1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUCallLowering.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPURegisterInfo.h"
20 #include "AMDGPUSubtarget.h"
21 #include "AMDGPUTargetMachine.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "R600MachineFunctionInfo.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DiagnosticInfo.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 using namespace llvm;
38 
39 #include "AMDGPUGenCallingConv.inc"
40 
41 // Find a larger type to do a load / store of a vector with.
42 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
43   unsigned StoreSize = VT.getStoreSizeInBits();
44   if (StoreSize <= 32)
45     return EVT::getIntegerVT(Ctx, StoreSize);
46 
47   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
48   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
49 }
50 
51 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
52   EVT VT = Op.getValueType();
53   KnownBits Known = DAG.computeKnownBits(Op);
54   return VT.getSizeInBits() - Known.countMinLeadingZeros();
55 }
56 
57 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
58   EVT VT = Op.getValueType();
59 
60   // In order for this to be a signed 24-bit value, bit 23, must
61   // be a sign bit.
62   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
63 }
64 
65 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
66                                            const AMDGPUSubtarget &STI)
67     : TargetLowering(TM), Subtarget(&STI) {
68   // Lower floating point store/load to integer store/load to reduce the number
69   // of patterns in tablegen.
70   setOperationAction(ISD::LOAD, MVT::f32, Promote);
71   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
72 
73   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
74   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
75 
76   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
77   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
78 
79   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
80   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
81 
82   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
83   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
84 
85   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
86   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
87 
88   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
89   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
90 
91   setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
92   AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
93 
94   setOperationAction(ISD::LOAD, MVT::i64, Promote);
95   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
96 
97   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
98   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
99 
100   setOperationAction(ISD::LOAD, MVT::f64, Promote);
101   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
102 
103   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
104   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
105 
106   // There are no 64-bit extloads. These should be done as a 32-bit extload and
107   // an extension to 64-bit.
108   for (MVT VT : MVT::integer_valuetypes()) {
109     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
110     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
111     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
112   }
113 
114   for (MVT VT : MVT::integer_valuetypes()) {
115     if (VT == MVT::i64)
116       continue;
117 
118     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
119     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
120     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
121     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
122 
123     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
124     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
125     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
126     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
127 
128     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
129     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
130     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
131     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
132   }
133 
134   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
135     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
136     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
137     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
138     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
139     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
140     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
141     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
142     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
143     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
144     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
145     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
146     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
147     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
148     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
149     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
150   }
151 
152   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
153   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
154   setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
155   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
156   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
157   setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
158   setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
159 
160   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
161   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
162   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
163   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
164 
165   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
166   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
167   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
168   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
169 
170   setOperationAction(ISD::STORE, MVT::f32, Promote);
171   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
172 
173   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
174   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
175 
176   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
177   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
178 
179   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
180   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
181 
182   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
183   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
184 
185   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
186   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
187 
188   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
189   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
190 
191   setOperationAction(ISD::STORE, MVT::v32f32, Promote);
192   AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
193 
194   setOperationAction(ISD::STORE, MVT::i64, Promote);
195   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
196 
197   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
198   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
199 
200   setOperationAction(ISD::STORE, MVT::f64, Promote);
201   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
202 
203   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
204   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
205 
206   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
207   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
208   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
209   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
210 
211   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
212   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
213   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
214   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
215 
216   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
217   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
218   setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
219   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
220   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
221   setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
222   setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
223 
224   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
225   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
226 
227   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
228   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
229 
230   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
231   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
232 
233   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
234   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
235 
236 
237   setOperationAction(ISD::Constant, MVT::i32, Legal);
238   setOperationAction(ISD::Constant, MVT::i64, Legal);
239   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
240   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
241 
242   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
243   setOperationAction(ISD::BRIND, MVT::Other, Expand);
244 
245   // This is totally unsupported, just custom lower to produce an error.
246   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
247 
248   // Library functions.  These default to Expand, but we have instructions
249   // for them.
250   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
251   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
252   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
253   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
254   setOperationAction(ISD::FABS,   MVT::f32, Legal);
255   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
256   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
257   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
258   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
259   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
260 
261   setOperationAction(ISD::FROUND, MVT::f32, Custom);
262   setOperationAction(ISD::FROUND, MVT::f64, Custom);
263 
264   setOperationAction(ISD::FLOG, MVT::f32, Custom);
265   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
266   setOperationAction(ISD::FEXP, MVT::f32, Custom);
267 
268 
269   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
270   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
271 
272   setOperationAction(ISD::FREM, MVT::f32, Custom);
273   setOperationAction(ISD::FREM, MVT::f64, Custom);
274 
275   // Expand to fneg + fadd.
276   setOperationAction(ISD::FSUB, MVT::f64, Expand);
277 
278   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
279   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
280   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
281   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
282   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
283   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
284   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
285   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
286   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
287   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
288   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
289   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
290   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
291   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
292   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
293   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
294   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
295   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
296   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
297   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
298   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
299   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
300 
301   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
302   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
303   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
304 
305   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
306   for (MVT VT : ScalarIntVTs) {
307     // These should use [SU]DIVREM, so set them to expand
308     setOperationAction(ISD::SDIV, VT, Expand);
309     setOperationAction(ISD::UDIV, VT, Expand);
310     setOperationAction(ISD::SREM, VT, Expand);
311     setOperationAction(ISD::UREM, VT, Expand);
312 
313     // GPU does not have divrem function for signed or unsigned.
314     setOperationAction(ISD::SDIVREM, VT, Custom);
315     setOperationAction(ISD::UDIVREM, VT, Custom);
316 
317     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
318     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
319     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
320 
321     setOperationAction(ISD::BSWAP, VT, Expand);
322     setOperationAction(ISD::CTTZ, VT, Expand);
323     setOperationAction(ISD::CTLZ, VT, Expand);
324 
325     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
326     setOperationAction(ISD::ADDC, VT, Legal);
327     setOperationAction(ISD::SUBC, VT, Legal);
328     setOperationAction(ISD::ADDE, VT, Legal);
329     setOperationAction(ISD::SUBE, VT, Legal);
330   }
331 
332   // The hardware supports 32-bit ROTR, but not ROTL.
333   setOperationAction(ISD::ROTL, MVT::i32, Expand);
334   setOperationAction(ISD::ROTL, MVT::i64, Expand);
335   setOperationAction(ISD::ROTR, MVT::i64, Expand);
336 
337   setOperationAction(ISD::MUL, MVT::i64, Expand);
338   setOperationAction(ISD::MULHU, MVT::i64, Expand);
339   setOperationAction(ISD::MULHS, MVT::i64, Expand);
340   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
341   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
342   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
343   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
344   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
345 
346   setOperationAction(ISD::SMIN, MVT::i32, Legal);
347   setOperationAction(ISD::UMIN, MVT::i32, Legal);
348   setOperationAction(ISD::SMAX, MVT::i32, Legal);
349   setOperationAction(ISD::UMAX, MVT::i32, Legal);
350 
351   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
352   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
353   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
354   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
355 
356   static const MVT::SimpleValueType VectorIntTypes[] = {
357     MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
358   };
359 
360   for (MVT VT : VectorIntTypes) {
361     // Expand the following operations for the current type by default.
362     setOperationAction(ISD::ADD,  VT, Expand);
363     setOperationAction(ISD::AND,  VT, Expand);
364     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
365     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
366     setOperationAction(ISD::MUL,  VT, Expand);
367     setOperationAction(ISD::MULHU, VT, Expand);
368     setOperationAction(ISD::MULHS, VT, Expand);
369     setOperationAction(ISD::OR,   VT, Expand);
370     setOperationAction(ISD::SHL,  VT, Expand);
371     setOperationAction(ISD::SRA,  VT, Expand);
372     setOperationAction(ISD::SRL,  VT, Expand);
373     setOperationAction(ISD::ROTL, VT, Expand);
374     setOperationAction(ISD::ROTR, VT, Expand);
375     setOperationAction(ISD::SUB,  VT, Expand);
376     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
377     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
378     setOperationAction(ISD::SDIV, VT, Expand);
379     setOperationAction(ISD::UDIV, VT, Expand);
380     setOperationAction(ISD::SREM, VT, Expand);
381     setOperationAction(ISD::UREM, VT, Expand);
382     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
383     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
384     setOperationAction(ISD::SDIVREM, VT, Custom);
385     setOperationAction(ISD::UDIVREM, VT, Expand);
386     setOperationAction(ISD::SELECT, VT, Expand);
387     setOperationAction(ISD::VSELECT, VT, Expand);
388     setOperationAction(ISD::SELECT_CC, VT, Expand);
389     setOperationAction(ISD::XOR,  VT, Expand);
390     setOperationAction(ISD::BSWAP, VT, Expand);
391     setOperationAction(ISD::CTPOP, VT, Expand);
392     setOperationAction(ISD::CTTZ, VT, Expand);
393     setOperationAction(ISD::CTLZ, VT, Expand);
394     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
395     setOperationAction(ISD::SETCC, VT, Expand);
396   }
397 
398   static const MVT::SimpleValueType FloatVectorTypes[] = {
399      MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
400   };
401 
402   for (MVT VT : FloatVectorTypes) {
403     setOperationAction(ISD::FABS, VT, Expand);
404     setOperationAction(ISD::FMINNUM, VT, Expand);
405     setOperationAction(ISD::FMAXNUM, VT, Expand);
406     setOperationAction(ISD::FADD, VT, Expand);
407     setOperationAction(ISD::FCEIL, VT, Expand);
408     setOperationAction(ISD::FCOS, VT, Expand);
409     setOperationAction(ISD::FDIV, VT, Expand);
410     setOperationAction(ISD::FEXP2, VT, Expand);
411     setOperationAction(ISD::FEXP, VT, Expand);
412     setOperationAction(ISD::FLOG2, VT, Expand);
413     setOperationAction(ISD::FREM, VT, Expand);
414     setOperationAction(ISD::FLOG, VT, Expand);
415     setOperationAction(ISD::FLOG10, VT, Expand);
416     setOperationAction(ISD::FPOW, VT, Expand);
417     setOperationAction(ISD::FFLOOR, VT, Expand);
418     setOperationAction(ISD::FTRUNC, VT, Expand);
419     setOperationAction(ISD::FMUL, VT, Expand);
420     setOperationAction(ISD::FMA, VT, Expand);
421     setOperationAction(ISD::FRINT, VT, Expand);
422     setOperationAction(ISD::FNEARBYINT, VT, Expand);
423     setOperationAction(ISD::FSQRT, VT, Expand);
424     setOperationAction(ISD::FSIN, VT, Expand);
425     setOperationAction(ISD::FSUB, VT, Expand);
426     setOperationAction(ISD::FNEG, VT, Expand);
427     setOperationAction(ISD::VSELECT, VT, Expand);
428     setOperationAction(ISD::SELECT_CC, VT, Expand);
429     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
430     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
431     setOperationAction(ISD::SETCC, VT, Expand);
432     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
433   }
434 
435   // This causes using an unrolled select operation rather than expansion with
436   // bit operations. This is in general better, but the alternative using BFI
437   // instructions may be better if the select sources are SGPRs.
438   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
439   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
440 
441   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
442   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
443 
444   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
445   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
446 
447   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
448   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
449 
450   // There are no libcalls of any kind.
451   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
452     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
453 
454   setSchedulingPreference(Sched::RegPressure);
455   setJumpIsExpensive(true);
456 
457   // FIXME: This is only partially true. If we have to do vector compares, any
458   // SGPR pair can be a condition register. If we have a uniform condition, we
459   // are better off doing SALU operations, where there is only one SCC. For now,
460   // we don't have a way of knowing during instruction selection if a condition
461   // will be uniform and we always use vector compares. Assume we are using
462   // vector compares until that is fixed.
463   setHasMultipleConditionRegisters(true);
464 
465   setMinCmpXchgSizeInBits(32);
466   setSupportsUnalignedAtomics(false);
467 
468   PredictableSelectIsExpensive = false;
469 
470   // We want to find all load dependencies for long chains of stores to enable
471   // merging into very wide vectors. The problem is with vectors with > 4
472   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
473   // vectors are a legal type, even though we have to split the loads
474   // usually. When we can more precisely specify load legality per address
475   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
476   // smarter so that they can figure out what to do in 2 iterations without all
477   // N > 4 stores on the same chain.
478   GatherAllAliasesMaxDepth = 16;
479 
480   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
481   // about these during lowering.
482   MaxStoresPerMemcpy  = 0xffffffff;
483   MaxStoresPerMemmove = 0xffffffff;
484   MaxStoresPerMemset  = 0xffffffff;
485 
486   setTargetDAGCombine(ISD::BITCAST);
487   setTargetDAGCombine(ISD::SHL);
488   setTargetDAGCombine(ISD::SRA);
489   setTargetDAGCombine(ISD::SRL);
490   setTargetDAGCombine(ISD::TRUNCATE);
491   setTargetDAGCombine(ISD::MUL);
492   setTargetDAGCombine(ISD::MULHU);
493   setTargetDAGCombine(ISD::MULHS);
494   setTargetDAGCombine(ISD::SELECT);
495   setTargetDAGCombine(ISD::SELECT_CC);
496   setTargetDAGCombine(ISD::STORE);
497   setTargetDAGCombine(ISD::FADD);
498   setTargetDAGCombine(ISD::FSUB);
499   setTargetDAGCombine(ISD::FNEG);
500   setTargetDAGCombine(ISD::FABS);
501   setTargetDAGCombine(ISD::AssertZext);
502   setTargetDAGCombine(ISD::AssertSext);
503   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
504 }
505 
506 //===----------------------------------------------------------------------===//
507 // Target Information
508 //===----------------------------------------------------------------------===//
509 
510 LLVM_READNONE
511 static bool fnegFoldsIntoOp(unsigned Opc) {
512   switch (Opc) {
513   case ISD::FADD:
514   case ISD::FSUB:
515   case ISD::FMUL:
516   case ISD::FMA:
517   case ISD::FMAD:
518   case ISD::FMINNUM:
519   case ISD::FMAXNUM:
520   case ISD::FMINNUM_IEEE:
521   case ISD::FMAXNUM_IEEE:
522   case ISD::FSIN:
523   case ISD::FTRUNC:
524   case ISD::FRINT:
525   case ISD::FNEARBYINT:
526   case ISD::FCANONICALIZE:
527   case AMDGPUISD::RCP:
528   case AMDGPUISD::RCP_LEGACY:
529   case AMDGPUISD::RCP_IFLAG:
530   case AMDGPUISD::SIN_HW:
531   case AMDGPUISD::FMUL_LEGACY:
532   case AMDGPUISD::FMIN_LEGACY:
533   case AMDGPUISD::FMAX_LEGACY:
534   case AMDGPUISD::FMED3:
535     return true;
536   default:
537     return false;
538   }
539 }
540 
541 /// \p returns true if the operation will definitely need to use a 64-bit
542 /// encoding, and thus will use a VOP3 encoding regardless of the source
543 /// modifiers.
544 LLVM_READONLY
545 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
546   return N->getNumOperands() > 2 || VT == MVT::f64;
547 }
548 
549 // Most FP instructions support source modifiers, but this could be refined
550 // slightly.
551 LLVM_READONLY
552 static bool hasSourceMods(const SDNode *N) {
553   if (isa<MemSDNode>(N))
554     return false;
555 
556   switch (N->getOpcode()) {
557   case ISD::CopyToReg:
558   case ISD::SELECT:
559   case ISD::FDIV:
560   case ISD::FREM:
561   case ISD::INLINEASM:
562   case ISD::INLINEASM_BR:
563   case AMDGPUISD::DIV_SCALE:
564   case ISD::INTRINSIC_W_CHAIN:
565 
566   // TODO: Should really be looking at the users of the bitcast. These are
567   // problematic because bitcasts are used to legalize all stores to integer
568   // types.
569   case ISD::BITCAST:
570     return false;
571   case ISD::INTRINSIC_WO_CHAIN: {
572     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
573     case Intrinsic::amdgcn_interp_p1:
574     case Intrinsic::amdgcn_interp_p2:
575     case Intrinsic::amdgcn_interp_mov:
576     case Intrinsic::amdgcn_interp_p1_f16:
577     case Intrinsic::amdgcn_interp_p2_f16:
578       return false;
579     default:
580       return true;
581     }
582   }
583   default:
584     return true;
585   }
586 }
587 
588 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
589                                                  unsigned CostThreshold) {
590   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
591   // it is truly free to use a source modifier in all cases. If there are
592   // multiple users but for each one will necessitate using VOP3, there will be
593   // a code size increase. Try to avoid increasing code size unless we know it
594   // will save on the instruction count.
