1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIInstrInfo.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "llvm/CodeGen/CallingConvLower.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SelectionDAG.h" 30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/Support/KnownBits.h" 34 using namespace llvm; 35 36 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 37 CCValAssign::LocInfo LocInfo, 38 ISD::ArgFlagsTy ArgFlags, CCState &State) { 39 MachineFunction &MF = State.getMachineFunction(); 40 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 41 42 uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), 43 ArgFlags.getOrigAlign()); 44 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 45 return true; 46 } 47 48 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 49 CCValAssign::LocInfo LocInfo, 50 ISD::ArgFlagsTy ArgFlags, CCState &State, 51 const TargetRegisterClass *RC, 52 unsigned NumRegs) { 53 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 54 unsigned RegResult = State.AllocateReg(RegList); 55 if (RegResult == AMDGPU::NoRegister) 56 return false; 57 58 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 59 return true; 60 } 61 62 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 63 CCValAssign::LocInfo LocInfo, 64 ISD::ArgFlagsTy ArgFlags, CCState &State) { 65 switch (LocVT.SimpleTy) { 66 case MVT::i64: 67 case MVT::f64: 68 case MVT::v2i32: 69 case MVT::v2f32: { 70 // Up to SGPR0-SGPR39 71 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 72 &AMDGPU::SGPR_64RegClass, 20); 73 } 74 default: 75 return false; 76 } 77 } 78 79 // Allocate up to VGPR31. 80 // 81 // TODO: Since there are no VGPR alignent requirements would it be better to 82 // split into individual scalar registers? 83 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 84 CCValAssign::LocInfo LocInfo, 85 ISD::ArgFlagsTy ArgFlags, CCState &State) { 86 switch (LocVT.SimpleTy) { 87 case MVT::i64: 88 case MVT::f64: 89 case MVT::v2i32: 90 case MVT::v2f32: { 91 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 92 &AMDGPU::VReg_64RegClass, 31); 93 } 94 case MVT::v4i32: 95 case MVT::v4f32: 96 case MVT::v2i64: 97 case MVT::v2f64: { 98 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 99 &AMDGPU::VReg_128RegClass, 29); 100 } 101 case MVT::v8i32: 102 case MVT::v8f32: { 103 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 104 &AMDGPU::VReg_256RegClass, 25); 105 106 } 107 case MVT::v16i32: 108 case MVT::v16f32: { 109 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 110 &AMDGPU::VReg_512RegClass, 17); 111 112 } 113 default: 114 return false; 115 } 116 } 117 118 #include "AMDGPUGenCallingConv.inc" 119 120 // Find a larger type to do a load / store of a vector with. 121 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 122 unsigned StoreSize = VT.getStoreSizeInBits(); 123 if (StoreSize <= 32) 124 return EVT::getIntegerVT(Ctx, StoreSize); 125 126 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 127 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 128 } 129 130 bool AMDGPUTargetLowering::isOrEquivalentToAdd(SelectionDAG &DAG, SDValue Op) 131 { 132 assert(Op.getOpcode() == ISD::OR); 133 134 SDValue N0 = Op->getOperand(0); 135 SDValue N1 = Op->getOperand(1); 136 EVT VT = N0.getValueType(); 137 138 if (VT.isInteger() && !VT.isVector()) { 139 KnownBits LHSKnown, RHSKnown; 140 DAG.computeKnownBits(N0, LHSKnown); 141 142 if (LHSKnown.Zero.getBoolValue()) { 143 DAG.computeKnownBits(N1, RHSKnown); 144 145 if (!(~RHSKnown.Zero & ~LHSKnown.Zero)) 146 return true; 147 } 148 } 149 150 return false; 151 } 152 153 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 154 const AMDGPUSubtarget &STI) 155 : TargetLowering(TM), Subtarget(&STI) { 156 AMDGPUASI = AMDGPU::getAMDGPUAS(TM); 157 // Lower floating point store/load to integer store/load to reduce the number 158 // of patterns in tablegen. 159 setOperationAction(ISD::LOAD, MVT::f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 161 162 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 164 165 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 167 168 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 170 171 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 172 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 173 174 setOperationAction(ISD::LOAD, MVT::i64, Promote); 175 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 176 177 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 178 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 179 180 setOperationAction(ISD::LOAD, MVT::f64, Promote); 181 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 182 183 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 184 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 185 186 // There are no 64-bit extloads. These should be done as a 32-bit extload and 187 // an extension to 64-bit. 188 for (MVT VT : MVT::integer_valuetypes()) { 189 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 190 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 191 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 192 } 193 194 for (MVT VT : MVT::integer_valuetypes()) { 195 if (VT == MVT::i64) 196 continue; 197 198 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 199 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 200 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 201 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 202 203 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 204 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 205 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 206 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 207 208 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 209 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 210 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 211 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 212 } 213 214 for (MVT VT : MVT::integer_vector_valuetypes()) { 215 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 216 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 217 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 218 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 219 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 220 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 221 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 222 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 223 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 225 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 226 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 227 } 228 229 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 231 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 232 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 233 234 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 235 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 236 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 237 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 238 239 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 240 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 241 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 242 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 243 244 setOperationAction(ISD::STORE, MVT::f32, Promote); 245 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 246 247 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 248 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 249 250 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 251 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 252 253 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 254 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 255 256 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 257 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 258 259 setOperationAction(ISD::STORE, MVT::i64, Promote); 260 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 261 262 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 263 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 264 265 setOperationAction(ISD::STORE, MVT::f64, Promote); 266 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 267 268 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 269 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 270 271 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 272 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 273 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 274 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 275 276 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 277 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 278 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 279 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 280 281 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 282 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 283 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 284 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 285 286 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 287 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 288 289 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 290 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 291 292 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 293 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 294 295 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 296 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 297 298 299 setOperationAction(ISD::Constant, MVT::i32, Legal); 300 setOperationAction(ISD::Constant, MVT::i64, Legal); 301 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 302 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 303 304 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 305 setOperationAction(ISD::BRIND, MVT::Other, Expand); 306 307 // This is totally unsupported, just custom lower to produce an error. 308 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 309 310 // Library functions. These default to Expand, but we have instructions 311 // for them. 312 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 313 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 314 setOperationAction(ISD::FPOW, MVT::f32, Legal); 315 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 316 setOperationAction(ISD::FABS, MVT::f32, Legal); 317 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 318 setOperationAction(ISD::FRINT, MVT::f32, Legal); 319 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 320 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 321 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 322 323 setOperationAction(ISD::FROUND, MVT::f32, Custom); 324 setOperationAction(ISD::FROUND, MVT::f64, Custom); 325 326 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 327 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 328 329 setOperationAction(ISD::FREM, MVT::f32, Custom); 330 setOperationAction(ISD::FREM, MVT::f64, Custom); 331 332 // v_mad_f32 does not support denormals according to some sources. 333 if (!Subtarget->hasFP32Denormals()) 334 setOperationAction(ISD::FMAD, MVT::f32, Legal); 335 336 // Expand to fneg + fadd. 337 setOperationAction(ISD::FSUB, MVT::f64, Expand); 338 339 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 340 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 341 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 342 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 343 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 344 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 345 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 346 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 347 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 349 350 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 351 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 352 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 353 setOperationAction(ISD::FRINT, MVT::f64, Custom); 354 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 355 } 356 357 if (!Subtarget->hasBFI()) { 358 // fcopysign can be done in a single instruction with BFI. 359 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 360 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 361 } 362 363 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 364 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 365 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 366 367 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 368 for (MVT VT : ScalarIntVTs) { 369 // These should use [SU]DIVREM, so set them to expand 370 setOperationAction(ISD::SDIV, VT, Expand); 371 setOperationAction(ISD::UDIV, VT, Expand); 372 setOperationAction(ISD::SREM, VT, Expand); 373 setOperationAction(ISD::UREM, VT, Expand); 374 375 // GPU does not have divrem function for signed or unsigned. 376 setOperationAction(ISD::SDIVREM, VT, Custom); 377 setOperationAction(ISD::UDIVREM, VT, Custom); 378 379 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 380 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 381 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 382 383 setOperationAction(ISD::BSWAP, VT, Expand); 384 setOperationAction(ISD::CTTZ, VT, Expand); 385 setOperationAction(ISD::CTLZ, VT, Expand); 386 } 387 388 if (!Subtarget->hasBCNT(32)) 389 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 390 391 if (!Subtarget->hasBCNT(64)) 392 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 393 394 // The hardware supports 32-bit ROTR, but not ROTL. 395 setOperationAction(ISD::ROTL, MVT::i32, Expand); 396 setOperationAction(ISD::ROTL, MVT::i64, Expand); 397 setOperationAction(ISD::ROTR, MVT::i64, Expand); 398 399 setOperationAction(ISD::MUL, MVT::i64, Expand); 400 setOperationAction(ISD::MULHU, MVT::i64, Expand); 401 setOperationAction(ISD::MULHS, MVT::i64, Expand); 402 setOperationAction(ISD::UDIV, MVT::i32, Expand); 403 setOperationAction(ISD::UREM, MVT::i32, Expand); 404 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 405 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 406 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 407 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 408 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 409 410 setOperationAction(ISD::SMIN, MVT::i32, Legal); 411 setOperationAction(ISD::UMIN, MVT::i32, Legal); 412 setOperationAction(ISD::SMAX, MVT::i32, Legal); 413 setOperationAction(ISD::UMAX, MVT::i32, Legal); 414 415 if (Subtarget->hasFFBH()) 416 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 417 418 if (Subtarget->hasFFBL()) 419 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 420 421 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 422 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 423 424 // We only really have 32-bit BFE instructions (and 16-bit on VI). 425 // 426 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 427 // effort to match them now. We want this to be false for i64 cases when the 428 // extraction isn't restricted to the upper or lower half. Ideally we would 429 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 430 // span the midpoint are probably relatively rare, so don't worry about them 431 // for now. 432 if (Subtarget->hasBFE()) 433 setHasExtractBitsInsn(true); 434 435 static const MVT::SimpleValueType VectorIntTypes[] = { 436 MVT::v2i32, MVT::v4i32 437 }; 438 439 for (MVT VT : VectorIntTypes) { 440 // Expand the following operations for the current type by default. 