1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUMachineFunction.h" 19 #include "GCNSubtarget.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 #include "AMDGPUGenCallingConv.inc" 32 33 static cl::opt<bool> AMDGPUBypassSlowDiv( 34 "amdgpu-bypass-slow-div", 35 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 36 cl::init(true)); 37 38 // Find a larger type to do a load / store of a vector with. 39 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 40 unsigned StoreSize = VT.getStoreSizeInBits(); 41 if (StoreSize <= 32) 42 return EVT::getIntegerVT(Ctx, StoreSize); 43 44 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 45 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 46 } 47 48 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 49 return DAG.computeKnownBits(Op).countMaxActiveBits(); 50 } 51 52 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 53 // In order for this to be a signed 24-bit value, bit 23, must 54 // be a sign bit. 55 return DAG.ComputeMaxSignificantBits(Op); 56 } 57 58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 59 const AMDGPUSubtarget &STI) 60 : TargetLowering(TM), Subtarget(&STI) { 61 // Lower floating point store/load to integer store/load to reduce the number 62 // of patterns in tablegen. 63 setOperationAction(ISD::LOAD, MVT::f32, Promote); 64 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 65 66 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 67 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 68 69 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 70 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 71 72 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 73 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 74 75 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 76 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 77 78 setOperationAction(ISD::LOAD, MVT::v6f32, Promote); 79 AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32); 80 81 setOperationAction(ISD::LOAD, MVT::v7f32, Promote); 82 AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32); 83 84 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 85 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 86 87 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 88 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 89 90 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 91 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 92 93 setOperationAction(ISD::LOAD, MVT::i64, Promote); 94 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 95 96 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 97 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 98 99 setOperationAction(ISD::LOAD, MVT::f64, Promote); 100 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 101 102 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 103 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 104 105 setOperationAction(ISD::LOAD, MVT::v3i64, Promote); 106 AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32); 107 108 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 109 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 110 111 setOperationAction(ISD::LOAD, MVT::v3f64, Promote); 112 AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32); 113 114 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 115 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 116 117 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 118 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 119 120 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 121 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 122 123 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 124 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 125 126 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 127 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 128 129 // There are no 64-bit extloads. These should be done as a 32-bit extload and 130 // an extension to 64-bit. 131 for (MVT VT : MVT::integer_valuetypes()) { 132 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 133 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 134 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 135 } 136 137 for (MVT VT : MVT::integer_valuetypes()) { 138 if (VT == MVT::i64) 139 continue; 140 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 144 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 145 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 150 151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 154 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 155 } 156 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 158 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 161 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 162 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 164 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 167 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 168 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 170 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 172 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 173 } 174 175 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 181 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 182 183 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 187 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 188 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 189 190 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand); 193 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 194 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 195 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 196 197 setOperationAction(ISD::STORE, MVT::f32, Promote); 198 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 199 200 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 202 203 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 205 206 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 208 209 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 211 212 setOperationAction(ISD::STORE, MVT::v6f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32); 214 215 setOperationAction(ISD::STORE, MVT::v7f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32); 217 218 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 219 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 220 221 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 223 224 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 225 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 226 227 setOperationAction(ISD::STORE, MVT::i64, Promote); 228 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 229 230 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 232 233 setOperationAction(ISD::STORE, MVT::f64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 235 236 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 238 239 setOperationAction(ISD::STORE, MVT::v3i64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32); 241 242 setOperationAction(ISD::STORE, MVT::v3f64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32); 244 245 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 247 248 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 249 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 250 251 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 252 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 253 254 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 255 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 256 257 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 258 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 259 260 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 261 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 262 263 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 264 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 265 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 266 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 267 268 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 269 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 270 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 271 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 272 273 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 274 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 275 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 276 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 277 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 278 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 279 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 280 281 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 282 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 283 284 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 285 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 286 287 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 288 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 289 setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand); 290 setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand); 291 292 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 293 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 294 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 295 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 296 297 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 298 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 299 300 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 301 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 302 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 303 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 304 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 305 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 306 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 307 308 setOperationAction(ISD::Constant, MVT::i32, Legal); 309 setOperationAction(ISD::Constant, MVT::i64, Legal); 310 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 311 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 312 313 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 314 setOperationAction(ISD::BRIND, MVT::Other, Expand); 315 316 // This is totally unsupported, just custom lower to produce an error. 317 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 318 319 // Library functions. These default to Expand, but we have instructions 320 // for them. 321 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 322 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 323 setOperationAction(ISD::FPOW, MVT::f32, Legal); 324 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 325 setOperationAction(ISD::FABS, MVT::f32, Legal); 326 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 327 setOperationAction(ISD::FRINT, MVT::f32, Legal); 328 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 329 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 330 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 331 332 setOperationAction(ISD::FROUND, MVT::f32, Custom); 333 setOperationAction(ISD::FROUND, MVT::f64, Custom); 334 335 setOperationAction(ISD::FLOG, MVT::f32, Custom); 336 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 337 setOperationAction(ISD::FEXP, MVT::f32, Custom); 338 339 340 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 341 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 342 343 setOperationAction(ISD::FREM, MVT::f16, Custom); 344 setOperationAction(ISD::FREM, MVT::f32, Custom); 345 setOperationAction(ISD::FREM, MVT::f64, Custom); 346 347 // Expand to fneg + fadd. 348 setOperationAction(ISD::FSUB, MVT::f64, Expand); 349 350 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 351 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 352 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 353 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 354 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 355 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 356 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom); 357 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom); 358 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom); 359 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom); 360 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 361 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 362 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom); 363 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom); 364 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f16, Custom); 365 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i16, Custom); 366 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 367 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 368 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 369 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 370 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 371 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 372 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 373 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 374 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom); 375 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom); 376 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom); 377 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom); 378 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 379 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 380 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 381 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 382 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 383 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 384 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 385 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 386 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom); 387 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom); 388 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 389 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 390 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 391 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 392 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 393 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 394 395 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 396 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 397 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 398 399 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 400 for (MVT VT : ScalarIntVTs) { 401 // These should use [SU]DIVREM, so set them to expand 402 setOperationAction(ISD::SDIV, VT, Expand); 403 setOperationAction(ISD::UDIV, VT, Expand); 404 setOperationAction(ISD::SREM, VT, Expand); 405 setOperationAction(ISD::UREM, VT, Expand); 406 407 // GPU does not have divrem function for signed or unsigned. 408 setOperationAction(ISD::SDIVREM, VT, Custom); 409 setOperationAction(ISD::UDIVREM, VT, Custom); 410 411 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 412 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 413 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 414 415 setOperationAction(ISD::BSWAP, VT, Expand); 416 setOperationAction(ISD::CTTZ, VT, Expand); 417 setOperationAction(ISD::CTLZ, VT, Expand); 418 419 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 420 setOperationAction(ISD::ADDC, VT, Legal); 421 setOperationAction(ISD::SUBC, VT, Legal); 422 setOperationAction(ISD::ADDE, VT, Legal); 423 setOperationAction(ISD::SUBE, VT, Legal); 424 } 425 426 // The hardware supports 32-bit FSHR, but not FSHL. 427 setOperationAction(ISD::FSHR, MVT::i32, Legal); 428 429 // The hardware supports 32-bit ROTR, but not ROTL. 430 setOperationAction(ISD::ROTL, MVT::i32, Expand); 431 setOperationAction(ISD::ROTL, MVT::i64, Expand); 432 setOperationAction(ISD::ROTR, MVT::i64, Expand); 433 434 setOperationAction(ISD::MULHU, MVT::i16, Expand); 435 setOperationAction(ISD::MULHS, MVT::i16, Expand); 436 437 setOperationAction(ISD::MUL, MVT::i64, Expand); 438 setOperationAction(ISD::MULHU, MVT::i64, Expand); 439 setOperationAction(ISD::MULHS, MVT::i64, Expand); 440 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 441 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 442 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 443 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 444 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 445 446 setOperationAction(ISD::SMIN, MVT::i32, Legal); 447 setOperationAction(ISD::UMIN, MVT::i32, Legal); 448 setOperationAction(ISD::SMAX, MVT::i32, Legal); 449 setOperationAction(ISD::UMAX, MVT::i32, Legal); 450 451 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 452 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 453 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 454 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 455 456 static const MVT::SimpleValueType VectorIntTypes[] = { 457 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32}; 458 459 for (MVT VT : VectorIntTypes) { 460 // Expand the following operations for the current type by default. 461 setOperationAction(ISD::ADD, VT, Expand); 462 setOperationAction(ISD::AND, VT, Expand); 463 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 464 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 465 setOperationAction(ISD::MUL, VT, Expand); 466 setOperationAction(ISD::MULHU, VT, Expand); 467 setOperationAction(ISD::MULHS, VT, Expand); 468 setOperationAction(ISD::OR, VT, Expand); 469 setOperationAction(ISD::SHL, VT, Expand); 470 setOperationAction(ISD::SRA, VT, Expand); 471 setOperationAction(ISD::SRL, VT, Expand); 472 setOperationAction(ISD::ROTL, VT, Expand); 473 setOperationAction(ISD::ROTR, VT, Expand); 474 setOperationAction(ISD::SUB, VT, Expand); 475 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 476 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 477 setOperationAction(ISD::SDIV, VT, Expand); 478 setOperationAction(ISD::UDIV, VT, Expand); 479 setOperationAction(ISD::SREM, VT, Expand); 480 setOperationAction(ISD::UREM, VT, Expand); 481 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 482 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 483 setOperationAction(ISD::SDIVREM, VT, Expand); 484 setOperationAction(ISD::UDIVREM, VT, Expand); 485 setOperationAction(ISD::SELECT, VT, Expand); 486 setOperationAction(ISD::VSELECT, VT, Expand); 487 setOperationAction(ISD::SELECT_CC, VT, Expand); 488 setOperationAction(ISD::XOR, VT, Expand); 489 setOperationAction(ISD::BSWAP, VT, Expand); 490 setOperationAction(ISD::CTPOP, VT, Expand); 491 setOperationAction(ISD::CTTZ, VT, Expand); 492 setOperationAction(ISD::CTLZ, VT, Expand); 493 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 494 setOperationAction(ISD::SETCC, VT, Expand); 495 } 496 497 static const MVT::SimpleValueType FloatVectorTypes[] = { 498 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32}; 499 500 for (MVT VT : FloatVectorTypes) { 501 setOperationAction(ISD::FABS, VT, Expand); 502 setOperationAction(ISD::FMINNUM, VT, Expand); 503 setOperationAction(ISD::FMAXNUM, VT, Expand); 504 setOperationAction(ISD::FADD, VT, Expand); 505 setOperationAction(ISD::FCEIL, VT, Expand); 506 setOperationAction(ISD::FCOS, VT, Expand); 507 setOperationAction(ISD::FDIV, VT, Expand); 508 setOperationAction(ISD::FEXP2, VT, Expand); 509 setOperationAction(ISD::FEXP, VT, Expand); 510 setOperationAction(ISD::FLOG2, VT, Expand); 511 setOperationAction(ISD::FREM, VT, Expand); 512 setOperationAction(ISD::FLOG, VT, Expand); 513 setOperationAction(ISD::FLOG10, VT, Expand); 514 setOperationAction(ISD::FPOW, VT, Expand); 515 setOperationAction(ISD::FFLOOR, VT, Expand); 516 setOperationAction(ISD::FTRUNC, VT, Expand); 517 setOperationAction(ISD::FMUL, VT, Expand); 518 setOperationAction(ISD::FMA, VT, Expand); 519 setOperationAction(ISD::FRINT, VT, Expand); 520 setOperationAction(ISD::FNEARBYINT, VT, Expand); 521 setOperationAction(ISD::FSQRT, VT, Expand); 522 setOperationAction(ISD::FSIN, VT, Expand); 523 setOperationAction(ISD::FSUB, VT, Expand); 524 setOperationAction(ISD::FNEG, VT, Expand); 525 setOperationAction(ISD::VSELECT, VT, Expand); 526 setOperationAction(ISD::SELECT_CC, VT, Expand); 527 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 528 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 529 setOperationAction(ISD::SETCC, VT, Expand); 530 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 531 } 532 533 // This causes using an unrolled select operation rather than expansion with 534 // bit operations. This is in general better, but the alternative using BFI 535 // instructions may be better if the select sources are SGPRs. 536 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 537 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 538 539 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 540 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 541 542 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 543 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 544 545 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 546 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 547 548 setOperationAction(ISD::SELECT, MVT::v6f32, Promote); 549 AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32); 550 551 setOperationAction(ISD::SELECT, MVT::v7f32, Promote); 552 AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32); 553 554 // There are no libcalls of any kind. 555 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 556 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 557 558 setSchedulingPreference(Sched::RegPressure); 559 setJumpIsExpensive(true); 560 561 // FIXME: This is only partially true. If we have to do vector compares, any 562 // SGPR pair can be a condition register. If we have a uniform condition, we 563 // are better off doing SALU operations, where there is only one SCC. For now, 564 // we don't have a way of knowing during instruction selection if a condition 565 // will be uniform and we always use vector compares. Assume we are using 566 // vector compares until that is fixed. 