595   unsigned NumMayIncreaseSize = 0;
596   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
597 
598   // XXX - Should this limit number of uses to check?
599   for (const SDNode *U : N->uses()) {
600     if (!hasSourceMods(U))
601       return false;
602 
603     if (!opMustUseVOP3Encoding(U, VT)) {
604       if (++NumMayIncreaseSize > CostThreshold)
605         return false;
606     }
607   }
608 
609   return true;
610 }
611 
612 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
613   return MVT::i32;
614 }
615 
616 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
617   return true;
618 }
619 
620 // The backend supports 32 and 64 bit floating point immediates.
621 // FIXME: Why are we reporting vectors of FP immediates as legal?
622 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
623                                         bool ForCodeSize) const {
624   EVT ScalarVT = VT.getScalarType();
625   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
626          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
627 }
628 
629 // We don't want to shrink f64 / f32 constants.
630 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
631   EVT ScalarVT = VT.getScalarType();
632   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
633 }
634 
635 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
636                                                  ISD::LoadExtType ExtTy,
637                                                  EVT NewVT) const {
638   // TODO: This may be worth removing. Check regression tests for diffs.
639   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
640     return false;
641 
642   unsigned NewSize = NewVT.getStoreSizeInBits();
643 
644   // If we are reducing to a 32-bit load or a smaller multi-dword load,
645   // this is always better.
646   if (NewSize >= 32)
647     return true;
648 
649   EVT OldVT = N->getValueType(0);
650   unsigned OldSize = OldVT.getStoreSizeInBits();
651 
652   MemSDNode *MN = cast<MemSDNode>(N);
653   unsigned AS = MN->getAddressSpace();
654   // Do not shrink an aligned scalar load to sub-dword.
655   // Scalar engine cannot do sub-dword loads.
656   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
657       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
658        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
659        (isa<LoadSDNode>(N) &&
660         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
661       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
662     return false;
663 
664   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
665   // extloads, so doing one requires using a buffer_load. In cases where we
666   // still couldn't use a scalar load, using the wider load shouldn't really
667   // hurt anything.
668 
669   // If the old size already had to be an extload, there's no harm in continuing
670   // to reduce the width.
671   return (OldSize < 32);
672 }
673 
674 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
675                                                    const SelectionDAG &DAG,
676                                                    const MachineMemOperand &MMO) const {
677 
678   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
679 
680   if (LoadTy.getScalarType() == MVT::i32)
681     return false;
682 
683   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
684   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
685 
686   if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
687     return false;
688 
689   bool Fast = false;
690   return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
691                                         CastTy, MMO, &Fast) &&
692          Fast;
693 }
694 
695 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
696 // profitable with the expansion for 64-bit since it's generally good to
697 // speculate things.
698 // FIXME: These should really have the size as a parameter.
699 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
700   return true;
701 }
702 
703 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
704   return true;
705 }
706 
707 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
708   switch (N->getOpcode()) {
709     default:
710     return false;
711     case ISD::EntryToken:
712     case ISD::TokenFactor:
713       return true;
714     case ISD::INTRINSIC_WO_CHAIN:
715     {
716       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
717       switch (IntrID) {
718         default:
719         return false;
720         case Intrinsic::amdgcn_readfirstlane:
721         case Intrinsic::amdgcn_readlane:
722           return true;
723       }
724     }
725     break;
726     case ISD::LOAD:
727     {
728       if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
729           AMDGPUAS::CONSTANT_ADDRESS_32BIT)
730         return true;
731       return false;
732     }
733     break;
734   }
735 }
736 
737 char AMDGPUTargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
738                                               bool LegalOperations,
739                                               bool ForCodeSize,
740                                               unsigned Depth) const {
741   switch (Op.getOpcode()) {
742     case ISD::FMA:
743     case ISD::FMAD: {
744       // Negating a fma is not free if it has users without source mods.
745       if (!allUsesHaveSourceMods(Op.getNode()))
746         return 0;
747       break;
748     }
749     default:
750       break;
751   }
752 
753   return TargetLowering::isNegatibleForFree(Op, DAG, LegalOperations,
754                                             ForCodeSize, Depth);
755 }
756 
757 //===---------------------------------------------------------------------===//
758 // Target Properties
759 //===---------------------------------------------------------------------===//
760 
761 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
762   assert(VT.isFloatingPoint());
763 
764   // Packed operations do not have a fabs modifier.
765   return VT == MVT::f32 || VT == MVT::f64 ||
766          (Subtarget->has16BitInsts() && VT == MVT::f16);
767 }
768 
769 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
770   assert(VT.isFloatingPoint());
771   return VT == MVT::f32 || VT == MVT::f64 ||
772          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
773          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
774 }
775 
776 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
777                                                          unsigned NumElem,
778                                                          unsigned AS) const {
779   return true;
780 }
781 
782 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
783   // There are few operations which truly have vector input operands. Any vector
784   // operation is going to involve operations on each component, and a
785   // build_vector will be a copy per element, so it always makes sense to use a
786   // build_vector input in place of the extracted element to avoid a copy into a
787   // super register.
788   //
789   // We should probably only do this if all users are extracts only, but this
790   // should be the common case.
791   return true;
792 }
793 
794 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
795   // Truncate is just accessing a subregister.
796 
797   unsigned SrcSize = Source.getSizeInBits();
798   unsigned DestSize = Dest.getSizeInBits();
799 
800   return DestSize < SrcSize && DestSize % 32 == 0 ;
801 }
802 
803 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
804   // Truncate is just accessing a subregister.
805 
806   unsigned SrcSize = Source->getScalarSizeInBits();
807   unsigned DestSize = Dest->getScalarSizeInBits();
808 
809   if (DestSize== 16 && Subtarget->has16BitInsts())
810     return SrcSize >= 32;
811 
812   return DestSize < SrcSize && DestSize % 32 == 0;
813 }
814 
815 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
816   unsigned SrcSize = Src->getScalarSizeInBits();
817   unsigned DestSize = Dest->getScalarSizeInBits();
818 
819   if (SrcSize == 16 && Subtarget->has16BitInsts())
820     return DestSize >= 32;
821 
822   return SrcSize == 32 && DestSize == 64;
823 }
824 
825 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
826   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
827   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
828   // this will enable reducing 64-bit operations the 32-bit, which is always
829   // good.
830 
831   if (Src == MVT::i16)
832     return Dest == MVT::i32 ||Dest == MVT::i64 ;
833 
834   return Src == MVT::i32 && Dest == MVT::i64;
835 }
836 
837 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
838   return isZExtFree(Val.getValueType(), VT2);
839 }
840 
841 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
842   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
843   // limited number of native 64-bit operations. Shrinking an operation to fit
844   // in a single 32-bit register should always be helpful. As currently used,
845   // this is much less general than the name suggests, and is only used in
846   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
847   // not profitable, and may actually be harmful.
848   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
849 }
850 
851 //===---------------------------------------------------------------------===//
852 // TargetLowering Callbacks
853 //===---------------------------------------------------------------------===//
854 
855 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
856                                                   bool IsVarArg) {
857   switch (CC) {
858   case CallingConv::AMDGPU_VS:
859   case CallingConv::AMDGPU_GS:
860   case CallingConv::AMDGPU_PS:
861   case CallingConv::AMDGPU_CS:
862   case CallingConv::AMDGPU_HS:
863   case CallingConv::AMDGPU_ES:
864   case CallingConv::AMDGPU_LS:
865     return CC_AMDGPU;
866   case CallingConv::C:
867   case CallingConv::Fast:
868   case CallingConv::Cold:
869     return CC_AMDGPU_Func;
870   case CallingConv::AMDGPU_KERNEL:
871   case CallingConv::SPIR_KERNEL:
872   default:
873     report_fatal_error("Unsupported calling convention for call");
874   }
875 }
876 
877 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
878                                                     bool IsVarArg) {
879   switch (CC) {
880   case CallingConv::AMDGPU_KERNEL:
881   case CallingConv::SPIR_KERNEL:
882     llvm_unreachable("kernels should not be handled here");
883   case CallingConv::AMDGPU_VS:
884   case CallingConv::AMDGPU_GS:
885   case CallingConv::AMDGPU_PS:
886   case CallingConv::AMDGPU_CS:
887   case CallingConv::AMDGPU_HS:
888   case CallingConv::AMDGPU_ES:
889   case CallingConv::AMDGPU_LS:
890     return RetCC_SI_Shader;
891   case CallingConv::C:
892   case CallingConv::Fast:
893   case CallingConv::Cold:
894     return RetCC_AMDGPU_Func;
895   default:
896     report_fatal_error("Unsupported calling convention.");
897   }
898 }
899 
900 /// The SelectionDAGBuilder will automatically promote function arguments
901 /// with illegal types.  However, this does not work for the AMDGPU targets
902 /// since the function arguments are stored in memory as these illegal types.
903 /// In order to handle this properly we need to get the original types sizes
904 /// from the LLVM IR Function and fixup the ISD:InputArg values before
905 /// passing them to AnalyzeFormalArguments()
906 
907 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
908 /// input values across multiple registers.  Each item in the Ins array
909 /// represents a single value that will be stored in registers.  Ins[x].VT is
910 /// the value type of the value that will be stored in the register, so
911 /// whatever SDNode we lower the argument to needs to be this type.
912 ///
913 /// In order to correctly lower the arguments we need to know the size of each
914 /// argument.  Since Ins[x].VT gives us the size of the register that will
915 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
916 /// for the orignal function argument so that we can deduce the correct memory
917 /// type to use for Ins[x].  In most cases the correct memory type will be
918 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
919 /// we have a kernel argument of type v8i8, this argument will be split into
920 /// 8 parts and each part will be represented by its own item in the Ins array.
921 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
922 /// the argument before it was split.  From this, we deduce that the memory type
923 /// for each individual part is i8.  We pass the memory type as LocVT to the
924 /// calling convention analysis function and the register type (Ins[x].VT) as
925 /// the ValVT.
926 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
927   CCState &State,
928   const SmallVectorImpl<ISD::InputArg> &Ins) const {
929   const MachineFunction &MF = State.getMachineFunction();
930   const Function &Fn = MF.getFunction();
931   LLVMContext &Ctx = Fn.getParent()->getContext();
932   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
933   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
934   CallingConv::ID CC = Fn.getCallingConv();
935 
936   unsigned MaxAlign = 1;
937   uint64_t ExplicitArgOffset = 0;
938   const DataLayout &DL = Fn.getParent()->getDataLayout();
939 
940   unsigned InIndex = 0;
941 
942   for (const Argument &Arg : Fn.args()) {
943     Type *BaseArgTy = Arg.getType();
944     unsigned Align = DL.getABITypeAlignment(BaseArgTy);
945     MaxAlign = std::max(Align, MaxAlign);
946     unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
947 
948     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
949     ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
950 
951     // We're basically throwing away everything passed into us and starting over
952     // to get accurate in-memory offsets. The "PartOffset" is completely useless
953     // to us as computed in Ins.
954     //
955     // We also need to figure out what type legalization is trying to do to get
956     // the correct memory offsets.
957 
958     SmallVector<EVT, 16> ValueVTs;
959     SmallVector<uint64_t, 16> Offsets;
960     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
961 
962     for (unsigned Value = 0, NumValues = ValueVTs.size();
963          Value != NumValues; ++Value) {
964       uint64_t BasePartOffset = Offsets[Value];
965 
966       EVT ArgVT = ValueVTs[Value];
967       EVT MemVT = ArgVT;
968       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
969       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
970 
971       if (NumRegs == 1) {
972         // This argument is not split, so the IR type is the memory type.
973         if (ArgVT.isExtended()) {
974           // We have an extended type, like i24, so we should just use the
975           // register type.
976           MemVT = RegisterVT;
977         } else {
978           MemVT = ArgVT;
979         }
980       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
981                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
982         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
983         // We have a vector value which has been split into a vector with
984         // the same scalar type, but fewer elements.  This should handle
985         // all the floating-point vector types.
986         MemVT = RegisterVT;
987       } else if (ArgVT.isVector() &&
988                  ArgVT.getVectorNumElements() == NumRegs) {
989         // This arg has been split so that each element is stored in a separate
990         // register.
991         MemVT = ArgVT.getScalarType();
992       } else if (ArgVT.isExtended()) {
993         // We have an extended type, like i65.
994         MemVT = RegisterVT;
995       } else {
996         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
997         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
998         if (RegisterVT.isInteger()) {
999           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1000         } else if (RegisterVT.isVector()) {
1001           assert(!RegisterVT.getScalarType().isFloatingPoint());
1002           unsigned NumElements = RegisterVT.getVectorNumElements();
1003           assert(MemoryBits % NumElements == 0);
1004           // This vector type has been split into another vector type with
1005           // a different elements size.
1006           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1007                                            MemoryBits / NumElements);
1008           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1009         } else {
1010           llvm_unreachable("cannot deduce memory type.");
1011         }
1012       }
1013 
1014       // Convert one element vectors to scalar.
1015       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1016         MemVT = MemVT.getScalarType();
1017 
1018       // Round up vec3/vec5 argument.
1019       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1020         assert(MemVT.getVectorNumElements() == 3 ||
1021                MemVT.getVectorNumElements() == 5);
1022         MemVT = MemVT.getPow2VectorType(State.getContext());
1023       }
1024 
1025       unsigned PartOffset = 0;
1026       for (unsigned i = 0; i != NumRegs; ++i) {
1027         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1028                                                BasePartOffset + PartOffset,
1029                                                MemVT.getSimpleVT(),
1030                                                CCValAssign::Full));
1031         PartOffset += MemVT.getStoreSize();
1032       }
1033     }
1034   }
1035 }
1036 
1037 SDValue AMDGPUTargetLowering::LowerReturn(
1038   SDValue Chain, CallingConv::ID CallConv,
1039   bool isVarArg,
1040   const SmallVectorImpl<ISD::OutputArg> &Outs,
1041   const SmallVectorImpl<SDValue> &OutVals,
1042   const SDLoc &DL, SelectionDAG &DAG) const {
1043   // FIXME: Fails for r600 tests
1044   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1045   // "wave terminate should not have return values");
1046   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1047 }
1048 
1049 //===---------------------------------------------------------------------===//
1050 // Target specific lowering
1051 //===---------------------------------------------------------------------===//
1052 
1053 /// Selects the correct CCAssignFn for a given CallingConvention value.
1054 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1055                                                     bool IsVarArg) {
1056   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1057 }
1058 
1059 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1060                                                       bool IsVarArg) {
1061   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1062 }
1063 
1064 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1065                                                   SelectionDAG &DAG,
1066                                                   MachineFrameInfo &MFI,
1067                                                   int ClobberedFI) const {
1068   SmallVector<SDValue, 8> ArgChains;
1069   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1070   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1071 
1072   // Include the original chain at the beginning of the list. When this is
1073   // used by target LowerCall hooks, this helps legalize find the
1074   // CALLSEQ_BEGIN node.
1075   ArgChains.push_back(Chain);
1076 
1077   // Add a chain value for each stack argument corresponding
1078   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1079                             UE = DAG.getEntryNode().getNode()->use_end();
1080        U != UE; ++U) {
1081     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1082       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1083         if (FI->getIndex() < 0) {
1084           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1085           int64_t InLastByte = InFirstByte;
1086           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1087 
1088           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1089               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1090             ArgChains.push_back(SDValue(L, 1));
1091         }
1092       }
1093     }
1094   }
1095 
1096   // Build a tokenfactor for all the chains.
