue one = DAG.getConstant(1, DL, HalfVT); 1690 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1691 1692 //HiLo split 1693 SDValue LHS = Op.getOperand(0); 1694 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1695 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1696 1697 SDValue RHS = Op.getOperand(1); 1698 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1699 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1700 1701 if (VT == MVT::i64 && 1702 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1703 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1704 1705 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1706 LHS_Lo, RHS_Lo); 1707 1708 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero); 1709 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero); 1710 Results.push_back(DIV); 1711 Results.push_back(REM); 1712 return; 1713 } 1714 1715 // Get Speculative values 1716 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1717 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1718 1719 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1720 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero); 1721 1722 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1723 SDValue DIV_Lo = zero; 1724 1725 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1726 1727 for (unsigned i = 0; i < halfBitWidth; ++i) { 1728 const unsigned bitPos = halfBitWidth - i - 1; 1729 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1730 // Get value of high bit 1731 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1732 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1733 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1734 1735 // Shift 1736 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1737 // Add LHS high bit 1738 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1739 1740 SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT); 1741 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1742 1743 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1744 1745 // Update REM 1746 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1747 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1748 } 1749 1750 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi); 1751 Results.push_back(DIV); 1752 Results.push_back(REM); 1753 } 1754 1755 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1756 SelectionDAG &DAG) const { 1757 SDLoc DL(Op); 1758 EVT VT = Op.getValueType(); 1759 1760 if (VT == MVT::i64) { 1761 SmallVector<SDValue, 2> Results; 1762 LowerUDIVREM64(Op, DAG, Results); 1763 return DAG.getMergeValues(Results, DL); 1764 } 1765 1766 SDValue Num = Op.getOperand(0); 1767 SDValue Den = Op.getOperand(1); 1768 1769 if (VT == MVT::i32) { 1770 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) && 1771 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) { 1772 // TODO: We technically could do this for i64, but shouldn't that just be 1773 // handled by something generally reducing 64-bit division on 32-bit 1774 // values to 32-bit? 1775 return LowerDIVREM24(Op, DAG, false); 1776 } 1777 } 1778 1779 // RCP = URECIP(Den) = 2^32 / Den + e 1780 // e is rounding error. 1781 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1782 1783 // RCP_LO = mul(RCP, Den) */ 1784 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1785 1786 // RCP_HI = mulhu (RCP, Den) */ 1787 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1788 1789 // NEG_RCP_LO = -RCP_LO 1790 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1791 RCP_LO); 1792 1793 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1794 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1795 NEG_RCP_LO, RCP_LO, 1796 ISD::SETEQ); 1797 // Calculate the rounding error from the URECIP instruction 1798 // E = mulhu(ABS_RCP_LO, RCP) 1799 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1800 1801 // RCP_A_E = RCP + E 1802 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1803 1804 // RCP_S_E = RCP - E 1805 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1806 1807 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1808 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1809 RCP_A_E, RCP_S_E, 1810 ISD::SETEQ); 1811 // Quotient = mulhu(Tmp0, Num) 1812 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1813 1814 // Num_S_Remainder = Quotient * Den 1815 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1816 1817 // Remainder = Num - Num_S_Remainder 1818 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1819 1820 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1821 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1822 DAG.getConstant(-1, DL, VT), 1823 DAG.getConstant(0, DL, VT), 1824 ISD::SETUGE); 1825 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1826 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1827 