1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "SIInstrInfo.h" 32 using namespace llvm; 33 34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 MachineFunction &MF = State.getMachineFunction(); 38 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 39 40 uint64_t Offset = MFI->allocateKernArg(ValVT.getStoreSize(), 41 ArgFlags.getOrigAlign()); 42 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 43 return true; 44 } 45 46 #include "AMDGPUGenCallingConv.inc" 47 48 // Find a larger type to do a load / store of a vector with. 49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 50 unsigned StoreSize = VT.getStoreSizeInBits(); 51 if (StoreSize <= 32) 52 return EVT::getIntegerVT(Ctx, StoreSize); 53 54 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 55 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 56 } 57 58 EVT AMDGPUTargetLowering::getEquivalentBitType(LLVMContext &Ctx, EVT VT) { 59 unsigned StoreSize = VT.getStoreSizeInBits(); 60 if (StoreSize <= 32) 61 return EVT::getIntegerVT(Ctx, StoreSize); 62 63 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 64 } 65 66 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 67 const AMDGPUSubtarget &STI) 68 : TargetLowering(TM), Subtarget(&STI) { 69 // Lower floating point store/load to integer store/load to reduce the number 70 // of patterns in tablegen. 71 setOperationAction(ISD::LOAD, MVT::f32, Promote); 72 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 73 74 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 75 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 76 77 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 78 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 79 80 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 81 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 82 83 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 84 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 85 86 setOperationAction(ISD::LOAD, MVT::i64, Promote); 87 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 88 89 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 90 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 91 92 setOperationAction(ISD::LOAD, MVT::f64, Promote); 93 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 94 95 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 96 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 97 98 // There are no 64-bit extloads. These should be done as a 32-bit extload and 99 // an extension to 64-bit. 100 for (MVT VT : MVT::integer_valuetypes()) { 101 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 102 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 103 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 104 } 105 106 for (MVT VT : MVT::integer_valuetypes()) { 107 if (VT == MVT::i64) 108 continue; 109 110 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 111 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 112 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 113 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 114 115 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 116 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 117 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 118 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 119 120 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 121 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 122 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 123 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 124 } 125 126 for (MVT VT : MVT::integer_vector_valuetypes()) { 127 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 128 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 129 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 130 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 131 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 132 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 133 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 134 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 135 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 136 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 137 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 138 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 139 } 140 141 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 142 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 143 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 145 146 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 147 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 148 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 149 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 150 151 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 152 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 153 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 154 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 155 156 setOperationAction(ISD::STORE, MVT::f32, Promote); 157 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 158 159 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 160 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 161 162 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 163 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 164 165 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 166 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 167 168 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 169 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 170 171 setOperationAction(ISD::STORE, MVT::i64, Promote); 172 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 173 174 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 175 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 176 177 setOperationAction(ISD::STORE, MVT::f64, Promote); 178 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 179 180 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 181 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 182 183 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 184 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 185 186 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 187 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 188 189 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 190 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 191 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 192 193 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 194 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 195 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 196 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 197 198 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 199 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 200 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 201 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 202 203 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 204 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 205 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 206 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 207 208 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 209 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 210 211 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 212 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 213 214 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 215 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 216 217 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 218 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 219 220 221 setOperationAction(ISD::Constant, MVT::i32, Legal); 222 setOperationAction(ISD::Constant, MVT::i64, Legal); 223 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 224 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 225 226 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 227 setOperationAction(ISD::BRIND, MVT::Other, Expand); 228 229 // This is totally unsupported, just custom lower to produce an error. 230 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 231 232 // We need to custom lower some of the intrinsics 233 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 234 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 235 236 // Library functions. These default to Expand, but we have instructions 237 // for them. 238 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 239 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 240 setOperationAction(ISD::FPOW, MVT::f32, Legal); 241 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 242 setOperationAction(ISD::FABS, MVT::f32, Legal); 243 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 244 setOperationAction(ISD::FRINT, MVT::f32, Legal); 245 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 246 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 247 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 248 249 setOperationAction(ISD::FROUND, MVT::f32, Custom); 250 setOperationAction(ISD::FROUND, MVT::f64, Custom); 251 252 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 253 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 254 255 setOperationAction(ISD::FREM, MVT::f32, Custom); 256 setOperationAction(ISD::FREM, MVT::f64, Custom); 257 258 // v_mad_f32 does not support denormals according to some sources. 259 if (!Subtarget->hasFP32Denormals()) 260 setOperationAction(ISD::FMAD, MVT::f32, Legal); 261 262 // Expand to fneg + fadd. 263 setOperationAction(ISD::FSUB, MVT::f64, Expand); 264 265 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 266 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 267 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 268 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 269 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 270 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 271 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 272 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 273 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 274 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 275 276 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 277 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 278 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 279 setOperationAction(ISD::FRINT, MVT::f64, Custom); 280 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 281 } 282 283 if (!Subtarget->hasBFI()) { 284 // fcopysign can be done in a single instruction with BFI. 285 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 286 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 287 } 288 289 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 290 291 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 292 for (MVT VT : ScalarIntVTs) { 293 // These should use [SU]DIVREM, so set them to expand 294 setOperationAction(ISD::SDIV, VT, Expand); 295 setOperationAction(ISD::UDIV, VT, Expand); 296 setOperationAction(ISD::SREM, VT, Expand); 297 setOperationAction(ISD::UREM, VT, Expand); 298 299 // GPU does not have divrem function for signed or unsigned. 300 setOperationAction(ISD::SDIVREM, VT, Custom); 301 setOperationAction(ISD::UDIVREM, VT, Custom); 302 303 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 304 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 305 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 306 307 setOperationAction(ISD::BSWAP, VT, Expand); 308 setOperationAction(ISD::CTTZ, VT, Expand); 309 setOperationAction(ISD::CTLZ, VT, Expand); 310 } 311 312 if (!Subtarget->hasBCNT(32)) 313 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 314 315 if (!Subtarget->hasBCNT(64)) 316 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 317 318 // The hardware supports 32-bit ROTR, but not ROTL. 319 setOperationAction(ISD::ROTL, MVT::i32, Expand); 320 setOperationAction(ISD::ROTL, MVT::i64, Expand); 321 setOperationAction(ISD::ROTR, MVT::i64, Expand); 322 323 setOperationAction(ISD::MUL, MVT::i64, Expand); 324 setOperationAction(ISD::MULHU, MVT::i64, Expand); 325 setOperationAction(ISD::MULHS, MVT::i64, Expand); 326 setOperationAction(ISD::UDIV, MVT::i32, Expand); 327 setOperationAction(ISD::UREM, MVT::i32, Expand); 328 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 329 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 330 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 331 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 332 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 333 334 setOperationAction(ISD::SMIN, MVT::i32, Legal); 335 setOperationAction(ISD::UMIN, MVT::i32, Legal); 336 setOperationAction(ISD::SMAX, MVT::i32, Legal); 337 setOperationAction(ISD::UMAX, MVT::i32, Legal); 338 339 if (Subtarget->hasFFBH()) 340 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 341 342 if (Subtarget->hasFFBL()) 343 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 344 345 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 346 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 347 348 // We only really have 32-bit BFE instructions (and 16-bit on VI). 