567 setHasMultipleConditionRegisters(true); 568 569 setMinCmpXchgSizeInBits(32); 570 setSupportsUnalignedAtomics(false); 571 572 PredictableSelectIsExpensive = false; 573 574 // We want to find all load dependencies for long chains of stores to enable 575 // merging into very wide vectors. The problem is with vectors with > 4 576 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 577 // vectors are a legal type, even though we have to split the loads 578 // usually. When we can more precisely specify load legality per address 579 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 580 // smarter so that they can figure out what to do in 2 iterations without all 581 // N > 4 stores on the same chain. 582 GatherAllAliasesMaxDepth = 16; 583 584 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 585 // about these during lowering. 586 MaxStoresPerMemcpy = 0xffffffff; 587 MaxStoresPerMemmove = 0xffffffff; 588 MaxStoresPerMemset = 0xffffffff; 589 590 // The expansion for 64-bit division is enormous. 591 if (AMDGPUBypassSlowDiv) 592 addBypassSlowDiv(64, 32); 593 594 setTargetDAGCombine(ISD::BITCAST); 595 setTargetDAGCombine(ISD::SHL); 596 setTargetDAGCombine(ISD::SRA); 597 setTargetDAGCombine(ISD::SRL); 598 setTargetDAGCombine(ISD::TRUNCATE); 599 setTargetDAGCombine(ISD::MUL); 600 setTargetDAGCombine(ISD::SMUL_LOHI); 601 setTargetDAGCombine(ISD::UMUL_LOHI); 602 setTargetDAGCombine(ISD::MULHU); 603 setTargetDAGCombine(ISD::MULHS); 604 setTargetDAGCombine(ISD::SELECT); 605 setTargetDAGCombine(ISD::SELECT_CC); 606 setTargetDAGCombine(ISD::STORE); 607 setTargetDAGCombine(ISD::FADD); 608 setTargetDAGCombine(ISD::FSUB); 609 setTargetDAGCombine(ISD::FNEG); 610 setTargetDAGCombine(ISD::FABS); 611 setTargetDAGCombine(ISD::AssertZext); 612 setTargetDAGCombine(ISD::AssertSext); 613 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 614 } 615 616 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { 617 if (getTargetMachine().Options.NoSignedZerosFPMath) 618 return true; 619 620 const auto Flags = Op.getNode()->getFlags(); 621 if (Flags.hasNoSignedZeros()) 622 return true; 623 624 return false; 625 } 626 627 //===----------------------------------------------------------------------===// 628 // Target Information 629 //===----------------------------------------------------------------------===// 630 631 LLVM_READNONE 632 static bool fnegFoldsIntoOp(unsigned Opc) { 633 switch (Opc) { 634 case ISD::FADD: 635 case ISD::FSUB: 636 case ISD::FMUL: 637 case ISD::FMA: 638 case ISD::FMAD: 639 case ISD::FMINNUM: 640 case ISD::FMAXNUM: 641 case ISD::FMINNUM_IEEE: 642 case ISD::FMAXNUM_IEEE: 643 case ISD::FSIN: 644 case ISD::FTRUNC: 645 case ISD::FRINT: 646 case ISD::FNEARBYINT: 647 case ISD::FCANONICALIZE: 648 case AMDGPUISD::RCP: 649 case AMDGPUISD::RCP_LEGACY: 650 case AMDGPUISD::RCP_IFLAG: 651 case AMDGPUISD::SIN_HW: 652 case AMDGPUISD::FMUL_LEGACY: 653 case AMDGPUISD::FMIN_LEGACY: 654 case AMDGPUISD::FMAX_LEGACY: 655 case AMDGPUISD::FMED3: 656 // TODO: handle llvm.amdgcn.fma.legacy 657 return true; 658 default: 659 return false; 660 } 661 } 662 663 /// \p returns true if the operation will definitely need to use a 64-bit 664 /// encoding, and thus will use a VOP3 encoding regardless of the source 665 /// modifiers. 666 LLVM_READONLY 667 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 668 return N->getNumOperands() > 2 || VT == MVT::f64; 669 } 670 671 // Most FP instructions support source modifiers, but this could be refined 672 // slightly. 673 LLVM_READONLY 674 static bool hasSourceMods(const SDNode *N) { 675 if (isa<MemSDNode>(N)) 676 return false; 677 678 switch (N->getOpcode()) { 679 case ISD::CopyToReg: 680 case ISD::SELECT: 681 case ISD::FDIV: 682 case ISD::FREM: 683 case ISD::INLINEASM: 684 case ISD::INLINEASM_BR: 685 case AMDGPUISD::DIV_SCALE: 686 case ISD::INTRINSIC_W_CHAIN: 687 688 // TODO: Should really be looking at the users of the bitcast. These are 689 // problematic because bitcasts are used to legalize all stores to integer 690 // types. 691 case ISD::BITCAST: 692 return false; 693 case ISD::INTRINSIC_WO_CHAIN: { 694 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 695 case Intrinsic::amdgcn_interp_p1: 696 case Intrinsic::amdgcn_interp_p2: 697 case Intrinsic::amdgcn_interp_mov: 698 case Intrinsic::amdgcn_interp_p1_f16: 699 case Intrinsic::amdgcn_interp_p2_f16: 700 return false; 701 default: 702 return true; 703 } 704 } 705 default: 706 return true; 707 } 708 } 709 710 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 711 unsigned CostThreshold) { 712 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 713 // it is truly free to use a source modifier in all cases. If there are 714 // multiple users but for each one will necessitate using VOP3, there will be 715 // a code size increase. Try to avoid increasing code size unless we know it 716 // will save on the instruction count. 717 unsigned NumMayIncreaseSize = 0; 718 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 719 720 // XXX - Should this limit number of uses to check? 721 for (const SDNode *U : N->uses()) { 722 if (!hasSourceMods(U)) 723 return false; 724 725 if (!opMustUseVOP3Encoding(U, VT)) { 726 if (++NumMayIncreaseSize > CostThreshold) 727 return false; 728 } 729 } 730 731 return true; 732 } 733 734 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 735 ISD::NodeType ExtendKind) const { 736 assert(!VT.isVector() && "only scalar expected"); 737 738 // Round to the next multiple of 32-bits. 739 unsigned Size = VT.getSizeInBits(); 740 if (Size <= 32) 741 return MVT::i32; 742 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 743 } 744 745 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 746 return MVT::i32; 747 } 748 749 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 750 return true; 751 } 752 753 // The backend supports 32 and 64 bit floating point immediates. 754 // FIXME: Why are we reporting vectors of FP immediates as legal? 755 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 756 bool ForCodeSize) const { 757 EVT ScalarVT = VT.getScalarType(); 758 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 759 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 760 } 761 762 // We don't want to shrink f64 / f32 constants. 763 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 764 EVT ScalarVT = VT.getScalarType(); 765 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 766 } 767 768 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 769 ISD::LoadExtType ExtTy, 770 EVT NewVT) const { 771 // TODO: This may be worth removing. Check regression tests for diffs. 772 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 773 return false; 774 775 unsigned NewSize = NewVT.getStoreSizeInBits(); 776 777 // If we are reducing to a 32-bit load or a smaller multi-dword load, 778 // this is always better. 779 if (NewSize >= 32) 780 return true; 781 782 EVT OldVT = N->getValueType(0); 783 unsigned OldSize = OldVT.getStoreSizeInBits(); 784 785 MemSDNode *MN = cast<MemSDNode>(N); 786 unsigned AS = MN->getAddressSpace(); 787 // Do not shrink an aligned scalar load to sub-dword. 788 // Scalar engine cannot do sub-dword loads. 789 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 790 (AS == AMDGPUAS::CONSTANT_ADDRESS || 791 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 792 (isa<LoadSDNode>(N) && 793 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 794 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 795 return false; 796 797 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 798 // extloads, so doing one requires using a buffer_load. In cases where we 799 // still couldn't use a scalar load, using the wider load shouldn't really 800 // hurt anything. 801 802 // If the old size already had to be an extload, there's no harm in continuing 803 // to reduce the width. 804 return (OldSize < 32); 805 } 806 807 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 808 const SelectionDAG &DAG, 809 const MachineMemOperand &MMO) const { 810 811 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 812 813 if (LoadTy.getScalarType() == MVT::i32) 814 return false; 815 816 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 817 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 818 819 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 820 return false; 821 822 bool Fast = false; 823 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 824 CastTy, MMO, &Fast) && 825 Fast; 826 } 827 828 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 829 // profitable with the expansion for 64-bit since it's generally good to 830 // speculate things. 831 // FIXME: These should really have the size as a parameter. 832 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 833 return true; 834 } 835 836 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 837 return true; 838 } 839 840 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 841 switch (N->getOpcode()) { 842 case ISD::EntryToken: 843 case ISD::TokenFactor: 844 return true; 845 case ISD::INTRINSIC_WO_CHAIN: { 846 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 847 switch (IntrID) { 848 case Intrinsic::amdgcn_readfirstlane: 849 case Intrinsic::amdgcn_readlane: 850 return true; 851 } 852 return false; 853 } 854 case ISD::LOAD: 855 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 856 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 857 return true; 858 return false; 859 } 860 return false; 861 } 862 863 SDValue AMDGPUTargetLowering::getNegatedExpression( 864 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 865 NegatibleCost &Cost, unsigned Depth) const { 866 867 switch (Op.getOpcode()) { 868 case ISD::FMA: 869 case ISD::FMAD: { 870 // Negating a fma is not free if it has users without source mods. 871 if (!allUsesHaveSourceMods(Op.getNode())) 872 return SDValue(); 873 break; 874 } 875 default: 876 break; 877 } 878 879 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 880 ForCodeSize, Cost, Depth); 881 } 882 883 //===---------------------------------------------------------------------===// 884 // Target Properties 885 //===---------------------------------------------------------------------===// 886 887 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 888 assert(VT.isFloatingPoint()); 889 890 // Packed operations do not have a fabs modifier. 891 return VT == MVT::f32 || VT == MVT::f64 || 892 (Subtarget->has16BitInsts() && VT == MVT::f16); 893 } 894 895 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 896 assert(VT.isFloatingPoint()); 897 // Report this based on the end legalized type. 898 VT = VT.getScalarType(); 899 return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16; 900 } 901 902 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 903 unsigned NumElem, 904 unsigned AS) const { 905 return true; 906 } 907 908 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 909 // There are few operations which truly have vector input operands. Any vector 910 // operation is going to involve operations on each component, and a 911 // build_vector will be a copy per element, so it always makes sense to use a 912 // build_vector input in place of the extracted element to avoid a copy into a 913 // super register. 914 // 915 // We should probably only do this if all users are extracts only, but this 916 // should be the common case. 917 return true; 918 } 919 920 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 921 // Truncate is just accessing a subregister. 922 923 unsigned SrcSize = Source.getSizeInBits(); 924 unsigned DestSize = Dest.getSizeInBits(); 925 926 return DestSize < SrcSize && DestSize % 32 == 0 ; 927 } 928 929 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 930 // Truncate is just accessing a subregister. 931 932 unsigned SrcSize = Source->getScalarSizeInBits(); 933 unsigned DestSize = Dest->getScalarSizeInBits(); 934 935 if (DestSize== 16 && Subtarget->has16BitInsts()) 936 return SrcSize >= 32; 937 938 return DestSize < SrcSize && DestSize % 32 == 0; 939 } 940 941 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 942 unsigned SrcSize = Src->getScalarSizeInBits(); 943 unsigned DestSize = Dest->getScalarSizeInBits(); 944 945 if (SrcSize == 16 && Subtarget->has16BitInsts()) 946 return DestSize >= 32; 947 948 return SrcSize == 32 && DestSize == 64; 949 } 950 951 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 952 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 953 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 954 // this will enable reducing 64-bit operations the 32-bit, which is always 955 // good. 956 957 if (Src == MVT::i16) 958 return Dest == MVT::i32 ||Dest == MVT::i64 ; 959 960 return Src == MVT::i32 && Dest == MVT::i64; 961 } 962 963 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 964 return isZExtFree(Val.getValueType(), VT2); 965 } 966 967 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 968 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 969 // limited number of native 64-bit operations. Shrinking an operation to fit 970 // in a single 32-bit register should always be helpful. As currently used, 971 // this is much less general than the name suggests, and is only used in 972 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 973 // not profitable, and may actually be harmful. 974 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 975 } 976 977 //===---------------------------------------------------------------------===// 978 // TargetLowering Callbacks 979 //===---------------------------------------------------------------------===// 980 981 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 982 bool IsVarArg) { 983 switch (CC) { 984 case CallingConv::AMDGPU_VS: 985 case CallingConv::AMDGPU_GS: 986 case CallingConv::AMDGPU_PS: 987 case CallingConv::AMDGPU_CS: 988 case CallingConv::AMDGPU_HS: 989 case CallingConv::AMDGPU_ES: 990 case CallingConv::AMDGPU_LS: 991 return CC_AMDGPU; 992 case CallingConv::C: 993 case CallingConv::Fast: 994 case CallingConv::Cold: 995 return CC_AMDGPU_Func; 996 case CallingConv::AMDGPU_Gfx: 997 return CC_SI_Gfx; 998 case CallingConv::AMDGPU_KERNEL: 999 case CallingConv::SPIR_KERNEL: 1000 default: 1001 report_fatal_error("Unsupported calling convention for call"); 1002 } 1003 } 1004 1005 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 1006 bool IsVarArg) { 1007 switch (CC) { 1008 case CallingConv::AMDGPU_KERNEL: 1009 case CallingConv::SPIR_KERNEL: 1010 llvm_unreachable("kernels should not be handled here"); 1011 case CallingConv::AMDGPU_VS: 1012 case CallingConv::AMDGPU_GS: 1013 case CallingConv::AMDGPU_PS: 1014 case CallingConv::AMDGPU_CS: 1015 case CallingConv::AMDGPU_HS: 1016 case CallingConv::AMDGPU_ES: 1017 case CallingConv::AMDGPU_LS: 1018 return RetCC_SI_Shader; 1019 case CallingConv::AMDGPU_Gfx: 1020 return RetCC_SI_Gfx; 1021 case CallingConv::C: 1022 case CallingConv::Fast: 1023 case CallingConv::Cold: 1024 return RetCC_AMDGPU_Func; 1025 default: 1026 report_fatal_error("Unsupported calling convention."); 1027 } 1028 } 1029 1030 /// The SelectionDAGBuilder will automatically promote function arguments 1031 /// with illegal types. However, this does not work for the AMDGPU targets 1032 /// since the function arguments are stored in memory as these illegal types. 1033 /// In order to handle this properly we need to get the original types sizes 1034 /// from the LLVM IR Function and fixup the ISD:InputArg values before 1035 /// passing them to AnalyzeFormalArguments() 1036 1037 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 1038 /// input values across multiple registers. Each item in the Ins array 1039 /// represents a single value that will be stored in registers. Ins[x].VT is 1040 /// the value type of the value that will be stored in the register, so 1041 /// whatever SDNode we lower the argument to needs to be this type. 1042 /// 1043 /// In order to correctly lower the arguments we need to know the size of each 1044 /// argument. Since Ins[x].VT gives us the size of the register that will 1045 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 1046 /// for the original function argument so that we can deduce the correct memory 1047 /// type to use for Ins[x]. In most cases the correct memory type will be 1048 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 1049 /// we have a kernel argument of type v8i8, this argument will be split into 1050 /// 8 parts and each part will be represented by its own item in the Ins array. 1051 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1052 /// the argument before it was split. From this, we deduce that the memory type 1053 /// for each individual part is i8. We pass the memory type as LocVT to the 1054 /// calling convention analysis function and the register type (Ins[x].VT) as 1055 /// the ValVT. 1056 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1057 CCState &State, 1058 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1059 const MachineFunction &MF = State.getMachineFunction(); 1060 const Function &Fn = MF.getFunction(); 1061 LLVMContext &Ctx = Fn.getParent()->getContext(); 1062 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1063 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1064 CallingConv::ID CC = Fn.getCallingConv(); 1065 1066 Align MaxAlign = Align(1); 1067 uint64_t ExplicitArgOffset = 0; 1068 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1069 1070 unsigned InIndex = 0; 1071 1072 for (const Argument &Arg : Fn.args()) { 1073 const bool IsByRef = Arg.hasByRefAttr(); 1074 Type *BaseArgTy = Arg.getType(); 1075 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1076 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1077 if (!Alignment) 1078 Alignment = DL.getABITypeAlign(MemArgTy); 1079 MaxAlign = max(Alignment, MaxAlign); 1080 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1081 1082 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1083 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1084 1085 // We're basically throwing away everything passed into us and starting over 1086 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1087 // to us as computed in Ins. 1088 // 1089 // We also need to figure out what type legalization is trying to do to get 1090 // the correct memory offsets. 1091 1092 SmallVector<EVT, 16> ValueVTs; 1093 SmallVector<uint64_t, 16> Offsets; 1094 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1095 1096 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1097 Value != NumValues; ++Value) { 1098 uint64_t BasePartOffset = Offsets[Value]; 1099 1100 EVT ArgVT = ValueVTs[Value]; 1101 EVT MemVT = ArgVT; 1102 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1103 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1104 1105 if (NumRegs == 1) { 1106 // This argument is not split, so the IR type is the memory type. 1107 if (ArgVT.isExtended()) { 1108 // We have an extended type, like i24, so we should just use the 1109 // register type. 1110 MemVT = RegisterVT; 1111 } else { 1112 MemVT = ArgVT; 1113 } 1114 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1115 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1116 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1117 // We have a vector value which has been split into a vector with 1118 // the same scalar type, but fewer elements. This should handle 1119 // all the floating-point vector types. 1120 MemVT = RegisterVT; 1121 } else if (ArgVT.isVector() && 1122 ArgVT.getVectorNumElements() == NumRegs) { 1123 // This arg has been split so that each element is stored in a separate 1124 // register. 1125 MemVT = ArgVT.getScalarType(); 1126 } else if (ArgVT.isExtended()) { 1127 // We have an extended type, like i65. 1128 MemVT = RegisterVT; 1129 } else { 1130 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1131 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1132 if (RegisterVT.isInteger()) { 1133 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1134 } else if (RegisterVT.isVector()) { 1135 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1136 unsigned NumElements = RegisterVT.getVectorNumElements(); 1137 assert(MemoryBits % NumElements == 0); 1138 // This vector type has been split into another vector type with 1139 // a different elements size. 1140 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1141 MemoryBits / NumElements); 1142 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1143 } else { 1144 llvm_unreachable("cannot deduce memory type."); 1145 } 1146 } 1147 1148 // Convert one element vectors to scalar. 1149 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1150 MemVT = MemVT.getScalarType(); 1151 1152 // Round up vec3/vec5 argument. 