1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUMachineFunction.h" 19 #include "GCNSubtarget.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/IR/DiagnosticInfo.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 using namespace llvm; 29 30 #include "AMDGPUGenCallingConv.inc" 31 32 static cl::opt<bool> AMDGPUBypassSlowDiv( 33 "amdgpu-bypass-slow-div", 34 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 35 cl::init(true)); 36 37 // Find a larger type to do a load / store of a vector with. 38 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 39 unsigned StoreSize = VT.getStoreSizeInBits(); 40 if (StoreSize <= 32) 41 return EVT::getIntegerVT(Ctx, StoreSize); 42 43 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 44 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 45 } 46 47 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 48 EVT VT = Op.getValueType(); 49 KnownBits Known = DAG.computeKnownBits(Op); 50 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 51 } 52 53 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 54 EVT VT = Op.getValueType(); 55 56 // In order for this to be a signed 24-bit value, bit 23, must 57 // be a sign bit. 58 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 59 } 60 61 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 62 const AMDGPUSubtarget &STI) 63 : TargetLowering(TM), Subtarget(&STI) { 64 // Lower floating point store/load to integer store/load to reduce the number 65 // of patterns in tablegen. 66 setOperationAction(ISD::LOAD, MVT::f32, Promote); 67 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 68 69 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 70 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 71 72 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 73 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 74 75 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 76 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 77 78 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 79 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 80 81 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 82 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 83 84 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 85 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 86 87 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 88 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 89 90 setOperationAction(ISD::LOAD, MVT::i64, Promote); 91 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 92 93 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 94 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 95 96 setOperationAction(ISD::LOAD, MVT::f64, Promote); 97 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 98 99 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 100 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 101 102 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 103 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 104 105 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 106 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 107 108 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 109 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 110 111 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 112 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 113 114 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 115 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 116 117 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 118 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 119 120 // There are no 64-bit extloads. These should be done as a 32-bit extload and 121 // an extension to 64-bit. 122 for (MVT VT : MVT::integer_valuetypes()) { 123 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 124 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 125 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 126 } 127 128 for (MVT VT : MVT::integer_valuetypes()) { 129 if (VT == MVT::i64) 130 continue; 131 132 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 133 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 134 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 135 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 136 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 138 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 139 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 141 142 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 143 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 144 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 145 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 146 } 147 148 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 149 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 150 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 151 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 153 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 154 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 155 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 156 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 157 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 158 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 160 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 161 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 162 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 163 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 164 } 165 166 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 167 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 168 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 170 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 171 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 172 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 173 174 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 175 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 179 180 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 181 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 182 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 185 186 setOperationAction(ISD::STORE, MVT::f32, Promote); 187 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 188 189 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 190 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 191 192 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 193 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 194 195 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 196 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 197 198 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 199 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 200 201 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 202 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 203 204 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 205 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 206 207 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 208 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 209 210 setOperationAction(ISD::STORE, MVT::i64, Promote); 211 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 212 213 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 214 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 215 216 setOperationAction(ISD::STORE, MVT::f64, Promote); 217 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 218 219 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 220 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 221 222 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 223 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 224 225 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 226 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 227 228 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 229 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 230 231 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 232 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 233 234 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 235 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 236 237 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 238 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 239 240 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 241 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 242 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 243 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 244 245 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 246 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 247 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 248 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 249 250 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 251 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 252 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 253 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 254 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 255 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 256 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 257 258 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 259 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 260 261 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 262 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 263 264 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 265 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 266 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 267 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 268 269 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 270 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 271 272 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 273 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 274 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 275 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 276 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 277 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 278 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 279 280 setOperationAction(ISD::Constant, MVT::i32, Legal); 281 setOperationAction(ISD::Constant, MVT::i64, Legal); 282 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 283 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 284 285 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 286 setOperationAction(ISD::BRIND, MVT::Other, Expand); 287 288 // This is totally unsupported, just custom lower to produce an error. 289 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 290 291 // Library functions. These default to Expand, but we have instructions 292 // for them. 293 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 294 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 295 setOperationAction(ISD::FPOW, MVT::f32, Legal); 296 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 297 setOperationAction(ISD::FABS, MVT::f32, Legal); 298 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 299 setOperationAction(ISD::FRINT, MVT::f32, Legal); 300 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 301 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 302 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 303 304 setOperationAction(ISD::FROUND, MVT::f32, Custom); 305 setOperationAction(ISD::FROUND, MVT::f64, Custom); 306 307 setOperationAction(ISD::FLOG, MVT::f32, Custom); 308 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 309 setOperationAction(ISD::FEXP, MVT::f32, Custom); 310 311 312 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 313 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 314 315 setOperationAction(ISD::FREM, MVT::f16, Custom); 316 setOperationAction(ISD::FREM, MVT::f32, Custom); 317 setOperationAction(ISD::FREM, MVT::f64, Custom); 318 319 // Expand to fneg + fadd. 320 setOperationAction(ISD::FSUB, MVT::f64, Expand); 321 322 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 323 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 324 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 325 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 326 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 327 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 328 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 329 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 330 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 331 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 332 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 333 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 334 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 335 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 336 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 337 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 338 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 339 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 340 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 341 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 342 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 343 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 344 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 345 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 346 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 347 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 350 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 352 353 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 354 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 355 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 356 357 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 358 for (MVT VT : ScalarIntVTs) { 359 // These should use [SU]DIVREM, so set them to expand 360 setOperationAction(ISD::SDIV, VT, Expand); 361 setOperationAction(ISD::UDIV, VT, Expand); 362 setOperationAction(ISD::SREM, VT, Expand); 363 setOperationAction(ISD::UREM, VT, Expand); 364 365 // GPU does not have divrem function for signed or unsigned. 366 setOperationAction(ISD::SDIVREM, VT, Custom); 367 setOperationAction(ISD::UDIVREM, VT, Custom); 368 369 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 370 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 371 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 372 373 setOperationAction(ISD::BSWAP, VT, Expand); 374 setOperationAction(ISD::CTTZ, VT, Expand); 375 setOperationAction(ISD::CTLZ, VT, Expand); 376 377 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 378 setOperationAction(ISD::ADDC, VT, Legal); 379 setOperationAction(ISD::SUBC, VT, Legal); 380 setOperationAction(ISD::ADDE, VT, Legal); 381 setOperationAction(ISD::SUBE, VT, Legal); 382 } 383 384 // The hardware supports 32-bit FSHR, but not FSHL. 385 setOperationAction(ISD::FSHR, MVT::i32, Legal); 386 387 // The hardware supports 32-bit ROTR, but not ROTL. 388 setOperationAction(ISD::ROTL, MVT::i32, Expand); 389 setOperationAction(ISD::ROTL, MVT::i64, Expand); 390 setOperationAction(ISD::ROTR, MVT::i64, Expand); 391 392 setOperationAction(ISD::MULHU, MVT::i16, Expand); 393 setOperationAction(ISD::MULHS, MVT::i16, Expand); 394 395 setOperationAction(ISD::MUL, MVT::i64, Expand); 396 setOperationAction(ISD::MULHU, MVT::i64, Expand); 397 setOperationAction(ISD::MULHS, MVT::i64, Expand); 398 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 399 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 400 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 401 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 402 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 403 404 setOperationAction(ISD::SMIN, MVT::i32, Legal); 405 setOperationAction(ISD::UMIN, MVT::i32, Legal); 406 setOperationAction(ISD::SMAX, MVT::i32, Legal); 407 setOperationAction(ISD::UMAX, MVT::i32, Legal); 408 409 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 410 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 411 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 412 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 413 414 static const MVT::SimpleValueType VectorIntTypes[] = { 415 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 416 }; 417 418 for (MVT VT : VectorIntTypes) { 419 // Expand the following operations for the current type by default. 420 setOperationAction(ISD::ADD, VT, Expand); 421 setOperationAction(ISD::AND, VT, Expand); 422 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 423 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 424 setOperationAction(ISD::MUL, VT, Expand); 425 setOperationAction(ISD::MULHU, VT, Expand); 426 setOperationAction(ISD::MULHS, VT, Expand); 427 setOperationAction(ISD::OR, VT, Expand); 428 setOperationAction(ISD::SHL, VT, Expand); 429 setOperationAction(ISD::SRA, VT, Expand); 430 setOperationAction(ISD::SRL, VT, Expand); 431 setOperationAction(ISD::ROTL, VT, Expand); 432 setOperationAction(ISD::ROTR, VT, Expand); 433 setOperationAction(ISD::SUB, VT, Expand); 434 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 435 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 436 setOperationAction(ISD::SDIV, VT, Expand); 437 setOperationAction(ISD::UDIV, VT, Expand); 438 setOperationAction(ISD::SREM, VT, Expand); 439 setOperationAction(ISD::UREM, VT, Expand); 440 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 441 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 442 setOperationAction(ISD::SDIVREM, VT, Expand); 443 setOperationAction(ISD::UDIVREM, VT, Expand); 444 setOperationAction(ISD::SELECT, VT, Expand); 445 setOperationAction(ISD::VSELECT, VT, Expand); 446 setOperationAction(ISD::SELECT_CC, VT, Expand); 447 setOperationAction(ISD::XOR, VT, Expand); 448 setOperationAction(ISD::BSWAP, VT, Expand); 449 setOperationAction(ISD::CTPOP, VT, Expand); 450 setOperationAction(ISD::CTTZ, VT, Expand); 451 setOperationAction(ISD::CTLZ, VT, Expand); 452 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 453 setOperationAction(ISD::SETCC, VT, Expand); 454 } 455 456 static const MVT::SimpleValueType FloatVectorTypes[] = { 457 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 458 }; 459 460 for (MVT VT : FloatVectorTypes) { 461 setOperationAction(ISD::FABS, VT, Expand); 462 setOperationAction(ISD::FMINNUM, VT, Expand); 463 setOperationAction(ISD::FMAXNUM, VT, Expand); 464 setOperationAction(ISD::FADD, VT, Expand); 465 setOperationAction(ISD::FCEIL, VT, Expand); 466 setOperationAction(ISD::FCOS, VT, Expand); 467 setOperationAction(ISD::FDIV, VT, Expand); 468 setOperationAction(ISD::FEXP2, VT, Expand); 469 setOperationAction(ISD::FEXP, VT, Expand); 470 setOperationAction(ISD::FLOG2, VT, Expand); 471 setOperationAction(ISD::FREM, VT, Expand); 472 setOperationAction(ISD::FLOG, VT, Expand); 473 setOperationAction(ISD::FLOG10, VT, Expand); 474 setOperationAction(ISD::FPOW, VT, Expand); 475 setOperationAction(ISD::FFLOOR, VT, Expand); 476 setOperationAction(ISD::FTRUNC, VT, Expand); 477 setOperationAction(ISD::FMUL, VT, Expand); 478 setOperationAction(ISD::FMA, VT, Expand); 479 setOperationAction(ISD::FRINT, VT, Expand); 480 setOperationAction(ISD::FNEARBYINT, VT, Expand); 481 setOperationAction(ISD::FSQRT, VT, Expand); 482 setOperationAction(ISD::FSIN, VT, Expand); 483 setOperationAction(ISD::FSUB, VT, Expand); 484 setOperationAction(ISD::FNEG, VT, Expand); 485 setOperationAction(ISD::VSELECT, VT, Expand); 486 setOperationAction(ISD::SELECT_CC, VT, Expand); 487 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 488 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 489 setOperationAction(ISD::SETCC, VT, Expand); 490 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 491 } 492 493 // This causes using an unrolled select operation rather than expansion with 494 // bit operations. This is in general better, but the alternative using BFI 495 // instructions may be better if the select sources are SGPRs. 