349 // 350 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 351 // effort to match them now. We want this to be false for i64 cases when the 352 // extraction isn't restricted to the upper or lower half. Ideally we would 353 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 354 // span the midpoint are probably relatively rare, so don't worry about them 355 // for now. 356 if (Subtarget->hasBFE()) 357 setHasExtractBitsInsn(true); 358 359 static const MVT::SimpleValueType VectorIntTypes[] = { 360 MVT::v2i32, MVT::v4i32 361 }; 362 363 for (MVT VT : VectorIntTypes) { 364 // Expand the following operations for the current type by default. 365 setOperationAction(ISD::ADD, VT, Expand); 366 setOperationAction(ISD::AND, VT, Expand); 367 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 368 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 369 setOperationAction(ISD::MUL, VT, Expand); 370 setOperationAction(ISD::OR, VT, Expand); 371 setOperationAction(ISD::SHL, VT, Expand); 372 setOperationAction(ISD::SRA, VT, Expand); 373 setOperationAction(ISD::SRL, VT, Expand); 374 setOperationAction(ISD::ROTL, VT, Expand); 375 setOperationAction(ISD::ROTR, VT, Expand); 376 setOperationAction(ISD::SUB, VT, Expand); 377 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 378 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 379 setOperationAction(ISD::SDIV, VT, Expand); 380 setOperationAction(ISD::UDIV, VT, Expand); 381 setOperationAction(ISD::SREM, VT, Expand); 382 setOperationAction(ISD::UREM, VT, Expand); 383 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 384 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 385 setOperationAction(ISD::SDIVREM, VT, Custom); 386 setOperationAction(ISD::UDIVREM, VT, Expand); 387 setOperationAction(ISD::ADDC, VT, Expand); 388 setOperationAction(ISD::SUBC, VT, Expand); 389 setOperationAction(ISD::ADDE, VT, Expand); 390 setOperationAction(ISD::SUBE, VT, Expand); 391 setOperationAction(ISD::SELECT, VT, Expand); 392 setOperationAction(ISD::VSELECT, VT, Expand); 393 setOperationAction(ISD::SELECT_CC, VT, Expand); 394 setOperationAction(ISD::XOR, VT, Expand); 395 setOperationAction(ISD::BSWAP, VT, Expand); 396 setOperationAction(ISD::CTPOP, VT, Expand); 397 setOperationAction(ISD::CTTZ, VT, Expand); 398 setOperationAction(ISD::CTLZ, VT, Expand); 399 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 400 } 401 402 static const MVT::SimpleValueType FloatVectorTypes[] = { 403 MVT::v2f32, MVT::v4f32 404 }; 405 406 for (MVT VT : FloatVectorTypes) { 407 setOperationAction(ISD::FABS, VT, Expand); 408 setOperationAction(ISD::FMINNUM, VT, Expand); 409 setOperationAction(ISD::FMAXNUM, VT, Expand); 410 setOperationAction(ISD::FADD, VT, Expand); 411 setOperationAction(ISD::FCEIL, VT, Expand); 412 setOperationAction(ISD::FCOS, VT, Expand); 413 setOperationAction(ISD::FDIV, VT, Expand); 414 setOperationAction(ISD::FEXP2, VT, Expand); 415 setOperationAction(ISD::FLOG2, VT, Expand); 416 setOperationAction(ISD::FREM, VT, Expand); 417 setOperationAction(ISD::FPOW, VT, Expand); 418 setOperationAction(ISD::FFLOOR, VT, Expand); 419 setOperationAction(ISD::FTRUNC, VT, Expand); 420 setOperationAction(ISD::FMUL, VT, Expand); 421 setOperationAction(ISD::FMA, VT, Expand); 422 setOperationAction(ISD::FRINT, VT, Expand); 423 setOperationAction(ISD::FNEARBYINT, VT, Expand); 424 setOperationAction(ISD::FSQRT, VT, Expand); 425 setOperationAction(ISD::FSIN, VT, Expand); 426 setOperationAction(ISD::FSUB, VT, Expand); 427 setOperationAction(ISD::FNEG, VT, Expand); 428 setOperationAction(ISD::VSELECT, VT, Expand); 429 setOperationAction(ISD::SELECT_CC, VT, Expand); 430 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 431 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 432 } 433 434 // This causes using an unrolled select operation rather than expansion with 435 // bit operations. This is in general better, but the alternative using BFI 436 // instructions may be better if the select sources are SGPRs. 437 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 438 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 439 440 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 441 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 442 443 setBooleanContents(ZeroOrNegativeOneBooleanContent); 444 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 445 446 setSchedulingPreference(Sched::RegPressure); 447 setJumpIsExpensive(true); 448 449 // SI at least has hardware support for floating point exceptions, but no way 450 // of using or handling them is implemented. They are also optional in OpenCL 451 // (Section 7.3) 452 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 453 454 setSelectIsExpensive(false); 455 PredictableSelectIsExpensive = false; 456 457 setFsqrtIsCheap(true); 458 459 // We want to find all load dependencies for long chains of stores to enable 460 // merging into very wide vectors. The problem is with vectors with > 4 461 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 462 // vectors are a legal type, even though we have to split the loads 463 // usually. When we can more precisely specify load legality per address 464 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 465 // smarter so that they can figure out what to do in 2 iterations without all 466 // N > 4 stores on the same chain. 467 GatherAllAliasesMaxDepth = 16; 468 469 // FIXME: Need to really handle these. 470 MaxStoresPerMemcpy = 4096; 471 MaxStoresPerMemmove = 4096; 472 MaxStoresPerMemset = 4096; 473 474 setTargetDAGCombine(ISD::BITCAST); 475 setTargetDAGCombine(ISD::AND); 476 setTargetDAGCombine(ISD::SHL); 477 setTargetDAGCombine(ISD::SRA); 478 setTargetDAGCombine(ISD::SRL); 479 setTargetDAGCombine(ISD::MUL); 480 setTargetDAGCombine(ISD::SELECT); 481 setTargetDAGCombine(ISD::SELECT_CC); 482 setTargetDAGCombine(ISD::STORE); 483 setTargetDAGCombine(ISD::FADD); 484 setTargetDAGCombine(ISD::FSUB); 485 } 486 487 //===----------------------------------------------------------------------===// 488 // Target Information 489 //===----------------------------------------------------------------------===// 490 491 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 492 return MVT::i32; 493 } 494 495 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 496 return true; 497 } 498 499 // The backend supports 32 and 64 bit floating point immediates. 500 // FIXME: Why are we reporting vectors of FP immediates as legal? 501 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 502 EVT ScalarVT = VT.getScalarType(); 503 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 504 } 505 506 // We don't want to shrink f64 / f32 constants. 507 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 508 EVT ScalarVT = VT.getScalarType(); 509 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 510 } 511 512 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 513 ISD::LoadExtType, 514 EVT NewVT) const { 515 516 unsigned NewSize = NewVT.getStoreSizeInBits(); 517 518 // If we are reducing to a 32-bit load, this is always better. 519 if (NewSize == 32) 520 return true; 521 522 EVT OldVT = N->getValueType(0); 523 unsigned OldSize = OldVT.getStoreSizeInBits(); 524 525 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 526 // extloads, so doing one requires using a buffer_load. In cases where we 527 // still couldn't use a scalar load, using the wider load shouldn't really 528 // hurt anything. 529 530 // If the old size already had to be an extload, there's no harm in continuing 531 // to reduce the width. 532 return (OldSize < 32); 533 } 534 535 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 536 EVT CastTy) const { 537 538 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 539 540 if (LoadTy.getScalarType() == MVT::i32) 541 return false; 542 543 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 544 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 545 546 return (LScalarSize < CastScalarSize) || 547 (CastScalarSize >= 32); 548 } 549 550 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 551 // profitable with the expansion for 64-bit since it's generally good to 552 // speculate things. 553 // FIXME: These should really have the size as a parameter. 554 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 555 return true; 556 } 557 558 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 559 return true; 560 } 561 562 //===---------------------------------------------------------------------===// 563 // Target Properties 564 //===---------------------------------------------------------------------===// 565 566 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 567 assert(VT.isFloatingPoint()); 568 return VT == MVT::f32 || VT == MVT::f64; 569 } 570 571 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 572 assert(VT.isFloatingPoint()); 573 return VT == MVT::f32 || VT == MVT::f64; 574 } 575 576 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 577 unsigned NumElem, 578 unsigned AS) const { 579 return true; 580 } 581 582 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 583 // There are few operations which truly have vector input operands. Any vector 584 // operation is going to involve operations on each component, and a 585 // build_vector will be a copy per element, so it always makes sense to use a 586 // build_vector input in place of the extracted element to avoid a copy into a 587 // super register. 588 // 589 // We should probably only do this if all users are extracts only, but this 590 // should be the common case. 591 return true; 592 } 593 594 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 595 // Truncate is just accessing a subregister. 596 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 597 } 598 599 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 600 // Truncate is just accessing a subregister. 601 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 602 (Dest->getPrimitiveSizeInBits() % 32 == 0); 603 } 604 605 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 606 unsigned SrcSize = Src->getScalarSizeInBits(); 607 unsigned DestSize = Dest->getScalarSizeInBits(); 608 609 return SrcSize == 32 && DestSize == 64; 610 } 611 612 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 613 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 614 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 615 // this will enable reducing 64-bit operations the 32-bit, which is always 616 // good. 617 return Src == MVT::i32 && Dest == MVT::i64; 618 } 619 620 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 621 return isZExtFree(Val.getValueType(), VT2); 622 } 623 624 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 625 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 626 // limited number of native 64-bit operations. Shrinking an operation to fit 627 // in a single 32-bit register should always be helpful. As currently used, 628 // this is much less general than the name suggests, and is only used in 629 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 630 // not profitable, and may actually be harmful. 