1153 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1154 assert(MemVT.getVectorNumElements() == 3 || 1155 MemVT.getVectorNumElements() == 5); 1156 MemVT = MemVT.getPow2VectorType(State.getContext()); 1157 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1158 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1159 } 1160 1161 unsigned PartOffset = 0; 1162 for (unsigned i = 0; i != NumRegs; ++i) { 1163 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1164 BasePartOffset + PartOffset, 1165 MemVT.getSimpleVT(), 1166 CCValAssign::Full)); 1167 PartOffset += MemVT.getStoreSize(); 1168 } 1169 } 1170 } 1171 } 1172 1173 SDValue AMDGPUTargetLowering::LowerReturn( 1174 SDValue Chain, CallingConv::ID CallConv, 1175 bool isVarArg, 1176 const SmallVectorImpl<ISD::OutputArg> &Outs, 1177 const SmallVectorImpl<SDValue> &OutVals, 1178 const SDLoc &DL, SelectionDAG &DAG) const { 1179 // FIXME: Fails for r600 tests 1180 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1181 // "wave terminate should not have return values"); 1182 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1183 } 1184 1185 //===---------------------------------------------------------------------===// 1186 // Target specific lowering 1187 //===---------------------------------------------------------------------===// 1188 1189 /// Selects the correct CCAssignFn for a given CallingConvention value. 1190 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1191 bool IsVarArg) { 1192 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1193 } 1194 1195 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1196 bool IsVarArg) { 1197 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1198 } 1199 1200 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1201 SelectionDAG &DAG, 1202 MachineFrameInfo &MFI, 1203 int ClobberedFI) const { 1204 SmallVector<SDValue, 8> ArgChains; 1205 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1206 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1207 1208 // Include the original chain at the beginning of the list. When this is 1209 // used by target LowerCall hooks, this helps legalize find the 1210 // CALLSEQ_BEGIN node. 1211 ArgChains.push_back(Chain); 1212 1213 // Add a chain value for each stack argument corresponding 1214 for (SDNode *U : DAG.getEntryNode().getNode()->uses()) { 1215 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) { 1216 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1217 if (FI->getIndex() < 0) { 1218 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1219 int64_t InLastByte = InFirstByte; 1220 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1221 1222 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1223 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1224 ArgChains.push_back(SDValue(L, 1)); 1225 } 1226 } 1227 } 1228 } 1229 1230 // Build a tokenfactor for all the chains. 1231 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1232 } 1233 1234 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1235 SmallVectorImpl<SDValue> &InVals, 1236 StringRef Reason) const { 1237 SDValue Callee = CLI.Callee; 1238 SelectionDAG &DAG = CLI.DAG; 1239 1240 const Function &Fn = DAG.getMachineFunction().getFunction(); 1241 1242 StringRef FuncName("<unknown>"); 1243 1244 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1245 FuncName = G->getSymbol(); 1246 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1247 FuncName = G->getGlobal()->getName(); 1248 1249 DiagnosticInfoUnsupported NoCalls( 1250 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1251 DAG.getContext()->diagnose(NoCalls); 1252 1253 if (!CLI.IsTailCall) { 1254 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1255 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1256 } 1257 1258 return DAG.getEntryNode(); 1259 } 1260 1261 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1262 SmallVectorImpl<SDValue> &InVals) const { 1263 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1264 } 1265 1266 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1267 SelectionDAG &DAG) const { 1268 const Function &Fn = DAG.getMachineFunction().getFunction(); 1269 1270 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1271 SDLoc(Op).getDebugLoc()); 1272 DAG.getContext()->diagnose(NoDynamicAlloca); 1273 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1274 return DAG.getMergeValues(Ops, SDLoc()); 1275 } 1276 1277 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1278 SelectionDAG &DAG) const { 1279 switch (Op.getOpcode()) { 1280 default: 1281 Op->print(errs(), &DAG); 1282 llvm_unreachable("Custom lowering code for this " 1283 "instruction is not implemented yet!"); 1284 break; 1285 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1286 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1287 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1288 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1289 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1290 case ISD::FREM: return LowerFREM(Op, DAG); 1291 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1292 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1293 case ISD::FRINT: return LowerFRINT(Op, DAG); 1294 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1295 case ISD::FROUND: return LowerFROUND(Op, DAG); 1296 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1297 case ISD::FLOG: 1298 return LowerFLOG(Op, DAG, numbers::ln2f); 1299 case ISD::FLOG10: 1300 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1301 case ISD::FEXP: 1302 return lowerFEXP(Op, DAG); 1303 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1304 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1305 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1306 case ISD::FP_TO_SINT: 1307 case ISD::FP_TO_UINT: 1308 return LowerFP_TO_INT(Op, DAG); 1309 case ISD::CTTZ: 1310 case ISD::CTTZ_ZERO_UNDEF: 1311 case ISD::CTLZ: 1312 case ISD::CTLZ_ZERO_UNDEF: 1313 return LowerCTLZ_CTTZ(Op, DAG); 1314 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1315 } 1316 return Op; 1317 } 1318 1319 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1320 SmallVectorImpl<SDValue> &Results, 1321 SelectionDAG &DAG) const { 1322 switch (N->getOpcode()) { 1323 case ISD::SIGN_EXTEND_INREG: 1324 // Different parts of legalization seem to interpret which type of 1325 // sign_extend_inreg is the one to check for custom lowering. The extended 1326 // from type is what really matters, but some places check for custom 1327 // lowering of the result type. This results in trying to use 1328 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1329 // nothing here and let the illegal result integer be handled normally. 1330 return; 1331 default: 1332 return; 1333 } 1334 } 1335 1336 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1337 SDValue Op, 1338 SelectionDAG &DAG) const { 1339 1340 const DataLayout &DL = DAG.getDataLayout(); 1341 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1342 const GlobalValue *GV = G->getGlobal(); 1343 1344 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1345 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1346 if (!MFI->isModuleEntryFunction() && 1347 !GV->getName().equals("llvm.amdgcn.module.lds")) { 1348 SDLoc DL(Op); 1349 const Function &Fn = DAG.getMachineFunction().getFunction(); 1350 DiagnosticInfoUnsupported BadLDSDecl( 1351 Fn, "local memory global used by non-kernel function", 1352 DL.getDebugLoc(), DS_Warning); 1353 DAG.getContext()->diagnose(BadLDSDecl); 1354 1355 // We currently don't have a way to correctly allocate LDS objects that 1356 // aren't directly associated with a kernel. We do force inlining of 1357 // functions that use local objects. However, if these dead functions are 1358 // not eliminated, we don't want a compile time error. Just emit a warning 1359 // and a trap, since there should be no callable path here. 1360 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1361 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1362 Trap, DAG.getRoot()); 1363 DAG.setRoot(OutputChain); 1364 return DAG.getUNDEF(Op.getValueType()); 1365 } 1366 1367 // XXX: What does the value of G->getOffset() mean? 1368 assert(G->getOffset() == 0 && 1369 "Do not know what to do with an non-zero offset"); 1370 1371 // TODO: We could emit code to handle the initialization somewhere. 1372 // We ignore the initializer for now and legalize it to allow selection. 1373 // The initializer will anyway get errored out during assembly emission. 1374 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1375 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1376 } 1377 return SDValue(); 1378 } 1379 1380 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1381 SelectionDAG &DAG) const { 1382 SmallVector<SDValue, 8> Args; 1383 1384 EVT VT = Op.getValueType(); 1385 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1386 SDLoc SL(Op); 1387 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1388 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1389 1390 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1391 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1392 } 1393 1394 for (const SDUse &U : Op->ops()) 1395 DAG.ExtractVectorElements(U.get(), Args); 1396 1397 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1398 } 1399 1400 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1401 SelectionDAG &DAG) const { 1402 1403 SmallVector<SDValue, 8> Args; 1404 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1405 EVT VT = Op.getValueType(); 1406 EVT SrcVT = Op.getOperand(0).getValueType(); 1407 1408 // For these types, we have some TableGen patterns except if the index is 1 1409 if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) || 1410 (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) && 1411 Start != 1) 1412 return Op; 1413 1414 if (((SrcVT == MVT::v8f16 && VT == MVT::v4f16) || 1415 (SrcVT == MVT::v8i16 && VT == MVT::v4i16)) && 1416 (Start == 0 || Start == 4)) 1417 return Op; 1418 1419 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1420 VT.getVectorNumElements()); 1421 1422 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1423 } 1424 1425 /// Generate Min/Max node 1426 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1427 SDValue LHS, SDValue RHS, 1428 SDValue True, SDValue False, 1429 SDValue CC, 1430 DAGCombinerInfo &DCI) const { 1431 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1432 return SDValue(); 1433 1434 SelectionDAG &DAG = DCI.DAG; 1435 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1436 switch (CCOpcode) { 1437 case ISD::SETOEQ: 1438 case ISD::SETONE: 1439 case ISD::SETUNE: 1440 case ISD::SETNE: 1441 case ISD::SETUEQ: 1442 case ISD::SETEQ: 1443 case ISD::SETFALSE: 1444 case ISD::SETFALSE2: 1445 case ISD::SETTRUE: 1446 case ISD::SETTRUE2: 1447 case ISD::SETUO: 1448 case ISD::SETO: 1449 break; 1450 case ISD::SETULE: 1451 case ISD::SETULT: { 1452 if (LHS == True) 1453 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1454 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1455 } 1456 case ISD::SETOLE: 1457 case ISD::SETOLT: 1458 case ISD::SETLE: 1459 case ISD::SETLT: { 1460 // Ordered. Assume ordered for undefined. 1461 1462 // Only do this after legalization to avoid interfering with other combines 1463 // which might occur. 1464 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1465 !DCI.isCalledByLegalizer()) 1466 return SDValue(); 1467 1468 // We need to permute the operands to get the correct NaN behavior. The 1469 // selected operand is the second one based on the failing compare with NaN, 1470 // so permute it based on the compare type the hardware uses. 1471 if (LHS == True) 1472 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1473 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1474 } 1475 case ISD::SETUGE: 1476 case ISD::SETUGT: { 1477 if (LHS == True) 1478 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1479 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1480 } 1481 case ISD::SETGT: 1482 case ISD::SETGE: 1483 case ISD::SETOGE: 1484 case ISD::SETOGT: { 1485 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1486 !DCI.isCalledByLegalizer()) 1487 return SDValue(); 1488 1489 if (LHS == True) 1490 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1491 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1492 } 1493 case ISD::SETCC_INVALID: 1494 llvm_unreachable("Invalid setcc condcode!"); 1495 } 1496 return SDValue(); 1497 } 1498 1499 std::pair<SDValue, SDValue> 1500 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1501 SDLoc SL(Op); 1502 1503 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1504 1505 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1506 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1507 1508 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1509 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1510 1511 return std::make_pair(Lo, Hi); 1512 } 1513 1514 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1515 SDLoc SL(Op); 1516 1517 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1518 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1519 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1520 } 1521 1522 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1523 SDLoc SL(Op); 1524 1525 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1526 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1527 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1528 } 1529 1530 // Split a vector type into two parts. The first part is a power of two vector. 1531 // The second part is whatever is left over, and is a scalar if it would 1532 // otherwise be a 1-vector. 1533 std::pair<EVT, EVT> 1534 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1535 EVT LoVT, HiVT; 1536 EVT EltVT = VT.getVectorElementType(); 1537 unsigned NumElts = VT.getVectorNumElements(); 1538 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1539 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1540 HiVT = NumElts - LoNumElts == 1 1541 ? EltVT 1542 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1543 return std::make_pair(LoVT, HiVT); 1544 } 1545 1546 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1547 // scalar. 1548 std::pair<SDValue, SDValue> 1549 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1550 const EVT &LoVT, const EVT &HiVT, 1551 SelectionDAG &DAG) const { 1552 assert(LoVT.getVectorNumElements() + 1553 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1554 N.getValueType().getVectorNumElements() && 1555 "More vector elements requested than available!"); 1556 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1557 DAG.getVectorIdxConstant(0, DL)); 1558 SDValue Hi = DAG.getNode( 1559 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1560 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1561 return std::make_pair(Lo, Hi); 1562 } 1563 1564 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1565 SelectionDAG &DAG) const { 1566 LoadSDNode *Load = cast<LoadSDNode>(Op); 1567 EVT VT = Op.getValueType(); 1568 SDLoc SL(Op); 1569 1570 1571 // If this is a 2 element vector, we really want to scalarize and not create 1572 // weird 1 element vectors. 1573 if (VT.getVectorNumElements() == 2) { 1574 SDValue Ops[2]; 1575 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1576 return DAG.getMergeValues(Ops, SL); 1577 } 1578 1579 SDValue BasePtr = Load->getBasePtr(); 1580 EVT MemVT = Load->getMemoryVT(); 1581 1582 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1583 1584 EVT LoVT, HiVT; 1585 EVT LoMemVT, HiMemVT; 1586 SDValue Lo, Hi; 1587 1588 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1589 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1590 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1591 1592 unsigned Size = LoMemVT.getStoreSize(); 1593 unsigned BaseAlign = Load->getAlignment(); 1594 unsigned HiAlign = MinAlign(BaseAlign, Size); 1595 1596 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1597 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1598 BaseAlign, Load->getMemOperand()->getFlags()); 1599 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1600 SDValue HiLoad = 1601 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1602 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1603 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1604 1605 SDValue Join; 1606 if (LoVT == HiVT) { 1607 // This is the case that the vector is power of two so was evenly split. 1608 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1609 } else { 1610 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1611 DAG.getVectorIdxConstant(0, SL)); 1612 Join = DAG.getNode( 1613 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1614 VT, Join, HiLoad, 1615 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1616 } 1617 1618 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1619 LoLoad.getValue(1), HiLoad.getValue(1))}; 1620 1621 return DAG.getMergeValues(Ops, SL); 1622 } 1623 1624 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, 1625 SelectionDAG &DAG) const { 1626 LoadSDNode *Load = cast<LoadSDNode>(Op); 1627 EVT VT = Op.getValueType(); 1628 SDValue BasePtr = Load->getBasePtr(); 1629 EVT MemVT = Load->getMemoryVT(); 1630 SDLoc SL(Op); 1631 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1632 unsigned BaseAlign = Load->getAlignment(); 1633 unsigned NumElements = MemVT.getVectorNumElements(); 1634 1635 // Widen from vec3 to vec4 when the load is at least 8-byte aligned 1636 // or 16-byte fully dereferenceable. Otherwise, split the vector load. 1637 if (NumElements != 3 || 1638 (BaseAlign < 8 && 1639 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) 1640 return SplitVectorLoad(Op, DAG); 1641 1642 assert(NumElements == 3); 1643 1644 EVT WideVT = 1645 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1646 EVT WideMemVT = 1647 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1648 SDValue WideLoad = DAG.getExtLoad( 1649 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1650 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1651 return DAG.getMergeValues( 1652 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1653 DAG.getVectorIdxConstant(0, SL)), 1654 WideLoad.getValue(1)}, 1655 SL); 1656 } 1657 1658 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1659 SelectionDAG &DAG) const { 1660 StoreSDNode *Store = cast<StoreSDNode>(Op); 1661 SDValue Val = Store->getValue(); 1662 EVT VT = Val.getValueType(); 1663 1664 // If this is a 2 element vector, we really want to scalarize and not create 1665 // weird 1 element vectors. 1666 if (VT.getVectorNumElements() == 2) 1667 return scalarizeVectorStore(Store, DAG); 1668 1669 EVT MemVT = Store->getMemoryVT(); 1670 SDValue Chain = Store->getChain(); 1671 SDValue BasePtr = Store->getBasePtr(); 1672 SDLoc SL(Op); 1673 1674 EVT LoVT, HiVT; 1675 EVT LoMemVT, HiMemVT; 1676 SDValue Lo, Hi; 1677 1678 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1679 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1680 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1681 1682 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1683 1684 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1685 unsigned BaseAlign = Store->getAlignment(); 1686 unsigned Size = LoMemVT.getStoreSize(); 1687 unsigned HiAlign = MinAlign(BaseAlign, Size); 1688 1689 SDValue LoStore = 1690 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1691 Store->getMemOperand()->getFlags()); 1692 SDValue HiStore = 1693 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1694 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1695 1696 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1697 } 1698 1699 // This is a shortcut for integer division because we have fast i32<->f32 1700 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1701 // float is enough to accurately represent up to a 24-bit signed integer. 1702 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1703 bool Sign) const { 1704 SDLoc DL(Op); 1705 EVT VT = Op.getValueType(); 1706 SDValue LHS = Op.getOperand(0); 1707 SDValue RHS = Op.getOperand(1); 1708 MVT IntVT = MVT::i32; 1709 MVT FltVT = MVT::f32; 1710 1711 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1712 if (LHSSignBits < 9) 1713 return SDValue(); 1714 1715 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1716 if (RHSSignBits < 9) 1717 return SDValue(); 1718 1719 unsigned BitSize = VT.getSizeInBits(); 1720 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1721 unsigned DivBits = BitSize - SignBits; 1722 if (Sign) 1723 ++DivBits; 1724 1725 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1726 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1727 1728 SDValue jq = DAG.getConstant(1, DL, IntVT); 1729 1730 if (Sign) { 1731 // char|short jq = ia ^ ib; 1732 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1733 1734 // jq = jq >> (bitsize - 2) 1735 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1736 DAG.getConstant(BitSize - 2, DL, VT)); 1737 1738 // jq = jq | 0x1 1739 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1740 } 1741 1742 // int ia = (int)LHS; 1743 SDValue ia = LHS; 1744 1745 // int ib, (int)RHS; 1746 SDValue ib = RHS; 1747 1748 // float fa = (float)ia; 1749 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1750 1751 // float fb = (float)ib; 1752 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1753 1754 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1755 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1756 1757 // fq = trunc(fq); 1758 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1759 1760 // float fqneg = -fq; 1761 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1762 1763 MachineFunction &MF = DAG.getMachineFunction(); 1764 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1765 1766 // float fr = mad(fqneg, fb, fa); 1767 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1768 (unsigned)ISD::FMA : 1769 !MFI->getMode().allFP32Denormals() ? 