441 setOperationAction(ISD::ADD, VT, Expand); 442 setOperationAction(ISD::AND, VT, Expand); 443 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 444 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 445 setOperationAction(ISD::MUL, VT, Expand); 446 setOperationAction(ISD::MULHU, VT, Expand); 447 setOperationAction(ISD::MULHS, VT, Expand); 448 setOperationAction(ISD::OR, VT, Expand); 449 setOperationAction(ISD::SHL, VT, Expand); 450 setOperationAction(ISD::SRA, VT, Expand); 451 setOperationAction(ISD::SRL, VT, Expand); 452 setOperationAction(ISD::ROTL, VT, Expand); 453 setOperationAction(ISD::ROTR, VT, Expand); 454 setOperationAction(ISD::SUB, VT, Expand); 455 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 456 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 457 setOperationAction(ISD::SDIV, VT, Expand); 458 setOperationAction(ISD::UDIV, VT, Expand); 459 setOperationAction(ISD::SREM, VT, Expand); 460 setOperationAction(ISD::UREM, VT, Expand); 461 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 462 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 463 setOperationAction(ISD::SDIVREM, VT, Custom); 464 setOperationAction(ISD::UDIVREM, VT, Expand); 465 setOperationAction(ISD::ADDC, VT, Expand); 466 setOperationAction(ISD::SUBC, VT, Expand); 467 setOperationAction(ISD::ADDE, VT, Expand); 468 setOperationAction(ISD::SUBE, VT, Expand); 469 setOperationAction(ISD::SELECT, VT, Expand); 470 setOperationAction(ISD::VSELECT, VT, Expand); 471 setOperationAction(ISD::SELECT_CC, VT, Expand); 472 setOperationAction(ISD::XOR, VT, Expand); 473 setOperationAction(ISD::BSWAP, VT, Expand); 474 setOperationAction(ISD::CTPOP, VT, Expand); 475 setOperationAction(ISD::CTTZ, VT, Expand); 476 setOperationAction(ISD::CTLZ, VT, Expand); 477 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 478 } 479 480 static const MVT::SimpleValueType FloatVectorTypes[] = { 481 MVT::v2f32, MVT::v4f32 482 }; 483 484 for (MVT VT : FloatVectorTypes) { 485 setOperationAction(ISD::FABS, VT, Expand); 486 setOperationAction(ISD::FMINNUM, VT, Expand); 487 setOperationAction(ISD::FMAXNUM, VT, Expand); 488 setOperationAction(ISD::FADD, VT, Expand); 489 setOperationAction(ISD::FCEIL, VT, Expand); 490 setOperationAction(ISD::FCOS, VT, Expand); 491 setOperationAction(ISD::FDIV, VT, Expand); 492 setOperationAction(ISD::FEXP2, VT, Expand); 493 setOperationAction(ISD::FLOG2, VT, Expand); 494 setOperationAction(ISD::FREM, VT, Expand); 495 setOperationAction(ISD::FPOW, VT, Expand); 496 setOperationAction(ISD::FFLOOR, VT, Expand); 497 setOperationAction(ISD::FTRUNC, VT, Expand); 498 setOperationAction(ISD::FMUL, VT, Expand); 499 setOperationAction(ISD::FMA, VT, Expand); 500 setOperationAction(ISD::FRINT, VT, Expand); 501 setOperationAction(ISD::FNEARBYINT, VT, Expand); 502 setOperationAction(ISD::FSQRT, VT, Expand); 503 setOperationAction(ISD::FSIN, VT, Expand); 504 setOperationAction(ISD::FSUB, VT, Expand); 505 setOperationAction(ISD::FNEG, VT, Expand); 506 setOperationAction(ISD::VSELECT, VT, Expand); 507 setOperationAction(ISD::SELECT_CC, VT, Expand); 508 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 509 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 510 } 511 512 // This causes using an unrolled select operation rather than expansion with 513 // bit operations. This is in general better, but the alternative using BFI 514 // instructions may be better if the select sources are SGPRs. 515 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 516 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 517 518 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 519 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 520 521 // There are no libcalls of any kind. 522 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 523 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 524 525 setBooleanContents(ZeroOrNegativeOneBooleanContent); 526 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 527 528 setSchedulingPreference(Sched::RegPressure); 529 setJumpIsExpensive(true); 530 531 // FIXME: This is only partially true. If we have to do vector compares, any 532 // SGPR pair can be a condition register. If we have a uniform condition, we 533 // are better off doing SALU operations, where there is only one SCC. For now, 534 // we don't have a way of knowing during instruction selection if a condition 535 // will be uniform and we always use vector compares. Assume we are using 536 // vector compares until that is fixed. 537 setHasMultipleConditionRegisters(true); 538 539 // SI at least has hardware support for floating point exceptions, but no way 540 // of using or handling them is implemented. They are also optional in OpenCL 541 // (Section 7.3) 542 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 543 544 PredictableSelectIsExpensive = false; 545 546 // We want to find all load dependencies for long chains of stores to enable 547 // merging into very wide vectors. The problem is with vectors with > 4 548 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 549 // vectors are a legal type, even though we have to split the loads 550 // usually. When we can more precisely specify load legality per address 551 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 552 // smarter so that they can figure out what to do in 2 iterations without all 553 // N > 4 stores on the same chain. 554 GatherAllAliasesMaxDepth = 16; 555 556 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 557 // about these during lowering. 558 MaxStoresPerMemcpy = 0xffffffff; 559 MaxStoresPerMemmove = 0xffffffff; 560 MaxStoresPerMemset = 0xffffffff; 561 562 setTargetDAGCombine(ISD::BITCAST); 563 setTargetDAGCombine(ISD::SHL); 564 setTargetDAGCombine(ISD::SRA); 565 setTargetDAGCombine(ISD::SRL); 566 setTargetDAGCombine(ISD::MUL); 567 setTargetDAGCombine(ISD::MULHU); 568 setTargetDAGCombine(ISD::MULHS); 569 setTargetDAGCombine(ISD::SELECT); 570 setTargetDAGCombine(ISD::SELECT_CC); 571 setTargetDAGCombine(ISD::STORE); 572 setTargetDAGCombine(ISD::FADD); 573 setTargetDAGCombine(ISD::FSUB); 574 setTargetDAGCombine(ISD::FNEG); 575 setTargetDAGCombine(ISD::FABS); 576 } 577 578 //===----------------------------------------------------------------------===// 579 // Target Information 580 //===----------------------------------------------------------------------===// 581 582 LLVM_READNONE 583 static bool fnegFoldsIntoOp(unsigned Opc) { 584 switch (Opc) { 585 case ISD::FADD: 586 case ISD::FSUB: 587 case ISD::FMUL: 588 case ISD::FMA: 589 case ISD::FMAD: 590 case ISD::FMINNUM: 591 case ISD::FMAXNUM: 592 case ISD::FSIN: 593 case ISD::FTRUNC: 594 case ISD::FRINT: 595 case ISD::FNEARBYINT: 596 case AMDGPUISD::RCP: 597 case AMDGPUISD::RCP_LEGACY: 598 case AMDGPUISD::SIN_HW: 599 case AMDGPUISD::FMUL_LEGACY: 600 case AMDGPUISD::FMIN_LEGACY: 601 case AMDGPUISD::FMAX_LEGACY: 602 return true; 603 default: 604 return false; 605 } 606 } 607 608 /// \p returns true if the operation will definitely need to use a 64-bit 609 /// encoding, and thus will use a VOP3 encoding regardless of the source 610 /// modifiers. 611 LLVM_READONLY 612 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 613 return N->getNumOperands() > 2 || VT == MVT::f64; 614 } 615 616 // Most FP instructions support source modifiers, but this could be refined 617 // slightly. 618 LLVM_READONLY 619 static bool hasSourceMods(const SDNode *N) { 620 if (isa<MemSDNode>(N)) 621 return false; 622 623 switch (N->getOpcode()) { 624 case ISD::CopyToReg: 625 case ISD::SELECT: 626 case ISD::FDIV: 627 case ISD::FREM: 628 case ISD::INLINEASM: 629 case AMDGPUISD::INTERP_P1: 630 case AMDGPUISD::INTERP_P2: 631 case AMDGPUISD::DIV_SCALE: 632 633 // TODO: Should really be looking at the users of the bitcast. These are 634 // problematic because bitcasts are used to legalize all stores to integer 635 // types. 636 case ISD::BITCAST: 637 return false; 638 default: 639 return true; 640 } 641 } 642 643 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 644 unsigned CostThreshold) { 645 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 646 // it is truly free to use a source modifier in all cases. If there are 647 // multiple users but for each one will necessitate using VOP3, there will be 648 // a code size increase. Try to avoid increasing code size unless we know it 649 // will save on the instruction count. 650 unsigned NumMayIncreaseSize = 0; 651 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 652 653 // XXX - Should this limit number of uses to check? 654 for (const SDNode *U : N->uses()) { 655 if (!hasSourceMods(U)) 656 return false; 657 658 if (!opMustUseVOP3Encoding(U, VT)) { 659 if (++NumMayIncreaseSize > CostThreshold) 660 return false; 661 } 662 } 663 664 return true; 665 } 666 667 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 668 return MVT::i32; 669 } 670 671 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 672 return true; 673 } 674 675 // The backend supports 32 and 64 bit floating point immediates. 676 // FIXME: Why are we reporting vectors of FP immediates as legal? 677 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 678 EVT ScalarVT = VT.getScalarType(); 679 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 680 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 681 } 682 683 // We don't want to shrink f64 / f32 constants. 684 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 685 EVT ScalarVT = VT.getScalarType(); 686 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 687 } 688 689 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 690 ISD::LoadExtType, 691 EVT NewVT) const { 692 693 unsigned NewSize = NewVT.getStoreSizeInBits(); 694 695 // If we are reducing to a 32-bit load, this is always better. 696 if (NewSize == 32) 697 return true; 698 699 EVT OldVT = N->getValueType(0); 700 unsigned OldSize = OldVT.getStoreSizeInBits(); 701 702 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 703 // extloads, so doing one requires using a buffer_load. In cases where we 704 // still couldn't use a scalar load, using the wider load shouldn't really 705 // hurt anything. 706 707 // If the old size already had to be an extload, there's no harm in continuing 708 // to reduce the width. 709 return (OldSize < 32); 710 } 711 712 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 713 EVT CastTy) const { 714 715 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 716 717 if (LoadTy.getScalarType() == MVT::i32) 718 return false; 719 720 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 721 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 722 723 return (LScalarSize < CastScalarSize) || 724 (CastScalarSize >= 32); 725 } 726 727 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 728 // profitable with the expansion for 64-bit since it's generally good to 729 // speculate things. 730 // FIXME: These should really have the size as a parameter. 731 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 732 return true; 733 } 734 735 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 736 return true; 737 } 738 739 //===---------------------------------------------------------------------===// 740 // Target Properties 741 //===---------------------------------------------------------------------===// 742 743 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 744 assert(VT.isFloatingPoint()); 745 746 // Packed operations do not have a fabs modifier. 747 return VT == MVT::f32 || VT == MVT::f64 || 748 (Subtarget->has16BitInsts() && VT == MVT::f16); 749 } 750 751 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 752 assert(VT.isFloatingPoint()); 753 return VT == MVT::f32 || VT == MVT::f64 || 754 (Subtarget->has16BitInsts() && VT == MVT::f16) || 755 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 756 } 757 758 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 759 unsigned NumElem, 760 unsigned AS) const { 761 return true; 762 } 763 764 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 765 // There are few operations which truly have vector input operands. Any vector 766 // operation is going to involve operations on each component, and a 767 // build_vector will be a copy per element, so it always makes sense to use a 768 // build_vector input in place of the extracted element to avoid a copy into a 769 // super register. 770 // 771 // We should probably only do this if all users are extracts only, but this 772 // should be the common case. 773 return true; 774 } 775 776 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 777 // Truncate is just accessing a subregister. 778 779 unsigned SrcSize = Source.getSizeInBits(); 780 unsigned DestSize = Dest.getSizeInBits(); 781 782 return DestSize < SrcSize && DestSize % 32 == 0 ; 783 } 784 785 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 786 // Truncate is just accessing a subregister. 787 788 unsigned SrcSize = Source->getScalarSizeInBits(); 789 unsigned DestSize = Dest->getScalarSizeInBits(); 790 791 if (DestSize== 16 && Subtarget->has16BitInsts()) 792 return SrcSize >= 32; 793 794 return DestSize < SrcSize && DestSize % 32 == 0; 795 } 796 797 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 798 unsigned SrcSize = Src->getScalarSizeInBits(); 799 unsigned DestSize = Dest->getScalarSizeInBits(); 800 801 if (SrcSize == 16 && Subtarget->has16BitInsts()) 802 return DestSize >= 32; 803 804 return SrcSize == 32 && DestSize == 64; 805 } 806 807 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 808 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 809 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 810 // this will enable reducing 64-bit operations the 32-bit, which is always 811 // good. 812 813 if (Src == MVT::i16) 814 return Dest == MVT::i32 ||Dest == MVT::i64 ; 815 816 return Src == MVT::i32 && Dest == MVT::i64; 817 } 818 819 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 820 return isZExtFree(Val.getValueType(), VT2); 821 } 822 823 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 824 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 825 // limited number of native 64-bit operations. Shrinking an operation to fit 826 // in a single 32-bit register should always be helpful. As currently used, 827 // this is much less general than the name suggests, and is only used in 828 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 829 // not profitable, and may actually be harmful. 830 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 831 } 832 833 //===---------------------------------------------------------------------===// 834 // TargetLowering Callbacks 835 //===---------------------------------------------------------------------===// 836 837 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 838 bool IsVarArg) { 839 switch (CC) { 840 case CallingConv::AMDGPU_KERNEL: 841 case CallingConv::SPIR_KERNEL: 842 return CC_AMDGPU_Kernel; 843 case CallingConv::AMDGPU_VS: 844 case CallingConv::AMDGPU_GS: 845 case CallingConv::AMDGPU_PS: 846 case CallingConv::AMDGPU_CS: 847 case CallingConv::AMDGPU_HS: 848 return CC_AMDGPU; 849 case CallingConv::C: 850 case CallingConv::Fast: 851 return CC_AMDGPU_Func; 852 default: 853 report_fatal_error("Unsupported calling convention."); 854 } 855 } 856 857 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 858 bool IsVarArg) { 859 switch (CC) { 860 case CallingConv::AMDGPU_KERNEL: 861 case CallingConv::SPIR_KERNEL: 862 return CC_AMDGPU_Kernel; 863 case CallingConv::AMDGPU_VS: 864 case CallingConv::AMDGPU_GS: 865 case CallingConv::AMDGPU_PS: 866 case CallingConv::AMDGPU_CS: 867 case CallingConv::AMDGPU_HS: 868 return RetCC_SI_Shader; 869 case CallingConv::C: 870 case CallingConv::Fast: 871 return RetCC_AMDGPU_Func; 872 default: 873 report_fatal_error("Unsupported calling convention."); 874 } 875 } 876 877 /// The SelectionDAGBuilder will automatically promote function arguments 878 /// with illegal types. However, this does not work for the AMDGPU targets 879 /// since the function arguments are stored in memory as these illegal types. 880 /// In order to handle this properly we need to get the original types sizes 881 /// from the LLVM IR Function and fixup the ISD:InputArg values before 882 /// passing them to AnalyzeFormalArguments() 883 884 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 885 /// input values across multiple registers. Each item in the Ins array 886 /// represents a single value that will be stored in regsters. Ins[x].VT is 887 /// the value type of the value that will be stored in the register, so 888 /// whatever SDNode we lower the argument to needs to be this type. 889 /// 890 /// In order to correctly lower the arguments we need to know the size of each 891 /// argument. Since Ins[x].VT gives us the size of the register that will 892 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 893 /// for the orignal function argument so that we can deduce the correct memory 894 /// type to use for Ins[x]. In most cases the correct memory type will be 895 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 896 /// we have a kernel argument of type v8i8, this argument will be split into 897 /// 8 parts and each part will be represented by its own item in the Ins array. 