1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUSubtarget.h" 20 #include "AMDGPUTargetMachine.h" 21 #include "Utils/AMDGPUBaseInfo.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIInstrInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Support/MathExtras.h" 36 using namespace llvm; 37 38 #include "AMDGPUGenCallingConv.inc" 39 40 static cl::opt<bool> AMDGPUBypassSlowDiv( 41 "amdgpu-bypass-slow-div", 42 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 43 cl::init(true)); 44 45 // Find a larger type to do a load / store of a vector with. 46 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 47 unsigned StoreSize = VT.getStoreSizeInBits(); 48 if (StoreSize <= 32) 49 return EVT::getIntegerVT(Ctx, StoreSize); 50 51 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 52 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 53 } 54 55 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 56 EVT VT = Op.getValueType(); 57 KnownBits Known = DAG.computeKnownBits(Op); 58 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 59 } 60 61 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 62 EVT VT = Op.getValueType(); 63 64 // In order for this to be a signed 24-bit value, bit 23, must 65 // be a sign bit. 66 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 67 } 68 69 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 70 const AMDGPUSubtarget &STI) 71 : TargetLowering(TM), Subtarget(&STI) { 72 // Lower floating point store/load to integer store/load to reduce the number 73 // of patterns in tablegen. 74 setOperationAction(ISD::LOAD, MVT::f32, Promote); 75 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 76 77 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 78 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 79 80 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 81 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 82 83 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 84 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 85 86 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 87 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 88 89 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 90 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 91 92 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 93 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 94 95 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 96 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 97 98 setOperationAction(ISD::LOAD, MVT::i64, Promote); 99 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 100 101 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 102 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 103 104 setOperationAction(ISD::LOAD, MVT::f64, Promote); 105 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 106 107 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 108 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 109 110 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 111 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 112 113 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 114 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 115 116 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 117 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 118 119 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 120 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 121 122 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 123 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 124 125 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 126 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 127 128 // There are no 64-bit extloads. These should be done as a 32-bit extload and 129 // an extension to 64-bit. 130 for (MVT VT : MVT::integer_valuetypes()) { 131 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 132 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 133 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 134 } 135 136 for (MVT VT : MVT::integer_valuetypes()) { 137 if (VT == MVT::i64) 138 continue; 139 140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 144 145 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 149 150 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 154 } 155 156 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 159 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 161 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 162 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 164 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 165 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 168 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 171 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 172 } 173 174 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 175 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 181 182 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 187 188 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 189 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 190 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 193 194 setOperationAction(ISD::STORE, MVT::f32, Promote); 195 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 196 197 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 199 200 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 202 203 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 