496 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 497 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 498 499 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 500 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 501 502 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 503 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 504 505 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 506 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 507 508 // There are no libcalls of any kind. 509 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 510 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 511 512 setSchedulingPreference(Sched::RegPressure); 513 setJumpIsExpensive(true); 514 515 // FIXME: This is only partially true. If we have to do vector compares, any 516 // SGPR pair can be a condition register. If we have a uniform condition, we 517 // are better off doing SALU operations, where there is only one SCC. For now, 518 // we don't have a way of knowing during instruction selection if a condition 519 // will be uniform and we always use vector compares. Assume we are using 520 // vector compares until that is fixed. 521 setHasMultipleConditionRegisters(true); 522 523 setMinCmpXchgSizeInBits(32); 524 setSupportsUnalignedAtomics(false); 525 526 PredictableSelectIsExpensive = false; 527 528 // We want to find all load dependencies for long chains of stores to enable 529 // merging into very wide vectors. The problem is with vectors with > 4 530 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 531 // vectors are a legal type, even though we have to split the loads 532 // usually. When we can more precisely specify load legality per address 533 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 534 // smarter so that they can figure out what to do in 2 iterations without all 535 // N > 4 stores on the same chain. 536 GatherAllAliasesMaxDepth = 16; 537 538 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 539 // about these during lowering. 540 MaxStoresPerMemcpy = 0xffffffff; 541 MaxStoresPerMemmove = 0xffffffff; 542 MaxStoresPerMemset = 0xffffffff; 543 544 // The expansion for 64-bit division is enormous. 545 if (AMDGPUBypassSlowDiv) 546 addBypassSlowDiv(64, 32); 547 548 setTargetDAGCombine(ISD::BITCAST); 549 setTargetDAGCombine(ISD::SHL); 550 setTargetDAGCombine(ISD::SRA); 551 setTargetDAGCombine(ISD::SRL); 552 setTargetDAGCombine(ISD::TRUNCATE); 553 setTargetDAGCombine(ISD::MUL); 554 setTargetDAGCombine(ISD::MULHU); 555 setTargetDAGCombine(ISD::MULHS); 556 setTargetDAGCombine(ISD::SELECT); 557 setTargetDAGCombine(ISD::SELECT_CC); 558 setTargetDAGCombine(ISD::STORE); 559 setTargetDAGCombine(ISD::FADD); 560 setTargetDAGCombine(ISD::FSUB); 561 setTargetDAGCombine(ISD::FNEG); 562 setTargetDAGCombine(ISD::FABS); 563 setTargetDAGCombine(ISD::AssertZext); 564 setTargetDAGCombine(ISD::AssertSext); 565 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 566 } 567 568 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { 569 if (getTargetMachine().Options.NoSignedZerosFPMath) 570 return true; 571 572 const auto Flags = Op.getNode()->getFlags(); 573 if (Flags.hasNoSignedZeros()) 574 return true; 575 576 return false; 577 } 578 579 //===----------------------------------------------------------------------===// 580 // Target Information 581 //===----------------------------------------------------------------------===// 582 583 LLVM_READNONE 584 static bool fnegFoldsIntoOp(unsigned Opc) { 585 switch (Opc) { 586 case ISD::FADD: 587 case ISD::FSUB: 588 case ISD::FMUL: 589 case ISD::FMA: 590 case ISD::FMAD: 591 case ISD::FMINNUM: 592 case ISD::FMAXNUM: 593 case ISD::FMINNUM_IEEE: 594 case ISD::FMAXNUM_IEEE: 595 case ISD::FSIN: 596 case ISD::FTRUNC: 597 case ISD::FRINT: 598 case ISD::FNEARBYINT: 599 case ISD::FCANONICALIZE: 600 case AMDGPUISD::RCP: 601 case AMDGPUISD::RCP_LEGACY: 602 case AMDGPUISD::RCP_IFLAG: 603 case AMDGPUISD::SIN_HW: 604 case AMDGPUISD::FMUL_LEGACY: 605 case AMDGPUISD::FMIN_LEGACY: 606 case AMDGPUISD::FMAX_LEGACY: 607 case AMDGPUISD::FMED3: 608 // TODO: handle llvm.amdgcn.fma.legacy 609 return true; 610 default: 611 return false; 612 } 613 } 614 615 /// \p returns true if the operation will definitely need to use a 64-bit 616 /// encoding, and thus will use a VOP3 encoding regardless of the source 617 /// modifiers. 618 LLVM_READONLY 619 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 620 return N->getNumOperands() > 2 || VT == MVT::f64; 621 } 622 623 // Most FP instructions support source modifiers, but this could be refined 624 // slightly. 625 LLVM_READONLY 626 static bool hasSourceMods(const SDNode *N) { 627 if (isa<MemSDNode>(N)) 628 return false; 629 630 switch (N->getOpcode()) { 631 case ISD::CopyToReg: 632 case ISD::SELECT: 633 case ISD::FDIV: 634 case ISD::FREM: 635 case ISD::INLINEASM: 636 case ISD::INLINEASM_BR: 637 case AMDGPUISD::DIV_SCALE: 638 case ISD::INTRINSIC_W_CHAIN: 639 640 // TODO: Should really be looking at the users of the bitcast. These are 641 // problematic because bitcasts are used to legalize all stores to integer 642 // types. 643 case ISD::BITCAST: 644 return false; 645 case ISD::INTRINSIC_WO_CHAIN: { 646 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 647 case Intrinsic::amdgcn_interp_p1: 648 case Intrinsic::amdgcn_interp_p2: 649 case Intrinsic::amdgcn_interp_mov: 650 case Intrinsic::amdgcn_interp_p1_f16: 651 case Intrinsic::amdgcn_interp_p2_f16: 652 return false; 653 default: 654 return true; 655 } 656 } 657 default: 658 return true; 659 } 660 } 661 662 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 663 unsigned CostThreshold) { 664 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 665 // it is truly free to use a source modifier in all cases. If there are 666 // multiple users but for each one will necessitate using VOP3, there will be 667 // a code size increase. Try to avoid increasing code size unless we know it 668 // will save on the instruction count. 669 unsigned NumMayIncreaseSize = 0; 670 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 671 672 // XXX - Should this limit number of uses to check? 673 for (const SDNode *U : N->uses()) { 674 if (!hasSourceMods(U)) 675 return false; 676 677 if (!opMustUseVOP3Encoding(U, VT)) { 678 if (++NumMayIncreaseSize > CostThreshold) 679 return false; 680 } 681 } 682 683 return true; 684 } 685 686 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 687 ISD::NodeType ExtendKind) const { 688 assert(!VT.isVector() && "only scalar expected"); 689 690 // Round to the next multiple of 32-bits. 691 unsigned Size = VT.getSizeInBits(); 692 if (Size <= 32) 693 return MVT::i32; 694 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 695 } 696 697 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 698 return MVT::i32; 699 } 700 701 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 702 return true; 703 } 704 705 // The backend supports 32 and 64 bit floating point immediates. 706 // FIXME: Why are we reporting vectors of FP immediates as legal? 707 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 708 bool ForCodeSize) const { 709 EVT ScalarVT = VT.getScalarType(); 710 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 711 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 712 } 713 714 // We don't want to shrink f64 / f32 constants. 715 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 716 EVT ScalarVT = VT.getScalarType(); 717 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 718 } 719 720 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 721 ISD::LoadExtType ExtTy, 722 EVT NewVT) const { 723 // TODO: This may be worth removing. Check regression tests for diffs. 724 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 725 return false; 726 727 unsigned NewSize = NewVT.getStoreSizeInBits(); 728 729 // If we are reducing to a 32-bit load or a smaller multi-dword load, 730 // this is always better. 731 if (NewSize >= 32) 732 return true; 733 734 EVT OldVT = N->getValueType(0); 735 unsigned OldSize = OldVT.getStoreSizeInBits(); 736 737 MemSDNode *MN = cast<MemSDNode>(N); 738 unsigned AS = MN->getAddressSpace(); 739 // Do not shrink an aligned scalar load to sub-dword. 740 // Scalar engine cannot do sub-dword loads. 741 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 742 (AS == AMDGPUAS::CONSTANT_ADDRESS || 743 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 744 (isa<LoadSDNode>(N) && 745 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 746 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 747 return false; 748 749 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 750 // extloads, so doing one requires using a buffer_load. In cases where we 751 // still couldn't use a scalar load, using the wider load shouldn't really 752 // hurt anything. 753 754 // If the old size already had to be an extload, there's no harm in continuing 755 // to reduce the width. 756 return (OldSize < 32); 757 } 758 759 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 760 const SelectionDAG &DAG, 761 const MachineMemOperand &MMO) const { 762 763 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 764 765 if (LoadTy.getScalarType() == MVT::i32) 766 return false; 767 768 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 769 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 770 771 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 772 return false; 773 774 bool Fast = false; 775 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 776 CastTy, MMO, &Fast) && 777 Fast; 778 } 779 780 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 781 // profitable with the expansion for 64-bit since it's generally good to 782 // speculate things. 783 // FIXME: These should really have the size as a parameter. 784 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 785 return true; 786 } 787 788 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 789 return true; 790 } 791 792 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 793 switch (N->getOpcode()) { 794 case ISD::EntryToken: 795 case ISD::TokenFactor: 796 return true; 797 case ISD::INTRINSIC_WO_CHAIN: { 798 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 799 switch (IntrID) { 800 case Intrinsic::amdgcn_readfirstlane: 801 case Intrinsic::amdgcn_readlane: 802 return true; 803 } 804 return false; 805 } 806 case ISD::LOAD: 807 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 808 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 809 return true; 810 return false; 811 } 812 return false; 813 } 814 815 SDValue AMDGPUTargetLowering::getNegatedExpression( 816 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 817 NegatibleCost &Cost, unsigned Depth) const { 818 819 switch (Op.getOpcode()) { 820 case ISD::FMA: 821 case ISD::FMAD: { 822 // Negating a fma is not free if it has users without source mods. 823 if (!allUsesHaveSourceMods(Op.getNode())) 824 return SDValue(); 825 break; 826 } 827 default: 828 break; 829 } 830 831 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 832 ForCodeSize, Cost, Depth); 833 } 834 835 //===---------------------------------------------------------------------===// 836 // Target Properties 837 //===---------------------------------------------------------------------===// 838 839 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 840 assert(VT.isFloatingPoint()); 841 842 // Packed operations do not have a fabs modifier. 843 return VT == MVT::f32 || VT == MVT::f64 || 844 (Subtarget->has16BitInsts() && VT == MVT::f16); 845 } 846 847 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 848 assert(VT.isFloatingPoint()); 849 return VT == MVT::f32 || VT == MVT::f64 || 850 (Subtarget->has16BitInsts() && VT == MVT::f16) || 851 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 852 } 853 854 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 855 unsigned NumElem, 856 unsigned AS) const { 857 return true; 858 } 859 860 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 861 // There are few operations which truly have vector input operands. Any vector 862 // operation is going to involve operations on each component, and a 863 // build_vector will be a copy per element, so it always makes sense to use a 864 // build_vector input in place of the extracted element to avoid a copy into a 865 // super register. 866 // 867 // We should probably only do this if all users are extracts only, but this 868 // should be the common case. 869 return true; 870 } 871 872 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 873 // Truncate is just accessing a subregister. 874 875 unsigned SrcSize = Source.getSizeInBits(); 876 unsigned DestSize = Dest.getSizeInBits(); 877 878 return DestSize < SrcSize && DestSize % 32 == 0 ; 879 } 880 881 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 882 // Truncate is just accessing a subregister. 883 884 unsigned SrcSize = Source->getScalarSizeInBits(); 885 unsigned DestSize = Dest->getScalarSizeInBits(); 886 887 if (DestSize== 16 && Subtarget->has16BitInsts()) 888 return SrcSize >= 32; 889 890 return DestSize < SrcSize && DestSize % 32 == 0; 891 } 892 893 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 894 unsigned SrcSize = Src->getScalarSizeInBits(); 895 unsigned DestSize = Dest->getScalarSizeInBits(); 896 897 if (SrcSize == 16 && Subtarget->has16BitInsts()) 898 return DestSize >= 32; 899 900 return SrcSize == 32 && DestSize == 64; 901 } 902 903 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 904 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 905 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 906 // this will enable reducing 64-bit operations the 32-bit, which is always 907 // good. 908 909 if (Src == MVT::i16) 910 return Dest == MVT::i32 ||Dest == MVT::i64 ; 911 912 return Src == MVT::i32 && Dest == MVT::i64; 913 } 914 915 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 916 return isZExtFree(Val.getValueType(), VT2); 917 } 918 919 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 920 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 921 // limited number of native 64-bit operations. Shrinking an operation to fit 922 // in a single 32-bit register should always be helpful. As currently used, 923 // this is much less general than the name suggests, and is only used in 924 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 925 // not profitable, and may actually be harmful. 926 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 927 } 928 929 //===---------------------------------------------------------------------===// 930 // TargetLowering Callbacks 931 //===---------------------------------------------------------------------===// 932 933 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 934 bool IsVarArg) { 935 switch (CC) { 936 case CallingConv::AMDGPU_VS: 937 case CallingConv::AMDGPU_GS: 938 case CallingConv::AMDGPU_PS: 939 case CallingConv::AMDGPU_CS: 940 case CallingConv::AMDGPU_HS: 941 case CallingConv::AMDGPU_ES: 942 case CallingConv::AMDGPU_LS: 943 return CC_AMDGPU; 944 case CallingConv::C: 945 case CallingConv::Fast: 946 case CallingConv::Cold: 947 return CC_AMDGPU_Func; 948 case CallingConv::AMDGPU_Gfx: 949 return CC_SI_Gfx; 950 case CallingConv::AMDGPU_KERNEL: 951 case CallingConv::SPIR_KERNEL: 952 default: 953 report_fatal_error("Unsupported calling convention for call"); 954 } 955 } 956 957 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 958 bool IsVarArg) { 959 switch (CC) { 960 case CallingConv::AMDGPU_KERNEL: 961 case CallingConv::SPIR_KERNEL: 962 llvm_unreachable("kernels should not be handled here"); 963 case CallingConv::AMDGPU_VS: 964 case CallingConv::AMDGPU_GS: 965 case CallingConv::AMDGPU_PS: 966 case CallingConv::AMDGPU_CS: 967 case CallingConv::AMDGPU_HS: 968 case CallingConv::AMDGPU_ES: 969 case CallingConv::AMDGPU_LS: 970 return RetCC_SI_Shader; 971 case CallingConv::AMDGPU_Gfx: 972 return RetCC_SI_Gfx; 973 case CallingConv::C: 974 case CallingConv::Fast: 975 case CallingConv::Cold: 976 return RetCC_AMDGPU_Func; 977 default: 978 report_fatal_error("Unsupported calling convention."); 979 } 980 } 981 982 /// The SelectionDAGBuilder will automatically promote function arguments 983 /// with illegal types. However, this does not work for the AMDGPU targets 984 /// since the function arguments are stored in memory as these illegal types. 985 /// In order to handle this properly we need to get the original types sizes 986 /// from the LLVM IR Function and fixup the ISD:InputArg values before 987 /// passing them to AnalyzeFormalArguments() 988 989 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 990 /// input values across multiple registers. Each item in the Ins array 991 /// represents a single value that will be stored in registers. Ins[x].VT is 992 /// the value type of the value that will be stored in the register, so 993 /// whatever SDNode we lower the argument to needs to be this type. 994 /// 995 /// In order to correctly lower the arguments we need to know the size of each 996 /// argument. Since Ins[x].VT gives us the size of the register that will 997 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 998 /// for the orignal function argument so that we can deduce the correct memory 999 /// type to use for Ins[x]. In most cases the correct memory type will be 1000 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 1001 /// we have a kernel argument of type v8i8, this argument will be split into 1002 /// 8 parts and each part will be represented by its own item in the Ins array. 1003 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1004 /// the argument before it was split. From this, we deduce that the memory type 1005 /// for each individual part is i8. We pass the memory type as LocVT to the 1006 /// calling convention analysis function and the register type (Ins[x].VT) as 1007 /// the ValVT. 1008 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1009 CCState &State, 1010 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1011 const MachineFunction &MF = State.getMachineFunction(); 1012 const Function &Fn = MF.getFunction(); 1013 LLVMContext &Ctx = Fn.getParent()->getContext(); 1014 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1015 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1016 CallingConv::ID CC = Fn.getCallingConv(); 1017 1018 Align MaxAlign = Align(1); 1019 uint64_t ExplicitArgOffset = 0; 1020 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1021 1022 unsigned InIndex = 0; 1023 1024 for (const Argument &Arg : Fn.args()) { 1025 const bool IsByRef = Arg.hasByRefAttr(); 1026 Type *BaseArgTy = Arg.getType(); 1027 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1028 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1029 if (!Alignment) 1030 Alignment = DL.getABITypeAlign(MemArgTy); 1031 MaxAlign = max(Alignment, MaxAlign); 1032 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1033 1034 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1035 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1036 1037 // We're basically throwing away everything passed into us and starting over 1038 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1039 // to us as computed in Ins. 1040 // 1041 // We also need to figure out what type legalization is trying to do to get 1042 // the correct memory offsets. 1043 1044 SmallVector<EVT, 16> ValueVTs; 1045 SmallVector<uint64_t, 16> Offsets; 1046 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1047 1048 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1049 Value != NumValues; ++Value) { 1050 uint64_t BasePartOffset = Offsets[Value]; 1051 1052 EVT ArgVT = ValueVTs[Value]; 1053 EVT MemVT = ArgVT; 1054 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1055 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1056 1057 if (NumRegs == 1) { 1058 // This argument is not split, so the IR type is the memory type. 1059 if (ArgVT.isExtended()) { 1060 // We have an extended type, like i24, so we should just use the 1061 // register type. 1062 MemVT = RegisterVT; 1063 } else { 1064 MemVT = ArgVT; 1065 } 1066 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1067 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1068 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1069 // We have a vector value which has been split into a vector with 1070 // the same scalar type, but fewer elements. This should handle 1071 // all the floating-point vector types. 1072 MemVT = RegisterVT; 1073 } else if (ArgVT.isVector() && 1074 ArgVT.getVectorNumElements() == NumRegs) { 1075 // This arg has been split so that each element is stored in a separate 1076 // register. 1077 MemVT = ArgVT.getScalarType(); 1078 } else if (ArgVT.isExtended()) { 1079 // We have an extended type, like i65. 