631 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 632 } 633 634 //===---------------------------------------------------------------------===// 635 // TargetLowering Callbacks 636 //===---------------------------------------------------------------------===// 637 638 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 639 const SmallVectorImpl<ISD::InputArg> &Ins) const { 640 641 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 642 } 643 644 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 645 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 646 647 State.AnalyzeReturn(Outs, RetCC_SI); 648 } 649 650 SDValue 651 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 652 bool isVarArg, 653 const SmallVectorImpl<ISD::OutputArg> &Outs, 654 const SmallVectorImpl<SDValue> &OutVals, 655 const SDLoc &DL, SelectionDAG &DAG) const { 656 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 657 } 658 659 //===---------------------------------------------------------------------===// 660 // Target specific lowering 661 //===---------------------------------------------------------------------===// 662 663 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 664 SmallVectorImpl<SDValue> &InVals) const { 665 SDValue Callee = CLI.Callee; 666 SelectionDAG &DAG = CLI.DAG; 667 668 const Function &Fn = *DAG.getMachineFunction().getFunction(); 669 670 StringRef FuncName("<unknown>"); 671 672 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 673 FuncName = G->getSymbol(); 674 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 675 FuncName = G->getGlobal()->getName(); 676 677 DiagnosticInfoUnsupported NoCalls( 678 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 679 DAG.getContext()->diagnose(NoCalls); 680 681 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 682 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 683 684 return DAG.getEntryNode(); 685 } 686 687 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 688 SelectionDAG &DAG) const { 689 const Function &Fn = *DAG.getMachineFunction().getFunction(); 690 691 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 692 SDLoc(Op).getDebugLoc()); 693 DAG.getContext()->diagnose(NoDynamicAlloca); 694 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 695 return DAG.getMergeValues(Ops, SDLoc()); 696 } 697 698 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 699 SelectionDAG &DAG) const { 700 switch (Op.getOpcode()) { 701 default: 702 Op->dump(&DAG); 703 llvm_unreachable("Custom lowering code for this" 704 "instruction is not implemented yet!"); 705 break; 706 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 707 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 708 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 709 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 710 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 711 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 712 case ISD::FREM: return LowerFREM(Op, DAG); 713 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 714 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 715 case ISD::FRINT: return LowerFRINT(Op, DAG); 716 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 717 case ISD::FROUND: return LowerFROUND(Op, DAG); 718 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 719 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 720 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 721 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 722 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 723 case ISD::CTLZ: 724 case ISD::CTLZ_ZERO_UNDEF: 725 return LowerCTLZ(Op, DAG); 726 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 727 } 728 return Op; 729 } 730 731 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 732 SmallVectorImpl<SDValue> &Results, 733 SelectionDAG &DAG) const { 734 switch (N->getOpcode()) { 735 case ISD::SIGN_EXTEND_INREG: 736 // Different parts of legalization seem to interpret which type of 737 // sign_extend_inreg is the one to check for custom lowering. The extended 738 // from type is what really matters, but some places check for custom 739 // lowering of the result type. This results in trying to use 740 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 741 // nothing here and let the illegal result integer be handled normally. 742 return; 743 default: 744 return; 745 } 746 } 747 748 static bool hasDefinedInitializer(const GlobalValue *GV) { 749 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 750 if (!GVar || !GVar->hasInitializer()) 751 return false; 752 753 return !isa<UndefValue>(GVar->getInitializer()); 754 } 755 756 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 757 SDValue Op, 758 SelectionDAG &DAG) const { 759 760 const DataLayout &DL = DAG.getDataLayout(); 761 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 762 const GlobalValue *GV = G->getGlobal(); 763 764 switch (G->getAddressSpace()) { 765 case AMDGPUAS::LOCAL_ADDRESS: { 766 // XXX: What does the value of G->getOffset() mean? 767 assert(G->getOffset() == 0 && 768 "Do not know what to do with an non-zero offset"); 769 770 // TODO: We could emit code to handle the initialization somewhere. 771 if (hasDefinedInitializer(GV)) 772 break; 773 774 unsigned Offset; 775 if (MFI->LocalMemoryObjects.count(GV) == 0) { 776 unsigned Align = GV->getAlignment(); 777 if (Align == 0) 778 Align = DL.getABITypeAlignment(GV->getValueType()); 779 780 /// TODO: We should sort these to minimize wasted space due to alignment 781 /// padding. Currently the padding is decided by the first encountered use 782 /// during lowering. 783 Offset = MFI->LDSSize = alignTo(MFI->LDSSize, Align); 784 MFI->LocalMemoryObjects[GV] = Offset; 785 MFI->LDSSize += DL.getTypeAllocSize(GV->getValueType()); 786 } else { 787 Offset = MFI->LocalMemoryObjects[GV]; 788 } 789 790 return DAG.getConstant(Offset, SDLoc(Op), 791 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 792 } 793 } 794 795 const Function &Fn = *DAG.getMachineFunction().getFunction(); 796 DiagnosticInfoUnsupported BadInit( 797 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 798 DAG.getContext()->diagnose(BadInit); 799 return SDValue(); 800 } 801 802 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 803 SelectionDAG &DAG) const { 804 SmallVector<SDValue, 8> Args; 805 806 for (const SDUse &U : Op->ops()) 807 DAG.ExtractVectorElements(U.get(), Args); 808 809 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 810 } 811 812 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 813 SelectionDAG &DAG) const { 814 815 SmallVector<SDValue, 8> Args; 816 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 817 EVT VT = Op.getValueType(); 818 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 819 VT.getVectorNumElements()); 820 821 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 822 } 823 824 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 825 SelectionDAG &DAG) const { 826 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 827 SDLoc DL(Op); 828 EVT VT = Op.getValueType(); 829 830 switch (IntrinsicID) { 831 default: return Op; 832 case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name. 833 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 834 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 835 836 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 837 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 838 Op.getOperand(1), 839 Op.getOperand(2), 840 Op.getOperand(3)); 841 842 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 843 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 844 Op.getOperand(1), 845 Op.getOperand(2), 846 Op.getOperand(3)); 847 } 848 } 849 850 /// \brief Generate Min/Max node 851 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT, 852 SDValue LHS, SDValue RHS, 853 SDValue True, SDValue False, 854 SDValue CC, 855 DAGCombinerInfo &DCI) const { 856 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 857 return SDValue(); 858 859 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 860 return SDValue(); 861 862 SelectionDAG &DAG = DCI.DAG; 863 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 864 switch (CCOpcode) { 865 case ISD::SETOEQ: 866 case ISD::SETONE: 867 case ISD::SETUNE: 868 case ISD::SETNE: 869 case ISD::SETUEQ: 870 case ISD::SETEQ: 871 case ISD::SETFALSE: 872 case ISD::SETFALSE2: 873 case ISD::SETTRUE: 874 case ISD::SETTRUE2: 875 case ISD::SETUO: 876 case ISD::SETO: 877 break; 878 case ISD::SETULE: 879 case ISD::SETULT: { 880 if (LHS == True) 881 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 882 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 883 } 884 case ISD::SETOLE: 885 case ISD::SETOLT: 886 case ISD::SETLE: 887 case ISD::SETLT: { 888 // Ordered. Assume ordered for undefined. 889 890 // Only do this after legalization to avoid interfering with other combines 891 // which might occur. 892 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 893 !DCI.isCalledByLegalizer()) 894 return SDValue(); 895 896 // We need to permute the operands to get the correct NaN behavior. The 897 // selected operand is the second one based on the failing compare with NaN, 898 // so permute it based on the compare type the hardware uses. 899 if (LHS == True) 900 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 901 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 902 } 903 case ISD::SETUGE: 904 case ISD::SETUGT: { 905 if (LHS == True) 906 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 907 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 908 } 909 case ISD::SETGT: 910 case ISD::SETGE: 911 case ISD::SETOGE: 912 case ISD::SETOGT: { 913 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 914 !DCI.isCalledByLegalizer()) 915 return SDValue(); 916 917 if (LHS == True) 918 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 919 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 920 } 921 case ISD::SETCC_INVALID: 922 llvm_unreachable("Invalid setcc condcode!"); 923 } 924 return SDValue(); 925 } 926 927 std::pair<SDValue, SDValue> 928 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 929 SDLoc SL(Op); 930 931 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 932 933 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 934 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 935 936 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 937 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 938 939 return std::make_pair(Lo, Hi); 940 } 941 942 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 943 SDLoc SL(Op); 944 945 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 946 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 947 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 948 } 949 950 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 951 SDLoc SL(Op); 952 953 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 954 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 955 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 956 } 957 958 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 959 SelectionDAG &DAG) const { 960 LoadSDNode *Load = cast<LoadSDNode>(Op); 961 EVT VT = Op.getValueType(); 962 963 964 // If this is a 2 element vector, we really want to scalarize and not create 965 // weird 1 element vectors. 966 if (VT.getVectorNumElements() == 2) 967 return scalarizeVectorLoad(Load, DAG); 968 969 SDValue BasePtr = Load->getBasePtr(); 970 EVT PtrVT = BasePtr.getValueType(); 971 EVT MemVT = Load->getMemoryVT(); 972 SDLoc SL(Op); 973 974 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 975 976 EVT LoVT, HiVT; 977 EVT LoMemVT, HiMemVT; 978 SDValue Lo, Hi; 979 980 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 981 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 982 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 983 984 unsigned Size = LoMemVT.getStoreSize(); 985 unsigned BaseAlign = Load->getAlignment(); 986 unsigned HiAlign = MinAlign(BaseAlign, Size); 987 988 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 989 Load->getChain(), BasePtr, SrcValue, LoMemVT, 990 BaseAlign, Load->getMemOperand()->getFlags()); 991 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 992 DAG.getConstant(Size, SL, PtrVT)); 993 SDValue HiLoad = 994 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 995 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 996 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 997 998 SDValue Ops[] = { 999 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1000 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1001 LoLoad.getValue(1), HiLoad.getValue(1)) 1002 }; 1003 1004 return DAG.getMergeValues(Ops, SL); 1005 } 1006 1007 // FIXME: This isn't doing anything for SI. This should be used in a target 1008 // combine during type legalization. 