898 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 899 /// the argument before it was split. From this, we deduce that the memory type 900 /// for each individual part is i8. We pass the memory type as LocVT to the 901 /// calling convention analysis function and the register type (Ins[x].VT) as 902 /// the ValVT. 903 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, 904 const SmallVectorImpl<ISD::InputArg> &Ins) const { 905 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 906 const ISD::InputArg &In = Ins[i]; 907 EVT MemVT; 908 909 unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); 910 911 if (!Subtarget->isAmdHsaOS() && 912 (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { 913 // The ABI says the caller will extend these values to 32-bits. 914 MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; 915 } else if (NumRegs == 1) { 916 // This argument is not split, so the IR type is the memory type. 917 assert(!In.Flags.isSplit()); 918 if (In.ArgVT.isExtended()) { 919 // We have an extended type, like i24, so we should just use the register type 920 MemVT = In.VT; 921 } else { 922 MemVT = In.ArgVT; 923 } 924 } else if (In.ArgVT.isVector() && In.VT.isVector() && 925 In.ArgVT.getScalarType() == In.VT.getScalarType()) { 926 assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); 927 // We have a vector value which has been split into a vector with 928 // the same scalar type, but fewer elements. This should handle 929 // all the floating-point vector types. 930 MemVT = In.VT; 931 } else if (In.ArgVT.isVector() && 932 In.ArgVT.getVectorNumElements() == NumRegs) { 933 // This arg has been split so that each element is stored in a separate 934 // register. 935 MemVT = In.ArgVT.getScalarType(); 936 } else if (In.ArgVT.isExtended()) { 937 // We have an extended type, like i65. 938 MemVT = In.VT; 939 } else { 940 unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; 941 assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); 942 if (In.VT.isInteger()) { 943 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 944 } else if (In.VT.isVector()) { 945 assert(!In.VT.getScalarType().isFloatingPoint()); 946 unsigned NumElements = In.VT.getVectorNumElements(); 947 assert(MemoryBits % NumElements == 0); 948 // This vector type has been split into another vector type with 949 // a different elements size. 950 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 951 MemoryBits / NumElements); 952 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 953 } else { 954 llvm_unreachable("cannot deduce memory type."); 955 } 956 } 957 958 // Convert one element vectors to scalar. 959 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 960 MemVT = MemVT.getScalarType(); 961 962 if (MemVT.isExtended()) { 963 // This should really only happen if we have vec3 arguments 964 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 965 MemVT = MemVT.getPow2VectorType(State.getContext()); 966 } 967 968 assert(MemVT.isSimple()); 969 allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, 970 State); 971 } 972 } 973 974 SDValue AMDGPUTargetLowering::LowerReturn( 975 SDValue Chain, CallingConv::ID CallConv, 976 bool isVarArg, 977 const SmallVectorImpl<ISD::OutputArg> &Outs, 978 const SmallVectorImpl<SDValue> &OutVals, 979 const SDLoc &DL, SelectionDAG &DAG) const { 980 // FIXME: Fails for r600 tests 981 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 982 // "wave terminate should not have return values"); 983 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 984 } 985 986 //===---------------------------------------------------------------------===// 987 // Target specific lowering 988 //===---------------------------------------------------------------------===// 989 990 /// Selects the correct CCAssignFn for a given CallingConvention value. 991 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 992 bool IsVarArg) { 993 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 994 } 995 996 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 997 bool IsVarArg) { 998 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 999 } 1000 1001 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1002 SmallVectorImpl<SDValue> &InVals) const { 1003 SDValue Callee = CLI.Callee; 1004 SelectionDAG &DAG = CLI.DAG; 1005 1006 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1007 1008 StringRef FuncName("<unknown>"); 1009 1010 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1011 FuncName = G->getSymbol(); 1012 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1013 FuncName = G->getGlobal()->getName(); 1014 1015 DiagnosticInfoUnsupported NoCalls( 1016 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 1017 DAG.getContext()->diagnose(NoCalls); 1018 1019 if (!CLI.IsTailCall) { 1020 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1021 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1022 } 1023 1024 return DAG.getEntryNode(); 1025 } 1026 1027 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1028 SelectionDAG &DAG) const { 1029 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1030 1031 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1032 SDLoc(Op).getDebugLoc()); 1033 DAG.getContext()->diagnose(NoDynamicAlloca); 1034 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1035 return DAG.getMergeValues(Ops, SDLoc()); 1036 } 1037 1038 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1039 SelectionDAG &DAG) const { 1040 switch (Op.getOpcode()) { 1041 default: 1042 Op->print(errs(), &DAG); 1043 llvm_unreachable("Custom lowering code for this" 1044 "instruction is not implemented yet!"); 1045 break; 1046 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1047 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1048 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1049 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1050 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1051 case ISD::FREM: return LowerFREM(Op, DAG); 1052 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1053 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1054 case ISD::FRINT: return LowerFRINT(Op, DAG); 1055 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1056 case ISD::FROUND: return LowerFROUND(Op, DAG); 1057 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1058 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1059 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1060 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1061 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1062 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1063 case ISD::CTLZ: 1064 case ISD::CTLZ_ZERO_UNDEF: 1065 return LowerCTLZ(Op, DAG); 1066 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1067 } 1068 return Op; 1069 } 1070 1071 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1072 SmallVectorImpl<SDValue> &Results, 1073 SelectionDAG &DAG) const { 1074 switch (N->getOpcode()) { 1075 case ISD::SIGN_EXTEND_INREG: 1076 // Different parts of legalization seem to interpret which type of 1077 // sign_extend_inreg is the one to check for custom lowering. The extended 1078 // from type is what really matters, but some places check for custom 1079 // lowering of the result type. This results in trying to use 1080 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1081 // nothing here and let the illegal result integer be handled normally. 1082 return; 1083 default: 1084 return; 1085 } 1086 } 1087 1088 static bool hasDefinedInitializer(const GlobalValue *GV) { 1089 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1090 if (!GVar || !GVar->hasInitializer()) 1091 return false; 1092 1093 return !isa<UndefValue>(GVar->getInitializer()); 1094 } 1095 1096 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1097 SDValue Op, 1098 SelectionDAG &DAG) const { 1099 1100 const DataLayout &DL = DAG.getDataLayout(); 1101 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1102 const GlobalValue *GV = G->getGlobal(); 1103 1104 if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) { 1105 // XXX: What does the value of G->getOffset() mean? 1106 assert(G->getOffset() == 0 && 1107 "Do not know what to do with an non-zero offset"); 1108 1109 // TODO: We could emit code to handle the initialization somewhere. 1110 if (!hasDefinedInitializer(GV)) { 1111 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1112 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1113 } 1114 } 1115 1116 const Function &Fn = *DAG.getMachineFunction().getFunction(); 1117 DiagnosticInfoUnsupported BadInit( 1118 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1119 DAG.getContext()->diagnose(BadInit); 1120 return SDValue(); 1121 } 1122 1123 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1124 SelectionDAG &DAG) const { 1125 SmallVector<SDValue, 8> Args; 1126 1127 for (const SDUse &U : Op->ops()) 1128 DAG.ExtractVectorElements(U.get(), Args); 1129 1130 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1131 } 1132 1133 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1134 SelectionDAG &DAG) const { 1135 1136 SmallVector<SDValue, 8> Args; 1137 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1138 EVT VT = Op.getValueType(); 1139 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1140 VT.getVectorNumElements()); 1141 1142 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1143 } 1144 1145 /// \brief Generate Min/Max node 1146 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1147 SDValue LHS, SDValue RHS, 1148 SDValue True, SDValue False, 1149 SDValue CC, 1150 DAGCombinerInfo &DCI) const { 1151 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1152 return SDValue(); 1153 1154 SelectionDAG &DAG = DCI.DAG; 1155 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1156 switch (CCOpcode) { 1157 case ISD::SETOEQ: 1158 case ISD::SETONE: 1159 case ISD::SETUNE: 1160 case ISD::SETNE: 1161 case ISD::SETUEQ: 1162 case ISD::SETEQ: 1163 case ISD::SETFALSE: 1164 case ISD::SETFALSE2: 1165 case ISD::SETTRUE: 1166 case ISD::SETTRUE2: 1167 case ISD::SETUO: 1168 case ISD::SETO: 1169 break; 1170 case ISD::SETULE: 1171 case ISD::SETULT: { 1172 if (LHS == True) 1173 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1174 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1175 } 1176 case ISD::SETOLE: 1177 case ISD::SETOLT: 1178 case ISD::SETLE: 1179 case ISD::SETLT: { 1180 // Ordered. Assume ordered for undefined. 1181 1182 // Only do this after legalization to avoid interfering with other combines 1183 // which might occur. 1184 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1185 !DCI.isCalledByLegalizer()) 1186 return SDValue(); 1187 1188 // We need to permute the operands to get the correct NaN behavior. The 1189 // selected operand is the second one based on the failing compare with NaN, 1190 // so permute it based on the compare type the hardware uses. 1191 if (LHS == True) 1192 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1193 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1194 } 1195 case ISD::SETUGE: 1196 case ISD::SETUGT: { 1197 if (LHS == True) 1198 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1199 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1200 } 1201 case ISD::SETGT: 1202 case ISD::SETGE: 1203 case ISD::SETOGE: 1204 case ISD::SETOGT: { 1205 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1206 !DCI.isCalledByLegalizer()) 1207 return SDValue(); 1208 1209 if (LHS == True) 1210 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1211 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1212 } 1213 case ISD::SETCC_INVALID: 1214 llvm_unreachable("Invalid setcc condcode!"); 1215 } 1216 return SDValue(); 1217 } 1218 1219 std::pair<SDValue, SDValue> 1220 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1221 SDLoc SL(Op); 1222 1223 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1224 1225 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1226 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1227 1228 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1229 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1230 1231 return std::make_pair(Lo, Hi); 1232 } 1233 1234 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1235 SDLoc SL(Op); 1236 1237 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1238 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1239 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1240 } 1241 1242 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1243 SDLoc SL(Op); 1244 1245 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1246 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1247 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1248 } 1249 1250 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1251 SelectionDAG &DAG) const { 1252 LoadSDNode *Load = cast<LoadSDNode>(Op); 1253 EVT VT = Op.getValueType(); 1254 1255 1256 // If this is a 2 element vector, we really want to scalarize and not create 1257 // weird 1 element vectors. 1258 if (VT.getVectorNumElements() == 2) 1259 return scalarizeVectorLoad(Load, DAG); 1260 1261 SDValue BasePtr = Load->getBasePtr(); 1262 EVT PtrVT = BasePtr.getValueType(); 1263 EVT MemVT = Load->getMemoryVT(); 1264 SDLoc SL(Op); 1265 1266 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1267 1268 EVT LoVT, HiVT; 1269 EVT LoMemVT, HiMemVT; 1270 SDValue Lo, Hi; 1271 1272 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1273 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1274 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1275 1276 unsigned Size = LoMemVT.getStoreSize(); 1277 unsigned BaseAlign = Load->getAlignment(); 1278 unsigned HiAlign = MinAlign(BaseAlign, Size); 1279 1280 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1281 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1282 BaseAlign, Load->getMemOperand()->getFlags()); 1283 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1284 DAG.getConstant(Size, SL, PtrVT)); 1285 SDValue HiLoad = 1286 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1287 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1288 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1289 1290 SDValue Ops[] = { 1291 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1292 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1293 LoLoad.getValue(1), HiLoad.getValue(1)) 1294 }; 1295 1296 return DAG.getMergeValues(Ops, SL); 1297 } 1298 1299 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1300 SelectionDAG &DAG) const { 1301 StoreSDNode *Store = cast<StoreSDNode>(Op); 1302 SDValue Val = Store->getValue(); 1303 EVT VT = Val.getValueType(); 1304 1305 // If this is a 2 element vector, we really want to scalarize and not create 1306 // weird 1 element vectors. 1307 if (VT.getVectorNumElements() == 2) 1308 return scalarizeVectorStore(Store, DAG); 1309 1310 EVT MemVT = Store->getMemoryVT(); 1311 SDValue Chain = Store->getChain(); 1312 SDValue BasePtr = Store->getBasePtr(); 1313 SDLoc SL(Op); 1314 1315 EVT LoVT, HiVT; 1316 EVT LoMemVT, HiMemVT; 1317 SDValue Lo, Hi; 1318 1319 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1320 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1321 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1322 1323 EVT PtrVT = BasePtr.getValueType(); 1324 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1325 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1326 PtrVT)); 1327 1328 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1329 unsigned BaseAlign = Store->getAlignment(); 1330 unsigned Size = LoMemVT.getStoreSize(); 1331 unsigned HiAlign = MinAlign(BaseAlign, Size); 1332 1333 SDValue LoStore = 1334 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1335 Store->getMemOperand()->getFlags()); 1336 SDValue HiStore = 1337 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1338 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1339 1340 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1341 } 1342 1343 // This is a shortcut for integer division because we have fast i32<->f32 1344 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1345 // float is enough to accurately represent up to a 24-bit signed integer. 