Num_S_Remainder, 1828 DAG.getConstant(-1, DL, VT), 1829 DAG.getConstant(0, DL, VT), 1830 ISD::SETUGE); 1831 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1832 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1833 Remainder_GE_Zero); 1834 1835 // Calculate Division result: 1836 1837 // Quotient_A_One = Quotient + 1 1838 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1839 DAG.getConstant(1, DL, VT)); 1840 1841 // Quotient_S_One = Quotient - 1 1842 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1843 DAG.getConstant(1, DL, VT)); 1844 1845 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1846 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1847 Quotient, Quotient_A_One, ISD::SETEQ); 1848 1849 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1850 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1851 Quotient_S_One, Div, ISD::SETEQ); 1852 1853 // Calculate Rem result: 1854 1855 // Remainder_S_Den = Remainder - Den 1856 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1857 1858 // Remainder_A_Den = Remainder + Den 1859 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1860 1861 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1862 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1863 Remainder, Remainder_S_Den, ISD::SETEQ); 1864 1865 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1866 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1867 Remainder_A_Den, Rem, ISD::SETEQ); 1868 SDValue Ops[2] = { 1869 Div, 1870 Rem 1871 }; 1872 return DAG.getMergeValues(Ops, DL); 1873 } 1874 1875 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1876 SelectionDAG &DAG) const { 1877 SDLoc DL(Op); 1878 EVT VT = Op.getValueType(); 1879 1880 SDValue LHS = Op.getOperand(0); 1881 SDValue RHS = Op.getOperand(1); 1882 1883 SDValue Zero = DAG.getConstant(0, DL, VT); 1884 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1885 1886 if (VT == MVT::i32 && 1887 DAG.ComputeNumSignBits(LHS) > 8 && 1888 DAG.ComputeNumSignBits(RHS) > 8) { 1889 return LowerDIVREM24(Op, DAG, true); 1890 } 1891 if (VT == MVT::i64 && 1892 DAG.ComputeNumSignBits(LHS) > 32 && 1893 DAG.ComputeNumSignBits(RHS) > 32) { 1894 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1895 1896 //HiLo split 1897 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1898 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1899 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1900 LHS_Lo, RHS_Lo); 1901 SDValue Res[2] = { 1902 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1903 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1904 }; 1905 return DAG.getMergeValues(Res, DL); 1906 } 1907 1908 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1909 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1910 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1911 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1912 1913 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1914 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1915 1916 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1917 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1918 1919 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1920 SDValue Rem = Div.getValue(1); 1921 1922 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1923 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1924 1925 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1926 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1927 1928 SDValue Res[2] = { 1929 Div, 1930 Rem 1931 }; 1932 return DAG.getMergeValues(Res, DL); 1933 } 1934 1935 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1936 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1937 SDLoc SL(Op); 1938 EVT VT = Op.getValueType(); 1939 SDValue X = Op.getOperand(0); 1940 SDValue Y = Op.getOperand(1); 1941 1942 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1943 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1944 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1945 1946 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1947 } 1948 1949 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1950 SDLoc SL(Op); 1951 SDValue Src = Op.getOperand(0); 1952 1953 // result = trunc(src) 1954 // if (src > 0.0 && src != result) 1955 // result += 1.0 1956 1957 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1958 1959 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1960 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1961 1962 EVT SetCCVT = 1963 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1964 1965 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1966 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1967 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1968 1969 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1970 