205 206 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 208 209 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 211 212 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 214 215 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 217 218 setOperationAction(ISD::STORE, MVT::i64, Promote); 219 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 220 221 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 223 224 setOperationAction(ISD::STORE, MVT::f64, Promote); 225 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 226 227 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 228 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 229 230 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 232 233 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 235 236 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 238 239 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 241 242 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 244 245 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 247 248 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 249 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 250 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 251 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 252 253 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 254 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 255 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 256 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 257 258 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 259 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 260 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 261 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 262 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 263 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 264 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 265 266 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 267 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 268 269 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 270 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 271 272 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 273 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 274 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 275 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 276 277 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 278 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 279 280 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 281 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 282 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 283 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 284 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 285 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 286 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 287 288 setOperationAction(ISD::Constant, MVT::i32, Legal); 289 setOperationAction(ISD::Constant, MVT::i64, Legal); 290 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 291 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 292 293 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 294 setOperationAction(ISD::BRIND, MVT::Other, Expand); 295 296 // This is totally unsupported, just custom lower to produce an error. 297 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 298 299 // Library functions. These default to Expand, but we have instructions 300 // for them. 301 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 302 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 303 setOperationAction(ISD::FPOW, MVT::f32, Legal); 304 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 305 setOperationAction(ISD::FABS, MVT::f32, Legal); 306 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 307 setOperationAction(ISD::FRINT, MVT::f32, Legal); 308 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 309 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 310 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 311 312 setOperationAction(ISD::FROUND, MVT::f32, Custom); 313 setOperationAction(ISD::FROUND, MVT::f64, Custom); 314 315 setOperationAction(ISD::FLOG, MVT::f32, Custom); 316 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 317 setOperationAction(ISD::FEXP, MVT::f32, Custom); 318 319 320 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 321 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 322 323 setOperationAction(ISD::FREM, MVT::f32, Custom); 324 setOperationAction(ISD::FREM, MVT::f64, Custom); 325 326 // Expand to fneg + fadd. 327 setOperationAction(ISD::FSUB, MVT::f64, Expand); 328 329 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 330 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 331 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 332 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 333 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 334 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 335 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 336 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 337 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 338 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 339 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 340 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 341 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 