1346 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1347 bool Sign) const { 1348 SDLoc DL(Op); 1349 EVT VT = Op.getValueType(); 1350 SDValue LHS = Op.getOperand(0); 1351 SDValue RHS = Op.getOperand(1); 1352 MVT IntVT = MVT::i32; 1353 MVT FltVT = MVT::f32; 1354 1355 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1356 if (LHSSignBits < 9) 1357 return SDValue(); 1358 1359 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1360 if (RHSSignBits < 9) 1361 return SDValue(); 1362 1363 unsigned BitSize = VT.getSizeInBits(); 1364 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1365 unsigned DivBits = BitSize - SignBits; 1366 if (Sign) 1367 ++DivBits; 1368 1369 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1370 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1371 1372 SDValue jq = DAG.getConstant(1, DL, IntVT); 1373 1374 if (Sign) { 1375 // char|short jq = ia ^ ib; 1376 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1377 1378 // jq = jq >> (bitsize - 2) 1379 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1380 DAG.getConstant(BitSize - 2, DL, VT)); 1381 1382 // jq = jq | 0x1 1383 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1384 } 1385 1386 // int ia = (int)LHS; 1387 SDValue ia = LHS; 1388 1389 // int ib, (int)RHS; 1390 SDValue ib = RHS; 1391 1392 // float fa = (float)ia; 1393 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1394 1395 // float fb = (float)ib; 1396 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1397 1398 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1399 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1400 1401 // fq = trunc(fq); 1402 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1403 1404 // float fqneg = -fq; 1405 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1406 1407 // float fr = mad(fqneg, fb, fa); 1408 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1409 (unsigned)AMDGPUISD::FMAD_FTZ : 1410 (unsigned)ISD::FMAD; 1411 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1412 1413 // int iq = (int)fq; 1414 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1415 1416 // fr = fabs(fr); 1417 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1418 1419 // fb = fabs(fb); 1420 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1421 1422 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1423 1424 // int cv = fr >= fb; 1425 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1426 1427 // jq = (cv ? jq : 0); 1428 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1429 1430 // dst = iq + jq; 1431 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1432 1433 // Rem needs compensation, it's easier to recompute it 1434 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1435 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1436 1437 // Truncate to number of bits this divide really is. 1438 if (Sign) { 1439 SDValue InRegSize 1440 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1441 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1442 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1443 } else { 1444 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1445 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1446 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1447 } 1448 1449 return DAG.getMergeValues({ Div, Rem }, DL); 1450 } 1451 1452 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1453 SelectionDAG &DAG, 1454 SmallVectorImpl<SDValue> &Results) const { 1455 assert(Op.getValueType() == MVT::i64); 1456 1457 SDLoc DL(Op); 1458 EVT VT = Op.getValueType(); 1459 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1460 1461 SDValue one = DAG.getConstant(1, DL, HalfVT); 1462 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1463 1464 //HiLo split 1465 SDValue LHS = Op.getOperand(0); 1466 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1467 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1468 1469 SDValue RHS = Op.getOperand(1); 1470 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1471 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1472 1473 if (VT == MVT::i64 && 1474 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1475 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1476 1477 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1478 LHS_Lo, RHS_Lo); 1479 1480 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1481 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1482 1483 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1484 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1485 return; 1486 } 1487 1488 // Get Speculative values 1489 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1490 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1491 1492 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1493 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1494 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1495 1496 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1497 SDValue DIV_Lo = zero; 1498 1499 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1500 1501 for (unsigned i = 0; i < halfBitWidth; ++i) { 1502 const unsigned bitPos = halfBitWidth - i - 1; 1503 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1504 // Get value of high bit 1505 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1506 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1507 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1508 1509 // Shift 1510 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1511 // Add LHS high bit 1512 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1513 1514 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1515 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1516 1517 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1518 1519 // Update REM 1520 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1521 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1522 } 1523 1524 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1525 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1526 Results.push_back(DIV); 1527 Results.push_back(REM); 1528 } 1529 1530 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1531 SelectionDAG &DAG) const { 1532 SDLoc DL(Op); 1533 EVT VT = Op.getValueType(); 1534 1535 if (VT == MVT::i64) { 1536 SmallVector<SDValue, 2> Results; 1537 LowerUDIVREM64(Op, DAG, Results); 1538 return DAG.getMergeValues(Results, DL); 1539 } 1540 1541 if (VT == MVT::i32) { 1542 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1543 return Res; 1544 } 1545 1546 SDValue Num = Op.getOperand(0); 1547 SDValue Den = Op.getOperand(1); 1548 1549 // RCP = URECIP(Den) = 2^32 / Den + e 1550 // e is rounding error. 1551 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1552 1553 // RCP_LO = mul(RCP, Den) */ 1554 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1555 1556 // RCP_HI = mulhu (RCP, Den) */ 1557 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1558 1559 // NEG_RCP_LO = -RCP_LO 1560 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1561 RCP_LO); 1562 1563 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1564 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1565 NEG_RCP_LO, RCP_LO, 1566 ISD::SETEQ); 1567 // Calculate the rounding error from the URECIP instruction 1568 // E = mulhu(ABS_RCP_LO, RCP) 1569 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1570 1571 // RCP_A_E = RCP + E 1572 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1573 1574 // RCP_S_E = RCP - E 1575 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1576 1577 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1578 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1579 RCP_A_E, RCP_S_E, 1580 ISD::SETEQ); 1581 // Quotient = mulhu(Tmp0, Num) 1582 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1583 1584 // Num_S_Remainder = Quotient * Den 1585 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1586 1587 // Remainder = Num - Num_S_Remainder 1588 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1589 1590 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1591 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1592 DAG.getConstant(-1, DL, VT), 1593 DAG.getConstant(0, DL, VT), 1594 ISD::SETUGE); 1595 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1596 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1597 Num_S_Remainder, 1598 DAG.getConstant(-1, DL, VT), 1599 DAG.getConstant(0, DL, VT), 1600 ISD::SETUGE); 1601 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1602 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1603 Remainder_GE_Zero); 1604 1605 // Calculate Division result: 1606 1607 // Quotient_A_One = Quotient + 1 1608 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1609 DAG.getConstant(1, DL, VT)); 1610 1611 // Quotient_S_One = Quotient - 1 1612 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1613 DAG.getConstant(1, DL, VT)); 1614 1615 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1616 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1617 Quotient, Quotient_A_One, ISD::SETEQ); 1618 1619 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1620 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1621 Quotient_S_One, Div, ISD::SETEQ); 1622 1623 // Calculate Rem result: 1624 1625 // Remainder_S_Den = Remainder - Den 1626 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1627 1628 // Remainder_A_Den = Remainder + Den 1629 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1630 1631 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1632 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1633 Remainder, Remainder_S_Den, ISD::SETEQ); 1634 1635 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1636 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1637 Remainder_A_Den, Rem, ISD::SETEQ); 1638 SDValue Ops[2] = { 1639 Div, 1640 Rem 1641 }; 1642 return DAG.getMergeValues(Ops, DL); 1643 } 1644 1645 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1646 SelectionDAG &DAG) const { 1647 SDLoc DL(Op); 1648 EVT VT = Op.getValueType(); 1649 1650 SDValue LHS = Op.getOperand(0); 1651 SDValue RHS = Op.getOperand(1); 1652 1653 SDValue Zero = DAG.getConstant(0, DL, VT); 1654 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1655 1656 if (VT == MVT::i32) { 1657 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1658 return Res; 1659 } 1660 1661 if (VT == MVT::i64 && 1662 DAG.ComputeNumSignBits(LHS) > 32 && 1663 DAG.ComputeNumSignBits(RHS) > 32) { 1664 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1665 1666 //HiLo split 1667 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1668 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1669 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1670 LHS_Lo, RHS_Lo); 1671 SDValue Res[2] = { 1672 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1673 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1674 }; 1675 return DAG.getMergeValues(Res, DL); 1676 } 1677 1678 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1679 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1680 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1681 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1682 1683 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1684 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1685 1686 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1687 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1688 1689 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1690 SDValue Rem = Div.getValue(1); 1691 1692 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1693 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1694 1695 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1696 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1697 1698 SDValue Res[2] = { 1699 Div, 1700 Rem 1701 }; 1702 return DAG.getMergeValues(Res, DL); 1703 } 1704 1705 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1706 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1707 SDLoc SL(Op); 1708 EVT VT = Op.getValueType(); 1709 SDValue X = Op.getOperand(0); 1710 SDValue Y = Op.getOperand(1); 1711 1712 // TODO: Should this propagate fast-math-flags? 1713 1714 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1715 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1716 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1717 1718 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1719 } 1720 1721 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1722 SDLoc SL(Op); 1723 SDValue Src = Op.getOperand(0); 1724 1725 // result = trunc(src) 1726 // if (src > 0.0 && src != result) 1727 // result += 1.0 1728 1729 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1730 1731 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1732 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1733 1734 EVT SetCCVT = 1735 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1736 1737 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1738 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1739 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1740 1741 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1742 // TODO: Should this propagate fast-math-flags? 1743 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1744 } 1745 1746 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1747 SelectionDAG &DAG) { 1748 const unsigned FractBits = 52; 1749 const unsigned ExpBits = 11; 1750 1751 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1752 Hi, 1753 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1754 DAG.getConstant(ExpBits, SL, MVT::i32)); 1755 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1756 DAG.getConstant(1023, SL, MVT::i32)); 1757 1758 return Exp; 1759 } 1760 1761 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1762 SDLoc SL(Op); 1763 SDValue Src = Op.getOperand(0); 1764 1765 assert(Op.getValueType() == MVT::f64); 1766 1767 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1768 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1769 1770 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1771 1772 // Extract the upper half, since this is where we will find the sign and 1773 // exponent. 1774 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1775 1776 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1777 1778 const unsigned FractBits = 52; 1779 1780 // Extract the sign bit. 1781 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1782 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1783 1784 // Extend back to to 64-bits. 1785 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1786 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1787 1788 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1789 const SDValue FractMask 1790 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1791 1792 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1793 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1794 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1795 1796 EVT SetCCVT = 1797 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1798 1799 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1800 1801 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1802 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1803 1804 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1805 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1806 1807 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1808 } 1809 1810 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1811 SDLoc SL(Op); 1812 SDValue Src = Op.getOperand(0); 1813 1814 assert(Op.getValueType() == MVT::f64); 1815 1816 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 1817 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1818 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1819 1820 // TODO: Should this propagate fast-math-flags? 