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1971 } 1972 1973 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { 1974 const unsigned FractBits = 52; 1975 const unsigned ExpBits = 11; 1976 1977 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1978 Hi, 1979 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1980 DAG.getConstant(ExpBits, SL, MVT::i32)); 1981 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1982 DAG.getConstant(1023, SL, MVT::i32)); 1983 1984 return Exp; 1985 } 1986 1987 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1988 SDLoc SL(Op); 1989 SDValue Src = Op.getOperand(0); 1990 1991 assert(Op.getValueType() == MVT::f64); 1992 1993 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1994 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1995 1996 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1997 1998 // Extract the upper half, since this is where we will find the sign and 1999 // exponent. 2000 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2001 2002 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2003 2004 const unsigned FractBits = 52; 2005 2006 // Extract the sign bit. 2007 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2008 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2009 2010 // Extend back to to 64-bits. 2011 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2012 Zero, SignBit); 2013 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2014 2015 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2016 const SDValue FractMask 2017 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2018 2019 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2020 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2021 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2022 2023 EVT SetCCVT = 2024 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2025 2026 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2027 2028 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2029 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2030 2031 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2032 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2033 2034 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2035 } 2036 2037 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2038 SDLoc SL(Op); 2039 SDValue Src = Op.getOperand(0); 2040 2041 assert(Op.getValueType() == MVT::f64); 2042 2043 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 2044 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2045 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2046 2047 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2048 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2049 2050 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2051 2052 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 2053 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2054 2055 EVT SetCCVT = 2056 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2057 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2058 2059 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2060 } 2061 2062 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2063 // FNEARBYINT and FRINT are the same, except in their handling of FP 2064 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2065 // rint, so just treat them as equivalent. 2066 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2067 } 2068 2069 // XXX - May require not supporting f32 denormals? 2070 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 2071 SDLoc SL(Op); 2072 SDValue X = Op.getOperand(0); 2073 2074 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 2075 2076 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 2077 2078 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 2079 2080 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 2081 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 2082 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 2083 2084 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 2085 2086 EVT SetCCVT = 2087 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 2088 2089 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2090 2091 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 2092 2093 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 2094 } 2095 2096 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2097 SDLoc SL(Op); 2098 SDValue X = Op.getOperand(0); 2099 2100 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2101 2102 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2103 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2104 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2105 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2106 EVT SetCCVT = 2107 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2108 