1770 (unsigned)ISD::FMAD : 1771 (unsigned)AMDGPUISD::FMAD_FTZ; 1772 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1773 1774 // int iq = (int)fq; 1775 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1776 1777 // fr = fabs(fr); 1778 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1779 1780 // fb = fabs(fb); 1781 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1782 1783 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1784 1785 // int cv = fr >= fb; 1786 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1787 1788 // jq = (cv ? jq : 0); 1789 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1790 1791 // dst = iq + jq; 1792 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1793 1794 // Rem needs compensation, it's easier to recompute it 1795 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1796 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1797 1798 // Truncate to number of bits this divide really is. 1799 if (Sign) { 1800 SDValue InRegSize 1801 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1802 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1803 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1804 } else { 1805 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1806 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1807 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1808 } 1809 1810 return DAG.getMergeValues({ Div, Rem }, DL); 1811 } 1812 1813 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1814 SelectionDAG &DAG, 1815 SmallVectorImpl<SDValue> &Results) const { 1816 SDLoc DL(Op); 1817 EVT VT = Op.getValueType(); 1818 1819 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1820 1821 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1822 1823 SDValue One = DAG.getConstant(1, DL, HalfVT); 1824 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1825 1826 //HiLo split 1827 SDValue LHS = Op.getOperand(0); 1828 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1829 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1830 1831 SDValue RHS = Op.getOperand(1); 1832 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1833 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1834 1835 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1836 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1837 1838 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1839 LHS_Lo, RHS_Lo); 1840 1841 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1842 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1843 1844 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1845 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1846 return; 1847 } 1848 1849 if (isTypeLegal(MVT::i64)) { 1850 // The algorithm here is based on ideas from "Software Integer Division", 1851 // Tom Rodeheffer, August 2008. 1852 1853 MachineFunction &MF = DAG.getMachineFunction(); 1854 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1855 1856 // Compute denominator reciprocal. 1857 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1858 (unsigned)ISD::FMA : 1859 !MFI->getMode().allFP32Denormals() ? 1860 (unsigned)ISD::FMAD : 1861 (unsigned)AMDGPUISD::FMAD_FTZ; 1862 1863 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1864 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1865 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1866 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1867 Cvt_Lo); 1868 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1869 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1870 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1871 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1872 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1873 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1874 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1875 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1876 Mul1); 1877 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1878 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1879 SDValue Rcp64 = DAG.getBitcast(VT, 1880 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1881 1882 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1883 SDValue One64 = DAG.getConstant(1, DL, VT); 1884 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1885 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1886 1887 // First round of UNR (Unsigned integer Newton-Raphson). 1888 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1889 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1890 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1891 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1892 Zero); 1893 SDValue Mulhi1_Hi = 1894 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, One); 1895 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1896 Mulhi1_Lo, Zero1); 1897 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1898 Mulhi1_Hi, Add1_Lo.getValue(1)); 1899 SDValue Add1 = DAG.getBitcast(VT, 1900 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1901 1902 // Second round of UNR. 1903 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1904 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1905 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1906 Zero); 1907 SDValue Mulhi2_Hi = 1908 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, One); 1909 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1910 Mulhi2_Lo, Zero1); 1911 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Hi, 1912 Mulhi2_Hi, Add2_Lo.getValue(1)); 1913 SDValue Add2 = DAG.getBitcast(VT, 1914 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1915 1916 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1917 1918 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1919 1920 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1921 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1922 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1923 Mul3_Lo, Zero1); 1924 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1925 Mul3_Hi, Sub1_Lo.getValue(1)); 1926 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1927 SDValue Sub1 = DAG.getBitcast(VT, 1928 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1929 1930 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1931 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1932 ISD::SETUGE); 1933 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1934 ISD::SETUGE); 1935 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1936 1937 // TODO: Here and below portions of the code can be enclosed into if/endif. 1938 // Currently control flow is unconditional and we have 4 selects after 1939 // potential endif to substitute PHIs. 1940 1941 // if C3 != 0 ... 1942 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1943 RHS_Lo, Zero1); 1944 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1945 RHS_Hi, Sub1_Lo.getValue(1)); 1946 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1947 Zero, Sub2_Lo.getValue(1)); 1948 SDValue Sub2 = DAG.getBitcast(VT, 1949 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1950 1951 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1952 1953 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1954 ISD::SETUGE); 1955 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1956 ISD::SETUGE); 1957 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1958 1959 // if (C6 != 0) 1960 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1961 1962 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1963 RHS_Lo, Zero1); 1964 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1965 RHS_Hi, Sub2_Lo.getValue(1)); 1966 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1967 Zero, Sub3_Lo.getValue(1)); 1968 SDValue Sub3 = DAG.getBitcast(VT, 1969 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1970 1971 // endif C6 1972 // endif C3 1973 1974 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1975 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1976 1977 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1978 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1979 1980 Results.push_back(Div); 1981 Results.push_back(Rem); 1982 1983 return; 1984 } 1985 1986 // r600 expandion. 1987 // Get Speculative values 1988 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1989 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1990 1991 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1992 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1993 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1994 1995 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1996 SDValue DIV_Lo = Zero; 1997 1998 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1999 2000 for (unsigned i = 0; i < halfBitWidth; ++i) { 2001 const unsigned bitPos = halfBitWidth - i - 1; 2002 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 2003 // Get value of high bit 2004 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 2005 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 2006 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 2007 2008 // Shift 2009 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 2010 // Add LHS high bit 2011 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 2012 2013 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 2014 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 2015 2016 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 2017 2018 // Update REM 2019 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 2020 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 2021 } 2022 2023 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 2024 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 2025 Results.push_back(DIV); 2026 Results.push_back(REM); 2027 } 2028 2029 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 2030 SelectionDAG &DAG) const { 2031 SDLoc DL(Op); 2032 EVT VT = Op.getValueType(); 2033 2034 if (VT == MVT::i64) { 2035 SmallVector<SDValue, 2> Results; 2036 LowerUDIVREM64(Op, DAG, Results); 2037 return DAG.getMergeValues(Results, DL); 2038 } 2039 2040 if (VT == MVT::i32) { 2041 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 2042 return Res; 2043 } 2044 2045 SDValue X = Op.getOperand(0); 2046 SDValue Y = Op.getOperand(1); 2047 2048 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 2049 // algorithm used here. 2050 2051 // Initial estimate of inv(y). 2052 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 2053 2054 // One round of UNR. 2055 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 2056 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 2057 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 2058 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 2059 2060 // Quotient/remainder estimate. 2061 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 2062 SDValue R = 2063 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 2064 2065 // First quotient/remainder refinement. 2066 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2067 SDValue One = DAG.getConstant(1, DL, VT); 2068 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2069 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2070 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2071 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2072 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2073 2074 // Second quotient/remainder refinement. 2075 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2076 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2077 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2078 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2079 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2080 2081 return DAG.getMergeValues({Q, R}, DL); 2082 } 2083 2084 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2085 SelectionDAG &DAG) const { 2086 SDLoc DL(Op); 2087 EVT VT = Op.getValueType(); 2088 2089 SDValue LHS = Op.getOperand(0); 2090 SDValue RHS = Op.getOperand(1); 2091 2092 SDValue Zero = DAG.getConstant(0, DL, VT); 2093 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2094 2095 if (VT == MVT::i32) { 2096 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2097 return Res; 2098 } 2099 2100 if (VT == MVT::i64 && 2101 DAG.ComputeNumSignBits(LHS) > 32 && 2102 DAG.ComputeNumSignBits(RHS) > 32) { 2103 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2104 2105 //HiLo split 2106 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2107 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2108 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2109 LHS_Lo, RHS_Lo); 2110 SDValue Res[2] = { 2111 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2112 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2113 }; 2114 return DAG.getMergeValues(Res, DL); 2115 } 2116 2117 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2118 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2119 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2120 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2121 2122 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2123 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2124 2125 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2126 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2127 2128 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2129 SDValue Rem = Div.getValue(1); 2130 2131 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2132 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2133 2134 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2135 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2136 2137 SDValue Res[2] = { 2138 Div, 2139 Rem 2140 }; 2141 return DAG.getMergeValues(Res, DL); 2142 } 2143 2144 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2145 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2146 SDLoc SL(Op); 2147 EVT VT = Op.getValueType(); 2148 auto Flags = Op->getFlags(); 2149 SDValue X = Op.getOperand(0); 2150 SDValue Y = Op.getOperand(1); 2151 2152 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2153 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2154 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2155 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2156 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2157 } 2158 2159 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2160 SDLoc SL(Op); 2161 SDValue Src = Op.getOperand(0); 2162 2163 // result = trunc(src) 2164 // if (src > 0.0 && src != result) 2165 // result += 1.0 2166 2167 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2168 2169 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2170 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2171 2172 EVT SetCCVT = 2173 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2174 2175 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2176 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2177 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2178 2179 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2180 // TODO: Should this propagate fast-math-flags? 2181 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2182 } 2183 2184 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2185 SelectionDAG &DAG) { 2186 const unsigned FractBits = 52; 2187 const unsigned ExpBits = 11; 2188 2189 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2190 Hi, 2191 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2192 DAG.getConstant(ExpBits, SL, MVT::i32)); 2193 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2194 DAG.getConstant(1023, SL, MVT::i32)); 2195 2196 return Exp; 2197 } 2198 2199 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2200 SDLoc SL(Op); 2201 SDValue Src = Op.getOperand(0); 2202 2203 assert(Op.getValueType() == MVT::f64); 2204 2205 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2206 2207 // Extract the upper half, since this is where we will find the sign and 2208 // exponent. 2209 SDValue Hi = getHiHalf64(Src, DAG); 2210 2211 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2212 2213 const unsigned FractBits = 52; 2214 2215 // Extract the sign bit. 2216 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2217 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2218 2219 // Extend back to 64-bits. 2220 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2221 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2222 2223 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2224 const SDValue FractMask 2225 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2226 2227 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2228 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2229 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2230 2231 EVT SetCCVT = 2232 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2233 2234 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2235 2236 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2237 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2238 2239 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2240 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2241 2242 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2243 } 2244 2245 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2246 SDLoc SL(Op); 2247 SDValue Src = Op.getOperand(0); 2248 2249 assert(Op.getValueType() == MVT::f64); 2250 2251 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2252 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2253 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2254 2255 // TODO: Should this propagate fast-math-flags? 2256 2257 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2258 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2259 2260 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2261 2262 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2263 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2264 2265 EVT SetCCVT = 2266 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2267 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2268 2269 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2270 } 2271 2272 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2273 // FNEARBYINT and FRINT are the same, except in their handling of FP 2274 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2275 // rint, so just treat them as equivalent. 2276 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2277 } 2278 2279 // XXX - May require not supporting f32 denormals? 2280 2281 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2282 // compare and vselect end up producing worse code than scalarizing the whole 2283 // operation. 2284 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2285 SDLoc SL(Op); 2286 SDValue X = Op.getOperand(0); 2287 EVT VT = Op.getValueType(); 2288 2289 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2290 2291 // TODO: Should this propagate fast-math-flags? 2292 2293 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2294 2295 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2296 2297 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2298 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2299 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2300 2301 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2302 2303 EVT SetCCVT = 2304 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2305 2306 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2307 2308 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2309 2310 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2311 } 2312 2313 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2314 SDLoc SL(Op); 2315 SDValue Src = Op.getOperand(0); 2316 2317 // result = trunc(src); 2318 // if (src < 0.0 && src != result) 2319 // result += -1.0. 2320 2321 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2322 2323 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2324 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2325 2326 EVT SetCCVT = 2327 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2328 2329 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2330 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2331 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2332 2333 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2334 // TODO: Should this propagate fast-math-flags? 