1821 1822 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1823 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1824 1825 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1826 1827 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 1828 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1829 1830 EVT SetCCVT = 1831 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1832 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1833 1834 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1835 } 1836 1837 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1838 // FNEARBYINT and FRINT are the same, except in their handling of FP 1839 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1840 // rint, so just treat them as equivalent. 1841 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1842 } 1843 1844 // XXX - May require not supporting f32 denormals? 1845 1846 // Don't handle v2f16. The extra instructions to scalarize and repack around the 1847 // compare and vselect end up producing worse code than scalarizing the whole 1848 // operation. 1849 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 1850 SDLoc SL(Op); 1851 SDValue X = Op.getOperand(0); 1852 EVT VT = Op.getValueType(); 1853 1854 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 1855 1856 // TODO: Should this propagate fast-math-flags? 1857 1858 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 1859 1860 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 1861 1862 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 1863 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 1864 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 1865 1866 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 1867 1868 EVT SetCCVT = 1869 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1870 1871 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1872 1873 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 1874 1875 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 1876 } 1877 1878 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1879 SDLoc SL(Op); 1880 SDValue X = Op.getOperand(0); 1881 1882 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1883 1884 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1885 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1886 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1887 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1888 EVT SetCCVT = 1889 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1890 1891 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1892 1893 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1894 1895 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1896 1897 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1898 MVT::i64); 1899 1900 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1901 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1902 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1903 MVT::i64), 1904 Exp); 1905 1906 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1907 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1908 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1909 ISD::SETNE); 1910 1911 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1912 D, DAG.getConstant(0, SL, MVT::i64)); 1913 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1914 1915 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1916 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1917 1918 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1919 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1920 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1921 1922 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1923 ExpEqNegOne, 1924 DAG.getConstantFP(1.0, SL, MVT::f64), 1925 DAG.getConstantFP(0.0, SL, MVT::f64)); 1926 1927 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1928 1929 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1930 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1931 1932 return K; 1933 } 1934 1935 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1936 EVT VT = Op.getValueType(); 1937 1938 if (VT == MVT::f32 || VT == MVT::f16) 1939 return LowerFROUND32_16(Op, DAG); 1940 1941 if (VT == MVT::f64) 1942 return LowerFROUND64(Op, DAG); 1943 1944 llvm_unreachable("unhandled type"); 1945 } 1946 1947 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1948 SDLoc SL(Op); 1949 SDValue Src = Op.getOperand(0); 1950 1951 // result = trunc(src); 1952 // if (src < 0.0 && src != result) 1953 // result += -1.0. 1954 1955 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1956 1957 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1958 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1959 1960 EVT SetCCVT = 1961 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1962 1963 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1964 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1965 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1966 1967 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1968 // TODO: Should this propagate fast-math-flags? 1969 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1970 } 1971 1972 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1973 SDLoc SL(Op); 1974 SDValue Src = Op.getOperand(0); 1975 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1976 1977 if (ZeroUndef && Src.getValueType() == MVT::i32) 1978 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1979 1980 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1981 1982 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1983 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1984 1985 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1986 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1987 1988 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1989 *DAG.getContext(), MVT::i32); 1990 1991 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1992 1993 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1994 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1995 1996 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1997 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1998 1999 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2000 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 2001 2002 if (!ZeroUndef) { 2003 // Test if the full 64-bit input is zero. 2004 2005 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2006 // which we probably don't want. 2007 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 2008 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 2009 2010 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2011 // with the same cycles, otherwise it is slower. 2012 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2013 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2014 2015 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2016 2017 // The instruction returns -1 for 0 input, but the defined intrinsic 2018 // behavior is to return the number of bits. 2019 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2020 SrcIsZero, Bits32, NewCtlz); 2021 } 2022 2023 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 2024 } 2025 2026 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2027 bool Signed) const { 2028 // Unsigned 2029 // cul2f(ulong u) 2030 //{ 2031 // uint lz = clz(u); 2032 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2033 // u = (u << lz) & 0x7fffffffffffffffUL; 2034 // ulong t = u & 0xffffffffffUL; 2035 // uint v = (e << 23) | (uint)(u >> 40); 2036 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2037 // return as_float(v + r); 2038 //} 2039 // Signed 2040 // cl2f(long l) 2041 //{ 2042 // long s = l >> 63; 2043 // float r = cul2f((l + s) ^ s); 2044 // return s ? -r : r; 2045 //} 2046 2047 SDLoc SL(Op); 2048 SDValue Src = Op.getOperand(0); 2049 SDValue L = Src; 2050 2051 SDValue S; 2052 if (Signed) { 2053 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2054 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2055 2056 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2057 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2058 } 2059 2060 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2061 *DAG.getContext(), MVT::f32); 2062 2063 2064 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2065 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2066 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2067 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2068 2069 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2070 SDValue E = DAG.getSelect(SL, MVT::i32, 2071 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2072 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2073 ZeroI32); 2074 2075 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2076 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2077 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2078 2079 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2080 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2081 2082 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2083 U, DAG.getConstant(40, SL, MVT::i64)); 2084 2085 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2086 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2087 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2088 2089 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2090 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2091 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2092 2093 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2094 2095 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2096 2097 SDValue R = DAG.getSelect(SL, MVT::i32, 2098 RCmp, 2099 One, 2100 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2101 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2102 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2103 2104 if (!Signed) 2105 return R; 2106 2107 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2108 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2109 } 2110 2111 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2112 bool Signed) const { 2113 SDLoc SL(Op); 2114 SDValue Src = Op.getOperand(0); 2115 2116 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2117 2118 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2119 DAG.getConstant(0, SL, MVT::i32)); 2120 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2121 DAG.getConstant(1, SL, MVT::i32)); 2122 2123 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2124 SL, MVT::f64, Hi); 2125 2126 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2127 2128 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2129 DAG.getConstant(32, SL, MVT::i32)); 2130 // TODO: Should this propagate fast-math-flags? 2131 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2132 } 2133 2134 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2135 SelectionDAG &DAG) const { 2136 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2137 "operation should be legal"); 2138 2139 // TODO: Factor out code common with LowerSINT_TO_FP. 2140 2141 EVT DestVT = Op.getValueType(); 2142 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2143 SDLoc DL(Op); 2144 SDValue Src = Op.getOperand(0); 2145 2146 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2147 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2148 SDValue FPRound = 2149 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2150 2151 return FPRound; 2152 } 2153 2154 if (DestVT == MVT::f32) 2155 return LowerINT_TO_FP32(Op, DAG, false); 2156 2157 assert(DestVT == MVT::f64); 2158 return LowerINT_TO_FP64(Op, DAG, false); 2159 } 2160 2161 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2162 SelectionDAG &DAG) const { 2163 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2164 "operation should be legal"); 2165 2166 // TODO: Factor out code common with LowerUINT_TO_FP. 2167 2168 EVT DestVT = Op.getValueType(); 2169 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2170 SDLoc DL(Op); 2171 SDValue Src = Op.getOperand(0); 2172 2173 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2174 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2175 SDValue FPRound = 2176 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2177 2178 return FPRound; 2179 } 2180 2181 if (DestVT == MVT::f32) 2182 return LowerINT_TO_FP32(Op, DAG, true); 2183 2184 assert(DestVT == MVT::f64); 2185 return LowerINT_TO_FP64(Op, DAG, true); 2186 } 2187 2188 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2189 bool Signed) const { 2190 SDLoc SL(Op); 2191 2192 SDValue Src = Op.getOperand(0); 2193 2194 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2195 2196 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2197 MVT::f64); 2198 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2199 MVT::f64); 2200 // TODO: Should this propagate fast-math-flags? 2201 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2202 2203 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2204 2205 2206 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2207 2208 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2209 MVT::i32, FloorMul); 2210 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2211 2212 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2213 2214 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2215 } 2216 2217 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2218 SDLoc DL(Op); 2219 SDValue N0 = Op.getOperand(0); 2220 2221 // Convert to target node to get known bits 2222 if (N0.getValueType() == MVT::f32) 2223 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2224 2225 if (getTargetMachine().Options.UnsafeFPMath) { 2226 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2227 return SDValue(); 2228 } 2229 2230 assert(N0.getSimpleValueType() == MVT::f64); 2231 2232 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2233 const unsigned ExpMask = 0x7ff; 2234 const unsigned ExpBiasf64 = 1023; 2235 const unsigned ExpBiasf16 = 15; 2236 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2237 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2238 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2239 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2240 DAG.getConstant(32, DL, MVT::i64)); 2241 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2242 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2243 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2244 DAG.getConstant(20, DL, MVT::i64)); 2245 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2246 DAG.getConstant(ExpMask, DL, MVT::i32)); 2247 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2248 // add the f16 bias (15) to get the biased exponent for the f16 format. 