342 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 343 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 344 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 345 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 346 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 347 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 350 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 352 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 353 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 354 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 355 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 356 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 357 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 358 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 359 360 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 361 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 362 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 363 364 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 365 for (MVT VT : ScalarIntVTs) { 366 // These should use [SU]DIVREM, so set them to expand 367 setOperationAction(ISD::SDIV, VT, Expand); 368 setOperationAction(ISD::UDIV, VT, Expand); 369 setOperationAction(ISD::SREM, VT, Expand); 370 setOperationAction(ISD::UREM, VT, Expand); 371 372 // GPU does not have divrem function for signed or unsigned. 373 setOperationAction(ISD::SDIVREM, VT, Custom); 374 setOperationAction(ISD::UDIVREM, VT, Custom); 375 376 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 377 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 378 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 379 380 setOperationAction(ISD::BSWAP, VT, Expand); 381 setOperationAction(ISD::CTTZ, VT, Expand); 382 setOperationAction(ISD::CTLZ, VT, Expand); 383 384 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 385 setOperationAction(ISD::ADDC, VT, Legal); 386 setOperationAction(ISD::SUBC, VT, Legal); 387 setOperationAction(ISD::ADDE, VT, Legal); 388 setOperationAction(ISD::SUBE, VT, Legal); 389 } 390 391 // The hardware supports 32-bit FSHR, but not FSHL. 392 setOperationAction(ISD::FSHR, MVT::i32, Legal); 393 394 // The hardware supports 32-bit ROTR, but not ROTL. 395 setOperationAction(ISD::ROTL, MVT::i32, Expand); 396 setOperationAction(ISD::ROTL, MVT::i64, Expand); 397 setOperationAction(ISD::ROTR, MVT::i64, Expand); 398 399 setOperationAction(ISD::MUL, MVT::i64, Expand); 400 setOperationAction(ISD::MULHU, MVT::i64, Expand); 401 setOperationAction(ISD::MULHS, MVT::i64, Expand); 402 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 403 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 404 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 405 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 406 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 407 408 setOperationAction(ISD::SMIN, MVT::i32, Legal); 409 setOperationAction(ISD::UMIN, MVT::i32, Legal); 410 setOperationAction(ISD::SMAX, MVT::i32, Legal); 411 setOperationAction(ISD::UMAX, MVT::i32, Legal); 412 413 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 414 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 415 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 416 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 417 418 static const MVT::SimpleValueType VectorIntTypes[] = { 419 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 420 }; 421 422 for (MVT VT : VectorIntTypes) { 423 // Expand the following operations for the current type by default. 424 setOperationAction(ISD::ADD, VT, Expand); 425 setOperationAction(ISD::AND, VT, Expand); 426 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 427 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 428 setOperationAction(ISD::MUL, VT, Expand); 429 setOperationAction(ISD::MULHU, VT, Expand); 430 setOperationAction(ISD::MULHS, VT, Expand); 431 setOperationAction(ISD::OR, VT, Expand); 432 setOperationAction(ISD::SHL, VT, Expand); 433 setOperationAction(ISD::SRA, VT, Expand); 434 setOperationAction(ISD::SRL, VT, Expand); 435 setOperationAction(ISD::ROTL, VT, Expand); 436 setOperationAction(ISD::ROTR, VT, Expand); 437 setOperationAction(ISD::SUB, VT, Expand); 438 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 439 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 440 setOperationAction(ISD::SDIV, VT, Expand); 441 setOperationAction(ISD::UDIV, VT, Expand); 442 setOperationAction(ISD::SREM, VT, Expand); 443 setOperationAction(ISD::UREM, VT, Expand); 444 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 445 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 446 setOperationAction(ISD::SDIVREM, VT, Custom); 447 setOperationAction(ISD::UDIVREM, VT, Expand); 448 setOperationAction(ISD::SELECT, VT, Expand); 449 setOperationAction(ISD::VSELECT, VT, Expand); 450 setOperationAction(ISD::SELECT_CC, VT, Expand); 451 setOperationAction(ISD::XOR, VT, Expand); 452 setOperationAction(ISD::BSWAP, VT, Expand); 453 setOperationAction(ISD::CTPOP, VT, Expand); 454 setOperationAction(ISD::CTTZ, VT, Expand); 455 setOperationAction(ISD::CTLZ, VT, Expand); 456 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 457 setOperationAction(ISD::SETCC, VT, Expand); 458 } 459 460 static const MVT::SimpleValueType FloatVectorTypes[] = { 461 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 462 }; 463 464 for (MVT VT : FloatVectorTypes) { 465 setOperationAction(ISD::FABS, VT, Expand); 466 setOperationAction(ISD::FMINNUM, VT, Expand); 467 setOperationAction(ISD::FMAXNUM, VT, Expand); 468 setOperationAction(ISD::FADD, VT, Expand); 469 setOperationAction(ISD::FCEIL, VT, Expand); 470 setOperationAction(ISD::FCOS, VT, Expand); 471 setOperationAction(ISD::FDIV, VT, Expand); 472 setOperationAction(ISD::FEXP2, VT, Expand); 473 setOperationAction(ISD::FEXP, VT, Expand); 474 setOperationAction(ISD::FLOG2, VT, Expand); 475 setOperationAction(ISD::FREM, VT, Expand); 476 setOperationAction(ISD::FLOG, VT, Expand); 477 setOperationAction(ISD::FLOG10, VT, Expand); 478 setOperationAction(ISD::FPOW, VT, Expand); 479 setOperationAction(ISD::FFLOOR, VT, Expand); 480 setOperationAction(ISD::FTRUNC, VT, Expand); 481 setOperationAction(ISD::FMUL, VT, Expand); 482 setOperationAction(ISD::FMA, VT, Expand); 483 setOperationAction(ISD::FRINT, VT, Expand); 484 setOperationAction(ISD::FNEARBYINT, VT, Expand); 485 setOperationAction(ISD::FSQRT, VT, Expand); 486 setOperationAction(ISD::FSIN, VT, Expand); 487 setOperationAction(ISD::FSUB, VT, Expand); 488 setOperationAction(ISD::FNEG, VT, Expand); 489 setOperationAction(ISD::VSELECT, VT, Expand); 490 setOperationAction(ISD::SELECT_CC, VT, Expand); 491 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 492 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 493 setOperationAction(ISD::SETCC, VT, Expand); 494 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 495 } 496 497 // This causes using an unrolled select operation rather than expansion with 498 // bit operations. This is in general better, but the alternative using BFI 499 // instructions may be better if the select sources are SGPRs. 500 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 501 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 502 503 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 504 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 505 506 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 507 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 508 509 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 510 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 511 512 // There are no libcalls of any kind. 513 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 514 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 515 516 setSchedulingPreference(Sched::RegPressure); 517 setJumpIsExpensive(true); 518 519 // FIXME: This is only partially true. If we have to do vector compares, any 520 // SGPR pair can be a condition register. If we have a uniform condition, we 521 // are better off doing SALU operations, where there is only one SCC. For now, 522 // we don't have a way of knowing during instruction selection if a condition 523 // will be uniform and we always use vector compares. Assume we are using 524 // vector compares until that is fixed. 525 setHasMultipleConditionRegisters(true); 526 527 setMinCmpXchgSizeInBits(32); 528 setSupportsUnalignedAtomics(false); 529 530 PredictableSelectIsExpensive = false; 531 532 // We want to find all load dependencies for long chains of stores to enable 533 // merging into very wide vectors. The problem is with vectors with > 4 534 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 535 // vectors are a legal type, even though we have to split the loads 536 // usually. When we can more precisely specify load legality per address 537 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 538 // smarter so that they can figure out what to do in 2 iterations without all 539 // N > 4 stores on the same chain. 540 GatherAllAliasesMaxDepth = 16; 541 542 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 543 // about these during lowering. 544 MaxStoresPerMemcpy = 0xffffffff; 545 MaxStoresPerMemmove = 0xffffffff; 546 MaxStoresPerMemset = 0xffffffff; 547 548 // The expansion for 64-bit division is enormous. 549 if (AMDGPUBypassSlowDiv) 550 addBypassSlowDiv(64, 32); 551 552 setTargetDAGCombine(ISD::BITCAST); 553 setTargetDAGCombine(ISD::SHL); 554 setTargetDAGCombine(ISD::SRA); 555 setTargetDAGCombine(ISD::SRL); 556 setTargetDAGCombine(ISD::TRUNCATE); 557 setTargetDAGCombine(ISD::MUL); 558 setTargetDAGCombine(ISD::MULHU); 559 setTargetDAGCombine(ISD::MULHS); 560 setTargetDAGCombine(ISD::SELECT); 561 setTargetDAGCombine(ISD::SELECT_CC); 562 setTargetDAGCombine(ISD::STORE); 563 setTargetDAGCombine(ISD::FADD); 564 setTargetDAGCombine(ISD::FSUB); 565 setTargetDAGCombine(ISD::FNEG); 566 setTargetDAGCombine(ISD::FABS); 567 setTargetDAGCombine(ISD::AssertZext); 568 setTargetDAGCombine(ISD::AssertSext); 569 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // Target Information 574 //===----------------------------------------------------------------------===// 575 576 LLVM_READNONE 577 static bool fnegFoldsIntoOp(unsigned Opc) { 578 switch (Opc) { 579 case ISD::FADD: 580 case ISD::FSUB: 581 case ISD::FMUL: 582 case ISD::FMA: 583 case ISD::FMAD: 584 case ISD::FMINNUM: 585 case ISD::FMAXNUM: 586 case ISD::FMINNUM_IEEE: 587 case ISD::FMAXNUM_IEEE: 588 case ISD::FSIN: 589 case ISD::FTRUNC: 590 case ISD::FRINT: 591 case ISD::FNEARBYINT: 592 case ISD::FCANONICALIZE: 593 case AMDGPUISD::RCP: 594 case AMDGPUISD::RCP_LEGACY: 595 case AMDGPUISD::RCP_IFLAG: 596 case AMDGPUISD::SIN_HW: 597 case AMDGPUISD::FMUL_LEGACY: 598 case AMDGPUISD::FMIN_LEGACY: 599 case AMDGPUISD::FMAX_LEGACY: 600 case AMDGPUISD::FMED3: 601 return true; 602 default: 603 return false; 604 } 605 } 606 607 /// \p returns true if the operation will definitely need to use a 64-bit 608 /// encoding, and thus will use a VOP3 encoding regardless of the source 609 /// modifiers. 