1097   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1098 }
1099 
1100 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1101                                                  SmallVectorImpl<SDValue> &InVals,
1102                                                  StringRef Reason) const {
1103   SDValue Callee = CLI.Callee;
1104   SelectionDAG &DAG = CLI.DAG;
1105 
1106   const Function &Fn = DAG.getMachineFunction().getFunction();
1107 
1108   StringRef FuncName("<unknown>");
1109 
1110   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1111     FuncName = G->getSymbol();
1112   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1113     FuncName = G->getGlobal()->getName();
1114 
1115   DiagnosticInfoUnsupported NoCalls(
1116     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1117   DAG.getContext()->diagnose(NoCalls);
1118 
1119   if (!CLI.IsTailCall) {
1120     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1121       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1122   }
1123 
1124   return DAG.getEntryNode();
1125 }
1126 
1127 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1128                                         SmallVectorImpl<SDValue> &InVals) const {
1129   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1130 }
1131 
1132 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1133                                                       SelectionDAG &DAG) const {
1134   const Function &Fn = DAG.getMachineFunction().getFunction();
1135 
1136   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1137                                             SDLoc(Op).getDebugLoc());
1138   DAG.getContext()->diagnose(NoDynamicAlloca);
1139   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1140   return DAG.getMergeValues(Ops, SDLoc());
1141 }
1142 
1143 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1144                                              SelectionDAG &DAG) const {
1145   switch (Op.getOpcode()) {
1146   default:
1147     Op->print(errs(), &DAG);
1148     llvm_unreachable("Custom lowering code for this"
1149                      "instruction is not implemented yet!");
1150     break;
1151   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1152   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1153   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1154   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1155   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1156   case ISD::FREM: return LowerFREM(Op, DAG);
1157   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1158   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1159   case ISD::FRINT: return LowerFRINT(Op, DAG);
1160   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1161   case ISD::FROUND: return LowerFROUND(Op, DAG);
1162   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1163   case ISD::FLOG:
1164     return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef);
1165   case ISD::FLOG10:
1166     return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1167   case ISD::FEXP:
1168     return lowerFEXP(Op, DAG);
1169   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1170   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1171   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1172   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1173   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1174   case ISD::CTTZ:
1175   case ISD::CTTZ_ZERO_UNDEF:
1176   case ISD::CTLZ:
1177   case ISD::CTLZ_ZERO_UNDEF:
1178     return LowerCTLZ_CTTZ(Op, DAG);
1179   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1180   }
1181   return Op;
1182 }
1183 
1184 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1185                                               SmallVectorImpl<SDValue> &Results,
1186                                               SelectionDAG &DAG) const {
1187   switch (N->getOpcode()) {
1188   case ISD::SIGN_EXTEND_INREG:
1189     // Different parts of legalization seem to interpret which type of
1190     // sign_extend_inreg is the one to check for custom lowering. The extended
1191     // from type is what really matters, but some places check for custom
1192     // lowering of the result type. This results in trying to use
1193     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1194     // nothing here and let the illegal result integer be handled normally.
1195     return;
1196   default:
1197     return;
1198   }
1199 }
1200 
1201 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1202   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1203   if (!GVar || !GVar->hasInitializer())
1204     return false;
1205 
1206   return !isa<UndefValue>(GVar->getInitializer());
1207 }
1208 
1209 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1210                                                  SDValue Op,
1211                                                  SelectionDAG &DAG) const {
1212 
1213   const DataLayout &DL = DAG.getDataLayout();
1214   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1215   const GlobalValue *GV = G->getGlobal();
1216 
1217   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1218       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1219     if (!MFI->isEntryFunction()) {
1220       const Function &Fn = DAG.getMachineFunction().getFunction();
1221       DiagnosticInfoUnsupported BadLDSDecl(
1222         Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1223       DAG.getContext()->diagnose(BadLDSDecl);
1224     }
1225 
1226     // XXX: What does the value of G->getOffset() mean?
1227     assert(G->getOffset() == 0 &&
1228          "Do not know what to do with an non-zero offset");
1229 
1230     // TODO: We could emit code to handle the initialization somewhere.
1231     if (!hasDefinedInitializer(GV)) {
1232       unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1233       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1234     }
1235   }
1236 
1237   const Function &Fn = DAG.getMachineFunction().getFunction();
1238   DiagnosticInfoUnsupported BadInit(
1239       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1240   DAG.getContext()->diagnose(BadInit);
1241   return SDValue();
1242 }
1243 
1244 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1245                                                   SelectionDAG &DAG) const {
1246   SmallVector<SDValue, 8> Args;
1247 
1248   EVT VT = Op.getValueType();
1249   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1250     SDLoc SL(Op);
1251     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1252     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1253 
1254     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1255     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1256   }
1257 
1258   for (const SDUse &U : Op->ops())
1259     DAG.ExtractVectorElements(U.get(), Args);
1260 
1261   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1262 }
1263 
1264 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1265                                                      SelectionDAG &DAG) const {
1266 
1267   SmallVector<SDValue, 8> Args;
1268   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1269   EVT VT = Op.getValueType();
1270   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1271                             VT.getVectorNumElements());
1272 
1273   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1274 }
1275 
1276 /// Generate Min/Max node
1277 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1278                                                    SDValue LHS, SDValue RHS,
1279                                                    SDValue True, SDValue False,
1280                                                    SDValue CC,
1281                                                    DAGCombinerInfo &DCI) const {
1282   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1283     return SDValue();
1284 
1285   SelectionDAG &DAG = DCI.DAG;
1286   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1287   switch (CCOpcode) {
1288   case ISD::SETOEQ:
1289   case ISD::SETONE:
1290   case ISD::SETUNE:
1291   case ISD::SETNE:
1292   case ISD::SETUEQ:
1293   case ISD::SETEQ:
1294   case ISD::SETFALSE:
1295   case ISD::SETFALSE2:
1296   case ISD::SETTRUE:
1297   case ISD::SETTRUE2:
1298   case ISD::SETUO:
1299   case ISD::SETO:
1300     break;
1301   case ISD::SETULE:
1302   case ISD::SETULT: {
1303     if (LHS == True)
1304       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1305     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1306   }
1307   case ISD::SETOLE:
1308   case ISD::SETOLT:
1309   case ISD::SETLE:
1310   case ISD::SETLT: {
1311     // Ordered. Assume ordered for undefined.
1312 
1313     // Only do this after legalization to avoid interfering with other combines
1314     // which might occur.
1315     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1316         !DCI.isCalledByLegalizer())
1317       return SDValue();
1318 
1319     // We need to permute the operands to get the correct NaN behavior. The
1320     // selected operand is the second one based on the failing compare with NaN,
1321     // so permute it based on the compare type the hardware uses.
1322     if (LHS == True)
1323       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1324     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1325   }
1326   case ISD::SETUGE:
1327   case ISD::SETUGT: {
1328     if (LHS == True)
1329       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1330     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1331   }
1332   case ISD::SETGT:
1333   case ISD::SETGE:
1334   case ISD::SETOGE:
1335   case ISD::SETOGT: {
1336     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1337         !DCI.isCalledByLegalizer())
1338       return SDValue();
1339 
1340     if (LHS == True)
1341       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1342     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1343   }
1344   case ISD::SETCC_INVALID:
1345     llvm_unreachable("Invalid setcc condcode!");
1346   }
1347   return SDValue();
1348 }
1349 
1350 std::pair<SDValue, SDValue>
1351 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1352   SDLoc SL(Op);
1353 
1354   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1355 
1356   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1357   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1358 
1359   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1360   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1361 
1362   return std::make_pair(Lo, Hi);
1363 }
1364 
1365 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1366   SDLoc SL(Op);
1367 
1368   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1369   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1370   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1371 }
1372 
1373 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1374   SDLoc SL(Op);
1375 
1376   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1377   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1378   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1379 }
1380 
1381 // Split a vector type into two parts. The first part is a power of two vector.
1382 // The second part is whatever is left over, and is a scalar if it would
1383 // otherwise be a 1-vector.
1384 std::pair<EVT, EVT>
1385 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1386   EVT LoVT, HiVT;
1387   EVT EltVT = VT.getVectorElementType();
1388   unsigned NumElts = VT.getVectorNumElements();
1389   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1390   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1391   HiVT = NumElts - LoNumElts == 1
1392              ? EltVT
1393              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1394   return std::make_pair(LoVT, HiVT);
1395 }
1396 
1397 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1398 // scalar.
1399 std::pair<SDValue, SDValue>
1400 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1401                                   const EVT &LoVT, const EVT &HiVT,
1402                                   SelectionDAG &DAG) const {
1403   assert(LoVT.getVectorNumElements() +
1404                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1405              N.getValueType().getVectorNumElements() &&
1406          "More vector elements requested than available!");
1407   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1408                            DAG.getVectorIdxConstant(0, DL));
1409   SDValue Hi = DAG.getNode(
1410       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1411       HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
1412   return std::make_pair(Lo, Hi);
1413 }
1414 
1415 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1416                                               SelectionDAG &DAG) const {
1417   LoadSDNode *Load = cast<LoadSDNode>(Op);
1418   EVT VT = Op.getValueType();
1419   SDLoc SL(Op);
1420 
1421 
1422   // If this is a 2 element vector, we really want to scalarize and not create
1423   // weird 1 element vectors.
1424   if (VT.getVectorNumElements() == 2) {
1425     SDValue Ops[2];
1426     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1427     return DAG.getMergeValues(Ops, SL);
1428   }
1429 
1430   SDValue BasePtr = Load->getBasePtr();
1431   EVT MemVT = Load->getMemoryVT();
1432 
1433   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1434 
1435   EVT LoVT, HiVT;
1436   EVT LoMemVT, HiMemVT;
1437   SDValue Lo, Hi;
1438 
1439   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1440   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1441   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1442 
1443   unsigned Size = LoMemVT.getStoreSize();
1444   unsigned BaseAlign = Load->getAlignment();
1445   unsigned HiAlign = MinAlign(BaseAlign, Size);
1446 
1447   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1448                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1449                                   BaseAlign, Load->getMemOperand()->getFlags());
1450   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1451   SDValue HiLoad =
1452       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1453                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1454                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1455 
1456   SDValue Join;
1457   if (LoVT == HiVT) {
1458     // This is the case that the vector is power of two so was evenly split.
1459     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1460   } else {
1461     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1462                        DAG.getVectorIdxConstant(0, SL));
1463     Join = DAG.getNode(
1464         HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
1465         VT, Join, HiLoad,
1466         DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
1467   }
1468 
1469   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1470                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1471 
1472   return DAG.getMergeValues(Ops, SL);
1473 }
1474 
1475 // Widen a vector load from vec3 to vec4.
1476 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1477                                               SelectionDAG &DAG) const {
1478   LoadSDNode *Load = cast<LoadSDNode>(Op);
1479   EVT VT = Op.getValueType();
1480   assert(VT.getVectorNumElements() == 3);
1481   SDValue BasePtr = Load->getBasePtr();
1482   EVT MemVT = Load->getMemoryVT();
1483   SDLoc SL(Op);
1484   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1485   unsigned BaseAlign = Load->getAlignment();
1486 
1487   EVT WideVT =
1488       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1489   EVT WideMemVT =
1490       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1491   SDValue WideLoad = DAG.getExtLoad(
1492       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1493       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1494   return DAG.getMergeValues(
1495       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1496                    DAG.getVectorIdxConstant(0, SL)),
1497        WideLoad.getValue(1)},
1498       SL);
1499 }
1500 
1501 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1502                                                SelectionDAG &DAG) const {
1503   StoreSDNode *Store = cast<StoreSDNode>(Op);
1504   SDValue Val = Store->getValue();
1505   EVT VT = Val.getValueType();
1506 
1507   // If this is a 2 element vector, we really want to scalarize and not create
1508   // weird 1 element vectors.
1509   if (VT.getVectorNumElements() == 2)
1510     return scalarizeVectorStore(Store, DAG);
1511 
1512   EVT MemVT = Store->getMemoryVT();
1513   SDValue Chain = Store->getChain();
1514   SDValue BasePtr = Store->getBasePtr();
1515   SDLoc SL(Op);
1516 
1517   EVT LoVT, HiVT;
1518   EVT LoMemVT, HiMemVT;
1519   SDValue Lo, Hi;
1520 
1521   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1522   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1523   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1524 
1525   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1526 
1527   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1528   unsigned BaseAlign = Store->getAlignment();
1529   unsigned Size = LoMemVT.getStoreSize();
1530   unsigned HiAlign = MinAlign(BaseAlign, Size);
1531 
1532   SDValue LoStore =
1533       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1534                         Store->getMemOperand()->getFlags());
1535   SDValue HiStore =
1536       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1537                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1538 
1539   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1540 }
1541 
1542 // This is a shortcut for integer division because we have fast i32<->f32
1543 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1544 // float is enough to accurately represent up to a 24-bit signed integer.
1545 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1546                                             bool Sign) const {
1547   SDLoc DL(Op);
1548   EVT VT = Op.getValueType();
1549   SDValue LHS = Op.getOperand(0);
1550   SDValue RHS = Op.getOperand(1);
1551   MVT IntVT = MVT::i32;
1552   MVT FltVT = MVT::f32;
1553 
1554   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1555   if (LHSSignBits < 9)
1556     return SDValue();
1557 
1558   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1559   if (RHSSignBits < 9)
1560     return SDValue();
1561 
1562   unsigned BitSize = VT.getSizeInBits();
1563   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1564   unsigned DivBits = BitSize - SignBits;
1565   if (Sign)
1566     ++DivBits;
1567 
1568   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1569   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1570 
1571   SDValue jq = DAG.getConstant(1, DL, IntVT);
1572 
1573   if (Sign) {
1574     // char|short jq = ia ^ ib;
1575     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1576 
1577     // jq = jq >> (bitsize - 2)
1578     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1579                      DAG.getConstant(BitSize - 2, DL, VT));
1580 
1581     // jq = jq | 0x1
1582     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1583   }
1584 
1585   // int ia = (int)LHS;
1586   SDValue ia = LHS;
1587 
1588   // int ib, (int)RHS;
1589   SDValue ib = RHS;
1590 
1591   // float fa = (float)ia;
1592   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1593 
1594   // float fb = (float)ib;
1595   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1596 
1597   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1598                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1599 
1600   // fq = trunc(fq);
1601   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1602 
1603   // float fqneg = -fq;
1604   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1605 
1606   MachineFunction &MF = DAG.getMachineFunction();
1607   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
1608 
1609   // float fr = mad(fqneg, fb, fa);
1610   unsigned OpCode = MFI->getMode().allFP32Denormals() ?
1611                     (unsigned)AMDGPUISD::FMAD_FTZ :
1612                     (unsigned)ISD::FMAD;
1613   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1614 
1615   // int iq = (int)fq;
1616   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1617 
1618   // fr = fabs(fr);
1619   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1620 
1621   // fb = fabs(fb);
1622   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1623 
1624   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1625 
1626   // int cv = fr >= fb;
1627   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1628 
1629   // jq = (cv ? jq : 0);
1630   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1631 
1632   // dst = iq + jq;
1633   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1634 
1635   // Rem needs compensation, it's easier to recompute it
1636   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1637   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1638 
1639   // Truncate to number of bits this divide really is.
1640   if (Sign) {
1641     SDValue InRegSize
1642       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1643     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1644     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1645   } else {
1646     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1647     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1648     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1649   }
1650 
1651   return DAG.getMergeValues({ Div, Rem }, DL);
1652 }
1653 
1654 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1655                                       SelectionDAG &DAG,
1656                                       SmallVectorImpl<SDValue> &Results) const {
1657   SDLoc DL(Op);
1658   EVT VT = Op.getValueType();
1659 
1660   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1661 
1662   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1663 
1664   SDValue One = DAG.getConstant(1, DL, HalfVT);
1665   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1666 
1667   //HiLo split
1668   SDValue LHS = Op.getOperand(0);
1669   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1670   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1671 
1672   SDValue RHS = Op.getOperand(1);
1673   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1674   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1675 
1676   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1677       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1678 
1679     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1680                               LHS_Lo, RHS_Lo);
1681 
1682     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1683     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1684 
1685     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1686     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1687     return;
1688   }
1689 
1690   if (isTypeLegal(MVT::i64)) {
1691     MachineFunction &MF = DAG.getMachineFunction();
1692     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1693 
1694     // Compute denominator reciprocal.
1695     unsigned FMAD = MFI->getMode().allFP32Denormals() ?
1696                     (unsigned)AMDGPUISD::FMAD_FTZ :
1697                     (unsigned)ISD::FMAD;
1698 
1699     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1700     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1701     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1702       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1703       Cvt_Lo);
1704     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1705     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1706       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1707     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1708       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1709     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1710     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1711       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1712       Mul1);
1713     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1714     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1715     SDValue Rcp64 = DAG.getBitcast(VT,
1716                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1717 
1718     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1719     SDValue One64  = DAG.getConstant(1, DL, VT);
1720     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1721     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1722 
1723     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1724     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1725     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1726     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1727                                     Zero);
1728     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1729                                     One);
1730 
1731     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1732                                   Mulhi1_Lo, Zero1);
1733     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1734                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1735     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1736     SDValue Add1 = DAG.getBitcast(VT,
1737                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1738 
1739     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1740     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1741     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1742                                     Zero);
1743     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1744                                     One);
1745 
1746     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1747                                   Mulhi2_Lo, Zero1);
1748     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1749                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1750     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1751                                   Zero, Add2_Lo.getValue(1));
1752     SDValue Add2 = DAG.getBitcast(VT,
1753                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1754     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1755 
1756     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1757 
1758     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1759     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1760     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1761                                   Mul3_Lo, Zero1);
1762     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1763                                   Mul3_Hi, Sub1_Lo.getValue(1));
1764     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1765     SDValue Sub1 = DAG.getBitcast(VT,
1766                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1767 
1768     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1769     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1770                                  ISD::SETUGE);
1771     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1772                                  ISD::SETUGE);
1773     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1774 
1775     // TODO: Here and below portions of the code can be enclosed into if/endif.