1080 MemVT = RegisterVT; 1081 } else { 1082 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1083 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1084 if (RegisterVT.isInteger()) { 1085 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1086 } else if (RegisterVT.isVector()) { 1087 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1088 unsigned NumElements = RegisterVT.getVectorNumElements(); 1089 assert(MemoryBits % NumElements == 0); 1090 // This vector type has been split into another vector type with 1091 // a different elements size. 1092 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1093 MemoryBits / NumElements); 1094 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1095 } else { 1096 llvm_unreachable("cannot deduce memory type."); 1097 } 1098 } 1099 1100 // Convert one element vectors to scalar. 1101 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1102 MemVT = MemVT.getScalarType(); 1103 1104 // Round up vec3/vec5 argument. 1105 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1106 assert(MemVT.getVectorNumElements() == 3 || 1107 MemVT.getVectorNumElements() == 5); 1108 MemVT = MemVT.getPow2VectorType(State.getContext()); 1109 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1110 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1111 } 1112 1113 unsigned PartOffset = 0; 1114 for (unsigned i = 0; i != NumRegs; ++i) { 1115 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1116 BasePartOffset + PartOffset, 1117 MemVT.getSimpleVT(), 1118 CCValAssign::Full)); 1119 PartOffset += MemVT.getStoreSize(); 1120 } 1121 } 1122 } 1123 } 1124 1125 SDValue AMDGPUTargetLowering::LowerReturn( 1126 SDValue Chain, CallingConv::ID CallConv, 1127 bool isVarArg, 1128 const SmallVectorImpl<ISD::OutputArg> &Outs, 1129 const SmallVectorImpl<SDValue> &OutVals, 1130 const SDLoc &DL, SelectionDAG &DAG) const { 1131 // FIXME: Fails for r600 tests 1132 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1133 // "wave terminate should not have return values"); 1134 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1135 } 1136 1137 //===---------------------------------------------------------------------===// 1138 // Target specific lowering 1139 //===---------------------------------------------------------------------===// 1140 1141 /// Selects the correct CCAssignFn for a given CallingConvention value. 1142 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1143 bool IsVarArg) { 1144 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1145 } 1146 1147 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1148 bool IsVarArg) { 1149 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1150 } 1151 1152 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1153 SelectionDAG &DAG, 1154 MachineFrameInfo &MFI, 1155 int ClobberedFI) const { 1156 SmallVector<SDValue, 8> ArgChains; 1157 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1158 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1159 1160 // Include the original chain at the beginning of the list. When this is 1161 // used by target LowerCall hooks, this helps legalize find the 1162 // CALLSEQ_BEGIN node. 1163 ArgChains.push_back(Chain); 1164 1165 // Add a chain value for each stack argument corresponding 1166 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1167 UE = DAG.getEntryNode().getNode()->use_end(); 1168 U != UE; ++U) { 1169 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1170 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1171 if (FI->getIndex() < 0) { 1172 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1173 int64_t InLastByte = InFirstByte; 1174 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1175 1176 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1177 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1178 ArgChains.push_back(SDValue(L, 1)); 1179 } 1180 } 1181 } 1182 } 1183 1184 // Build a tokenfactor for all the chains. 1185 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1186 } 1187 1188 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1189 SmallVectorImpl<SDValue> &InVals, 1190 StringRef Reason) const { 1191 SDValue Callee = CLI.Callee; 1192 SelectionDAG &DAG = CLI.DAG; 1193 1194 const Function &Fn = DAG.getMachineFunction().getFunction(); 1195 1196 StringRef FuncName("<unknown>"); 1197 1198 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1199 FuncName = G->getSymbol(); 1200 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1201 FuncName = G->getGlobal()->getName(); 1202 1203 DiagnosticInfoUnsupported NoCalls( 1204 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1205 DAG.getContext()->diagnose(NoCalls); 1206 1207 if (!CLI.IsTailCall) { 1208 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1209 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1210 } 1211 1212 return DAG.getEntryNode(); 1213 } 1214 1215 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1216 SmallVectorImpl<SDValue> &InVals) const { 1217 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1218 } 1219 1220 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1221 SelectionDAG &DAG) const { 1222 const Function &Fn = DAG.getMachineFunction().getFunction(); 1223 1224 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1225 SDLoc(Op).getDebugLoc()); 1226 DAG.getContext()->diagnose(NoDynamicAlloca); 1227 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1228 return DAG.getMergeValues(Ops, SDLoc()); 1229 } 1230 1231 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1232 SelectionDAG &DAG) const { 1233 switch (Op.getOpcode()) { 1234 default: 1235 Op->print(errs(), &DAG); 1236 llvm_unreachable("Custom lowering code for this " 1237 "instruction is not implemented yet!"); 1238 break; 1239 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1240 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1241 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1242 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1243 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1244 case ISD::FREM: return LowerFREM(Op, DAG); 1245 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1246 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1247 case ISD::FRINT: return LowerFRINT(Op, DAG); 1248 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1249 case ISD::FROUND: return LowerFROUND(Op, DAG); 1250 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1251 case ISD::FLOG: 1252 return LowerFLOG(Op, DAG, numbers::ln2f); 1253 case ISD::FLOG10: 1254 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1255 case ISD::FEXP: 1256 return lowerFEXP(Op, DAG); 1257 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1258 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1259 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1260 case ISD::FP_TO_SINT: 1261 case ISD::FP_TO_UINT: 1262 return LowerFP_TO_INT(Op, DAG); 1263 case ISD::CTTZ: 1264 case ISD::CTTZ_ZERO_UNDEF: 1265 case ISD::CTLZ: 1266 case ISD::CTLZ_ZERO_UNDEF: 1267 return LowerCTLZ_CTTZ(Op, DAG); 1268 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1269 } 1270 return Op; 1271 } 1272 1273 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1274 SmallVectorImpl<SDValue> &Results, 1275 SelectionDAG &DAG) const { 1276 switch (N->getOpcode()) { 1277 case ISD::SIGN_EXTEND_INREG: 1278 // Different parts of legalization seem to interpret which type of 1279 // sign_extend_inreg is the one to check for custom lowering. The extended 1280 // from type is what really matters, but some places check for custom 1281 // lowering of the result type. This results in trying to use 1282 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1283 // nothing here and let the illegal result integer be handled normally. 1284 return; 1285 default: 1286 return; 1287 } 1288 } 1289 1290 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1291 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1292 if (!GVar || !GVar->hasInitializer()) 1293 return false; 1294 1295 return !isa<UndefValue>(GVar->getInitializer()); 1296 } 1297 1298 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1299 SDValue Op, 1300 SelectionDAG &DAG) const { 1301 1302 const DataLayout &DL = DAG.getDataLayout(); 1303 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1304 const GlobalValue *GV = G->getGlobal(); 1305 1306 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1307 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1308 if (!MFI->isModuleEntryFunction()) { 1309 SDLoc DL(Op); 1310 const Function &Fn = DAG.getMachineFunction().getFunction(); 1311 DiagnosticInfoUnsupported BadLDSDecl( 1312 Fn, "local memory global used by non-kernel function", 1313 DL.getDebugLoc(), DS_Warning); 1314 DAG.getContext()->diagnose(BadLDSDecl); 1315 1316 // We currently don't have a way to correctly allocate LDS objects that 1317 // aren't directly associated with a kernel. We do force inlining of 1318 // functions that use local objects. However, if these dead functions are 1319 // not eliminated, we don't want a compile time error. Just emit a warning 1320 // and a trap, since there should be no callable path here. 1321 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1322 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1323 Trap, DAG.getRoot()); 1324 DAG.setRoot(OutputChain); 1325 return DAG.getUNDEF(Op.getValueType()); 1326 } 1327 1328 // XXX: What does the value of G->getOffset() mean? 1329 assert(G->getOffset() == 0 && 1330 "Do not know what to do with an non-zero offset"); 1331 1332 // TODO: We could emit code to handle the initialization somewhere. 1333 if (!hasDefinedInitializer(GV)) { 1334 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1335 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1336 } 1337 } 1338 1339 const Function &Fn = DAG.getMachineFunction().getFunction(); 1340 DiagnosticInfoUnsupported BadInit( 1341 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1342 DAG.getContext()->diagnose(BadInit); 1343 return SDValue(); 1344 } 1345 1346 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1347 SelectionDAG &DAG) const { 1348 SmallVector<SDValue, 8> Args; 1349 1350 EVT VT = Op.getValueType(); 1351 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1352 SDLoc SL(Op); 1353 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1354 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1355 1356 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1357 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1358 } 1359 1360 for (const SDUse &U : Op->ops()) 1361 DAG.ExtractVectorElements(U.get(), Args); 1362 1363 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1364 } 1365 1366 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1367 SelectionDAG &DAG) const { 1368 1369 SmallVector<SDValue, 8> Args; 1370 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1371 EVT VT = Op.getValueType(); 1372 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1373 VT.getVectorNumElements()); 1374 1375 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1376 } 1377 1378 /// Generate Min/Max node 1379 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1380 SDValue LHS, SDValue RHS, 1381 SDValue True, SDValue False, 1382 SDValue CC, 1383 DAGCombinerInfo &DCI) const { 1384 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1385 return SDValue(); 1386 1387 SelectionDAG &DAG = DCI.DAG; 1388 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1389 switch (CCOpcode) { 1390 case ISD::SETOEQ: 1391 case ISD::SETONE: 1392 case ISD::SETUNE: 1393 case ISD::SETNE: 1394 case ISD::SETUEQ: 1395 case ISD::SETEQ: 1396 case ISD::SETFALSE: 1397 case ISD::SETFALSE2: 1398 case ISD::SETTRUE: 1399 case ISD::SETTRUE2: 1400 case ISD::SETUO: 1401 case ISD::SETO: 1402 break; 1403 case ISD::SETULE: 1404 case ISD::SETULT: { 1405 if (LHS == True) 1406 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1407 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1408 } 1409 case ISD::SETOLE: 1410 case ISD::SETOLT: 1411 case ISD::SETLE: 1412 case ISD::SETLT: { 1413 // Ordered. Assume ordered for undefined. 1414 1415 // Only do this after legalization to avoid interfering with other combines 1416 // which might occur. 1417 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1418 !DCI.isCalledByLegalizer()) 1419 return SDValue(); 1420 1421 // We need to permute the operands to get the correct NaN behavior. The 1422 // selected operand is the second one based on the failing compare with NaN, 1423 // so permute it based on the compare type the hardware uses. 1424 if (LHS == True) 1425 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1426 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1427 } 1428 case ISD::SETUGE: 1429 case ISD::SETUGT: { 1430 if (LHS == True) 1431 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1432 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1433 } 1434 case ISD::SETGT: 1435 case ISD::SETGE: 1436 case ISD::SETOGE: 1437 case ISD::SETOGT: { 1438 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1439 !DCI.isCalledByLegalizer()) 1440 return SDValue(); 1441 1442 if (LHS == True) 1443 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1444 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1445 } 1446 case ISD::SETCC_INVALID: 1447 llvm_unreachable("Invalid setcc condcode!"); 1448 } 1449 return SDValue(); 1450 } 1451 1452 std::pair<SDValue, SDValue> 1453 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1454 SDLoc SL(Op); 1455 1456 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1457 1458 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1459 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1460 1461 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1462 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1463 1464 return std::make_pair(Lo, Hi); 1465 } 1466 1467 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1468 SDLoc SL(Op); 1469 1470 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1471 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1472 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1473 } 1474 1475 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1476 SDLoc SL(Op); 1477 1478 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1479 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1480 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1481 } 1482 1483 // Split a vector type into two parts. The first part is a power of two vector. 1484 // The second part is whatever is left over, and is a scalar if it would 1485 // otherwise be a 1-vector. 1486 std::pair<EVT, EVT> 1487 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1488 EVT LoVT, HiVT; 1489 EVT EltVT = VT.getVectorElementType(); 1490 unsigned NumElts = VT.getVectorNumElements(); 1491 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1492 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1493 HiVT = NumElts - LoNumElts == 1 1494 ? EltVT 1495 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1496 return std::make_pair(LoVT, HiVT); 1497 } 1498 1499 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1500 // scalar. 1501 std::pair<SDValue, SDValue> 1502 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1503 const EVT &LoVT, const EVT &HiVT, 1504 SelectionDAG &DAG) const { 1505 assert(LoVT.getVectorNumElements() + 1506 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1507 N.getValueType().getVectorNumElements() && 1508 "More vector elements requested than available!"); 1509 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1510 DAG.getVectorIdxConstant(0, DL)); 1511 SDValue Hi = DAG.getNode( 1512 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1513 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1514 return std::make_pair(Lo, Hi); 1515 } 1516 1517 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1518 SelectionDAG &DAG) const { 1519 LoadSDNode *Load = cast<LoadSDNode>(Op); 1520 EVT VT = Op.getValueType(); 1521 SDLoc SL(Op); 1522 1523 1524 // If this is a 2 element vector, we really want to scalarize and not create 1525 // weird 1 element vectors. 1526 if (VT.getVectorNumElements() == 2) { 1527 SDValue Ops[2]; 1528 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1529 return DAG.getMergeValues(Ops, SL); 1530 } 1531 1532 SDValue BasePtr = Load->getBasePtr(); 1533 EVT MemVT = Load->getMemoryVT(); 1534 1535 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1536 1537 EVT LoVT, HiVT; 1538 EVT LoMemVT, HiMemVT; 1539 SDValue Lo, Hi; 1540 1541 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1542 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1543 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1544 1545 unsigned Size = LoMemVT.getStoreSize(); 1546 unsigned BaseAlign = Load->getAlignment(); 1547 unsigned HiAlign = MinAlign(BaseAlign, Size); 1548 1549 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1550 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1551 BaseAlign, Load->getMemOperand()->getFlags()); 1552 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1553 SDValue HiLoad = 1554 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1555 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1556 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1557 1558 SDValue Join; 1559 if (LoVT == HiVT) { 1560 // This is the case that the vector is power of two so was evenly split. 1561 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1562 } else { 1563 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1564 DAG.getVectorIdxConstant(0, SL)); 1565 Join = DAG.getNode( 1566 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1567 VT, Join, HiLoad, 1568 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1569 } 1570 1571 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1572 LoLoad.getValue(1), HiLoad.getValue(1))}; 1573 1574 return DAG.getMergeValues(Ops, SL); 1575 } 1576 1577 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, 1578 SelectionDAG &DAG) const { 1579 LoadSDNode *Load = cast<LoadSDNode>(Op); 1580 EVT VT = Op.getValueType(); 1581 SDValue BasePtr = Load->getBasePtr(); 1582 EVT MemVT = Load->getMemoryVT(); 1583 SDLoc SL(Op); 1584 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1585 unsigned BaseAlign = Load->getAlignment(); 1586 unsigned NumElements = MemVT.getVectorNumElements(); 1587 1588 // Widen from vec3 to vec4 when the load is at least 8-byte aligned 1589 // or 16-byte fully dereferenceable. Otherwise, split the vector load. 1590 if (NumElements != 3 || 1591 (BaseAlign < 8 && 1592 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) 1593 return SplitVectorLoad(Op, DAG); 1594 1595 assert(NumElements == 3); 1596 1597 EVT WideVT = 1598 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1599 EVT WideMemVT = 1600 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1601 SDValue WideLoad = DAG.getExtLoad( 1602 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1603 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1604 return DAG.getMergeValues( 1605 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1606 DAG.getVectorIdxConstant(0, SL)), 1607 WideLoad.getValue(1)}, 1608 SL); 1609 } 1610 1611 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1612 SelectionDAG &DAG) const { 1613 StoreSDNode *Store = cast<StoreSDNode>(Op); 1614 SDValue Val = Store->getValue(); 1615 EVT VT = Val.getValueType(); 1616 1617 // If this is a 2 element vector, we really want to scalarize and not create 1618 // weird 1 element vectors. 1619 if (VT.getVectorNumElements() == 2) 1620 return scalarizeVectorStore(Store, DAG); 1621 1622 EVT MemVT = Store->getMemoryVT(); 1623 SDValue Chain = Store->getChain(); 1624 SDValue BasePtr = Store->getBasePtr(); 1625 SDLoc SL(Op); 1626 1627 EVT LoVT, HiVT; 1628 EVT LoMemVT, HiMemVT; 1629 SDValue Lo, Hi; 1630 1631 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1632 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1633 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1634 1635 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1636 1637 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1638 unsigned BaseAlign = Store->getAlignment(); 1639 unsigned Size = LoMemVT.getStoreSize(); 1640 unsigned HiAlign = MinAlign(BaseAlign, Size); 1641 1642 SDValue LoStore = 1643 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1644 Store->getMemOperand()->getFlags()); 1645 SDValue HiStore = 1646 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1647 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1648 1649 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1650 } 1651 1652 // This is a shortcut for integer division because we have fast i32<->f32 1653 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1654 // float is enough to accurately represent up to a 24-bit signed integer. 