1009 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1010 SelectionDAG &DAG) const { 1011 StoreSDNode *Store = cast<StoreSDNode>(Op); 1012 EVT MemVT = Store->getMemoryVT(); 1013 unsigned MemBits = MemVT.getSizeInBits(); 1014 1015 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1016 // truncating store into an i32 store. 1017 // XXX: We could also handle optimize other vector bitwidths. 1018 if (!MemVT.isVector() || MemBits > 32) { 1019 return SDValue(); 1020 } 1021 1022 SDLoc DL(Op); 1023 SDValue Value = Store->getValue(); 1024 EVT VT = Value.getValueType(); 1025 EVT ElemVT = VT.getVectorElementType(); 1026 SDValue Ptr = Store->getBasePtr(); 1027 EVT MemEltVT = MemVT.getVectorElementType(); 1028 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1029 unsigned MemNumElements = MemVT.getVectorNumElements(); 1030 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1031 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1032 1033 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1034 1035 SDValue PackedValue; 1036 for (unsigned i = 0; i < MemNumElements; ++i) { 1037 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1038 DAG.getConstant(i, DL, MVT::i32)); 1039 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1040 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1041 1042 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1043 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1044 1045 if (i == 0) { 1046 PackedValue = Elt; 1047 } else { 1048 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1049 } 1050 } 1051 1052 if (PackedSize < 32) { 1053 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1054 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1055 Store->getMemOperand()->getPointerInfo(), PackedVT, 1056 Store->getAlignment(), 1057 Store->getMemOperand()->getFlags()); 1058 } 1059 1060 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1061 Store->getMemOperand()->getPointerInfo(), 1062 Store->getAlignment(), 1063 Store->getMemOperand()->getFlags()); 1064 } 1065 1066 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1067 SelectionDAG &DAG) const { 1068 StoreSDNode *Store = cast<StoreSDNode>(Op); 1069 SDValue Val = Store->getValue(); 1070 EVT VT = Val.getValueType(); 1071 1072 // If this is a 2 element vector, we really want to scalarize and not create 1073 // weird 1 element vectors. 1074 if (VT.getVectorNumElements() == 2) 1075 return scalarizeVectorStore(Store, DAG); 1076 1077 EVT MemVT = Store->getMemoryVT(); 1078 SDValue Chain = Store->getChain(); 1079 SDValue BasePtr = Store->getBasePtr(); 1080 SDLoc SL(Op); 1081 1082 EVT LoVT, HiVT; 1083 EVT LoMemVT, HiMemVT; 1084 SDValue Lo, Hi; 1085 1086 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1087 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1088 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1089 1090 EVT PtrVT = BasePtr.getValueType(); 1091 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1092 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1093 PtrVT)); 1094 1095 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1096 unsigned BaseAlign = Store->getAlignment(); 1097 unsigned Size = LoMemVT.getStoreSize(); 1098 unsigned HiAlign = MinAlign(BaseAlign, Size); 1099 1100 SDValue LoStore = 1101 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1102 Store->getMemOperand()->getFlags()); 1103 SDValue HiStore = 1104 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1105 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1106 1107 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1108 } 1109 1110 // This is a shortcut for integer division because we have fast i32<->f32 1111 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1112 // float is enough to accurately represent up to a 24-bit signed integer. 1113 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1114 bool Sign) const { 1115 SDLoc DL(Op); 1116 EVT VT = Op.getValueType(); 1117 SDValue LHS = Op.getOperand(0); 1118 SDValue RHS = Op.getOperand(1); 1119 MVT IntVT = MVT::i32; 1120 MVT FltVT = MVT::f32; 1121 1122 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1123 if (LHSSignBits < 9) 1124 return SDValue(); 1125 1126 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1127 if (RHSSignBits < 9) 1128 return SDValue(); 1129 1130 unsigned BitSize = VT.getSizeInBits(); 1131 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1132 unsigned DivBits = BitSize - SignBits; 1133 if (Sign) 1134 ++DivBits; 1135 1136 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1137 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1138 1139 SDValue jq = DAG.getConstant(1, DL, IntVT); 1140 1141 if (Sign) { 1142 // char|short jq = ia ^ ib; 1143 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1144 1145 // jq = jq >> (bitsize - 2) 1146 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1147 DAG.getConstant(BitSize - 2, DL, VT)); 1148 1149 // jq = jq | 0x1 1150 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1151 } 1152 1153 // int ia = (int)LHS; 1154 SDValue ia = LHS; 1155 1156 // int ib, (int)RHS; 1157 SDValue ib = RHS; 1158 1159 // float fa = (float)ia; 1160 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1161 1162 // float fb = (float)ib; 1163 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1164 1165 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1166 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1167 1168 // fq = trunc(fq); 1169 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1170 1171 // float fqneg = -fq; 1172 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1173 1174 // float fr = mad(fqneg, fb, fa); 1175 SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa); 1176 1177 // int iq = (int)fq; 1178 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1179 1180 // fr = fabs(fr); 1181 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1182 1183 // fb = fabs(fb); 1184 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1185 1186 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1187 1188 // int cv = fr >= fb; 1189 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1190 1191 // jq = (cv ? jq : 0); 1192 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1193 1194 // dst = iq + jq; 1195 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1196 1197 // Rem needs compensation, it's easier to recompute it 1198 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1199 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1200 1201 // Truncate to number of bits this divide really is. 1202 if (Sign) { 1203 SDValue InRegSize 1204 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1205 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1206 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1207 } else { 1208 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1209 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1210 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1211 } 1212 1213 return DAG.getMergeValues({ Div, Rem }, DL); 1214 } 1215 1216 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1217 SelectionDAG &DAG, 1218 SmallVectorImpl<SDValue> &Results) const { 1219 assert(Op.getValueType() == MVT::i64); 1220 1221 SDLoc DL(Op); 1222 EVT VT = Op.getValueType(); 1223 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1224 1225 SDValue one = DAG.getConstant(1, DL, HalfVT); 1226 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1227 1228 //HiLo split 1229 SDValue LHS = Op.getOperand(0); 1230 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1231 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1232 1233 SDValue RHS = Op.getOperand(1); 1234 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1235 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1236 1237 if (VT == MVT::i64 && 1238 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1239 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1240 1241 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1242 LHS_Lo, RHS_Lo); 1243 1244 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1245 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1246 1247 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1248 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1249 return; 1250 } 1251 1252 // Get Speculative values 1253 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1254 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1255 1256 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1257 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1258 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1259 1260 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1261 SDValue DIV_Lo = zero; 1262 1263 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1264 1265 for (unsigned i = 0; i < halfBitWidth; ++i) { 1266 const unsigned bitPos = halfBitWidth - i - 1; 1267 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1268 // Get value of high bit 1269 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1270 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1271 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1272 1273 // Shift 1274 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1275 // Add LHS high bit 1276 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1277 1278 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1279 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1280 1281 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1282 1283 // Update REM 1284 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1285 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1286 } 1287 1288 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1289 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1290 Results.push_back(DIV); 1291 Results.push_back(REM); 1292 } 1293 1294 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1295 SelectionDAG &DAG) const { 1296 SDLoc DL(Op); 1297 EVT VT = Op.getValueType(); 1298 1299 if (VT == MVT::i64) { 1300 SmallVector<SDValue, 2> Results; 1301 LowerUDIVREM64(Op, DAG, Results); 1302 return DAG.getMergeValues(Results, DL); 1303 } 1304 1305 if (VT == MVT::i32) { 1306 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1307 return Res; 1308 } 1309 1310 SDValue Num = Op.getOperand(0); 1311 SDValue Den = Op.getOperand(1); 1312 1313 // RCP = URECIP(Den) = 2^32 / Den + e 1314 // e is rounding error. 