1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f 16 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f 17 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f 18 19 #include "AMDGPUISelLowering.h" 20 #include "AMDGPU.h" 21 #include "AMDGPUCallLowering.h" 22 #include "AMDGPUFrameLowering.h" 23 #include "AMDGPURegisterInfo.h" 24 #include "AMDGPUSubtarget.h" 25 #include "AMDGPUTargetMachine.h" 26 #include "Utils/AMDGPUBaseInfo.h" 27 #include "R600MachineFunctionInfo.h" 28 #include "SIInstrInfo.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/CallingConvLower.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DiagnosticInfo.h" 39 #include "llvm/Support/KnownBits.h" 40 using namespace llvm; 41 42 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 43 CCValAssign::LocInfo LocInfo, 44 ISD::ArgFlagsTy ArgFlags, CCState &State, 45 const TargetRegisterClass *RC, 46 unsigned NumRegs) { 47 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 48 unsigned RegResult = State.AllocateReg(RegList); 49 if (RegResult == AMDGPU::NoRegister) 50 return false; 51 52 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 53 return true; 54 } 55 56 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 57 CCValAssign::LocInfo LocInfo, 58 ISD::ArgFlagsTy ArgFlags, CCState &State) { 59 switch (LocVT.SimpleTy) { 60 case MVT::i64: 61 case MVT::f64: 62 case MVT::v2i32: 63 case MVT::v2f32: 64 case MVT::v4i16: 65 case MVT::v4f16: { 66 // Up to SGPR0-SGPR39 67 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 68 &AMDGPU::SGPR_64RegClass, 20); 69 } 70 default: 71 return false; 72 } 73 } 74 75 // Allocate up to VGPR31. 76 // 77 // TODO: Since there are no VGPR alignent requirements would it be better to 78 // split into individual scalar registers? 79 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 80 CCValAssign::LocInfo LocInfo, 81 ISD::ArgFlagsTy ArgFlags, CCState &State) { 82 switch (LocVT.SimpleTy) { 83 case MVT::i64: 84 case MVT::f64: 85 case MVT::v2i32: 86 case MVT::v2f32: 87 case MVT::v4i16: 88 case MVT::v4f16: { 89 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 90 &AMDGPU::VReg_64RegClass, 31); 91 } 92 case MVT::v4i32: 93 case MVT::v4f32: 94 case MVT::v2i64: 95 case MVT::v2f64: { 96 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 97 &AMDGPU::VReg_128RegClass, 29); 98 } 99 case MVT::v8i32: 100 case MVT::v8f32: { 101 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 102 &AMDGPU::VReg_256RegClass, 25); 103 104 } 105 case MVT::v16i32: 106 case MVT::v16f32: { 107 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 108 &AMDGPU::VReg_512RegClass, 17); 109 110 } 111 default: 112 return false; 113 } 114 } 115 116 #include "AMDGPUGenCallingConv.inc" 117 118 // Find a larger type to do a load / store of a vector with. 119 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 120 unsigned StoreSize = VT.getStoreSizeInBits(); 121 if (StoreSize <= 32) 122 return EVT::getIntegerVT(Ctx, StoreSize); 123 124 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 125 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 126 } 127 128 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 129 EVT VT = Op.getValueType(); 130 KnownBits Known = DAG.computeKnownBits(Op); 131 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 132 } 133 134 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 135 EVT VT = Op.getValueType(); 136 137 // In order for this to be a signed 24-bit value, bit 23, must 138 // be a sign bit. 139 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 140 } 141 142 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 143 const AMDGPUSubtarget &STI) 144 : TargetLowering(TM), Subtarget(&STI) { 145 // Lower floating point store/load to integer store/load to reduce the number 146 // of patterns in tablegen. 147 setOperationAction(ISD::LOAD, MVT::f32, Promote); 148 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 149 150 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 151 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 152 153 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 155 156 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 158 159 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 161 162 setOperationAction(ISD::LOAD, MVT::i64, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 164 165 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 167 168 setOperationAction(ISD::LOAD, MVT::f64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 170 171 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 172 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 173 174 // There are no 64-bit extloads. These should be done as a 32-bit extload and 175 // an extension to 64-bit. 176 for (MVT VT : MVT::integer_valuetypes()) { 177 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 178 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 179 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 180 } 181 182 for (MVT VT : MVT::integer_valuetypes()) { 183 if (VT == MVT::i64) 184 continue; 185 186 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 187 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 188 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 189 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 190 191 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 192 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 193 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 194 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 195 196 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 197 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 198 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 199 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 200 } 201 202 for (MVT VT : MVT::integer_vector_valuetypes()) { 203 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 204 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 205 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 206 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 207 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 208 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 209 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 210 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 211 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 212 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 213 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 214 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 215 } 216 217 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 218 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 219 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 220 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 221 222 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 223 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 226 227 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 228 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 231 232 setOperationAction(ISD::STORE, MVT::f32, Promote); 233 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 234 235 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 236 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 237 238 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 239 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 240 241 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 242 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 243 244 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 245 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 246 247 setOperationAction(ISD::STORE, MVT::i64, Promote); 248 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 249 250 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 251 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 252 253 setOperationAction(ISD::STORE, MVT::f64, Promote); 254 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 255 256 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 257 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 258 259 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 260 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 261 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 262 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 263 264 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 265 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 266 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 267 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 268 269 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 270 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 271 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 272 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 273 274 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 275 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 276 277 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 278 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 279 280 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 281 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 282 283 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 284 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 285 286 287 setOperationAction(ISD::Constant, MVT::i32, Legal); 288 setOperationAction(ISD::Constant, MVT::i64, Legal); 289 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 290 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 291 292 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 293 setOperationAction(ISD::BRIND, MVT::Other, Expand); 294 295 // This is totally unsupported, just custom lower to produce an error. 296 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 297 298 // Library functions. These default to Expand, but we have instructions 299 // for them. 300 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 301 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 302 setOperationAction(ISD::FPOW, MVT::f32, Legal); 303 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 304 setOperationAction(ISD::FABS, MVT::f32, Legal); 305 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 306 setOperationAction(ISD::FRINT, MVT::f32, Legal); 307 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 308 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 309 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 310 311 setOperationAction(ISD::FROUND, MVT::f32, Custom); 312 setOperationAction(ISD::FROUND, MVT::f64, Custom); 313 314 setOperationAction(ISD::FLOG, MVT::f32, Custom); 315 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 316 setOperationAction(ISD::FEXP, MVT::f32, Custom); 317 318 319 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 320 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 321 322 setOperationAction(ISD::FREM, MVT::f32, Custom); 323 setOperationAction(ISD::FREM, MVT::f64, Custom); 324 325 // Expand to fneg + fadd. 326 setOperationAction(ISD::FSUB, MVT::f64, Expand); 327 328 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 329 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 330 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 331 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 332 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 333 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 334 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 335 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 336 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 337 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 338 339 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 340 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 341 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 342 343 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 344 for (MVT VT : ScalarIntVTs) { 345 // These should use [SU]DIVREM, so set them to expand 346 setOperationAction(ISD::SDIV, VT, Expand); 347 setOperationAction(ISD::UDIV, VT, Expand); 348 setOperationAction(ISD::SREM, VT, Expand); 349 setOperationAction(ISD::UREM, VT, Expand); 350 351 // GPU does not have divrem function for signed or unsigned. 352 setOperationAction(ISD::SDIVREM, VT, Custom); 353 setOperationAction(ISD::UDIVREM, VT, Custom); 354 355 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 356 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 357 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 358 359 setOperationAction(ISD::BSWAP, VT, Expand); 360 setOperationAction(ISD::CTTZ, VT, Expand); 361 setOperationAction(ISD::CTLZ, VT, Expand); 362 363 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 364 setOperationAction(ISD::ADDC, VT, Legal); 365 setOperationAction(ISD::SUBC, VT, Legal); 366 setOperationAction(ISD::ADDE, VT, Legal); 367 setOperationAction(ISD::SUBE, VT, Legal); 368 } 369 370 // The hardware supports 32-bit ROTR, but not ROTL. 371 setOperationAction(ISD::ROTL, MVT::i32, Expand); 372 setOperationAction(ISD::ROTL, MVT::i64, Expand); 373 setOperationAction(ISD::ROTR, MVT::i64, Expand); 374 375 setOperationAction(ISD::MUL, MVT::i64, Expand); 376 setOperationAction(ISD::MULHU, MVT::i64, Expand); 377 setOperationAction(ISD::MULHS, MVT::i64, Expand); 378 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 379 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 380 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 381 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 382 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 383 384 setOperationAction(ISD::SMIN, MVT::i32, Legal); 385 setOperationAction(ISD::UMIN, MVT::i32, Legal); 386 setOperationAction(ISD::SMAX, MVT::i32, Legal); 387 setOperationAction(ISD::UMAX, MVT::i32, Legal); 388 389 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 390 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 391 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 392 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 393 394 static const MVT::SimpleValueType VectorIntTypes[] = { 395 MVT::v2i32, MVT::v4i32 396 }; 397 398 for (MVT VT : VectorIntTypes) { 399 // Expand the following operations for the current type by default. 400 setOperationAction(ISD::ADD, VT, Expand); 401 setOperationAction(ISD::AND, VT, Expand); 402 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 403 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 404 setOperationAction(ISD::MUL, VT, Expand); 405 setOperationAction(ISD::MULHU, VT, Expand); 406 setOperationAction(ISD::MULHS, VT, Expand); 407 setOperationAction(ISD::OR, VT, Expand); 408 setOperationAction(ISD::SHL, VT, Expand); 409 setOperationAction(ISD::SRA, VT, Expand); 410 setOperationAction(ISD::SRL, VT, Expand); 411 setOperationAction(ISD::ROTL, VT, Expand); 412 setOperationAction(ISD::ROTR, VT, Expand); 413 setOperationAction(ISD::SUB, VT, Expand); 414 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 415 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 416 setOperationAction(ISD::SDIV, VT, Expand); 417 setOperationAction(ISD::UDIV, VT, Expand); 418 setOperationAction(ISD::SREM, VT, Expand); 419 setOperationAction(ISD::UREM, VT, Expand); 420 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 421 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 422 setOperationAction(ISD::SDIVREM, VT, Custom); 423 setOperationAction(ISD::UDIVREM, VT, Expand); 424 setOperationAction(ISD::SELECT, VT, Expand); 425 setOperationAction(ISD::VSELECT, VT, Expand); 426 setOperationAction(ISD::SELECT_CC, VT, Expand); 427 setOperationAction(ISD::XOR, VT, Expand); 428 setOperationAction(ISD::BSWAP, VT, Expand); 429 setOperationAction(ISD::CTPOP, VT, Expand); 430 setOperationAction(ISD::CTTZ, VT, Expand); 431 setOperationAction(ISD::CTLZ, VT, Expand); 432 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 433 setOperationAction(ISD::SETCC, VT, Expand); 434 } 435 436 static const MVT::SimpleValueType FloatVectorTypes[] = { 437 MVT::v2f32, MVT::v4f32 438 }; 439 440 for (MVT VT : FloatVectorTypes) { 441 setOperationAction(ISD::FABS, VT, Expand); 442 setOperationAction(ISD::FMINNUM, VT, Expand); 443 setOperationAction(ISD::FMAXNUM, VT, Expand); 444 setOperationAction(ISD::FADD, VT, Expand); 445 setOperationAction(ISD::FCEIL, VT, Expand); 446 setOperationAction(ISD::FCOS, VT, Expand); 447 setOperationAction(ISD::FDIV, VT, Expand); 448 setOperationAction(ISD::FEXP2, VT, Expand); 449 setOperationAction(ISD::FEXP, VT, Expand); 450 setOperationAction(ISD::FLOG2, VT, Expand); 451 setOperationAction(ISD::FREM, VT, Expand); 452 setOperationAction(ISD::FLOG, VT, Expand); 453 setOperationAction(ISD::FLOG10, VT, Expand); 454 setOperationAction(ISD::FPOW, VT, Expand); 455 setOperationAction(ISD::FFLOOR, VT, Expand); 456 setOperationAction(ISD::FTRUNC, VT, Expand); 457 setOperationAction(ISD::FMUL, VT, Expand); 458 setOperationAction(ISD::FMA, VT, Expand); 459 setOperationAction(ISD::FRINT, VT, Expand); 460 setOperationAction(ISD::FNEARBYINT, VT, Expand); 461 setOperationAction(ISD::FSQRT, VT, Expand); 462 setOperationAction(ISD::FSIN, VT, Expand); 463 setOperationAction(ISD::FSUB, VT, Expand); 464 setOperationAction(ISD::FNEG, VT, Expand); 465 setOperationAction(ISD::VSELECT, VT, Expand); 466 setOperationAction(ISD::SELECT_CC, VT, Expand); 467 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 468 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 469 setOperationAction(ISD::SETCC, VT, Expand); 470 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 471 } 472 473 // This causes using an unrolled select operation rather than expansion with 474 // bit operations. This is in general better, but the alternative using BFI 475 // instructions may be better if the select sources are SGPRs. 476 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 477 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 478 479 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 480 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 481 482 // There are no libcalls of any kind. 483 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 484 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 485 486 setBooleanContents(ZeroOrNegativeOneBooleanContent); 487 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 488 489 setSchedulingPreference(Sched::RegPressure); 490 setJumpIsExpensive(true); 491 492 // FIXME: This is only partially true. If we have to do vector compares, any 493 // SGPR pair can be a condition register. If we have a uniform condition, we 494 // are better off doing SALU operations, where there is only one SCC. For now, 495 // we don't have a way of knowing during instruction selection if a condition 496 // will be uniform and we always use vector compares. Assume we are using 497 // vector compares until that is fixed. 498 setHasMultipleConditionRegisters(true); 499 500 PredictableSelectIsExpensive = false; 501 502 // We want to find all load dependencies for long chains of stores to enable 503 // merging into very wide vectors. The problem is with vectors with > 4 504 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 505 // vectors are a legal type, even though we have to split the loads 506 // usually. When we can more precisely specify load legality per address 507 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 508 // smarter so that they can figure out what to do in 2 iterations without all 509 // N > 4 stores on the same chain. 