1655 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1656 bool Sign) const { 1657 SDLoc DL(Op); 1658 EVT VT = Op.getValueType(); 1659 SDValue LHS = Op.getOperand(0); 1660 SDValue RHS = Op.getOperand(1); 1661 MVT IntVT = MVT::i32; 1662 MVT FltVT = MVT::f32; 1663 1664 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1665 if (LHSSignBits < 9) 1666 return SDValue(); 1667 1668 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1669 if (RHSSignBits < 9) 1670 return SDValue(); 1671 1672 unsigned BitSize = VT.getSizeInBits(); 1673 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1674 unsigned DivBits = BitSize - SignBits; 1675 if (Sign) 1676 ++DivBits; 1677 1678 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1679 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1680 1681 SDValue jq = DAG.getConstant(1, DL, IntVT); 1682 1683 if (Sign) { 1684 // char|short jq = ia ^ ib; 1685 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1686 1687 // jq = jq >> (bitsize - 2) 1688 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1689 DAG.getConstant(BitSize - 2, DL, VT)); 1690 1691 // jq = jq | 0x1 1692 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1693 } 1694 1695 // int ia = (int)LHS; 1696 SDValue ia = LHS; 1697 1698 // int ib, (int)RHS; 1699 SDValue ib = RHS; 1700 1701 // float fa = (float)ia; 1702 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1703 1704 // float fb = (float)ib; 1705 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1706 1707 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1708 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1709 1710 // fq = trunc(fq); 1711 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1712 1713 // float fqneg = -fq; 1714 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1715 1716 MachineFunction &MF = DAG.getMachineFunction(); 1717 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1718 1719 // float fr = mad(fqneg, fb, fa); 1720 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1721 (unsigned)ISD::FMA : 1722 !MFI->getMode().allFP32Denormals() ? 1723 (unsigned)ISD::FMAD : 1724 (unsigned)AMDGPUISD::FMAD_FTZ; 1725 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1726 1727 // int iq = (int)fq; 1728 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1729 1730 // fr = fabs(fr); 1731 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1732 1733 // fb = fabs(fb); 1734 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1735 1736 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1737 1738 // int cv = fr >= fb; 1739 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1740 1741 // jq = (cv ? jq : 0); 1742 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1743 1744 // dst = iq + jq; 1745 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1746 1747 // Rem needs compensation, it's easier to recompute it 1748 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1749 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1750 1751 // Truncate to number of bits this divide really is. 1752 if (Sign) { 1753 SDValue InRegSize 1754 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1755 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1756 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1757 } else { 1758 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1759 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1760 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1761 } 1762 1763 return DAG.getMergeValues({ Div, Rem }, DL); 1764 } 1765 1766 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1767 SelectionDAG &DAG, 1768 SmallVectorImpl<SDValue> &Results) const { 1769 SDLoc DL(Op); 1770 EVT VT = Op.getValueType(); 1771 1772 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1773 1774 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1775 1776 SDValue One = DAG.getConstant(1, DL, HalfVT); 1777 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1778 1779 //HiLo split 1780 SDValue LHS = Op.getOperand(0); 1781 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1782 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1783 1784 SDValue RHS = Op.getOperand(1); 1785 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1786 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1787 1788 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1789 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1790 1791 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1792 LHS_Lo, RHS_Lo); 1793 1794 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1795 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1796 1797 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1798 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1799 return; 1800 } 1801 1802 if (isTypeLegal(MVT::i64)) { 1803 MachineFunction &MF = DAG.getMachineFunction(); 1804 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1805 1806 // Compute denominator reciprocal. 1807 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1808 (unsigned)ISD::FMA : 1809 !MFI->getMode().allFP32Denormals() ? 1810 (unsigned)ISD::FMAD : 1811 (unsigned)AMDGPUISD::FMAD_FTZ; 1812 1813 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1814 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1815 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1816 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1817 Cvt_Lo); 1818 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1819 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1820 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1821 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1822 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1823 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1824 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1825 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1826 Mul1); 1827 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1828 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1829 SDValue Rcp64 = DAG.getBitcast(VT, 1830 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1831 1832 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1833 SDValue One64 = DAG.getConstant(1, DL, VT); 1834 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1835 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1836 1837 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1838 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1839 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1840 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1841 Zero); 1842 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1843 One); 1844 1845 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1846 Mulhi1_Lo, Zero1); 1847 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1848 Mulhi1_Hi, Add1_Lo.getValue(1)); 1849 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1850 SDValue Add1 = DAG.getBitcast(VT, 1851 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1852 1853 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1854 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1855 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1856 Zero); 1857 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1858 One); 1859 1860 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1861 Mulhi2_Lo, Zero1); 1862 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1863 Mulhi2_Hi, Add1_Lo.getValue(1)); 1864 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1865 Zero, Add2_Lo.getValue(1)); 1866 SDValue Add2 = DAG.getBitcast(VT, 1867 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1868 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1869 1870 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1871 1872 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1873 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1874 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1875 Mul3_Lo, Zero1); 1876 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1877 Mul3_Hi, Sub1_Lo.getValue(1)); 1878 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1879 SDValue Sub1 = DAG.getBitcast(VT, 1880 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1881 1882 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1883 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1884 ISD::SETUGE); 1885 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1886 ISD::SETUGE); 1887 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1888 1889 // TODO: Here and below portions of the code can be enclosed into if/endif. 1890 // Currently control flow is unconditional and we have 4 selects after 1891 // potential endif to substitute PHIs. 1892 1893 // if C3 != 0 ... 1894 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1895 RHS_Lo, Zero1); 1896 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1897 RHS_Hi, Sub1_Lo.getValue(1)); 1898 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1899 Zero, Sub2_Lo.getValue(1)); 1900 SDValue Sub2 = DAG.getBitcast(VT, 1901 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1902 1903 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1904 1905 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1906 ISD::SETUGE); 1907 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1908 ISD::SETUGE); 1909 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1910 1911 // if (C6 != 0) 1912 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1913 1914 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1915 RHS_Lo, Zero1); 1916 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1917 RHS_Hi, Sub2_Lo.getValue(1)); 1918 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1919 Zero, Sub3_Lo.getValue(1)); 1920 SDValue Sub3 = DAG.getBitcast(VT, 1921 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1922 1923 // endif C6 1924 // endif C3 1925 1926 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1927 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1928 1929 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1930 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1931 1932 Results.push_back(Div); 1933 Results.push_back(Rem); 1934 1935 return; 1936 } 1937 1938 // r600 expandion. 1939 // Get Speculative values 1940 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1941 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1942 1943 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1944 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1945 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1946 1947 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1948 SDValue DIV_Lo = Zero; 1949 1950 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1951 1952 for (unsigned i = 0; i < halfBitWidth; ++i) { 1953 const unsigned bitPos = halfBitWidth - i - 1; 1954 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1955 // Get value of high bit 1956 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1957 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1958 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1959 1960 // Shift 1961 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1962 // Add LHS high bit 1963 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1964 1965 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1966 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1967 1968 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1969 1970 // Update REM 1971 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1972 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1973 } 1974 1975 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1976 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1977 Results.push_back(DIV); 1978 Results.push_back(REM); 1979 } 1980 1981 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1982 SelectionDAG &DAG) const { 1983 SDLoc DL(Op); 1984 EVT VT = Op.getValueType(); 1985 1986 if (VT == MVT::i64) { 1987 SmallVector<SDValue, 2> Results; 1988 LowerUDIVREM64(Op, DAG, Results); 1989 return DAG.getMergeValues(Results, DL); 1990 } 1991 1992 if (VT == MVT::i32) { 1993 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1994 return Res; 1995 } 1996 1997 SDValue X = Op.getOperand(0); 1998 SDValue Y = Op.getOperand(1); 1999 2000 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 2001 // algorithm used here. 2002 2003 // Initial estimate of inv(y). 2004 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 2005 2006 // One round of UNR. 2007 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 2008 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 2009 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 2010 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 2011 2012 // Quotient/remainder estimate. 2013 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 2014 SDValue R = 2015 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 2016 2017 // First quotient/remainder refinement. 2018 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2019 SDValue One = DAG.getConstant(1, DL, VT); 2020 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2021 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2022 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2023 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2024 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2025 2026 // Second quotient/remainder refinement. 2027 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2028 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2029 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2030 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2031 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2032 2033 return DAG.getMergeValues({Q, R}, DL); 2034 } 2035 2036 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2037 SelectionDAG &DAG) const { 2038 SDLoc DL(Op); 2039 EVT VT = Op.getValueType(); 2040 2041 SDValue LHS = Op.getOperand(0); 2042 SDValue RHS = Op.getOperand(1); 2043 2044 SDValue Zero = DAG.getConstant(0, DL, VT); 2045 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2046 2047 if (VT == MVT::i32) { 2048 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2049 return Res; 2050 } 2051 2052 if (VT == MVT::i64 && 2053 DAG.ComputeNumSignBits(LHS) > 32 && 2054 DAG.ComputeNumSignBits(RHS) > 32) { 2055 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2056 2057 //HiLo split 2058 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2059 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2060 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2061 LHS_Lo, RHS_Lo); 2062 SDValue Res[2] = { 2063 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2064 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2065 }; 2066 return DAG.getMergeValues(Res, DL); 2067 } 2068 2069 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2070 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2071 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2072 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2073 2074 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2075 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2076 2077 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2078 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2079 2080 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2081 SDValue Rem = Div.getValue(1); 2082 2083 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2084 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2085 2086 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2087 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2088 2089 SDValue Res[2] = { 2090 Div, 2091 Rem 2092 }; 2093 return DAG.getMergeValues(Res, DL); 2094 } 2095 2096 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2097 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2098 SDLoc SL(Op); 2099 EVT VT = Op.getValueType(); 2100 auto Flags = Op->getFlags(); 2101 SDValue X = Op.getOperand(0); 2102 SDValue Y = Op.getOperand(1); 2103 2104 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2105 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2106 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2107 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2108 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2109 } 2110 2111 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2112 SDLoc SL(Op); 2113 SDValue Src = Op.getOperand(0); 2114 2115 // result = trunc(src) 2116 // if (src > 0.0 && src != result) 2117 // result += 1.0 2118 2119 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2120 2121 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2122 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2123 2124 EVT SetCCVT = 2125 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2126 2127 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2128 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2129 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2130 2131 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2132 // TODO: Should this propagate fast-math-flags? 2133 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2134 } 2135 2136 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2137 SelectionDAG &DAG) { 2138 const unsigned FractBits = 52; 2139 const unsigned ExpBits = 11; 2140 2141 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2142 Hi, 2143 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2144 DAG.getConstant(ExpBits, SL, MVT::i32)); 2145 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2146 DAG.getConstant(1023, SL, MVT::i32)); 2147 2148 return Exp; 2149 } 2150 2151 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2152 SDLoc SL(Op); 2153 SDValue Src = Op.getOperand(0); 2154 2155 assert(Op.getValueType() == MVT::f64); 2156 2157 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2158 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2159 2160 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2161 2162 // Extract the upper half, since this is where we will find the sign and 2163 // exponent. 2164 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2165 2166 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2167 2168 const unsigned FractBits = 52; 2169 2170 // Extract the sign bit. 2171 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2172 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2173 2174 // Extend back to 64-bits. 2175 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2176 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2177 2178 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2179 const SDValue FractMask 2180 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2181 2182 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2183 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2184 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2185 2186 EVT SetCCVT = 2187 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2188 2189 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2190 2191 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2192 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2193 2194 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2195 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2196 2197 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2198 } 2199 2200 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2201 SDLoc SL(Op); 2202 SDValue Src = Op.getOperand(0); 2203 2204 assert(Op.getValueType() == MVT::f64); 2205 2206 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2207 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2208 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2209 2210 // TODO: Should this propagate fast-math-flags? 2211 2212 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2213 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2214 2215 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2216 2217 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2218 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2219 2220 EVT SetCCVT = 2221 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2222 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2223 2224 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2225 } 2226 2227 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2228 // FNEARBYINT and FRINT are the same, except in their handling of FP 2229 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2230 // rint, so just treat them as equivalent. 2231 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2232 } 2233 2234 // XXX - May require not supporting f32 denormals? 2235 2236 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2237 // compare and vselect end up producing worse code than scalarizing the whole 2238 // operation. 