2109 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2110 2111 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2112 2113 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2114 2115 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2116 MVT::i64); 2117 2118 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2119 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2120 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2121 MVT::i64), 2122 Exp); 2123 2124 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2125 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2126 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2127 ISD::SETNE); 2128 2129 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2130 D, DAG.getConstant(0, SL, MVT::i64)); 2131 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2132 2133 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2134 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2135 2136 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2137 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2138 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2139 2140 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2141 ExpEqNegOne, 2142 DAG.getConstantFP(1.0, SL, MVT::f64), 2143 DAG.getConstantFP(0.0, SL, MVT::f64)); 2144 2145 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2146 2147 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2148 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2149 2150 return K; 2151 } 2152 2153 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2154 EVT VT = Op.getValueType(); 2155 2156 if (VT == MVT::f32) 2157 return LowerFROUND32(Op, DAG); 2158 2159 if (VT == MVT::f64) 2160 return LowerFROUND64(Op, DAG); 2161 2162 llvm_unreachable("unhandled type"); 2163 } 2164 2165 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2166 SDLoc SL(Op); 2167 SDValue Src = Op.getOperand(0); 2168 2169 // result = trunc(src); 2170 // if (src < 0.0 && src != result) 2171 // result += -1.0. 2172 2173 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2174 2175 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2176 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2177 2178 EVT SetCCVT = 2179 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2180 2181 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2182 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2183 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2184 2185 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2186 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2187 } 2188 2189 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2190 bool Signed) const { 2191 SDLoc SL(Op); 2192 SDValue Src = Op.getOperand(0); 2193 2194 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2195 2196 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2197 DAG.getConstant(0, SL, MVT::i32)); 2198 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2199 DAG.getConstant(1, SL, MVT::i32)); 2200 2201 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2202 SL, MVT::f64, Hi); 2203 2204 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2205 2206 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2207 DAG.getConstant(32, SL, MVT::i32)); 2208 2209 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2210 } 2211 2212 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2213 SelectionDAG &DAG) const { 2214 SDValue S0 = Op.getOperand(0); 2215 if (S0.getValueType() != MVT::i64) 2216 return SDValue(); 2217 2218 EVT DestVT = Op.getValueType(); 2219 if (DestVT == MVT::f64) 2220 return LowerINT_TO_FP64(Op, DAG, false); 2221 2222 assert(DestVT == MVT::f32); 2223 2224 SDLoc DL(Op); 2225 2226 // f32 uint_to_fp i64 2227 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2228 DAG.getConstant(0, DL, MVT::i32)); 2229 SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo); 2230 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2231 DAG.getConstant(1, DL, MVT::i32)); 2232 SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi); 2233 FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi, 2234 DAG.getConstantFP(4294967296.0f, DL, MVT::f32)); // 2^32 2235 return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi); 2236 } 2237 2238 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2239 SelectionDAG &DAG) const { 2240 SDValue Src = Op.getOperand(0); 2241 if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64) 2242 return LowerINT_TO_FP64(Op, DAG, true); 2243 2244 return SDValue(); 2245 } 2246 2247 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2248 bool Signed) const { 2249 SDLoc SL(Op); 2250 2251 SDValue Src = Op.getOperand(0); 2252 2253 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2254 2255 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2256 