1776     // Currently control flow is unconditional and we have 4 selects after
1777     // potential endif to substitute PHIs.
1778 
1779     // if C3 != 0 ...
1780     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1781                                   RHS_Lo, Zero1);
1782     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1783                                   RHS_Hi, Sub1_Lo.getValue(1));
1784     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1785                                   Zero, Sub2_Lo.getValue(1));
1786     SDValue Sub2 = DAG.getBitcast(VT,
1787                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1788 
1789     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1790 
1791     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1792                                  ISD::SETUGE);
1793     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1794                                  ISD::SETUGE);
1795     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1796 
1797     // if (C6 != 0)
1798     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1799 
1800     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1801                                   RHS_Lo, Zero1);
1802     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1803                                   RHS_Hi, Sub2_Lo.getValue(1));
1804     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1805                                   Zero, Sub3_Lo.getValue(1));
1806     SDValue Sub3 = DAG.getBitcast(VT,
1807                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1808 
1809     // endif C6
1810     // endif C3
1811 
1812     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1813     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1814 
1815     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1816     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1817 
1818     Results.push_back(Div);
1819     Results.push_back(Rem);
1820 
1821     return;
1822   }
1823 
1824   // r600 expandion.
1825   // Get Speculative values
1826   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1827   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1828 
1829   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1830   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1831   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1832 
1833   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1834   SDValue DIV_Lo = Zero;
1835 
1836   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1837 
1838   for (unsigned i = 0; i < halfBitWidth; ++i) {
1839     const unsigned bitPos = halfBitWidth - i - 1;
1840     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1841     // Get value of high bit
1842     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1843     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1844     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1845 
1846     // Shift
1847     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1848     // Add LHS high bit
1849     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1850 
1851     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1852     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1853 
1854     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1855 
1856     // Update REM
1857     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1858     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1859   }
1860 
1861   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1862   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1863   Results.push_back(DIV);
1864   Results.push_back(REM);
1865 }
1866 
1867 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1868                                            SelectionDAG &DAG) const {
1869   SDLoc DL(Op);
1870   EVT VT = Op.getValueType();
1871 
1872   if (VT == MVT::i64) {
1873     SmallVector<SDValue, 2> Results;
1874     LowerUDIVREM64(Op, DAG, Results);
1875     return DAG.getMergeValues(Results, DL);
1876   }
1877 
1878   if (VT == MVT::i32) {
1879     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1880       return Res;
1881   }
1882 
1883   SDValue Num = Op.getOperand(0);
1884   SDValue Den = Op.getOperand(1);
1885 
1886   // RCP =  URECIP(Den) = 2^32 / Den + e
1887   // e is rounding error.
1888   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1889 
1890   // RCP_LO = mul(RCP, Den) */
1891   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1892 
1893   // RCP_HI = mulhu (RCP, Den) */
1894   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1895 
1896   // NEG_RCP_LO = -RCP_LO
1897   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1898                                                      RCP_LO);
1899 
1900   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1901   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1902                                            NEG_RCP_LO, RCP_LO,
1903                                            ISD::SETEQ);
1904   // Calculate the rounding error from the URECIP instruction
1905   // E = mulhu(ABS_RCP_LO, RCP)
1906   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1907 
1908   // RCP_A_E = RCP + E
1909   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1910 
1911   // RCP_S_E = RCP - E
1912   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1913 
1914   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1915   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1916                                      RCP_A_E, RCP_S_E,
1917                                      ISD::SETEQ);
1918   // Quotient = mulhu(Tmp0, Num)
1919   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1920 
1921   // Num_S_Remainder = Quotient * Den
1922   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1923 
1924   // Remainder = Num - Num_S_Remainder
1925   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1926 
1927   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1928   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1929                                                  DAG.getConstant(-1, DL, VT),
1930                                                  DAG.getConstant(0, DL, VT),
1931                                                  ISD::SETUGE);
1932   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1933   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1934                                                   Num_S_Remainder,
1935                                                   DAG.getConstant(-1, DL, VT),
1936                                                   DAG.getConstant(0, DL, VT),
1937                                                   ISD::SETUGE);
1938   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1939   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1940                                                Remainder_GE_Zero);
1941 
1942   // Calculate Division result:
1943 
1944   // Quotient_A_One = Quotient + 1
1945   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1946                                        DAG.getConstant(1, DL, VT));
1947 
1948   // Quotient_S_One = Quotient - 1
1949   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1950                                        DAG.getConstant(1, DL, VT));
1951 
1952   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1953   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1954                                      Quotient, Quotient_A_One, ISD::SETEQ);
1955 
1956   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1957   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1958                             Quotient_S_One, Div, ISD::SETEQ);
1959 
1960   // Calculate Rem result:
1961 
1962   // Remainder_S_Den = Remainder - Den
1963   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1964 
1965   // Remainder_A_Den = Remainder + Den
1966   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1967 
1968   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1969   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1970                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1971 
1972   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1973   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1974                             Remainder_A_Den, Rem, ISD::SETEQ);
1975   SDValue Ops[2] = {
1976     Div,
1977     Rem
1978   };
1979   return DAG.getMergeValues(Ops, DL);
1980 }
1981 
1982 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1983                                            SelectionDAG &DAG) const {
1984   SDLoc DL(Op);
1985   EVT VT = Op.getValueType();
1986 
1987   SDValue LHS = Op.getOperand(0);
1988   SDValue RHS = Op.getOperand(1);
1989 
1990   SDValue Zero = DAG.getConstant(0, DL, VT);
1991   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1992 
1993   if (VT == MVT::i32) {
1994     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1995       return Res;
1996   }
1997 
1998   if (VT == MVT::i64 &&
1999       DAG.ComputeNumSignBits(LHS) > 32 &&
2000       DAG.ComputeNumSignBits(RHS) > 32) {
2001     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2002 
2003     //HiLo split
2004     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2005     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2006     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2007                                  LHS_Lo, RHS_Lo);
2008     SDValue Res[2] = {
2009       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2010       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2011     };
2012     return DAG.getMergeValues(Res, DL);
2013   }
2014 
2015   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2016   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2017   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2018   SDValue RSign = LHSign; // Remainder sign is the same as LHS
2019 
2020   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2021   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2022 
2023   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2024   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2025 
2026   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2027   SDValue Rem = Div.getValue(1);
2028 
2029   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2030   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2031 
2032   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2033   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2034 
2035   SDValue Res[2] = {
2036     Div,
2037     Rem
2038   };
2039   return DAG.getMergeValues(Res, DL);
2040 }
2041 
2042 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2043 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2044   SDLoc SL(Op);
2045   EVT VT = Op.getValueType();
2046   SDValue X = Op.getOperand(0);
2047   SDValue Y = Op.getOperand(1);
2048 
2049   // TODO: Should this propagate fast-math-flags?
2050 
2051   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2052   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2053   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2054 
2055   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2056 }
2057 
2058 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2059   SDLoc SL(Op);
2060   SDValue Src = Op.getOperand(0);
2061 
2062   // result = trunc(src)
2063   // if (src > 0.0 && src != result)
2064   //   result += 1.0
2065 
2066   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2067 
2068   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2069   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2070 
2071   EVT SetCCVT =
2072       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2073 
2074   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2075   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2076   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2077 
2078   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2079   // TODO: Should this propagate fast-math-flags?
2080   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2081 }
2082 
2083 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2084                                   SelectionDAG &DAG) {
2085   const unsigned FractBits = 52;
2086   const unsigned ExpBits = 11;
2087 
2088   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2089                                 Hi,
2090                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2091                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2092   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2093                             DAG.getConstant(1023, SL, MVT::i32));
2094 
2095   return Exp;
2096 }
2097 
2098 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2099   SDLoc SL(Op);
2100   SDValue Src = Op.getOperand(0);
2101 
2102   assert(Op.getValueType() == MVT::f64);
2103 
2104   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2105   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2106 
2107   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2108 
2109   // Extract the upper half, since this is where we will find the sign and
2110   // exponent.
2111   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2112 
2113   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2114 
2115   const unsigned FractBits = 52;
2116 
2117   // Extract the sign bit.
2118   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2119   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2120 
2121   // Extend back to 64-bits.
2122   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2123   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2124 
2125   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2126   const SDValue FractMask
2127     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2128 
2129   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2130   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2131   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2132 
2133   EVT SetCCVT =
2134       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2135 
2136   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2137 
2138   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2139   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2140 
2141   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2142   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2143 
2144   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2145 }
2146 
2147 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2148   SDLoc SL(Op);
2149   SDValue Src = Op.getOperand(0);
2150 
2151   assert(Op.getValueType() == MVT::f64);
2152 
2153   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2154   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2155   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2156 
2157   // TODO: Should this propagate fast-math-flags?
2158 
2159   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2160   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2161 
2162   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2163 
2164   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2165   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2166 
2167   EVT SetCCVT =
2168       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2169   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2170 
2171   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2172 }
2173 
2174 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2175   // FNEARBYINT and FRINT are the same, except in their handling of FP
2176   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2177   // rint, so just treat them as equivalent.
2178   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2179 }
2180 
2181 // XXX - May require not supporting f32 denormals?
2182 
2183 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2184 // compare and vselect end up producing worse code than scalarizing the whole
2185 // operation.
2186 SDValue AMDGPUTargetLowering::LowerFROUND_LegalFTRUNC(SDValue Op,
2187                                                       SelectionDAG &DAG) const {
2188   SDLoc SL(Op);
2189   SDValue X = Op.getOperand(0);
2190   EVT VT = Op.getValueType();
2191 
2192   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2193 
2194   // TODO: Should this propagate fast-math-flags?
2195 
2196   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2197 
2198   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2199 
2200   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2201   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2202   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2203 
2204   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2205 
2206   EVT SetCCVT =
2207       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2208 
2209   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2210 
2211   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2212 
2213   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2214 }
2215 
2216 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2217   SDLoc SL(Op);
2218   SDValue X = Op.getOperand(0);
2219 
2220   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2221 
2222   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2223   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2224   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2225   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2226   EVT SetCCVT =
2227       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2228 
2229   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2230 
2231   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2232 
2233   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2234 
2235   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2236                                        MVT::i64);
2237 
2238   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2239   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2240                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
2241                                           MVT::i64),
2242                           Exp);
2243 
2244   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2245   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2246                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
2247                               ISD::SETNE);
2248 
2249   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2250                              D, DAG.getConstant(0, SL, MVT::i64));
2251   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2252 
2253   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2254   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2255 
2256   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2257   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2258   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2259 
2260   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2261                             ExpEqNegOne,
2262                             DAG.getConstantFP(1.0, SL, MVT::f64),
2263                             DAG.getConstantFP(0.0, SL, MVT::f64));
2264 
2265   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2266 
2267   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2268   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2269 
2270   return K;
2271 }
2272 
2273 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2274   EVT VT = Op.getValueType();
2275 
2276   if (isOperationLegal(ISD::FTRUNC, VT))
2277     return LowerFROUND_LegalFTRUNC(Op, DAG);
2278 
2279   if (VT == MVT::f64)
2280     return LowerFROUND64(Op, DAG);
2281 
2282   llvm_unreachable("unhandled type");
2283 }
2284 
2285 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2286   SDLoc SL(Op);
2287   SDValue Src = Op.getOperand(0);
2288 
2289   // result = trunc(src);
2290   // if (src < 0.0 && src != result)
2291   //   result += -1.0.
2292 
2293   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2294 
2295   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2296   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2297 
2298   EVT SetCCVT =
2299       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2300 
2301   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2302   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2303   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2304 
2305   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2306   // TODO: Should this propagate fast-math-flags?
2307   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2308 }
2309 
2310 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2311                                         double Log2BaseInverted) const {
2312   EVT VT = Op.getValueType();
2313 
2314   SDLoc SL(Op);
2315   SDValue Operand = Op.getOperand(0);
2316   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2317   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2318 
2319   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2320 }
2321 
2322 // exp2(M_LOG2E_F * f);
2323 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2324   EVT VT = Op.getValueType();
2325   SDLoc SL(Op);
2326   SDValue Src = Op.getOperand(0);
2327 
2328   const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2329   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2330   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2331 }
2332 
2333 static bool isCtlzOpc(unsigned Opc) {
2334   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2335 }
2336 
2337 static bool isCttzOpc(unsigned Opc) {
2338   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2339 }
2340 
2341 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2342   SDLoc SL(Op);
2343   SDValue Src = Op.getOperand(0);
2344   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2345                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2346 
2347   unsigned ISDOpc, NewOpc;
2348   if (isCtlzOpc(Op.getOpcode())) {
2349     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2350     NewOpc = AMDGPUISD::FFBH_U32;
2351   } else if (isCttzOpc(Op.getOpcode())) {
2352     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2353     NewOpc = AMDGPUISD::FFBL_B32;
2354   } else
2355     llvm_unreachable("Unexpected OPCode!!!");
2356 
2357 
2358   if (ZeroUndef && Src.getValueType() == MVT::i32)
2359     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2360 
2361   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2362 
2363   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2364   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2365 
2366   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2367   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2368 
2369   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2370                                    *DAG.getContext(), MVT::i32);
2371 
2372   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2373   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2374 
2375   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2376   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2377 
2378   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2379   SDValue Add, NewOpr;
2380   if (isCtlzOpc(Op.getOpcode())) {
2381     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2382     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2383     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2384   } else {
2385     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2386     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2387     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2388   }
2389 
2390   if (!ZeroUndef) {
2391     // Test if the full 64-bit input is zero.
2392 
2393     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2394     // which we probably don't want.
2395     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2396     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2397     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2398 
2399     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2400     // with the same cycles, otherwise it is slower.
2401     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2402     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2403 
2404     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2405 
2406     // The instruction returns -1 for 0 input, but the defined intrinsic
2407     // behavior is to return the number of bits.
2408     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2409                          SrcIsZero, Bits32, NewOpr);
2410   }
2411 
2412   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2413 }
2414 
2415 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2416                                                bool Signed) const {
2417   // Unsigned
2418   // cul2f(ulong u)
2419   //{
2420   //  uint lz = clz(u);
2421   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2422   //  u = (u << lz) & 0x7fffffffffffffffUL;
2423   //  ulong t = u & 0xffffffffffUL;
2424   //  uint v = (e << 23) | (uint)(u >> 40);
2425   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2426   //  return as_float(v + r);
2427   //}
2428   // Signed
2429   // cl2f(long l)
2430   //{
2431   //  long s = l >> 63;
2432   //  float r = cul2f((l + s) ^ s);
2433   //  return s ? -r : r;
2434   //}
2435 
2436   SDLoc SL(Op);
2437   SDValue Src = Op.getOperand(0);
2438   SDValue L = Src;
2439 
2440   SDValue S;
2441   if (Signed) {
2442     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2443     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2444 
2445     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2446     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2447   }
2448 
2449   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2450                                    *DAG.getContext(), MVT::f32);
2451 
2452 
2453   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2454   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2455   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2456   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2457 
2458   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2459   SDValue E = DAG.getSelect(SL, MVT::i32,
2460     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2461     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2462     ZeroI32);
2463 
2464   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2465     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2466     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2467 
2468   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2469                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2470 
2471   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2472                              U, DAG.getConstant(40, SL, MVT::i64));
2473 
2474   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2475     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2476     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2477 
2478   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2479   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2480   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2481 
2482   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2483 
2484   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2485 
2486   SDValue R = DAG.getSelect(SL, MVT::i32,
2487     RCmp,
2488     One,
2489     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2490   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2491   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2492 
2493   if (!Signed)
2494     return R;
2495 
2496   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2497   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2498 }
2499 
2500 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2501                                                bool Signed) const {
2502   SDLoc SL(Op);
2503   SDValue Src = Op.getOperand(0);
2504 
2505   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2506 
2507   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2508                            DAG.getConstant(0, SL, MVT::i32));
2509   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2510                            DAG.getConstant(1, SL, MVT::i32));
2511 
2512   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2513                               SL, MVT::f64, Hi);
2514 
2515   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2516 
2517   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2518                               DAG.getConstant(32, SL, MVT::i32));
2519   // TODO: Should this propagate fast-math-flags?