510 GatherAllAliasesMaxDepth = 16; 511 512 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 513 // about these during lowering. 514 MaxStoresPerMemcpy = 0xffffffff; 515 MaxStoresPerMemmove = 0xffffffff; 516 MaxStoresPerMemset = 0xffffffff; 517 518 setTargetDAGCombine(ISD::BITCAST); 519 setTargetDAGCombine(ISD::SHL); 520 setTargetDAGCombine(ISD::SRA); 521 setTargetDAGCombine(ISD::SRL); 522 setTargetDAGCombine(ISD::TRUNCATE); 523 setTargetDAGCombine(ISD::MUL); 524 setTargetDAGCombine(ISD::MULHU); 525 setTargetDAGCombine(ISD::MULHS); 526 setTargetDAGCombine(ISD::SELECT); 527 setTargetDAGCombine(ISD::SELECT_CC); 528 setTargetDAGCombine(ISD::STORE); 529 setTargetDAGCombine(ISD::FADD); 530 setTargetDAGCombine(ISD::FSUB); 531 setTargetDAGCombine(ISD::FNEG); 532 setTargetDAGCombine(ISD::FABS); 533 setTargetDAGCombine(ISD::AssertZext); 534 setTargetDAGCombine(ISD::AssertSext); 535 } 536 537 //===----------------------------------------------------------------------===// 538 // Target Information 539 //===----------------------------------------------------------------------===// 540 541 LLVM_READNONE 542 static bool fnegFoldsIntoOp(unsigned Opc) { 543 switch (Opc) { 544 case ISD::FADD: 545 case ISD::FSUB: 546 case ISD::FMUL: 547 case ISD::FMA: 548 case ISD::FMAD: 549 case ISD::FMINNUM: 550 case ISD::FMAXNUM: 551 case ISD::FMINNUM_IEEE: 552 case ISD::FMAXNUM_IEEE: 553 case ISD::FSIN: 554 case ISD::FTRUNC: 555 case ISD::FRINT: 556 case ISD::FNEARBYINT: 557 case ISD::FCANONICALIZE: 558 case AMDGPUISD::RCP: 559 case AMDGPUISD::RCP_LEGACY: 560 case AMDGPUISD::RCP_IFLAG: 561 case AMDGPUISD::SIN_HW: 562 case AMDGPUISD::FMUL_LEGACY: 563 case AMDGPUISD::FMIN_LEGACY: 564 case AMDGPUISD::FMAX_LEGACY: 565 case AMDGPUISD::FMED3: 566 return true; 567 default: 568 return false; 569 } 570 } 571 572 /// \p returns true if the operation will definitely need to use a 64-bit 573 /// encoding, and thus will use a VOP3 encoding regardless of the source 574 /// modifiers. 575 LLVM_READONLY 576 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 577 return N->getNumOperands() > 2 || VT == MVT::f64; 578 } 579 580 // Most FP instructions support source modifiers, but this could be refined 581 // slightly. 582 LLVM_READONLY 583 static bool hasSourceMods(const SDNode *N) { 584 if (isa<MemSDNode>(N)) 585 return false; 586 587 switch (N->getOpcode()) { 588 case ISD::CopyToReg: 589 case ISD::SELECT: 590 case ISD::FDIV: 591 case ISD::FREM: 592 case ISD::INLINEASM: 593 case AMDGPUISD::INTERP_P1: 594 case AMDGPUISD::INTERP_P2: 595 case AMDGPUISD::DIV_SCALE: 596 597 // TODO: Should really be looking at the users of the bitcast. These are 598 // problematic because bitcasts are used to legalize all stores to integer 599 // types. 600 case ISD::BITCAST: 601 return false; 602 default: 603 return true; 604 } 605 } 606 607 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 608 unsigned CostThreshold) { 609 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 610 // it is truly free to use a source modifier in all cases. If there are 611 // multiple users but for each one will necessitate using VOP3, there will be 612 // a code size increase. Try to avoid increasing code size unless we know it 613 // will save on the instruction count. 614 unsigned NumMayIncreaseSize = 0; 615 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 616 617 // XXX - Should this limit number of uses to check? 618 for (const SDNode *U : N->uses()) { 619 if (!hasSourceMods(U)) 620 return false; 621 622 if (!opMustUseVOP3Encoding(U, VT)) { 623 if (++NumMayIncreaseSize > CostThreshold) 624 return false; 625 } 626 } 627 628 return true; 629 } 630 631 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 632 return MVT::i32; 633 } 634 635 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 636 return true; 637 } 638 639 // The backend supports 32 and 64 bit floating point immediates. 640 // FIXME: Why are we reporting vectors of FP immediates as legal? 641 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 642 EVT ScalarVT = VT.getScalarType(); 643 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 644 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 645 } 646 647 // We don't want to shrink f64 / f32 constants. 648 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 649 EVT ScalarVT = VT.getScalarType(); 650 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 651 } 652 653 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 654 ISD::LoadExtType ExtTy, 655 EVT NewVT) const { 656 // TODO: This may be worth removing. Check regression tests for diffs. 657 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 658 return false; 659 660 unsigned NewSize = NewVT.getStoreSizeInBits(); 661 662 // If we are reducing to a 32-bit load, this is always better. 663 if (NewSize == 32) 664 return true; 665 666 EVT OldVT = N->getValueType(0); 667 unsigned OldSize = OldVT.getStoreSizeInBits(); 668 669 MemSDNode *MN = cast<MemSDNode>(N); 670 unsigned AS = MN->getAddressSpace(); 671 // Do not shrink an aligned scalar load to sub-dword. 672 // Scalar engine cannot do sub-dword loads. 673 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 674 (AS == AMDGPUAS::CONSTANT_ADDRESS || 675 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 676 (isa<LoadSDNode>(N) && 677 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 678 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 679 return false; 680 681 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 682 // extloads, so doing one requires using a buffer_load. In cases where we 683 // still couldn't use a scalar load, using the wider load shouldn't really 684 // hurt anything. 685 686 // If the old size already had to be an extload, there's no harm in continuing 687 // to reduce the width. 688 return (OldSize < 32); 689 } 690 691 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 692 EVT CastTy) const { 693 694 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 695 696 if (LoadTy.getScalarType() == MVT::i32) 697 return false; 698 699 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 700 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 701 702 return (LScalarSize < CastScalarSize) || 703 (CastScalarSize >= 32); 704 } 705 706 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 707 // profitable with the expansion for 64-bit since it's generally good to 708 // speculate things. 709 // FIXME: These should really have the size as a parameter. 710 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 711 return true; 712 } 713 714 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 715 return true; 716 } 717 718 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 719 switch (N->getOpcode()) { 720 default: 721 return false; 722 case ISD::EntryToken: 723 case ISD::TokenFactor: 724 return true; 725 case ISD::INTRINSIC_WO_CHAIN: 726 { 727 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 728 switch (IntrID) { 729 default: 730 return false; 731 case Intrinsic::amdgcn_readfirstlane: 732 case Intrinsic::amdgcn_readlane: 733 return true; 734 } 735 } 736 break; 737 case ISD::LOAD: 738 { 739 const LoadSDNode * L = dyn_cast<LoadSDNode>(N); 740 if (L->getMemOperand()->getAddrSpace() 741 == AMDGPUAS::CONSTANT_ADDRESS_32BIT) 742 return true; 743 return false; 744 } 745 break; 746 } 747 } 748 749 //===---------------------------------------------------------------------===// 750 // Target Properties 751 //===---------------------------------------------------------------------===// 752 753 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 754 assert(VT.isFloatingPoint()); 755 756 // Packed operations do not have a fabs modifier. 757 return VT == MVT::f32 || VT == MVT::f64 || 758 (Subtarget->has16BitInsts() && VT == MVT::f16); 759 } 760 761 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 762 assert(VT.isFloatingPoint()); 763 return VT == MVT::f32 || VT == MVT::f64 || 764 (Subtarget->has16BitInsts() && VT == MVT::f16) || 765 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 766 } 767 768 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 769 unsigned NumElem, 770 unsigned AS) const { 771 return true; 772 } 773 774 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 775 // There are few operations which truly have vector input operands. Any vector 776 // operation is going to involve operations on each component, and a 777 // build_vector will be a copy per element, so it always makes sense to use a 778 // build_vector input in place of the extracted element to avoid a copy into a 779 // super register. 780 // 781 // We should probably only do this if all users are extracts only, but this 782 // should be the common case. 783 return true; 784 } 785 786 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 787 // Truncate is just accessing a subregister. 788 789 unsigned SrcSize = Source.getSizeInBits(); 790 unsigned DestSize = Dest.getSizeInBits(); 791 792 return DestSize < SrcSize && DestSize % 32 == 0 ; 793 } 794 795 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 796 // Truncate is just accessing a subregister. 797 798 unsigned SrcSize = Source->getScalarSizeInBits(); 799 unsigned DestSize = Dest->getScalarSizeInBits(); 800 801 if (DestSize== 16 && Subtarget->has16BitInsts()) 802 return SrcSize >= 32; 803 804 return DestSize < SrcSize && DestSize % 32 == 0; 805 } 806 807 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 808 unsigned SrcSize = Src->getScalarSizeInBits(); 809 unsigned DestSize = Dest->getScalarSizeInBits(); 810 811 if (SrcSize == 16 && Subtarget->has16BitInsts()) 812 return DestSize >= 32; 813 814 return SrcSize == 32 && DestSize == 64; 815 } 816 817 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 818 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 819 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 820 // this will enable reducing 64-bit operations the 32-bit, which is always 821 // good. 822 823 if (Src == MVT::i16) 824 return Dest == MVT::i32 ||Dest == MVT::i64 ; 825 826 return Src == MVT::i32 && Dest == MVT::i64; 827 } 828 829 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 830 return isZExtFree(Val.getValueType(), VT2); 831 } 832 833 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 834 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 835 // limited number of native 64-bit operations. Shrinking an operation to fit 836 // in a single 32-bit register should always be helpful. As currently used, 837 // this is much less general than the name suggests, and is only used in 838 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 839 // not profitable, and may actually be harmful. 840 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 841 } 842 843 //===---------------------------------------------------------------------===// 844 // TargetLowering Callbacks 845 //===---------------------------------------------------------------------===// 846 847 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 848 bool IsVarArg) { 849 switch (CC) { 850 case CallingConv::AMDGPU_KERNEL: 851 case CallingConv::SPIR_KERNEL: 852 llvm_unreachable("kernels should not be handled here"); 853 case CallingConv::AMDGPU_VS: 854 case CallingConv::AMDGPU_GS: 855 case CallingConv::AMDGPU_PS: 856 case CallingConv::AMDGPU_CS: 857 case CallingConv::AMDGPU_HS: 858 case CallingConv::AMDGPU_ES: 859 case CallingConv::AMDGPU_LS: 860 return CC_AMDGPU; 861 case CallingConv::C: 862 case CallingConv::Fast: 863 case CallingConv::Cold: 864 return CC_AMDGPU_Func; 865 default: 866 report_fatal_error("Unsupported calling convention."); 867 } 868 } 869 870 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 871 bool IsVarArg) { 872 switch (CC) { 873 case CallingConv::AMDGPU_KERNEL: 874 case CallingConv::SPIR_KERNEL: 875 llvm_unreachable("kernels should not be handled here"); 876 case CallingConv::AMDGPU_VS: 877 case CallingConv::AMDGPU_GS: 878 case CallingConv::AMDGPU_PS: 879 case CallingConv::AMDGPU_CS: 880 case CallingConv::AMDGPU_HS: 881 case CallingConv::AMDGPU_ES: 882 case CallingConv::AMDGPU_LS: 883 return RetCC_SI_Shader; 884 case CallingConv::C: 885 case CallingConv::Fast: 886 case CallingConv::Cold: 887 return RetCC_AMDGPU_Func; 888 default: 889 report_fatal_error("Unsupported calling convention."); 890 } 891 } 892 893 /// The SelectionDAGBuilder will automatically promote function arguments 894 /// with illegal types. However, this does not work for the AMDGPU targets 895 /// since the function arguments are stored in memory as these illegal types. 896 /// In order to handle this properly we need to get the original types sizes 897 /// from the LLVM IR Function and fixup the ISD:InputArg values before 898 /// passing them to AnalyzeFormalArguments() 899 900 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 901 /// input values across multiple registers. Each item in the Ins array 902 /// represents a single value that will be stored in registers. Ins[x].VT is 903 /// the value type of the value that will be stored in the register, so 904 /// whatever SDNode we lower the argument to needs to be this type. 905 /// 906 /// In order to correctly lower the arguments we need to know the size of each 907 /// argument. Since Ins[x].VT gives us the size of the register that will 908 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 909 /// for the orignal function argument so that we can deduce the correct memory 910 /// type to use for Ins[x]. In most cases the correct memory type will be 911 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 912 /// we have a kernel argument of type v8i8, this argument will be split into 913 /// 8 parts and each part will be represented by its own item in the Ins array. 914 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 915 /// the argument before it was split. From this, we deduce that the memory type 916 /// for each individual part is i8. We pass the memory type as LocVT to the 917 /// calling convention analysis function and the register type (Ins[x].VT) as 918 /// the ValVT. 919 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 920 CCState &State, 921 const SmallVectorImpl<ISD::InputArg> &Ins) const { 922 const MachineFunction &MF = State.getMachineFunction(); 923 const Function &Fn = MF.getFunction(); 924 LLVMContext &Ctx = Fn.getParent()->getContext(); 925 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 926 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 927 CallingConv::ID CC = Fn.getCallingConv(); 928 929 unsigned MaxAlign = 1; 930 uint64_t ExplicitArgOffset = 0; 931 const DataLayout &DL = Fn.getParent()->getDataLayout(); 932 933 unsigned InIndex = 0; 934 935 for (const Argument &Arg : Fn.args()) { 936 Type *BaseArgTy = Arg.getType(); 937 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 938 MaxAlign = std::max(Align, MaxAlign); 939 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 940 941 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 942 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 943 944 // We're basically throwing away everything passed into us and starting over 945 // to get accurate in-memory offsets. The "PartOffset" is completely useless 946 // to us as computed in Ins. 947 // 948 // We also need to figure out what type legalization is trying to do to get 949 // the correct memory offsets. 950 951 SmallVector<EVT, 16> ValueVTs; 952 SmallVector<uint64_t, 16> Offsets; 953 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 954 955 for (unsigned Value = 0, NumValues = ValueVTs.size(); 956 Value != NumValues; ++Value) { 957 uint64_t BasePartOffset = Offsets[Value]; 958 959 EVT ArgVT = ValueVTs[Value]; 960 EVT MemVT = ArgVT; 961 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 962 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 963 964 if (NumRegs == 1) { 965 // This argument is not split, so the IR type is the memory type. 966 if (ArgVT.isExtended()) { 967 // We have an extended type, like i24, so we should just use the 968 // register type. 969 MemVT = RegisterVT; 970 } else { 971 MemVT = ArgVT; 972 } 973 } else if (ArgVT.isVector() && RegisterVT.isVector() && 974 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 975 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 976 // We have a vector value which has been split into a vector with 977 // the same scalar type, but fewer elements. This should handle 978 // all the floating-point vector types. 979 MemVT = RegisterVT; 980 } else if (ArgVT.isVector() && 981 ArgVT.getVectorNumElements() == NumRegs) { 982 // This arg has been split so that each element is stored in a separate 983 // register. 984 MemVT = ArgVT.getScalarType(); 985 } else if (ArgVT.isExtended()) { 986 // We have an extended type, like i65. 987 MemVT = RegisterVT; 988 } else { 989 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 990 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 991 if (RegisterVT.isInteger()) { 992 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 993 } else if (RegisterVT.isVector()) { 994 assert(!RegisterVT.getScalarType().isFloatingPoint()); 995 unsigned NumElements = RegisterVT.getVectorNumElements(); 996 assert(MemoryBits % NumElements == 0); 997 // This vector type has been split into another vector type with 998 // a different elements size. 999 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1000 MemoryBits / NumElements); 1001 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1002 } else { 1003 llvm_unreachable("cannot deduce memory type."); 1004 } 1005 } 1006 1007 // Convert one element vectors to scalar. 1008 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1009 MemVT = MemVT.getScalarType(); 1010 1011 if (MemVT.isExtended()) { 1012 // This should really only happen if we have vec3 arguments 1013 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 1014 MemVT = MemVT.getPow2VectorType(State.getContext()); 1015 } 1016 1017 unsigned PartOffset = 0; 1018 for (unsigned i = 0; i != NumRegs; ++i) { 1019 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1020 BasePartOffset + PartOffset, 1021 MemVT.getSimpleVT(), 1022 CCValAssign::Full)); 1023 PartOffset += MemVT.getStoreSize(); 1024 } 1025 } 1026 } 1027 } 1028 1029 SDValue AMDGPUTargetLowering::LowerReturn( 1030 SDValue Chain, CallingConv::ID CallConv, 1031 bool isVarArg, 1032 const SmallVectorImpl<ISD::OutputArg> &Outs, 1033 const SmallVectorImpl<SDValue> &OutVals, 1034 const SDLoc &DL, SelectionDAG &DAG) const { 1035 // FIXME: Fails for r600 tests 1036 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1037 // "wave terminate should not have return values"); 1038 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1039 } 1040 1041 //===---------------------------------------------------------------------===// 1042 // Target specific lowering 1043 //===---------------------------------------------------------------------===// 1044 1045 /// Selects the correct CCAssignFn for a given CallingConvention value. 