2335 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2336 } 2337 2338 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2339 double Log2BaseInverted) const { 2340 EVT VT = Op.getValueType(); 2341 2342 SDLoc SL(Op); 2343 SDValue Operand = Op.getOperand(0); 2344 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2345 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2346 2347 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2348 } 2349 2350 // exp2(M_LOG2E_F * f); 2351 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2352 EVT VT = Op.getValueType(); 2353 SDLoc SL(Op); 2354 SDValue Src = Op.getOperand(0); 2355 2356 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2357 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2358 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2359 } 2360 2361 static bool isCtlzOpc(unsigned Opc) { 2362 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2363 } 2364 2365 static bool isCttzOpc(unsigned Opc) { 2366 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2367 } 2368 2369 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2370 SDLoc SL(Op); 2371 SDValue Src = Op.getOperand(0); 2372 2373 assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode())); 2374 bool Ctlz = isCtlzOpc(Op.getOpcode()); 2375 unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32; 2376 2377 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF || 2378 Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF; 2379 2380 if (Src.getValueType() == MVT::i32) { 2381 // (ctlz hi:lo) -> (umin (ffbh src), 32) 2382 // (cttz hi:lo) -> (umin (ffbl src), 32) 2383 // (ctlz_zero_undef src) -> (ffbh src) 2384 // (cttz_zero_undef src) -> (ffbl src) 2385 SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src); 2386 if (!ZeroUndef) { 2387 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2388 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32); 2389 } 2390 return NewOpr; 2391 } 2392 2393 SDValue Lo, Hi; 2394 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2395 2396 SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo); 2397 SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi); 2398 2399 // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64) 2400 // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64) 2401 // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32)) 2402 // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo)) 2403 2404 unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT; 2405 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2406 if (Ctlz) 2407 OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32); 2408 else 2409 OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32); 2410 2411 SDValue NewOpr; 2412 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi); 2413 if (!ZeroUndef) { 2414 const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32); 2415 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64); 2416 } 2417 2418 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2419 } 2420 2421 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2422 bool Signed) const { 2423 // The regular method converting a 64-bit integer to float roughly consists of 2424 // 2 steps: normalization and rounding. In fact, after normalization, the 2425 // conversion from a 64-bit integer to a float is essentially the same as the 2426 // one from a 32-bit integer. The only difference is that it has more 2427 // trailing bits to be rounded. To leverage the native 32-bit conversion, a 2428 // 64-bit integer could be preprocessed and fit into a 32-bit integer then 2429 // converted into the correct float number. The basic steps for the unsigned 2430 // conversion are illustrated in the following pseudo code: 2431 // 2432 // f32 uitofp(i64 u) { 2433 // i32 hi, lo = split(u); 2434 // // Only count the leading zeros in hi as we have native support of the 2435 // // conversion from i32 to f32. If hi is all 0s, the conversion is 2436 // // reduced to a 32-bit one automatically. 2437 // i32 shamt = clz(hi); // Return 32 if hi is all 0s. 2438 // u <<= shamt; 2439 // hi, lo = split(u); 2440 // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo. 2441 // // convert it as a 32-bit integer and scale the result back. 2442 // return uitofp(hi) * 2^(32 - shamt); 2443 // } 2444 // 2445 // The signed one follows the same principle but uses 'ffbh_i32' to count its 2446 // sign bits instead. If 'ffbh_i32' is not available, its absolute value is 2447 // converted instead followed by negation based its sign bit. 2448 2449 SDLoc SL(Op); 2450 SDValue Src = Op.getOperand(0); 2451 2452 SDValue Lo, Hi; 2453 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2454 SDValue Sign; 2455 SDValue ShAmt; 2456 if (Signed && Subtarget->isGCN()) { 2457 // We also need to consider the sign bit in Lo if Hi has just sign bits, 2458 // i.e. Hi is 0 or -1. However, that only needs to take the MSB into 2459 // account. That is, the maximal shift is 2460 // - 32 if Lo and Hi have opposite signs; 2461 // - 33 if Lo and Hi have the same sign. 2462 // 2463 // Or, MaxShAmt = 33 + OppositeSign, where 2464 // 2465 // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is 2466 // - -1 if Lo and Hi have opposite signs; and 2467 // - 0 otherwise. 2468 // 2469 // All in all, ShAmt is calculated as 2470 // 2471 // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1. 2472 // 2473 // or 2474 // 2475 // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31). 2476 // 2477 // to reduce the critical path. 2478 SDValue OppositeSign = DAG.getNode( 2479 ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi), 2480 DAG.getConstant(31, SL, MVT::i32)); 2481 SDValue MaxShAmt = 2482 DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2483 OppositeSign); 2484 // Count the leading sign bits. 2485 ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi); 2486 // Different from unsigned conversion, the shift should be one bit less to 2487 // preserve the sign bit. 2488 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt, 2489 DAG.getConstant(1, SL, MVT::i32)); 2490 ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt); 2491 } else { 2492 if (Signed) { 2493 // Without 'ffbh_i32', only leading zeros could be counted. Take the 2494 // absolute value first. 2495 Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src, 2496 DAG.getConstant(63, SL, MVT::i64)); 2497 SDValue Abs = 2498 DAG.getNode(ISD::XOR, SL, MVT::i64, 2499 DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign); 2500 std::tie(Lo, Hi) = split64BitValue(Abs, DAG); 2501 } 2502 // Count the leading zeros. 2503 ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi); 2504 // The shift amount for signed integers is [0, 32]. 2505 } 2506 // Normalize the given 64-bit integer. 2507 SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt); 2508 // Split it again. 2509 std::tie(Lo, Hi) = split64BitValue(Norm, DAG); 2510 // Calculate the adjust bit for rounding. 2511 // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo) 2512 SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32, 2513 DAG.getConstant(1, SL, MVT::i32), Lo); 2514 // Get the 32-bit normalized integer. 2515 Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust); 2516 // Convert the normalized 32-bit integer into f32. 2517 unsigned Opc = 2518 (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 2519 SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm); 2520 2521 // Finally, need to scale back the converted floating number as the original 2522 // 64-bit integer is converted as a 32-bit one. 2523 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2524 ShAmt); 2525 // On GCN, use LDEXP directly. 2526 if (Subtarget->isGCN()) 2527 return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt); 2528 2529 // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent 2530 // part directly to emulate the multiplication of 2^ShAmt. That 8-bit 2531 // exponent is enough to avoid overflowing into the sign bit. 2532 SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt, 2533 DAG.getConstant(23, SL, MVT::i32)); 2534 SDValue IVal = 2535 DAG.getNode(ISD::ADD, SL, MVT::i32, 2536 DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp); 2537 if (Signed) { 2538 // Set the sign bit. 2539 Sign = DAG.getNode(ISD::SHL, SL, MVT::i32, 2540 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign), 2541 DAG.getConstant(31, SL, MVT::i32)); 2542 IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign); 2543 } 2544 return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal); 2545 } 2546 2547 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2548 bool Signed) const { 2549 SDLoc SL(Op); 2550 SDValue Src = Op.getOperand(0); 2551 2552 SDValue Lo, Hi; 2553 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2554 2555 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2556 SL, MVT::f64, Hi); 2557 2558 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2559 2560 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2561 DAG.getConstant(32, SL, MVT::i32)); 2562 // TODO: Should this propagate fast-math-flags? 2563 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2564 } 2565 2566 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2567 SelectionDAG &DAG) const { 2568 // TODO: Factor out code common with LowerSINT_TO_FP. 2569 EVT DestVT = Op.getValueType(); 2570 SDValue Src = Op.getOperand(0); 2571 EVT SrcVT = Src.getValueType(); 2572 2573 if (SrcVT == MVT::i16) { 2574 if (DestVT == MVT::f16) 2575 return Op; 2576 SDLoc DL(Op); 2577 2578 // Promote src to i32 2579 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2580 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2581 } 2582 2583 assert(SrcVT == MVT::i64 && "operation should be legal"); 2584 2585 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2586 SDLoc DL(Op); 2587 2588 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2589 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2590 SDValue FPRound = 2591 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2592 2593 return FPRound; 2594 } 2595 2596 if (DestVT == MVT::f32) 2597 return LowerINT_TO_FP32(Op, DAG, false); 2598 2599 assert(DestVT == MVT::f64); 2600 return LowerINT_TO_FP64(Op, DAG, false); 2601 } 2602 2603 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2604 SelectionDAG &DAG) const { 2605 EVT DestVT = Op.getValueType(); 2606 2607 SDValue Src = Op.getOperand(0); 2608 EVT SrcVT = Src.getValueType(); 2609 2610 if (SrcVT == MVT::i16) { 2611 if (DestVT == MVT::f16) 2612 return Op; 2613 2614 SDLoc DL(Op); 2615 // Promote src to i32 2616 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2617 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2618 } 2619 2620 assert(SrcVT == MVT::i64 && "operation should be legal"); 2621 2622 // TODO: Factor out code common with LowerUINT_TO_FP. 2623 2624 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2625 SDLoc DL(Op); 2626 SDValue Src = Op.getOperand(0); 2627 2628 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2629 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2630 SDValue FPRound = 2631 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2632 2633 return FPRound; 2634 } 2635 2636 if (DestVT == MVT::f32) 2637 return LowerINT_TO_FP32(Op, DAG, true); 2638 2639 assert(DestVT == MVT::f64); 2640 return LowerINT_TO_FP64(Op, DAG, true); 2641 } 2642 2643 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG, 2644 bool Signed) const { 2645 SDLoc SL(Op); 2646 2647 SDValue Src = Op.getOperand(0); 2648 EVT SrcVT = Src.getValueType(); 2649 2650 assert(SrcVT == MVT::f32 || SrcVT == MVT::f64); 2651 2652 // The basic idea of converting a floating point number into a pair of 32-bit 2653 // integers is illustrated as follows: 2654 // 2655 // tf := trunc(val); 2656 // hif := floor(tf * 2^-32); 2657 // lof := tf - hif * 2^32; // lof is always positive due to floor. 2658 // hi := fptoi(hif); 2659 // lo := fptoi(lof); 2660 // 2661 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src); 2662 SDValue Sign; 2663 if (Signed && SrcVT == MVT::f32) { 2664 // However, a 32-bit floating point number has only 23 bits mantissa and 2665 // it's not enough to hold all the significant bits of `lof` if val is 2666 // negative. To avoid the loss of precision, We need to take the absolute 2667 // value after truncating and flip the result back based on the original 2668 // signedness. 2669 Sign = DAG.getNode(ISD::SRA, SL, MVT::i32, 2670 DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc), 2671 DAG.getConstant(31, SL, MVT::i32)); 2672 Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc); 2673 } 2674 2675 SDValue K0, K1; 2676 if (SrcVT == MVT::f64) { 2677 K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)), 2678 SL, SrcVT); 2679 K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)), 2680 SL, SrcVT); 2681 } else { 2682 K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL, 2683 SrcVT); 2684 K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL, 2685 SrcVT); 2686 } 2687 // TODO: Should this propagate fast-math-flags? 2688 SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0); 2689 2690 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul); 2691 2692 SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc); 2693 2694 SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT 2695 : ISD::FP_TO_UINT, 2696 SL, MVT::i32, FloorMul); 2697 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2698 2699 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2700 DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi})); 2701 2702 if (Signed && SrcVT == MVT::f32) { 2703 assert(Sign); 2704 // Flip the result based on the signedness, which is either all 0s or 1s. 2705 Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2706 DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign})); 2707 // r := xor(r, sign) - sign; 2708 Result = 2709 DAG.getNode(ISD::SUB, SL, MVT::i64, 2710 DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign); 2711 } 2712 2713 return Result; 2714 } 2715 2716 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2717 SDLoc DL(Op); 2718 SDValue N0 = Op.getOperand(0); 2719 2720 // Convert to target node to get known bits 2721 if (N0.getValueType() == MVT::f32) 2722 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2723 2724 if (getTargetMachine().Options.UnsafeFPMath) { 2725 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2726 return SDValue(); 2727 } 2728 2729 assert(N0.getSimpleValueType() == MVT::f64); 2730 2731 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2732 const unsigned ExpMask = 0x7ff; 2733 const unsigned ExpBiasf64 = 1023; 2734 const unsigned ExpBiasf16 = 15; 2735 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2736 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2737 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2738 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2739 DAG.getConstant(32, DL, MVT::i64)); 2740 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2741 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2742 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2743 DAG.getConstant(20, DL, MVT::i64)); 2744 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2745 DAG.getConstant(ExpMask, DL, MVT::i32)); 2746 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2747 // add the f16 bias (15) to get the biased exponent for the f16 format. 2748 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2749 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2750 2751 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2752 DAG.getConstant(8, DL, MVT::i32)); 2753 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2754 DAG.getConstant(0xffe, DL, MVT::i32)); 2755 2756 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2757 DAG.getConstant(0x1ff, DL, MVT::i32)); 2758 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2759 2760 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2761 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2762 2763 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2764 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2765 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2766 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2767 2768 // N = M | (E << 12); 2769 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2770 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2771 DAG.getConstant(12, DL, MVT::i32))); 2772 2773 // B = clamp(1-E, 0, 13); 2774 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2775 One, E); 2776 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2777 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2778 DAG.getConstant(13, DL, MVT::i32)); 2779 2780 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2781 DAG.getConstant(0x1000, DL, MVT::i32)); 2782 2783 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2784 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2785 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2786 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2787 2788 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2789 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2790 DAG.getConstant(0x7, DL, MVT::i32)); 2791 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2792 DAG.getConstant(2, DL, MVT::i32)); 2793 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2794 One, Zero, ISD::SETEQ); 2795 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2796 One, Zero, ISD::SETGT); 2797 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2798 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2799 2800 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2801 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2802 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2803 I, V, ISD::SETEQ); 2804 2805 // Extract the sign bit. 2806 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2807 DAG.getConstant(16, DL, MVT::i32)); 2808 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2809 DAG.getConstant(0x8000, DL, MVT::i32)); 2810 2811 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2812 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2813 } 2814 2815 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op, 2816 SelectionDAG &DAG) const { 2817 SDValue Src = Op.getOperand(0); 2818 unsigned OpOpcode = Op.getOpcode(); 2819 EVT SrcVT = Src.getValueType(); 2820 EVT DestVT = Op.getValueType(); 2821 2822 // Will be selected natively 2823 if (SrcVT == MVT::f16 && DestVT == MVT::i16) 2824 return Op; 2825 2826 // Promote i16 to i32 2827 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { 2828 SDLoc DL(Op); 2829 2830 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2831 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32); 2832 } 2833 2834 if (SrcVT == MVT::f16 || 2835 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2836 SDLoc DL(Op); 2837 2838 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2839 unsigned Ext = 2840 OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2841 return DAG.getNode(Ext, DL, MVT::i64, FpToInt32); 2842 } 2843 2844 if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) 2845 return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT); 2846 2847 return SDValue(); 2848 } 2849 2850 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2851 SelectionDAG &DAG) const { 2852 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2853 MVT VT = Op.getSimpleValueType(); 2854 MVT ScalarVT = VT.getScalarType(); 2855 2856 assert(VT.isVector()); 2857 2858 SDValue Src = Op.getOperand(0); 2859 SDLoc DL(Op); 2860 2861 // TODO: Don't scalarize on Evergreen? 2862 unsigned NElts = VT.getVectorNumElements(); 2863 SmallVector<SDValue, 8> Args; 2864 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2865 2866 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2867 for (unsigned I = 0; I < NElts; ++I) 2868 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2869 2870 return DAG.getBuildVector(VT, DL, Args); 2871 } 2872 2873 //===----------------------------------------------------------------------===// 2874 // Custom DAG optimizations 2875 //===----------------------------------------------------------------------===// 2876 2877 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2878 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2879 } 2880 2881 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2882 EVT VT = Op.getValueType(); 2883 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2884 // as unsigned 24-bit values. 