MVT::f64); 2257 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2258 MVT::f64); 2259 2260 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2261 2262 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2263 2264 2265 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2266 2267 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2268 MVT::i32, FloorMul); 2269 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2270 2271 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi); 2272 2273 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2274 } 2275 2276 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2277 SelectionDAG &DAG) const { 2278 SDValue Src = Op.getOperand(0); 2279 2280 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2281 return LowerFP64_TO_INT(Op, DAG, true); 2282 2283 return SDValue(); 2284 } 2285 2286 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2287 SelectionDAG &DAG) const { 2288 SDValue Src = Op.getOperand(0); 2289 2290 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2291 return LowerFP64_TO_INT(Op, DAG, false); 2292 2293 return SDValue(); 2294 } 2295 2296 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2297 SelectionDAG &DAG) const { 2298 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2299 MVT VT = Op.getSimpleValueType(); 2300 MVT ScalarVT = VT.getScalarType(); 2301 2302 if (!VT.isVector()) 2303 return SDValue(); 2304 2305 SDValue Src = Op.getOperand(0); 2306 SDLoc DL(Op); 2307 2308 // TODO: Don't scalarize on Evergreen? 2309 unsigned NElts = VT.getVectorNumElements(); 2310 SmallVector<SDValue, 8> Args; 2311 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2312 2313 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2314 for (unsigned I = 0; I < NElts; ++I) 2315 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2316 2317 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args); 2318 } 2319 2320 //===----------------------------------------------------------------------===// 2321 // Custom DAG optimizations 2322 //===----------------------------------------------------------------------===// 2323 2324 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2325 APInt KnownZero, KnownOne; 2326 EVT VT = Op.getValueType(); 2327 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2328 2329 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2330 } 2331 2332 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2333 EVT VT = Op.getValueType(); 2334 2335 // In order for this to be a signed 24-bit value, bit 23, must 2336 // be a sign bit. 2337 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2338 // as unsigned 24-bit values. 2339 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2340 } 2341 2342 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2343 2344 SelectionDAG &DAG = DCI.DAG; 2345 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2346 EVT VT = Op.getValueType(); 2347 2348 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2349 APInt KnownZero, KnownOne; 2350 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2351 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2352 DCI.CommitTargetLoweringOpt(TLO); 2353 } 2354 2355 template <typename IntTy> 2356 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, 2357 uint32_t Offset, uint32_t Width, SDLoc DL) { 2358 if (Width + Offset < 32) { 2359 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2360 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2361 return DAG.getConstant(Result, DL, MVT::i32); 2362 } 2363 2364 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2365 } 2366 2367 static bool usesAllNormalStores(SDNode *LoadVal) { 2368 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2369 if (!ISD::isNormalStore(*I)) 2370 return false; 2371 } 2372 2373 return true; 2374 } 2375 2376 // If we have a copy of an illegal type, replace it with a load / store of an 2377 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2378 // instructions emitted when handling extloads and truncstores. Ideally we could 2379 // recognize the pack / unpack pattern to eliminate it. 2380 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2381 DAGCombinerInfo &DCI) const { 2382 if (!DCI.isBeforeLegalize()) 2383 return SDValue(); 2384 2385 StoreSDNode *SN = cast<StoreSDNode>(N); 2386 SDValue Value = SN->getValue(); 2387 EVT VT = Value.getValueType(); 2388 2389 if (isTypeLegal(VT) || SN->isVolatile() || 2390 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2391 return SDValue(); 2392 2393 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2394 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2395 return SDValue(); 2396 2397 EVT MemVT = LoadVal->getMemoryVT(); 2398 2399 SDLoc SL(N); 2400 SelectionDAG &DAG = DCI.DAG; 2401 