2239 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2240 SDLoc SL(Op); 2241 SDValue X = Op.getOperand(0); 2242 EVT VT = Op.getValueType(); 2243 2244 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2245 2246 // TODO: Should this propagate fast-math-flags? 2247 2248 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2249 2250 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2251 2252 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2253 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2254 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2255 2256 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2257 2258 EVT SetCCVT = 2259 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2260 2261 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2262 2263 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2264 2265 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2266 } 2267 2268 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2269 SDLoc SL(Op); 2270 SDValue Src = Op.getOperand(0); 2271 2272 // result = trunc(src); 2273 // if (src < 0.0 && src != result) 2274 // result += -1.0. 2275 2276 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2277 2278 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2279 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2280 2281 EVT SetCCVT = 2282 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2283 2284 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2285 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2286 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2287 2288 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2289 // TODO: Should this propagate fast-math-flags? 2290 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2291 } 2292 2293 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2294 double Log2BaseInverted) const { 2295 EVT VT = Op.getValueType(); 2296 2297 SDLoc SL(Op); 2298 SDValue Operand = Op.getOperand(0); 2299 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2300 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2301 2302 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2303 } 2304 2305 // exp2(M_LOG2E_F * f); 2306 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2307 EVT VT = Op.getValueType(); 2308 SDLoc SL(Op); 2309 SDValue Src = Op.getOperand(0); 2310 2311 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2312 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2313 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2314 } 2315 2316 static bool isCtlzOpc(unsigned Opc) { 2317 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2318 } 2319 2320 static bool isCttzOpc(unsigned Opc) { 2321 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2322 } 2323 2324 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2325 SDLoc SL(Op); 2326 SDValue Src = Op.getOperand(0); 2327 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2328 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2329 2330 unsigned ISDOpc, NewOpc; 2331 if (isCtlzOpc(Op.getOpcode())) { 2332 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2333 NewOpc = AMDGPUISD::FFBH_U32; 2334 } else if (isCttzOpc(Op.getOpcode())) { 2335 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2336 NewOpc = AMDGPUISD::FFBL_B32; 2337 } else 2338 llvm_unreachable("Unexpected OPCode!!!"); 2339 2340 2341 if (ZeroUndef && Src.getValueType() == MVT::i32) 2342 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2343 2344 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2345 2346 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2347 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2348 2349 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2350 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2351 2352 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2353 *DAG.getContext(), MVT::i32); 2354 2355 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2356 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2357 2358 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2359 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2360 2361 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2362 SDValue Add, NewOpr; 2363 if (isCtlzOpc(Op.getOpcode())) { 2364 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2365 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2366 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2367 } else { 2368 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2369 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2370 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2371 } 2372 2373 if (!ZeroUndef) { 2374 // Test if the full 64-bit input is zero. 2375 2376 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2377 // which we probably don't want. 2378 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2379 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2380 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2381 2382 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2383 // with the same cycles, otherwise it is slower. 2384 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2385 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2386 2387 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2388 2389 // The instruction returns -1 for 0 input, but the defined intrinsic 2390 // behavior is to return the number of bits. 2391 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2392 SrcIsZero, Bits32, NewOpr); 2393 } 2394 2395 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2396 } 2397 2398 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2399 bool Signed) const { 2400 // Unsigned 2401 // cul2f(ulong u) 2402 //{ 2403 // uint lz = clz(u); 2404 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2405 // u = (u << lz) & 0x7fffffffffffffffUL; 2406 // ulong t = u & 0xffffffffffUL; 2407 // uint v = (e << 23) | (uint)(u >> 40); 2408 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2409 // return as_float(v + r); 2410 //} 2411 // Signed 2412 // cl2f(long l) 2413 //{ 2414 // long s = l >> 63; 2415 // float r = cul2f((l + s) ^ s); 2416 // return s ? -r : r; 2417 //} 2418 2419 SDLoc SL(Op); 2420 SDValue Src = Op.getOperand(0); 2421 SDValue L = Src; 2422 2423 SDValue S; 2424 if (Signed) { 2425 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2426 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2427 2428 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2429 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2430 } 2431 2432 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2433 *DAG.getContext(), MVT::f32); 2434 2435 2436 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2437 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2438 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2439 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2440 2441 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2442 SDValue E = DAG.getSelect(SL, MVT::i32, 2443 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2444 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2445 ZeroI32); 2446 2447 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2448 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2449 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2450 2451 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2452 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2453 2454 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2455 U, DAG.getConstant(40, SL, MVT::i64)); 2456 2457 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2458 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2459 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2460 2461 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2462 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2463 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2464 2465 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2466 2467 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2468 2469 SDValue R = DAG.getSelect(SL, MVT::i32, 2470 RCmp, 2471 One, 2472 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2473 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2474 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2475 2476 if (!Signed) 2477 return R; 2478 2479 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2480 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2481 } 2482 2483 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2484 bool Signed) const { 2485 SDLoc SL(Op); 2486 SDValue Src = Op.getOperand(0); 2487 2488 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2489 2490 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2491 DAG.getConstant(0, SL, MVT::i32)); 2492 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2493 DAG.getConstant(1, SL, MVT::i32)); 2494 2495 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2496 SL, MVT::f64, Hi); 2497 2498 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2499 2500 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2501 DAG.getConstant(32, SL, MVT::i32)); 2502 // TODO: Should this propagate fast-math-flags? 2503 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2504 } 2505 2506 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2507 SelectionDAG &DAG) const { 2508 // TODO: Factor out code common with LowerSINT_TO_FP. 2509 EVT DestVT = Op.getValueType(); 2510 SDValue Src = Op.getOperand(0); 2511 EVT SrcVT = Src.getValueType(); 2512 2513 if (SrcVT == MVT::i16) { 2514 if (DestVT == MVT::f16) 2515 return Op; 2516 SDLoc DL(Op); 2517 2518 // Promote src to i32 2519 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2520 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2521 } 2522 2523 assert(SrcVT == MVT::i64 && "operation should be legal"); 2524 2525 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2526 SDLoc DL(Op); 2527 2528 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2529 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2530 SDValue FPRound = 2531 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2532 2533 return FPRound; 2534 } 2535 2536 if (DestVT == MVT::f32) 2537 return LowerINT_TO_FP32(Op, DAG, false); 2538 2539 assert(DestVT == MVT::f64); 2540 return LowerINT_TO_FP64(Op, DAG, false); 2541 } 2542 2543 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2544 SelectionDAG &DAG) const { 2545 EVT DestVT = Op.getValueType(); 2546 2547 SDValue Src = Op.getOperand(0); 2548 EVT SrcVT = Src.getValueType(); 2549 2550 if (SrcVT == MVT::i16) { 2551 if (DestVT == MVT::f16) 2552 return Op; 2553 2554 SDLoc DL(Op); 2555 // Promote src to i32 2556 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2557 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2558 } 2559 2560 assert(SrcVT == MVT::i64 && "operation should be legal"); 2561 2562 // TODO: Factor out code common with LowerUINT_TO_FP. 2563 2564 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2565 SDLoc DL(Op); 2566 SDValue Src = Op.getOperand(0); 2567 2568 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2569 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2570 SDValue FPRound = 2571 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2572 2573 return FPRound; 2574 } 2575 2576 if (DestVT == MVT::f32) 2577 return LowerINT_TO_FP32(Op, DAG, true); 2578 2579 assert(DestVT == MVT::f64); 2580 return LowerINT_TO_FP64(Op, DAG, true); 2581 } 2582 2583 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2584 bool Signed) const { 2585 SDLoc SL(Op); 2586 2587 SDValue Src = Op.getOperand(0); 2588 2589 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2590 2591 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2592 MVT::f64); 2593 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2594 MVT::f64); 2595 // TODO: Should this propagate fast-math-flags? 2596 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2597 2598 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2599 2600 2601 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2602 2603 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2604 MVT::i32, FloorMul); 2605 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2606 2607 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2608 2609 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2610 } 2611 2612 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2613 SDLoc DL(Op); 2614 SDValue N0 = Op.getOperand(0); 2615 2616 // Convert to target node to get known bits 2617 if (N0.getValueType() == MVT::f32) 2618 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2619 2620 if (getTargetMachine().Options.UnsafeFPMath) { 2621 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2622 return SDValue(); 2623 } 2624 2625 assert(N0.getSimpleValueType() == MVT::f64); 2626 2627 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2628 const unsigned ExpMask = 0x7ff; 2629 const unsigned ExpBiasf64 = 1023; 2630 const unsigned ExpBiasf16 = 15; 2631 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2632 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2633 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2634 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2635 DAG.getConstant(32, DL, MVT::i64)); 2636 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2637 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2638 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2639 DAG.getConstant(20, DL, MVT::i64)); 2640 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2641 DAG.getConstant(ExpMask, DL, MVT::i32)); 2642 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2643 // add the f16 bias (15) to get the biased exponent for the f16 format. 2644 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2645 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2646 2647 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2648 DAG.getConstant(8, DL, MVT::i32)); 2649 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2650 DAG.getConstant(0xffe, DL, MVT::i32)); 2651 2652 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2653 DAG.getConstant(0x1ff, DL, MVT::i32)); 2654 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2655 2656 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2657 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2658 2659 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2660 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2661 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2662 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2663 2664 // N = M | (E << 12); 2665 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2666 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2667 DAG.getConstant(12, DL, MVT::i32))); 2668 2669 // B = clamp(1-E, 0, 13); 2670 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2671 One, E); 2672 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2673 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2674 DAG.getConstant(13, DL, MVT::i32)); 2675 2676 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2677 DAG.getConstant(0x1000, DL, MVT::i32)); 2678 2679 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2680 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2681 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2682 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2683 2684 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2685 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2686 DAG.getConstant(0x7, DL, MVT::i32)); 2687 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2688 DAG.getConstant(2, DL, MVT::i32)); 2689 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2690 One, Zero, ISD::SETEQ); 2691 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2692 One, Zero, ISD::SETGT); 2693 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2694 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2695 2696 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2697 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2698 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2699 I, V, ISD::SETEQ); 2700 2701 // Extract the sign bit. 2702 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2703 DAG.getConstant(16, DL, MVT::i32)); 2704 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2705 DAG.getConstant(0x8000, DL, MVT::i32)); 2706 2707 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2708 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2709 } 2710 2711 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op, 2712 SelectionDAG &DAG) const { 2713 SDValue Src = Op.getOperand(0); 2714 unsigned OpOpcode = Op.getOpcode(); 2715 EVT SrcVT = Src.getValueType(); 2716 EVT DestVT = Op.getValueType(); 2717 2718 // Will be selected natively 2719 if (SrcVT == MVT::f16 && DestVT == MVT::i16) 2720 return Op; 2721 2722 // Promote i16 to i32 2723 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { 2724 SDLoc DL(Op); 2725 2726 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2727 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32); 2728 } 2729 2730 if (SrcVT == MVT::f16 || 2731 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2732 SDLoc DL(Op); 2733 2734 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2735 unsigned Ext = 2736 OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2737 return DAG.getNode(Ext, DL, MVT::i64, FpToInt32); 2738 } 2739 2740 if (DestVT == MVT::i64 && SrcVT == MVT::f64) 2741 return LowerFP64_TO_INT(Op, DAG, OpOpcode == ISD::FP_TO_SINT); 2742 2743 return SDValue(); 2744 } 2745 2746 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2747 SelectionDAG &DAG) const { 2748 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2749 MVT VT = Op.getSimpleValueType(); 2750 MVT ScalarVT = VT.getScalarType(); 2751 2752 assert(VT.isVector()); 2753 2754 SDValue Src = Op.getOperand(0); 2755 SDLoc DL(Op); 2756 2757 // TODO: Don't scalarize on Evergreen? 2758 unsigned NElts = VT.getVectorNumElements(); 2759 SmallVector<SDValue, 8> Args; 2760 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2761 2762 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2763 for (unsigned I = 0; I < NElts; ++I) 2764 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2765 2766 return DAG.getBuildVector(VT, DL, Args); 2767 } 2768 2769 //===----------------------------------------------------------------------===// 2770 // Custom DAG optimizations 2771 //===----------------------------------------------------------------------===// 2772 2773 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2774 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2775 } 2776 2777 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2778 EVT VT = Op.getValueType(); 2779 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2780 // as unsigned 24-bit values. 