610 LLVM_READONLY 611 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 612 return N->getNumOperands() > 2 || VT == MVT::f64; 613 } 614 615 // Most FP instructions support source modifiers, but this could be refined 616 // slightly. 617 LLVM_READONLY 618 static bool hasSourceMods(const SDNode *N) { 619 if (isa<MemSDNode>(N)) 620 return false; 621 622 switch (N->getOpcode()) { 623 case ISD::CopyToReg: 624 case ISD::SELECT: 625 case ISD::FDIV: 626 case ISD::FREM: 627 case ISD::INLINEASM: 628 case ISD::INLINEASM_BR: 629 case AMDGPUISD::DIV_SCALE: 630 case ISD::INTRINSIC_W_CHAIN: 631 632 // TODO: Should really be looking at the users of the bitcast. These are 633 // problematic because bitcasts are used to legalize all stores to integer 634 // types. 635 case ISD::BITCAST: 636 return false; 637 case ISD::INTRINSIC_WO_CHAIN: { 638 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 639 case Intrinsic::amdgcn_interp_p1: 640 case Intrinsic::amdgcn_interp_p2: 641 case Intrinsic::amdgcn_interp_mov: 642 case Intrinsic::amdgcn_interp_p1_f16: 643 case Intrinsic::amdgcn_interp_p2_f16: 644 return false; 645 default: 646 return true; 647 } 648 } 649 default: 650 return true; 651 } 652 } 653 654 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 655 unsigned CostThreshold) { 656 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 657 // it is truly free to use a source modifier in all cases. If there are 658 // multiple users but for each one will necessitate using VOP3, there will be 659 // a code size increase. Try to avoid increasing code size unless we know it 660 // will save on the instruction count. 661 unsigned NumMayIncreaseSize = 0; 662 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 663 664 // XXX - Should this limit number of uses to check? 665 for (const SDNode *U : N->uses()) { 666 if (!hasSourceMods(U)) 667 return false; 668 669 if (!opMustUseVOP3Encoding(U, VT)) { 670 if (++NumMayIncreaseSize > CostThreshold) 671 return false; 672 } 673 } 674 675 return true; 676 } 677 678 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 679 ISD::NodeType ExtendKind) const { 680 assert(!VT.isVector() && "only scalar expected"); 681 682 // Round to the next multiple of 32-bits. 683 unsigned Size = VT.getSizeInBits(); 684 if (Size <= 32) 685 return MVT::i32; 686 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 687 } 688 689 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 690 return MVT::i32; 691 } 692 693 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 694 return true; 695 } 696 697 // The backend supports 32 and 64 bit floating point immediates. 698 // FIXME: Why are we reporting vectors of FP immediates as legal? 699 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 700 bool ForCodeSize) const { 701 EVT ScalarVT = VT.getScalarType(); 702 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 703 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 704 } 705 706 // We don't want to shrink f64 / f32 constants. 707 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 708 EVT ScalarVT = VT.getScalarType(); 709 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 710 } 711 712 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 713 ISD::LoadExtType ExtTy, 714 EVT NewVT) const { 715 // TODO: This may be worth removing. Check regression tests for diffs. 716 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 717 return false; 718 719 unsigned NewSize = NewVT.getStoreSizeInBits(); 720 721 // If we are reducing to a 32-bit load or a smaller multi-dword load, 722 // this is always better. 723 if (NewSize >= 32) 724 return true; 725 726 EVT OldVT = N->getValueType(0); 727 unsigned OldSize = OldVT.getStoreSizeInBits(); 728 729 MemSDNode *MN = cast<MemSDNode>(N); 730 unsigned AS = MN->getAddressSpace(); 731 // Do not shrink an aligned scalar load to sub-dword. 732 // Scalar engine cannot do sub-dword loads. 733 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 734 (AS == AMDGPUAS::CONSTANT_ADDRESS || 735 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 736 (isa<LoadSDNode>(N) && 737 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 738 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 739 return false; 740 741 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 742 // extloads, so doing one requires using a buffer_load. In cases where we 743 // still couldn't use a scalar load, using the wider load shouldn't really 744 // hurt anything. 745 746 // If the old size already had to be an extload, there's no harm in continuing 747 // to reduce the width. 748 return (OldSize < 32); 749 } 750 751 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 752 const SelectionDAG &DAG, 753 const MachineMemOperand &MMO) const { 754 755 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 756 757 if (LoadTy.getScalarType() == MVT::i32) 758 return false; 759 760 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 761 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 762 763 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 764 return false; 765 766 bool Fast = false; 767 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 768 CastTy, MMO, &Fast) && 769 Fast; 770 } 771 772 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 773 // profitable with the expansion for 64-bit since it's generally good to 774 // speculate things. 