2520   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2521 }
2522 
2523 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2524                                                SelectionDAG &DAG) const {
2525   // TODO: Factor out code common with LowerSINT_TO_FP.
2526   EVT DestVT = Op.getValueType();
2527   SDValue Src = Op.getOperand(0);
2528   EVT SrcVT = Src.getValueType();
2529 
2530   if (SrcVT == MVT::i16) {
2531     if (DestVT == MVT::f16)
2532       return Op;
2533     SDLoc DL(Op);
2534 
2535     // Promote src to i32
2536     SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2537     return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2538   }
2539 
2540   assert(SrcVT == MVT::i64 && "operation should be legal");
2541 
2542   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2543     SDLoc DL(Op);
2544 
2545     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2546     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2547     SDValue FPRound =
2548         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2549 
2550     return FPRound;
2551   }
2552 
2553   if (DestVT == MVT::f32)
2554     return LowerINT_TO_FP32(Op, DAG, false);
2555 
2556   assert(DestVT == MVT::f64);
2557   return LowerINT_TO_FP64(Op, DAG, false);
2558 }
2559 
2560 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2561                                               SelectionDAG &DAG) const {
2562   EVT DestVT = Op.getValueType();
2563 
2564   SDValue Src = Op.getOperand(0);
2565   EVT SrcVT = Src.getValueType();
2566 
2567   if (SrcVT == MVT::i16) {
2568     if (DestVT == MVT::f16)
2569       return Op;
2570 
2571     SDLoc DL(Op);
2572     // Promote src to i32
2573     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2574     return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2575   }
2576 
2577   assert(SrcVT == MVT::i64 && "operation should be legal");
2578 
2579   // TODO: Factor out code common with LowerUINT_TO_FP.
2580 
2581   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2582     SDLoc DL(Op);
2583     SDValue Src = Op.getOperand(0);
2584 
2585     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2586     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2587     SDValue FPRound =
2588         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2589 
2590     return FPRound;
2591   }
2592 
2593   if (DestVT == MVT::f32)
2594     return LowerINT_TO_FP32(Op, DAG, true);
2595 
2596   assert(DestVT == MVT::f64);
2597   return LowerINT_TO_FP64(Op, DAG, true);
2598 }
2599 
2600 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2601                                                bool Signed) const {
2602   SDLoc SL(Op);
2603 
2604   SDValue Src = Op.getOperand(0);
2605 
2606   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2607 
2608   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2609                                  MVT::f64);
2610   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2611                                  MVT::f64);
2612   // TODO: Should this propagate fast-math-flags?
2613   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2614 
2615   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2616 
2617 
2618   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2619 
2620   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2621                            MVT::i32, FloorMul);
2622   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2623 
2624   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2625 
2626   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2627 }
2628 
2629 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2630   SDLoc DL(Op);
2631   SDValue N0 = Op.getOperand(0);
2632 
2633   // Convert to target node to get known bits
2634   if (N0.getValueType() == MVT::f32)
2635     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2636 
2637   if (getTargetMachine().Options.UnsafeFPMath) {
2638     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2639     return SDValue();
2640   }
2641 
2642   assert(N0.getSimpleValueType() == MVT::f64);
2643 
2644   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2645   const unsigned ExpMask = 0x7ff;
2646   const unsigned ExpBiasf64 = 1023;
2647   const unsigned ExpBiasf16 = 15;
2648   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2649   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2650   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2651   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2652                            DAG.getConstant(32, DL, MVT::i64));
2653   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2654   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2655   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2656                           DAG.getConstant(20, DL, MVT::i64));
2657   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2658                   DAG.getConstant(ExpMask, DL, MVT::i32));
2659   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2660   // add the f16 bias (15) to get the biased exponent for the f16 format.
2661   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2662                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2663 
2664   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2665                           DAG.getConstant(8, DL, MVT::i32));
2666   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2667                   DAG.getConstant(0xffe, DL, MVT::i32));
2668 
2669   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2670                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2671   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2672 
2673   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2674   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2675 
2676   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2677   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2678       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2679                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2680 
2681   // N = M | (E << 12);
2682   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2683       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2684                   DAG.getConstant(12, DL, MVT::i32)));
2685 
2686   // B = clamp(1-E, 0, 13);
2687   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2688                                   One, E);
2689   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2690   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2691                   DAG.getConstant(13, DL, MVT::i32));
2692 
2693   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2694                                    DAG.getConstant(0x1000, DL, MVT::i32));
2695 
2696   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2697   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2698   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2699   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2700 
2701   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2702   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2703                               DAG.getConstant(0x7, DL, MVT::i32));
2704   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2705                   DAG.getConstant(2, DL, MVT::i32));
2706   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2707                                One, Zero, ISD::SETEQ);
2708   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2709                                One, Zero, ISD::SETGT);
2710   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2711   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2712 
2713   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2714                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2715   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2716                       I, V, ISD::SETEQ);
2717 
2718   // Extract the sign bit.
2719   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2720                             DAG.getConstant(16, DL, MVT::i32));
2721   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2722                      DAG.getConstant(0x8000, DL, MVT::i32));
2723 
2724   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2725   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2726 }
2727 
2728 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2729                                               SelectionDAG &DAG) const {
2730   SDValue Src = Op.getOperand(0);
2731 
2732   // TODO: Factor out code common with LowerFP_TO_UINT.
2733 
2734   EVT SrcVT = Src.getValueType();
2735   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2736     SDLoc DL(Op);
2737 
2738     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2739     SDValue FpToInt32 =
2740         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2741 
2742     return FpToInt32;
2743   }
2744 
2745   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2746     return LowerFP64_TO_INT(Op, DAG, true);
2747 
2748   return SDValue();
2749 }
2750 
2751 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2752                                               SelectionDAG &DAG) const {
2753   SDValue Src = Op.getOperand(0);
2754 
2755   // TODO: Factor out code common with LowerFP_TO_SINT.
2756 
2757   EVT SrcVT = Src.getValueType();
2758   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2759     SDLoc DL(Op);
2760 
2761     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2762     SDValue FpToInt32 =
2763         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2764 
2765     return FpToInt32;
2766   }
2767 
2768   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2769     return LowerFP64_TO_INT(Op, DAG, false);
2770 
2771   return SDValue();
2772 }
2773 
2774 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2775                                                      SelectionDAG &DAG) const {
2776   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2777   MVT VT = Op.getSimpleValueType();
2778   MVT ScalarVT = VT.getScalarType();
2779 
2780   assert(VT.isVector());
2781 
2782   SDValue Src = Op.getOperand(0);
2783   SDLoc DL(Op);
2784 
2785   // TODO: Don't scalarize on Evergreen?
2786   unsigned NElts = VT.getVectorNumElements();
2787   SmallVector<SDValue, 8> Args;
2788   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2789 
2790   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2791   for (unsigned I = 0; I < NElts; ++I)
2792     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2793 
2794   return DAG.getBuildVector(VT, DL, Args);
2795 }
2796 
2797 //===----------------------------------------------------------------------===//
2798 // Custom DAG optimizations
2799 //===----------------------------------------------------------------------===//
2800 
2801 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2802   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2803 }
2804 
2805 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2806   EVT VT = Op.getValueType();
2807   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2808                                      // as unsigned 24-bit values.
2809     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2810 }
2811 
2812 static SDValue simplifyI24(SDNode *Node24,
2813                            TargetLowering::DAGCombinerInfo &DCI) {
2814   SelectionDAG &DAG = DCI.DAG;
2815   bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2816 
2817   SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2818   SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2819   unsigned NewOpcode = Node24->getOpcode();
2820   if (IsIntrin) {
2821     unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2822     NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2823       AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2824   }
2825 
2826   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2827 
2828   // First try to simplify using GetDemandedBits which allows the operands to
2829   // have other uses, but will only perform simplifications that involve
2830   // bypassing some nodes for this user.
2831   SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded);
2832   SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded);
2833   if (DemandedLHS || DemandedRHS)
2834     return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2835                        DemandedLHS ? DemandedLHS : LHS,
2836                        DemandedRHS ? DemandedRHS : RHS);
2837 
2838   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2839   // operands if this node is the only user.
2840   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2841   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2842     return SDValue(Node24, 0);
2843   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2844     return SDValue(Node24, 0);
2845 
2846   return SDValue();
2847 }
2848 
2849 template <typename IntTy>
2850 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2851                                uint32_t Width, const SDLoc &DL) {
2852   if (Width + Offset < 32) {
2853     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2854     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2855     return DAG.getConstant(Result, DL, MVT::i32);
2856   }
2857 
2858   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2859 }
2860 
2861 static bool hasVolatileUser(SDNode *Val) {
2862   for (SDNode *U : Val->uses()) {
2863     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2864       if (M->isVolatile())
2865         return true;
2866     }
2867   }
2868 
2869   return false;
2870 }
2871 
2872 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2873   // i32 vectors are the canonical memory type.
2874   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2875     return false;
2876 
2877   if (!VT.isByteSized())
2878     return false;
2879 
2880   unsigned Size = VT.getStoreSize();
2881 
2882   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2883     return false;
2884 
2885   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2886     return false;
2887 
2888   return true;
2889 }
2890 
2891 // Replace load of an illegal type with a store of a bitcast to a friendlier
2892 // type.
2893 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2894                                                  DAGCombinerInfo &DCI) const {
2895   if (!DCI.isBeforeLegalize())
2896     return SDValue();
2897 
2898   LoadSDNode *LN = cast<LoadSDNode>(N);
2899   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2900     return SDValue();
2901 
2902   SDLoc SL(N);
2903   SelectionDAG &DAG = DCI.DAG;
2904   EVT VT = LN->getMemoryVT();
2905 
2906   unsigned Size = VT.getStoreSize();
2907   unsigned Align = LN->getAlignment();
2908   if (Align < Size && isTypeLegal(VT)) {
2909     bool IsFast;
2910     unsigned AS = LN->getAddressSpace();
2911 
2912     // Expand unaligned loads earlier than legalization. Due to visitation order
2913     // problems during legalization, the emitted instructions to pack and unpack
2914     // the bytes again are not eliminated in the case of an unaligned copy.
2915     if (!allowsMisalignedMemoryAccesses(
2916             VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) {
2917       SDValue Ops[2];
2918 
2919       if (VT.isVector())
2920         std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
2921       else
2922         std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2923 
2924       return DAG.getMergeValues(Ops, SDLoc(N));
2925     }
2926 
2927     if (!IsFast)
2928       return SDValue();
2929   }
2930 
2931   if (!shouldCombineMemoryType(VT))
2932     return SDValue();
2933 
2934   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2935 
2936   SDValue NewLoad
2937     = DAG.getLoad(NewVT, SL, LN->getChain(),
2938                   LN->getBasePtr(), LN->getMemOperand());
2939 
2940   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2941   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2942   return SDValue(N, 0);
2943 }
2944 
2945 // Replace store of an illegal type with a store of a bitcast to a friendlier
2946 // type.
2947 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2948                                                   DAGCombinerInfo &DCI) const {
2949   if (!DCI.isBeforeLegalize())
2950     return SDValue();
2951 
2952   StoreSDNode *SN = cast<StoreSDNode>(N);
2953   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2954     return SDValue();
2955 
2956   EVT VT = SN->getMemoryVT();
2957   unsigned Size = VT.getStoreSize();
2958 
2959   SDLoc SL(N);
2960   SelectionDAG &DAG = DCI.DAG;
2961   unsigned Align = SN->getAlignment();
2962   if (Align < Size && isTypeLegal(VT)) {
2963     bool IsFast;
2964     unsigned AS = SN->getAddressSpace();
2965 
2966     // Expand unaligned stores earlier than legalization. Due to visitation
2967     // order problems during legalization, the emitted instructions to pack and
2968     // unpack the bytes again are not eliminated in the case of an unaligned
2969     // copy.
2970     if (!allowsMisalignedMemoryAccesses(
2971             VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) {
2972       if (VT.isVector())
2973         return scalarizeVectorStore(SN, DAG);
2974 
2975       return expandUnalignedStore(SN, DAG);
2976     }
2977 
2978     if (!IsFast)
2979       return SDValue();
2980   }
2981 
2982   if (!shouldCombineMemoryType(VT))
2983     return SDValue();
2984 
2985   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2986   SDValue Val = SN->getValue();
2987 
2988   //DCI.AddToWorklist(Val.getNode());
2989 
2990   bool OtherUses = !Val.hasOneUse();
2991   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2992   if (OtherUses) {
2993     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2994     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2995   }
2996 
2997   return DAG.getStore(SN->getChain(), SL, CastVal,
2998                       SN->getBasePtr(), SN->getMemOperand());
2999 }
3000 
3001 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3002 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3003 // issues.
3004 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3005                                                         DAGCombinerInfo &DCI) const {
3006   SelectionDAG &DAG = DCI.DAG;
3007   SDValue N0 = N->getOperand(0);
3008 
3009   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3010   //     (vt2 (truncate (assertzext vt0:x, vt1)))
3011   if (N0.getOpcode() == ISD::TRUNCATE) {
3012     SDValue N1 = N->getOperand(1);
3013     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3014     SDLoc SL(N);
3015 
3016     SDValue Src = N0.getOperand(0);
3017     EVT SrcVT = Src.getValueType();
3018     if (SrcVT.bitsGE(ExtVT)) {
3019       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3020       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3021     }
3022   }
3023 
3024   return SDValue();
3025 }
3026 
3027 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3028   SDNode *N, DAGCombinerInfo &DCI) const {
3029   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3030   switch (IID) {
3031   case Intrinsic::amdgcn_mul_i24:
3032   case Intrinsic::amdgcn_mul_u24:
3033     return simplifyI24(N, DCI);
3034   default:
3035     return SDValue();
3036   }
3037 }
3038 
3039 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3040 /// binary operation \p Opc to it with the corresponding constant operands.
3041 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3042   DAGCombinerInfo &DCI, const SDLoc &SL,
3043   unsigned Opc, SDValue LHS,
3044   uint32_t ValLo, uint32_t ValHi) const {
3045   SelectionDAG &DAG = DCI.DAG;
3046   SDValue Lo, Hi;
3047   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3048 
3049   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3050   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3051 
3052   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3053   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3054 
3055   // Re-visit the ands. It's possible we eliminated one of them and it could
3056   // simplify the vector.
3057   DCI.AddToWorklist(Lo.getNode());
3058   DCI.AddToWorklist(Hi.getNode());
3059 
3060   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3061   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3062 }
3063 
3064 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3065                                                 DAGCombinerInfo &DCI) const {
3066   EVT VT = N->getValueType(0);
3067 
3068   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3069   if (!RHS)
3070     return SDValue();
3071 
3072   SDValue LHS = N->getOperand(0);
3073   unsigned RHSVal = RHS->getZExtValue();
3074   if (!RHSVal)
3075     return LHS;
3076 
3077   SDLoc SL(N);
3078   SelectionDAG &DAG = DCI.DAG;
3079 
3080   switch (LHS->getOpcode()) {
3081   default:
3082     break;
3083   case ISD::ZERO_EXTEND:
3084   case ISD::SIGN_EXTEND:
3085   case ISD::ANY_EXTEND: {
3086     SDValue X = LHS->getOperand(0);
3087 
3088     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3089         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3090       // Prefer build_vector as the canonical form if packed types are legal.
3091       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3092       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3093        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3094       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3095     }
3096 
3097     // shl (ext x) => zext (shl x), if shift does not overflow int
3098     if (VT != MVT::i64)
3099       break;
3100     KnownBits Known = DAG.computeKnownBits(X);
3101     unsigned LZ = Known.countMinLeadingZeros();
3102     if (LZ < RHSVal)
3103       break;
3104     EVT XVT = X.getValueType();
3105     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3106     return DAG.getZExtOrTrunc(Shl, SL, VT);
3107   }
3108   }
3109 
3110   if (VT != MVT::i64)
3111     return SDValue();
3112 
3113   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3114 
3115   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3116   // common case, splitting this into a move and a 32-bit shift is faster and
3117   // the same code size.