2781 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2782 } 2783 2784 static SDValue simplifyMul24(SDNode *Node24, 2785 TargetLowering::DAGCombinerInfo &DCI) { 2786 SelectionDAG &DAG = DCI.DAG; 2787 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2788 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2789 2790 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2791 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2792 unsigned NewOpcode = Node24->getOpcode(); 2793 if (IsIntrin) { 2794 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2795 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2796 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2797 } 2798 2799 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2800 2801 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2802 // the operands to have other uses, but will only perform simplifications that 2803 // involve bypassing some nodes for this user. 2804 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2805 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2806 if (DemandedLHS || DemandedRHS) 2807 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2808 DemandedLHS ? DemandedLHS : LHS, 2809 DemandedRHS ? DemandedRHS : RHS); 2810 2811 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2812 // operands if this node is the only user. 2813 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2814 return SDValue(Node24, 0); 2815 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2816 return SDValue(Node24, 0); 2817 2818 return SDValue(); 2819 } 2820 2821 template <typename IntTy> 2822 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2823 uint32_t Width, const SDLoc &DL) { 2824 if (Width + Offset < 32) { 2825 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2826 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2827 return DAG.getConstant(Result, DL, MVT::i32); 2828 } 2829 2830 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2831 } 2832 2833 static bool hasVolatileUser(SDNode *Val) { 2834 for (SDNode *U : Val->uses()) { 2835 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2836 if (M->isVolatile()) 2837 return true; 2838 } 2839 } 2840 2841 return false; 2842 } 2843 2844 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2845 // i32 vectors are the canonical memory type. 2846 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2847 return false; 2848 2849 if (!VT.isByteSized()) 2850 return false; 2851 2852 unsigned Size = VT.getStoreSize(); 2853 2854 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2855 return false; 2856 2857 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2858 return false; 2859 2860 return true; 2861 } 2862 2863 // Replace load of an illegal type with a store of a bitcast to a friendlier 2864 // type. 2865 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2866 DAGCombinerInfo &DCI) const { 2867 if (!DCI.isBeforeLegalize()) 2868 return SDValue(); 2869 2870 LoadSDNode *LN = cast<LoadSDNode>(N); 2871 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2872 return SDValue(); 2873 2874 SDLoc SL(N); 2875 SelectionDAG &DAG = DCI.DAG; 2876 EVT VT = LN->getMemoryVT(); 2877 2878 unsigned Size = VT.getStoreSize(); 2879 Align Alignment = LN->getAlign(); 2880 if (Alignment < Size && isTypeLegal(VT)) { 2881 bool IsFast; 2882 unsigned AS = LN->getAddressSpace(); 2883 2884 // Expand unaligned loads earlier than legalization. Due to visitation order 2885 // problems during legalization, the emitted instructions to pack and unpack 2886 // the bytes again are not eliminated in the case of an unaligned copy. 2887 if (!allowsMisalignedMemoryAccesses( 2888 VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) { 2889 SDValue Ops[2]; 2890 2891 if (VT.isVector()) 2892 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2893 else 2894 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2895 2896 return DAG.getMergeValues(Ops, SDLoc(N)); 2897 } 2898 2899 if (!IsFast) 2900 return SDValue(); 2901 } 2902 2903 if (!shouldCombineMemoryType(VT)) 2904 return SDValue(); 2905 2906 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2907 2908 SDValue NewLoad 2909 = DAG.getLoad(NewVT, SL, LN->getChain(), 2910 LN->getBasePtr(), LN->getMemOperand()); 2911 2912 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2913 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2914 return SDValue(N, 0); 2915 } 2916 2917 // Replace store of an illegal type with a store of a bitcast to a friendlier 2918 // type. 2919 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2920 DAGCombinerInfo &DCI) const { 2921 if (!DCI.isBeforeLegalize()) 2922 return SDValue(); 2923 2924 StoreSDNode *SN = cast<StoreSDNode>(N); 2925 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 2926 return SDValue(); 2927 2928 EVT VT = SN->getMemoryVT(); 2929 unsigned Size = VT.getStoreSize(); 2930 2931 SDLoc SL(N); 2932 SelectionDAG &DAG = DCI.DAG; 2933 Align Alignment = SN->getAlign(); 2934 if (Alignment < Size && isTypeLegal(VT)) { 2935 bool IsFast; 2936 unsigned AS = SN->getAddressSpace(); 2937 2938 // Expand unaligned stores earlier than legalization. Due to visitation 2939 // order problems during legalization, the emitted instructions to pack and 2940 // unpack the bytes again are not eliminated in the case of an unaligned 2941 // copy. 2942 if (!allowsMisalignedMemoryAccesses( 2943 VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) { 2944 if (VT.isVector()) 2945 return scalarizeVectorStore(SN, DAG); 2946 2947 return expandUnalignedStore(SN, DAG); 2948 } 2949 2950 if (!IsFast) 2951 return SDValue(); 2952 } 2953 2954 if (!shouldCombineMemoryType(VT)) 2955 return SDValue(); 2956 2957 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2958 SDValue Val = SN->getValue(); 2959 2960 //DCI.AddToWorklist(Val.getNode()); 2961 2962 bool OtherUses = !Val.hasOneUse(); 2963 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2964 if (OtherUses) { 2965 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2966 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2967 } 2968 2969 return DAG.getStore(SN->getChain(), SL, CastVal, 2970 SN->getBasePtr(), SN->getMemOperand()); 2971 } 2972 2973 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2974 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2975 // issues. 2976 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2977 DAGCombinerInfo &DCI) const { 2978 SelectionDAG &DAG = DCI.DAG; 2979 SDValue N0 = N->getOperand(0); 2980 2981 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2982 // (vt2 (truncate (assertzext vt0:x, vt1))) 2983 if (N0.getOpcode() == ISD::TRUNCATE) { 2984 SDValue N1 = N->getOperand(1); 2985 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2986 SDLoc SL(N); 2987 2988 SDValue Src = N0.getOperand(0); 2989 EVT SrcVT = Src.getValueType(); 2990 if (SrcVT.bitsGE(ExtVT)) { 2991 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2992 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2993 } 2994 } 2995 2996 return SDValue(); 2997 } 2998 2999 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3000 SDNode *N, DAGCombinerInfo &DCI) const { 3001 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3002 switch (IID) { 3003 case Intrinsic::amdgcn_mul_i24: 3004 case Intrinsic::amdgcn_mul_u24: 3005 return simplifyMul24(N, DCI); 3006 case Intrinsic::amdgcn_fract: 3007 case Intrinsic::amdgcn_rsq: 3008 case Intrinsic::amdgcn_rcp_legacy: 3009 case Intrinsic::amdgcn_rsq_legacy: 3010 case Intrinsic::amdgcn_rsq_clamp: 3011 case Intrinsic::amdgcn_ldexp: { 3012 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3013 SDValue Src = N->getOperand(1); 3014 return Src.isUndef() ? Src : SDValue(); 3015 } 3016 default: 3017 return SDValue(); 3018 } 3019 } 3020 3021 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3022 /// binary operation \p Opc to it with the corresponding constant operands. 3023 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3024 DAGCombinerInfo &DCI, const SDLoc &SL, 3025 unsigned Opc, SDValue LHS, 3026 uint32_t ValLo, uint32_t ValHi) const { 3027 SelectionDAG &DAG = DCI.DAG; 3028 SDValue Lo, Hi; 3029 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3030 3031 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3032 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3033 3034 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3035 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3036 3037 // Re-visit the ands. It's possible we eliminated one of them and it could 3038 // simplify the vector. 3039 DCI.AddToWorklist(Lo.getNode()); 3040 DCI.AddToWorklist(Hi.getNode()); 3041 3042 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3043 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3044 } 3045 3046 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3047 DAGCombinerInfo &DCI) const { 3048 EVT VT = N->getValueType(0); 3049 3050 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3051 if (!RHS) 3052 return SDValue(); 3053 3054 SDValue LHS = N->getOperand(0); 3055 unsigned RHSVal = RHS->getZExtValue(); 3056 if (!RHSVal) 3057 return LHS; 3058 3059 SDLoc SL(N); 3060 SelectionDAG &DAG = DCI.DAG; 3061 3062 switch (LHS->getOpcode()) { 3063 default: 3064 break; 3065 case ISD::ZERO_EXTEND: 3066 case ISD::SIGN_EXTEND: 3067 case ISD::ANY_EXTEND: { 3068 SDValue X = LHS->getOperand(0); 3069 3070 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3071 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3072 // Prefer build_vector as the canonical form if packed types are legal. 3073 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3074 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3075 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3076 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3077 } 3078 3079 // shl (ext x) => zext (shl x), if shift does not overflow int 3080 if (VT != MVT::i64) 3081 break; 3082 KnownBits Known = DAG.computeKnownBits(X); 3083 unsigned LZ = Known.countMinLeadingZeros(); 3084 if (LZ < RHSVal) 3085 break; 3086 EVT XVT = X.getValueType(); 3087 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3088 return DAG.getZExtOrTrunc(Shl, SL, VT); 3089 } 3090 } 3091 3092 if (VT != MVT::i64) 3093 return SDValue(); 3094 3095 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3096 3097 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3098 // common case, splitting this into a move and a 32-bit shift is faster and 3099 // the same code size. 3100 if (RHSVal < 32) 3101 return SDValue(); 3102 3103 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3104 3105 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3106 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3107 3108 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3109 3110 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3111 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3112 } 3113 3114 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3115 DAGCombinerInfo &DCI) const { 3116 if (N->getValueType(0) != MVT::i64) 3117 return SDValue(); 3118 3119 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3120 if (!RHS) 3121 return SDValue(); 3122 3123 SelectionDAG &DAG = DCI.DAG; 3124 SDLoc SL(N); 3125 unsigned RHSVal = RHS->getZExtValue(); 3126 3127 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3128 if (RHSVal == 32) { 3129 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3130 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3131 DAG.getConstant(31, SL, MVT::i32)); 3132 3133 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3134 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3135 } 3136 3137 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3138 if (RHSVal == 63) { 3139 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3140 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3141 DAG.getConstant(31, SL, MVT::i32)); 3142 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3143 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3144 } 3145 3146 return SDValue(); 3147 } 3148 3149 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3150 DAGCombinerInfo &DCI) const { 3151 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3152 if (!RHS) 3153 return SDValue(); 3154 3155 EVT VT = N->getValueType(0); 3156 SDValue LHS = N->getOperand(0); 3157 unsigned ShiftAmt = RHS->getZExtValue(); 3158 SelectionDAG &DAG = DCI.DAG; 3159 SDLoc SL(N); 3160 3161 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3162 // this improves the ability to match BFE patterns in isel. 3163 if (LHS.getOpcode() == ISD::AND) { 3164 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3165 if (Mask->getAPIntValue().isShiftedMask() && 3166 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3167 return DAG.getNode( 3168 ISD::AND, SL, VT, 3169 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3170 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3171 } 3172 } 3173 } 3174 3175 if (VT != MVT::i64) 3176 return SDValue(); 3177 3178 if (ShiftAmt < 32) 3179 return SDValue(); 3180 3181 // srl i64:x, C for C >= 32 3182 // => 3183 // build_pair (srl hi_32(x), C - 32), 0 3184 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3185 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3186 3187 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3188 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3189 3190 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3191 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3192 3193 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3194 3195 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3196 } 3197 3198 SDValue AMDGPUTargetLowering::performTruncateCombine( 3199 SDNode *N, DAGCombinerInfo &DCI) const { 3200 SDLoc SL(N); 3201 SelectionDAG &DAG = DCI.DAG; 3202 EVT VT = N->getValueType(0); 3203 SDValue Src = N->getOperand(0); 3204 3205 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3206 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3207 SDValue Vec = Src.getOperand(0); 3208 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3209 SDValue Elt0 = Vec.getOperand(0); 3210 EVT EltVT = Elt0.getValueType(); 3211 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { 3212 if (EltVT.isFloatingPoint()) { 3213 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3214 EltVT.changeTypeToInteger(), Elt0); 3215 } 3216 3217 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3218 } 3219 } 3220 } 3221 3222 // Equivalent of above for accessing the high element of a vector as an 3223 // integer operation. 3224 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3225 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3226 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3227 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3228 SDValue BV = stripBitcast(Src.getOperand(0)); 3229 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3230 BV.getValueType().getVectorNumElements() == 2) { 3231 SDValue SrcElt = BV.getOperand(1); 3232 EVT SrcEltVT = SrcElt.getValueType(); 3233 if (SrcEltVT.isFloatingPoint()) { 3234 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3235 SrcEltVT.changeTypeToInteger(), SrcElt); 3236 } 3237 3238 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3239 } 3240 } 3241 } 3242 } 3243 3244 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3245 // 3246 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3247 // i16 (trunc (srl (i32 (trunc x), K))) 3248 if (VT.getScalarSizeInBits() < 32) { 3249 EVT SrcVT = Src.getValueType(); 3250 if (SrcVT.getScalarSizeInBits() > 32 && 3251 (Src.getOpcode() == ISD::SRL || 3252 Src.getOpcode() == ISD::SRA || 3253 Src.getOpcode() == ISD::SHL)) { 3254 SDValue Amt = Src.getOperand(1); 3255 KnownBits Known = DAG.computeKnownBits(Amt); 3256 unsigned Size = VT.getScalarSizeInBits(); 3257 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3258 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3259 EVT MidVT = VT.isVector() ? 3260 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3261 VT.getVectorNumElements()) : MVT::i32; 3262 3263 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3264 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3265 Src.getOperand(0)); 3266 DCI.AddToWorklist(Trunc.getNode()); 3267 3268 if (Amt.getValueType() != NewShiftVT) { 3269 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3270 DCI.AddToWorklist(Amt.getNode()); 3271 } 3272 3273 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3274 Trunc, Amt); 3275 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3276 } 3277 } 3278 } 3279 3280 return SDValue(); 3281 } 3282 3283 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3284 // instructions. If we only match on the legalized i64 mul expansion, 3285 // SimplifyDemandedBits will be unable to remove them because there will be 3286 // multiple uses due to the separate mul + mulh[su]. 3287 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3288 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3289 if (Size <= 32) { 3290 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3291 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3292 } 3293 3294 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3295 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3296 3297 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3298 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3299 3300 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); 3301 } 3302 3303 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3304 DAGCombinerInfo &DCI) const { 3305 EVT VT = N->getValueType(0); 3306 3307 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3308 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3309 // unnecessarily). isDivergent() is used as an approximation of whether the 3310 // value is in an SGPR. 3311 if (!N->isDivergent()) 3312 return SDValue(); 3313 3314 unsigned Size = VT.getSizeInBits(); 3315 if (VT.isVector() || Size > 64) 3316 return SDValue(); 3317 3318 // There are i16 integer mul/mad. 3319 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3320 return SDValue(); 3321 3322 SelectionDAG &DAG = DCI.DAG; 3323 SDLoc DL(N); 3324 3325 SDValue N0 = N->getOperand(0); 3326 SDValue N1 = N->getOperand(1); 3327 3328 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3329 // in the source into any_extends if the result of the mul is truncated. Since 3330 // we can assume the high bits are whatever we want, use the underlying value 3331 // to avoid the unknown high bits from interfering. 3332 if (N0.getOpcode() == ISD::ANY_EXTEND) 3333 N0 = N0.getOperand(0); 3334 3335 if (N1.getOpcode() == ISD::ANY_EXTEND) 3336 N1 = N1.getOperand(0); 3337 3338 SDValue Mul; 3339 3340 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3341 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3342 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3343 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3344 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3345 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3346 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3347 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3348 } else { 3349 return SDValue(); 3350 } 3351 3352 // We need to use sext even for MUL_U24, because MUL_U24 is used 3353 // for signed multiply of 8 and 16-bit types. 3354 return DAG.getSExtOrTrunc(Mul, DL, VT); 3355 } 3356 3357 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3358 DAGCombinerInfo &DCI) const { 3359 EVT VT = N->getValueType(0); 3360 3361 if (!Subtarget->hasMulI24() || VT.isVector()) 3362 return SDValue(); 3363 3364 SelectionDAG &DAG = DCI.DAG; 3365 SDLoc DL(N); 3366 3367 SDValue N0 = N->getOperand(0); 3368 SDValue N1 = N->getOperand(1); 3369 3370 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3371 return SDValue(); 3372 3373 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3374 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3375 3376 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3377 DCI.AddToWorklist(Mulhi.getNode()); 3378 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3379 } 3380 3381 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3382 DAGCombinerInfo &DCI) const { 3383 EVT VT = N->getValueType(0); 3384 3385 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3386 return SDValue(); 3387 3388 SelectionDAG &DAG = DCI.DAG; 3389 SDLoc DL(N); 3390 3391 SDValue N0 = N->getOperand(0); 3392 SDValue N1 = N->getOperand(1); 3393 3394 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3395 return SDValue(); 3396 3397 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3398 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3399 3400 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3401 DCI.AddToWorklist(Mulhi.getNode()); 3402 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3403 } 3404 3405 static bool isNegativeOne(SDValue Val) { 3406 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3407 return C->isAllOnesValue(); 3408 return false; 3409 } 3410 3411 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3412 SDValue Op, 3413 const SDLoc &DL, 3414 unsigned Opc) const { 3415 EVT VT = Op.getValueType(); 3416 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3417 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3418 LegalVT != MVT::i16)) 3419 return SDValue(); 3420 3421 if (VT != MVT::i32) 3422 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3423 3424 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3425 if (VT != MVT::i32) 3426 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3427 3428 return FFBX; 3429 } 3430 3431 // The native instructions return -1 on 0 input. Optimize out a select that 3432 // produces -1 on 0. 3433 // 3434 // TODO: If zero is not undef, we could also do this if the output is compared 3435 // against the bitwidth. 