1046 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1047 bool IsVarArg) { 1048 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1049 } 1050 1051 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1052 bool IsVarArg) { 1053 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1054 } 1055 1056 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1057 SelectionDAG &DAG, 1058 MachineFrameInfo &MFI, 1059 int ClobberedFI) const { 1060 SmallVector<SDValue, 8> ArgChains; 1061 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1062 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1063 1064 // Include the original chain at the beginning of the list. When this is 1065 // used by target LowerCall hooks, this helps legalize find the 1066 // CALLSEQ_BEGIN node. 1067 ArgChains.push_back(Chain); 1068 1069 // Add a chain value for each stack argument corresponding 1070 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1071 UE = DAG.getEntryNode().getNode()->use_end(); 1072 U != UE; ++U) { 1073 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1074 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1075 if (FI->getIndex() < 0) { 1076 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1077 int64_t InLastByte = InFirstByte; 1078 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1079 1080 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1081 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1082 ArgChains.push_back(SDValue(L, 1)); 1083 } 1084 } 1085 } 1086 } 1087 1088 // Build a tokenfactor for all the chains. 1089 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1090 } 1091 1092 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1093 SmallVectorImpl<SDValue> &InVals, 1094 StringRef Reason) const { 1095 SDValue Callee = CLI.Callee; 1096 SelectionDAG &DAG = CLI.DAG; 1097 1098 const Function &Fn = DAG.getMachineFunction().getFunction(); 1099 1100 StringRef FuncName("<unknown>"); 1101 1102 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1103 FuncName = G->getSymbol(); 1104 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1105 FuncName = G->getGlobal()->getName(); 1106 1107 DiagnosticInfoUnsupported NoCalls( 1108 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1109 DAG.getContext()->diagnose(NoCalls); 1110 1111 if (!CLI.IsTailCall) { 1112 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1113 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1114 } 1115 1116 return DAG.getEntryNode(); 1117 } 1118 1119 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1120 SmallVectorImpl<SDValue> &InVals) const { 1121 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1122 } 1123 1124 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1125 SelectionDAG &DAG) const { 1126 const Function &Fn = DAG.getMachineFunction().getFunction(); 1127 1128 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1129 SDLoc(Op).getDebugLoc()); 1130 DAG.getContext()->diagnose(NoDynamicAlloca); 1131 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1132 return DAG.getMergeValues(Ops, SDLoc()); 1133 } 1134 1135 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1136 SelectionDAG &DAG) const { 1137 switch (Op.getOpcode()) { 1138 default: 1139 Op->print(errs(), &DAG); 1140 llvm_unreachable("Custom lowering code for this" 1141 "instruction is not implemented yet!"); 1142 break; 1143 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1144 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1145 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1146 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1147 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1148 case ISD::FREM: return LowerFREM(Op, DAG); 1149 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1150 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1151 case ISD::FRINT: return LowerFRINT(Op, DAG); 1152 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1153 case ISD::FROUND: return LowerFROUND(Op, DAG); 1154 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1155 case ISD::FLOG: 1156 return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F); 1157 case ISD::FLOG10: 1158 return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F); 1159 case ISD::FEXP: 1160 return lowerFEXP(Op, DAG); 1161 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1162 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1163 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1164 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1165 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1166 case ISD::CTTZ: 1167 case ISD::CTTZ_ZERO_UNDEF: 1168 case ISD::CTLZ: 1169 case ISD::CTLZ_ZERO_UNDEF: 1170 return LowerCTLZ_CTTZ(Op, DAG); 1171 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1172 } 1173 return Op; 1174 } 1175 1176 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1177 SmallVectorImpl<SDValue> &Results, 1178 SelectionDAG &DAG) const { 1179 switch (N->getOpcode()) { 1180 case ISD::SIGN_EXTEND_INREG: 1181 // Different parts of legalization seem to interpret which type of 1182 // sign_extend_inreg is the one to check for custom lowering. The extended 1183 // from type is what really matters, but some places check for custom 1184 // lowering of the result type. This results in trying to use 1185 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1186 // nothing here and let the illegal result integer be handled normally. 1187 return; 1188 default: 1189 return; 1190 } 1191 } 1192 1193 static bool hasDefinedInitializer(const GlobalValue *GV) { 1194 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1195 if (!GVar || !GVar->hasInitializer()) 1196 return false; 1197 1198 return !isa<UndefValue>(GVar->getInitializer()); 1199 } 1200 1201 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1202 SDValue Op, 1203 SelectionDAG &DAG) const { 1204 1205 const DataLayout &DL = DAG.getDataLayout(); 1206 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1207 const GlobalValue *GV = G->getGlobal(); 1208 1209 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1210 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1211 if (!MFI->isEntryFunction()) { 1212 const Function &Fn = DAG.getMachineFunction().getFunction(); 1213 DiagnosticInfoUnsupported BadLDSDecl( 1214 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1215 DAG.getContext()->diagnose(BadLDSDecl); 1216 } 1217 1218 // XXX: What does the value of G->getOffset() mean? 1219 assert(G->getOffset() == 0 && 1220 "Do not know what to do with an non-zero offset"); 1221 1222 // TODO: We could emit code to handle the initialization somewhere. 1223 if (!hasDefinedInitializer(GV)) { 1224 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1225 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1226 } 1227 } 1228 1229 const Function &Fn = DAG.getMachineFunction().getFunction(); 1230 DiagnosticInfoUnsupported BadInit( 1231 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1232 DAG.getContext()->diagnose(BadInit); 1233 return SDValue(); 1234 } 1235 1236 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1237 SelectionDAG &DAG) const { 1238 SmallVector<SDValue, 8> Args; 1239 1240 EVT VT = Op.getValueType(); 1241 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1242 SDLoc SL(Op); 1243 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1244 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1245 1246 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1247 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1248 } 1249 1250 for (const SDUse &U : Op->ops()) 1251 DAG.ExtractVectorElements(U.get(), Args); 1252 1253 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1254 } 1255 1256 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1257 SelectionDAG &DAG) const { 1258 1259 SmallVector<SDValue, 8> Args; 1260 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1261 EVT VT = Op.getValueType(); 1262 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1263 VT.getVectorNumElements()); 1264 1265 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1266 } 1267 1268 /// Generate Min/Max node 1269 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1270 SDValue LHS, SDValue RHS, 1271 SDValue True, SDValue False, 1272 SDValue CC, 1273 DAGCombinerInfo &DCI) const { 1274 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1275 return SDValue(); 1276 1277 SelectionDAG &DAG = DCI.DAG; 1278 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1279 switch (CCOpcode) { 1280 case ISD::SETOEQ: 1281 case ISD::SETONE: 1282 case ISD::SETUNE: 1283 case ISD::SETNE: 1284 case ISD::SETUEQ: 1285 case ISD::SETEQ: 1286 case ISD::SETFALSE: 1287 case ISD::SETFALSE2: 1288 case ISD::SETTRUE: 1289 case ISD::SETTRUE2: 1290 case ISD::SETUO: 1291 case ISD::SETO: 1292 break; 1293 case ISD::SETULE: 1294 case ISD::SETULT: { 1295 if (LHS == True) 1296 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1297 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1298 } 1299 case ISD::SETOLE: 1300 case ISD::SETOLT: 1301 case ISD::SETLE: 1302 case ISD::SETLT: { 1303 // Ordered. Assume ordered for undefined. 1304 1305 // Only do this after legalization to avoid interfering with other combines 1306 // which might occur. 1307 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1308 !DCI.isCalledByLegalizer()) 1309 return SDValue(); 1310 1311 // We need to permute the operands to get the correct NaN behavior. The 1312 // selected operand is the second one based on the failing compare with NaN, 1313 // so permute it based on the compare type the hardware uses. 1314 if (LHS == True) 1315 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1316 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1317 } 1318 case ISD::SETUGE: 1319 case ISD::SETUGT: { 1320 if (LHS == True) 1321 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1322 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1323 } 1324 case ISD::SETGT: 1325 case ISD::SETGE: 1326 case ISD::SETOGE: 1327 case ISD::SETOGT: { 1328 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1329 !DCI.isCalledByLegalizer()) 1330 return SDValue(); 1331 1332 if (LHS == True) 1333 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1334 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1335 } 1336 case ISD::SETCC_INVALID: 1337 llvm_unreachable("Invalid setcc condcode!"); 1338 } 1339 return SDValue(); 1340 } 1341 1342 std::pair<SDValue, SDValue> 1343 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1344 SDLoc SL(Op); 1345 1346 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1347 1348 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1349 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1350 1351 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1352 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1353 1354 return std::make_pair(Lo, Hi); 1355 } 1356 1357 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1358 SDLoc SL(Op); 1359 1360 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1361 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1362 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1363 } 1364 1365 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1366 SDLoc SL(Op); 1367 1368 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1369 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1370 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1371 } 1372 1373 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1374 SelectionDAG &DAG) const { 1375 LoadSDNode *Load = cast<LoadSDNode>(Op); 1376 EVT VT = Op.getValueType(); 1377 1378 1379 // If this is a 2 element vector, we really want to scalarize and not create 1380 // weird 1 element vectors. 1381 if (VT.getVectorNumElements() == 2) 1382 return scalarizeVectorLoad(Load, DAG); 1383 1384 SDValue BasePtr = Load->getBasePtr(); 1385 EVT MemVT = Load->getMemoryVT(); 1386 SDLoc SL(Op); 1387 1388 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1389 1390 EVT LoVT, HiVT; 1391 EVT LoMemVT, HiMemVT; 1392 SDValue Lo, Hi; 1393 1394 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1395 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1396 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1397 1398 unsigned Size = LoMemVT.getStoreSize(); 1399 unsigned BaseAlign = Load->getAlignment(); 1400 unsigned HiAlign = MinAlign(BaseAlign, Size); 1401 1402 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1403 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1404 BaseAlign, Load->getMemOperand()->getFlags()); 1405 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1406 SDValue HiLoad = 1407 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1408 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1409 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1410 1411 SDValue Ops[] = { 1412 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1413 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1414 LoLoad.getValue(1), HiLoad.getValue(1)) 1415 }; 1416 1417 return DAG.getMergeValues(Ops, SL); 1418 } 1419 1420 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1421 SelectionDAG &DAG) const { 1422 StoreSDNode *Store = cast<StoreSDNode>(Op); 1423 SDValue Val = Store->getValue(); 1424 EVT VT = Val.getValueType(); 1425 1426 // If this is a 2 element vector, we really want to scalarize and not create 1427 // weird 1 element vectors. 1428 if (VT.getVectorNumElements() == 2) 1429 return scalarizeVectorStore(Store, DAG); 1430 1431 EVT MemVT = Store->getMemoryVT(); 1432 SDValue Chain = Store->getChain(); 1433 SDValue BasePtr = Store->getBasePtr(); 1434 SDLoc SL(Op); 1435 1436 EVT LoVT, HiVT; 1437 EVT LoMemVT, HiMemVT; 1438 SDValue Lo, Hi; 1439 1440 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1441 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1442 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1443 1444 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1445 1446 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1447 unsigned BaseAlign = Store->getAlignment(); 1448 unsigned Size = LoMemVT.getStoreSize(); 1449 unsigned HiAlign = MinAlign(BaseAlign, Size); 1450 1451 SDValue LoStore = 1452 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1453 Store->getMemOperand()->getFlags()); 1454 SDValue HiStore = 1455 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1456 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1457 1458 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1459 } 1460 1461 // This is a shortcut for integer division because we have fast i32<->f32 1462 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1463 // float is enough to accurately represent up to a 24-bit signed integer. 1464 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1465 bool Sign) const { 1466 SDLoc DL(Op); 1467 EVT VT = Op.getValueType(); 1468 SDValue LHS = Op.getOperand(0); 1469 SDValue RHS = Op.getOperand(1); 1470 MVT IntVT = MVT::i32; 1471 MVT FltVT = MVT::f32; 1472 1473 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1474 if (LHSSignBits < 9) 1475 return SDValue(); 1476 1477 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1478 if (RHSSignBits < 9) 1479 return SDValue(); 1480 1481 unsigned BitSize = VT.getSizeInBits(); 1482 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1483 unsigned DivBits = BitSize - SignBits; 1484 if (Sign) 1485 ++DivBits; 1486 1487 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1488 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1489 1490 SDValue jq = DAG.getConstant(1, DL, IntVT); 1491 1492 if (Sign) { 1493 // char|short jq = ia ^ ib; 1494 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1495 1496 // jq = jq >> (bitsize - 2) 1497 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1498 DAG.getConstant(BitSize - 2, DL, VT)); 1499 1500 // jq = jq | 0x1 1501 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1502 } 1503 1504 // int ia = (int)LHS; 1505 SDValue ia = LHS; 1506 1507 // int ib, (int)RHS; 1508 SDValue ib = RHS; 1509 1510 // float fa = (float)ia; 1511 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1512 1513 // float fb = (float)ib; 1514 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1515 1516 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1517 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1518 1519 // fq = trunc(fq); 1520 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1521 1522 // float fqneg = -fq; 1523 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1524 1525 // float fr = mad(fqneg, fb, fa); 1526 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1527 (unsigned)AMDGPUISD::FMAD_FTZ : 1528 (unsigned)ISD::FMAD; 1529 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1530 1531 // int iq = (int)fq; 1532 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1533 1534 // fr = fabs(fr); 1535 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1536 1537 // fb = fabs(fb); 1538 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1539 1540 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1541 1542 // int cv = fr >= fb; 1543 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1544 1545 // jq = (cv ? jq : 0); 1546 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1547 1548 // dst = iq + jq; 1549 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1550 1551 // Rem needs compensation, it's easier to recompute it 1552 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1553 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1554 1555 // Truncate to number of bits this divide really is. 1556 if (Sign) { 1557 SDValue InRegSize 1558 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1559 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1560 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1561 } else { 1562 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1563 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1564 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1565 } 1566 1567 return DAG.getMergeValues({ Div, Rem }, DL); 1568 } 1569 1570 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1571 SelectionDAG &DAG, 1572 SmallVectorImpl<SDValue> &Results) const { 1573 SDLoc DL(Op); 1574 EVT VT = Op.getValueType(); 1575 1576 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1577 1578 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1579 1580 SDValue One = DAG.getConstant(1, DL, HalfVT); 1581 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1582 1583 //HiLo split 1584 SDValue LHS = Op.getOperand(0); 1585 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1586 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1587 1588 SDValue RHS = Op.getOperand(1); 1589 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1590 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1591 1592 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1593 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1594 1595 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1596 LHS_Lo, RHS_Lo); 1597 1598 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1599 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1600 1601 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1602 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1603 return; 1604 } 1605 1606 if (isTypeLegal(MVT::i64)) { 1607 // Compute denominator reciprocal. 