3118   if (RHSVal < 32)
3119     return SDValue();
3120 
3121   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3122 
3123   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3124   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3125 
3126   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3127 
3128   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3129   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3130 }
3131 
3132 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3133                                                 DAGCombinerInfo &DCI) const {
3134   if (N->getValueType(0) != MVT::i64)
3135     return SDValue();
3136 
3137   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3138   if (!RHS)
3139     return SDValue();
3140 
3141   SelectionDAG &DAG = DCI.DAG;
3142   SDLoc SL(N);
3143   unsigned RHSVal = RHS->getZExtValue();
3144 
3145   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3146   if (RHSVal == 32) {
3147     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3148     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3149                                    DAG.getConstant(31, SL, MVT::i32));
3150 
3151     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3152     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3153   }
3154 
3155   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3156   if (RHSVal == 63) {
3157     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3158     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3159                                    DAG.getConstant(31, SL, MVT::i32));
3160     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3161     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3162   }
3163 
3164   return SDValue();
3165 }
3166 
3167 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3168                                                 DAGCombinerInfo &DCI) const {
3169   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3170   if (!RHS)
3171     return SDValue();
3172 
3173   EVT VT = N->getValueType(0);
3174   SDValue LHS = N->getOperand(0);
3175   unsigned ShiftAmt = RHS->getZExtValue();
3176   SelectionDAG &DAG = DCI.DAG;
3177   SDLoc SL(N);
3178 
3179   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3180   // this improves the ability to match BFE patterns in isel.
3181   if (LHS.getOpcode() == ISD::AND) {
3182     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3183       if (Mask->getAPIntValue().isShiftedMask() &&
3184           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3185         return DAG.getNode(
3186             ISD::AND, SL, VT,
3187             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3188             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3189       }
3190     }
3191   }
3192 
3193   if (VT != MVT::i64)
3194     return SDValue();
3195 
3196   if (ShiftAmt < 32)
3197     return SDValue();
3198 
3199   // srl i64:x, C for C >= 32
3200   // =>
3201   //   build_pair (srl hi_32(x), C - 32), 0
3202   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3203   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3204 
3205   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3206   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3207 
3208   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3209   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3210 
3211   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3212 
3213   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3214 }
3215 
3216 SDValue AMDGPUTargetLowering::performTruncateCombine(
3217   SDNode *N, DAGCombinerInfo &DCI) const {
3218   SDLoc SL(N);
3219   SelectionDAG &DAG = DCI.DAG;
3220   EVT VT = N->getValueType(0);
3221   SDValue Src = N->getOperand(0);
3222 
3223   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3224   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3225     SDValue Vec = Src.getOperand(0);
3226     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3227       SDValue Elt0 = Vec.getOperand(0);
3228       EVT EltVT = Elt0.getValueType();
3229       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3230         if (EltVT.isFloatingPoint()) {
3231           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3232                              EltVT.changeTypeToInteger(), Elt0);
3233         }
3234 
3235         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3236       }
3237     }
3238   }
3239 
3240   // Equivalent of above for accessing the high element of a vector as an
3241   // integer operation.
3242   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3243   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3244     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3245       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3246         SDValue BV = stripBitcast(Src.getOperand(0));
3247         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3248             BV.getValueType().getVectorNumElements() == 2) {
3249           SDValue SrcElt = BV.getOperand(1);
3250           EVT SrcEltVT = SrcElt.getValueType();
3251           if (SrcEltVT.isFloatingPoint()) {
3252             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3253                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3254           }
3255 
3256           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3257         }
3258       }
3259     }
3260   }
3261 
3262   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3263   //
3264   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3265   //     i16 (trunc (srl (i32 (trunc x), K)))
3266   if (VT.getScalarSizeInBits() < 32) {
3267     EVT SrcVT = Src.getValueType();
3268     if (SrcVT.getScalarSizeInBits() > 32 &&
3269         (Src.getOpcode() == ISD::SRL ||
3270          Src.getOpcode() == ISD::SRA ||
3271          Src.getOpcode() == ISD::SHL)) {
3272       SDValue Amt = Src.getOperand(1);
3273       KnownBits Known = DAG.computeKnownBits(Amt);
3274       unsigned Size = VT.getScalarSizeInBits();
3275       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3276           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3277         EVT MidVT = VT.isVector() ?
3278           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3279                            VT.getVectorNumElements()) : MVT::i32;
3280 
3281         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3282         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3283                                     Src.getOperand(0));
3284         DCI.AddToWorklist(Trunc.getNode());
3285 
3286         if (Amt.getValueType() != NewShiftVT) {
3287           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3288           DCI.AddToWorklist(Amt.getNode());
3289         }
3290 
3291         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3292                                           Trunc, Amt);
3293         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3294       }
3295     }
3296   }
3297 
3298   return SDValue();
3299 }
3300 
3301 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3302 // instructions. If we only match on the legalized i64 mul expansion,
3303 // SimplifyDemandedBits will be unable to remove them because there will be
3304 // multiple uses due to the separate mul + mulh[su].
3305 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3306                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3307   if (Size <= 32) {
3308     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3309     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3310   }
3311 
3312   // Because we want to eliminate extension instructions before the
3313   // operation, we need to create a single user here (i.e. not the separate
3314   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3315 
3316   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3317 
3318   SDValue Mul = DAG.getNode(MulOpc, SL,
3319                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3320 
3321   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3322                      Mul.getValue(0), Mul.getValue(1));
3323 }
3324 
3325 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3326                                                 DAGCombinerInfo &DCI) const {
3327   EVT VT = N->getValueType(0);
3328 
3329   unsigned Size = VT.getSizeInBits();
3330   if (VT.isVector() || Size > 64)
3331     return SDValue();
3332 
3333   // There are i16 integer mul/mad.
3334   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3335     return SDValue();
3336 
3337   SelectionDAG &DAG = DCI.DAG;
3338   SDLoc DL(N);
3339 
3340   SDValue N0 = N->getOperand(0);
3341   SDValue N1 = N->getOperand(1);
3342 
3343   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3344   // in the source into any_extends if the result of the mul is truncated. Since
3345   // we can assume the high bits are whatever we want, use the underlying value
3346   // to avoid the unknown high bits from interfering.
3347   if (N0.getOpcode() == ISD::ANY_EXTEND)
3348     N0 = N0.getOperand(0);
3349 
3350   if (N1.getOpcode() == ISD::ANY_EXTEND)
3351     N1 = N1.getOperand(0);
3352 
3353   SDValue Mul;
3354 
3355   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3356     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3357     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3358     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3359   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3360     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3361     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3362     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3363   } else {
3364     return SDValue();
3365   }
3366 
3367   // We need to use sext even for MUL_U24, because MUL_U24 is used
3368   // for signed multiply of 8 and 16-bit types.
3369   return DAG.getSExtOrTrunc(Mul, DL, VT);
3370 }
3371 
3372 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3373                                                   DAGCombinerInfo &DCI) const {
3374   EVT VT = N->getValueType(0);
3375 
3376   if (!Subtarget->hasMulI24() || VT.isVector())
3377     return SDValue();
3378 
3379   SelectionDAG &DAG = DCI.DAG;
3380   SDLoc DL(N);
3381 
3382   SDValue N0 = N->getOperand(0);
3383   SDValue N1 = N->getOperand(1);
3384 
3385   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3386     return SDValue();
3387 
3388   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3389   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3390 
3391   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3392   DCI.AddToWorklist(Mulhi.getNode());
3393   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3394 }
3395 
3396 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3397                                                   DAGCombinerInfo &DCI) const {
3398   EVT VT = N->getValueType(0);
3399 
3400   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3401     return SDValue();
3402 
3403   SelectionDAG &DAG = DCI.DAG;
3404   SDLoc DL(N);
3405 
3406   SDValue N0 = N->getOperand(0);
3407   SDValue N1 = N->getOperand(1);
3408 
3409   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3410     return SDValue();
3411 
3412   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3413   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3414 
3415   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3416   DCI.AddToWorklist(Mulhi.getNode());
3417   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3418 }
3419 
3420 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3421   SDNode *N, DAGCombinerInfo &DCI) const {
3422   SelectionDAG &DAG = DCI.DAG;
3423 
3424   // Simplify demanded bits before splitting into multiple users.
3425   if (SDValue V = simplifyI24(N, DCI))
3426     return V;
3427 
3428   SDValue N0 = N->getOperand(0);
3429   SDValue N1 = N->getOperand(1);
3430 
3431   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3432 
3433   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3434   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3435 
3436   SDLoc SL(N);
3437 
3438   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3439   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3440   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3441 }
3442 
3443 static bool isNegativeOne(SDValue Val) {
3444   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3445     return C->isAllOnesValue();
3446   return false;
3447 }
3448 
3449 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3450                                           SDValue Op,
3451                                           const SDLoc &DL,
3452                                           unsigned Opc) const {
3453   EVT VT = Op.getValueType();
3454   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3455   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3456                               LegalVT != MVT::i16))
3457     return SDValue();
3458 
3459   if (VT != MVT::i32)
3460     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3461 
3462   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3463   if (VT != MVT::i32)
3464     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3465 
3466   return FFBX;
3467 }
3468 
3469 // The native instructions return -1 on 0 input. Optimize out a select that
3470 // produces -1 on 0.
3471 //
3472 // TODO: If zero is not undef, we could also do this if the output is compared
3473 // against the bitwidth.
3474 //
3475 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3476 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3477                                                  SDValue LHS, SDValue RHS,
3478                                                  DAGCombinerInfo &DCI) const {
3479   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3480   if (!CmpRhs || !CmpRhs->isNullValue())
3481     return SDValue();
3482 
3483   SelectionDAG &DAG = DCI.DAG;
3484   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3485   SDValue CmpLHS = Cond.getOperand(0);
3486 
3487   unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3488                                            AMDGPUISD::FFBH_U32;
3489 
3490   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3491   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3492   if (CCOpcode == ISD::SETEQ &&
3493       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3494       RHS.getOperand(0) == CmpLHS &&
3495       isNegativeOne(LHS)) {
3496     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3497   }
3498 
3499   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3500   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3501   if (CCOpcode == ISD::SETNE &&
3502       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3503       LHS.getOperand(0) == CmpLHS &&
3504       isNegativeOne(RHS)) {
3505     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3506   }
3507 
3508   return SDValue();
3509 }
3510 
3511 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3512                                          unsigned Op,
3513                                          const SDLoc &SL,
3514                                          SDValue Cond,
3515                                          SDValue N1,
3516                                          SDValue N2) {
3517   SelectionDAG &DAG = DCI.DAG;
3518   EVT VT = N1.getValueType();
3519 
3520   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3521                                   N1.getOperand(0), N2.getOperand(0));
3522   DCI.AddToWorklist(NewSelect.getNode());
3523   return DAG.getNode(Op, SL, VT, NewSelect);
3524 }
3525 
3526 // Pull a free FP operation out of a select so it may fold into uses.
3527 //
3528 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3529 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3530 //
3531 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3532 // select c, (fabs x), +k -> fabs (select c, x, k)
3533 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3534                                     SDValue N) {
3535   SelectionDAG &DAG = DCI.DAG;
3536   SDValue Cond = N.getOperand(0);
3537   SDValue LHS = N.getOperand(1);
3538   SDValue RHS = N.getOperand(2);
3539 
3540   EVT VT = N.getValueType();
3541   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3542       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3543     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3544                                      SDLoc(N), Cond, LHS, RHS);
3545   }
3546 
3547   bool Inv = false;
3548   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3549     std::swap(LHS, RHS);
3550     Inv = true;
3551   }
3552 
3553   // TODO: Support vector constants.
3554   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3555   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3556     SDLoc SL(N);
3557     // If one side is an fneg/fabs and the other is a constant, we can push the
3558     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3559     SDValue NewLHS = LHS.getOperand(0);
3560     SDValue NewRHS = RHS;
3561 
3562     // Careful: if the neg can be folded up, don't try to pull it back down.
3563     bool ShouldFoldNeg = true;
3564 
3565     if (NewLHS.hasOneUse()) {
3566       unsigned Opc = NewLHS.getOpcode();
3567       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3568         ShouldFoldNeg = false;
3569       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3570         ShouldFoldNeg = false;
3571     }
3572 
3573     if (ShouldFoldNeg) {
3574       if (LHS.getOpcode() == ISD::FNEG)
3575         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3576       else if (CRHS->isNegative())
3577         return SDValue();
3578 
3579       if (Inv)
3580         std::swap(NewLHS, NewRHS);
3581 
3582       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3583                                       Cond, NewLHS, NewRHS);
3584       DCI.AddToWorklist(NewSelect.getNode());
3585       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3586     }
3587   }
3588 
3589   return SDValue();
3590 }
3591 
3592 
3593 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3594                                                    DAGCombinerInfo &DCI) const {
3595   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3596     return Folded;
3597 
3598   SDValue Cond = N->getOperand(0);
3599   if (Cond.getOpcode() != ISD::SETCC)
3600     return SDValue();
3601 
3602   EVT VT = N->getValueType(0);
3603   SDValue LHS = Cond.getOperand(0);
3604   SDValue RHS = Cond.getOperand(1);
3605   SDValue CC = Cond.getOperand(2);
3606 
3607   SDValue True = N->getOperand(1);
3608   SDValue False = N->getOperand(2);
3609 
3610   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3611     SelectionDAG &DAG = DCI.DAG;
3612     if (DAG.isConstantValueOfAnyType(True) &&
3613         !DAG.isConstantValueOfAnyType(False)) {
3614       // Swap cmp + select pair to move constant to false input.
3615       // This will allow using VOPC cndmasks more often.
3616       // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3617 
3618       SDLoc SL(N);
3619       ISD::CondCode NewCC =
3620           getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3621 
3622       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3623       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3624     }
3625 
3626     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3627       SDValue MinMax
3628         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3629       // Revisit this node so we can catch min3/max3/med3 patterns.
3630       //DCI.AddToWorklist(MinMax.getNode());
3631       return MinMax;
3632     }
3633   }
3634 
3635   // There's no reason to not do this if the condition has other uses.
3636   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3637 }
3638 
3639 static bool isInv2Pi(const APFloat &APF) {
3640   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3641   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3642   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3643 
3644   return APF.bitwiseIsEqual(KF16) ||
3645          APF.bitwiseIsEqual(KF32) ||
3646          APF.bitwiseIsEqual(KF64);
3647 }
3648 
3649 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3650 // additional cost to negate them.
3651 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3652   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3653     if (C->isZero() && !C->isNegative())
3654       return true;
3655 
3656     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3657       return true;
3658   }
3659 
3660   return false;
3661 }
3662 
3663 static unsigned inverseMinMax(unsigned Opc) {
3664   switch (Opc) {
3665   case ISD::FMAXNUM:
3666     return ISD::FMINNUM;
3667   case ISD::FMINNUM:
3668     return ISD::FMAXNUM;
3669   case ISD::FMAXNUM_IEEE:
3670     return ISD::FMINNUM_IEEE;
3671   case ISD::FMINNUM_IEEE:
3672     return ISD::FMAXNUM_IEEE;
3673   case AMDGPUISD::FMAX_LEGACY:
3674     return AMDGPUISD::FMIN_LEGACY;
3675   case AMDGPUISD::FMIN_LEGACY:
3676     return  AMDGPUISD::FMAX_LEGACY;
3677   default:
3678     llvm_unreachable("invalid min/max opcode");
3679   }
3680 }
3681 
3682 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3683                                                  DAGCombinerInfo &DCI) const {
3684   SelectionDAG &DAG = DCI.DAG;
3685   SDValue N0 = N->getOperand(0);
3686   EVT VT = N->getValueType(0);
3687 
3688   unsigned Opc = N0.getOpcode();
3689 
3690   // If the input has multiple uses and we can either fold the negate down, or
3691   // the other uses cannot, give up. This both prevents unprofitable
3692   // transformations and infinite loops: we won't repeatedly try to fold around
3693   // a negate that has no 'good' form.
3694   if (N0.hasOneUse()) {
3695     // This may be able to fold into the source, but at a code size cost. Don't
3696     // fold if the fold into the user is free.
3697     if (allUsesHaveSourceMods(N, 0))
3698       return SDValue();
3699   } else {
3700     if (fnegFoldsIntoOp(Opc) &&
3701         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3702       return SDValue();
3703   }
3704 
3705   SDLoc SL(N);
3706   switch (Opc) {
3707   case ISD::FADD: {
3708     if (!mayIgnoreSignedZero(N0))
3709       return SDValue();
3710 
3711     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3712     SDValue LHS = N0.getOperand(0);
3713     SDValue RHS = N0.getOperand(1);
3714 
3715     if (LHS.getOpcode() != ISD::FNEG)
3716       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3717     else
3718       LHS = LHS.getOperand(0);
3719 
3720     if (RHS.getOpcode() != ISD::FNEG)
3721       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3722     else
3723       RHS = RHS.getOperand(0);
3724 
3725     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3726     if (Res.getOpcode() != ISD::FADD)
3727       return SDValue(); // Op got folded away.