3436 // 3437 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3438 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3439 SDValue LHS, SDValue RHS, 3440 DAGCombinerInfo &DCI) const { 3441 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3442 if (!CmpRhs || !CmpRhs->isNullValue()) 3443 return SDValue(); 3444 3445 SelectionDAG &DAG = DCI.DAG; 3446 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3447 SDValue CmpLHS = Cond.getOperand(0); 3448 3449 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3450 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3451 if (CCOpcode == ISD::SETEQ && 3452 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3453 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3454 unsigned Opc = 3455 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3456 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3457 } 3458 3459 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3460 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3461 if (CCOpcode == ISD::SETNE && 3462 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3463 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3464 unsigned Opc = 3465 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3466 3467 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3468 } 3469 3470 return SDValue(); 3471 } 3472 3473 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3474 unsigned Op, 3475 const SDLoc &SL, 3476 SDValue Cond, 3477 SDValue N1, 3478 SDValue N2) { 3479 SelectionDAG &DAG = DCI.DAG; 3480 EVT VT = N1.getValueType(); 3481 3482 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3483 N1.getOperand(0), N2.getOperand(0)); 3484 DCI.AddToWorklist(NewSelect.getNode()); 3485 return DAG.getNode(Op, SL, VT, NewSelect); 3486 } 3487 3488 // Pull a free FP operation out of a select so it may fold into uses. 3489 // 3490 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3491 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3492 // 3493 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3494 // select c, (fabs x), +k -> fabs (select c, x, k) 3495 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3496 SDValue N) { 3497 SelectionDAG &DAG = DCI.DAG; 3498 SDValue Cond = N.getOperand(0); 3499 SDValue LHS = N.getOperand(1); 3500 SDValue RHS = N.getOperand(2); 3501 3502 EVT VT = N.getValueType(); 3503 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3504 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3505 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3506 SDLoc(N), Cond, LHS, RHS); 3507 } 3508 3509 bool Inv = false; 3510 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3511 std::swap(LHS, RHS); 3512 Inv = true; 3513 } 3514 3515 // TODO: Support vector constants. 3516 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3517 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3518 SDLoc SL(N); 3519 // If one side is an fneg/fabs and the other is a constant, we can push the 3520 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3521 SDValue NewLHS = LHS.getOperand(0); 3522 SDValue NewRHS = RHS; 3523 3524 // Careful: if the neg can be folded up, don't try to pull it back down. 3525 bool ShouldFoldNeg = true; 3526 3527 if (NewLHS.hasOneUse()) { 3528 unsigned Opc = NewLHS.getOpcode(); 3529 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3530 ShouldFoldNeg = false; 3531 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3532 ShouldFoldNeg = false; 3533 } 3534 3535 if (ShouldFoldNeg) { 3536 if (LHS.getOpcode() == ISD::FNEG) 3537 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3538 else if (CRHS->isNegative()) 3539 return SDValue(); 3540 3541 if (Inv) 3542 std::swap(NewLHS, NewRHS); 3543 3544 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3545 Cond, NewLHS, NewRHS); 3546 DCI.AddToWorklist(NewSelect.getNode()); 3547 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3548 } 3549 } 3550 3551 return SDValue(); 3552 } 3553 3554 3555 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3556 DAGCombinerInfo &DCI) const { 3557 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3558 return Folded; 3559 3560 SDValue Cond = N->getOperand(0); 3561 if (Cond.getOpcode() != ISD::SETCC) 3562 return SDValue(); 3563 3564 EVT VT = N->getValueType(0); 3565 SDValue LHS = Cond.getOperand(0); 3566 SDValue RHS = Cond.getOperand(1); 3567 SDValue CC = Cond.getOperand(2); 3568 3569 SDValue True = N->getOperand(1); 3570 SDValue False = N->getOperand(2); 3571 3572 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3573 SelectionDAG &DAG = DCI.DAG; 3574 if (DAG.isConstantValueOfAnyType(True) && 3575 !DAG.isConstantValueOfAnyType(False)) { 3576 // Swap cmp + select pair to move constant to false input. 3577 // This will allow using VOPC cndmasks more often. 3578 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3579 3580 SDLoc SL(N); 3581 ISD::CondCode NewCC = 3582 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3583 3584 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3585 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3586 } 3587 3588 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3589 SDValue MinMax 3590 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3591 // Revisit this node so we can catch min3/max3/med3 patterns. 3592 //DCI.AddToWorklist(MinMax.getNode()); 3593 return MinMax; 3594 } 3595 } 3596 3597 // There's no reason to not do this if the condition has other uses. 3598 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3599 } 3600 3601 static bool isInv2Pi(const APFloat &APF) { 3602 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3603 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3604 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3605 3606 return APF.bitwiseIsEqual(KF16) || 3607 APF.bitwiseIsEqual(KF32) || 3608 APF.bitwiseIsEqual(KF64); 3609 } 3610 3611 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3612 // additional cost to negate them. 3613 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3614 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3615 if (C->isZero() && !C->isNegative()) 3616 return true; 3617 3618 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3619 return true; 3620 } 3621 3622 return false; 3623 } 3624 3625 static unsigned inverseMinMax(unsigned Opc) { 3626 switch (Opc) { 3627 case ISD::FMAXNUM: 3628 return ISD::FMINNUM; 3629 case ISD::FMINNUM: 3630 return ISD::FMAXNUM; 3631 case ISD::FMAXNUM_IEEE: 3632 return ISD::FMINNUM_IEEE; 3633 case ISD::FMINNUM_IEEE: 3634 return ISD::FMAXNUM_IEEE; 3635 case AMDGPUISD::FMAX_LEGACY: 3636 return AMDGPUISD::FMIN_LEGACY; 3637 case AMDGPUISD::FMIN_LEGACY: 3638 return AMDGPUISD::FMAX_LEGACY; 3639 default: 3640 llvm_unreachable("invalid min/max opcode"); 3641 } 3642 } 3643 3644 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3645 DAGCombinerInfo &DCI) const { 3646 SelectionDAG &DAG = DCI.DAG; 3647 SDValue N0 = N->getOperand(0); 3648 EVT VT = N->getValueType(0); 3649 3650 unsigned Opc = N0.getOpcode(); 3651 3652 // If the input has multiple uses and we can either fold the negate down, or 3653 // the other uses cannot, give up. This both prevents unprofitable 3654 // transformations and infinite loops: we won't repeatedly try to fold around 3655 // a negate that has no 'good' form. 3656 if (N0.hasOneUse()) { 3657 // This may be able to fold into the source, but at a code size cost. Don't 3658 // fold if the fold into the user is free. 3659 if (allUsesHaveSourceMods(N, 0)) 3660 return SDValue(); 3661 } else { 3662 if (fnegFoldsIntoOp(Opc) && 3663 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3664 return SDValue(); 3665 } 3666 3667 SDLoc SL(N); 3668 switch (Opc) { 3669 case ISD::FADD: { 3670 if (!mayIgnoreSignedZero(N0)) 3671 return SDValue(); 3672 3673 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3674 SDValue LHS = N0.getOperand(0); 3675 SDValue RHS = N0.getOperand(1); 3676 3677 if (LHS.getOpcode() != ISD::FNEG) 3678 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3679 else 3680 LHS = LHS.getOperand(0); 3681 3682 if (RHS.getOpcode() != ISD::FNEG) 3683 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3684 else 3685 RHS = RHS.getOperand(0); 3686 3687 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3688 if (Res.getOpcode() != ISD::FADD) 3689 return SDValue(); // Op got folded away. 3690 if (!N0.hasOneUse()) 3691 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3692 return Res; 3693 } 3694 case ISD::FMUL: 3695 case AMDGPUISD::FMUL_LEGACY: { 3696 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3697 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3698 SDValue LHS = N0.getOperand(0); 3699 SDValue RHS = N0.getOperand(1); 3700 3701 if (LHS.getOpcode() == ISD::FNEG) 3702 LHS = LHS.getOperand(0); 3703 else if (RHS.getOpcode() == ISD::FNEG) 3704 RHS = RHS.getOperand(0); 3705 else 3706 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3707 3708 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3709 if (Res.getOpcode() != Opc) 3710 return SDValue(); // Op got folded away. 3711 if (!N0.hasOneUse()) 3712 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3713 return Res; 3714 } 3715 case ISD::FMA: 3716 case ISD::FMAD: { 3717 // TODO: handle llvm.amdgcn.fma.legacy 3718 if (!mayIgnoreSignedZero(N0)) 3719 return SDValue(); 3720 3721 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3722 SDValue LHS = N0.getOperand(0); 3723 SDValue MHS = N0.getOperand(1); 3724 SDValue RHS = N0.getOperand(2); 3725 3726 if (LHS.getOpcode() == ISD::FNEG) 3727 LHS = LHS.getOperand(0); 3728 else if (MHS.getOpcode() == ISD::FNEG) 3729 MHS = MHS.getOperand(0); 3730 else 3731 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3732 3733 if (RHS.getOpcode() != ISD::FNEG) 3734 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3735 else 3736 RHS = RHS.getOperand(0); 3737 3738 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3739 if (Res.getOpcode() != Opc) 3740 return SDValue(); // Op got folded away. 3741 if (!N0.hasOneUse()) 3742 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3743 return Res; 3744 } 3745 case ISD::FMAXNUM: 3746 case ISD::FMINNUM: 3747 case ISD::FMAXNUM_IEEE: 3748 case ISD::FMINNUM_IEEE: 3749 case AMDGPUISD::FMAX_LEGACY: 3750 case AMDGPUISD::FMIN_LEGACY: { 3751 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3752 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3753 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3754 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3755 3756 SDValue LHS = N0.getOperand(0); 3757 SDValue RHS = N0.getOperand(1); 3758 3759 // 0 doesn't have a negated inline immediate. 3760 // TODO: This constant check should be generalized to other operations. 3761 if (isConstantCostlierToNegate(RHS)) 3762 return SDValue(); 3763 3764 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3765 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3766 unsigned Opposite = inverseMinMax(Opc); 3767 3768 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3769 if (Res.getOpcode() != Opposite) 3770 return SDValue(); // Op got folded away. 3771 if (!N0.hasOneUse()) 3772 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3773 return Res; 3774 } 3775 case AMDGPUISD::FMED3: { 3776 SDValue Ops[3]; 3777 for (unsigned I = 0; I < 3; ++I) 3778 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3779 3780 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3781 if (Res.getOpcode() != AMDGPUISD::FMED3) 3782 return SDValue(); // Op got folded away. 3783 3784 if (!N0.hasOneUse()) { 3785 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3786 DAG.ReplaceAllUsesWith(N0, Neg); 3787 3788 for (SDNode *U : Neg->uses()) 3789 DCI.AddToWorklist(U); 3790 } 3791 3792 return Res; 3793 } 3794 case ISD::FP_EXTEND: 3795 case ISD::FTRUNC: 3796 case ISD::FRINT: 3797 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3798 case ISD::FSIN: 3799 case ISD::FCANONICALIZE: 3800 case AMDGPUISD::RCP: 3801 case AMDGPUISD::RCP_LEGACY: 3802 case AMDGPUISD::RCP_IFLAG: 3803 case AMDGPUISD::SIN_HW: { 3804 SDValue CvtSrc = N0.getOperand(0); 3805 if (CvtSrc.getOpcode() == ISD::FNEG) { 3806 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3807 // (fneg (rcp (fneg x))) -> (rcp x) 3808 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3809 } 3810 3811 if (!N0.hasOneUse()) 3812 return SDValue(); 3813 3814 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3815 // (fneg (rcp x)) -> (rcp (fneg x)) 3816 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3817 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3818 } 3819 case ISD::FP_ROUND: { 3820 SDValue CvtSrc = N0.getOperand(0); 3821 3822 if (CvtSrc.getOpcode() == ISD::FNEG) { 3823 // (fneg (fp_round (fneg x))) -> (fp_round x) 3824 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3825 CvtSrc.getOperand(0), N0.getOperand(1)); 3826 } 3827 3828 if (!N0.hasOneUse()) 3829 return SDValue(); 3830 3831 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3832 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3833 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3834 } 3835 case ISD::FP16_TO_FP: { 3836 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3837 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3838 // Put the fneg back as a legal source operation that can be matched later. 3839 SDLoc SL(N); 3840 3841 SDValue Src = N0.getOperand(0); 3842 EVT SrcVT = Src.getValueType(); 3843 3844 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3845 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3846 DAG.getConstant(0x8000, SL, SrcVT)); 3847 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3848 } 3849 default: 3850 return SDValue(); 3851 } 3852 } 3853 3854 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3855 DAGCombinerInfo &DCI) const { 3856 SelectionDAG &DAG = DCI.DAG; 3857 SDValue N0 = N->getOperand(0); 3858 3859 if (!N0.hasOneUse()) 3860 return SDValue(); 3861 3862 switch (N0.getOpcode()) { 3863 case ISD::FP16_TO_FP: { 3864 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3865 SDLoc SL(N); 3866 SDValue Src = N0.getOperand(0); 3867 EVT SrcVT = Src.getValueType(); 3868 3869 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3870 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3871 DAG.getConstant(0x7fff, SL, SrcVT)); 3872 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3873 } 3874 default: 3875 return SDValue(); 3876 } 3877 } 3878 3879 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3880 DAGCombinerInfo &DCI) const { 3881 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3882 if (!CFP) 3883 return SDValue(); 3884 3885 // XXX - Should this flush denormals? 3886 const APFloat &Val = CFP->getValueAPF(); 3887 APFloat One(Val.getSemantics(), "1.0"); 3888 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3889 } 3890 3891 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3892 DAGCombinerInfo &DCI) const { 3893 SelectionDAG &DAG = DCI.DAG; 3894 SDLoc DL(N); 3895 3896 switch(N->getOpcode()) { 3897 default: 3898 break; 3899 case ISD::BITCAST: { 3900 EVT DestVT = N->getValueType(0); 3901 3902 // Push casts through vector builds. This helps avoid emitting a large 3903 // number of copies when materializing floating point vector constants. 3904 // 3905 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3906 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3907 if (DestVT.isVector()) { 3908 SDValue Src = N->getOperand(0); 3909 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3910 EVT SrcVT = Src.getValueType(); 3911 unsigned NElts = DestVT.getVectorNumElements(); 3912 3913 if (SrcVT.getVectorNumElements() == NElts) { 3914 EVT DestEltVT = DestVT.getVectorElementType(); 3915 3916 SmallVector<SDValue, 8> CastedElts; 3917 SDLoc SL(N); 3918 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3919 SDValue Elt = Src.getOperand(I); 3920 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3921 } 3922 3923 return DAG.getBuildVector(DestVT, SL, CastedElts); 3924 } 3925 } 3926 } 3927 3928 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 3929 break; 3930 3931 // Fold bitcasts of constants. 3932 // 3933 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3934 // TODO: Generalize and move to DAGCombiner 3935 SDValue Src = N->getOperand(0); 3936 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3937 SDLoc SL(N); 3938 uint64_t CVal = C->getZExtValue(); 3939 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3940 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3941 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3942 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3943 } 3944 3945 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3946 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3947 SDLoc SL(N); 3948 uint64_t CVal = Val.getZExtValue(); 3949 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3950 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3951 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3952 3953 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3954 } 3955 3956 break; 3957 } 3958 case ISD::SHL: { 3959 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3960 break; 3961 3962 return performShlCombine(N, DCI); 3963 } 3964 case ISD::SRL: { 3965 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3966 break; 3967 3968 return performSrlCombine(N, DCI); 3969 } 3970 case ISD::SRA: { 3971 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3972 break; 3973 3974 return performSraCombine(N, DCI); 3975 } 3976 case ISD::TRUNCATE: 3977 return performTruncateCombine(N, DCI); 3978 case ISD::MUL: 3979 return performMulCombine(N, DCI); 3980 case ISD::MULHS: 3981 return performMulhsCombine(N, DCI); 3982 case ISD::MULHU: 3983 return performMulhuCombine(N, DCI); 3984 case AMDGPUISD::MUL_I24: 3985 case AMDGPUISD::MUL_U24: 3986 case AMDGPUISD::MULHI_I24: 3987 case AMDGPUISD::MULHI_U24: 3988 return simplifyMul24(N, DCI); 3989 case ISD::SELECT: 3990 return performSelectCombine(N, DCI); 3991 case ISD::FNEG: 3992 return performFNegCombine(N, DCI); 3993 case ISD::FABS: 3994 return performFAbsCombine(N, DCI); 3995 case AMDGPUISD::BFE_I32: 3996 case AMDGPUISD::BFE_U32: { 3997 assert(!N->getValueType(0).isVector() && 3998 "Vector handling of BFE not implemented"); 3999 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4000 if (!Width) 4001 break; 4002 4003 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4004 if (WidthVal == 0) 4005 return DAG.getConstant(0, DL, MVT::i32); 4006 4007 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4008 if (!Offset) 4009 break; 4010 4011 SDValue BitsFrom = N->getOperand(0); 4012 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4013 4014 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4015 4016 if (OffsetVal == 0) { 4017 // This is already sign / zero extended, so try to fold away extra BFEs. 4018 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4019 4020 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4021 if (OpSignBits >= SignBits) 4022 return BitsFrom; 4023 4024 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4025 if (Signed) { 4026 // This is a sign_extend_inreg. Replace it to take advantage of existing 4027 // DAG Combines. If not eliminated, we will match back to BFE during 4028 // selection. 4029 4030 // TODO: The sext_inreg of extended types ends, although we can could 4031 // handle them in a single BFE. 4032 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4033 DAG.getValueType(SmallVT)); 4034 } 4035 4036 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4037 } 4038 4039 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4040 if (Signed) { 4041 return constantFoldBFE<int32_t>(DAG, 4042 CVal->getSExtValue(), 4043 OffsetVal, 4044 WidthVal, 4045 DL); 4046 } 4047 4048 return constantFoldBFE<uint32_t>(DAG, 4049 CVal->getZExtValue(), 4050 OffsetVal, 4051 WidthVal, 4052 DL); 4053 } 4054 4055 if ((OffsetVal + WidthVal) >= 32 && 4056 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4057 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4058 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4059 BitsFrom, ShiftVal); 4060 } 4061 4062 if (BitsFrom.hasOneUse()) { 4063 APInt Demanded = APInt::getBitsSet(32, 4064 OffsetVal, 4065 OffsetVal + WidthVal); 4066 4067 KnownBits Known; 4068 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4069 !DCI.isBeforeLegalizeOps()); 4070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4071 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4072 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4073 DCI.CommitTargetLoweringOpt(TLO); 4074 } 4075 } 4076 4077 break; 4078 } 4079 case ISD::LOAD: 4080 return performLoadCombine(N, DCI); 4081 case ISD::STORE: 4082 return performStoreCombine(N, DCI); 4083 case AMDGPUISD::RCP: 4084 case AMDGPUISD::RCP_IFLAG: 4085 return performRcpCombine(N, DCI); 4086 case ISD::AssertZext: 4087 case ISD::AssertSext: 4088 return performAssertSZExtCombine(N, DCI); 4089 case ISD::INTRINSIC_WO_CHAIN: 4090 return performIntrinsicWOChainCombine(N, DCI); 4091 } 4092 return SDValue(); 4093 } 4094 4095 //===----------------------------------------------------------------------===// 4096 // Helper functions 4097 //===----------------------------------------------------------------------===// 4098 4099 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4100 const TargetRegisterClass *RC, 4101 Register Reg, EVT VT, 4102 const SDLoc &SL, 4103 bool RawReg) const { 4104 MachineFunction &MF = DAG.getMachineFunction(); 4105 MachineRegisterInfo &MRI = MF.getRegInfo(); 4106 Register VReg; 4107 4108 if (!MRI.isLiveIn(Reg)) { 4109 VReg = MRI.createVirtualRegister(RC); 4110 MRI.addLiveIn(Reg, VReg); 4111 } else { 4112 VReg = MRI.getLiveInVirtReg(Reg); 4113 } 4114 4115 if (RawReg) 4116 return DAG.getRegister(VReg, VT); 4117 4118 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4119 } 4120 4121 // This may be called multiple times, and nothing prevents creating multiple 4122 // objects at the same offset. See if we already defined this object. 