2249 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2250 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2251 2252 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2253 DAG.getConstant(8, DL, MVT::i32)); 2254 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2255 DAG.getConstant(0xffe, DL, MVT::i32)); 2256 2257 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2258 DAG.getConstant(0x1ff, DL, MVT::i32)); 2259 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2260 2261 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2262 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2263 2264 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2265 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2266 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2267 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2268 2269 // N = M | (E << 12); 2270 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2271 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2272 DAG.getConstant(12, DL, MVT::i32))); 2273 2274 // B = clamp(1-E, 0, 13); 2275 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2276 One, E); 2277 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2278 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2279 DAG.getConstant(13, DL, MVT::i32)); 2280 2281 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2282 DAG.getConstant(0x1000, DL, MVT::i32)); 2283 2284 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2285 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2286 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2287 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2288 2289 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2290 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2291 DAG.getConstant(0x7, DL, MVT::i32)); 2292 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2293 DAG.getConstant(2, DL, MVT::i32)); 2294 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2295 One, Zero, ISD::SETEQ); 2296 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2297 One, Zero, ISD::SETGT); 2298 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2299 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2300 2301 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2302 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2303 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2304 I, V, ISD::SETEQ); 2305 2306 // Extract the sign bit. 2307 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2308 DAG.getConstant(16, DL, MVT::i32)); 2309 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2310 DAG.getConstant(0x8000, DL, MVT::i32)); 2311 2312 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2313 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2314 } 2315 2316 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2317 SelectionDAG &DAG) const { 2318 SDValue Src = Op.getOperand(0); 2319 2320 // TODO: Factor out code common with LowerFP_TO_UINT. 2321 2322 EVT SrcVT = Src.getValueType(); 2323 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2324 SDLoc DL(Op); 2325 2326 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2327 SDValue FpToInt32 = 2328 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2329 2330 return FpToInt32; 2331 } 2332 2333 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2334 return LowerFP64_TO_INT(Op, DAG, true); 2335 2336 return SDValue(); 2337 } 2338 2339 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2340 SelectionDAG &DAG) const { 2341 SDValue Src = Op.getOperand(0); 2342 2343 // TODO: Factor out code common with LowerFP_TO_SINT. 2344 2345 EVT SrcVT = Src.getValueType(); 2346 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2347 SDLoc DL(Op); 2348 2349 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2350 SDValue FpToInt32 = 2351 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2352 2353 return FpToInt32; 2354 } 2355 2356 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2357 return LowerFP64_TO_INT(Op, DAG, false); 2358 2359 return SDValue(); 2360 } 2361 2362 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2363 SelectionDAG &DAG) const { 2364 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2365 MVT VT = Op.getSimpleValueType(); 2366 MVT ScalarVT = VT.getScalarType(); 2367 2368 assert(VT.isVector()); 2369 2370 SDValue Src = Op.getOperand(0); 2371 SDLoc DL(Op); 2372 2373 // TODO: Don't scalarize on Evergreen? 2374 unsigned NElts = VT.getVectorNumElements(); 2375 SmallVector<SDValue, 8> Args; 2376 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2377 2378 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2379 for (unsigned I = 0; I < NElts; ++I) 2380 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2381 2382 return DAG.getBuildVector(VT, DL, Args); 2383 } 2384 2385 //===----------------------------------------------------------------------===// 2386 // Custom DAG optimizations 2387 //===----------------------------------------------------------------------===// 2388 2389 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2390 KnownBits Known; 2391 EVT VT = Op.getValueType(); 2392 DAG.computeKnownBits(Op, Known); 2393 2394 return (VT.getSizeInBits() - Known.countMinLeadingZeros()) <= 24; 2395 } 2396 2397 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2398 EVT VT = Op.getValueType(); 2399 2400 // In order for this to be a signed 24-bit value, bit 23, must 2401 // be a sign bit. 2402 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2403 // as unsigned 24-bit values. 2404 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2405 } 2406 2407 static bool simplifyI24(SDNode *Node24, unsigned OpIdx, 2408 TargetLowering::DAGCombinerInfo &DCI) { 2409 2410 SelectionDAG &DAG = DCI.DAG; 2411 SDValue Op = Node24->getOperand(OpIdx); 2412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2413 EVT VT = Op.getValueType(); 2414 2415 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2416 APInt KnownZero, KnownOne; 2417 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2418 if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO)) 2419 return true; 2420 2421 return false; 2422 } 2423 2424 template <typename IntTy> 2425 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2426 uint32_t Width, const SDLoc &DL) { 2427 if (Width + Offset < 32) { 2428 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2429 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2430 return DAG.getConstant(Result, DL, MVT::i32); 2431 } 2432 2433 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2434 } 2435 2436 static bool hasVolatileUser(SDNode *Val) { 2437 for (SDNode *U : Val->uses()) { 2438 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2439 if (M->isVolatile()) 2440 return true; 2441 } 2442 } 2443 2444 return false; 2445 } 2446 2447 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2448 // i32 vectors are the canonical memory type. 2449 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2450 return false; 2451 2452 if (!VT.isByteSized()) 2453 return false; 2454 2455 unsigned Size = VT.getStoreSize(); 2456 2457 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2458 return false; 2459 2460 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2461 return false; 2462 2463 return true; 2464 } 2465 2466 // Replace load of an illegal type with a store of a bitcast to a friendlier 2467 // type. 2468 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2469 DAGCombinerInfo &DCI) const { 2470 if (!DCI.isBeforeLegalize()) 2471 return SDValue(); 2472 2473 LoadSDNode *LN = cast<LoadSDNode>(N); 2474 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2475 return SDValue(); 2476 2477 SDLoc SL(N); 2478 SelectionDAG &DAG = DCI.DAG; 2479 EVT VT = LN->getMemoryVT(); 2480 2481 unsigned Size = VT.getStoreSize(); 2482 unsigned Align = LN->getAlignment(); 2483 if (Align < Size && isTypeLegal(VT)) { 2484 bool IsFast; 2485 unsigned AS = LN->getAddressSpace(); 2486 2487 // Expand unaligned loads earlier than legalization. Due to visitation order 2488 // problems during legalization, the emitted instructions to pack and unpack 2489 // the bytes again are not eliminated in the case of an unaligned copy. 2490 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2491 if (VT.isVector()) 2492 return scalarizeVectorLoad(LN, DAG); 2493 2494 SDValue Ops[2]; 2495 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2496 return DAG.getMergeValues(Ops, SDLoc(N)); 2497 } 2498 2499 if (!IsFast) 2500 return SDValue(); 2501 } 2502 2503 if (!shouldCombineMemoryType(VT)) 2504 return SDValue(); 2505 2506 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2507 2508 SDValue NewLoad 2509 = DAG.getLoad(NewVT, SL, LN->getChain(), 2510 LN->getBasePtr(), LN->getMemOperand()); 2511 2512 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2513 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2514 return SDValue(N, 0); 2515 } 2516 2517 // Replace store of an illegal type with a store of a bitcast to a friendlier 2518 // type. 2519 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2520 DAGCombinerInfo &DCI) const { 2521 if (!DCI.isBeforeLegalize()) 2522 return SDValue(); 2523 2524 StoreSDNode *SN = cast<StoreSDNode>(N); 2525 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2526 return SDValue(); 2527 2528 EVT VT = SN->getMemoryVT(); 2529 unsigned Size = VT.getStoreSize(); 2530 2531 SDLoc SL(N); 2532 SelectionDAG &DAG = DCI.DAG; 2533 unsigned Align = SN->getAlignment(); 2534 if (Align < Size && isTypeLegal(VT)) { 2535 bool IsFast; 2536 unsigned AS = SN->getAddressSpace(); 2537 2538 // Expand unaligned stores earlier than legalization. Due to visitation 2539 // order problems during legalization, the emitted instructions to pack and 2540 // unpack the bytes again are not eliminated in the case of an unaligned 2541 // copy. 2542 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2543 if (VT.isVector()) 2544 return scalarizeVectorStore(SN, DAG); 2545 2546 return expandUnalignedStore(SN, DAG); 2547 } 2548 2549 if (!IsFast) 2550 return SDValue(); 2551 } 2552 2553 if (!shouldCombineMemoryType(VT)) 2554 return SDValue(); 2555 2556 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2557 SDValue Val = SN->getValue(); 2558 2559 //DCI.AddToWorklist(Val.getNode()); 2560 2561 bool OtherUses = !Val.hasOneUse(); 2562 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2563 if (OtherUses) { 2564 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2565 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2566 } 2567 2568 return DAG.getStore(SN->getChain(), SL, CastVal, 2569 SN->getBasePtr(), SN->getMemOperand()); 2570 } 2571 2572 SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, 2573 DAGCombinerInfo &DCI) const { 2574 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 2575 if (!CSrc) 2576 return SDValue(); 2577 2578 const APFloat &F = CSrc->getValueAPF(); 2579 APFloat Zero = APFloat::getZero(F.getSemantics()); 2580 APFloat::cmpResult Cmp0 = F.compare(Zero); 2581 if (Cmp0 == APFloat::cmpLessThan || 2582 (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { 2583 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 2584 } 2585 2586 APFloat One(F.getSemantics(), "1.0"); 2587 APFloat::cmpResult Cmp1 = F.compare(One); 2588 if (Cmp1 == APFloat::cmpGreaterThan) 2589 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 2590 2591 return SDValue(CSrc, 0); 2592 } 2593 2594 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2595 /// binary operation \p Opc to it with the corresponding constant operands. 2596 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2597 DAGCombinerInfo &DCI, const SDLoc &SL, 2598 unsigned Opc, SDValue LHS, 2599 uint32_t ValLo, uint32_t ValHi) const { 2600 SelectionDAG &DAG = DCI.DAG; 2601 SDValue Lo, Hi; 2602 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2603 2604 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2605 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2606 2607 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2608 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2609 2610 // Re-visit the ands. It's possible we eliminated one of them and it could 2611 // simplify the vector. 2612 DCI.AddToWorklist(Lo.getNode()); 2613 DCI.AddToWorklist(Hi.getNode()); 2614 2615 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2616 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2617 } 2618 2619 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2620 DAGCombinerInfo &DCI) const { 2621 EVT VT = N->getValueType(0); 2622 2623 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2624 if (!RHS) 2625 return SDValue(); 2626 2627 SDValue LHS = N->getOperand(0); 2628 unsigned RHSVal = RHS->getZExtValue(); 2629 if (!RHSVal) 2630 return LHS; 2631 2632 SDLoc SL(N); 2633 SelectionDAG &DAG = DCI.DAG; 2634 2635 switch (LHS->getOpcode()) { 2636 default: 2637 break; 2638 case ISD::ZERO_EXTEND: 2639 case ISD::SIGN_EXTEND: 2640 case ISD::ANY_EXTEND: { 2641 // shl (ext x) => zext (shl x), if shift does not overflow int 2642 if (VT != MVT::i64) 2643 break; 2644 KnownBits Known; 2645 SDValue X = LHS->getOperand(0); 2646 DAG.computeKnownBits(X, Known); 2647 unsigned LZ = Known.countMinLeadingZeros(); 2648 if (LZ < RHSVal) 2649 break; 2650 EVT XVT = X.getValueType(); 2651 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 2652 return DAG.getZExtOrTrunc(Shl, SL, VT); 2653 } 2654 case ISD::OR: if (!isOrEquivalentToAdd(DAG, LHS)) break; 2655 case ISD::ADD: { // Fall through from above 2656 // shl (or|add x, c2), c1 => or|add (shl x, c1), (c2 << c1) 2657 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 2658 SDValue Shl = DAG.getNode(ISD::SHL, SL, VT, LHS->getOperand(0), 2659 SDValue(RHS, 0)); 2660 SDValue C2V = DAG.getConstant(C2->getAPIntValue() << RHSVal, 2661 SDLoc(C2), VT); 2662 return DAG.getNode(LHS->getOpcode(), SL, VT, Shl, C2V); 2663 } 2664 break; 2665 } 2666 } 2667 2668 if (VT != MVT::i64) 2669 return SDValue(); 2670 2671 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2672 2673 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2674 // common case, splitting this into a move and a 32-bit shift is faster and 2675 // the same code size. 2676 if (RHSVal < 32) 2677 return SDValue(); 2678 2679 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2680 2681 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2682 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2683 2684 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2685 2686 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2687 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2688 } 2689 2690 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2691 DAGCombinerInfo &DCI) const { 2692 if (N->getValueType(0) != MVT::i64) 2693 return SDValue(); 2694 2695 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2696 if (!RHS) 2697 return SDValue(); 2698 2699 SelectionDAG &DAG = DCI.DAG; 2700 SDLoc SL(N); 2701 unsigned RHSVal = RHS->getZExtValue(); 2702 2703 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2704 if (RHSVal == 32) { 2705 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2706 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2707 DAG.getConstant(31, SL, MVT::i32)); 2708 2709 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2710 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2711 } 2712 2713 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2714 if (RHSVal == 63) { 2715 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2716 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2717 DAG.getConstant(31, SL, MVT::i32)); 2718 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2719 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2720 } 2721 2722 return SDValue(); 2723 } 2724 2725 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2726 DAGCombinerInfo &DCI) const { 2727 if (N->getValueType(0) != MVT::i64) 2728 return SDValue(); 2729 2730 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2731 if (!RHS) 2732 return SDValue(); 2733 2734 unsigned ShiftAmt = RHS->getZExtValue(); 2735 if (ShiftAmt < 32) 2736 return SDValue(); 2737 2738 // srl i64:x, C for C >= 32 2739 // => 2740 // build_pair (srl hi_32(x), C - 32), 0 2741 2742 SelectionDAG &DAG = DCI.DAG; 2743 SDLoc SL(N); 2744 2745 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2746 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2747 2748 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2749 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2750 VecOp, One); 2751 2752 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2753 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2754 2755 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2756 2757 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2758 } 2759 2760 // We need to specifically handle i64 mul here to avoid unnecessary conversion 2761 // instructions. If we only match on the legalized i64 mul expansion, 2762 // SimplifyDemandedBits will be unable to remove them because there will be 2763 // multiple uses due to the separate mul + mulh[su]. 