3728     if (!N0.hasOneUse())
3729       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3730     return Res;
3731   }
3732   case ISD::FMUL:
3733   case AMDGPUISD::FMUL_LEGACY: {
3734     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3735     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3736     SDValue LHS = N0.getOperand(0);
3737     SDValue RHS = N0.getOperand(1);
3738 
3739     if (LHS.getOpcode() == ISD::FNEG)
3740       LHS = LHS.getOperand(0);
3741     else if (RHS.getOpcode() == ISD::FNEG)
3742       RHS = RHS.getOperand(0);
3743     else
3744       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3745 
3746     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3747     if (Res.getOpcode() != Opc)
3748       return SDValue(); // Op got folded away.
3749     if (!N0.hasOneUse())
3750       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3751     return Res;
3752   }
3753   case ISD::FMA:
3754   case ISD::FMAD: {
3755     if (!mayIgnoreSignedZero(N0))
3756       return SDValue();
3757 
3758     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3759     SDValue LHS = N0.getOperand(0);
3760     SDValue MHS = N0.getOperand(1);
3761     SDValue RHS = N0.getOperand(2);
3762 
3763     if (LHS.getOpcode() == ISD::FNEG)
3764       LHS = LHS.getOperand(0);
3765     else if (MHS.getOpcode() == ISD::FNEG)
3766       MHS = MHS.getOperand(0);
3767     else
3768       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3769 
3770     if (RHS.getOpcode() != ISD::FNEG)
3771       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3772     else
3773       RHS = RHS.getOperand(0);
3774 
3775     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3776     if (Res.getOpcode() != Opc)
3777       return SDValue(); // Op got folded away.
3778     if (!N0.hasOneUse())
3779       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3780     return Res;
3781   }
3782   case ISD::FMAXNUM:
3783   case ISD::FMINNUM:
3784   case ISD::FMAXNUM_IEEE:
3785   case ISD::FMINNUM_IEEE:
3786   case AMDGPUISD::FMAX_LEGACY:
3787   case AMDGPUISD::FMIN_LEGACY: {
3788     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3789     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3790     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3791     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3792 
3793     SDValue LHS = N0.getOperand(0);
3794     SDValue RHS = N0.getOperand(1);
3795 
3796     // 0 doesn't have a negated inline immediate.
3797     // TODO: This constant check should be generalized to other operations.
3798     if (isConstantCostlierToNegate(RHS))
3799       return SDValue();
3800 
3801     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3802     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3803     unsigned Opposite = inverseMinMax(Opc);
3804 
3805     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3806     if (Res.getOpcode() != Opposite)
3807       return SDValue(); // Op got folded away.
3808     if (!N0.hasOneUse())
3809       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3810     return Res;
3811   }
3812   case AMDGPUISD::FMED3: {
3813     SDValue Ops[3];
3814     for (unsigned I = 0; I < 3; ++I)
3815       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3816 
3817     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3818     if (Res.getOpcode() != AMDGPUISD::FMED3)
3819       return SDValue(); // Op got folded away.
3820     if (!N0.hasOneUse())
3821       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3822     return Res;
3823   }
3824   case ISD::FP_EXTEND:
3825   case ISD::FTRUNC:
3826   case ISD::FRINT:
3827   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3828   case ISD::FSIN:
3829   case ISD::FCANONICALIZE:
3830   case AMDGPUISD::RCP:
3831   case AMDGPUISD::RCP_LEGACY:
3832   case AMDGPUISD::RCP_IFLAG:
3833   case AMDGPUISD::SIN_HW: {
3834     SDValue CvtSrc = N0.getOperand(0);
3835     if (CvtSrc.getOpcode() == ISD::FNEG) {
3836       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3837       // (fneg (rcp (fneg x))) -> (rcp x)
3838       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3839     }
3840 
3841     if (!N0.hasOneUse())
3842       return SDValue();
3843 
3844     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3845     // (fneg (rcp x)) -> (rcp (fneg x))
3846     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3847     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3848   }
3849   case ISD::FP_ROUND: {
3850     SDValue CvtSrc = N0.getOperand(0);
3851 
3852     if (CvtSrc.getOpcode() == ISD::FNEG) {
3853       // (fneg (fp_round (fneg x))) -> (fp_round x)
3854       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3855                          CvtSrc.getOperand(0), N0.getOperand(1));
3856     }
3857 
3858     if (!N0.hasOneUse())
3859       return SDValue();
3860 
3861     // (fneg (fp_round x)) -> (fp_round (fneg x))
3862     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3863     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3864   }
3865   case ISD::FP16_TO_FP: {
3866     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3867     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3868     // Put the fneg back as a legal source operation that can be matched later.
3869     SDLoc SL(N);
3870 
3871     SDValue Src = N0.getOperand(0);
3872     EVT SrcVT = Src.getValueType();
3873 
3874     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3875     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3876                                   DAG.getConstant(0x8000, SL, SrcVT));
3877     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3878   }
3879   default:
3880     return SDValue();
3881   }
3882 }
3883 
3884 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3885                                                  DAGCombinerInfo &DCI) const {
3886   SelectionDAG &DAG = DCI.DAG;
3887   SDValue N0 = N->getOperand(0);
3888 
3889   if (!N0.hasOneUse())
3890     return SDValue();
3891 
3892   switch (N0.getOpcode()) {
3893   case ISD::FP16_TO_FP: {
3894     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3895     SDLoc SL(N);
3896     SDValue Src = N0.getOperand(0);
3897     EVT SrcVT = Src.getValueType();
3898 
3899     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3900     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3901                                   DAG.getConstant(0x7fff, SL, SrcVT));
3902     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3903   }
3904   default:
3905     return SDValue();
3906   }
3907 }
3908 
3909 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3910                                                 DAGCombinerInfo &DCI) const {
3911   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3912   if (!CFP)
3913     return SDValue();
3914 
3915   // XXX - Should this flush denormals?
3916   const APFloat &Val = CFP->getValueAPF();
3917   APFloat One(Val.getSemantics(), "1.0");
3918   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3919 }
3920 
3921 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3922                                                 DAGCombinerInfo &DCI) const {
3923   SelectionDAG &DAG = DCI.DAG;
3924   SDLoc DL(N);
3925 
3926   switch(N->getOpcode()) {
3927   default:
3928     break;
3929   case ISD::BITCAST: {
3930     EVT DestVT = N->getValueType(0);
3931 
3932     // Push casts through vector builds. This helps avoid emitting a large
3933     // number of copies when materializing floating point vector constants.
3934     //
3935     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3936     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3937     if (DestVT.isVector()) {
3938       SDValue Src = N->getOperand(0);
3939       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3940         EVT SrcVT = Src.getValueType();
3941         unsigned NElts = DestVT.getVectorNumElements();
3942 
3943         if (SrcVT.getVectorNumElements() == NElts) {
3944           EVT DestEltVT = DestVT.getVectorElementType();
3945 
3946           SmallVector<SDValue, 8> CastedElts;
3947           SDLoc SL(N);
3948           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3949             SDValue Elt = Src.getOperand(I);
3950             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3951           }
3952 
3953           return DAG.getBuildVector(DestVT, SL, CastedElts);
3954         }
3955       }
3956     }
3957 
3958     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3959       break;
3960 
3961     // Fold bitcasts of constants.
3962     //
3963     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3964     // TODO: Generalize and move to DAGCombiner
3965     SDValue Src = N->getOperand(0);
3966     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3967       if (Src.getValueType() == MVT::i64) {
3968         SDLoc SL(N);
3969         uint64_t CVal = C->getZExtValue();
3970         SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3971                                  DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3972                                  DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3973         return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3974       }
3975     }
3976 
3977     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3978       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3979       SDLoc SL(N);
3980       uint64_t CVal = Val.getZExtValue();
3981       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3982                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3983                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3984 
3985       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3986     }
3987 
3988     break;
3989   }
3990   case ISD::SHL: {
3991     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3992       break;
3993 
3994     return performShlCombine(N, DCI);
3995   }
3996   case ISD::SRL: {
3997     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3998       break;
3999 
4000     return performSrlCombine(N, DCI);
4001   }
4002   case ISD::SRA: {
4003     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4004       break;
4005 
4006     return performSraCombine(N, DCI);
4007   }
4008   case ISD::TRUNCATE:
4009     return performTruncateCombine(N, DCI);
4010   case ISD::MUL:
4011     return performMulCombine(N, DCI);
4012   case ISD::MULHS:
4013     return performMulhsCombine(N, DCI);
4014   case ISD::MULHU:
4015     return performMulhuCombine(N, DCI);
4016   case AMDGPUISD::MUL_I24:
4017   case AMDGPUISD::MUL_U24:
4018   case AMDGPUISD::MULHI_I24:
4019   case AMDGPUISD::MULHI_U24: {
4020     if (SDValue V = simplifyI24(N, DCI))
4021       return V;
4022     return SDValue();
4023   }
4024   case AMDGPUISD::MUL_LOHI_I24:
4025   case AMDGPUISD::MUL_LOHI_U24:
4026     return performMulLoHi24Combine(N, DCI);
4027   case ISD::SELECT:
4028     return performSelectCombine(N, DCI);
4029   case ISD::FNEG:
4030     return performFNegCombine(N, DCI);
4031   case ISD::FABS:
4032     return performFAbsCombine(N, DCI);
4033   case AMDGPUISD::BFE_I32:
4034   case AMDGPUISD::BFE_U32: {
4035     assert(!N->getValueType(0).isVector() &&
4036            "Vector handling of BFE not implemented");
4037     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4038     if (!Width)
4039       break;
4040 
4041     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4042     if (WidthVal == 0)
4043       return DAG.getConstant(0, DL, MVT::i32);
4044 
4045     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4046     if (!Offset)
4047       break;
4048 
4049     SDValue BitsFrom = N->getOperand(0);
4050     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4051 
4052     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4053 
4054     if (OffsetVal == 0) {
4055       // This is already sign / zero extended, so try to fold away extra BFEs.
4056       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4057 
4058       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4059       if (OpSignBits >= SignBits)
4060         return BitsFrom;
4061 
4062       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4063       if (Signed) {
4064         // This is a sign_extend_inreg. Replace it to take advantage of existing
4065         // DAG Combines. If not eliminated, we will match back to BFE during
4066         // selection.
4067 
4068         // TODO: The sext_inreg of extended types ends, although we can could
4069         // handle them in a single BFE.
4070         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4071                            DAG.getValueType(SmallVT));
4072       }
4073 
4074       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4075     }
4076 
4077     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4078       if (Signed) {
4079         return constantFoldBFE<int32_t>(DAG,
4080                                         CVal->getSExtValue(),
4081                                         OffsetVal,
4082                                         WidthVal,
4083                                         DL);
4084       }
4085 
4086       return constantFoldBFE<uint32_t>(DAG,
4087                                        CVal->getZExtValue(),
4088                                        OffsetVal,
4089                                        WidthVal,
4090                                        DL);
4091     }
4092 
4093     if ((OffsetVal + WidthVal) >= 32 &&
4094         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4095       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4096       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4097                          BitsFrom, ShiftVal);
4098     }
4099 
4100     if (BitsFrom.hasOneUse()) {
4101       APInt Demanded = APInt::getBitsSet(32,
4102                                          OffsetVal,
4103                                          OffsetVal + WidthVal);
4104 
4105       KnownBits Known;
4106       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4107                                             !DCI.isBeforeLegalizeOps());
4108       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4109       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4110           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4111         DCI.CommitTargetLoweringOpt(TLO);
4112       }
4113     }
4114 
4115     break;
4116   }
4117   case ISD::LOAD:
4118     return performLoadCombine(N, DCI);
4119   case ISD::STORE:
4120     return performStoreCombine(N, DCI);
4121   case AMDGPUISD::RCP:
4122   case AMDGPUISD::RCP_IFLAG:
4123     return performRcpCombine(N, DCI);
4124   case ISD::AssertZext:
4125   case ISD::AssertSext:
4126     return performAssertSZExtCombine(N, DCI);
4127   case ISD::INTRINSIC_WO_CHAIN:
4128     return performIntrinsicWOChainCombine(N, DCI);
4129   }
4130   return SDValue();
4131 }
4132 
4133 //===----------------------------------------------------------------------===//
4134 // Helper functions
4135 //===----------------------------------------------------------------------===//
4136 
4137 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4138                                                    const TargetRegisterClass *RC,
4139                                                    unsigned Reg, EVT VT,
4140                                                    const SDLoc &SL,
4141                                                    bool RawReg) const {
4142   MachineFunction &MF = DAG.getMachineFunction();
4143   MachineRegisterInfo &MRI = MF.getRegInfo();
4144   unsigned VReg;
4145 
4146   if (!MRI.isLiveIn(Reg)) {
4147     VReg = MRI.createVirtualRegister(RC);
4148     MRI.addLiveIn(Reg, VReg);
4149   } else {
4150     VReg = MRI.getLiveInVirtReg(Reg);
4151   }
4152 
4153   if (RawReg)
4154     return DAG.getRegister(VReg, VT);
4155 
4156   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4157 }
4158 
4159 // This may be called multiple times, and nothing prevents creating multiple
4160 // objects at the same offset. See if we already defined this object.
4161 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4162                                        int64_t Offset) {
4163   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4164     if (MFI.getObjectOffset(I) == Offset) {
4165       assert(MFI.getObjectSize(I) == Size);
4166       return I;
4167     }
4168   }
4169 
4170   return MFI.CreateFixedObject(Size, Offset, true);
4171 }
4172 
4173 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4174                                                   EVT VT,
4175                                                   const SDLoc &SL,
4176                                                   int64_t Offset) const {
4177   MachineFunction &MF = DAG.getMachineFunction();
4178   MachineFrameInfo &MFI = MF.getFrameInfo();
4179   int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4180 
4181   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4182   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4183 
4184   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4185                      MachineMemOperand::MODereferenceable |
4186                      MachineMemOperand::MOInvariant);
4187 }
4188 
4189 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4190                                                    const SDLoc &SL,
4191                                                    SDValue Chain,
4192                                                    SDValue ArgVal,
4193                                                    int64_t Offset) const {
4194   MachineFunction &MF = DAG.getMachineFunction();
4195   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4196 
4197   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4198   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4199                                MachineMemOperand::MODereferenceable);
4200   return Store;
4201 }
4202 
4203 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4204                                              const TargetRegisterClass *RC,
4205                                              EVT VT, const SDLoc &SL,
4206                                              const ArgDescriptor &Arg) const {
4207   assert(Arg && "Attempting to load missing argument");