1608 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1609 (unsigned)AMDGPUISD::FMAD_FTZ : 1610 (unsigned)ISD::FMAD; 1611 1612 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1613 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1614 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1615 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1616 Cvt_Lo); 1617 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1618 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1619 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1620 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1621 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1622 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1623 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1624 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1625 Mul1); 1626 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1627 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1628 SDValue Rcp64 = DAG.getBitcast(VT, 1629 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1630 1631 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1632 SDValue One64 = DAG.getConstant(1, DL, VT); 1633 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1634 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1635 1636 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1637 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1638 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1639 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1640 Zero); 1641 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1642 One); 1643 1644 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1645 Mulhi1_Lo, Zero1); 1646 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1647 Mulhi1_Hi, Add1_Lo.getValue(1)); 1648 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1649 SDValue Add1 = DAG.getBitcast(VT, 1650 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1651 1652 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1653 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1654 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1655 Zero); 1656 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1657 One); 1658 1659 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1660 Mulhi2_Lo, Zero1); 1661 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1662 Mulhi2_Hi, Add1_Lo.getValue(1)); 1663 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1664 Zero, Add2_Lo.getValue(1)); 1665 SDValue Add2 = DAG.getBitcast(VT, 1666 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1667 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1668 1669 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1670 1671 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1672 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1673 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1674 Mul3_Lo, Zero1); 1675 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1676 Mul3_Hi, Sub1_Lo.getValue(1)); 1677 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1678 SDValue Sub1 = DAG.getBitcast(VT, 1679 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1680 1681 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1682 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1683 ISD::SETUGE); 1684 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1685 ISD::SETUGE); 1686 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1687 1688 // TODO: Here and below portions of the code can be enclosed into if/endif. 1689 // Currently control flow is unconditional and we have 4 selects after 1690 // potential endif to substitute PHIs. 1691 1692 // if C3 != 0 ... 1693 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1694 RHS_Lo, Zero1); 1695 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1696 RHS_Hi, Sub1_Lo.getValue(1)); 1697 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1698 Zero, Sub2_Lo.getValue(1)); 1699 SDValue Sub2 = DAG.getBitcast(VT, 1700 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1701 1702 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1703 1704 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1705 ISD::SETUGE); 1706 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1707 ISD::SETUGE); 1708 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1709 1710 // if (C6 != 0) 1711 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1712 1713 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1714 RHS_Lo, Zero1); 1715 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1716 RHS_Hi, Sub2_Lo.getValue(1)); 1717 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1718 Zero, Sub3_Lo.getValue(1)); 1719 SDValue Sub3 = DAG.getBitcast(VT, 1720 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1721 1722 // endif C6 1723 // endif C3 1724 1725 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1726 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1727 1728 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1729 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1730 1731 Results.push_back(Div); 1732 Results.push_back(Rem); 1733 1734 return; 1735 } 1736 1737 // r600 expandion. 1738 // Get Speculative values 1739 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1740 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1741 1742 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1743 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1744 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1745 1746 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1747 SDValue DIV_Lo = Zero; 1748 1749 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1750 1751 for (unsigned i = 0; i < halfBitWidth; ++i) { 1752 const unsigned bitPos = halfBitWidth - i - 1; 1753 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1754 // Get value of high bit 1755 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1756 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1757 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1758 1759 // Shift 1760 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1761 // Add LHS high bit 1762 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1763 1764 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1765 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1766 1767 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1768 1769 // Update REM 1770 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1771 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1772 } 1773 1774 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1775 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1776 Results.push_back(DIV); 1777 Results.push_back(REM); 1778 } 1779 1780 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1781 SelectionDAG &DAG) const { 1782 SDLoc DL(Op); 1783 EVT VT = Op.getValueType(); 1784 1785 if (VT == MVT::i64) { 1786 SmallVector<SDValue, 2> Results; 1787 LowerUDIVREM64(Op, DAG, Results); 1788 return DAG.getMergeValues(Results, DL); 1789 } 1790 1791 if (VT == MVT::i32) { 1792 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1793 return Res; 1794 } 1795 1796 SDValue Num = Op.getOperand(0); 1797 SDValue Den = Op.getOperand(1); 1798 1799 // RCP = URECIP(Den) = 2^32 / Den + e 1800 // e is rounding error. 1801 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1802 1803 // RCP_LO = mul(RCP, Den) */ 1804 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1805 1806 // RCP_HI = mulhu (RCP, Den) */ 1807 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1808 1809 // NEG_RCP_LO = -RCP_LO 1810 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1811 RCP_LO); 1812 1813 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1814 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1815 NEG_RCP_LO, RCP_LO, 1816 ISD::SETEQ); 1817 // Calculate the rounding error from the URECIP instruction 1818 // E = mulhu(ABS_RCP_LO, RCP) 1819 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1820 1821 // RCP_A_E = RCP + E 1822 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1823 1824 // RCP_S_E = RCP - E 1825 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1826 1827 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1828 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1829 RCP_A_E, RCP_S_E, 1830 ISD::SETEQ); 1831 // Quotient = mulhu(Tmp0, Num) 1832 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1833 1834 // Num_S_Remainder = Quotient * Den 1835 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1836 1837 // Remainder = Num - Num_S_Remainder 1838 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1839 1840 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1841 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1842 DAG.getConstant(-1, DL, VT), 1843 DAG.getConstant(0, DL, VT), 1844 ISD::SETUGE); 1845 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1846 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1847 Num_S_Remainder, 1848 DAG.getConstant(-1, DL, VT), 1849 DAG.getConstant(0, DL, VT), 1850 ISD::SETUGE); 1851 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1852 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1853 Remainder_GE_Zero); 1854 1855 // Calculate Division result: 1856 1857 // Quotient_A_One = Quotient + 1 1858 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1859 DAG.getConstant(1, DL, VT)); 1860 1861 // Quotient_S_One = Quotient - 1 1862 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1863 DAG.getConstant(1, DL, VT)); 1864 1865 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1866 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1867 Quotient, Quotient_A_One, ISD::SETEQ); 1868 1869 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1870 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1871 Quotient_S_One, Div, ISD::SETEQ); 1872 1873 // Calculate Rem result: 1874 1875 // Remainder_S_Den = Remainder - Den 1876 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1877 1878 // Remainder_A_Den = Remainder + Den 1879 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1880 1881 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1882 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1883 Remainder, Remainder_S_Den, ISD::SETEQ); 1884 1885 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1886 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1887 Remainder_A_Den, Rem, ISD::SETEQ); 1888 SDValue Ops[2] = { 1889 Div, 1890 Rem 1891 }; 1892 return DAG.getMergeValues(Ops, DL); 1893 } 1894 1895 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1896 SelectionDAG &DAG) const { 1897 SDLoc DL(Op); 1898 EVT VT = Op.getValueType(); 1899 1900 SDValue LHS = Op.getOperand(0); 1901 SDValue RHS = Op.getOperand(1); 1902 1903 SDValue Zero = DAG.getConstant(0, DL, VT); 1904 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1905 1906 if (VT == MVT::i32) { 1907 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1908 return Res; 1909 } 1910 1911 if (VT == MVT::i64 && 1912 DAG.ComputeNumSignBits(LHS) > 32 && 1913 DAG.ComputeNumSignBits(RHS) > 32) { 1914 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1915 1916 //HiLo split 1917 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1918 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1919 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1920 LHS_Lo, RHS_Lo); 1921 SDValue Res[2] = { 1922 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1923 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1924 }; 1925 return DAG.getMergeValues(Res, DL); 1926 } 1927 1928 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1929 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1930 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1931 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1932 1933 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1934 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1935 1936 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1937 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1938 1939 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1940 SDValue Rem = Div.getValue(1); 1941 1942 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1943 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1944 1945 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1946 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1947 1948 SDValue Res[2] = { 1949 Div, 1950 Rem 1951 }; 1952 return DAG.getMergeValues(Res, DL); 1953 } 1954 1955 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1956 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1957 SDLoc SL(Op); 1958 EVT VT = Op.getValueType(); 1959 SDValue X = Op.getOperand(0); 1960 SDValue Y = Op.getOperand(1); 1961 1962 // TODO: Should this propagate fast-math-flags? 1963 1964 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1965 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1966 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1967 1968 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1969 } 1970 1971 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1972 SDLoc SL(Op); 1973 SDValue Src = Op.getOperand(0); 1974 1975 // result = trunc(src) 1976 // if (src > 0.0 && src != result) 1977 // result += 1.0 1978 1979 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1980 1981 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1982 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1983 1984 EVT SetCCVT = 1985 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1986 1987 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1988 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1989 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1990 1991 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1992 // TODO: Should this propagate fast-math-flags? 1993 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1994 } 1995 1996 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1997 SelectionDAG &DAG) { 1998 const unsigned FractBits = 52; 1999 const unsigned ExpBits = 11; 2000 2001 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2002 Hi, 2003 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2004 DAG.getConstant(ExpBits, SL, MVT::i32)); 2005 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2006 DAG.getConstant(1023, SL, MVT::i32)); 2007 2008 return Exp; 2009 } 2010 2011 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2012 SDLoc SL(Op); 2013 SDValue Src = Op.getOperand(0); 2014 2015 assert(Op.getValueType() == MVT::f64); 2016 2017 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2018 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2019 2020 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2021 2022 // Extract the upper half, since this is where we will find the sign and 2023 // exponent. 2024 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2025 2026 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2027 2028 const unsigned FractBits = 52; 2029 2030 // Extract the sign bit. 2031 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2032 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2033 2034 // Extend back to 64-bits. 2035 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2036 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2037 2038 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2039 const SDValue FractMask 2040 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2041 2042 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2043 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2044 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2045 2046 EVT SetCCVT = 2047 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2048 2049 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2050 2051 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2052 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2053 2054 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2055 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2056 2057 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2058 } 2059 2060 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2061 SDLoc SL(Op); 2062 SDValue Src = Op.getOperand(0); 2063 2064 assert(Op.getValueType() == MVT::f64); 2065 2066 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2067 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2068 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2069 2070 // TODO: Should this propagate fast-math-flags? 2071 2072 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2073 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2074 2075 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2076 2077 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2078 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2079 2080 EVT SetCCVT = 2081 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2082 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2083 2084 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2085 } 2086 2087 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2088 // FNEARBYINT and FRINT are the same, except in their handling of FP 2089 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2090 // rint, so just treat them as equivalent. 2091 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2092 } 2093 2094 // XXX - May require not supporting f32 denormals? 2095 2096 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2097 // compare and vselect end up producing worse code than scalarizing the whole 2098 // operation. 2099 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2100 SDLoc SL(Op); 2101 SDValue X = Op.getOperand(0); 2102 EVT VT = Op.getValueType(); 2103 2104 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2105 2106 // TODO: Should this propagate fast-math-flags? 2107 2108 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2109 2110 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2111 2112 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2113 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2114 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2115 2116 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2117 2118 EVT SetCCVT = 2119 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2120 2121 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2122 2123 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2124 2125 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2126 } 2127 2128 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2129 SDLoc SL(Op); 2130 SDValue X = Op.getOperand(0); 2131 2132 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2133 2134 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2135 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2136 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2137 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2138 EVT SetCCVT = 2139 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2140 2141 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2142 2143 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2144 2145 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2146 2147 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2148 MVT::i64); 2149 2150 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2151 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2152 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2153 MVT::i64), 2154 Exp); 2155 2156 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2157 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2158 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2159 ISD::SETNE); 2160 2161 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2162 D, DAG.getConstant(0, SL, MVT::i64)); 2163 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2164 2165 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2166 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2167 2168 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2169 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2170 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2171 2172 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2173 ExpEqNegOne, 2174 DAG.getConstantFP(1.0, SL, MVT::f64), 2175 DAG.getConstantFP(0.0, SL, MVT::f64)); 2176 2177 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2178 2179 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2180 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2181 2182 return K; 2183 } 2184 2185 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2186 EVT VT = Op.getValueType(); 2187 2188 if (VT == MVT::f32 || VT == MVT::f16) 2189 return LowerFROUND32_16(Op, DAG); 2190 2191 if (VT == MVT::f64) 2192 return LowerFROUND64(Op, DAG); 2193 2194 llvm_unreachable("unhandled type"); 2195 } 2196 2197 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2198 SDLoc SL(Op); 2199 SDValue Src = Op.getOperand(0); 2200 2201 // result = trunc(src); 2202 // if (src < 0.0 && src != result) 2203 // result += -1.0. 