2885 AMDGPUTargetLowering::numBitsSigned(Op, DAG) <= 24; 2886 } 2887 2888 static SDValue simplifyMul24(SDNode *Node24, 2889 TargetLowering::DAGCombinerInfo &DCI) { 2890 SelectionDAG &DAG = DCI.DAG; 2891 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2892 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2893 2894 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2895 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2896 unsigned NewOpcode = Node24->getOpcode(); 2897 if (IsIntrin) { 2898 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2899 switch (IID) { 2900 case Intrinsic::amdgcn_mul_i24: 2901 NewOpcode = AMDGPUISD::MUL_I24; 2902 break; 2903 case Intrinsic::amdgcn_mul_u24: 2904 NewOpcode = AMDGPUISD::MUL_U24; 2905 break; 2906 case Intrinsic::amdgcn_mulhi_i24: 2907 NewOpcode = AMDGPUISD::MULHI_I24; 2908 break; 2909 case Intrinsic::amdgcn_mulhi_u24: 2910 NewOpcode = AMDGPUISD::MULHI_U24; 2911 break; 2912 default: 2913 llvm_unreachable("Expected 24-bit mul intrinsic"); 2914 } 2915 } 2916 2917 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2918 2919 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2920 // the operands to have other uses, but will only perform simplifications that 2921 // involve bypassing some nodes for this user. 2922 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2923 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2924 if (DemandedLHS || DemandedRHS) 2925 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2926 DemandedLHS ? DemandedLHS : LHS, 2927 DemandedRHS ? DemandedRHS : RHS); 2928 2929 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2930 // operands if this node is the only user. 2931 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2932 return SDValue(Node24, 0); 2933 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2934 return SDValue(Node24, 0); 2935 2936 return SDValue(); 2937 } 2938 2939 template <typename IntTy> 2940 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2941 uint32_t Width, const SDLoc &DL) { 2942 if (Width + Offset < 32) { 2943 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2944 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2945 return DAG.getConstant(Result, DL, MVT::i32); 2946 } 2947 2948 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2949 } 2950 2951 static bool hasVolatileUser(SDNode *Val) { 2952 for (SDNode *U : Val->uses()) { 2953 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2954 if (M->isVolatile()) 2955 return true; 2956 } 2957 } 2958 2959 return false; 2960 } 2961 2962 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2963 // i32 vectors are the canonical memory type. 2964 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2965 return false; 2966 2967 if (!VT.isByteSized()) 2968 return false; 2969 2970 unsigned Size = VT.getStoreSize(); 2971 2972 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2973 return false; 2974 2975 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2976 return false; 2977 2978 return true; 2979 } 2980 2981 // Replace load of an illegal type with a store of a bitcast to a friendlier 2982 // type. 2983 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2984 DAGCombinerInfo &DCI) const { 2985 if (!DCI.isBeforeLegalize()) 2986 return SDValue(); 2987 2988 LoadSDNode *LN = cast<LoadSDNode>(N); 2989 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2990 return SDValue(); 2991 2992 SDLoc SL(N); 2993 SelectionDAG &DAG = DCI.DAG; 2994 EVT VT = LN->getMemoryVT(); 2995 2996 unsigned Size = VT.getStoreSize(); 2997 Align Alignment = LN->getAlign(); 2998 if (Alignment < Size && isTypeLegal(VT)) { 2999 bool IsFast; 3000 unsigned AS = LN->getAddressSpace(); 3001 3002 // Expand unaligned loads earlier than legalization. Due to visitation order 3003 // problems during legalization, the emitted instructions to pack and unpack 3004 // the bytes again are not eliminated in the case of an unaligned copy. 3005 if (!allowsMisalignedMemoryAccesses( 3006 VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) { 3007 SDValue Ops[2]; 3008 3009 if (VT.isVector()) 3010 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 3011 else 3012 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 3013 3014 return DAG.getMergeValues(Ops, SDLoc(N)); 3015 } 3016 3017 if (!IsFast) 3018 return SDValue(); 3019 } 3020 3021 if (!shouldCombineMemoryType(VT)) 3022 return SDValue(); 3023 3024 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3025 3026 SDValue NewLoad 3027 = DAG.getLoad(NewVT, SL, LN->getChain(), 3028 LN->getBasePtr(), LN->getMemOperand()); 3029 3030 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 3031 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 3032 return SDValue(N, 0); 3033 } 3034 3035 // Replace store of an illegal type with a store of a bitcast to a friendlier 3036 // type. 3037 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 3038 DAGCombinerInfo &DCI) const { 3039 if (!DCI.isBeforeLegalize()) 3040 return SDValue(); 3041 3042 StoreSDNode *SN = cast<StoreSDNode>(N); 3043 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 3044 return SDValue(); 3045 3046 EVT VT = SN->getMemoryVT(); 3047 unsigned Size = VT.getStoreSize(); 3048 3049 SDLoc SL(N); 3050 SelectionDAG &DAG = DCI.DAG; 3051 Align Alignment = SN->getAlign(); 3052 if (Alignment < Size && isTypeLegal(VT)) { 3053 bool IsFast; 3054 unsigned AS = SN->getAddressSpace(); 3055 3056 // Expand unaligned stores earlier than legalization. Due to visitation 3057 // order problems during legalization, the emitted instructions to pack and 3058 // unpack the bytes again are not eliminated in the case of an unaligned 3059 // copy. 3060 if (!allowsMisalignedMemoryAccesses( 3061 VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) { 3062 if (VT.isVector()) 3063 return scalarizeVectorStore(SN, DAG); 3064 3065 return expandUnalignedStore(SN, DAG); 3066 } 3067 3068 if (!IsFast) 3069 return SDValue(); 3070 } 3071 3072 if (!shouldCombineMemoryType(VT)) 3073 return SDValue(); 3074 3075 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3076 SDValue Val = SN->getValue(); 3077 3078 //DCI.AddToWorklist(Val.getNode()); 3079 3080 bool OtherUses = !Val.hasOneUse(); 3081 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 3082 if (OtherUses) { 3083 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3084 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3085 } 3086 3087 return DAG.getStore(SN->getChain(), SL, CastVal, 3088 SN->getBasePtr(), SN->getMemOperand()); 3089 } 3090 3091 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3092 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3093 // issues. 3094 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3095 DAGCombinerInfo &DCI) const { 3096 SelectionDAG &DAG = DCI.DAG; 3097 SDValue N0 = N->getOperand(0); 3098 3099 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3100 // (vt2 (truncate (assertzext vt0:x, vt1))) 3101 if (N0.getOpcode() == ISD::TRUNCATE) { 3102 SDValue N1 = N->getOperand(1); 3103 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3104 SDLoc SL(N); 3105 3106 SDValue Src = N0.getOperand(0); 3107 EVT SrcVT = Src.getValueType(); 3108 if (SrcVT.bitsGE(ExtVT)) { 3109 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3110 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3111 } 3112 } 3113 3114 return SDValue(); 3115 } 3116 3117 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3118 SDNode *N, DAGCombinerInfo &DCI) const { 3119 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3120 switch (IID) { 3121 case Intrinsic::amdgcn_mul_i24: 3122 case Intrinsic::amdgcn_mul_u24: 3123 case Intrinsic::amdgcn_mulhi_i24: 3124 case Intrinsic::amdgcn_mulhi_u24: 3125 return simplifyMul24(N, DCI); 3126 case Intrinsic::amdgcn_fract: 3127 case Intrinsic::amdgcn_rsq: 3128 case Intrinsic::amdgcn_rcp_legacy: 3129 case Intrinsic::amdgcn_rsq_legacy: 3130 case Intrinsic::amdgcn_rsq_clamp: 3131 case Intrinsic::amdgcn_ldexp: { 3132 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3133 SDValue Src = N->getOperand(1); 3134 return Src.isUndef() ? Src : SDValue(); 3135 } 3136 default: 3137 return SDValue(); 3138 } 3139 } 3140 3141 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3142 /// binary operation \p Opc to it with the corresponding constant operands. 3143 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3144 DAGCombinerInfo &DCI, const SDLoc &SL, 3145 unsigned Opc, SDValue LHS, 3146 uint32_t ValLo, uint32_t ValHi) const { 3147 SelectionDAG &DAG = DCI.DAG; 3148 SDValue Lo, Hi; 3149 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3150 3151 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3152 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3153 3154 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3155 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3156 3157 // Re-visit the ands. It's possible we eliminated one of them and it could 3158 // simplify the vector. 3159 DCI.AddToWorklist(Lo.getNode()); 3160 DCI.AddToWorklist(Hi.getNode()); 3161 3162 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3163 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3164 } 3165 3166 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3167 DAGCombinerInfo &DCI) const { 3168 EVT VT = N->getValueType(0); 3169 3170 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3171 if (!RHS) 3172 return SDValue(); 3173 3174 SDValue LHS = N->getOperand(0); 3175 unsigned RHSVal = RHS->getZExtValue(); 3176 if (!RHSVal) 3177 return LHS; 3178 3179 SDLoc SL(N); 3180 SelectionDAG &DAG = DCI.DAG; 3181 3182 switch (LHS->getOpcode()) { 3183 default: 3184 break; 3185 case ISD::ZERO_EXTEND: 3186 case ISD::SIGN_EXTEND: 3187 case ISD::ANY_EXTEND: { 3188 SDValue X = LHS->getOperand(0); 3189 3190 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3191 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3192 // Prefer build_vector as the canonical form if packed types are legal. 3193 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3194 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3195 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3196 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3197 } 3198 3199 // shl (ext x) => zext (shl x), if shift does not overflow int 3200 if (VT != MVT::i64) 3201 break; 3202 KnownBits Known = DAG.computeKnownBits(X); 3203 unsigned LZ = Known.countMinLeadingZeros(); 3204 if (LZ < RHSVal) 3205 break; 3206 EVT XVT = X.getValueType(); 3207 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3208 return DAG.getZExtOrTrunc(Shl, SL, VT); 3209 } 3210 } 3211 3212 if (VT != MVT::i64) 3213 return SDValue(); 3214 3215 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3216 3217 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3218 // common case, splitting this into a move and a 32-bit shift is faster and 3219 // the same code size. 3220 if (RHSVal < 32) 3221 return SDValue(); 3222 3223 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3224 3225 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3226 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3227 3228 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3229 3230 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3231 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3232 } 3233 3234 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3235 DAGCombinerInfo &DCI) const { 3236 if (N->getValueType(0) != MVT::i64) 3237 return SDValue(); 3238 3239 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3240 if (!RHS) 3241 return SDValue(); 3242 3243 SelectionDAG &DAG = DCI.DAG; 3244 SDLoc SL(N); 3245 unsigned RHSVal = RHS->getZExtValue(); 3246 3247 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3248 if (RHSVal == 32) { 3249 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3250 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3251 DAG.getConstant(31, SL, MVT::i32)); 3252 3253 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3254 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3255 } 3256 3257 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3258 if (RHSVal == 63) { 3259 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3260 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3261 DAG.getConstant(31, SL, MVT::i32)); 3262 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3263 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3264 } 3265 3266 return SDValue(); 3267 } 3268 3269 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3270 DAGCombinerInfo &DCI) const { 3271 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3272 if (!RHS) 3273 return SDValue(); 3274 3275 EVT VT = N->getValueType(0); 3276 SDValue LHS = N->getOperand(0); 3277 unsigned ShiftAmt = RHS->getZExtValue(); 3278 SelectionDAG &DAG = DCI.DAG; 3279 SDLoc SL(N); 3280 3281 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3282 // this improves the ability to match BFE patterns in isel. 3283 if (LHS.getOpcode() == ISD::AND) { 3284 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3285 unsigned MaskIdx, MaskLen; 3286 if (Mask->getAPIntValue().isShiftedMask(MaskIdx, MaskLen) && 3287 MaskIdx == ShiftAmt) { 3288 return DAG.getNode( 3289 ISD::AND, SL, VT, 3290 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3291 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3292 } 3293 } 3294 } 3295 3296 if (VT != MVT::i64) 3297 return SDValue(); 3298 3299 if (ShiftAmt < 32) 3300 return SDValue(); 3301 3302 // srl i64:x, C for C >= 32 3303 // => 3304 // build_pair (srl hi_32(x), C - 32), 0 3305 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3306 3307 SDValue Hi = getHiHalf64(LHS, DAG); 3308 3309 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3310 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3311 3312 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3313 3314 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3315 } 3316 3317 SDValue AMDGPUTargetLowering::performTruncateCombine( 3318 SDNode *N, DAGCombinerInfo &DCI) const { 3319 SDLoc SL(N); 3320 SelectionDAG &DAG = DCI.DAG; 3321 EVT VT = N->getValueType(0); 3322 SDValue Src = N->getOperand(0); 3323 3324 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3325 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3326 SDValue Vec = Src.getOperand(0); 3327 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3328 SDValue Elt0 = Vec.getOperand(0); 3329 EVT EltVT = Elt0.getValueType(); 3330 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { 3331 if (EltVT.isFloatingPoint()) { 3332 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3333 EltVT.changeTypeToInteger(), Elt0); 3334 } 3335 3336 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3337 } 3338 } 3339 } 3340 3341 // Equivalent of above for accessing the high element of a vector as an 3342 // integer operation. 3343 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3344 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3345 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3346 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3347 SDValue BV = stripBitcast(Src.getOperand(0)); 3348 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3349 BV.getValueType().getVectorNumElements() == 2) { 3350 SDValue SrcElt = BV.getOperand(1); 3351 EVT SrcEltVT = SrcElt.getValueType(); 3352 if (SrcEltVT.isFloatingPoint()) { 3353 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3354 SrcEltVT.changeTypeToInteger(), SrcElt); 3355 } 3356 3357 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3358 } 3359 } 3360 } 3361 } 3362 3363 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3364 // 3365 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3366 // i16 (trunc (srl (i32 (trunc x), K))) 3367 if (VT.getScalarSizeInBits() < 32) { 3368 EVT SrcVT = Src.getValueType(); 3369 if (SrcVT.getScalarSizeInBits() > 32 && 3370 (Src.getOpcode() == ISD::SRL || 3371 Src.getOpcode() == ISD::SRA || 3372 Src.getOpcode() == ISD::SHL)) { 3373 SDValue Amt = Src.getOperand(1); 3374 KnownBits Known = DAG.computeKnownBits(Amt); 3375 unsigned Size = VT.getScalarSizeInBits(); 3376 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3377 (Known.countMaxActiveBits() <= Log2_32(Size))) { 3378 EVT MidVT = VT.isVector() ? 3379 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3380 VT.getVectorNumElements()) : MVT::i32; 3381 3382 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3383 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3384 Src.getOperand(0)); 3385 DCI.AddToWorklist(Trunc.getNode()); 3386 3387 if (Amt.getValueType() != NewShiftVT) { 3388 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3389 DCI.AddToWorklist(Amt.getNode()); 3390 } 3391 3392 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3393 Trunc, Amt); 3394 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3395 } 3396 } 3397 } 3398 3399 return SDValue(); 3400 } 3401 3402 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3403 // instructions. If we only match on the legalized i64 mul expansion, 3404 // SimplifyDemandedBits will be unable to remove them because there will be 3405 // multiple uses due to the separate mul + mulh[su]. 3406 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3407 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3408 if (Size <= 32) { 3409 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3410 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3411 } 3412 3413 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3414 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3415 3416 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3417 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3418 3419 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); 3420 } 3421 3422 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3423 DAGCombinerInfo &DCI) const { 3424 EVT VT = N->getValueType(0); 3425 3426 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3427 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3428 // unnecessarily). isDivergent() is used as an approximation of whether the 3429 // value is in an SGPR. 3430 if (!N->isDivergent()) 3431 return SDValue(); 3432 3433 unsigned Size = VT.getSizeInBits(); 3434 if (VT.isVector() || Size > 64) 3435 return SDValue(); 3436 3437 // There are i16 integer mul/mad. 3438 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3439 return SDValue(); 3440 3441 SelectionDAG &DAG = DCI.DAG; 3442 SDLoc DL(N); 3443 3444 SDValue N0 = N->getOperand(0); 3445 SDValue N1 = N->getOperand(1); 3446 3447 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3448 // in the source into any_extends if the result of the mul is truncated. Since 3449 // we can assume the high bits are whatever we want, use the underlying value 3450 // to avoid the unknown high bits from interfering. 3451 if (N0.getOpcode() == ISD::ANY_EXTEND) 3452 N0 = N0.getOperand(0); 3453 3454 if (N1.getOpcode() == ISD::ANY_EXTEND) 3455 N1 = N1.getOperand(0); 3456 3457 SDValue Mul; 3458 3459 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3460 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3461 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3462 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3463 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3464 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3465 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3466 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3467 } else { 3468 return SDValue(); 3469 } 3470 3471 // We need to use sext even for MUL_U24, because MUL_U24 is used 3472 // for signed multiply of 8 and 16-bit types. 3473 return DAG.getSExtOrTrunc(Mul, DL, VT); 3474 } 3475 3476 SDValue 3477 AMDGPUTargetLowering::performMulLoHiCombine(SDNode *N, 3478 DAGCombinerInfo &DCI) const { 3479 if (N->getValueType(0) != MVT::i32) 3480 return SDValue(); 3481 3482 SelectionDAG &DAG = DCI.DAG; 3483 SDLoc DL(N); 3484 3485 SDValue N0 = N->getOperand(0); 3486 SDValue N1 = N->getOperand(1); 3487 3488 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3489 // in the source into any_extends if the result of the mul is truncated. Since 3490 // we can assume the high bits are whatever we want, use the underlying value 3491 // to avoid the unknown high bits from interfering. 3492 if (N0.getOpcode() == ISD::ANY_EXTEND) 3493 N0 = N0.getOperand(0); 3494 if (N1.getOpcode() == ISD::ANY_EXTEND) 3495 N1 = N1.getOperand(0); 3496 3497 // Try to use two fast 24-bit multiplies (one for each half of the result) 3498 // instead of one slow extending multiply. 3499 unsigned LoOpcode, HiOpcode; 3500 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3501 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3502 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3503 LoOpcode = AMDGPUISD::MUL_U24; 3504 HiOpcode = AMDGPUISD::MULHI_U24; 3505 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3506 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3507 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3508 LoOpcode = AMDGPUISD::MUL_I24; 3509 HiOpcode = AMDGPUISD::MULHI_I24; 3510 } else { 3511 return SDValue(); 3512 } 3513 3514 SDValue Lo = DAG.getNode(LoOpcode, DL, MVT::i32, N0, N1); 3515 SDValue Hi = DAG.getNode(HiOpcode, DL, MVT::i32, N0, N1); 3516 DCI.CombineTo(N, Lo, Hi); 3517 return SDValue(N, 0); 3518 } 3519 3520 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3521 DAGCombinerInfo &DCI) const { 3522 EVT VT = N->getValueType(0); 3523 3524 if (!Subtarget->hasMulI24() || VT.isVector()) 3525 return SDValue(); 3526 3527 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3528 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3529 // unnecessarily). isDivergent() is used as an approximation of whether the 3530 // value is in an SGPR. 3531 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3532 // valu op anyway) 3533 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3534 return SDValue(); 3535 3536 SelectionDAG &DAG = DCI.DAG; 3537 SDLoc DL(N); 3538 3539 SDValue N0 = N->getOperand(0); 3540 SDValue N1 = N->getOperand(1); 3541 3542 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3543 return SDValue(); 3544 3545 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3546 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3547 3548 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3549 DCI.AddToWorklist(Mulhi.getNode()); 3550 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3551 } 3552 3553 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3554 DAGCombinerInfo &DCI) const { 3555 EVT VT = N->getValueType(0); 3556 3557 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3558 return SDValue(); 3559 3560 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3561 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3562 // unnecessarily). isDivergent() is used as an approximation of whether the 3563 // value is in an SGPR. 3564 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3565 // valu op anyway) 3566 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3567 return SDValue(); 3568 3569 SelectionDAG &DAG = DCI.DAG; 3570 SDLoc DL(N); 3571 3572 SDValue N0 = N->getOperand(0); 3573 SDValue N1 = N->getOperand(1); 3574 3575 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3576 return SDValue(); 3577 3578 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3579 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3580 3581 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3582 DCI.AddToWorklist(Mulhi.getNode()); 3583 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3584 } 3585 3586 static bool isNegativeOne(SDValue Val) { 3587 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3588 return C->isAllOnes(); 3589 return false; 3590 } 3591 3592 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3593 SDValue Op, 3594 const SDLoc &DL, 3595 unsigned Opc) const { 3596 EVT VT = Op.getValueType(); 3597 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3598 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3599 LegalVT != MVT::i16)) 3600 return SDValue(); 3601 3602 if (VT != MVT::i32) 3603 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3604 3605 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3606 if (VT != MVT::i32) 3607 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3608 3609 return FFBX; 3610 } 3611 3612 // The native instructions return -1 on 0 input. Optimize out a select that 3613 // produces -1 on 0. 