4123 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4124 int64_t Offset) { 4125 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4126 if (MFI.getObjectOffset(I) == Offset) { 4127 assert(MFI.getObjectSize(I) == Size); 4128 return I; 4129 } 4130 } 4131 4132 return MFI.CreateFixedObject(Size, Offset, true); 4133 } 4134 4135 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4136 EVT VT, 4137 const SDLoc &SL, 4138 int64_t Offset) const { 4139 MachineFunction &MF = DAG.getMachineFunction(); 4140 MachineFrameInfo &MFI = MF.getFrameInfo(); 4141 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4142 4143 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4144 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4145 4146 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4147 MachineMemOperand::MODereferenceable | 4148 MachineMemOperand::MOInvariant); 4149 } 4150 4151 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4152 const SDLoc &SL, 4153 SDValue Chain, 4154 SDValue ArgVal, 4155 int64_t Offset) const { 4156 MachineFunction &MF = DAG.getMachineFunction(); 4157 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4158 4159 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4160 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4161 MachineMemOperand::MODereferenceable); 4162 return Store; 4163 } 4164 4165 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4166 const TargetRegisterClass *RC, 4167 EVT VT, const SDLoc &SL, 4168 const ArgDescriptor &Arg) const { 4169 assert(Arg && "Attempting to load missing argument"); 4170 4171 SDValue V = Arg.isRegister() ? 4172 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4173 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4174 4175 if (!Arg.isMasked()) 4176 return V; 4177 4178 unsigned Mask = Arg.getMask(); 4179 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4180 V = DAG.getNode(ISD::SRL, SL, VT, V, 4181 DAG.getShiftAmountConstant(Shift, VT, SL)); 4182 return DAG.getNode(ISD::AND, SL, VT, V, 4183 DAG.getConstant(Mask >> Shift, SL, VT)); 4184 } 4185 4186 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4187 const MachineFunction &MF, const ImplicitParameter Param) const { 4188 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4189 const AMDGPUSubtarget &ST = 4190 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4191 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4192 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4193 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4194 ExplicitArgOffset; 4195 switch (Param) { 4196 case GRID_DIM: 4197 return ArgOffset; 4198 case GRID_OFFSET: 4199 return ArgOffset + 4; 4200 } 4201 llvm_unreachable("unexpected implicit parameter type"); 4202 } 4203 4204 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4205 4206 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4207 switch ((AMDGPUISD::NodeType)Opcode) { 4208 case AMDGPUISD::FIRST_NUMBER: break; 4209 // AMDIL DAG nodes 4210 NODE_NAME_CASE(UMUL); 4211 NODE_NAME_CASE(BRANCH_COND); 4212 4213 // AMDGPU DAG nodes 4214 NODE_NAME_CASE(IF) 4215 NODE_NAME_CASE(ELSE) 4216 NODE_NAME_CASE(LOOP) 4217 NODE_NAME_CASE(CALL) 4218 NODE_NAME_CASE(TC_RETURN) 4219 NODE_NAME_CASE(TRAP) 4220 NODE_NAME_CASE(RET_FLAG) 4221 NODE_NAME_CASE(RETURN_TO_EPILOG) 4222 NODE_NAME_CASE(ENDPGM) 4223 NODE_NAME_CASE(DWORDADDR) 4224 NODE_NAME_CASE(FRACT) 4225 NODE_NAME_CASE(SETCC) 4226 NODE_NAME_CASE(SETREG) 4227 NODE_NAME_CASE(DENORM_MODE) 4228 NODE_NAME_CASE(FMA_W_CHAIN) 4229 NODE_NAME_CASE(FMUL_W_CHAIN) 4230 NODE_NAME_CASE(CLAMP) 4231 NODE_NAME_CASE(COS_HW) 4232 NODE_NAME_CASE(SIN_HW) 4233 NODE_NAME_CASE(FMAX_LEGACY) 4234 NODE_NAME_CASE(FMIN_LEGACY) 4235 NODE_NAME_CASE(FMAX3) 4236 NODE_NAME_CASE(SMAX3) 4237 NODE_NAME_CASE(UMAX3) 4238 NODE_NAME_CASE(FMIN3) 4239 NODE_NAME_CASE(SMIN3) 4240 NODE_NAME_CASE(UMIN3) 4241 NODE_NAME_CASE(FMED3) 4242 NODE_NAME_CASE(SMED3) 4243 NODE_NAME_CASE(UMED3) 4244 NODE_NAME_CASE(FDOT2) 4245 NODE_NAME_CASE(URECIP) 4246 NODE_NAME_CASE(DIV_SCALE) 4247 NODE_NAME_CASE(DIV_FMAS) 4248 NODE_NAME_CASE(DIV_FIXUP) 4249 NODE_NAME_CASE(FMAD_FTZ) 4250 NODE_NAME_CASE(RCP) 4251 NODE_NAME_CASE(RSQ) 4252 NODE_NAME_CASE(RCP_LEGACY) 4253 NODE_NAME_CASE(RCP_IFLAG) 4254 NODE_NAME_CASE(FMUL_LEGACY) 4255 NODE_NAME_CASE(RSQ_CLAMP) 4256 NODE_NAME_CASE(LDEXP) 4257 NODE_NAME_CASE(FP_CLASS) 4258 NODE_NAME_CASE(DOT4) 4259 NODE_NAME_CASE(CARRY) 4260 NODE_NAME_CASE(BORROW) 4261 NODE_NAME_CASE(BFE_U32) 4262 NODE_NAME_CASE(BFE_I32) 4263 NODE_NAME_CASE(BFI) 4264 NODE_NAME_CASE(BFM) 4265 NODE_NAME_CASE(FFBH_U32) 4266 NODE_NAME_CASE(FFBH_I32) 4267 NODE_NAME_CASE(FFBL_B32) 4268 NODE_NAME_CASE(MUL_U24) 4269 NODE_NAME_CASE(MUL_I24) 4270 NODE_NAME_CASE(MULHI_U24) 4271 NODE_NAME_CASE(MULHI_I24) 4272 NODE_NAME_CASE(MAD_U24) 4273 NODE_NAME_CASE(MAD_I24) 4274 NODE_NAME_CASE(MAD_I64_I32) 4275 NODE_NAME_CASE(MAD_U64_U32) 4276 NODE_NAME_CASE(PERM) 4277 NODE_NAME_CASE(TEXTURE_FETCH) 4278 NODE_NAME_CASE(R600_EXPORT) 4279 NODE_NAME_CASE(CONST_ADDRESS) 4280 NODE_NAME_CASE(REGISTER_LOAD) 4281 NODE_NAME_CASE(REGISTER_STORE) 4282 NODE_NAME_CASE(SAMPLE) 4283 NODE_NAME_CASE(SAMPLEB) 4284 NODE_NAME_CASE(SAMPLED) 4285 NODE_NAME_CASE(SAMPLEL) 4286 NODE_NAME_CASE(CVT_F32_UBYTE0) 4287 NODE_NAME_CASE(CVT_F32_UBYTE1) 4288 NODE_NAME_CASE(CVT_F32_UBYTE2) 4289 NODE_NAME_CASE(CVT_F32_UBYTE3) 4290 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4291 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4292 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4293 NODE_NAME_CASE(CVT_PK_I16_I32) 4294 NODE_NAME_CASE(CVT_PK_U16_U32) 4295 NODE_NAME_CASE(FP_TO_FP16) 4296 NODE_NAME_CASE(FP16_ZEXT) 4297 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4298 NODE_NAME_CASE(CONST_DATA_PTR) 4299 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4300 NODE_NAME_CASE(LDS) 4301 NODE_NAME_CASE(DUMMY_CHAIN) 4302 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4303 NODE_NAME_CASE(LOAD_D16_HI) 4304 NODE_NAME_CASE(LOAD_D16_LO) 4305 NODE_NAME_CASE(LOAD_D16_HI_I8) 4306 NODE_NAME_CASE(LOAD_D16_HI_U8) 4307 NODE_NAME_CASE(LOAD_D16_LO_I8) 4308 NODE_NAME_CASE(LOAD_D16_LO_U8) 4309 NODE_NAME_CASE(STORE_MSKOR) 4310 NODE_NAME_CASE(LOAD_CONSTANT) 4311 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4312 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4313 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4314 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4315 NODE_NAME_CASE(DS_ORDERED_COUNT) 4316 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4317 NODE_NAME_CASE(ATOMIC_INC) 4318 NODE_NAME_CASE(ATOMIC_DEC) 4319 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4320 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4321 NODE_NAME_CASE(BUFFER_LOAD) 4322 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4323 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4324 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4325 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4326 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4327 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4328 NODE_NAME_CASE(SBUFFER_LOAD) 4329 NODE_NAME_CASE(BUFFER_STORE) 4330 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4331 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4332 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4333 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4334 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4335 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4336 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4337 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4338 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4339 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4340 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4341 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4342 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4343 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4344 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4345 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4346 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4347 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4348 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4349 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN) 4350 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX) 4351 4352 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4353 } 4354 return nullptr; 4355 } 4356 4357 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4358 SelectionDAG &DAG, int Enabled, 4359 int &RefinementSteps, 4360 bool &UseOneConstNR, 4361 bool Reciprocal) const { 4362 EVT VT = Operand.getValueType(); 4363 4364 if (VT == MVT::f32) { 4365 RefinementSteps = 0; 4366 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4367 } 4368 4369 // TODO: There is also f64 rsq instruction, but the documentation is less 4370 // clear on its precision. 4371 4372 return SDValue(); 4373 } 4374 4375 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4376 SelectionDAG &DAG, int Enabled, 4377 int &RefinementSteps) const { 4378 EVT VT = Operand.getValueType(); 4379 4380 if (VT == MVT::f32) { 4381 // Reciprocal, < 1 ulp error. 4382 // 4383 // This reciprocal approximation converges to < 0.5 ulp error with one 4384 // newton rhapson performed with two fused multiple adds (FMAs). 4385 4386 RefinementSteps = 0; 4387 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4388 } 4389 4390 // TODO: There is also f64 rcp instruction, but the documentation is less 4391 // clear on its precision. 4392 4393 return SDValue(); 4394 } 4395 4396 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4397 const SDValue Op, KnownBits &Known, 4398 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4399 4400 Known.resetAll(); // Don't know anything. 4401 4402 unsigned Opc = Op.getOpcode(); 4403 4404 switch (Opc) { 4405 default: 4406 break; 4407 case AMDGPUISD::CARRY: 4408 case AMDGPUISD::BORROW: { 4409 Known.Zero = APInt::getHighBitsSet(32, 31); 4410 break; 4411 } 4412 4413 case AMDGPUISD::BFE_I32: 4414 case AMDGPUISD::BFE_U32: { 4415 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4416 if (!CWidth) 4417 return; 4418 4419 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4420 4421 if (Opc == AMDGPUISD::BFE_U32) 4422 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4423 4424 break; 4425 } 4426 case AMDGPUISD::FP_TO_FP16: 4427 case AMDGPUISD::FP16_ZEXT: { 4428 unsigned BitWidth = Known.getBitWidth(); 4429 4430 // High bits are zero. 4431 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4432 break; 4433 } 4434 case AMDGPUISD::MUL_U24: 4435 case AMDGPUISD::MUL_I24: { 4436 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4437 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4438 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4439 RHSKnown.countMinTrailingZeros(); 4440 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4441 // Skip extra check if all bits are known zeros. 4442 if (TrailZ >= 32) 4443 break; 4444 4445 // Truncate to 24 bits. 4446 LHSKnown = LHSKnown.trunc(24); 4447 RHSKnown = RHSKnown.trunc(24); 4448 4449 if (Opc == AMDGPUISD::MUL_I24) { 4450 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4451 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4452 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4453 if (MaxValBits >= 32) 4454 break; 4455 bool LHSNegative = LHSKnown.isNegative(); 4456 bool LHSNonNegative = LHSKnown.isNonNegative(); 4457 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4458 bool RHSNegative = RHSKnown.isNegative(); 4459 bool RHSNonNegative = RHSKnown.isNonNegative(); 4460 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4461 4462 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4463 Known.Zero.setHighBits(32 - MaxValBits); 4464 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4465 Known.One.setHighBits(32 - MaxValBits); 4466 } else { 4467 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4468 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4469 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4470 if (MaxValBits >= 32) 4471 break; 4472 Known.Zero.setHighBits(32 - MaxValBits); 4473 } 4474 break; 4475 } 4476 case AMDGPUISD::PERM: { 4477 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4478 if (!CMask) 4479 return; 4480 4481 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4482 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4483 unsigned Sel = CMask->getZExtValue(); 4484 4485 for (unsigned I = 0; I < 32; I += 8) { 4486 unsigned SelBits = Sel & 0xff; 4487 if (SelBits < 4) { 4488 SelBits *= 8; 4489 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4490 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4491 } else if (SelBits < 7) { 4492 SelBits = (SelBits & 3) * 8; 4493 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4494 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4495 } else if (SelBits == 0x0c) { 4496 Known.Zero |= 0xFFull << I; 4497 } else if (SelBits > 0x0c) { 4498 Known.One |= 0xFFull << I; 4499 } 4500 Sel >>= 8; 4501 } 4502 break; 4503 } 4504 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4505 Known.Zero.setHighBits(24); 4506 break; 4507 } 4508 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4509 Known.Zero.setHighBits(16); 4510 break; 4511 } 4512 case AMDGPUISD::LDS: { 4513 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4514 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4515 4516 Known.Zero.setHighBits(16); 4517 Known.Zero.setLowBits(Log2(Alignment)); 4518 break; 4519 } 4520 case ISD::INTRINSIC_WO_CHAIN: { 4521 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4522 switch (IID) { 4523 case Intrinsic::amdgcn_mbcnt_lo: 4524 case Intrinsic::amdgcn_mbcnt_hi: { 4525 const GCNSubtarget &ST = 4526 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4527 // These return at most the wavefront size - 1. 4528 unsigned Size = Op.getValueType().getSizeInBits(); 4529 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4530 break; 4531 } 4532 default: 4533 break; 4534 } 4535 } 4536 } 4537 } 4538 4539 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4540 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4541 unsigned Depth) const { 4542 switch (Op.getOpcode()) { 4543 case AMDGPUISD::BFE_I32: { 4544 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4545 if (!Width) 4546 return 1; 4547 4548 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4549 if (!isNullConstant(Op.getOperand(1))) 4550 return SignBits; 4551 4552 // TODO: Could probably figure something out with non-0 offsets. 4553 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4554 return std::max(SignBits, Op0SignBits); 4555 } 4556 4557 case AMDGPUISD::BFE_U32: { 4558 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4559 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4560 } 4561 4562 case AMDGPUISD::CARRY: 4563 case AMDGPUISD::BORROW: 4564 return 31; 4565 case AMDGPUISD::BUFFER_LOAD_BYTE: 4566 return 25; 4567 case AMDGPUISD::BUFFER_LOAD_SHORT: 4568 return 17; 4569 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4570 return 24; 4571 case AMDGPUISD::BUFFER_LOAD_USHORT: 4572 return 16; 4573 case AMDGPUISD::FP_TO_FP16: 4574 case AMDGPUISD::FP16_ZEXT: 4575 return 16; 4576 default: 4577 return 1; 4578 } 4579 } 4580 4581 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4582 GISelKnownBits &Analysis, Register R, 4583 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4584 unsigned Depth) const { 4585 const MachineInstr *MI = MRI.getVRegDef(R); 4586 if (!MI) 4587 return 1; 4588 4589 // TODO: Check range metadata on MMO. 4590 switch (MI->getOpcode()) { 4591 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4592 return 25; 4593 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4594 return 17; 4595 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4596 return 24; 4597 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4598 return 16; 4599 default: 4600 return 1; 4601 } 4602 } 4603 4604 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4605 const SelectionDAG &DAG, 4606 bool SNaN, 4607 unsigned Depth) const { 4608 unsigned Opcode = Op.getOpcode(); 4609 switch (Opcode) { 4610 case AMDGPUISD::FMIN_LEGACY: 4611 case AMDGPUISD::FMAX_LEGACY: { 4612 if (SNaN) 4613 return true; 4614 4615 // TODO: Can check no nans on one of the operands for each one, but which 4616 // one? 4617 return false; 4618 } 4619 case AMDGPUISD::FMUL_LEGACY: 4620 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4621 if (SNaN) 4622 return true; 4623 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4624 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4625 } 4626 case AMDGPUISD::FMED3: 4627 case AMDGPUISD::FMIN3: 4628 case AMDGPUISD::FMAX3: 4629 case AMDGPUISD::FMAD_FTZ: { 4630 if (SNaN) 4631 return true; 4632 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4633 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4634 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4635 } 4636 case AMDGPUISD::CVT_F32_UBYTE0: 4637 case AMDGPUISD::CVT_F32_UBYTE1: 4638 case AMDGPUISD::CVT_F32_UBYTE2: 4639 case AMDGPUISD::CVT_F32_UBYTE3: 4640 return true; 4641 4642 case AMDGPUISD::RCP: 4643 case AMDGPUISD::RSQ: 4644 case AMDGPUISD::RCP_LEGACY: 4645 case AMDGPUISD::RSQ_CLAMP: { 4646 if (SNaN) 4647 return true; 4648 4649 // TODO: Need is known positive check. 4650 return false; 4651 } 4652 case AMDGPUISD::LDEXP: 4653 case AMDGPUISD::FRACT: { 4654 if (SNaN) 4655 return true; 4656 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4657 } 4658 case AMDGPUISD::DIV_SCALE: 4659 case AMDGPUISD::DIV_FMAS: 4660 case AMDGPUISD::DIV_FIXUP: 4661 // TODO: Refine on operands. 4662 return SNaN; 4663 case AMDGPUISD::SIN_HW: 4664 case AMDGPUISD::COS_HW: { 4665 // TODO: Need check for infinity 4666 return SNaN; 4667 } 4668 case ISD::INTRINSIC_WO_CHAIN: { 4669 unsigned IntrinsicID 4670 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4671 // TODO: Handle more intrinsics 4672 switch (IntrinsicID) { 4673 case Intrinsic::amdgcn_cubeid: 4674 return true; 4675 4676 case Intrinsic::amdgcn_frexp_mant: { 4677 if (SNaN) 4678 return true; 4679 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4680 } 4681 case Intrinsic::amdgcn_cvt_pkrtz: { 4682 if (SNaN) 4683 return true; 4684 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4685 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4686 } 4687 case Intrinsic::amdgcn_rcp: 4688 case Intrinsic::amdgcn_rsq: 4689 case Intrinsic::amdgcn_rcp_legacy: 4690 case Intrinsic::amdgcn_rsq_legacy: 4691 case Intrinsic::amdgcn_rsq_clamp: { 4692 if (SNaN) 4693 return true; 4694 4695 // TODO: Need is known positive check. 4696 return false; 4697 } 4698 case Intrinsic::amdgcn_trig_preop: 4699 case Intrinsic::amdgcn_fdot2: 4700 // TODO: Refine on operand 4701 return SNaN; 4702 case Intrinsic::amdgcn_fma_legacy: 4703 if (SNaN) 4704 return true; 4705 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4706 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && 4707 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); 4708 default: 4709 return false; 4710 } 4711 } 4712 default: 4713 return false; 4714 } 4715 } 4716 4717 TargetLowering::AtomicExpansionKind 4718 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4719 switch (RMW->getOperation()) { 4720 case AtomicRMWInst::Nand: 4721 case AtomicRMWInst::FAdd: 4722 case AtomicRMWInst::FSub: 4723 return AtomicExpansionKind::CmpXChg; 4724 default: 4725 return AtomicExpansionKind::None; 4726 } 4727 } 4728