2204 2205 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2206 2207 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2208 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2209 2210 EVT SetCCVT = 2211 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2212 2213 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2214 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2215 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2216 2217 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2218 // TODO: Should this propagate fast-math-flags? 2219 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2220 } 2221 2222 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2223 double Log2BaseInverted) const { 2224 EVT VT = Op.getValueType(); 2225 2226 SDLoc SL(Op); 2227 SDValue Operand = Op.getOperand(0); 2228 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2229 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2230 2231 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2232 } 2233 2234 // Return M_LOG2E of appropriate type 2235 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) { 2236 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 2237 case MVT::f32: 2238 return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT); 2239 case MVT::f16: 2240 return DAG.getConstantFP( 2241 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"), 2242 SL, VT); 2243 case MVT::f64: 2244 return DAG.getConstantFP( 2245 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT); 2246 default: 2247 llvm_unreachable("unsupported fp type"); 2248 } 2249 } 2250 2251 // exp2(M_LOG2E_F * f); 2252 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2253 EVT VT = Op.getValueType(); 2254 SDLoc SL(Op); 2255 SDValue Src = Op.getOperand(0); 2256 2257 const SDValue K = getLog2EVal(DAG, SL, VT); 2258 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2259 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2260 } 2261 2262 static bool isCtlzOpc(unsigned Opc) { 2263 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2264 } 2265 2266 static bool isCttzOpc(unsigned Opc) { 2267 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2268 } 2269 2270 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2271 SDLoc SL(Op); 2272 SDValue Src = Op.getOperand(0); 2273 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2274 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2275 2276 unsigned ISDOpc, NewOpc; 2277 if (isCtlzOpc(Op.getOpcode())) { 2278 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2279 NewOpc = AMDGPUISD::FFBH_U32; 2280 } else if (isCttzOpc(Op.getOpcode())) { 2281 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2282 NewOpc = AMDGPUISD::FFBL_B32; 2283 } else 2284 llvm_unreachable("Unexpected OPCode!!!"); 2285 2286 2287 if (ZeroUndef && Src.getValueType() == MVT::i32) 2288 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2289 2290 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2291 2292 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2293 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2294 2295 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2296 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2297 2298 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2299 *DAG.getContext(), MVT::i32); 2300 2301 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2302 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2303 2304 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2305 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2306 2307 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2308 SDValue Add, NewOpr; 2309 if (isCtlzOpc(Op.getOpcode())) { 2310 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2311 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2312 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2313 } else { 2314 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2315 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2316 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2317 } 2318 2319 if (!ZeroUndef) { 2320 // Test if the full 64-bit input is zero. 2321 2322 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2323 // which we probably don't want. 2324 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2325 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2326 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2327 2328 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2329 // with the same cycles, otherwise it is slower. 2330 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2331 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2332 2333 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2334 2335 // The instruction returns -1 for 0 input, but the defined intrinsic 2336 // behavior is to return the number of bits. 2337 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2338 SrcIsZero, Bits32, NewOpr); 2339 } 2340 2341 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2342 } 2343 2344 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2345 bool Signed) const { 2346 // Unsigned 2347 // cul2f(ulong u) 2348 //{ 2349 // uint lz = clz(u); 2350 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2351 // u = (u << lz) & 0x7fffffffffffffffUL; 2352 // ulong t = u & 0xffffffffffUL; 2353 // uint v = (e << 23) | (uint)(u >> 40); 2354 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2355 // return as_float(v + r); 2356 //} 2357 // Signed 2358 // cl2f(long l) 2359 //{ 2360 // long s = l >> 63; 2361 // float r = cul2f((l + s) ^ s); 2362 // return s ? -r : r; 2363 //} 2364 2365 SDLoc SL(Op); 2366 SDValue Src = Op.getOperand(0); 2367 SDValue L = Src; 2368 2369 SDValue S; 2370 if (Signed) { 2371 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2372 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2373 2374 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2375 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2376 } 2377 2378 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2379 *DAG.getContext(), MVT::f32); 2380 2381 2382 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2383 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2384 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2385 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2386 2387 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2388 SDValue E = DAG.getSelect(SL, MVT::i32, 2389 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2390 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2391 ZeroI32); 2392 2393 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2394 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2395 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2396 2397 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2398 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2399 2400 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2401 U, DAG.getConstant(40, SL, MVT::i64)); 2402 2403 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2404 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2405 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2406 2407 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2408 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2409 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2410 2411 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2412 2413 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2414 2415 SDValue R = DAG.getSelect(SL, MVT::i32, 2416 RCmp, 2417 One, 2418 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2419 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2420 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2421 2422 if (!Signed) 2423 return R; 2424 2425 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2426 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2427 } 2428 2429 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2430 bool Signed) const { 2431 SDLoc SL(Op); 2432 SDValue Src = Op.getOperand(0); 2433 2434 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2435 2436 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2437 DAG.getConstant(0, SL, MVT::i32)); 2438 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2439 DAG.getConstant(1, SL, MVT::i32)); 2440 2441 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2442 SL, MVT::f64, Hi); 2443 2444 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2445 2446 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2447 DAG.getConstant(32, SL, MVT::i32)); 2448 // TODO: Should this propagate fast-math-flags? 2449 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2450 } 2451 2452 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2453 SelectionDAG &DAG) const { 2454 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2455 "operation should be legal"); 2456 2457 // TODO: Factor out code common with LowerSINT_TO_FP. 2458 2459 EVT DestVT = Op.getValueType(); 2460 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2461 SDLoc DL(Op); 2462 SDValue Src = Op.getOperand(0); 2463 2464 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2465 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2466 SDValue FPRound = 2467 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2468 2469 return FPRound; 2470 } 2471 2472 if (DestVT == MVT::f32) 2473 return LowerINT_TO_FP32(Op, DAG, false); 2474 2475 assert(DestVT == MVT::f64); 2476 return LowerINT_TO_FP64(Op, DAG, false); 2477 } 2478 2479 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2480 SelectionDAG &DAG) const { 2481 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2482 "operation should be legal"); 2483 2484 // TODO: Factor out code common with LowerUINT_TO_FP. 2485 2486 EVT DestVT = Op.getValueType(); 2487 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2488 SDLoc DL(Op); 2489 SDValue Src = Op.getOperand(0); 2490 2491 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2492 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2493 SDValue FPRound = 2494 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2495 2496 return FPRound; 2497 } 2498 2499 if (DestVT == MVT::f32) 2500 return LowerINT_TO_FP32(Op, DAG, true); 2501 2502 assert(DestVT == MVT::f64); 2503 return LowerINT_TO_FP64(Op, DAG, true); 2504 } 2505 2506 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2507 bool Signed) const { 2508 SDLoc SL(Op); 2509 2510 SDValue Src = Op.getOperand(0); 2511 2512 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2513 2514 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2515 MVT::f64); 2516 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2517 MVT::f64); 2518 // TODO: Should this propagate fast-math-flags? 2519 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2520 2521 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2522 2523 2524 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2525 2526 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2527 MVT::i32, FloorMul); 2528 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2529 2530 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2531 2532 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2533 } 2534 2535 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2536 SDLoc DL(Op); 2537 SDValue N0 = Op.getOperand(0); 2538 2539 // Convert to target node to get known bits 2540 if (N0.getValueType() == MVT::f32) 2541 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2542 2543 if (getTargetMachine().Options.UnsafeFPMath) { 2544 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2545 return SDValue(); 2546 } 2547 2548 assert(N0.getSimpleValueType() == MVT::f64); 2549 2550 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2551 const unsigned ExpMask = 0x7ff; 2552 const unsigned ExpBiasf64 = 1023; 2553 const unsigned ExpBiasf16 = 15; 2554 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2555 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2556 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2557 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2558 DAG.getConstant(32, DL, MVT::i64)); 2559 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2560 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2561 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2562 DAG.getConstant(20, DL, MVT::i64)); 2563 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2564 DAG.getConstant(ExpMask, DL, MVT::i32)); 2565 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2566 // add the f16 bias (15) to get the biased exponent for the f16 format. 2567 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2568 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2569 2570 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2571 DAG.getConstant(8, DL, MVT::i32)); 2572 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2573 DAG.getConstant(0xffe, DL, MVT::i32)); 2574 2575 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2576 DAG.getConstant(0x1ff, DL, MVT::i32)); 2577 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2578 2579 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2580 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2581 2582 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2583 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2584 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2585 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2586 2587 // N = M | (E << 12); 2588 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2589 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2590 DAG.getConstant(12, DL, MVT::i32))); 2591 2592 // B = clamp(1-E, 0, 13); 2593 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2594 One, E); 2595 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2596 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2597 DAG.getConstant(13, DL, MVT::i32)); 2598 2599 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2600 DAG.getConstant(0x1000, DL, MVT::i32)); 2601 2602 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2603 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2604 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2605 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2606 2607 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2608 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2609 DAG.getConstant(0x7, DL, MVT::i32)); 2610 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2611 DAG.getConstant(2, DL, MVT::i32)); 2612 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2613 One, Zero, ISD::SETEQ); 2614 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2615 One, Zero, ISD::SETGT); 2616 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2617 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2618 2619 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2620 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2621 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2622 I, V, ISD::SETEQ); 2623 2624 // Extract the sign bit. 2625 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2626 DAG.getConstant(16, DL, MVT::i32)); 2627 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2628 DAG.getConstant(0x8000, DL, MVT::i32)); 2629 2630 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2631 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2632 } 2633 2634 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2635 SelectionDAG &DAG) const { 2636 SDValue Src = Op.getOperand(0); 2637 2638 // TODO: Factor out code common with LowerFP_TO_UINT. 2639 2640 EVT SrcVT = Src.getValueType(); 2641 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2642 SDLoc DL(Op); 2643 2644 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2645 SDValue FpToInt32 = 2646 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2647 2648 return FpToInt32; 2649 } 2650 2651 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2652 return LowerFP64_TO_INT(Op, DAG, true); 2653 2654 return SDValue(); 2655 } 2656 2657 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2658 SelectionDAG &DAG) const { 2659 SDValue Src = Op.getOperand(0); 2660 2661 // TODO: Factor out code common with LowerFP_TO_SINT. 2662 2663 EVT SrcVT = Src.getValueType(); 2664 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2665 SDLoc DL(Op); 2666 2667 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2668 SDValue FpToInt32 = 2669 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2670 2671 return FpToInt32; 2672 } 2673 2674 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2675 return LowerFP64_TO_INT(Op, DAG, false); 2676 2677 return SDValue(); 2678 } 2679 2680 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2681 SelectionDAG &DAG) const { 2682 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2683 MVT VT = Op.getSimpleValueType(); 2684 MVT ScalarVT = VT.getScalarType(); 2685 2686 assert(VT.isVector()); 2687 2688 SDValue Src = Op.getOperand(0); 2689 SDLoc DL(Op); 2690 2691 // TODO: Don't scalarize on Evergreen? 2692 unsigned NElts = VT.getVectorNumElements(); 2693 SmallVector<SDValue, 8> Args; 2694 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2695 2696 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2697 for (unsigned I = 0; I < NElts; ++I) 2698 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2699 2700 return DAG.getBuildVector(VT, DL, Args); 2701 } 2702 2703 //===----------------------------------------------------------------------===// 2704 // Custom DAG optimizations 2705 //===----------------------------------------------------------------------===// 2706 2707 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2708 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2709 } 2710 2711 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2712 EVT VT = Op.getValueType(); 2713 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2714 // as unsigned 24-bit values. 