1315 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1316 1317 // RCP_LO = mul(RCP, Den) */ 1318 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1319 1320 // RCP_HI = mulhu (RCP, Den) */ 1321 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1322 1323 // NEG_RCP_LO = -RCP_LO 1324 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1325 RCP_LO); 1326 1327 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1328 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1329 NEG_RCP_LO, RCP_LO, 1330 ISD::SETEQ); 1331 // Calculate the rounding error from the URECIP instruction 1332 // E = mulhu(ABS_RCP_LO, RCP) 1333 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1334 1335 // RCP_A_E = RCP + E 1336 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1337 1338 // RCP_S_E = RCP - E 1339 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1340 1341 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1342 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1343 RCP_A_E, RCP_S_E, 1344 ISD::SETEQ); 1345 // Quotient = mulhu(Tmp0, Num) 1346 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1347 1348 // Num_S_Remainder = Quotient * Den 1349 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1350 1351 // Remainder = Num - Num_S_Remainder 1352 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1353 1354 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1355 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1356 DAG.getConstant(-1, DL, VT), 1357 DAG.getConstant(0, DL, VT), 1358 ISD::SETUGE); 1359 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1360 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1361 Num_S_Remainder, 1362 DAG.getConstant(-1, DL, VT), 1363 DAG.getConstant(0, DL, VT), 1364 ISD::SETUGE); 1365 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1366 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1367 Remainder_GE_Zero); 1368 1369 // Calculate Division result: 1370 1371 // Quotient_A_One = Quotient + 1 1372 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1373 DAG.getConstant(1, DL, VT)); 1374 1375 // Quotient_S_One = Quotient - 1 1376 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1377 DAG.getConstant(1, DL, VT)); 1378 1379 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1380 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1381 Quotient, Quotient_A_One, ISD::SETEQ); 1382 1383 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1384 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1385 Quotient_S_One, Div, ISD::SETEQ); 1386 1387 // Calculate Rem result: 1388 1389 // Remainder_S_Den = Remainder - Den 1390 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1391 1392 // Remainder_A_Den = Remainder + Den 1393 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1394 1395 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1396 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1397 Remainder, Remainder_S_Den, ISD::SETEQ); 1398 1399 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1400 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1401 Remainder_A_Den, Rem, ISD::SETEQ); 1402 SDValue Ops[2] = { 1403 Div, 1404 Rem 1405 }; 1406 return DAG.getMergeValues(Ops, DL); 1407 } 1408 1409 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1410 SelectionDAG &DAG) const { 1411 SDLoc DL(Op); 1412 EVT VT = Op.getValueType(); 1413 1414 SDValue LHS = Op.getOperand(0); 1415 SDValue RHS = Op.getOperand(1); 1416 1417 SDValue Zero = DAG.getConstant(0, DL, VT); 1418 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1419 1420 if (VT == MVT::i32) { 1421 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1422 return Res; 1423 } 1424 1425 if (VT == MVT::i64 && 1426 DAG.ComputeNumSignBits(LHS) > 32 && 1427 DAG.ComputeNumSignBits(RHS) > 32) { 1428 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1429 1430 //HiLo split 1431 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1432 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1433 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1434 LHS_Lo, RHS_Lo); 1435 SDValue Res[2] = { 1436 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1437 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1438 }; 1439 return DAG.getMergeValues(Res, DL); 1440 } 1441 1442 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1443 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1444 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1445 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1446 1447 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1448 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1449 1450 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1451 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1452 1453 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1454 SDValue Rem = Div.getValue(1); 1455 1456 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1457 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1458 1459 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1460 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1461 1462 SDValue Res[2] = { 1463 Div, 1464 Rem 1465 }; 1466 return DAG.getMergeValues(Res, DL); 1467 } 1468 1469 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1470 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1471 SDLoc SL(Op); 1472 EVT VT = Op.getValueType(); 1473 SDValue X = Op.getOperand(0); 1474 SDValue Y = Op.getOperand(1); 1475 1476 // TODO: Should this propagate fast-math-flags? 1477 1478 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1479 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1480 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1481 1482 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1483 } 1484 1485 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1486 SDLoc SL(Op); 1487 SDValue Src = Op.getOperand(0); 1488 1489 // result = trunc(src) 1490 // if (src > 0.0 && src != result) 1491 // result += 1.0 1492 1493 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1494 1495 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1496 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1497 1498 EVT SetCCVT = 1499 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1500 1501 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1502 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1503 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1504 1505 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1506 // TODO: Should this propagate fast-math-flags? 1507 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1508 } 1509 1510 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1511 SelectionDAG &DAG) { 1512 const unsigned FractBits = 52; 1513 const unsigned ExpBits = 11; 1514 1515 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1516 Hi, 1517 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1518 DAG.getConstant(ExpBits, SL, MVT::i32)); 1519 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1520 DAG.getConstant(1023, SL, MVT::i32)); 1521 1522 return Exp; 1523 } 1524 1525 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1526 SDLoc SL(Op); 1527 SDValue Src = Op.getOperand(0); 1528 1529 assert(Op.getValueType() == MVT::f64); 1530 1531 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1532 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1533 1534 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1535 1536 // Extract the upper half, since this is where we will find the sign and 1537 // exponent. 1538 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1539 1540 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1541 1542 const unsigned FractBits = 52; 1543 1544 // Extract the sign bit. 1545 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1546 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1547 1548 // Extend back to to 64-bits. 1549 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1550 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1551 1552 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1553 const SDValue FractMask 1554 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1555 1556 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1557 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1558 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1559 1560 EVT SetCCVT = 1561 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1562 1563 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1564 1565 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1566 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1567 1568 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1569 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1570 1571 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1572 } 1573 1574 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1575 SDLoc SL(Op); 1576 SDValue Src = Op.getOperand(0); 1577 1578 assert(Op.getValueType() == MVT::f64); 1579 1580 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 1581 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1582 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1583 1584 // TODO: Should this propagate fast-math-flags? 1585 1586 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1587 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1588 1589 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1590 1591 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 1592 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1593 1594 EVT SetCCVT = 1595 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1596 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1597 1598 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1599 } 1600 1601 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1602 // FNEARBYINT and FRINT are the same, except in their handling of FP 1603 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1604 // rint, so just treat them as equivalent. 1605 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1606 } 1607 1608 // XXX - May require not supporting f32 denormals? 1609 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1610 SDLoc SL(Op); 1611 SDValue X = Op.getOperand(0); 1612 1613 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1614 1615 // TODO: Should this propagate fast-math-flags? 1616 1617 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1618 1619 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1620 1621 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1622 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1623 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1624 1625 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1626 1627 EVT SetCCVT = 1628 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1629 1630 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1631 1632 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1633 1634 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1635 } 1636 1637 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1638 SDLoc SL(Op); 1639 SDValue X = Op.getOperand(0); 1640 1641 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1642 1643 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1644 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1645 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1646 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1647 EVT SetCCVT = 1648 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1649 1650 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1651 1652 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1653 1654 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1655 1656 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1657 MVT::i64); 1658 1659 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1660 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1661 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1662 MVT::i64), 1663 Exp); 1664 1665 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1666 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1667 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1668 ISD::SETNE); 1669 1670 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1671 D, DAG.getConstant(0, SL, MVT::i64)); 1672 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1673 1674 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1675 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1676 1677 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1678 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1679 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1680 1681 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1682 ExpEqNegOne, 1683 DAG.getConstantFP(1.0, SL, MVT::f64), 1684 DAG.getConstantFP(0.0, SL, MVT::f64)); 1685 1686 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1687 1688 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1689 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1690 1691 return K; 1692 } 1693 1694 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1695 EVT VT = Op.getValueType(); 1696 1697 if (VT == MVT::f32) 1698 return LowerFROUND32(Op, DAG); 1699 1700 if (VT == MVT::f64) 1701 return LowerFROUND64(Op, DAG); 1702 1703 llvm_unreachable("unhandled type"); 1704 } 1705 1706 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1707 SDLoc SL(Op); 1708 SDValue Src = Op.getOperand(0); 1709 1710 // result = trunc(src); 1711 // if (src < 0.0 && src != result) 1712 // result += -1.0. 