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2402 2403 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2404 LoadVT, SL, 2405 LoadVal->getChain(), 2406 LoadVal->getBasePtr(), 2407 LoadVal->getOffset(), 2408 LoadVT, 2409 LoadVal->getMemOperand()); 2410 2411 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2412 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2413 2414 return DAG.getStore(SN->getChain(), SL, NewLoad, 2415 SN->getBasePtr(), SN->getMemOperand()); 2416 } 2417 2418 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2419 DAGCombinerInfo &DCI) const { 2420 EVT VT = N->getValueType(0); 2421 2422 if (VT.isVector() || VT.getSizeInBits() > 32) 2423 return SDValue(); 2424 2425 SelectionDAG &DAG = DCI.DAG; 2426 SDLoc DL(N); 2427 2428 SDValue N0 = N->getOperand(0); 2429 SDValue N1 = N->getOperand(1); 2430 SDValue Mul; 2431 2432 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2433 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2434 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2435 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2436 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2437 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2438 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2439 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2440 } else { 2441 return SDValue(); 2442 } 2443 2444 // We need to use sext even for MUL_U24, because MUL_U24 is used 2445 // for signed multiply of 8 and 16-bit types. 2446 return DAG.getSExtOrTrunc(Mul, DL, VT); 2447 } 2448 2449 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2450 DAGCombinerInfo &DCI) const { 2451 SelectionDAG &DAG = DCI.DAG; 2452 SDLoc DL(N); 2453 2454 switch(N->getOpcode()) { 2455 default: 2456 break; 2457 case ISD::MUL: 2458 return performMulCombine(N, DCI); 2459 case AMDGPUISD::MUL_I24: 2460 case AMDGPUISD::MUL_U24: { 2461 SDValue N0 = N->getOperand(0); 2462 SDValue N1 = N->getOperand(1); 2463 simplifyI24(N0, DCI); 2464 simplifyI24(N1, DCI); 2465 return SDValue(); 2466 } 2467 case ISD::SELECT: { 2468 SDValue Cond = N->getOperand(0); 2469 if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) { 2470 EVT VT = N->getValueType(0); 2471 SDValue LHS = Cond.getOperand(0); 2472 SDValue RHS = Cond.getOperand(1); 2473 SDValue CC = Cond.getOperand(2); 2474 2475 SDValue True = N->getOperand(1); 2476 SDValue False = N->getOperand(2); 2477 2478 if (VT == MVT::f32) 2479 return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI); 2480 2481 // TODO: Implement min / max Evergreen instructions. 2482 if (VT == MVT::i32 && 2483 Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { 2484 return CombineIMinMax(DL, VT, LHS, RHS, True, False, CC, DAG); 2485 } 2486 } 2487 2488 break; 2489 } 2490 case AMDGPUISD::BFE_I32: 2491 case AMDGPUISD::BFE_U32: { 2492 assert(!N->getValueType(0).isVector() && 2493 "Vector handling of BFE not implemented"); 2494 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2495 if (!Width) 2496 break; 2497 2498 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2499 if (WidthVal == 0) 2500 return DAG.getConstant(0, DL, MVT::i32); 2501 2502 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2503 if (!Offset) 2504 break; 2505 2506 SDValue BitsFrom = N->getOperand(0); 2507 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2508 2509 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2510 2511 if (OffsetVal == 0) { 2512 // This is already sign / zero extended, so try to fold away extra BFEs. 2513 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2514 2515 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2516 if (OpSignBits >= SignBits) 2517 return BitsFrom; 2518 2519 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2520 if (Signed) { 2521 // This is a sign_extend_inreg. Replace it to take advantage of existing 2522 // DAG Combines. If not eliminated, we will match back to BFE during 2523 // selection. 2524 2525 // TODO: The sext_inreg of extended types ends, although we can could 2526 // handle them in a single BFE. 2527 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2528 DAG.getValueType(SmallVT)); 2529 } 2530 2531 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2532 } 2533 2534 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2535 if (Signed) { 2536 return constantFoldBFE<int32_t>(DAG, 2537 CVal->getSExtValue(), 2538 OffsetVal, 2539 WidthVal, 2540 DL); 2541 } 2542 2543 return constantFoldBFE<uint32_t>(DAG, 2544 CVal->getZExtValue(), 2545 OffsetVal, 2546 WidthVal, 2547 DL); 2548 } 2549 2550 if ((OffsetVal + WidthVal) >= 32) { 2551 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2552 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2553 BitsFrom, ShiftVal); 2554 } 2555 2556 if (BitsFrom.hasOneUse()) { 2557 APInt Demanded = APInt::getBitsSet(32, 2558 