775 // FIXME: These should really have the size as a parameter. 776 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 777 return true; 778 } 779 780 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 781 return true; 782 } 783 784 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 785 switch (N->getOpcode()) { 786 default: 787 return false; 788 case ISD::EntryToken: 789 case ISD::TokenFactor: 790 return true; 791 case ISD::INTRINSIC_WO_CHAIN: 792 { 793 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 794 switch (IntrID) { 795 default: 796 return false; 797 case Intrinsic::amdgcn_readfirstlane: 798 case Intrinsic::amdgcn_readlane: 799 return true; 800 } 801 } 802 break; 803 case ISD::LOAD: 804 { 805 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 806 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 807 return true; 808 return false; 809 } 810 break; 811 } 812 } 813 814 SDValue AMDGPUTargetLowering::getNegatedExpression( 815 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 816 NegatibleCost &Cost, unsigned Depth) const { 817 818 switch (Op.getOpcode()) { 819 case ISD::FMA: 820 case ISD::FMAD: { 821 // Negating a fma is not free if it has users without source mods. 822 if (!allUsesHaveSourceMods(Op.getNode())) 823 return SDValue(); 824 break; 825 } 826 default: 827 break; 828 } 829 830 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 831 ForCodeSize, Cost, Depth); 832 } 833 834 //===---------------------------------------------------------------------===// 835 // Target Properties 836 //===---------------------------------------------------------------------===// 837 838 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 839 assert(VT.isFloatingPoint()); 840 841 // Packed operations do not have a fabs modifier. 842 return VT == MVT::f32 || VT == MVT::f64 || 843 (Subtarget->has16BitInsts() && VT == MVT::f16); 844 } 845 846 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 847 assert(VT.isFloatingPoint()); 848 return VT == MVT::f32 || VT == MVT::f64 || 849 (Subtarget->has16BitInsts() && VT == MVT::f16) || 850 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 851 } 852 853 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 854 unsigned NumElem, 855 unsigned AS) const { 856 return true; 857 } 858 859 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 860 // There are few operations which truly have vector input operands. Any vector 861 // operation is going to involve operations on each component, and a 862 // build_vector will be a copy per element, so it always makes sense to use a 863 // build_vector input in place of the extracted element to avoid a copy into a 864 // super register. 865 // 866 // We should probably only do this if all users are extracts only, but this 867 // should be the common case. 868 return true; 869 } 870 871 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 872 // Truncate is just accessing a subregister. 873 874 unsigned SrcSize = Source.getSizeInBits(); 875 unsigned DestSize = Dest.getSizeInBits(); 876 877 return DestSize < SrcSize && DestSize % 32 == 0 ; 878 } 879 880 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 881 // Truncate is just accessing a subregister. 882 883 unsigned SrcSize = Source->getScalarSizeInBits(); 884 unsigned DestSize = Dest->getScalarSizeInBits(); 885 886 if (DestSize== 16 && Subtarget->has16BitInsts()) 887 return SrcSize >= 32; 888 889 return DestSize < SrcSize && DestSize % 32 == 0; 890 } 891 892 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 893 unsigned SrcSize = Src->getScalarSizeInBits(); 894 unsigned DestSize = Dest->getScalarSizeInBits(); 895 896 if (SrcSize == 16 && Subtarget->has16BitInsts()) 897 return DestSize >= 32; 898 899 return SrcSize == 32 && DestSize == 64; 900 } 901 902 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 903 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 904 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 905 // this will enable reducing 64-bit operations the 32-bit, which is always 906 // good. 907 908 if (Src == MVT::i16) 909 return Dest == MVT::i32 ||Dest == MVT::i64 ; 910 911 return Src == MVT::i32 && Dest == MVT::i64; 912 } 913 914 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 915 return isZExtFree(Val.getValueType(), VT2); 916 } 917 918 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 919 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 920 // limited number of native 64-bit operations. Shrinking an operation to fit 921 // in a single 32-bit register should always be helpful. As currently used, 922 // this is much less general than the name suggests, and is only used in 923 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 924 // not profitable, and may actually be harmful. 