3614 // 3615 // TODO: If zero is not undef, we could also do this if the output is compared 3616 // against the bitwidth. 3617 // 3618 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3619 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3620 SDValue LHS, SDValue RHS, 3621 DAGCombinerInfo &DCI) const { 3622 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3623 if (!CmpRhs || !CmpRhs->isZero()) 3624 return SDValue(); 3625 3626 SelectionDAG &DAG = DCI.DAG; 3627 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3628 SDValue CmpLHS = Cond.getOperand(0); 3629 3630 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3631 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3632 if (CCOpcode == ISD::SETEQ && 3633 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3634 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3635 unsigned Opc = 3636 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3637 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3638 } 3639 3640 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3641 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3642 if (CCOpcode == ISD::SETNE && 3643 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3644 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3645 unsigned Opc = 3646 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3647 3648 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3649 } 3650 3651 return SDValue(); 3652 } 3653 3654 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3655 unsigned Op, 3656 const SDLoc &SL, 3657 SDValue Cond, 3658 SDValue N1, 3659 SDValue N2) { 3660 SelectionDAG &DAG = DCI.DAG; 3661 EVT VT = N1.getValueType(); 3662 3663 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3664 N1.getOperand(0), N2.getOperand(0)); 3665 DCI.AddToWorklist(NewSelect.getNode()); 3666 return DAG.getNode(Op, SL, VT, NewSelect); 3667 } 3668 3669 // Pull a free FP operation out of a select so it may fold into uses. 3670 // 3671 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3672 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3673 // 3674 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3675 // select c, (fabs x), +k -> fabs (select c, x, k) 3676 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3677 SDValue N) { 3678 SelectionDAG &DAG = DCI.DAG; 3679 SDValue Cond = N.getOperand(0); 3680 SDValue LHS = N.getOperand(1); 3681 SDValue RHS = N.getOperand(2); 3682 3683 EVT VT = N.getValueType(); 3684 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3685 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3686 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3687 SDLoc(N), Cond, LHS, RHS); 3688 } 3689 3690 bool Inv = false; 3691 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3692 std::swap(LHS, RHS); 3693 Inv = true; 3694 } 3695 3696 // TODO: Support vector constants. 3697 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3698 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3699 SDLoc SL(N); 3700 // If one side is an fneg/fabs and the other is a constant, we can push the 3701 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3702 SDValue NewLHS = LHS.getOperand(0); 3703 SDValue NewRHS = RHS; 3704 3705 // Careful: if the neg can be folded up, don't try to pull it back down. 3706 bool ShouldFoldNeg = true; 3707 3708 if (NewLHS.hasOneUse()) { 3709 unsigned Opc = NewLHS.getOpcode(); 3710 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3711 ShouldFoldNeg = false; 3712 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3713 ShouldFoldNeg = false; 3714 } 3715 3716 if (ShouldFoldNeg) { 3717 if (LHS.getOpcode() == ISD::FNEG) 3718 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3719 else if (CRHS->isNegative()) 3720 return SDValue(); 3721 3722 if (Inv) 3723 std::swap(NewLHS, NewRHS); 3724 3725 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3726 Cond, NewLHS, NewRHS); 3727 DCI.AddToWorklist(NewSelect.getNode()); 3728 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3729 } 3730 } 3731 3732 return SDValue(); 3733 } 3734 3735 3736 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3737 DAGCombinerInfo &DCI) const { 3738 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3739 return Folded; 3740 3741 SDValue Cond = N->getOperand(0); 3742 if (Cond.getOpcode() != ISD::SETCC) 3743 return SDValue(); 3744 3745 EVT VT = N->getValueType(0); 3746 SDValue LHS = Cond.getOperand(0); 3747 SDValue RHS = Cond.getOperand(1); 3748 SDValue CC = Cond.getOperand(2); 3749 3750 SDValue True = N->getOperand(1); 3751 SDValue False = N->getOperand(2); 3752 3753 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3754 SelectionDAG &DAG = DCI.DAG; 3755 if (DAG.isConstantValueOfAnyType(True) && 3756 !DAG.isConstantValueOfAnyType(False)) { 3757 // Swap cmp + select pair to move constant to false input. 3758 // This will allow using VOPC cndmasks more often. 3759 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3760 3761 SDLoc SL(N); 3762 ISD::CondCode NewCC = 3763 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3764 3765 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3766 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3767 } 3768 3769 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3770 SDValue MinMax 3771 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3772 // Revisit this node so we can catch min3/max3/med3 patterns. 3773 //DCI.AddToWorklist(MinMax.getNode()); 3774 return MinMax; 3775 } 3776 } 3777 3778 // There's no reason to not do this if the condition has other uses. 3779 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3780 } 3781 3782 static bool isInv2Pi(const APFloat &APF) { 3783 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3784 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3785 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3786 3787 return APF.bitwiseIsEqual(KF16) || 3788 APF.bitwiseIsEqual(KF32) || 3789 APF.bitwiseIsEqual(KF64); 3790 } 3791 3792 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3793 // additional cost to negate them. 3794 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3795 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3796 if (C->isZero() && !C->isNegative()) 3797 return true; 3798 3799 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3800 return true; 3801 } 3802 3803 return false; 3804 } 3805 3806 static unsigned inverseMinMax(unsigned Opc) { 3807 switch (Opc) { 3808 case ISD::FMAXNUM: 3809 return ISD::FMINNUM; 3810 case ISD::FMINNUM: 3811 return ISD::FMAXNUM; 3812 case ISD::FMAXNUM_IEEE: 3813 return ISD::FMINNUM_IEEE; 3814 case ISD::FMINNUM_IEEE: 3815 return ISD::FMAXNUM_IEEE; 3816 case AMDGPUISD::FMAX_LEGACY: 3817 return AMDGPUISD::FMIN_LEGACY; 3818 case AMDGPUISD::FMIN_LEGACY: 3819 return AMDGPUISD::FMAX_LEGACY; 3820 default: 3821 llvm_unreachable("invalid min/max opcode"); 3822 } 3823 } 3824 3825 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3826 DAGCombinerInfo &DCI) const { 3827 SelectionDAG &DAG = DCI.DAG; 3828 SDValue N0 = N->getOperand(0); 3829 EVT VT = N->getValueType(0); 3830 3831 unsigned Opc = N0.getOpcode(); 3832 3833 // If the input has multiple uses and we can either fold the negate down, or 3834 // the other uses cannot, give up. This both prevents unprofitable 3835 // transformations and infinite loops: we won't repeatedly try to fold around 3836 // a negate that has no 'good' form. 3837 if (N0.hasOneUse()) { 3838 // This may be able to fold into the source, but at a code size cost. Don't 3839 // fold if the fold into the user is free. 3840 if (allUsesHaveSourceMods(N, 0)) 3841 return SDValue(); 3842 } else { 3843 if (fnegFoldsIntoOp(Opc) && 3844 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3845 return SDValue(); 3846 } 3847 3848 SDLoc SL(N); 3849 switch (Opc) { 3850 case ISD::FADD: { 3851 if (!mayIgnoreSignedZero(N0)) 3852 return SDValue(); 3853 3854 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3855 SDValue LHS = N0.getOperand(0); 3856 SDValue RHS = N0.getOperand(1); 3857 3858 if (LHS.getOpcode() != ISD::FNEG) 3859 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3860 else 3861 LHS = LHS.getOperand(0); 3862 3863 if (RHS.getOpcode() != ISD::FNEG) 3864 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3865 else 3866 RHS = RHS.getOperand(0); 3867 3868 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3869 if (Res.getOpcode() != ISD::FADD) 3870 return SDValue(); // Op got folded away. 3871 if (!N0.hasOneUse()) 3872 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3873 return Res; 3874 } 3875 case ISD::FMUL: 3876 case AMDGPUISD::FMUL_LEGACY: { 3877 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3878 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3879 SDValue LHS = N0.getOperand(0); 3880 SDValue RHS = N0.getOperand(1); 3881 3882 if (LHS.getOpcode() == ISD::FNEG) 3883 LHS = LHS.getOperand(0); 3884 else if (RHS.getOpcode() == ISD::FNEG) 3885 RHS = RHS.getOperand(0); 3886 else 3887 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3888 3889 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3890 if (Res.getOpcode() != Opc) 3891 return SDValue(); // Op got folded away. 3892 if (!N0.hasOneUse()) 3893 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3894 return Res; 3895 } 3896 case ISD::FMA: 3897 case ISD::FMAD: { 3898 // TODO: handle llvm.amdgcn.fma.legacy 3899 if (!mayIgnoreSignedZero(N0)) 3900 return SDValue(); 3901 3902 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3903 SDValue LHS = N0.getOperand(0); 3904 SDValue MHS = N0.getOperand(1); 3905 SDValue RHS = N0.getOperand(2); 3906 3907 if (LHS.getOpcode() == ISD::FNEG) 3908 LHS = LHS.getOperand(0); 3909 else if (MHS.getOpcode() == ISD::FNEG) 3910 MHS = MHS.getOperand(0); 3911 else 3912 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3913 3914 if (RHS.getOpcode() != ISD::FNEG) 3915 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3916 else 3917 RHS = RHS.getOperand(0); 3918 3919 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3920 if (Res.getOpcode() != Opc) 3921 return SDValue(); // Op got folded away. 3922 if (!N0.hasOneUse()) 3923 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3924 return Res; 3925 } 3926 case ISD::FMAXNUM: 3927 case ISD::FMINNUM: 3928 case ISD::FMAXNUM_IEEE: 3929 case ISD::FMINNUM_IEEE: 3930 case AMDGPUISD::FMAX_LEGACY: 3931 case AMDGPUISD::FMIN_LEGACY: { 3932 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3933 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3934 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3935 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3936 3937 SDValue LHS = N0.getOperand(0); 3938 SDValue RHS = N0.getOperand(1); 3939 3940 // 0 doesn't have a negated inline immediate. 3941 // TODO: This constant check should be generalized to other operations. 3942 if (isConstantCostlierToNegate(RHS)) 3943 return SDValue(); 3944 3945 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3946 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3947 unsigned Opposite = inverseMinMax(Opc); 3948 3949 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3950 if (Res.getOpcode() != Opposite) 3951 return SDValue(); // Op got folded away. 3952 if (!N0.hasOneUse()) 3953 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3954 return Res; 3955 } 3956 case AMDGPUISD::FMED3: { 3957 SDValue Ops[3]; 3958 for (unsigned I = 0; I < 3; ++I) 3959 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3960 3961 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3962 if (Res.getOpcode() != AMDGPUISD::FMED3) 3963 return SDValue(); // Op got folded away. 3964 3965 if (!N0.hasOneUse()) { 3966 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3967 DAG.ReplaceAllUsesWith(N0, Neg); 3968 3969 for (SDNode *U : Neg->uses()) 3970 DCI.AddToWorklist(U); 3971 } 3972 3973 return Res; 3974 } 3975 case ISD::FP_EXTEND: 3976 case ISD::FTRUNC: 3977 case ISD::FRINT: 3978 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3979 case ISD::FSIN: 3980 case ISD::FCANONICALIZE: 3981 case AMDGPUISD::RCP: 3982 case AMDGPUISD::RCP_LEGACY: 3983 case AMDGPUISD::RCP_IFLAG: 3984 case AMDGPUISD::SIN_HW: { 3985 SDValue CvtSrc = N0.getOperand(0); 3986 if (CvtSrc.getOpcode() == ISD::FNEG) { 3987 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3988 // (fneg (rcp (fneg x))) -> (rcp x) 3989 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3990 } 3991 3992 if (!N0.hasOneUse()) 3993 return SDValue(); 3994 3995 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3996 // (fneg (rcp x)) -> (rcp (fneg x)) 3997 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3998 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3999 } 4000 case ISD::FP_ROUND: { 4001 SDValue CvtSrc = N0.getOperand(0); 4002 4003 if (CvtSrc.getOpcode() == ISD::FNEG) { 4004 // (fneg (fp_round (fneg x))) -> (fp_round x) 4005 return DAG.getNode(ISD::FP_ROUND, SL, VT, 4006 CvtSrc.getOperand(0), N0.getOperand(1)); 4007 } 4008 4009 if (!N0.hasOneUse()) 4010 return SDValue(); 4011 4012 // (fneg (fp_round x)) -> (fp_round (fneg x)) 4013 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 4014 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 4015 } 4016 case ISD::FP16_TO_FP: { 4017 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 4018 // f16, but legalization of f16 fneg ends up pulling it out of the source. 4019 // Put the fneg back as a legal source operation that can be matched later. 4020 SDLoc SL(N); 4021 4022 SDValue Src = N0.getOperand(0); 4023 EVT SrcVT = Src.getValueType(); 4024 4025 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 4026 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 4027 DAG.getConstant(0x8000, SL, SrcVT)); 4028 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 4029 } 4030 default: 4031 return SDValue(); 4032 } 4033 } 4034 4035 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 4036 DAGCombinerInfo &DCI) const { 4037 SelectionDAG &DAG = DCI.DAG; 4038 SDValue N0 = N->getOperand(0); 4039 4040 if (!N0.hasOneUse()) 4041 return SDValue(); 4042 4043 switch (N0.getOpcode()) { 4044 case ISD::FP16_TO_FP: { 4045 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 4046 SDLoc SL(N); 4047 SDValue Src = N0.getOperand(0); 4048 EVT SrcVT = Src.getValueType(); 4049 4050 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 4051 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 4052 DAG.getConstant(0x7fff, SL, SrcVT)); 4053 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 4054 } 4055 default: 4056 return SDValue(); 4057 } 4058 } 4059 4060 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 4061 DAGCombinerInfo &DCI) const { 4062 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 4063 if (!CFP) 4064 return SDValue(); 4065 4066 // XXX - Should this flush denormals? 4067 const APFloat &Val = CFP->getValueAPF(); 4068 APFloat One(Val.getSemantics(), "1.0"); 4069 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 4070 } 4071 4072 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 4073 DAGCombinerInfo &DCI) const { 4074 SelectionDAG &DAG = DCI.DAG; 4075 SDLoc DL(N); 4076 4077 switch(N->getOpcode()) { 4078 default: 4079 break; 4080 case ISD::BITCAST: { 4081 EVT DestVT = N->getValueType(0); 4082 4083 // Push casts through vector builds. This helps avoid emitting a large 4084 // number of copies when materializing floating point vector constants. 4085 // 4086 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 4087 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 4088 if (DestVT.isVector()) { 4089 SDValue Src = N->getOperand(0); 4090 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 4091 EVT SrcVT = Src.getValueType(); 4092 unsigned NElts = DestVT.getVectorNumElements(); 4093 4094 if (SrcVT.getVectorNumElements() == NElts) { 4095 EVT DestEltVT = DestVT.getVectorElementType(); 4096 4097 SmallVector<SDValue, 8> CastedElts; 4098 SDLoc SL(N); 4099 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 4100 SDValue Elt = Src.getOperand(I); 4101 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 4102 } 4103 4104 return DAG.getBuildVector(DestVT, SL, CastedElts); 4105 } 4106 } 4107 } 4108 4109 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 4110 break; 4111 4112 // Fold bitcasts of constants. 4113 // 4114 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 4115 // TODO: Generalize and move to DAGCombiner 4116 SDValue Src = N->getOperand(0); 4117 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 4118 SDLoc SL(N); 4119 uint64_t CVal = C->getZExtValue(); 4120 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4121 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4122 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4123 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 4124 } 4125 4126 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 4127 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 4128 SDLoc SL(N); 4129 uint64_t CVal = Val.getZExtValue(); 4130 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4131 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4132 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4133 4134 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 4135 } 4136 4137 break; 4138 } 4139 case ISD::SHL: { 4140 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4141 break; 4142 4143 return performShlCombine(N, DCI); 4144 } 4145 case ISD::SRL: { 4146 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4147 break; 4148 4149 return performSrlCombine(N, DCI); 4150 } 4151 case ISD::SRA: { 4152 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4153 break; 4154 4155 return performSraCombine(N, DCI); 4156 } 4157 case ISD::TRUNCATE: 4158 return performTruncateCombine(N, DCI); 4159 case ISD::MUL: 4160 return performMulCombine(N, DCI); 4161 case ISD::SMUL_LOHI: 4162 case ISD::UMUL_LOHI: 4163 return performMulLoHiCombine(N, DCI); 4164 case ISD::MULHS: 4165 return performMulhsCombine(N, DCI); 4166 case ISD::MULHU: 4167 return performMulhuCombine(N, DCI); 4168 case AMDGPUISD::MUL_I24: 4169 case AMDGPUISD::MUL_U24: 4170 case AMDGPUISD::MULHI_I24: 4171 case AMDGPUISD::MULHI_U24: 4172 return simplifyMul24(N, DCI); 4173 case ISD::SELECT: 4174 return performSelectCombine(N, DCI); 4175 case ISD::FNEG: 4176 return performFNegCombine(N, DCI); 4177 case ISD::FABS: 4178 return performFAbsCombine(N, DCI); 4179 case AMDGPUISD::BFE_I32: 4180 case AMDGPUISD::BFE_U32: { 4181 assert(!N->getValueType(0).isVector() && 4182 "Vector handling of BFE not implemented"); 4183 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4184 if (!Width) 4185 break; 4186 4187 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4188 if (WidthVal == 0) 4189 return DAG.getConstant(0, DL, MVT::i32); 4190 4191 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4192 if (!Offset) 4193 break; 4194 4195 SDValue BitsFrom = N->getOperand(0); 4196 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4197 4198 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4199 4200 if (OffsetVal == 0) { 4201 // This is already sign / zero extended, so try to fold away extra BFEs. 4202 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4203 4204 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4205 if (OpSignBits >= SignBits) 4206 return BitsFrom; 4207 4208 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4209 if (Signed) { 4210 // This is a sign_extend_inreg. Replace it to take advantage of existing 4211 // DAG Combines. If not eliminated, we will match back to BFE during 4212 // selection. 