1713 1714 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1715 1716 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1717 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1718 1719 EVT SetCCVT = 1720 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1721 1722 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1723 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1724 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1725 1726 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1727 // TODO: Should this propagate fast-math-flags? 1728 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1729 } 1730 1731 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1732 SDLoc SL(Op); 1733 SDValue Src = Op.getOperand(0); 1734 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1735 1736 if (ZeroUndef && Src.getValueType() == MVT::i32) 1737 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1738 1739 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1740 1741 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1742 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1743 1744 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1745 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1746 1747 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1748 *DAG.getContext(), MVT::i32); 1749 1750 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1751 1752 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1753 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1754 1755 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1756 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1757 1758 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1759 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1760 1761 if (!ZeroUndef) { 1762 // Test if the full 64-bit input is zero. 1763 1764 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1765 // which we probably don't want. 1766 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1767 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1768 1769 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1770 // with the same cycles, otherwise it is slower. 1771 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1772 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1773 1774 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1775 1776 // The instruction returns -1 for 0 input, but the defined intrinsic 1777 // behavior is to return the number of bits. 1778 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1779 SrcIsZero, Bits32, NewCtlz); 1780 } 1781 1782 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1783 } 1784 1785 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1786 bool Signed) const { 1787 // Unsigned 1788 // cul2f(ulong u) 1789 //{ 1790 // uint lz = clz(u); 1791 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1792 // u = (u << lz) & 0x7fffffffffffffffUL; 1793 // ulong t = u & 0xffffffffffUL; 1794 // uint v = (e << 23) | (uint)(u >> 40); 1795 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1796 // return as_float(v + r); 1797 //} 1798 // Signed 1799 // cl2f(long l) 1800 //{ 1801 // long s = l >> 63; 1802 // float r = cul2f((l + s) ^ s); 1803 // return s ? -r : r; 1804 //} 1805 1806 SDLoc SL(Op); 1807 SDValue Src = Op.getOperand(0); 1808 SDValue L = Src; 1809 1810 SDValue S; 1811 if (Signed) { 1812 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1813 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1814 1815 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1816 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1817 } 1818 1819 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1820 *DAG.getContext(), MVT::f32); 1821 1822 1823 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1824 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1825 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1826 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1827 1828 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1829 SDValue E = DAG.getSelect(SL, MVT::i32, 1830 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1831 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1832 ZeroI32); 1833 1834 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1835 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1836 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1837 1838 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1839 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1840 1841 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1842 U, DAG.getConstant(40, SL, MVT::i64)); 1843 1844 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1845 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1846 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1847 1848 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1849 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1850 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 1851 1852 SDValue One = DAG.getConstant(1, SL, MVT::i32); 1853 1854 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 1855 1856 SDValue R = DAG.getSelect(SL, MVT::i32, 1857 RCmp, 1858 One, 1859 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 1860 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 1861 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 1862 1863 if (!Signed) 1864 return R; 1865 1866 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 1867 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 1868 } 1869 1870 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 1871 bool Signed) const { 1872 SDLoc SL(Op); 1873 SDValue Src = Op.getOperand(0); 1874 1875 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1876 1877 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1878 DAG.getConstant(0, SL, MVT::i32)); 1879 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1880 DAG.getConstant(1, SL, MVT::i32)); 1881 1882 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 1883 SL, MVT::f64, Hi); 1884 1885 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 1886 1887 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 1888 DAG.getConstant(32, SL, MVT::i32)); 1889 // TODO: Should this propagate fast-math-flags? 1890 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 1891 } 1892 1893 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 1894 SelectionDAG &DAG) const { 1895 assert(Op.getOperand(0).getValueType() == MVT::i64 && 1896 "operation should be legal"); 1897 1898 EVT DestVT = Op.getValueType(); 1899 if (DestVT == MVT::f64) 1900 return LowerINT_TO_FP64(Op, DAG, false); 1901 1902 if (DestVT == MVT::f32) 1903 return LowerINT_TO_FP32(Op, DAG, false); 1904 1905 return SDValue(); 1906 } 1907 1908 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 1909 SelectionDAG &DAG) const { 1910 assert(Op.getOperand(0).getValueType() == MVT::i64 && 1911 "operation should be legal"); 1912 1913 EVT DestVT = Op.getValueType(); 1914 if (DestVT == MVT::f32) 1915 return LowerINT_TO_FP32(Op, DAG, true); 1916 1917 if (DestVT == MVT::f64) 1918 return LowerINT_TO_FP64(Op, DAG, true); 1919 1920 return SDValue(); 1921 } 1922 1923 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 1924 bool Signed) const { 1925 SDLoc SL(Op); 1926 1927 SDValue Src = Op.getOperand(0); 1928 1929 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1930 1931 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 1932 MVT::f64); 1933 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 1934 MVT::f64); 1935 // TODO: Should this propagate fast-math-flags? 1936 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 1937 1938 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 1939 1940 1941 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 1942 1943 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 1944 MVT::i32, FloorMul); 1945 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 1946 1947 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 1948 1949 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 1950 } 1951 1952 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 1953 SelectionDAG &DAG) const { 1954 SDValue Src = Op.getOperand(0); 1955 1956 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 1957 return LowerFP64_TO_INT(Op, DAG, true); 1958 1959 return SDValue(); 1960 } 1961 1962 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 1963 SelectionDAG &DAG) const { 1964 SDValue Src = Op.getOperand(0); 1965 1966 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 1967 return LowerFP64_TO_INT(Op, DAG, false); 1968 1969 return SDValue(); 1970 } 1971 1972 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1973 SelectionDAG &DAG) const { 1974 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1975 MVT VT = Op.getSimpleValueType(); 1976 MVT ScalarVT = VT.getScalarType(); 1977 1978 if (!VT.isVector()) 1979 return SDValue(); 1980 1981 SDValue Src = Op.getOperand(0); 1982 SDLoc DL(Op); 1983 1984 // TODO: Don't scalarize on Evergreen? 1985 unsigned NElts = VT.getVectorNumElements(); 1986 SmallVector<SDValue, 8> Args; 1987 DAG.ExtractVectorElements(Src, Args, 0, NElts); 1988 1989 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 1990 for (unsigned I = 0; I < NElts; ++I) 1991 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 1992 1993 return DAG.getBuildVector(VT, DL, Args); 1994 } 1995 1996 //===----------------------------------------------------------------------===// 1997 // Custom DAG optimizations 1998 //===----------------------------------------------------------------------===// 1999 2000 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2001 APInt KnownZero, KnownOne; 2002 EVT VT = Op.getValueType(); 2003 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2004 2005 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2006 } 2007 2008 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2009 EVT VT = Op.getValueType(); 2010 2011 // In order for this to be a signed 24-bit value, bit 23, must 2012 // be a sign bit. 2013 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2014 // as unsigned 24-bit values. 2015 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2016 } 2017 2018 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2019 2020 SelectionDAG &DAG = DCI.DAG; 2021 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2022 EVT VT = Op.getValueType(); 2023 2024 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2025 APInt KnownZero, KnownOne; 2026 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2027 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2028 DCI.CommitTargetLoweringOpt(TLO); 2029 } 2030 2031 template <typename IntTy> 2032 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2033 uint32_t Width, const SDLoc &DL) { 2034 if (Width + Offset < 32) { 2035 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2036 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2037 return DAG.getConstant(Result, DL, MVT::i32); 2038 } 2039 2040 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2041 } 2042 2043 static bool hasVolatileUser(SDNode *Val) { 2044 for (SDNode *U : Val->uses()) { 2045 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2046 if (M->isVolatile()) 2047 return true; 2048 } 2049 } 2050 2051 return false; 2052 } 2053 2054 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2055 // i32 vectors are the canonical memory type. 2056 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2057 return false; 2058 2059 if (!VT.isByteSized()) 2060 return false; 2061 2062 unsigned Size = VT.getStoreSize(); 2063 2064 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2065 return false; 2066 2067 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2068 return false; 2069 2070 return true; 2071 } 2072 2073 // Replace load of an illegal type with a store of a bitcast to a friendlier 2074 // type. 2075 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2076 DAGCombinerInfo &DCI) const { 2077 if (!DCI.isBeforeLegalize()) 2078 return SDValue(); 2079 2080 LoadSDNode *LN = cast<LoadSDNode>(N); 2081 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2082 return SDValue(); 2083 2084 SDLoc SL(N); 2085 SelectionDAG &DAG = DCI.DAG; 2086 EVT VT = LN->getMemoryVT(); 2087 2088 unsigned Size = VT.getStoreSize(); 2089 unsigned Align = LN->getAlignment(); 2090 if (Align < Size && isTypeLegal(VT)) { 2091 bool IsFast; 2092 unsigned