925 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 926 } 927 928 //===---------------------------------------------------------------------===// 929 // TargetLowering Callbacks 930 //===---------------------------------------------------------------------===// 931 932 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 933 bool IsVarArg) { 934 switch (CC) { 935 case CallingConv::AMDGPU_VS: 936 case CallingConv::AMDGPU_GS: 937 case CallingConv::AMDGPU_PS: 938 case CallingConv::AMDGPU_CS: 939 case CallingConv::AMDGPU_HS: 940 case CallingConv::AMDGPU_ES: 941 case CallingConv::AMDGPU_LS: 942 return CC_AMDGPU; 943 case CallingConv::C: 944 case CallingConv::Fast: 945 case CallingConv::Cold: 946 return CC_AMDGPU_Func; 947 case CallingConv::AMDGPU_KERNEL: 948 case CallingConv::SPIR_KERNEL: 949 default: 950 report_fatal_error("Unsupported calling convention for call"); 951 } 952 } 953 954 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 955 bool IsVarArg) { 956 switch (CC) { 957 case CallingConv::AMDGPU_KERNEL: 958 case CallingConv::SPIR_KERNEL: 959 llvm_unreachable("kernels should not be handled here"); 960 case CallingConv::AMDGPU_VS: 961 case CallingConv::AMDGPU_GS: 962 case CallingConv::AMDGPU_PS: 963 case CallingConv::AMDGPU_CS: 964 case CallingConv::AMDGPU_HS: 965 case CallingConv::AMDGPU_ES: 966 case CallingConv::AMDGPU_LS: 967 return RetCC_SI_Shader; 968 case CallingConv::C: 969 case CallingConv::Fast: 970 case CallingConv::Cold: 971 return RetCC_AMDGPU_Func; 972 default: 973 report_fatal_error("Unsupported calling convention."); 974 } 975 } 976 977 /// The SelectionDAGBuilder will automatically promote function arguments 978 /// with illegal types. However, this does not work for the AMDGPU targets 979 /// since the function arguments are stored in memory as these illegal types. 980 /// In order to handle this properly we need to get the original types sizes 981 /// from the LLVM IR Function and fixup the ISD:InputArg values before 982 /// passing them to AnalyzeFormalArguments() 983 984 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 985 /// input values across multiple registers. Each item in the Ins array 986 /// represents a single value that will be stored in registers. Ins[x].VT is 987 /// the value type of the value that will be stored in the register, so 988 /// whatever SDNode we lower the argument to needs to be this type. 989 /// 990 /// In order to correctly lower the arguments we need to know the size of each 991 /// argument. Since Ins[x].VT gives us the size of the register that will 992 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 993 /// for the orignal function argument so that we can deduce the correct memory 994 /// type to use for Ins[x]. In most cases the correct memory type will be 995 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 996 /// we have a kernel argument of type v8i8, this argument will be split into 997 /// 8 parts and each part will be represented by its own item in the Ins array. 998 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 999 /// the argument before it was split. From this, we deduce that the memory type 1000 /// for each individual part is i8. We pass the memory type as LocVT to the 1001 /// calling convention analysis function and the register type (Ins[x].VT) as 1002 /// the ValVT. 1003 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1004 CCState &State, 1005 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1006 const MachineFunction &MF = State.getMachineFunction(); 1007 const Function &Fn = MF.getFunction(); 1008 LLVMContext &Ctx = Fn.getParent()->getContext(); 1009 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1010 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1011 CallingConv::ID CC = Fn.getCallingConv(); 1012 1013 unsigned MaxAlign = 1; 1014 uint64_t ExplicitArgOffset = 0; 1015 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1016 1017 unsigned InIndex = 0; 1018 1019 for (const Argument &Arg : Fn.args()) { 1020 Type *BaseArgTy = Arg.getType(); 1021 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 1022 MaxAlign = std::max(Align, MaxAlign); 1023 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 1024 1025 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 1026 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 1027 1028 // We're basically throwing away everything passed into us and starting over 1029 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1030 // to us as computed in Ins. 1031 // 1032 // We also need to figure out what type legalization is trying to do to get 1033 // the correct memory offsets. 1034 1035 SmallVector<EVT, 16> ValueVTs; 1036 SmallVector<uint64_t, 16> Offsets; 1037 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1038 1039 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1040 Value != NumValues; ++Value) { 1041 uint64_t BasePartOffset = Offsets[Value]; 1042 1043 EVT ArgVT = ValueVTs[Value]; 1044 EVT MemVT = ArgVT; 1045 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1046 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1047 1048 if (NumRegs == 1) { 1049 // This argument is not split, so the IR type is the memory type. 1050 if (ArgVT.isExtended()) { 1051 // We have an extended type, like i24, so we should just use the 1052 // register type. 1053 MemVT = RegisterVT; 1054 } else { 1055 MemVT = ArgVT; 1056 } 1057 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1058 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1059 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1060 // We have a vector value which has been split into a vector with 1061 // the same scalar type, but fewer elements. This should handle 1062 // all the floating-point vector types. 1063 MemVT = RegisterVT; 1064 } else if (ArgVT.isVector() && 1065 ArgVT.getVectorNumElements() == NumRegs) { 1066 // This arg has been split so that each element is stored in a separate 1067 // register. 