4213 4214 // TODO: The sext_inreg of extended types ends, although we can could 4215 // handle them in a single BFE. 4216 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4217 DAG.getValueType(SmallVT)); 4218 } 4219 4220 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4221 } 4222 4223 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4224 if (Signed) { 4225 return constantFoldBFE<int32_t>(DAG, 4226 CVal->getSExtValue(), 4227 OffsetVal, 4228 WidthVal, 4229 DL); 4230 } 4231 4232 return constantFoldBFE<uint32_t>(DAG, 4233 CVal->getZExtValue(), 4234 OffsetVal, 4235 WidthVal, 4236 DL); 4237 } 4238 4239 if ((OffsetVal + WidthVal) >= 32 && 4240 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4241 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4242 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4243 BitsFrom, ShiftVal); 4244 } 4245 4246 if (BitsFrom.hasOneUse()) { 4247 APInt Demanded = APInt::getBitsSet(32, 4248 OffsetVal, 4249 OffsetVal + WidthVal); 4250 4251 KnownBits Known; 4252 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4253 !DCI.isBeforeLegalizeOps()); 4254 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4255 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4256 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4257 DCI.CommitTargetLoweringOpt(TLO); 4258 } 4259 } 4260 4261 break; 4262 } 4263 case ISD::LOAD: 4264 return performLoadCombine(N, DCI); 4265 case ISD::STORE: 4266 return performStoreCombine(N, DCI); 4267 case AMDGPUISD::RCP: 4268 case AMDGPUISD::RCP_IFLAG: 4269 return performRcpCombine(N, DCI); 4270 case ISD::AssertZext: 4271 case ISD::AssertSext: 4272 return performAssertSZExtCombine(N, DCI); 4273 case ISD::INTRINSIC_WO_CHAIN: 4274 return performIntrinsicWOChainCombine(N, DCI); 4275 } 4276 return SDValue(); 4277 } 4278 4279 //===----------------------------------------------------------------------===// 4280 // Helper functions 4281 //===----------------------------------------------------------------------===// 4282 4283 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4284 const TargetRegisterClass *RC, 4285 Register Reg, EVT VT, 4286 const SDLoc &SL, 4287 bool RawReg) const { 4288 MachineFunction &MF = DAG.getMachineFunction(); 4289 MachineRegisterInfo &MRI = MF.getRegInfo(); 4290 Register VReg; 4291 4292 if (!MRI.isLiveIn(Reg)) { 4293 VReg = MRI.createVirtualRegister(RC); 4294 MRI.addLiveIn(Reg, VReg); 4295 } else { 4296 VReg = MRI.getLiveInVirtReg(Reg); 4297 } 4298 4299 if (RawReg) 4300 return DAG.getRegister(VReg, VT); 4301 4302 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4303 } 4304 4305 // This may be called multiple times, and nothing prevents creating multiple 4306 // objects at the same offset. See if we already defined this object. 4307 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4308 int64_t Offset) { 4309 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4310 if (MFI.getObjectOffset(I) == Offset) { 4311 assert(MFI.getObjectSize(I) == Size); 4312 return I; 4313 } 4314 } 4315 4316 return MFI.CreateFixedObject(Size, Offset, true); 4317 } 4318 4319 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4320 EVT VT, 4321 const SDLoc &SL, 4322 int64_t Offset) const { 4323 MachineFunction &MF = DAG.getMachineFunction(); 4324 MachineFrameInfo &MFI = MF.getFrameInfo(); 4325 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4326 4327 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4328 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4329 4330 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4331 MachineMemOperand::MODereferenceable | 4332 MachineMemOperand::MOInvariant); 4333 } 4334 4335 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4336 const SDLoc &SL, 4337 SDValue Chain, 4338 SDValue ArgVal, 4339 int64_t Offset) const { 4340 MachineFunction &MF = DAG.getMachineFunction(); 4341 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4342 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4343 4344 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4345 // Stores to the argument stack area are relative to the stack pointer. 4346 SDValue SP = 4347 DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32); 4348 Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr); 4349 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4350 MachineMemOperand::MODereferenceable); 4351 return Store; 4352 } 4353 4354 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4355 const TargetRegisterClass *RC, 4356 EVT VT, const SDLoc &SL, 4357 const ArgDescriptor &Arg) const { 4358 assert(Arg && "Attempting to load missing argument"); 4359 4360 SDValue V = Arg.isRegister() ? 4361 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4362 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4363 4364 if (!Arg.isMasked()) 4365 return V; 4366 4367 unsigned Mask = Arg.getMask(); 4368 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4369 V = DAG.getNode(ISD::SRL, SL, VT, V, 4370 DAG.getShiftAmountConstant(Shift, VT, SL)); 4371 return DAG.getNode(ISD::AND, SL, VT, V, 4372 DAG.getConstant(Mask >> Shift, SL, VT)); 4373 } 4374 4375 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4376 const MachineFunction &MF, const ImplicitParameter Param) const { 4377 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4378 const AMDGPUSubtarget &ST = 4379 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4380 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4381 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4382 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4383 ExplicitArgOffset; 4384 switch (Param) { 4385 case GRID_DIM: 4386 return ArgOffset; 4387 case GRID_OFFSET: 4388 return ArgOffset + 4; 4389 } 4390 llvm_unreachable("unexpected implicit parameter type"); 4391 } 4392 4393 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4394 4395 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4396 switch ((AMDGPUISD::NodeType)Opcode) { 4397 case AMDGPUISD::FIRST_NUMBER: break; 4398 // AMDIL DAG nodes 4399 NODE_NAME_CASE(UMUL); 4400 NODE_NAME_CASE(BRANCH_COND); 4401 4402 // AMDGPU DAG nodes 4403 NODE_NAME_CASE(IF) 4404 NODE_NAME_CASE(ELSE) 4405 NODE_NAME_CASE(LOOP) 4406 NODE_NAME_CASE(CALL) 4407 NODE_NAME_CASE(TC_RETURN) 4408 NODE_NAME_CASE(TRAP) 4409 NODE_NAME_CASE(RET_FLAG) 4410 NODE_NAME_CASE(RETURN_TO_EPILOG) 4411 NODE_NAME_CASE(ENDPGM) 4412 NODE_NAME_CASE(DWORDADDR) 4413 NODE_NAME_CASE(FRACT) 4414 NODE_NAME_CASE(SETCC) 4415 NODE_NAME_CASE(SETREG) 4416 NODE_NAME_CASE(DENORM_MODE) 4417 NODE_NAME_CASE(FMA_W_CHAIN) 4418 NODE_NAME_CASE(FMUL_W_CHAIN) 4419 NODE_NAME_CASE(CLAMP) 4420 NODE_NAME_CASE(COS_HW) 4421 NODE_NAME_CASE(SIN_HW) 4422 NODE_NAME_CASE(FMAX_LEGACY) 4423 NODE_NAME_CASE(FMIN_LEGACY) 4424 NODE_NAME_CASE(FMAX3) 4425 NODE_NAME_CASE(SMAX3) 4426 NODE_NAME_CASE(UMAX3) 4427 NODE_NAME_CASE(FMIN3) 4428 NODE_NAME_CASE(SMIN3) 4429 NODE_NAME_CASE(UMIN3) 4430 NODE_NAME_CASE(FMED3) 4431 NODE_NAME_CASE(SMED3) 4432 NODE_NAME_CASE(UMED3) 4433 NODE_NAME_CASE(FDOT2) 4434 NODE_NAME_CASE(URECIP) 4435 NODE_NAME_CASE(DIV_SCALE) 4436 NODE_NAME_CASE(DIV_FMAS) 4437 NODE_NAME_CASE(DIV_FIXUP) 4438 NODE_NAME_CASE(FMAD_FTZ) 4439 NODE_NAME_CASE(RCP) 4440 NODE_NAME_CASE(RSQ) 4441 NODE_NAME_CASE(RCP_LEGACY) 4442 NODE_NAME_CASE(RCP_IFLAG) 4443 NODE_NAME_CASE(FMUL_LEGACY) 4444 NODE_NAME_CASE(RSQ_CLAMP) 4445 NODE_NAME_CASE(LDEXP) 4446 NODE_NAME_CASE(FP_CLASS) 4447 NODE_NAME_CASE(DOT4) 4448 NODE_NAME_CASE(CARRY) 4449 NODE_NAME_CASE(BORROW) 4450 NODE_NAME_CASE(BFE_U32) 4451 NODE_NAME_CASE(BFE_I32) 4452 NODE_NAME_CASE(BFI) 4453 NODE_NAME_CASE(BFM) 4454 NODE_NAME_CASE(FFBH_U32) 4455 NODE_NAME_CASE(FFBH_I32) 4456 NODE_NAME_CASE(FFBL_B32) 4457 NODE_NAME_CASE(MUL_U24) 4458 NODE_NAME_CASE(MUL_I24) 4459 NODE_NAME_CASE(MULHI_U24) 4460 NODE_NAME_CASE(MULHI_I24) 4461 NODE_NAME_CASE(MAD_U24) 4462 NODE_NAME_CASE(MAD_I24) 4463 NODE_NAME_CASE(MAD_I64_I32) 4464 NODE_NAME_CASE(MAD_U64_U32) 4465 NODE_NAME_CASE(PERM) 4466 NODE_NAME_CASE(TEXTURE_FETCH) 4467 NODE_NAME_CASE(R600_EXPORT) 4468 NODE_NAME_CASE(CONST_ADDRESS) 4469 NODE_NAME_CASE(REGISTER_LOAD) 4470 NODE_NAME_CASE(REGISTER_STORE) 4471 NODE_NAME_CASE(SAMPLE) 4472 NODE_NAME_CASE(SAMPLEB) 4473 NODE_NAME_CASE(SAMPLED) 4474 NODE_NAME_CASE(SAMPLEL) 4475 NODE_NAME_CASE(CVT_F32_UBYTE0) 4476 NODE_NAME_CASE(CVT_F32_UBYTE1) 4477 NODE_NAME_CASE(CVT_F32_UBYTE2) 4478 NODE_NAME_CASE(CVT_F32_UBYTE3) 4479 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4480 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4481 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4482 NODE_NAME_CASE(CVT_PK_I16_I32) 4483 NODE_NAME_CASE(CVT_PK_U16_U32) 4484 NODE_NAME_CASE(FP_TO_FP16) 4485 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4486 NODE_NAME_CASE(CONST_DATA_PTR) 4487 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4488 NODE_NAME_CASE(LDS) 4489 NODE_NAME_CASE(FPTRUNC_ROUND_UPWARD) 4490 NODE_NAME_CASE(FPTRUNC_ROUND_DOWNWARD) 4491 NODE_NAME_CASE(DUMMY_CHAIN) 4492 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4493 NODE_NAME_CASE(LOAD_D16_HI) 4494 NODE_NAME_CASE(LOAD_D16_LO) 4495 NODE_NAME_CASE(LOAD_D16_HI_I8) 4496 NODE_NAME_CASE(LOAD_D16_HI_U8) 4497 NODE_NAME_CASE(LOAD_D16_LO_I8) 4498 NODE_NAME_CASE(LOAD_D16_LO_U8) 4499 NODE_NAME_CASE(STORE_MSKOR) 4500 NODE_NAME_CASE(LOAD_CONSTANT) 4501 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4502 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4503 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4504 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4505 NODE_NAME_CASE(DS_ORDERED_COUNT) 4506 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4507 NODE_NAME_CASE(ATOMIC_INC) 4508 NODE_NAME_CASE(ATOMIC_DEC) 4509 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4510 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4511 NODE_NAME_CASE(BUFFER_LOAD) 4512 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4513 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4514 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4515 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4516 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4517 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4518 NODE_NAME_CASE(SBUFFER_LOAD) 4519 NODE_NAME_CASE(BUFFER_STORE) 4520 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4521 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4522 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4523 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4524 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4525 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4526 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4527 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4528 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4529 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4530 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4531 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4532 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4533 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4534 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4535 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4536 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4537 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4538 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4539 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN) 4540 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX) 4541 4542 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4543 } 4544 return nullptr; 4545 } 4546 4547 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4548 SelectionDAG &DAG, int Enabled, 4549 int &RefinementSteps, 4550 bool &UseOneConstNR, 4551 bool Reciprocal) const { 4552 EVT VT = Operand.getValueType(); 4553 4554 if (VT == MVT::f32) { 4555 RefinementSteps = 0; 4556 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4557 } 4558 4559 // TODO: There is also f64 rsq instruction, but the documentation is less 4560 // clear on its precision. 4561 4562 return SDValue(); 4563 } 4564 4565 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4566 SelectionDAG &DAG, int Enabled, 4567 int &RefinementSteps) const { 4568 EVT VT = Operand.getValueType(); 4569 4570 if (VT == MVT::f32) { 4571 // Reciprocal, < 1 ulp error. 4572 // 4573 // This reciprocal approximation converges to < 0.5 ulp error with one 4574 // newton rhapson performed with two fused multiple adds (FMAs). 4575 4576 RefinementSteps = 0; 4577 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4578 } 4579 4580 // TODO: There is also f64 rcp instruction, but the documentation is less 4581 // clear on its precision. 4582 4583 return SDValue(); 4584 } 4585 4586 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4587 const SDValue Op, KnownBits &Known, 4588 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4589 4590 Known.resetAll(); // Don't know anything. 4591 4592 unsigned Opc = Op.getOpcode(); 4593 4594 switch (Opc) { 4595 default: 4596 break; 4597 case AMDGPUISD::CARRY: 4598 case AMDGPUISD::BORROW: { 4599 Known.Zero = APInt::getHighBitsSet(32, 31); 4600 break; 4601 } 4602 4603 case AMDGPUISD::BFE_I32: 4604 case AMDGPUISD::BFE_U32: { 4605 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4606 if (!CWidth) 4607 return; 4608 4609 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4610 4611 if (Opc == AMDGPUISD::BFE_U32) 4612 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4613 4614 break; 4615 } 4616 case AMDGPUISD::FP_TO_FP16: { 4617 unsigned BitWidth = Known.getBitWidth(); 4618 4619 // High bits are zero. 4620 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4621 break; 4622 } 4623 case AMDGPUISD::MUL_U24: 4624 case AMDGPUISD::MUL_I24: { 4625 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4626 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4627 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4628 RHSKnown.countMinTrailingZeros(); 4629 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4630 // Skip extra check if all bits are known zeros. 4631 if (TrailZ >= 32) 4632 break; 4633 4634 // Truncate to 24 bits. 4635 LHSKnown = LHSKnown.trunc(24); 4636 RHSKnown = RHSKnown.trunc(24); 4637 4638 if (Opc == AMDGPUISD::MUL_I24) { 4639 unsigned LHSValBits = LHSKnown.countMaxSignificantBits(); 4640 unsigned RHSValBits = RHSKnown.countMaxSignificantBits(); 4641 unsigned MaxValBits = LHSValBits + RHSValBits; 4642 if (MaxValBits > 32) 4643 break; 4644 unsigned SignBits = 32 - MaxValBits + 1; 4645 bool LHSNegative = LHSKnown.isNegative(); 4646 bool LHSNonNegative = LHSKnown.isNonNegative(); 4647 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4648 bool RHSNegative = RHSKnown.isNegative(); 4649 bool RHSNonNegative = RHSKnown.isNonNegative(); 4650 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4651 4652 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4653 Known.Zero.setHighBits(SignBits); 4654 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4655 Known.One.setHighBits(SignBits); 4656 } else { 4657 unsigned LHSValBits = LHSKnown.countMaxActiveBits(); 4658 unsigned RHSValBits = RHSKnown.countMaxActiveBits(); 4659 unsigned MaxValBits = LHSValBits + RHSValBits; 4660 if (MaxValBits >= 32) 4661 break; 4662 Known.Zero.setBitsFrom(MaxValBits); 4663 } 4664 break; 4665 } 4666 case AMDGPUISD::PERM: { 4667 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4668 if (!CMask) 4669 return; 4670 4671 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4672 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4673 unsigned Sel = CMask->getZExtValue(); 4674 4675 for (unsigned I = 0; I < 32; I += 8) { 4676 unsigned SelBits = Sel & 0xff; 4677 if (SelBits < 4) { 4678 SelBits *= 8; 4679 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4680 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4681 } else if (SelBits < 7) { 4682 SelBits = (SelBits & 3) * 8; 4683 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4684 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4685 } else if (SelBits == 0x0c) { 4686 Known.Zero |= 0xFFull << I; 4687 } else if (SelBits > 0x0c) { 4688 Known.One |= 0xFFull << I; 4689 } 4690 Sel >>= 8; 4691 } 4692 break; 4693 } 4694 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4695 Known.Zero.setHighBits(24); 4696 break; 4697 } 4698 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4699 Known.Zero.setHighBits(16); 4700 break; 4701 } 4702 case AMDGPUISD::LDS: { 4703 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4704 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4705 4706 Known.Zero.setHighBits(16); 4707 Known.Zero.setLowBits(Log2(Alignment)); 4708 break; 4709 } 4710 case ISD::INTRINSIC_WO_CHAIN: { 4711 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4712 switch (IID) { 4713 case Intrinsic::amdgcn_mbcnt_lo: 4714 case Intrinsic::amdgcn_mbcnt_hi: { 4715 const GCNSubtarget &ST = 4716 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4717 // These return at most the wavefront size - 1. 4718 unsigned Size = Op.getValueType().getSizeInBits(); 4719 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4720 break; 4721 } 4722 default: 4723 break; 4724 } 4725 } 4726 } 4727 } 4728 4729 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4730 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4731 unsigned Depth) const { 4732 switch (Op.getOpcode()) { 4733 case AMDGPUISD::BFE_I32: { 4734 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4735 if (!Width) 4736 return 1; 4737 4738 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4739 if (!isNullConstant(Op.getOperand(1))) 4740 return SignBits; 4741 4742 // TODO: Could probably figure something out with non-0 offsets. 4743 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4744 return std::max(SignBits, Op0SignBits); 4745 } 4746 4747 case AMDGPUISD::BFE_U32: { 4748 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4749 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4750 } 4751 4752 case AMDGPUISD::CARRY: 4753 case AMDGPUISD::BORROW: 4754 return 31; 4755 case AMDGPUISD::BUFFER_LOAD_BYTE: 4756 return 25; 4757 case AMDGPUISD::BUFFER_LOAD_SHORT: 4758 return 17; 4759 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4760 return 24; 4761 case AMDGPUISD::BUFFER_LOAD_USHORT: 4762 return 16; 4763 case AMDGPUISD::FP_TO_FP16: 4764 return 16; 4765 default: 4766 return 1; 4767 } 4768 } 4769 4770 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4771 GISelKnownBits &Analysis, Register R, 4772 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4773 unsigned Depth) const { 4774 const MachineInstr *MI = MRI.getVRegDef(R); 4775 if (!MI) 4776 return 1; 4777 4778 // TODO: Check range metadata on MMO. 4779 switch (MI->getOpcode()) { 4780 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4781 return 25; 4782 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4783 return 17; 4784 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4785 return 24; 4786 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4787 return 16; 4788 default: 4789 return 1; 4790 } 4791 } 4792 4793 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4794 const SelectionDAG &DAG, 4795 bool SNaN, 4796 unsigned Depth) const { 4797 unsigned Opcode = Op.getOpcode(); 4798 switch (Opcode) { 4799 case AMDGPUISD::FMIN_LEGACY: 4800 case AMDGPUISD::FMAX_LEGACY: { 4801 if (SNaN) 4802 return true; 4803 4804 // TODO: Can check no nans on one of the operands for each one, but which 4805 // one? 4806 return false; 4807 } 4808 case AMDGPUISD::FMUL_LEGACY: 4809 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4810 if (SNaN) 4811 return true; 4812 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4813 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4814 } 4815 case AMDGPUISD::FMED3: 4816 case AMDGPUISD::FMIN3: 4817 case AMDGPUISD::FMAX3: 4818 case AMDGPUISD::FMAD_FTZ: { 4819 if (SNaN) 4820 return true; 4821 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4822 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4823 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4824 } 4825 case AMDGPUISD::CVT_F32_UBYTE0: 4826 case AMDGPUISD::CVT_F32_UBYTE1: 4827 case AMDGPUISD::CVT_F32_UBYTE2: 4828 case AMDGPUISD::CVT_F32_UBYTE3: 4829 return true; 4830 4831 case AMDGPUISD::RCP: 4832 case AMDGPUISD::RSQ: 4833 case AMDGPUISD::RCP_LEGACY: 4834 case AMDGPUISD::RSQ_CLAMP: { 4835 if (SNaN) 4836 return true; 4837 4838 // TODO: Need is known positive check. 4839 return false; 4840 } 4841 case AMDGPUISD::LDEXP: 4842 case AMDGPUISD::FRACT: { 4843 if (SNaN) 4844 return true; 4845 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4846 } 4847 case AMDGPUISD::DIV_SCALE: 4848 case AMDGPUISD::DIV_FMAS: 4849 case AMDGPUISD::DIV_FIXUP: 4850 // TODO: Refine on operands. 4851 return SNaN; 4852 case AMDGPUISD::SIN_HW: 4853 case AMDGPUISD::COS_HW: { 4854 // TODO: Need check for infinity 4855 return SNaN; 4856 } 4857 case ISD::INTRINSIC_WO_CHAIN: { 4858 unsigned IntrinsicID 4859 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4860 // TODO: Handle more intrinsics 4861 switch (IntrinsicID) { 4862 case Intrinsic::amdgcn_cubeid: 4863 return true; 4864 4865 case Intrinsic::amdgcn_frexp_mant: { 4866 if (SNaN) 4867 return true; 4868 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4869 } 4870 case Intrinsic::amdgcn_cvt_pkrtz: { 4871 if (SNaN) 4872 return true; 4873 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4874 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4875 } 4876 case Intrinsic::amdgcn_rcp: 4877 case Intrinsic::amdgcn_rsq: 4878 case Intrinsic::amdgcn_rcp_legacy: 4879 case Intrinsic::amdgcn_rsq_legacy: 4880 case Intrinsic::amdgcn_rsq_clamp: { 4881 if (SNaN) 4882 return true; 4883 4884 // TODO: Need is known positive check. 4885 return false; 4886 } 4887 case Intrinsic::amdgcn_trig_preop: 4888 case Intrinsic::amdgcn_fdot2: 4889 // TODO: Refine on operand 4890 return SNaN; 4891 case Intrinsic::amdgcn_fma_legacy: 4892 if (SNaN) 4893 return true; 4894 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4895 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && 4896 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); 4897 default: 4898 return false; 4899 } 4900 } 4901 default: 4902 return false; 4903 } 4904 } 4905 4906 TargetLowering::AtomicExpansionKind 4907 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4908 switch (RMW->getOperation()) { 4909 case AtomicRMWInst::Nand: 4910 case AtomicRMWInst::FAdd: 4911 case AtomicRMWInst::FSub: 4912 return AtomicExpansionKind::CmpXChg; 4913 default: 4914 return AtomicExpansionKind::None; 4915 } 4916 } 4917 4918 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtractLegal( 4919 unsigned Opc, LLT Ty1, LLT Ty2) const { 4920 return (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64)) && 4921 Ty2 == LLT::scalar(32); 4922 } 4923