AS = LN->getAddressSpace(); 2093 2094 // Expand unaligned loads earlier than legalization. Due to visitation order 2095 // problems during legalization, the emitted instructions to pack and unpack 2096 // the bytes again are not eliminated in the case of an unaligned copy. 2097 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2098 SDValue Ops[2]; 2099 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2100 return DAG.getMergeValues(Ops, SDLoc(N)); 2101 } 2102 2103 if (!IsFast) 2104 return SDValue(); 2105 } 2106 2107 if (!shouldCombineMemoryType(VT)) 2108 return SDValue(); 2109 2110 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2111 2112 SDValue NewLoad 2113 = DAG.getLoad(NewVT, SL, LN->getChain(), 2114 LN->getBasePtr(), LN->getMemOperand()); 2115 2116 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2117 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2118 return SDValue(N, 0); 2119 } 2120 2121 // Replace store of an illegal type with a store of a bitcast to a friendlier 2122 // type. 2123 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2124 DAGCombinerInfo &DCI) const { 2125 if (!DCI.isBeforeLegalize()) 2126 return SDValue(); 2127 2128 StoreSDNode *SN = cast<StoreSDNode>(N); 2129 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2130 return SDValue(); 2131 2132 EVT VT = SN->getMemoryVT(); 2133 unsigned Size = VT.getStoreSize(); 2134 2135 SDLoc SL(N); 2136 SelectionDAG &DAG = DCI.DAG; 2137 unsigned Align = SN->getAlignment(); 2138 if (Align < Size && isTypeLegal(VT)) { 2139 bool IsFast; 2140 unsigned AS = SN->getAddressSpace(); 2141 2142 // Expand unaligned stores earlier than legalization. Due to visitation 2143 // order problems during legalization, the emitted instructions to pack and 2144 // unpack the bytes again are not eliminated in the case of an unaligned 2145 // copy. 2146 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) 2147 return expandUnalignedStore(SN, DAG); 2148 2149 if (!IsFast) 2150 return SDValue(); 2151 } 2152 2153 if (!shouldCombineMemoryType(VT)) 2154 return SDValue(); 2155 2156 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2157 SDValue Val = SN->getValue(); 2158 2159 //DCI.AddToWorklist(Val.getNode()); 2160 2161 bool OtherUses = !Val.hasOneUse(); 2162 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2163 if (OtherUses) { 2164 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2165 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2166 } 2167 2168 return DAG.getStore(SN->getChain(), SL, CastVal, 2169 SN->getBasePtr(), SN->getMemOperand()); 2170 } 2171 2172 // TODO: Should repeat for other bit ops. 2173 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N, 2174 DAGCombinerInfo &DCI) const { 2175 if (N->getValueType(0) != MVT::i64) 2176 return SDValue(); 2177 2178 // Break up 64-bit and of a constant into two 32-bit ands. This will typically 2179 // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer 2180 // combine opportunities since most 64-bit operations are decomposed this way. 2181 // TODO: We won't want this for SALU especially if it is an inline immediate. 2182 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2183 if (!RHS) 2184 return SDValue(); 2185 2186 uint64_t Val = RHS->getZExtValue(); 2187 if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) { 2188 // If either half of the constant is 0, this is really a 32-bit and, so 2189 // split it. If we can re-use the full materialized constant, keep it. 2190 return SDValue(); 2191 } 2192 2193 SDLoc SL(N); 2194 SelectionDAG &DAG = DCI.DAG; 2195 2196 SDValue Lo, Hi; 2197 std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG); 2198 2199 SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32); 2200 SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32); 2201 2202 SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS); 2203 SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS); 2204 2205 // Re-visit the ands. It's possible we eliminated one of them and it could 2206 // simplify the vector. 2207 DCI.AddToWorklist(Lo.getNode()); 2208 DCI.AddToWorklist(Hi.getNode()); 2209 2210 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2211 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2212 } 2213 2214 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2215 DAGCombinerInfo &DCI) const { 2216 if (N->getValueType(0) != MVT::i64) 2217 return SDValue(); 2218 2219 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2220 2221 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2222 // common case, splitting this into a move and a 32-bit shift is faster and 2223 // the same code size. 2224 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2225 if (!RHS) 2226 return SDValue(); 2227 2228 unsigned RHSVal = RHS->getZExtValue(); 2229 if (RHSVal < 32) 2230 return SDValue(); 2231 2232 SDValue LHS = N->getOperand(0); 2233 2234 SDLoc SL(N); 2235 SelectionDAG &DAG = DCI.DAG; 2236 2237 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2238 2239 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2240 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2241 2242 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2243 2244 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2245 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2246 } 2247 2248 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2249 DAGCombinerInfo &DCI) const { 2250 if (N->getValueType(0) != MVT::i64) 2251 return SDValue(); 2252 2253 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2254 if (!RHS) 2255 return SDValue(); 2256 2257 SelectionDAG &DAG = DCI.DAG; 2258 SDLoc SL(N); 2259 unsigned RHSVal = RHS->getZExtValue(); 2260 2261 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2262 if (RHSVal == 32) { 2263 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2264 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2265 DAG.getConstant(31, SL, MVT::i32)); 2266 2267 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2268 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2269 } 2270 2271 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2272 if (RHSVal == 63) { 2273 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2274 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2275 DAG.getConstant(31, SL, MVT::i32)); 2276 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2277 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2278 } 2279 2280 return SDValue(); 2281 } 2282 2283 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2284 DAGCombinerInfo &DCI) const { 2285 if (N->getValueType(0) != MVT::i64) 2286 return SDValue(); 2287 2288 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2289 if (!RHS) 2290 return SDValue(); 2291 2292 unsigned ShiftAmt = RHS->getZExtValue(); 2293 if (ShiftAmt < 32) 2294 return SDValue(); 2295 2296 // srl i64:x, C for C >= 32 2297 // => 2298 // build_pair (srl hi_32(x), C - 32), 0 2299 2300 SelectionDAG &DAG = DCI.DAG; 2301 SDLoc SL(N); 2302 2303 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2304 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2305 2306 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2307 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2308 VecOp, One); 2309 2310 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2311 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2312 2313 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2314 2315 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2316 } 2317 2318 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2319 DAGCombinerInfo &DCI) const { 2320 EVT VT = N->getValueType(0); 2321 2322 if (VT.isVector() || VT.getSizeInBits() > 32) 2323 return SDValue(); 2324 2325 SelectionDAG &DAG = DCI.DAG; 2326 SDLoc DL(N); 2327 2328 SDValue N0 = N->getOperand(0); 2329 SDValue N1 = N->getOperand(1); 2330 SDValue Mul; 2331 2332 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2333 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2334 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2335 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2336 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2337 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2338 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2339 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2340 } else { 2341 return SDValue(); 2342 } 2343 2344 // We need to use sext even for MUL_U24, because MUL_U24 is used 2345 // for signed multiply of 8 and 16-bit types. 2346 return DAG.getSExtOrTrunc(Mul, DL, VT); 2347 } 2348 2349 static bool isNegativeOne(SDValue Val) { 2350 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2351 return C->isAllOnesValue(); 2352 return false; 2353 } 2354 2355 static bool isCtlzOpc(unsigned Opc) { 2356 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2357 } 2358 2359 // Get FFBH node if the incoming op may have been type legalized from a smaller 2360 // type VT. 2361 // Need to match pre-legalized type because the generic legalization inserts the 2362 // add/sub between the select and compare. 2363 static SDValue getFFBH_U32(const TargetLowering &TLI, SelectionDAG &DAG, 2364 const SDLoc &SL, SDValue Op) { 2365 EVT VT = Op.getValueType(); 2366 EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2367 if (LegalVT != MVT::i32) 2368 return SDValue(); 2369 2370 if (VT != MVT::i32) 2371 Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op); 2372 2373 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op); 2374 if (VT != MVT::i32) 2375 FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH); 2376 2377 return FFBH; 2378 } 2379 2380 // The native instructions return -1 on 0 input. Optimize out a select that 2381 // produces -1 on 0. 2382 // 2383 // TODO: If zero is not undef, we could also do this if the output is compared 2384 // against the bitwidth. 2385 // 2386 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2387 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2388 SDValue LHS, SDValue RHS, 2389 DAGCombinerInfo &DCI) const { 2390 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2391 if (!CmpRhs || !CmpRhs->isNullValue()) 2392 return SDValue(); 2393 2394 SelectionDAG &DAG = DCI.DAG; 2395 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2396 SDValue CmpLHS = Cond.getOperand(0); 2397 2398 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2399 if (CCOpcode == ISD::SETEQ && 2400 isCtlzOpc(RHS.getOpcode()) && 2401 RHS.getOperand(0) == CmpLHS && 2402 isNegativeOne(LHS)) { 2403 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2404 } 2405 2406 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2407 if (CCOpcode == ISD::SETNE && 2408 isCtlzOpc(LHS.getOpcode()) && 2409 LHS.getOperand(0) == CmpLHS && 2410 isNegativeOne(RHS)) { 2411 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2412 } 2413 2414 return SDValue(); 2415 } 2416 2417 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2418 DAGCombinerInfo &DCI) const { 2419 SDValue Cond = N->getOperand(0); 2420 if (Cond.getOpcode() != ISD::SETCC) 2421 return SDValue(); 2422 2423 EVT VT = N->getValueType(0); 2424 SDValue LHS = Cond.getOperand(0); 2425 SDValue RHS = Cond.getOperand(1); 2426 SDValue CC = Cond.getOperand(2); 2427 2428 SDValue True = N->getOperand(1); 2429 SDValue False = N->getOperand(2); 2430 2431 if (VT == MVT::f32 && Cond.hasOneUse()) { 2432 SDValue MinMax 2433 = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2434 // Revisit this node so we can catch min3/max3/med3 patterns. 2435 //DCI.AddToWorklist(MinMax.getNode()); 2436 return MinMax; 2437 } 2438 2439 // There's no reason to not do this if the condition has other uses. 2440 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2441 } 2442 2443 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2444 DAGCombinerInfo &DCI) const { 2445 SelectionDAG &DAG = DCI.DAG; 2446 SDLoc DL(N); 2447 2448 switch(N->getOpcode()) { 2449 default: 2450 break; 2451 case ISD::BITCAST: { 2452 EVT DestVT = N->getValueType(0); 2453 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 2454 break; 2455 2456 // Fold bitcasts of constants. 