2715 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2716 } 2717 2718 static SDValue simplifyI24(SDNode *Node24, 2719 TargetLowering::DAGCombinerInfo &DCI) { 2720 SelectionDAG &DAG = DCI.DAG; 2721 SDValue LHS = Node24->getOperand(0); 2722 SDValue RHS = Node24->getOperand(1); 2723 2724 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2725 2726 // First try to simplify using GetDemandedBits which allows the operands to 2727 // have other uses, but will only perform simplifications that involve 2728 // bypassing some nodes for this user. 2729 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2730 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2731 if (DemandedLHS || DemandedRHS) 2732 return DAG.getNode(Node24->getOpcode(), SDLoc(Node24), Node24->getVTList(), 2733 DemandedLHS ? DemandedLHS : LHS, 2734 DemandedRHS ? DemandedRHS : RHS); 2735 2736 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2737 // operands if this node is the only user. 2738 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2739 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2740 return SDValue(Node24, 0); 2741 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2742 return SDValue(Node24, 0); 2743 2744 return SDValue(); 2745 } 2746 2747 template <typename IntTy> 2748 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2749 uint32_t Width, const SDLoc &DL) { 2750 if (Width + Offset < 32) { 2751 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2752 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2753 return DAG.getConstant(Result, DL, MVT::i32); 2754 } 2755 2756 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2757 } 2758 2759 static bool hasVolatileUser(SDNode *Val) { 2760 for (SDNode *U : Val->uses()) { 2761 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2762 if (M->isVolatile()) 2763 return true; 2764 } 2765 } 2766 2767 return false; 2768 } 2769 2770 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2771 // i32 vectors are the canonical memory type. 2772 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2773 return false; 2774 2775 if (!VT.isByteSized()) 2776 return false; 2777 2778 unsigned Size = VT.getStoreSize(); 2779 2780 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2781 return false; 2782 2783 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2784 return false; 2785 2786 return true; 2787 } 2788 2789 // Replace load of an illegal type with a store of a bitcast to a friendlier 2790 // type. 2791 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2792 DAGCombinerInfo &DCI) const { 2793 if (!DCI.isBeforeLegalize()) 2794 return SDValue(); 2795 2796 LoadSDNode *LN = cast<LoadSDNode>(N); 2797 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2798 return SDValue(); 2799 2800 SDLoc SL(N); 2801 SelectionDAG &DAG = DCI.DAG; 2802 EVT VT = LN->getMemoryVT(); 2803 2804 unsigned Size = VT.getStoreSize(); 2805 unsigned Align = LN->getAlignment(); 2806 if (Align < Size && isTypeLegal(VT)) { 2807 bool IsFast; 2808 unsigned AS = LN->getAddressSpace(); 2809 2810 // Expand unaligned loads earlier than legalization. Due to visitation order 2811 // problems during legalization, the emitted instructions to pack and unpack 2812 // the bytes again are not eliminated in the case of an unaligned copy. 2813 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2814 if (VT.isVector()) 2815 return scalarizeVectorLoad(LN, DAG); 2816 2817 SDValue Ops[2]; 2818 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2819 return DAG.getMergeValues(Ops, SDLoc(N)); 2820 } 2821 2822 if (!IsFast) 2823 return SDValue(); 2824 } 2825 2826 if (!shouldCombineMemoryType(VT)) 2827 return SDValue(); 2828 2829 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2830 2831 SDValue NewLoad 2832 = DAG.getLoad(NewVT, SL, LN->getChain(), 2833 LN->getBasePtr(), LN->getMemOperand()); 2834 2835 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2836 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2837 return SDValue(N, 0); 2838 } 2839 2840 // Replace store of an illegal type with a store of a bitcast to a friendlier 2841 // type. 2842 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2843 DAGCombinerInfo &DCI) const { 2844 if (!DCI.isBeforeLegalize()) 2845 return SDValue(); 2846 2847 StoreSDNode *SN = cast<StoreSDNode>(N); 2848 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2849 return SDValue(); 2850 2851 EVT VT = SN->getMemoryVT(); 2852 unsigned Size = VT.getStoreSize(); 2853 2854 SDLoc SL(N); 2855 SelectionDAG &DAG = DCI.DAG; 2856 unsigned Align = SN->getAlignment(); 2857 if (Align < Size && isTypeLegal(VT)) { 2858 bool IsFast; 2859 unsigned AS = SN->getAddressSpace(); 2860 2861 // Expand unaligned stores earlier than legalization. Due to visitation 2862 // order problems during legalization, the emitted instructions to pack and 2863 // unpack the bytes again are not eliminated in the case of an unaligned 2864 // copy. 2865 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2866 if (VT.isVector()) 2867 return scalarizeVectorStore(SN, DAG); 2868 2869 return expandUnalignedStore(SN, DAG); 2870 } 2871 2872 if (!IsFast) 2873 return SDValue(); 2874 } 2875 2876 if (!shouldCombineMemoryType(VT)) 2877 return SDValue(); 2878 2879 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2880 SDValue Val = SN->getValue(); 2881 2882 //DCI.AddToWorklist(Val.getNode()); 2883 2884 bool OtherUses = !Val.hasOneUse(); 2885 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2886 if (OtherUses) { 2887 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2888 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2889 } 2890 2891 return DAG.getStore(SN->getChain(), SL, CastVal, 2892 SN->getBasePtr(), SN->getMemOperand()); 2893 } 2894 2895 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2896 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2897 // issues. 2898 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2899 DAGCombinerInfo &DCI) const { 2900 SelectionDAG &DAG = DCI.DAG; 2901 SDValue N0 = N->getOperand(0); 2902 2903 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2904 // (vt2 (truncate (assertzext vt0:x, vt1))) 2905 if (N0.getOpcode() == ISD::TRUNCATE) { 2906 SDValue N1 = N->getOperand(1); 2907 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2908 SDLoc SL(N); 2909 2910 SDValue Src = N0.getOperand(0); 2911 EVT SrcVT = Src.getValueType(); 2912 if (SrcVT.bitsGE(ExtVT)) { 2913 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2914 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2915 } 2916 } 2917 2918 return SDValue(); 2919 } 2920 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2921 /// binary operation \p Opc to it with the corresponding constant operands. 2922 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2923 DAGCombinerInfo &DCI, const SDLoc &SL, 2924 unsigned Opc, SDValue LHS, 2925 uint32_t ValLo, uint32_t ValHi) const { 2926 SelectionDAG &DAG = DCI.DAG; 2927 SDValue Lo, Hi; 2928 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2929 2930 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2931 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2932 2933 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2934 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2935 2936 // Re-visit the ands. It's possible we eliminated one of them and it could 2937 // simplify the vector. 2938 DCI.AddToWorklist(Lo.getNode()); 2939 DCI.AddToWorklist(Hi.getNode()); 2940 2941 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2942 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2943 } 2944 2945 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2946 DAGCombinerInfo &DCI) const { 2947 EVT VT = N->getValueType(0); 2948 2949 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2950 if (!RHS) 2951 return SDValue(); 2952 2953 SDValue LHS = N->getOperand(0); 2954 unsigned RHSVal = RHS->getZExtValue(); 2955 if (!RHSVal) 2956 return LHS; 2957 2958 SDLoc SL(N); 2959 SelectionDAG &DAG = DCI.DAG; 2960 2961 switch (LHS->getOpcode()) { 2962 default: 2963 break; 2964 case ISD::ZERO_EXTEND: 2965 case ISD::SIGN_EXTEND: 2966 case ISD::ANY_EXTEND: { 2967 SDValue X = LHS->getOperand(0); 2968 2969 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 2970 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 2971 // Prefer build_vector as the canonical form if packed types are legal. 2972 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 2973 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 2974 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 2975 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 2976 } 2977 2978 // shl (ext x) => zext (shl x), if shift does not overflow int 2979 if (VT != MVT::i64) 2980 break; 2981 KnownBits Known = DAG.computeKnownBits(X); 2982 unsigned LZ = Known.countMinLeadingZeros(); 2983 if (LZ < RHSVal) 2984 break; 2985 EVT XVT = X.getValueType(); 2986 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 2987 return DAG.getZExtOrTrunc(Shl, SL, VT); 2988 } 2989 } 2990 2991 if (VT != MVT::i64) 2992 return SDValue(); 2993 2994 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2995 2996 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2997 // common case, splitting this into a move and a 32-bit shift is faster and 2998 // the same code size. 2999 if (RHSVal < 32) 3000 return SDValue(); 3001 3002 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3003 3004 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3005 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3006 3007 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3008 3009 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3010 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3011 } 3012 3013 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3014 DAGCombinerInfo &DCI) const { 3015 if (N->getValueType(0) != MVT::i64) 3016 return SDValue(); 3017 3018 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3019 if (!RHS) 3020 return SDValue(); 3021 3022 SelectionDAG &DAG = DCI.DAG; 3023 SDLoc SL(N); 3024 unsigned RHSVal = RHS->getZExtValue(); 3025 3026 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3027 if (RHSVal == 32) { 3028 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3029 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3030 DAG.getConstant(31, SL, MVT::i32)); 3031 3032 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3033 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3034 } 3035 3036 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3037 if (RHSVal == 63) { 3038 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3039 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3040 DAG.getConstant(31, SL, MVT::i32)); 3041 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3042 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3043 } 3044 3045 return SDValue(); 3046 } 3047 3048 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3049 DAGCombinerInfo &DCI) const { 3050 if (N->getValueType(0) != MVT::i64) 3051 return SDValue(); 3052 3053 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3054 if (!RHS) 3055 return SDValue(); 3056 3057 unsigned ShiftAmt = RHS->getZExtValue(); 3058 if (ShiftAmt < 32) 3059 return SDValue(); 3060 3061 // srl i64:x, C for C >= 32 3062 // => 3063 // build_pair (srl hi_32(x), C - 32), 0 3064 3065 SelectionDAG &DAG = DCI.DAG; 3066 SDLoc SL(N); 3067 3068 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3069 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3070 3071 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 3072 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 3073 VecOp, One); 3074 3075 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3076 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3077 3078 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3079 3080 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3081 } 3082 3083 SDValue AMDGPUTargetLowering::performTruncateCombine( 3084 SDNode *N, DAGCombinerInfo &DCI) const { 3085 SDLoc SL(N); 3086 SelectionDAG &DAG = DCI.DAG; 3087 EVT VT = N->getValueType(0); 3088 SDValue Src = N->getOperand(0); 3089 3090 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3091 if (Src.getOpcode() == ISD::BITCAST) { 3092 SDValue Vec = Src.getOperand(0); 3093 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3094 SDValue Elt0 = Vec.getOperand(0); 3095 EVT EltVT = Elt0.getValueType(); 3096 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3097 if (EltVT.isFloatingPoint()) { 3098 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3099 EltVT.changeTypeToInteger(), Elt0); 3100 } 3101 3102 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3103 } 3104 } 3105 } 3106 3107 // Equivalent of above for accessing the high element of a vector as an 3108 // integer operation. 3109 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3110 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3111 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3112 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3113 SDValue BV = stripBitcast(Src.getOperand(0)); 3114 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3115 BV.getValueType().getVectorNumElements() == 2) { 3116 SDValue SrcElt = BV.getOperand(1); 3117 EVT SrcEltVT = SrcElt.getValueType(); 3118 if (SrcEltVT.isFloatingPoint()) { 3119 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3120 SrcEltVT.changeTypeToInteger(), SrcElt); 3121 } 3122 3123 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3124 } 3125 } 3126 } 3127 } 3128 3129 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3130 // 3131 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3132 // i16 (trunc (srl (i32 (trunc x), K))) 3133 if (VT.getScalarSizeInBits() < 32) { 3134 EVT SrcVT = Src.getValueType(); 3135 if (SrcVT.getScalarSizeInBits() > 32 && 3136 (Src.getOpcode() == ISD::SRL || 3137 Src.getOpcode() == ISD::SRA || 3138 Src.getOpcode() == ISD::SHL)) { 3139 SDValue Amt = Src.getOperand(1); 3140 KnownBits Known = DAG.computeKnownBits(Amt); 3141 unsigned Size = VT.getScalarSizeInBits(); 3142 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3143 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3144 EVT MidVT = VT.isVector() ? 3145 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3146 VT.getVectorNumElements()) : MVT::i32; 3147 3148 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3149 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3150 Src.getOperand(0)); 3151 DCI.AddToWorklist(Trunc.getNode()); 3152 3153 if (Amt.getValueType() != NewShiftVT) { 3154 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3155 DCI.AddToWorklist(Amt.getNode()); 3156 } 3157 3158 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3159 Trunc, Amt); 3160 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3161 } 3162 } 3163 } 3164 3165 return SDValue(); 3166 } 3167 3168 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3169 // instructions. If we only match on the legalized i64 mul expansion, 3170 // SimplifyDemandedBits will be unable to remove them because there will be 3171 // multiple uses due to the separate mul + mulh[su]. 3172 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3173 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3174 if (Size <= 32) { 3175 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3176 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3177 } 3178 3179 // Because we want to eliminate extension instructions before the 3180 // operation, we need to create a single user here (i.e. not the separate 3181 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3182 3183 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3184 3185 SDValue Mul = DAG.getNode(MulOpc, SL, 3186 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3187 3188 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3189 Mul.getValue(0), Mul.getValue(1)); 3190 } 3191 3192 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3193 DAGCombinerInfo &DCI) const { 3194 EVT VT = N->getValueType(0); 3195 3196 unsigned Size = VT.getSizeInBits(); 3197 if (VT.isVector() || Size > 64) 3198 return SDValue(); 3199 3200 // There are i16 integer mul/mad. 3201 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3202 return SDValue(); 3203 3204 SelectionDAG &DAG = DCI.DAG; 3205 SDLoc DL(N); 3206 3207 SDValue N0 = N->getOperand(0); 3208 SDValue N1 = N->getOperand(1); 3209 3210 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3211 // in the source into any_extends if the result of the mul is truncated. Since 3212 // we can assume the high bits are whatever we want, use the underlying value 3213 // to avoid the unknown high bits from interfering. 3214 if (N0.getOpcode() == ISD::ANY_EXTEND) 3215 N0 = N0.getOperand(0); 3216 3217 if (N1.getOpcode() == ISD::ANY_EXTEND) 3218 N1 = N1.getOperand(0); 3219 3220 SDValue Mul; 3221 3222 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3223 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3224 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3225 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3226 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3227 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3228 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3229 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3230 } else { 3231 return SDValue(); 3232 } 3233 3234 // We need to use sext even for MUL_U24, because MUL_U24 is used 3235 // for signed multiply of 8 and 16-bit types. 3236 return DAG.getSExtOrTrunc(Mul, DL, VT); 3237 } 3238 3239 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3240 DAGCombinerInfo &DCI) const { 3241 EVT VT = N->getValueType(0); 3242 3243 if (!Subtarget->hasMulI24() || VT.isVector()) 3244 return SDValue(); 3245 3246 SelectionDAG &DAG = DCI.DAG; 3247 SDLoc DL(N); 3248 3249 SDValue N0 = N->getOperand(0); 3250 SDValue N1 = N->getOperand(1); 3251 3252 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3253 return SDValue(); 3254 3255 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3256 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3257 3258 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3259 DCI.AddToWorklist(Mulhi.getNode()); 3260 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3261 } 3262 3263 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3264 DAGCombinerInfo &DCI) const { 3265 EVT VT = N->getValueType(0); 3266 3267 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3268 return SDValue(); 3269 3270 SelectionDAG &DAG = DCI.DAG; 3271 SDLoc DL(N); 3272 3273 SDValue N0 = N->getOperand(0); 3274 SDValue N1 = N->getOperand(1); 3275 3276 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3277 return SDValue(); 3278 3279 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3280 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3281 3282 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3283 DCI.AddToWorklist(Mulhi.getNode()); 3284 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3285 } 3286 3287 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3288 SDNode *N, DAGCombinerInfo &DCI) const { 3289 SelectionDAG &DAG = DCI.DAG; 3290 3291 // Simplify demanded bits before splitting into multiple users. 