2764 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 2765 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 2766 if (Size <= 32) { 2767 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2768 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 2769 } 2770 2771 // Because we want to eliminate extension instructions before the 2772 // operation, we need to create a single user here (i.e. not the separate 2773 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 2774 2775 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 2776 2777 SDValue Mul = DAG.getNode(MulOpc, SL, 2778 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 2779 2780 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 2781 Mul.getValue(0), Mul.getValue(1)); 2782 } 2783 2784 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2785 DAGCombinerInfo &DCI) const { 2786 EVT VT = N->getValueType(0); 2787 2788 unsigned Size = VT.getSizeInBits(); 2789 if (VT.isVector() || Size > 64) 2790 return SDValue(); 2791 2792 // There are i16 integer mul/mad. 2793 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 2794 return SDValue(); 2795 2796 SelectionDAG &DAG = DCI.DAG; 2797 SDLoc DL(N); 2798 2799 SDValue N0 = N->getOperand(0); 2800 SDValue N1 = N->getOperand(1); 2801 SDValue Mul; 2802 2803 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2804 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2805 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2806 Mul = getMul24(DAG, DL, N0, N1, Size, false); 2807 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2808 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2809 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2810 Mul = getMul24(DAG, DL, N0, N1, Size, true); 2811 } else { 2812 return SDValue(); 2813 } 2814 2815 // We need to use sext even for MUL_U24, because MUL_U24 is used 2816 // for signed multiply of 8 and 16-bit types. 2817 return DAG.getSExtOrTrunc(Mul, DL, VT); 2818 } 2819 2820 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 2821 DAGCombinerInfo &DCI) const { 2822 EVT VT = N->getValueType(0); 2823 2824 if (!Subtarget->hasMulI24() || VT.isVector()) 2825 return SDValue(); 2826 2827 SelectionDAG &DAG = DCI.DAG; 2828 SDLoc DL(N); 2829 2830 SDValue N0 = N->getOperand(0); 2831 SDValue N1 = N->getOperand(1); 2832 2833 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 2834 return SDValue(); 2835 2836 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2837 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2838 2839 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 2840 DCI.AddToWorklist(Mulhi.getNode()); 2841 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 2842 } 2843 2844 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 2845 DAGCombinerInfo &DCI) const { 2846 EVT VT = N->getValueType(0); 2847 2848 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 2849 return SDValue(); 2850 2851 SelectionDAG &DAG = DCI.DAG; 2852 SDLoc DL(N); 2853 2854 SDValue N0 = N->getOperand(0); 2855 SDValue N1 = N->getOperand(1); 2856 2857 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 2858 return SDValue(); 2859 2860 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2861 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2862 2863 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 2864 DCI.AddToWorklist(Mulhi.getNode()); 2865 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 2866 } 2867 2868 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 2869 SDNode *N, DAGCombinerInfo &DCI) const { 2870 SelectionDAG &DAG = DCI.DAG; 2871 2872 // Simplify demanded bits before splitting into multiple users. 2873 if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) 2874 return SDValue(); 2875 2876 SDValue N0 = N->getOperand(0); 2877 SDValue N1 = N->getOperand(1); 2878 2879 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 2880 2881 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2882 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 2883 2884 SDLoc SL(N); 2885 2886 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 2887 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 2888 return DAG.getMergeValues({ MulLo, MulHi }, SL); 2889 } 2890 2891 static bool isNegativeOne(SDValue Val) { 2892 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2893 return C->isAllOnesValue(); 2894 return false; 2895 } 2896 2897 static bool isCtlzOpc(unsigned Opc) { 2898 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2899 } 2900 2901 SDValue AMDGPUTargetLowering::getFFBH_U32(SelectionDAG &DAG, 2902 SDValue Op, 2903 const SDLoc &DL) const { 2904 EVT VT = Op.getValueType(); 2905 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 2906 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 2907 LegalVT != MVT::i16)) 2908 return SDValue(); 2909 2910 if (VT != MVT::i32) 2911 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 2912 2913 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, DL, MVT::i32, Op); 2914 if (VT != MVT::i32) 2915 FFBH = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBH); 2916 2917 return FFBH; 2918 } 2919 2920 // The native instructions return -1 on 0 input. Optimize out a select that 2921 // produces -1 on 0. 2922 // 2923 // TODO: If zero is not undef, we could also do this if the output is compared 2924 // against the bitwidth. 2925 // 2926 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2927 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2928 SDValue LHS, SDValue RHS, 2929 DAGCombinerInfo &DCI) const { 2930 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2931 if (!CmpRhs || !CmpRhs->isNullValue()) 2932 return SDValue(); 2933 2934 SelectionDAG &DAG = DCI.DAG; 2935 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2936 SDValue CmpLHS = Cond.getOperand(0); 2937 2938 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2939 if (CCOpcode == ISD::SETEQ && 2940 isCtlzOpc(RHS.getOpcode()) && 2941 RHS.getOperand(0) == CmpLHS && 2942 isNegativeOne(LHS)) { 2943 return getFFBH_U32(DAG, CmpLHS, SL); 2944 } 2945 2946 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2947 if (CCOpcode == ISD::SETNE && 2948 isCtlzOpc(LHS.getOpcode()) && 2949 LHS.getOperand(0) == CmpLHS && 2950 isNegativeOne(RHS)) { 2951 return getFFBH_U32(DAG, CmpLHS, SL); 2952 } 2953 2954 return SDValue(); 2955 } 2956 2957 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 2958 unsigned Op, 2959 const SDLoc &SL, 2960 SDValue Cond, 2961 SDValue N1, 2962 SDValue N2) { 2963 SelectionDAG &DAG = DCI.DAG; 2964 EVT VT = N1.getValueType(); 2965 2966 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 2967 N1.getOperand(0), N2.getOperand(0)); 2968 DCI.AddToWorklist(NewSelect.getNode()); 2969 return DAG.getNode(Op, SL, VT, NewSelect); 2970 } 2971 2972 // Pull a free FP operation out of a select so it may fold into uses. 2973 // 2974 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 2975 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 2976 // 2977 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 2978 // select c, (fabs x), +k -> fabs (select c, x, k) 2979 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 2980 SDValue N) { 2981 SelectionDAG &DAG = DCI.DAG; 2982 SDValue Cond = N.getOperand(0); 2983 SDValue LHS = N.getOperand(1); 2984 SDValue RHS = N.getOperand(2); 2985 2986 EVT VT = N.getValueType(); 2987 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 2988 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 2989 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 2990 SDLoc(N), Cond, LHS, RHS); 2991 } 2992 2993 bool Inv = false; 2994 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 2995 std::swap(LHS, RHS); 2996 Inv = true; 2997 } 2998 2999 // TODO: Support vector constants. 3000 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3001 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3002 SDLoc SL(N); 3003 // If one side is an fneg/fabs and the other is a constant, we can push the 3004 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3005 SDValue NewLHS = LHS.getOperand(0); 3006 SDValue NewRHS = RHS; 3007 3008 // Careful: if the neg can be folded up, don't try to pull it back down. 3009 bool ShouldFoldNeg = true; 3010 3011 if (NewLHS.hasOneUse()) { 3012 unsigned Opc = NewLHS.getOpcode(); 3013 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3014 ShouldFoldNeg = false; 3015 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3016 ShouldFoldNeg = false; 3017 } 3018 3019 if (ShouldFoldNeg) { 3020 if (LHS.getOpcode() == ISD::FNEG) 3021 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3022 else if (CRHS->isNegative()) 3023 return SDValue(); 3024 3025 if (Inv) 3026 std::swap(NewLHS, NewRHS); 3027 3028 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3029 Cond, NewLHS, NewRHS); 3030 DCI.AddToWorklist(NewSelect.getNode()); 3031 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3032 } 3033 } 3034 3035 return SDValue(); 3036 } 3037 3038 3039 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3040 DAGCombinerInfo &DCI) const { 3041 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3042 return Folded; 3043 3044 SDValue Cond = N->getOperand(0); 3045 if (Cond.getOpcode() != ISD::SETCC) 3046 return SDValue(); 3047 3048 EVT VT = N->getValueType(0); 3049 SDValue LHS = Cond.getOperand(0); 3050 SDValue RHS = Cond.getOperand(1); 3051 SDValue CC = Cond.getOperand(2); 3052 3053 SDValue True = N->getOperand(1); 3054 SDValue False = N->getOperand(2); 3055 3056 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3057 SelectionDAG &DAG = DCI.DAG; 3058 if ((DAG.isConstantValueOfAnyType(True) || 3059 DAG.isConstantValueOfAnyType(True)) && 3060 (!DAG.isConstantValueOfAnyType(False) && 3061 !DAG.isConstantValueOfAnyType(False))) { 3062 // Swap cmp + select pair to move constant to false input. 3063 // This will allow using VOPC cndmasks more often. 3064 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3065 3066 SDLoc SL(N); 3067 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3068 LHS.getValueType().isInteger()); 3069 3070 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3071 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3072 } 3073 3074 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3075 SDValue MinMax 3076 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3077 // Revisit this node so we can catch min3/max3/med3 patterns. 3078 //DCI.AddToWorklist(MinMax.getNode()); 3079 return MinMax; 3080 } 3081 } 3082 3083 // There's no reason to not do this if the condition has other uses. 3084 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 3085 } 3086 3087 static bool isConstantFPZero(SDValue N) { 3088 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) 3089 return C->isZero() && !C->isNegative(); 3090 return false; 3091 } 3092 3093 static unsigned inverseMinMax(unsigned Opc) { 3094 switch (Opc) { 3095 case ISD::FMAXNUM: 3096 return ISD::FMINNUM; 3097 case ISD::FMINNUM: 3098 return ISD::FMAXNUM; 3099 case AMDGPUISD::FMAX_LEGACY: 3100 return AMDGPUISD::FMIN_LEGACY; 3101 case AMDGPUISD::FMIN_LEGACY: 3102 return AMDGPUISD::FMAX_LEGACY; 3103 default: 3104 llvm_unreachable("invalid min/max opcode"); 3105 } 3106 } 3107 3108 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3109 DAGCombinerInfo &DCI) const { 3110 SelectionDAG &DAG = DCI.DAG; 3111 SDValue N0 = N->getOperand(0); 3112 EVT VT = N->getValueType(0); 3113 3114 unsigned Opc = N0.getOpcode(); 3115 3116 // If the input has multiple uses and we can either fold the negate down, or 3117 // the other uses cannot, give up. This both prevents unprofitable 3118 // transformations and infinite loops: we won't repeatedly try to fold around 3119 // a negate that has no 'good' form. 3120 if (N0.hasOneUse()) { 3121 // This may be able to fold into the source, but at a code size cost. Don't 3122 // fold if the fold into the user is free. 3123 if (allUsesHaveSourceMods(N, 0)) 3124 return SDValue(); 3125 } else { 3126 if (fnegFoldsIntoOp(Opc) && 3127 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3128 return SDValue(); 3129 } 3130 3131 SDLoc SL(N); 3132 switch (Opc) { 3133 case ISD::FADD: { 3134 if (!mayIgnoreSignedZero(N0)) 3135 return SDValue(); 3136 3137 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3138 SDValue LHS = N0.getOperand(0); 3139 SDValue RHS = N0.getOperand(1); 3140 3141 if (LHS.getOpcode() != ISD::FNEG) 3142 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3143 else 3144 LHS = LHS.getOperand(0); 3145 3146 if (RHS.getOpcode() != ISD::FNEG) 3147 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3148 else 3149 RHS = RHS.getOperand(0); 3150 3151 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3152 if (!N0.hasOneUse()) 3153 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3154 return Res; 3155 } 3156 case ISD::FMUL: 3157 case AMDGPUISD::FMUL_LEGACY: { 3158 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3159 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3160 SDValue LHS = N0.getOperand(0); 3161 SDValue RHS = N0.getOperand(1); 3162 3163 if (LHS.getOpcode() == ISD::FNEG) 3164 LHS = LHS.getOperand(0); 3165 else if (RHS.getOpcode() == ISD::FNEG) 3166 RHS = RHS.getOperand(0); 3167 else 3168 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3169 3170 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3171 if (!N0.hasOneUse()) 3172 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3173 return Res; 3174 } 3175 case ISD::FMA: 3176 case ISD::FMAD: { 3177 if (!mayIgnoreSignedZero(N0)) 3178 return SDValue(); 3179 3180 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3181 SDValue LHS = N0.getOperand(0); 3182 SDValue MHS = N0.getOperand(1); 3183 SDValue RHS = N0.getOperand(2); 3184 3185 if (LHS.getOpcode() == ISD::FNEG) 3186 LHS = LHS.getOperand(0); 3187 else if (MHS.getOpcode() == ISD::FNEG) 3188 MHS = MHS.getOperand(0); 3189 else 3190 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3191 3192 if (RHS.getOpcode() != ISD::FNEG) 3193 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3194 else 3195 RHS = RHS.getOperand(0); 3196 3197 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3198 if (!N0.hasOneUse()) 3199 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3200 return Res; 3201 } 3202 case ISD::FMAXNUM: 3203 case ISD::FMINNUM: 3204 case AMDGPUISD::FMAX_LEGACY: 3205 case AMDGPUISD::FMIN_LEGACY: { 3206 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3207 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3208 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3209 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3210 3211 SDValue LHS = N0.getOperand(0); 3212 SDValue RHS = N0.getOperand(1); 3213 3214 // 0 doesn't have a negated inline immediate. 3215 // TODO: Shouldn't fold 1/2pi either, and should be generalized to other 3216 // operations. 3217 if (isConstantFPZero(RHS)) 3218 return SDValue(); 3219 3220 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3221 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3222 unsigned Opposite = inverseMinMax(Opc); 3223 3224 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3225 if (!N0.hasOneUse()) 3226 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3227 return Res; 3228 } 3229 case ISD::FP_EXTEND: 3230 case ISD::FTRUNC: 3231 case ISD::FRINT: 3232 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3233 case ISD::FSIN: 3234 case AMDGPUISD::RCP: 3235 case AMDGPUISD::RCP_LEGACY: 3236 case AMDGPUISD::SIN_HW: { 3237 SDValue CvtSrc = N0.getOperand(0); 3238 if (CvtSrc.getOpcode() == ISD::FNEG) { 3239 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3240 // (fneg (rcp (fneg x))) -> (rcp x) 3241 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3242 } 3243 3244 if (!N0.hasOneUse()) 3245 return SDValue(); 3246 3247 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3248 // (fneg (rcp x)) -> (rcp (fneg x)) 3249 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3250 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3251 } 3252 case ISD::FP_ROUND: { 3253 SDValue CvtSrc = N0.getOperand(0); 3254 3255 if (CvtSrc.getOpcode() == ISD::FNEG) { 3256 // (fneg (fp_round (fneg x))) -> (fp_round x) 3257 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3258 CvtSrc.getOperand(0), N0.getOperand(1)); 3259 } 3260 3261 if (!N0.hasOneUse()) 3262 return SDValue(); 3263 3264 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3265 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3266 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3267 } 3268 case ISD::FP16_TO_FP: { 3269 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3270 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3271 // Put the fneg back as a legal source operation that can be matched later. 