2457 // 2458 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 2459 // TODO: Generalize and move to DAGCombiner 2460 SDValue Src = N->getOperand(0); 2461 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 2462 assert(Src.getValueType() == MVT::i64); 2463 SDLoc SL(N); 2464 uint64_t CVal = C->getZExtValue(); 2465 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 2466 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2467 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2468 } 2469 2470 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 2471 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 2472 SDLoc SL(N); 2473 uint64_t CVal = Val.getZExtValue(); 2474 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2475 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2476 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2477 2478 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 2479 } 2480 2481 break; 2482 } 2483 case ISD::SHL: { 2484 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2485 break; 2486 2487 return performShlCombine(N, DCI); 2488 } 2489 case ISD::SRL: { 2490 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2491 break; 2492 2493 return performSrlCombine(N, DCI); 2494 } 2495 case ISD::SRA: { 2496 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2497 break; 2498 2499 return performSraCombine(N, DCI); 2500 } 2501 case ISD::AND: { 2502 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2503 break; 2504 2505 return performAndCombine(N, DCI); 2506 } 2507 case ISD::MUL: 2508 return performMulCombine(N, DCI); 2509 case AMDGPUISD::MUL_I24: 2510 case AMDGPUISD::MUL_U24: { 2511 SDValue N0 = N->getOperand(0); 2512 SDValue N1 = N->getOperand(1); 2513 simplifyI24(N0, DCI); 2514 simplifyI24(N1, DCI); 2515 return SDValue(); 2516 } 2517 case ISD::SELECT: 2518 return performSelectCombine(N, DCI); 2519 case AMDGPUISD::BFE_I32: 2520 case AMDGPUISD::BFE_U32: { 2521 assert(!N->getValueType(0).isVector() && 2522 "Vector handling of BFE not implemented"); 2523 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2524 if (!Width) 2525 break; 2526 2527 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2528 if (WidthVal == 0) 2529 return DAG.getConstant(0, DL, MVT::i32); 2530 2531 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2532 if (!Offset) 2533 break; 2534 2535 SDValue BitsFrom = N->getOperand(0); 2536 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2537 2538 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2539 2540 if (OffsetVal == 0) { 2541 // This is already sign / zero extended, so try to fold away extra BFEs. 2542 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2543 2544 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2545 if (OpSignBits >= SignBits) 2546 return BitsFrom; 2547 2548 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2549 if (Signed) { 2550 // This is a sign_extend_inreg. Replace it to take advantage of existing 2551 // DAG Combines. If not eliminated, we will match back to BFE during 2552 // selection. 2553 2554 // TODO: The sext_inreg of extended types ends, although we can could 2555 // handle them in a single BFE. 2556 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2557 DAG.getValueType(SmallVT)); 2558 } 2559 2560 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2561 } 2562 2563 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2564 if (Signed) { 2565 return constantFoldBFE<int32_t>(DAG, 2566 CVal->getSExtValue(), 2567 OffsetVal, 2568 WidthVal, 2569 DL); 2570 } 2571 2572 return constantFoldBFE<uint32_t>(DAG, 2573 CVal->getZExtValue(), 2574 OffsetVal, 2575 WidthVal, 2576 DL); 2577 } 2578 2579 if ((OffsetVal + WidthVal) >= 32) { 2580 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2581 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2582 BitsFrom, ShiftVal); 2583 } 2584 2585 if (BitsFrom.hasOneUse()) { 2586 APInt Demanded = APInt::getBitsSet(32, 2587 OffsetVal, 2588 OffsetVal + WidthVal); 2589 2590 APInt KnownZero, KnownOne; 2591 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2592 !DCI.isBeforeLegalizeOps()); 2593 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2594 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2595 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2596 KnownZero, KnownOne, TLO)) { 2597 DCI.CommitTargetLoweringOpt(TLO); 2598 } 2599 } 2600 2601 break; 2602 } 2603 case ISD::LOAD: 2604 return performLoadCombine(N, DCI); 2605 case ISD::STORE: 2606 return performStoreCombine(N, DCI); 2607 } 2608 return SDValue(); 2609 } 2610 2611 //===----------------------------------------------------------------------===// 2612 // Helper functions 2613 //===----------------------------------------------------------------------===// 2614 2615 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2616 SelectionDAG &DAG, 2617 const Function *F, 2618 const SmallVectorImpl<ISD::InputArg> &Ins, 2619 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2620 2621 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2622 if (Ins[i].ArgVT == Ins[i].VT) { 2623 OrigIns.push_back(Ins[i]); 2624 continue; 2625 } 2626 2627 EVT VT; 2628 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2629 // Vector has been split into scalars. 2630 VT = Ins[i].ArgVT.getVectorElementType(); 2631 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2632 Ins[i].ArgVT.getVectorElementType() != 2633 Ins[i].VT.getVectorElementType()) { 2634 // Vector elements have been promoted 2635 VT = Ins[i].ArgVT; 2636 } else { 2637 // Vector has been spilt into smaller vectors. 2638 VT = Ins[i].VT; 2639 } 2640 2641 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2642 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2643 OrigIns.push_back(Arg); 2644 } 2645 } 2646 2647 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2648 const TargetRegisterClass *RC, 2649 unsigned Reg, EVT VT) const { 2650 MachineFunction &MF = DAG.getMachineFunction(); 2651 MachineRegisterInfo &MRI = MF.getRegInfo(); 2652 unsigned VirtualRegister; 2653 if (!MRI.isLiveIn(Reg)) { 2654 VirtualRegister = MRI.createVirtualRegister(RC); 2655 MRI.addLiveIn(Reg, VirtualRegister); 2656 } else { 2657 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2658 } 2659 return DAG.getRegister(VirtualRegister, VT); 2660 } 2661 2662 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2663 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2664 uint64_t ArgOffset = MFI->ABIArgOffset; 2665 switch (Param) { 2666 case GRID_DIM: 2667 return ArgOffset; 2668 case GRID_OFFSET: 2669 return ArgOffset + 4; 2670 } 2671 llvm_unreachable("unexpected implicit parameter type"); 2672 } 2673 2674 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2675 2676 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2677 switch ((AMDGPUISD::NodeType)Opcode) { 2678 case AMDGPUISD::FIRST_NUMBER: break; 2679 // AMDIL DAG nodes 2680 NODE_NAME_CASE(CALL); 2681 NODE_NAME_CASE(UMUL); 2682 NODE_NAME_CASE(BRANCH_COND); 2683 2684 // AMDGPU DAG nodes 2685 NODE_NAME_CASE(ENDPGM) 2686 NODE_NAME_CASE(RETURN) 2687 NODE_NAME_CASE(DWORDADDR) 2688 NODE_NAME_CASE(FRACT) 2689 NODE_NAME_CASE(CLAMP) 2690 NODE_NAME_CASE(COS_HW) 2691 NODE_NAME_CASE(SIN_HW) 2692 NODE_NAME_CASE(FMAX_LEGACY) 2693 NODE_NAME_CASE(FMIN_LEGACY) 2694 NODE_NAME_CASE(FMAX3) 2695 NODE_NAME_CASE(SMAX3) 2696 NODE_NAME_CASE(UMAX3) 2697 NODE_NAME_CASE(FMIN3) 2698 NODE_NAME_CASE(SMIN3) 2699 NODE_NAME_CASE(UMIN3) 2700 NODE_NAME_CASE(FMED3) 2701 NODE_NAME_CASE(SMED3) 2702 NODE_NAME_CASE(UMED3) 2703 NODE_NAME_CASE(URECIP) 2704 NODE_NAME_CASE(DIV_SCALE) 2705 NODE_NAME_CASE(DIV_FMAS) 2706 NODE_NAME_CASE(DIV_FIXUP) 2707 NODE_NAME_CASE(TRIG_PREOP) 2708 NODE_NAME_CASE(RCP) 2709 NODE_NAME_CASE(RSQ) 2710 NODE_NAME_CASE(RSQ_LEGACY) 2711 NODE_NAME_CASE(RSQ_CLAMP) 2712 NODE_NAME_CASE(LDEXP) 2713 NODE_NAME_CASE(FP_CLASS) 2714 NODE_NAME_CASE(DOT4) 2715 NODE_NAME_CASE(CARRY) 2716 NODE_NAME_CASE(BORROW) 2717 NODE_NAME_CASE(BFE_U32) 2718 NODE_NAME_CASE(BFE_I32) 2719 NODE_NAME_CASE(BFI) 2720 NODE_NAME_CASE(BFM) 2721 NODE_NAME_CASE(FFBH_U32) 2722 NODE_NAME_CASE(FFBH_I32) 2723 NODE_NAME_CASE(MUL_U24) 2724 NODE_NAME_CASE(MUL_I24) 2725 NODE_NAME_CASE(MAD_U24) 2726 NODE_NAME_CASE(MAD_I24) 2727 NODE_NAME_CASE(TEXTURE_FETCH) 2728 NODE_NAME_CASE(EXPORT) 2729 NODE_NAME_CASE(CONST_ADDRESS) 2730 NODE_NAME_CASE(REGISTER_LOAD) 2731 NODE_NAME_CASE(REGISTER_STORE) 2732 NODE_NAME_CASE(LOAD_INPUT) 2733 NODE_NAME_CASE(SAMPLE) 2734 NODE_NAME_CASE(SAMPLEB) 2735 NODE_NAME_CASE(SAMPLED) 2736 NODE_NAME_CASE(SAMPLEL) 2737 NODE_NAME_CASE(CVT_F32_UBYTE0) 2738 NODE_NAME_CASE(CVT_F32_UBYTE1) 2739 NODE_NAME_CASE(CVT_F32_UBYTE2) 2740 NODE_NAME_CASE(CVT_F32_UBYTE3) 2741 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2742 NODE_NAME_CASE(CONST_DATA_PTR) 2743 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 2744 NODE_NAME_CASE(KILL) 2745 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2746 NODE_NAME_CASE(SENDMSG) 2747 NODE_NAME_CASE(INTERP_MOV) 2748 NODE_NAME_CASE(INTERP_P1) 2749 NODE_NAME_CASE(INTERP_P2) 2750 NODE_NAME_CASE(STORE_MSKOR) 2751 NODE_NAME_CASE(LOAD_CONSTANT) 2752 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2753 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 2754 NODE_NAME_CASE(ATOMIC_INC) 2755 NODE_NAME_CASE(ATOMIC_DEC) 2756 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2757 } 2758 return nullptr; 2759 } 2760 2761 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2762 DAGCombinerInfo &DCI, 2763 unsigned &RefinementSteps, 2764 bool &UseOneConstNR) const { 2765 SelectionDAG &DAG = DCI.DAG; 2766 EVT VT = Operand.getValueType(); 2767 2768 if (VT == MVT::f32) { 2769 RefinementSteps = 0; 2770 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2771 } 2772 2773 // TODO: There is also f64 rsq instruction, but the documentation is less 2774 // clear on its precision. 2775 2776 return SDValue(); 2777 } 2778 2779 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2780 DAGCombinerInfo &DCI, 2781 unsigned &RefinementSteps) const { 2782 SelectionDAG &DAG = DCI.DAG; 2783 EVT VT = Operand.getValueType(); 2784 2785 if (VT == MVT::f32) { 2786 // Reciprocal, < 1 ulp error. 2787 // 2788 // This reciprocal approximation converges to < 0.5 ulp error with one 2789 // newton rhapson performed with two fused multiple adds (FMAs). 2790 2791 RefinementSteps = 0; 2792 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2793 } 2794 2795 // TODO: There is also f64 rcp instruction, but the documentation is less 2796 // clear on its precision. 2797 2798 return SDValue(); 2799 } 2800 2801 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2802 const SDValue Op, 2803 APInt &KnownZero, 2804 APInt &KnownOne, 2805 const SelectionDAG &DAG, 2806 unsigned Depth) const { 2807 2808 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2809 2810 APInt KnownZero2; 2811 APInt KnownOne2; 2812 unsigned Opc = Op.getOpcode(); 2813 2814 switch (Opc) { 2815 default: 2816 break; 2817 case AMDGPUISD::CARRY: 2818 case AMDGPUISD::BORROW: { 2819 KnownZero = APInt::getHighBitsSet(32, 31); 2820 break; 2821 } 2822 2823 case AMDGPUISD::BFE_I32: 2824 case AMDGPUISD::BFE_U32: { 2825 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2826 if (!CWidth) 2827 return; 2828 2829 unsigned BitWidth = 32; 2830 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2831 2832 if (Opc == AMDGPUISD::BFE_U32) 2833 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2834 2835 break; 2836 } 2837 } 2838 } 2839 2840 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2841 SDValue Op, 2842 const SelectionDAG &DAG, 2843 unsigned Depth) const { 2844 switch (Op.getOpcode()) { 2845 case AMDGPUISD::BFE_I32: { 2846 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2847 if (!Width) 2848 return 1; 2849 2850 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2851 if (!isNullConstant(Op.getOperand(1))) 2852 return SignBits; 2853 2854 // TODO: Could probably figure something out with non-0 offsets. 2855 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2856 return std::max(SignBits, Op0SignBits); 2857 } 2858 2859 case AMDGPUISD::BFE_U32: { 2860 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2861 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2862 } 2863 2864 case AMDGPUISD::CARRY: 2865 case AMDGPUISD::BORROW: 2866 return 31; 2867 2868 default: 2869 return 1; 2870 } 2871 } 2872