3292 if (SDValue V = simplifyI24(N, DCI)) 3293 return V; 3294 3295 SDValue N0 = N->getOperand(0); 3296 SDValue N1 = N->getOperand(1); 3297 3298 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3299 3300 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3301 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3302 3303 SDLoc SL(N); 3304 3305 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3306 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3307 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3308 } 3309 3310 static bool isNegativeOne(SDValue Val) { 3311 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3312 return C->isAllOnesValue(); 3313 return false; 3314 } 3315 3316 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3317 SDValue Op, 3318 const SDLoc &DL, 3319 unsigned Opc) const { 3320 EVT VT = Op.getValueType(); 3321 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3322 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3323 LegalVT != MVT::i16)) 3324 return SDValue(); 3325 3326 if (VT != MVT::i32) 3327 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3328 3329 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3330 if (VT != MVT::i32) 3331 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3332 3333 return FFBX; 3334 } 3335 3336 // The native instructions return -1 on 0 input. Optimize out a select that 3337 // produces -1 on 0. 3338 // 3339 // TODO: If zero is not undef, we could also do this if the output is compared 3340 // against the bitwidth. 3341 // 3342 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3343 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3344 SDValue LHS, SDValue RHS, 3345 DAGCombinerInfo &DCI) const { 3346 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3347 if (!CmpRhs || !CmpRhs->isNullValue()) 3348 return SDValue(); 3349 3350 SelectionDAG &DAG = DCI.DAG; 3351 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3352 SDValue CmpLHS = Cond.getOperand(0); 3353 3354 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3355 AMDGPUISD::FFBH_U32; 3356 3357 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3358 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3359 if (CCOpcode == ISD::SETEQ && 3360 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3361 RHS.getOperand(0) == CmpLHS && 3362 isNegativeOne(LHS)) { 3363 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3364 } 3365 3366 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3367 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3368 if (CCOpcode == ISD::SETNE && 3369 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3370 LHS.getOperand(0) == CmpLHS && 3371 isNegativeOne(RHS)) { 3372 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3373 } 3374 3375 return SDValue(); 3376 } 3377 3378 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3379 unsigned Op, 3380 const SDLoc &SL, 3381 SDValue Cond, 3382 SDValue N1, 3383 SDValue N2) { 3384 SelectionDAG &DAG = DCI.DAG; 3385 EVT VT = N1.getValueType(); 3386 3387 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3388 N1.getOperand(0), N2.getOperand(0)); 3389 DCI.AddToWorklist(NewSelect.getNode()); 3390 return DAG.getNode(Op, SL, VT, NewSelect); 3391 } 3392 3393 // Pull a free FP operation out of a select so it may fold into uses. 3394 // 3395 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3396 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3397 // 3398 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3399 // select c, (fabs x), +k -> fabs (select c, x, k) 3400 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3401 SDValue N) { 3402 SelectionDAG &DAG = DCI.DAG; 3403 SDValue Cond = N.getOperand(0); 3404 SDValue LHS = N.getOperand(1); 3405 SDValue RHS = N.getOperand(2); 3406 3407 EVT VT = N.getValueType(); 3408 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3409 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3410 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3411 SDLoc(N), Cond, LHS, RHS); 3412 } 3413 3414 bool Inv = false; 3415 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3416 std::swap(LHS, RHS); 3417 Inv = true; 3418 } 3419 3420 // TODO: Support vector constants. 3421 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3422 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3423 SDLoc SL(N); 3424 // If one side is an fneg/fabs and the other is a constant, we can push the 3425 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3426 SDValue NewLHS = LHS.getOperand(0); 3427 SDValue NewRHS = RHS; 3428 3429 // Careful: if the neg can be folded up, don't try to pull it back down. 3430 bool ShouldFoldNeg = true; 3431 3432 if (NewLHS.hasOneUse()) { 3433 unsigned Opc = NewLHS.getOpcode(); 3434 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3435 ShouldFoldNeg = false; 3436 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3437 ShouldFoldNeg = false; 3438 } 3439 3440 if (ShouldFoldNeg) { 3441 if (LHS.getOpcode() == ISD::FNEG) 3442 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3443 else if (CRHS->isNegative()) 3444 return SDValue(); 3445 3446 if (Inv) 3447 std::swap(NewLHS, NewRHS); 3448 3449 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3450 Cond, NewLHS, NewRHS); 3451 DCI.AddToWorklist(NewSelect.getNode()); 3452 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3453 } 3454 } 3455 3456 return SDValue(); 3457 } 3458 3459 3460 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3461 DAGCombinerInfo &DCI) const { 3462 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3463 return Folded; 3464 3465 SDValue Cond = N->getOperand(0); 3466 if (Cond.getOpcode() != ISD::SETCC) 3467 return SDValue(); 3468 3469 EVT VT = N->getValueType(0); 3470 SDValue LHS = Cond.getOperand(0); 3471 SDValue RHS = Cond.getOperand(1); 3472 SDValue CC = Cond.getOperand(2); 3473 3474 SDValue True = N->getOperand(1); 3475 SDValue False = N->getOperand(2); 3476 3477 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3478 SelectionDAG &DAG = DCI.DAG; 3479 if ((DAG.isConstantValueOfAnyType(True) || 3480 DAG.isConstantValueOfAnyType(True)) && 3481 (!DAG.isConstantValueOfAnyType(False) && 3482 !DAG.isConstantValueOfAnyType(False))) { 3483 // Swap cmp + select pair to move constant to false input. 3484 // This will allow using VOPC cndmasks more often. 3485 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3486 3487 SDLoc SL(N); 3488 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3489 LHS.getValueType().isInteger()); 3490 3491 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3492 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3493 } 3494 3495 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3496 SDValue MinMax 3497 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3498 // Revisit this node so we can catch min3/max3/med3 patterns. 3499 //DCI.AddToWorklist(MinMax.getNode()); 3500 return MinMax; 3501 } 3502 } 3503 3504 // There's no reason to not do this if the condition has other uses. 3505 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3506 } 3507 3508 static bool isInv2Pi(const APFloat &APF) { 3509 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3510 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3511 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3512 3513 return APF.bitwiseIsEqual(KF16) || 3514 APF.bitwiseIsEqual(KF32) || 3515 APF.bitwiseIsEqual(KF64); 3516 } 3517 3518 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3519 // additional cost to negate them. 3520 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3521 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3522 if (C->isZero() && !C->isNegative()) 3523 return true; 3524 3525 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3526 return true; 3527 } 3528 3529 return false; 3530 } 3531 3532 static unsigned inverseMinMax(unsigned Opc) { 3533 switch (Opc) { 3534 case ISD::FMAXNUM: 3535 return ISD::FMINNUM; 3536 case ISD::FMINNUM: 3537 return ISD::FMAXNUM; 3538 case ISD::FMAXNUM_IEEE: 3539 return ISD::FMINNUM_IEEE; 3540 case ISD::FMINNUM_IEEE: 3541 return ISD::FMAXNUM_IEEE; 3542 case AMDGPUISD::FMAX_LEGACY: 3543 return AMDGPUISD::FMIN_LEGACY; 3544 case AMDGPUISD::FMIN_LEGACY: 3545 return AMDGPUISD::FMAX_LEGACY; 3546 default: 3547 llvm_unreachable("invalid min/max opcode"); 3548 } 3549 } 3550 3551 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3552 DAGCombinerInfo &DCI) const { 3553 SelectionDAG &DAG = DCI.DAG; 3554 SDValue N0 = N->getOperand(0); 3555 EVT VT = N->getValueType(0); 3556 3557 unsigned Opc = N0.getOpcode(); 3558 3559 // If the input has multiple uses and we can either fold the negate down, or 3560 // the other uses cannot, give up. This both prevents unprofitable 3561 // transformations and infinite loops: we won't repeatedly try to fold around 3562 // a negate that has no 'good' form. 3563 if (N0.hasOneUse()) { 3564 // This may be able to fold into the source, but at a code size cost. Don't 3565 // fold if the fold into the user is free. 3566 if (allUsesHaveSourceMods(N, 0)) 3567 return SDValue(); 3568 } else { 3569 if (fnegFoldsIntoOp(Opc) && 3570 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3571 return SDValue(); 3572 } 3573 3574 SDLoc SL(N); 3575 switch (Opc) { 3576 case ISD::FADD: { 3577 if (!mayIgnoreSignedZero(N0)) 3578 return SDValue(); 3579 3580 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3581 SDValue LHS = N0.getOperand(0); 3582 SDValue RHS = N0.getOperand(1); 3583 3584 if (LHS.getOpcode() != ISD::FNEG) 3585 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3586 else 3587 LHS = LHS.getOperand(0); 3588 3589 if (RHS.getOpcode() != ISD::FNEG) 3590 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3591 else 3592 RHS = RHS.getOperand(0); 3593 3594 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3595 if (!N0.hasOneUse()) 3596 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3597 return Res; 3598 } 3599 case ISD::FMUL: 3600 case AMDGPUISD::FMUL_LEGACY: { 3601 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3602 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3603 SDValue LHS = N0.getOperand(0); 3604 SDValue RHS = N0.getOperand(1); 3605 3606 if (LHS.getOpcode() == ISD::FNEG) 3607 LHS = LHS.getOperand(0); 3608 else if (RHS.getOpcode() == ISD::FNEG) 3609 RHS = RHS.getOperand(0); 3610 else 3611 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3612 3613 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3614 if (!N0.hasOneUse()) 3615 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3616 return Res; 3617 } 3618 case ISD::FMA: 3619 case ISD::FMAD: { 3620 if (!mayIgnoreSignedZero(N0)) 3621 return SDValue(); 3622 3623 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3624 SDValue LHS = N0.getOperand(0); 3625 SDValue MHS = N0.getOperand(1); 3626 SDValue RHS = N0.getOperand(2); 3627 3628 if (LHS.getOpcode() == ISD::FNEG) 3629 LHS = LHS.getOperand(0); 3630 else if (MHS.getOpcode() == ISD::FNEG) 3631 MHS = MHS.getOperand(0); 3632 else 3633 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3634 3635 if (RHS.getOpcode() != ISD::FNEG) 3636 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3637 else 3638 RHS = RHS.getOperand(0); 3639 3640 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3641 if (!N0.hasOneUse()) 3642 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3643 return Res; 3644 } 3645 case ISD::FMAXNUM: 3646 case ISD::FMINNUM: 3647 case ISD::FMAXNUM_IEEE: 3648 case ISD::FMINNUM_IEEE: 3649 case AMDGPUISD::FMAX_LEGACY: 3650 case AMDGPUISD::FMIN_LEGACY: { 3651 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3652 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3653 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3654 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3655 3656 SDValue LHS = N0.getOperand(0); 3657 SDValue RHS = N0.getOperand(1); 3658 3659 // 0 doesn't have a negated inline immediate. 3660 // TODO: This constant check should be generalized to other operations. 3661 if (isConstantCostlierToNegate(RHS)) 3662 return SDValue(); 3663 3664 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3665 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3666 unsigned Opposite = inverseMinMax(Opc); 3667 3668 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3669 if (!N0.hasOneUse()) 3670 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3671 return Res; 3672 } 3673 case AMDGPUISD::FMED3: { 3674 SDValue Ops[3]; 3675 for (unsigned I = 0; I < 3; ++I) 3676 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3677 3678 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3679 if (!N0.hasOneUse()) 3680 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3681 return Res; 3682 } 3683 case ISD::FP_EXTEND: 3684 case ISD::FTRUNC: 3685 case ISD::FRINT: 3686 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3687 case ISD::FSIN: 3688 case ISD::FCANONICALIZE: 3689 case AMDGPUISD::RCP: 3690 case AMDGPUISD::RCP_LEGACY: 3691 case AMDGPUISD::RCP_IFLAG: 3692 case AMDGPUISD::SIN_HW: { 3693 SDValue CvtSrc = N0.getOperand(0); 3694 if (CvtSrc.getOpcode() == ISD::FNEG) { 3695 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3696 // (fneg (rcp (fneg x))) -> (rcp x) 3697 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3698 } 3699 3700 if (!N0.hasOneUse()) 3701 return SDValue(); 3702 3703 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3704 // (fneg (rcp x)) -> (rcp (fneg x)) 3705 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3706 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3707 } 3708 case ISD::FP_ROUND: { 3709 SDValue CvtSrc = N0.getOperand(0); 3710 3711 if (CvtSrc.getOpcode() == ISD::FNEG) { 3712 // (fneg (fp_round (fneg x))) -> (fp_round x) 3713 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3714 CvtSrc.getOperand(0), N0.getOperand(1)); 3715 } 3716 3717 if (!N0.hasOneUse()) 3718 return SDValue(); 3719 3720 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3721 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3722 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3723 } 3724 case ISD::FP16_TO_FP: { 3725 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3726 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3727 // Put the fneg back as a legal source operation that can be matched later. 3728 SDLoc SL(N); 3729 3730 SDValue Src = N0.getOperand(0); 3731 EVT SrcVT = Src.getValueType(); 3732 3733 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3734 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3735 DAG.getConstant(0x8000, SL, SrcVT)); 3736 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3737 } 3738 default: 3739 return SDValue(); 3740 } 3741 } 3742 3743 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3744 DAGCombinerInfo &DCI) const { 3745 SelectionDAG &DAG = DCI.DAG; 3746 SDValue N0 = N->getOperand(0); 3747 3748 if (!N0.hasOneUse()) 3749 return SDValue(); 3750 3751 switch (N0.getOpcode()) { 3752 case ISD::FP16_TO_FP: { 3753 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3754 SDLoc SL(N); 3755 SDValue Src = N0.getOperand(0); 3756 EVT SrcVT = Src.getValueType(); 3757 3758 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3759 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3760 DAG.getConstant(0x7fff, SL, SrcVT)); 3761 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3762 } 3763 default: 3764 return SDValue(); 3765 } 3766 } 3767 3768 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3769 DAGCombinerInfo &DCI) const { 3770 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3771 if (!CFP) 3772 return SDValue(); 3773 3774 // XXX - Should this flush denormals? 3775 const APFloat &Val = CFP->getValueAPF(); 3776 APFloat One(Val.getSemantics(), "1.0"); 3777 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3778 } 3779 3780 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3781 DAGCombinerInfo &DCI) const { 3782 SelectionDAG &DAG = DCI.DAG; 3783 SDLoc DL(N); 3784 3785 switch(N->getOpcode()) { 3786 default: 3787 break; 3788 case ISD::BITCAST: { 3789 EVT DestVT = N->getValueType(0); 3790 3791 // Push casts through vector builds. This helps avoid emitting a large 3792 // number of copies when materializing floating point vector constants. 3793 // 3794 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3795 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3796 if (DestVT.isVector()) { 3797 SDValue Src = N->getOperand(0); 3798 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3799 EVT SrcVT = Src.getValueType(); 3800 unsigned NElts = DestVT.getVectorNumElements(); 3801 3802 if (SrcVT.getVectorNumElements() == NElts) { 3803 EVT DestEltVT = DestVT.getVectorElementType(); 3804 3805 SmallVector<SDValue, 8> CastedElts; 3806 SDLoc SL(N); 3807 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3808 SDValue Elt = Src.getOperand(I); 3809 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3810 } 3811 3812 return DAG.getBuildVector(DestVT, SL, CastedElts); 3813 } 3814 } 3815 } 3816 3817 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3818 break; 3819 3820 // Fold bitcasts of constants. 3821 // 3822 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3823 // TODO: Generalize and move to DAGCombiner 3824 SDValue Src = N->getOperand(0); 3825 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3826 if (Src.getValueType() == MVT::i64) { 3827 SDLoc SL(N); 3828 uint64_t CVal = C->getZExtValue(); 3829 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3830 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3831 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3832 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3833 } 3834 } 3835 3836 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3837 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3838 SDLoc SL(N); 3839 uint64_t CVal = Val.getZExtValue(); 3840 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3841 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3842 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3843 3844 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3845 } 3846 3847 break; 3848 } 3849 case ISD::SHL: { 3850 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3851 break; 3852 3853 return performShlCombine(N, DCI); 3854 } 3855 case ISD::SRL: { 3856 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3857 break; 3858 3859 return performSrlCombine(N, DCI); 3860 } 3861 case ISD::SRA: { 3862 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3863 break; 3864 3865 return performSraCombine(N, DCI); 3866 } 3867 case ISD::TRUNCATE: 3868 return performTruncateCombine(N, DCI); 3869 case ISD::MUL: 3870 return performMulCombine(N, DCI); 3871 case ISD::MULHS: 3872 return performMulhsCombine(N, DCI); 3873 case ISD::MULHU: 3874 return performMulhuCombine(N, DCI); 3875 case AMDGPUISD::MUL_I24: 3876 case AMDGPUISD::MUL_U24: 3877 case AMDGPUISD::MULHI_I24: 3878 case AMDGPUISD::MULHI_U24: { 3879 if (SDValue V = simplifyI24(N, DCI)) 3880 return V; 3881 return SDValue(); 3882 } 3883 case AMDGPUISD::MUL_LOHI_I24: 3884 case AMDGPUISD::MUL_LOHI_U24: 3885 return performMulLoHi24Combine(N, DCI); 3886 case ISD::SELECT: 3887 return performSelectCombine(N, DCI); 3888 case ISD::FNEG: 3889 return performFNegCombine(N, DCI); 3890 case ISD::FABS: 3891 return performFAbsCombine(N, DCI); 3892 case AMDGPUISD::BFE_I32: 3893 case AMDGPUISD::BFE_U32: { 3894 assert(!N->getValueType(0).isVector() && 3895 "Vector handling of BFE not implemented"); 3896 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3897 if (!Width) 3898 break; 3899 3900 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3901 if (WidthVal == 0) 3902 return DAG.getConstant(0, DL, MVT::i32); 3903 3904 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3905 if (!Offset) 3906 break; 3907 3908 SDValue BitsFrom = N->getOperand(0); 3909 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3910 3911 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3912 3913 if (OffsetVal == 0) { 3914 // This is already sign / zero extended, so try to fold away extra BFEs. 3915 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3916 3917 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3918 if (OpSignBits >= SignBits) 3919 return BitsFrom; 3920 3921 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3922 if (Signed) { 3923 // This is a sign_extend_inreg. Replace it to take advantage of existing 3924 // DAG Combines. If not eliminated, we will match back to BFE during 3925 // selection. 