3272 SDLoc SL(N); 3273 3274 SDValue Src = N0.getOperand(0); 3275 EVT SrcVT = Src.getValueType(); 3276 3277 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3278 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3279 DAG.getConstant(0x8000, SL, SrcVT)); 3280 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3281 } 3282 default: 3283 return SDValue(); 3284 } 3285 } 3286 3287 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3288 DAGCombinerInfo &DCI) const { 3289 SelectionDAG &DAG = DCI.DAG; 3290 SDValue N0 = N->getOperand(0); 3291 3292 if (!N0.hasOneUse()) 3293 return SDValue(); 3294 3295 switch (N0.getOpcode()) { 3296 case ISD::FP16_TO_FP: { 3297 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3298 SDLoc SL(N); 3299 SDValue Src = N0.getOperand(0); 3300 EVT SrcVT = Src.getValueType(); 3301 3302 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3303 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3304 DAG.getConstant(0x7fff, SL, SrcVT)); 3305 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3306 } 3307 default: 3308 return SDValue(); 3309 } 3310 } 3311 3312 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3313 DAGCombinerInfo &DCI) const { 3314 SelectionDAG &DAG = DCI.DAG; 3315 SDLoc DL(N); 3316 3317 switch(N->getOpcode()) { 3318 default: 3319 break; 3320 case ISD::BITCAST: { 3321 EVT DestVT = N->getValueType(0); 3322 3323 // Push casts through vector builds. This helps avoid emitting a large 3324 // number of copies when materializing floating point vector constants. 3325 // 3326 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3327 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3328 if (DestVT.isVector()) { 3329 SDValue Src = N->getOperand(0); 3330 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3331 EVT SrcVT = Src.getValueType(); 3332 unsigned NElts = DestVT.getVectorNumElements(); 3333 3334 if (SrcVT.getVectorNumElements() == NElts) { 3335 EVT DestEltVT = DestVT.getVectorElementType(); 3336 3337 SmallVector<SDValue, 8> CastedElts; 3338 SDLoc SL(N); 3339 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3340 SDValue Elt = Src.getOperand(I); 3341 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3342 } 3343 3344 return DAG.getBuildVector(DestVT, SL, CastedElts); 3345 } 3346 } 3347 } 3348 3349 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3350 break; 3351 3352 // Fold bitcasts of constants. 3353 // 3354 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3355 // TODO: Generalize and move to DAGCombiner 3356 SDValue Src = N->getOperand(0); 3357 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3358 assert(Src.getValueType() == MVT::i64); 3359 SDLoc SL(N); 3360 uint64_t CVal = C->getZExtValue(); 3361 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 3362 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3363 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3364 } 3365 3366 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3367 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3368 SDLoc SL(N); 3369 uint64_t CVal = Val.getZExtValue(); 3370 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3371 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3372 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3373 3374 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3375 } 3376 3377 break; 3378 } 3379 case ISD::SHL: { 3380 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3381 break; 3382 3383 return performShlCombine(N, DCI); 3384 } 3385 case ISD::SRL: { 3386 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3387 break; 3388 3389 return performSrlCombine(N, DCI); 3390 } 3391 case ISD::SRA: { 3392 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3393 break; 3394 3395 return performSraCombine(N, DCI); 3396 } 3397 case ISD::MUL: 3398 return performMulCombine(N, DCI); 3399 case ISD::MULHS: 3400 return performMulhsCombine(N, DCI); 3401 case ISD::MULHU: 3402 return performMulhuCombine(N, DCI); 3403 case AMDGPUISD::MUL_I24: 3404 case AMDGPUISD::MUL_U24: 3405 case AMDGPUISD::MULHI_I24: 3406 case AMDGPUISD::MULHI_U24: { 3407 // If the first call to simplify is successfull, then N may end up being 3408 // deleted, so we shouldn't call simplifyI24 again. 3409 simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); 3410 return SDValue(); 3411 } 3412 case AMDGPUISD::MUL_LOHI_I24: 3413 case AMDGPUISD::MUL_LOHI_U24: 3414 return performMulLoHi24Combine(N, DCI); 3415 case ISD::SELECT: 3416 return performSelectCombine(N, DCI); 3417 case ISD::FNEG: 3418 return performFNegCombine(N, DCI); 3419 case ISD::FABS: 3420 return performFAbsCombine(N, DCI); 3421 case AMDGPUISD::BFE_I32: 3422 case AMDGPUISD::BFE_U32: { 3423 assert(!N->getValueType(0).isVector() && 3424 "Vector handling of BFE not implemented"); 3425 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3426 if (!Width) 3427 break; 3428 3429 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3430 if (WidthVal == 0) 3431 return DAG.getConstant(0, DL, MVT::i32); 3432 3433 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3434 if (!Offset) 3435 break; 3436 3437 SDValue BitsFrom = N->getOperand(0); 3438 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3439 3440 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3441 3442 if (OffsetVal == 0) { 3443 // This is already sign / zero extended, so try to fold away extra BFEs. 3444 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3445 3446 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3447 if (OpSignBits >= SignBits) 3448 return BitsFrom; 3449 3450 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3451 if (Signed) { 3452 // This is a sign_extend_inreg. Replace it to take advantage of existing 3453 // DAG Combines. If not eliminated, we will match back to BFE during 3454 // selection. 3455 3456 // TODO: The sext_inreg of extended types ends, although we can could 3457 // handle them in a single BFE. 3458 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3459 DAG.getValueType(SmallVT)); 3460 } 3461 3462 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3463 } 3464 3465 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3466 if (Signed) { 3467 return constantFoldBFE<int32_t>(DAG, 3468 CVal->getSExtValue(), 3469 OffsetVal, 3470 WidthVal, 3471 DL); 3472 } 3473 3474 return constantFoldBFE<uint32_t>(DAG, 3475 CVal->getZExtValue(), 3476 OffsetVal, 3477 WidthVal, 3478 DL); 3479 } 3480 3481 if ((OffsetVal + WidthVal) >= 32 && 3482 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 3483 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3484 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3485 BitsFrom, ShiftVal); 3486 } 3487 3488 if (BitsFrom.hasOneUse()) { 3489 APInt Demanded = APInt::getBitsSet(32, 3490 OffsetVal, 3491 OffsetVal + WidthVal); 3492 3493 KnownBits Known; 3494 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3495 !DCI.isBeforeLegalizeOps()); 3496 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3497 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 3498 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 3499 DCI.CommitTargetLoweringOpt(TLO); 3500 } 3501 } 3502 3503 break; 3504 } 3505 case ISD::LOAD: 3506 return performLoadCombine(N, DCI); 3507 case ISD::STORE: 3508 return performStoreCombine(N, DCI); 3509 case AMDGPUISD::CLAMP: 3510 return performClampCombine(N, DCI); 3511 case AMDGPUISD::RCP: { 3512 if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 3513 // XXX - Should this flush denormals? 3514 const APFloat &Val = CFP->getValueAPF(); 3515 APFloat One(Val.getSemantics(), "1.0"); 3516 return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3517 } 3518 3519 break; 3520 } 3521 } 3522 return SDValue(); 3523 } 3524 3525 //===----------------------------------------------------------------------===// 3526 // Helper functions 3527 //===----------------------------------------------------------------------===// 3528 3529 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3530 const TargetRegisterClass *RC, 3531 unsigned Reg, EVT VT) const { 3532 MachineFunction &MF = DAG.getMachineFunction(); 3533 MachineRegisterInfo &MRI = MF.getRegInfo(); 3534 unsigned VirtualRegister; 3535 if (!MRI.isLiveIn(Reg)) { 3536 VirtualRegister = MRI.createVirtualRegister(RC); 3537 MRI.addLiveIn(Reg, VirtualRegister); 3538 } else { 3539 VirtualRegister = MRI.getLiveInVirtReg(Reg); 3540 } 3541 return DAG.getRegister(VirtualRegister, VT); 3542 } 3543 3544 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 3545 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 3546 unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); 3547 uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); 3548 switch (Param) { 3549 case GRID_DIM: 3550 return ArgOffset; 3551 case GRID_OFFSET: 3552 return ArgOffset + 4; 3553 } 3554 llvm_unreachable("unexpected implicit parameter type"); 3555 } 3556 3557 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 3558 3559 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 3560 switch ((AMDGPUISD::NodeType)Opcode) { 3561 case AMDGPUISD::FIRST_NUMBER: break; 3562 // AMDIL DAG nodes 3563 NODE_NAME_CASE(UMUL); 3564 NODE_NAME_CASE(BRANCH_COND); 3565 3566 // AMDGPU DAG nodes 3567 NODE_NAME_CASE(IF) 3568 NODE_NAME_CASE(ELSE) 3569 NODE_NAME_CASE(LOOP) 3570 NODE_NAME_CASE(CALL) 3571 NODE_NAME_CASE(TRAP) 3572 NODE_NAME_CASE(RET_FLAG) 3573 NODE_NAME_CASE(RETURN_TO_EPILOG) 3574 NODE_NAME_CASE(ENDPGM) 3575 NODE_NAME_CASE(DWORDADDR) 3576 NODE_NAME_CASE(FRACT) 3577 NODE_NAME_CASE(SETCC) 3578 NODE_NAME_CASE(SETREG) 3579 NODE_NAME_CASE(FMA_W_CHAIN) 3580 NODE_NAME_CASE(FMUL_W_CHAIN) 3581 NODE_NAME_CASE(CLAMP) 3582 NODE_NAME_CASE(COS_HW) 3583 NODE_NAME_CASE(SIN_HW) 3584 NODE_NAME_CASE(FMAX_LEGACY) 3585 NODE_NAME_CASE(FMIN_LEGACY) 3586 NODE_NAME_CASE(FMAX3) 3587 NODE_NAME_CASE(SMAX3) 3588 NODE_NAME_CASE(UMAX3) 3589 NODE_NAME_CASE(FMIN3) 3590 NODE_NAME_CASE(SMIN3) 3591 NODE_NAME_CASE(UMIN3) 3592 NODE_NAME_CASE(FMED3) 3593 NODE_NAME_CASE(SMED3) 3594 NODE_NAME_CASE(UMED3) 3595 NODE_NAME_CASE(URECIP) 3596 NODE_NAME_CASE(DIV_SCALE) 3597 NODE_NAME_CASE(DIV_FMAS) 3598 NODE_NAME_CASE(DIV_FIXUP) 3599 NODE_NAME_CASE(FMAD_FTZ) 3600 NODE_NAME_CASE(TRIG_PREOP) 3601 NODE_NAME_CASE(RCP) 3602 NODE_NAME_CASE(RSQ) 3603 NODE_NAME_CASE(RCP_LEGACY) 3604 NODE_NAME_CASE(RSQ_LEGACY) 3605 NODE_NAME_CASE(FMUL_LEGACY) 3606 NODE_NAME_CASE(RSQ_CLAMP) 3607 NODE_NAME_CASE(LDEXP) 3608 NODE_NAME_CASE(FP_CLASS) 3609 NODE_NAME_CASE(DOT4) 3610 NODE_NAME_CASE(CARRY) 3611 NODE_NAME_CASE(BORROW) 3612 NODE_NAME_CASE(BFE_U32) 3613 NODE_NAME_CASE(BFE_I32) 3614 NODE_NAME_CASE(BFI) 3615 NODE_NAME_CASE(BFM) 3616 NODE_NAME_CASE(FFBH_U32) 3617 NODE_NAME_CASE(FFBH_I32) 3618 NODE_NAME_CASE(MUL_U24) 3619 NODE_NAME_CASE(MUL_I24) 3620 NODE_NAME_CASE(MULHI_U24) 3621 NODE_NAME_CASE(MULHI_I24) 3622 NODE_NAME_CASE(MUL_LOHI_U24) 3623 NODE_NAME_CASE(MUL_LOHI_I24) 3624 NODE_NAME_CASE(MAD_U24) 3625 NODE_NAME_CASE(MAD_I24) 3626 NODE_NAME_CASE(TEXTURE_FETCH) 3627 NODE_NAME_CASE(EXPORT) 3628 NODE_NAME_CASE(EXPORT_DONE) 3629 NODE_NAME_CASE(R600_EXPORT) 3630 NODE_NAME_CASE(CONST_ADDRESS) 3631 NODE_NAME_CASE(REGISTER_LOAD) 3632 NODE_NAME_CASE(REGISTER_STORE) 3633 NODE_NAME_CASE(SAMPLE) 3634 NODE_NAME_CASE(SAMPLEB) 3635 NODE_NAME_CASE(SAMPLED) 3636 NODE_NAME_CASE(SAMPLEL) 3637 NODE_NAME_CASE(CVT_F32_UBYTE0) 3638 NODE_NAME_CASE(CVT_F32_UBYTE1) 3639 NODE_NAME_CASE(CVT_F32_UBYTE2) 3640 NODE_NAME_CASE(CVT_F32_UBYTE3) 3641 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 3642 NODE_NAME_CASE(FP_TO_FP16) 3643 NODE_NAME_CASE(FP16_ZEXT) 3644 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 3645 NODE_NAME_CASE(CONST_DATA_PTR) 3646 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 3647 NODE_NAME_CASE(KILL) 3648 NODE_NAME_CASE(DUMMY_CHAIN) 3649 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 3650 NODE_NAME_CASE(INIT_EXEC) 3651 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 3652 NODE_NAME_CASE(SENDMSG) 3653 NODE_NAME_CASE(SENDMSGHALT) 3654 NODE_NAME_CASE(INTERP_MOV) 3655 NODE_NAME_CASE(INTERP_P1) 3656 NODE_NAME_CASE(INTERP_P2) 3657 NODE_NAME_CASE(STORE_MSKOR) 3658 NODE_NAME_CASE(LOAD_CONSTANT) 3659 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3660 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 3661 NODE_NAME_CASE(ATOMIC_INC) 3662 NODE_NAME_CASE(ATOMIC_DEC) 3663 NODE_NAME_CASE(BUFFER_LOAD) 3664 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 3665 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3666 } 3667 return nullptr; 3668 } 3669 3670 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 3671 SelectionDAG &DAG, int Enabled, 3672 int &RefinementSteps, 3673 bool &UseOneConstNR, 3674 bool Reciprocal) const { 3675 EVT VT = Operand.getValueType(); 3676 3677 if (VT == MVT::f32) { 3678 RefinementSteps = 0; 3679 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3680 } 3681 3682 // TODO: There is also f64 rsq instruction, but the documentation is less 3683 // clear on its precision. 3684 3685 return SDValue(); 3686 } 3687 3688 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3689 SelectionDAG &DAG, int Enabled, 3690 int &RefinementSteps) const { 3691 EVT VT = Operand.getValueType(); 3692 3693 if (VT == MVT::f32) { 3694 // Reciprocal, < 1 ulp error. 3695 // 3696 // This reciprocal approximation converges to < 0.5 ulp error with one 3697 // newton rhapson performed with two fused multiple adds (FMAs). 3698 3699 RefinementSteps = 0; 3700 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3701 } 3702 3703 // TODO: There is also f64 rcp instruction, but the documentation is less 3704 // clear on its precision. 3705 3706 return SDValue(); 3707 } 3708 3709 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3710 const SDValue Op, KnownBits &Known, 3711 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 3712 3713 Known.resetAll(); // Don't know anything. 3714 3715 KnownBits Known2; 3716 unsigned Opc = Op.getOpcode(); 3717 3718 switch (Opc) { 3719 default: 3720 break; 3721 case AMDGPUISD::CARRY: 3722 case AMDGPUISD::BORROW: { 3723 Known.Zero = APInt::getHighBitsSet(32, 31); 3724 break; 3725 } 3726 3727 case AMDGPUISD::BFE_I32: 3728 case AMDGPUISD::BFE_U32: { 3729 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3730 if (!CWidth) 3731 return; 3732 3733 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3734 3735 if (Opc == AMDGPUISD::BFE_U32) 3736 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 3737 3738 break; 3739 } 3740 case AMDGPUISD::FP_TO_FP16: 3741 case AMDGPUISD::FP16_ZEXT: { 3742 unsigned BitWidth = Known.getBitWidth(); 3743 3744 // High bits are zero. 3745 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 3746 break; 3747 } 3748 } 3749 } 3750 3751 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3752 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3753 unsigned Depth) const { 3754 switch (Op.getOpcode()) { 3755 case AMDGPUISD::BFE_I32: { 3756 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3757 if (!Width) 3758 return 1; 3759 3760 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3761 if (!isNullConstant(Op.getOperand(1))) 3762 return SignBits; 3763 3764 // TODO: Could probably figure something out with non-0 offsets. 3765 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3766 return std::max(SignBits, Op0SignBits); 3767 } 3768 3769 case AMDGPUISD::BFE_U32: { 3770 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3771 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3772 } 3773 3774 case AMDGPUISD::CARRY: 3775 case AMDGPUISD::BORROW: 3776 return 31; 3777 case AMDGPUISD::FP_TO_FP16: 3778 case AMDGPUISD::FP16_ZEXT: 3779 return 16; 3780 default: 3781 return 1; 3782 } 3783 } 3784