OffsetVal, 2559 OffsetVal + WidthVal); 2560 2561 APInt KnownZero, KnownOne; 2562 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2563 !DCI.isBeforeLegalizeOps()); 2564 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2565 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2566 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2567 KnownZero, KnownOne, TLO)) { 2568 DCI.CommitTargetLoweringOpt(TLO); 2569 } 2570 } 2571 2572 break; 2573 } 2574 2575 case ISD::STORE: 2576 return performStoreCombine(N, DCI); 2577 } 2578 return SDValue(); 2579 } 2580 2581 //===----------------------------------------------------------------------===// 2582 // Helper functions 2583 //===----------------------------------------------------------------------===// 2584 2585 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2586 SelectionDAG &DAG, 2587 const Function *F, 2588 const SmallVectorImpl<ISD::InputArg> &Ins, 2589 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2590 2591 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2592 if (Ins[i].ArgVT == Ins[i].VT) { 2593 OrigIns.push_back(Ins[i]); 2594 continue; 2595 } 2596 2597 EVT VT; 2598 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2599 // Vector has been split into scalars. 2600 VT = Ins[i].ArgVT.getVectorElementType(); 2601 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2602 Ins[i].ArgVT.getVectorElementType() != 2603 Ins[i].VT.getVectorElementType()) { 2604 // Vector elements have been promoted 2605 VT = Ins[i].ArgVT; 2606 } else { 2607 // Vector has been spilt into smaller vectors. 2608 VT = Ins[i].VT; 2609 } 2610 2611 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2612 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2613 OrigIns.push_back(Arg); 2614 } 2615 } 2616 2617 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const { 2618 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2619 return CFP->isExactlyValue(1.0); 2620 } 2621 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 2622 return C->isAllOnesValue(); 2623 } 2624 return false; 2625 } 2626 2627 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const { 2628 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2629 return CFP->getValueAPF().isZero(); 2630 } 2631 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 2632 return C->isNullValue(); 2633 } 2634 return false; 2635 } 2636 2637 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2638 const TargetRegisterClass *RC, 2639 unsigned Reg, EVT VT) const { 2640 MachineFunction &MF = DAG.getMachineFunction(); 2641 MachineRegisterInfo &MRI = MF.getRegInfo(); 2642 unsigned VirtualRegister; 2643 if (!MRI.isLiveIn(Reg)) { 2644 VirtualRegister = MRI.createVirtualRegister(RC); 2645 MRI.addLiveIn(Reg, VirtualRegister); 2646 } else { 2647 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2648 } 2649 return DAG.getRegister(VirtualRegister, VT); 2650 } 2651 2652 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2653 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2654 uint64_t ArgOffset = MFI->ABIArgOffset; 2655 switch (Param) { 2656 case GRID_DIM: 2657 return ArgOffset; 2658 case GRID_OFFSET: 2659 return ArgOffset + 4; 2660 } 2661 llvm_unreachable("unexpected implicit parameter type"); 2662 } 2663 2664 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2665 2666 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2667 switch ((AMDGPUISD::NodeType)Opcode) { 2668 case AMDGPUISD::FIRST_NUMBER: break; 2669 // AMDIL DAG nodes 2670 NODE_NAME_CASE(CALL); 2671 NODE_NAME_CASE(UMUL); 2672 NODE_NAME_CASE(RET_FLAG); 2673 NODE_NAME_CASE(BRANCH_COND); 2674 2675 // AMDGPU DAG nodes 2676 NODE_NAME_CASE(DWORDADDR) 2677 NODE_NAME_CASE(FRACT) 2678 NODE_NAME_CASE(CLAMP) 2679 NODE_NAME_CASE(COS_HW) 2680 NODE_NAME_CASE(SIN_HW) 2681 NODE_NAME_CASE(FMAX_LEGACY) 2682 NODE_NAME_CASE(FMIN_LEGACY) 2683 NODE_NAME_CASE(FMAX3) 2684 NODE_NAME_CASE(SMAX3) 2685 NODE_NAME_CASE(UMAX3) 2686 NODE_NAME_CASE(FMIN3) 2687 NODE_NAME_CASE(SMIN3) 2688 NODE_NAME_CASE(UMIN3) 2689 NODE_NAME_CASE(URECIP) 2690 NODE_NAME_CASE(DIV_SCALE) 2691 NODE_NAME_CASE(DIV_FMAS) 2692 NODE_NAME_CASE(DIV_FIXUP) 2693 NODE_NAME_CASE(TRIG_PREOP) 2694 NODE_NAME_CASE(RCP) 2695 NODE_NAME_CASE(RSQ) 2696 NODE_NAME_CASE(RSQ_LEGACY) 2697 NODE_NAME_CASE(RSQ_CLAMPED) 2698 NODE_NAME_CASE(LDEXP) 2699 NODE_NAME_CASE(FP_CLASS) 2700 NODE_NAME_CASE(DOT4) 2701 NODE_NAME_CASE(CARRY) 2702 NODE_NAME_CASE(BORROW) 2703 NODE_NAME_CASE(BFE_U32) 2704 NODE_NAME_CASE(BFE_I32) 2705 NODE_NAME_CASE(BFI) 2706 NODE_NAME_CASE(BFM) 2707 NODE_NAME_CASE(BREV) 2708 NODE_NAME_CASE(MUL_U24) 2709 NODE_NAME_CASE(MUL_I24) 2710 NODE_NAME_CASE(MAD_U24) 2711 NODE_NAME_CASE(MAD_I24) 2712 NODE_NAME_CASE(TEXTURE_FETCH) 2713 NODE_NAME_CASE(EXPORT) 2714 NODE_NAME_CASE(CONST_ADDRESS) 2715 NODE_NAME_CASE(REGISTER_LOAD) 