3926 3927 // TODO: The sext_inreg of extended types ends, although we can could 3928 // handle them in a single BFE. 3929 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3930 DAG.getValueType(SmallVT)); 3931 } 3932 3933 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3934 } 3935 3936 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3937 if (Signed) { 3938 return constantFoldBFE<int32_t>(DAG, 3939 CVal->getSExtValue(), 3940 OffsetVal, 3941 WidthVal, 3942 DL); 3943 } 3944 3945 return constantFoldBFE<uint32_t>(DAG, 3946 CVal->getZExtValue(), 3947 OffsetVal, 3948 WidthVal, 3949 DL); 3950 } 3951 3952 if ((OffsetVal + WidthVal) >= 32 && 3953 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 3954 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3955 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3956 BitsFrom, ShiftVal); 3957 } 3958 3959 if (BitsFrom.hasOneUse()) { 3960 APInt Demanded = APInt::getBitsSet(32, 3961 OffsetVal, 3962 OffsetVal + WidthVal); 3963 3964 KnownBits Known; 3965 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3966 !DCI.isBeforeLegalizeOps()); 3967 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3968 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 3969 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 3970 DCI.CommitTargetLoweringOpt(TLO); 3971 } 3972 } 3973 3974 break; 3975 } 3976 case ISD::LOAD: 3977 return performLoadCombine(N, DCI); 3978 case ISD::STORE: 3979 return performStoreCombine(N, DCI); 3980 case AMDGPUISD::RCP: 3981 case AMDGPUISD::RCP_IFLAG: 3982 return performRcpCombine(N, DCI); 3983 case ISD::AssertZext: 3984 case ISD::AssertSext: 3985 return performAssertSZExtCombine(N, DCI); 3986 } 3987 return SDValue(); 3988 } 3989 3990 //===----------------------------------------------------------------------===// 3991 // Helper functions 3992 //===----------------------------------------------------------------------===// 3993 3994 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3995 const TargetRegisterClass *RC, 3996 unsigned Reg, EVT VT, 3997 const SDLoc &SL, 3998 bool RawReg) const { 3999 MachineFunction &MF = DAG.getMachineFunction(); 4000 MachineRegisterInfo &MRI = MF.getRegInfo(); 4001 unsigned VReg; 4002 4003 if (!MRI.isLiveIn(Reg)) { 4004 VReg = MRI.createVirtualRegister(RC); 4005 MRI.addLiveIn(Reg, VReg); 4006 } else { 4007 VReg = MRI.getLiveInVirtReg(Reg); 4008 } 4009 4010 if (RawReg) 4011 return DAG.getRegister(VReg, VT); 4012 4013 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4014 } 4015 4016 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4017 EVT VT, 4018 const SDLoc &SL, 4019 int64_t Offset) const { 4020 MachineFunction &MF = DAG.getMachineFunction(); 4021 MachineFrameInfo &MFI = MF.getFrameInfo(); 4022 4023 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 4024 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4025 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4026 4027 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4028 MachineMemOperand::MODereferenceable | 4029 MachineMemOperand::MOInvariant); 4030 } 4031 4032 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4033 const SDLoc &SL, 4034 SDValue Chain, 4035 SDValue ArgVal, 4036 int64_t Offset) const { 4037 MachineFunction &MF = DAG.getMachineFunction(); 4038 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4039 4040 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4041 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4042 MachineMemOperand::MODereferenceable); 4043 return Store; 4044 } 4045 4046 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4047 const TargetRegisterClass *RC, 4048 EVT VT, const SDLoc &SL, 4049 const ArgDescriptor &Arg) const { 4050 assert(Arg && "Attempting to load missing argument"); 4051 4052 if (Arg.isRegister()) 4053 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); 4054 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4055 } 4056 4057 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4058 const MachineFunction &MF, const ImplicitParameter Param) const { 4059 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4060 const AMDGPUSubtarget &ST = 4061 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4062 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4063 unsigned Alignment = ST.getAlignmentForImplicitArgPtr(); 4064 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4065 ExplicitArgOffset; 4066 switch (Param) { 4067 case GRID_DIM: 4068 return ArgOffset; 4069 case GRID_OFFSET: 4070 return ArgOffset + 4; 4071 } 4072 llvm_unreachable("unexpected implicit parameter type"); 4073 } 4074 4075 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4076 4077 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4078 switch ((AMDGPUISD::NodeType)Opcode) { 4079 case AMDGPUISD::FIRST_NUMBER: break; 4080 // AMDIL DAG nodes 4081 NODE_NAME_CASE(UMUL); 4082 NODE_NAME_CASE(BRANCH_COND); 4083 4084 // AMDGPU DAG nodes 4085 NODE_NAME_CASE(IF) 4086 NODE_NAME_CASE(ELSE) 4087 NODE_NAME_CASE(LOOP) 4088 NODE_NAME_CASE(CALL) 4089 NODE_NAME_CASE(TC_RETURN) 4090 NODE_NAME_CASE(TRAP) 4091 NODE_NAME_CASE(RET_FLAG) 4092 NODE_NAME_CASE(RETURN_TO_EPILOG) 4093 NODE_NAME_CASE(ENDPGM) 4094 NODE_NAME_CASE(DWORDADDR) 4095 NODE_NAME_CASE(FRACT) 4096 NODE_NAME_CASE(SETCC) 4097 NODE_NAME_CASE(SETREG) 4098 NODE_NAME_CASE(FMA_W_CHAIN) 4099 NODE_NAME_CASE(FMUL_W_CHAIN) 4100 NODE_NAME_CASE(CLAMP) 4101 NODE_NAME_CASE(COS_HW) 4102 NODE_NAME_CASE(SIN_HW) 4103 NODE_NAME_CASE(FMAX_LEGACY) 4104 NODE_NAME_CASE(FMIN_LEGACY) 4105 NODE_NAME_CASE(FMAX3) 4106 NODE_NAME_CASE(SMAX3) 4107 NODE_NAME_CASE(UMAX3) 4108 NODE_NAME_CASE(FMIN3) 4109 NODE_NAME_CASE(SMIN3) 4110 NODE_NAME_CASE(UMIN3) 4111 NODE_NAME_CASE(FMED3) 4112 NODE_NAME_CASE(SMED3) 4113 NODE_NAME_CASE(UMED3) 4114 NODE_NAME_CASE(FDOT2) 4115 NODE_NAME_CASE(URECIP) 4116 NODE_NAME_CASE(DIV_SCALE) 4117 NODE_NAME_CASE(DIV_FMAS) 4118 NODE_NAME_CASE(DIV_FIXUP) 4119 NODE_NAME_CASE(FMAD_FTZ) 4120 NODE_NAME_CASE(TRIG_PREOP) 4121 NODE_NAME_CASE(RCP) 4122 NODE_NAME_CASE(RSQ) 4123 NODE_NAME_CASE(RCP_LEGACY) 4124 NODE_NAME_CASE(RSQ_LEGACY) 4125 NODE_NAME_CASE(RCP_IFLAG) 4126 NODE_NAME_CASE(FMUL_LEGACY) 4127 NODE_NAME_CASE(RSQ_CLAMP) 4128 NODE_NAME_CASE(LDEXP) 4129 NODE_NAME_CASE(FP_CLASS) 4130 NODE_NAME_CASE(DOT4) 4131 NODE_NAME_CASE(CARRY) 4132 NODE_NAME_CASE(BORROW) 4133 NODE_NAME_CASE(BFE_U32) 4134 NODE_NAME_CASE(BFE_I32) 4135 NODE_NAME_CASE(BFI) 4136 NODE_NAME_CASE(BFM) 4137 NODE_NAME_CASE(FFBH_U32) 4138 NODE_NAME_CASE(FFBH_I32) 4139 NODE_NAME_CASE(FFBL_B32) 4140 NODE_NAME_CASE(MUL_U24) 4141 NODE_NAME_CASE(MUL_I24) 4142 NODE_NAME_CASE(MULHI_U24) 4143 NODE_NAME_CASE(MULHI_I24) 4144 NODE_NAME_CASE(MUL_LOHI_U24) 4145 NODE_NAME_CASE(MUL_LOHI_I24) 4146 NODE_NAME_CASE(MAD_U24) 4147 NODE_NAME_CASE(MAD_I24) 4148 NODE_NAME_CASE(MAD_I64_I32) 4149 NODE_NAME_CASE(MAD_U64_U32) 4150 NODE_NAME_CASE(PERM) 4151 NODE_NAME_CASE(TEXTURE_FETCH) 4152 NODE_NAME_CASE(EXPORT) 4153 NODE_NAME_CASE(EXPORT_DONE) 4154 NODE_NAME_CASE(R600_EXPORT) 4155 NODE_NAME_CASE(CONST_ADDRESS) 4156 NODE_NAME_CASE(REGISTER_LOAD) 4157 NODE_NAME_CASE(REGISTER_STORE) 4158 NODE_NAME_CASE(SAMPLE) 4159 NODE_NAME_CASE(SAMPLEB) 4160 NODE_NAME_CASE(SAMPLED) 4161 NODE_NAME_CASE(SAMPLEL) 4162 NODE_NAME_CASE(CVT_F32_UBYTE0) 4163 NODE_NAME_CASE(CVT_F32_UBYTE1) 4164 NODE_NAME_CASE(CVT_F32_UBYTE2) 4165 NODE_NAME_CASE(CVT_F32_UBYTE3) 4166 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4167 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4168 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4169 NODE_NAME_CASE(CVT_PK_I16_I32) 4170 NODE_NAME_CASE(CVT_PK_U16_U32) 4171 NODE_NAME_CASE(FP_TO_FP16) 4172 NODE_NAME_CASE(FP16_ZEXT) 4173 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4174 NODE_NAME_CASE(CONST_DATA_PTR) 4175 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4176 NODE_NAME_CASE(KILL) 4177 NODE_NAME_CASE(DUMMY_CHAIN) 4178 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4179 NODE_NAME_CASE(INIT_EXEC) 4180 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 4181 NODE_NAME_CASE(SENDMSG) 4182 NODE_NAME_CASE(SENDMSGHALT) 4183 NODE_NAME_CASE(INTERP_MOV) 4184 NODE_NAME_CASE(INTERP_P1) 4185 NODE_NAME_CASE(INTERP_P2) 4186 NODE_NAME_CASE(INTERP_P1LL_F16) 4187 NODE_NAME_CASE(INTERP_P1LV_F16) 4188 NODE_NAME_CASE(INTERP_P2_F16) 4189 NODE_NAME_CASE(STORE_MSKOR) 4190 NODE_NAME_CASE(LOAD_CONSTANT) 4191 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4192 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3) 4193 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4194 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4195 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4196 NODE_NAME_CASE(DS_ORDERED_COUNT) 4197 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4198 NODE_NAME_CASE(ATOMIC_INC) 4199 NODE_NAME_CASE(ATOMIC_DEC) 4200 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4201 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4202 NODE_NAME_CASE(BUFFER_LOAD) 4203 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4204 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4205 NODE_NAME_CASE(SBUFFER_LOAD) 4206 NODE_NAME_CASE(BUFFER_STORE) 4207 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4208 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4209 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4210 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4211 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4212 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4213 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4214 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4215 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4216 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4217 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4218 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4219 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4220 4221 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4222 } 4223 return nullptr; 4224 } 4225 4226 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4227 SelectionDAG &DAG, int Enabled, 4228 int &RefinementSteps, 4229 bool &UseOneConstNR, 4230 bool Reciprocal) const { 4231 EVT VT = Operand.getValueType(); 4232 4233 if (VT == MVT::f32) { 4234 RefinementSteps = 0; 4235 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4236 } 4237 4238 // TODO: There is also f64 rsq instruction, but the documentation is less 4239 // clear on its precision. 4240 4241 return SDValue(); 4242 } 4243 4244 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4245 SelectionDAG &DAG, int Enabled, 4246 int &RefinementSteps) const { 4247 EVT VT = Operand.getValueType(); 4248 4249 if (VT == MVT::f32) { 4250 // Reciprocal, < 1 ulp error. 4251 // 4252 // This reciprocal approximation converges to < 0.5 ulp error with one 4253 // newton rhapson performed with two fused multiple adds (FMAs). 4254 4255 RefinementSteps = 0; 4256 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4257 } 4258 4259 // TODO: There is also f64 rcp instruction, but the documentation is less 4260 // clear on its precision. 4261 4262 return SDValue(); 4263 } 4264 4265 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4266 const SDValue Op, KnownBits &Known, 4267 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4268 4269 Known.resetAll(); // Don't know anything. 4270 4271 unsigned Opc = Op.getOpcode(); 4272 4273 switch (Opc) { 4274 default: 4275 break; 4276 case AMDGPUISD::CARRY: 4277 case AMDGPUISD::BORROW: { 4278 Known.Zero = APInt::getHighBitsSet(32, 31); 4279 break; 4280 } 4281 4282 case AMDGPUISD::BFE_I32: 4283 case AMDGPUISD::BFE_U32: { 4284 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4285 if (!CWidth) 4286 return; 4287 4288 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4289 4290 if (Opc == AMDGPUISD::BFE_U32) 4291 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4292 4293 break; 4294 } 4295 case AMDGPUISD::FP_TO_FP16: 4296 case AMDGPUISD::FP16_ZEXT: { 4297 unsigned BitWidth = Known.getBitWidth(); 4298 4299 // High bits are zero. 4300 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4301 break; 4302 } 4303 case AMDGPUISD::MUL_U24: 4304 case AMDGPUISD::MUL_I24: { 4305 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4306 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4307 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4308 RHSKnown.countMinTrailingZeros(); 4309 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4310 4311 // Truncate to 24 bits. 4312 LHSKnown = LHSKnown.trunc(24); 4313 RHSKnown = RHSKnown.trunc(24); 4314 4315 bool Negative = false; 4316 if (Opc == AMDGPUISD::MUL_I24) { 4317 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4318 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4319 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4320 if (MaxValBits >= 32) 4321 break; 4322 bool LHSNegative = LHSKnown.isNegative(); 4323 bool LHSPositive = LHSKnown.isNonNegative(); 4324 bool RHSNegative = RHSKnown.isNegative(); 4325 bool RHSPositive = RHSKnown.isNonNegative(); 4326 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4327 break; 4328 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4329 if (Negative) 4330 Known.One.setHighBits(32 - MaxValBits); 4331 else 4332 Known.Zero.setHighBits(32 - MaxValBits); 4333 } else { 4334 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4335 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4336 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4337 if (MaxValBits >= 32) 4338 break; 4339 Known.Zero.setHighBits(32 - MaxValBits); 4340 } 4341 break; 4342 } 4343 case AMDGPUISD::PERM: { 4344 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4345 if (!CMask) 4346 return; 4347 4348 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4349 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4350 unsigned Sel = CMask->getZExtValue(); 4351 4352 for (unsigned I = 0; I < 32; I += 8) { 4353 unsigned SelBits = Sel & 0xff; 4354 if (SelBits < 4) { 4355 SelBits *= 8; 4356 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4357 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4358 } else if (SelBits < 7) { 4359 SelBits = (SelBits & 3) * 8; 4360 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4361 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4362 } else if (SelBits == 0x0c) { 4363 Known.Zero |= 0xff << I; 4364 } else if (SelBits > 0x0c) { 4365 Known.One |= 0xff << I; 4366 } 4367 Sel >>= 8; 4368 } 4369 break; 4370 } 4371 case ISD::INTRINSIC_WO_CHAIN: { 4372 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4373 switch (IID) { 4374 case Intrinsic::amdgcn_mbcnt_lo: 4375 case Intrinsic::amdgcn_mbcnt_hi: { 4376 const GCNSubtarget &ST = 4377 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4378 // These return at most the wavefront size - 1. 4379 unsigned Size = Op.getValueType().getSizeInBits(); 4380 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4381 break; 4382 } 4383 default: 4384 break; 4385 } 4386 } 4387 } 4388 } 4389 4390 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4391 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4392 unsigned Depth) const { 4393 switch (Op.getOpcode()) { 4394 case AMDGPUISD::BFE_I32: { 4395 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4396 if (!Width) 4397 return 1; 4398 4399 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4400 if (!isNullConstant(Op.getOperand(1))) 4401 return SignBits; 4402 4403 // TODO: Could probably figure something out with non-0 offsets. 4404 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4405 return std::max(SignBits, Op0SignBits); 4406 } 4407 4408 case AMDGPUISD::BFE_U32: { 4409 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4410 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4411 } 4412 4413 case AMDGPUISD::CARRY: 4414 case AMDGPUISD::BORROW: 4415 return 31; 4416 case AMDGPUISD::FP_TO_FP16: 4417 case AMDGPUISD::FP16_ZEXT: 4418 return 16; 4419 default: 4420 return 1; 4421 } 4422 } 4423 4424 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4425 const SelectionDAG &DAG, 4426 bool SNaN, 4427 unsigned Depth) const { 4428 unsigned Opcode = Op.getOpcode(); 4429 switch (Opcode) { 4430 case AMDGPUISD::FMIN_LEGACY: 4431 case AMDGPUISD::FMAX_LEGACY: { 4432 if (SNaN) 4433 return true; 4434 4435 // TODO: Can check no nans on one of the operands for each one, but which 4436 // one? 4437 return false; 4438 } 4439 case AMDGPUISD::FMUL_LEGACY: 4440 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4441 if (SNaN) 4442 return true; 4443 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4444 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4445 } 4446 case AMDGPUISD::FMED3: 4447 case AMDGPUISD::FMIN3: 4448 case AMDGPUISD::FMAX3: 4449 case AMDGPUISD::FMAD_FTZ: { 4450 if (SNaN) 4451 return true; 4452 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4453 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4454 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4455 } 4456 case AMDGPUISD::CVT_F32_UBYTE0: 4457 case AMDGPUISD::CVT_F32_UBYTE1: 4458 case AMDGPUISD::CVT_F32_UBYTE2: 4459 case AMDGPUISD::CVT_F32_UBYTE3: 4460 return true; 4461 4462 case AMDGPUISD::RCP: 4463 case AMDGPUISD::RSQ: 4464 case AMDGPUISD::RCP_LEGACY: 4465 case AMDGPUISD::RSQ_LEGACY: 4466 case AMDGPUISD::RSQ_CLAMP: { 4467 if (SNaN) 4468 return true; 4469 4470 // TODO: Need is known positive check. 4471 return false; 4472 } 4473 case AMDGPUISD::LDEXP: 4474 case AMDGPUISD::FRACT: { 4475 if (SNaN) 4476 return true; 4477 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4478 } 4479 case AMDGPUISD::DIV_SCALE: 4480 case AMDGPUISD::DIV_FMAS: 4481 case AMDGPUISD::DIV_FIXUP: 4482 case AMDGPUISD::TRIG_PREOP: 4483 // TODO: Refine on operands. 4484 return SNaN; 4485 case AMDGPUISD::SIN_HW: 4486 case AMDGPUISD::COS_HW: { 4487 // TODO: Need check for infinity 4488 return SNaN; 4489 } 4490 case ISD::INTRINSIC_WO_CHAIN: { 4491 unsigned IntrinsicID 4492 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4493 // TODO: Handle more intrinsics 4494 switch (IntrinsicID) { 4495 case Intrinsic::amdgcn_cubeid: 4496 return true; 4497 4498 case Intrinsic::amdgcn_frexp_mant: { 4499 if (SNaN) 4500 return true; 4501 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4502 } 4503 case Intrinsic::amdgcn_cvt_pkrtz: { 4504 if (SNaN) 4505 return true; 4506 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4507 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4508 } 4509 case Intrinsic::amdgcn_fdot2: 4510 // TODO: Refine on operand 4511 return SNaN; 4512 default: 4513 return false; 4514 } 4515 } 4516 default: 4517 return false; 4518 } 4519 } 4520 4521 TargetLowering::AtomicExpansionKind 4522 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4523 switch (RMW->getOperation()) { 4524 case AtomicRMWInst::Nand: 4525 case AtomicRMWInst::FAdd: 4526 case AtomicRMWInst::FSub: 4527 return AtomicExpansionKind::CmpXChg; 4528 default: 4529 return AtomicExpansionKind::None; 4530 } 4531 } 4532