4208 
4209   SDValue V = Arg.isRegister() ?
4210     CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4211     loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4212 
4213   if (!Arg.isMasked())
4214     return V;
4215 
4216   unsigned Mask = Arg.getMask();
4217   unsigned Shift = countTrailingZeros<unsigned>(Mask);
4218   V = DAG.getNode(ISD::SRL, SL, VT, V,
4219                   DAG.getShiftAmountConstant(Shift, VT, SL));
4220   return DAG.getNode(ISD::AND, SL, VT, V,
4221                      DAG.getConstant(Mask >> Shift, SL, VT));
4222 }
4223 
4224 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4225     const MachineFunction &MF, const ImplicitParameter Param) const {
4226   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4227   const AMDGPUSubtarget &ST =
4228       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4229   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4230   const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4231   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4232                        ExplicitArgOffset;
4233   switch (Param) {
4234   case GRID_DIM:
4235     return ArgOffset;
4236   case GRID_OFFSET:
4237     return ArgOffset + 4;
4238   }
4239   llvm_unreachable("unexpected implicit parameter type");
4240 }
4241 
4242 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4243 
4244 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4245   switch ((AMDGPUISD::NodeType)Opcode) {
4246   case AMDGPUISD::FIRST_NUMBER: break;
4247   // AMDIL DAG nodes
4248   NODE_NAME_CASE(UMUL);
4249   NODE_NAME_CASE(BRANCH_COND);
4250 
4251   // AMDGPU DAG nodes
4252   NODE_NAME_CASE(IF)
4253   NODE_NAME_CASE(ELSE)
4254   NODE_NAME_CASE(LOOP)
4255   NODE_NAME_CASE(CALL)
4256   NODE_NAME_CASE(TC_RETURN)
4257   NODE_NAME_CASE(TRAP)
4258   NODE_NAME_CASE(RET_FLAG)
4259   NODE_NAME_CASE(RETURN_TO_EPILOG)
4260   NODE_NAME_CASE(ENDPGM)
4261   NODE_NAME_CASE(DWORDADDR)
4262   NODE_NAME_CASE(FRACT)
4263   NODE_NAME_CASE(SETCC)
4264   NODE_NAME_CASE(SETREG)
4265   NODE_NAME_CASE(DENORM_MODE)
4266   NODE_NAME_CASE(FMA_W_CHAIN)
4267   NODE_NAME_CASE(FMUL_W_CHAIN)
4268   NODE_NAME_CASE(CLAMP)
4269   NODE_NAME_CASE(COS_HW)
4270   NODE_NAME_CASE(SIN_HW)
4271   NODE_NAME_CASE(FMAX_LEGACY)
4272   NODE_NAME_CASE(FMIN_LEGACY)
4273   NODE_NAME_CASE(FMAX3)
4274   NODE_NAME_CASE(SMAX3)
4275   NODE_NAME_CASE(UMAX3)
4276   NODE_NAME_CASE(FMIN3)
4277   NODE_NAME_CASE(SMIN3)
4278   NODE_NAME_CASE(UMIN3)
4279   NODE_NAME_CASE(FMED3)
4280   NODE_NAME_CASE(SMED3)
4281   NODE_NAME_CASE(UMED3)
4282   NODE_NAME_CASE(FDOT2)
4283   NODE_NAME_CASE(URECIP)
4284   NODE_NAME_CASE(DIV_SCALE)
4285   NODE_NAME_CASE(DIV_FMAS)
4286   NODE_NAME_CASE(DIV_FIXUP)
4287   NODE_NAME_CASE(FMAD_FTZ)
4288   NODE_NAME_CASE(TRIG_PREOP)
4289   NODE_NAME_CASE(RCP)
4290   NODE_NAME_CASE(RSQ)
4291   NODE_NAME_CASE(RCP_LEGACY)
4292   NODE_NAME_CASE(RSQ_LEGACY)
4293   NODE_NAME_CASE(RCP_IFLAG)
4294   NODE_NAME_CASE(FMUL_LEGACY)
4295   NODE_NAME_CASE(RSQ_CLAMP)
4296   NODE_NAME_CASE(LDEXP)
4297   NODE_NAME_CASE(FP_CLASS)
4298   NODE_NAME_CASE(DOT4)
4299   NODE_NAME_CASE(CARRY)
4300   NODE_NAME_CASE(BORROW)
4301   NODE_NAME_CASE(BFE_U32)
4302   NODE_NAME_CASE(BFE_I32)
4303   NODE_NAME_CASE(BFI)
4304   NODE_NAME_CASE(BFM)
4305   NODE_NAME_CASE(FFBH_U32)
4306   NODE_NAME_CASE(FFBH_I32)
4307   NODE_NAME_CASE(FFBL_B32)
4308   NODE_NAME_CASE(MUL_U24)
4309   NODE_NAME_CASE(MUL_I24)
4310   NODE_NAME_CASE(MULHI_U24)
4311   NODE_NAME_CASE(MULHI_I24)
4312   NODE_NAME_CASE(MUL_LOHI_U24)
4313   NODE_NAME_CASE(MUL_LOHI_I24)
4314   NODE_NAME_CASE(MAD_U24)
4315   NODE_NAME_CASE(MAD_I24)
4316   NODE_NAME_CASE(MAD_I64_I32)
4317   NODE_NAME_CASE(MAD_U64_U32)
4318   NODE_NAME_CASE(PERM)
4319   NODE_NAME_CASE(TEXTURE_FETCH)
4320   NODE_NAME_CASE(R600_EXPORT)
4321   NODE_NAME_CASE(CONST_ADDRESS)
4322   NODE_NAME_CASE(REGISTER_LOAD)
4323   NODE_NAME_CASE(REGISTER_STORE)
4324   NODE_NAME_CASE(SAMPLE)
4325   NODE_NAME_CASE(SAMPLEB)
4326   NODE_NAME_CASE(SAMPLED)
4327   NODE_NAME_CASE(SAMPLEL)
4328   NODE_NAME_CASE(CVT_F32_UBYTE0)
4329   NODE_NAME_CASE(CVT_F32_UBYTE1)
4330   NODE_NAME_CASE(CVT_F32_UBYTE2)
4331   NODE_NAME_CASE(CVT_F32_UBYTE3)
4332   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4333   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4334   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4335   NODE_NAME_CASE(CVT_PK_I16_I32)
4336   NODE_NAME_CASE(CVT_PK_U16_U32)
4337   NODE_NAME_CASE(FP_TO_FP16)
4338   NODE_NAME_CASE(FP16_ZEXT)
4339   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4340   NODE_NAME_CASE(CONST_DATA_PTR)
4341   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4342   NODE_NAME_CASE(LDS)
4343   NODE_NAME_CASE(KILL)
4344   NODE_NAME_CASE(DUMMY_CHAIN)
4345   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4346   NODE_NAME_CASE(LOAD_D16_HI)
4347   NODE_NAME_CASE(LOAD_D16_LO)
4348   NODE_NAME_CASE(LOAD_D16_HI_I8)
4349   NODE_NAME_CASE(LOAD_D16_HI_U8)
4350   NODE_NAME_CASE(LOAD_D16_LO_I8)
4351   NODE_NAME_CASE(LOAD_D16_LO_U8)
4352   NODE_NAME_CASE(STORE_MSKOR)
4353   NODE_NAME_CASE(LOAD_CONSTANT)
4354   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4355   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4356   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4357   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4358   NODE_NAME_CASE(DS_ORDERED_COUNT)
4359   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4360   NODE_NAME_CASE(ATOMIC_INC)
4361   NODE_NAME_CASE(ATOMIC_DEC)
4362   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4363   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4364   NODE_NAME_CASE(BUFFER_LOAD)
4365   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4366   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4367   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4368   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4369   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4370   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4371   NODE_NAME_CASE(SBUFFER_LOAD)
4372   NODE_NAME_CASE(BUFFER_STORE)
4373   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4374   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4375   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4376   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4377   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4378   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4379   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4380   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4381   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4382   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4383   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4384   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4385   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4386   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4387   NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4388   NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4389   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4390   NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4391   NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD)
4392   NODE_NAME_CASE(ATOMIC_PK_FADD)
4393 
4394   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4395   }
4396   return nullptr;
4397 }
4398 
4399 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4400                                               SelectionDAG &DAG, int Enabled,
4401                                               int &RefinementSteps,
4402                                               bool &UseOneConstNR,
4403                                               bool Reciprocal) const {
4404   EVT VT = Operand.getValueType();
4405 
4406   if (VT == MVT::f32) {
4407     RefinementSteps = 0;
4408     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4409   }
4410 
4411   // TODO: There is also f64 rsq instruction, but the documentation is less
4412   // clear on its precision.
4413 
4414   return SDValue();
4415 }
4416 
4417 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4418                                                SelectionDAG &DAG, int Enabled,
4419                                                int &RefinementSteps) const {
4420   EVT VT = Operand.getValueType();
4421 
4422   if (VT == MVT::f32) {
4423     // Reciprocal, < 1 ulp error.
4424     //
4425     // This reciprocal approximation converges to < 0.5 ulp error with one
4426     // newton rhapson performed with two fused multiple adds (FMAs).
4427 
4428     RefinementSteps = 0;
4429     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4430   }
4431 
4432   // TODO: There is also f64 rcp instruction, but the documentation is less
4433   // clear on its precision.
4434 
4435   return SDValue();
4436 }
4437 
4438 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4439     const SDValue Op, KnownBits &Known,
4440     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4441 
4442   Known.resetAll(); // Don't know anything.
4443 
4444   unsigned Opc = Op.getOpcode();
4445 
4446   switch (Opc) {
4447   default:
4448     break;
4449   case AMDGPUISD::CARRY:
4450   case AMDGPUISD::BORROW: {
4451     Known.Zero = APInt::getHighBitsSet(32, 31);
4452     break;
4453   }
4454 
4455   case AMDGPUISD::BFE_I32:
4456   case AMDGPUISD::BFE_U32: {
4457     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4458     if (!CWidth)
4459       return;
4460 
4461     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4462 
4463     if (Opc == AMDGPUISD::BFE_U32)
4464       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4465 
4466     break;
4467   }
4468   case AMDGPUISD::FP_TO_FP16:
4469   case AMDGPUISD::FP16_ZEXT: {
4470     unsigned BitWidth = Known.getBitWidth();
4471 
4472     // High bits are zero.
4473     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4474     break;
4475   }
4476   case AMDGPUISD::MUL_U24:
4477   case AMDGPUISD::MUL_I24: {
4478     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4479     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4480     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4481                       RHSKnown.countMinTrailingZeros();
4482     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4483     // Skip extra check if all bits are known zeros.
4484     if (TrailZ >= 32)
4485       break;
4486 
4487     // Truncate to 24 bits.
4488     LHSKnown = LHSKnown.trunc(24);
4489     RHSKnown = RHSKnown.trunc(24);
4490 
4491     if (Opc == AMDGPUISD::MUL_I24) {
4492       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4493       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4494       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4495       if (MaxValBits >= 32)
4496         break;
4497       bool LHSNegative = LHSKnown.isNegative();
4498       bool LHSNonNegative = LHSKnown.isNonNegative();
4499       bool LHSPositive = LHSKnown.isStrictlyPositive();
4500       bool RHSNegative = RHSKnown.isNegative();
4501       bool RHSNonNegative = RHSKnown.isNonNegative();
4502       bool RHSPositive = RHSKnown.isStrictlyPositive();
4503 
4504       if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4505         Known.Zero.setHighBits(32 - MaxValBits);
4506       else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4507         Known.One.setHighBits(32 - MaxValBits);
4508     } else {
4509       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4510       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4511       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4512       if (MaxValBits >= 32)
4513         break;
4514       Known.Zero.setHighBits(32 - MaxValBits);
4515     }
4516     break;
4517   }
4518   case AMDGPUISD::PERM: {
4519     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4520     if (!CMask)
4521       return;
4522 
4523     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4524     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4525     unsigned Sel = CMask->getZExtValue();
4526 
4527     for (unsigned I = 0; I < 32; I += 8) {
4528       unsigned SelBits = Sel & 0xff;
4529       if (SelBits < 4) {
4530         SelBits *= 8;
4531         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4532         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4533       } else if (SelBits < 7) {
4534         SelBits = (SelBits & 3) * 8;
4535         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4536         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4537       } else if (SelBits == 0x0c) {
4538         Known.Zero |= 0xFFull << I;
4539       } else if (SelBits > 0x0c) {
4540         Known.One |= 0xFFull << I;
4541       }
4542       Sel >>= 8;
4543     }
4544     break;
4545   }
4546   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4547     Known.Zero.setHighBits(24);
4548     break;
4549   }
4550   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4551     Known.Zero.setHighBits(16);
4552     break;
4553   }
4554   case AMDGPUISD::LDS: {
4555     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4556     unsigned Align = GA->getGlobal()->getAlignment();
4557 
4558     Known.Zero.setHighBits(16);
4559     if (Align)
4560       Known.Zero.setLowBits(Log2_32(Align));
4561     break;
4562   }
4563   case ISD::INTRINSIC_WO_CHAIN: {
4564     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4565     switch (IID) {
4566     case Intrinsic::amdgcn_mbcnt_lo:
4567     case Intrinsic::amdgcn_mbcnt_hi: {
4568       const GCNSubtarget &ST =
4569           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4570       // These return at most the wavefront size - 1.
4571       unsigned Size = Op.getValueType().getSizeInBits();
4572       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4573       break;
4574     }
4575     default:
4576       break;
4577     }
4578   }
4579   }
4580 }
4581 
4582 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4583     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4584     unsigned Depth) const {
4585   switch (Op.getOpcode()) {
4586   case AMDGPUISD::BFE_I32: {
4587     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4588     if (!Width)
4589       return 1;
4590 
4591     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4592     if (!isNullConstant(Op.getOperand(1)))
4593       return SignBits;
4594 
4595     // TODO: Could probably figure something out with non-0 offsets.
4596     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4597     return std::max(SignBits, Op0SignBits);
4598   }
4599 
4600   case AMDGPUISD::BFE_U32: {
4601     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4602     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4603   }
4604 
4605   case AMDGPUISD::CARRY:
4606   case AMDGPUISD::BORROW:
4607     return 31;
4608   case AMDGPUISD::BUFFER_LOAD_BYTE:
4609     return 25;
4610   case AMDGPUISD::BUFFER_LOAD_SHORT:
4611     return 17;
4612   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4613     return 24;
4614   case AMDGPUISD::BUFFER_LOAD_USHORT:
4615     return 16;
4616   case AMDGPUISD::FP_TO_FP16:
4617   case AMDGPUISD::FP16_ZEXT:
4618     return 16;
4619   default:
4620     return 1;
4621   }
4622 }
4623 
4624 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4625                                                         const SelectionDAG &DAG,
4626                                                         bool SNaN,
4627                                                         unsigned Depth) const {
4628   unsigned Opcode = Op.getOpcode();
4629   switch (Opcode) {
4630   case AMDGPUISD::FMIN_LEGACY:
4631   case AMDGPUISD::FMAX_LEGACY: {
4632     if (SNaN)
4633       return true;
4634 
4635     // TODO: Can check no nans on one of the operands for each one, but which
4636     // one?
4637     return false;
4638   }
4639   case AMDGPUISD::FMUL_LEGACY:
4640   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4641     if (SNaN)
4642       return true;
4643     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4644            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4645   }
4646   case AMDGPUISD::FMED3:
4647   case AMDGPUISD::FMIN3:
4648   case AMDGPUISD::FMAX3:
4649   case AMDGPUISD::FMAD_FTZ: {
4650     if (SNaN)
4651       return true;
4652     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4653            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4654            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4655   }
4656   case AMDGPUISD::CVT_F32_UBYTE0:
4657   case AMDGPUISD::CVT_F32_UBYTE1:
4658   case AMDGPUISD::CVT_F32_UBYTE2:
4659   case AMDGPUISD::CVT_F32_UBYTE3:
4660     return true;
4661 
4662   case AMDGPUISD::RCP:
4663   case AMDGPUISD::RSQ:
4664   case AMDGPUISD::RCP_LEGACY:
4665   case AMDGPUISD::RSQ_LEGACY:
4666   case AMDGPUISD::RSQ_CLAMP: {
4667     if (SNaN)
4668       return true;
4669 
4670     // TODO: Need is known positive check.
4671     return false;
4672   }
4673   case AMDGPUISD::LDEXP:
4674   case AMDGPUISD::FRACT: {
4675     if (SNaN)
4676       return true;
4677     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4678   }
4679   case AMDGPUISD::DIV_SCALE:
4680   case AMDGPUISD::DIV_FMAS:
4681   case AMDGPUISD::DIV_FIXUP:
4682   case AMDGPUISD::TRIG_PREOP:
4683     // TODO: Refine on operands.
4684     return SNaN;
4685   case AMDGPUISD::SIN_HW:
4686   case AMDGPUISD::COS_HW: {
4687     // TODO: Need check for infinity
4688     return SNaN;
4689   }
4690   case ISD::INTRINSIC_WO_CHAIN: {
4691     unsigned IntrinsicID
4692       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4693     // TODO: Handle more intrinsics
4694     switch (IntrinsicID) {
4695     case Intrinsic::amdgcn_cubeid:
4696       return true;
4697 
4698     case Intrinsic::amdgcn_frexp_mant: {
4699       if (SNaN)
4700         return true;
4701       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4702     }
4703     case Intrinsic::amdgcn_cvt_pkrtz: {
4704       if (SNaN)
4705         return true;
4706       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4707              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4708     }
4709     case Intrinsic::amdgcn_fdot2:
4710       // TODO: Refine on operand
4711       return SNaN;
4712     default:
4713       return false;
4714     }
4715   }
4716   default:
4717     return false;
4718   }
4719 }
4720 
4721 TargetLowering::AtomicExpansionKind
4722 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4723   switch (RMW->getOperation()) {
4724   case AtomicRMWInst::Nand:
4725   case AtomicRMWInst::FAdd:
4726   case AtomicRMWInst::FSub:
4727     return AtomicExpansionKind::CmpXChg;
4728   default:
4729     return AtomicExpansionKind::None;
4730   }
4731 }
4732