2716 NODE_NAME_CASE(REGISTER_STORE) 2717 NODE_NAME_CASE(LOAD_CONSTANT) 2718 NODE_NAME_CASE(LOAD_INPUT) 2719 NODE_NAME_CASE(SAMPLE) 2720 NODE_NAME_CASE(SAMPLEB) 2721 NODE_NAME_CASE(SAMPLED) 2722 NODE_NAME_CASE(SAMPLEL) 2723 NODE_NAME_CASE(CVT_F32_UBYTE0) 2724 NODE_NAME_CASE(CVT_F32_UBYTE1) 2725 NODE_NAME_CASE(CVT_F32_UBYTE2) 2726 NODE_NAME_CASE(CVT_F32_UBYTE3) 2727 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2728 NODE_NAME_CASE(CONST_DATA_PTR) 2729 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2730 NODE_NAME_CASE(SENDMSG) 2731 NODE_NAME_CASE(INTERP_MOV) 2732 NODE_NAME_CASE(INTERP_P1) 2733 NODE_NAME_CASE(INTERP_P2) 2734 NODE_NAME_CASE(STORE_MSKOR) 2735 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2736 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2737 } 2738 return nullptr; 2739 } 2740 2741 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2742 DAGCombinerInfo &DCI, 2743 unsigned &RefinementSteps, 2744 bool &UseOneConstNR) const { 2745 SelectionDAG &DAG = DCI.DAG; 2746 EVT VT = Operand.getValueType(); 2747 2748 if (VT == MVT::f32) { 2749 RefinementSteps = 0; 2750 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2751 } 2752 2753 // TODO: There is also f64 rsq instruction, but the documentation is less 2754 // clear on its precision. 2755 2756 return SDValue(); 2757 } 2758 2759 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2760 DAGCombinerInfo &DCI, 2761 unsigned &RefinementSteps) const { 2762 SelectionDAG &DAG = DCI.DAG; 2763 EVT VT = Operand.getValueType(); 2764 2765 if (VT == MVT::f32) { 2766 // Reciprocal, < 1 ulp error. 2767 // 2768 // This reciprocal approximation converges to < 0.5 ulp error with one 2769 // newton rhapson performed with two fused multiple adds (FMAs). 2770 2771 RefinementSteps = 0; 2772 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2773 } 2774 2775 // TODO: There is also f64 rcp instruction, but the documentation is less 2776 // clear on its precision. 2777 2778 return SDValue(); 2779 } 2780 2781 static void computeKnownBitsForMinMax(const SDValue Op0, 2782 const SDValue Op1, 2783 APInt &KnownZero, 2784 APInt &KnownOne, 2785 const SelectionDAG &DAG, 2786 unsigned Depth) { 2787 APInt Op0Zero, Op0One; 2788 APInt Op1Zero, Op1One; 2789 DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth); 2790 DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth); 2791 2792 KnownZero = Op0Zero & Op1Zero; 2793 KnownOne = Op0One & Op1One; 2794 } 2795 2796 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2797 const SDValue Op, 2798 APInt &KnownZero, 2799 APInt &KnownOne, 2800 const SelectionDAG &DAG, 2801 unsigned Depth) const { 2802 2803 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2804 2805 APInt KnownZero2; 2806 APInt KnownOne2; 2807 unsigned Opc = Op.getOpcode(); 2808 2809 switch (Opc) { 2810 default: 2811 break; 2812 case ISD::INTRINSIC_WO_CHAIN: { 2813 // FIXME: The intrinsic should just use the node. 2814 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 2815 case AMDGPUIntrinsic::AMDGPU_imax: 2816 case AMDGPUIntrinsic::AMDGPU_umax: 2817 case AMDGPUIntrinsic::AMDGPU_imin: 2818 case AMDGPUIntrinsic::AMDGPU_umin: 2819 computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2), 2820 KnownZero, KnownOne, DAG, Depth); 2821 break; 2822 default: 2823 break; 2824 } 2825 2826 break; 2827 } 2828 case AMDGPUISD::CARRY: 2829 case AMDGPUISD::BORROW: { 2830 KnownZero = APInt::getHighBitsSet(32, 31); 2831 break; 2832 } 2833 2834 case AMDGPUISD::BFE_I32: 2835 case AMDGPUISD::BFE_U32: { 2836 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2837 if (!CWidth) 2838 return; 2839 2840 unsigned BitWidth = 32; 2841 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2842 2843 if (Opc == AMDGPUISD::BFE_U32) 2844 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2845 2846 break; 2847 } 2848 } 2849 } 2850 2851 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2852 SDValue Op, 2853 const SelectionDAG &DAG, 2854 unsigned Depth) const { 2855 switch (Op.getOpcode()) { 2856 case AMDGPUISD::BFE_I32: { 2857 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2858 if (!Width) 2859 return 1; 2860 2861 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2862 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2863 if (!Offset || !Offset->isNullValue()) 2864 return SignBits; 2865 2866 // TODO: Could probably figure something out with non-0 offsets. 2867 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2868 return std::max(SignBits, Op0SignBits); 2869 } 2870 2871 case AMDGPUISD::BFE_U32: { 2872 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2873 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2874 } 2875 2876 case AMDGPUISD::CARRY: 2877 case AMDGPUISD::BORROW: 2878 return 31; 2879 2880 default: 2881 return 1; 2882 } 2883 } 2884