1068 MemVT = ArgVT.getScalarType(); 1069 } else if (ArgVT.isExtended()) { 1070 // We have an extended type, like i65. 1071 MemVT = RegisterVT; 1072 } else { 1073 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1074 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1075 if (RegisterVT.isInteger()) { 1076 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1077 } else if (RegisterVT.isVector()) { 1078 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1079 unsigned NumElements = RegisterVT.getVectorNumElements(); 1080 assert(MemoryBits % NumElements == 0); 1081 // This vector type has been split into another vector type with 1082 // a different elements size. 1083 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1084 MemoryBits / NumElements); 1085 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1086 } else { 1087 llvm_unreachable("cannot deduce memory type."); 1088 } 1089 } 1090 1091 // Convert one element vectors to scalar. 1092 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1093 MemVT = MemVT.getScalarType(); 1094 1095 // Round up vec3/vec5 argument. 1096 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1097 assert(MemVT.getVectorNumElements() == 3 || 1098 MemVT.getVectorNumElements() == 5); 1099 MemVT = MemVT.getPow2VectorType(State.getContext()); 1100 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1101 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1102 } 1103 1104 unsigned PartOffset = 0; 1105 for (unsigned i = 0; i != NumRegs; ++i) { 1106 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1107 BasePartOffset + PartOffset, 1108 MemVT.getSimpleVT(), 1109 CCValAssign::Full)); 1110 PartOffset += MemVT.getStoreSize(); 1111 } 1112 } 1113 } 1114 } 1115 1116 SDValue AMDGPUTargetLowering::LowerReturn( 1117 SDValue Chain, CallingConv::ID CallConv, 1118 bool isVarArg, 1119 const SmallVectorImpl<ISD::OutputArg> &Outs, 1120 const SmallVectorImpl<SDValue> &OutVals, 1121 const SDLoc &DL, SelectionDAG &DAG) const { 1122 // FIXME: Fails for r600 tests 1123 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1124 // "wave terminate should not have return values"); 1125 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1126 } 1127 1128 //===---------------------------------------------------------------------===// 1129 // Target specific lowering 1130 //===---------------------------------------------------------------------===// 1131 1132 /// Selects the correct CCAssignFn for a given CallingConvention value. 1133 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1134 bool IsVarArg) { 1135 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1136 } 1137 1138 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1139 bool IsVarArg) { 1140 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1141 } 1142 1143 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1144 SelectionDAG &DAG, 1145 MachineFrameInfo &MFI, 1146 int ClobberedFI) const { 1147 SmallVector<SDValue, 8> ArgChains; 1148 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1149 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1150 1151 // Include the original chain at the beginning of the list. When this is 1152 // used by target LowerCall hooks, this helps legalize find the 1153 // CALLSEQ_BEGIN node. 1154 ArgChains.push_back(Chain); 1155 1156 // Add a chain value for each stack argument corresponding 1157 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1158 UE = DAG.getEntryNode().getNode()->use_end(); 1159 U != UE; ++U) { 1160 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1161 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1162 if (FI->getIndex() < 0) { 1163 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1164 int64_t InLastByte = InFirstByte; 1165 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1166 1167 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1168 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1169 ArgChains.push_back(SDValue(L, 1)); 1170 } 1171 } 1172 } 1173 } 1174 1175 // Build a tokenfactor for all the chains. 1176 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1177 } 1178 1179 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1180 SmallVectorImpl<SDValue> &InVals, 1181 StringRef Reason) const { 1182 SDValue Callee = CLI.Callee; 1183 SelectionDAG &DAG = CLI.DAG; 1184 1185 const Function &Fn = DAG.getMachineFunction().getFunction(); 1186 1187 StringRef FuncName("<unknown>"); 1188 1189 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1190 FuncName = G->getSymbol(); 1191 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1192 FuncName = G->getGlobal()->getName(); 1193 1194 DiagnosticInfoUnsupported NoCalls( 1195 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1196 DAG.getContext()->diagnose(NoCalls); 1197 1198 if (!CLI.IsTailCall) { 1199 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1200 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1201 } 1202 1203 return DAG.getEntryNode(); 1204 } 1205 1206 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1207 SmallVectorImpl<SDValue> &InVals) const { 1208 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1209 } 1210 1211 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1212 SelectionDAG &DAG) const { 1213 const Function &Fn = DAG.getMachineFunction().getFunction(); 1214 1215 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1216 SDLoc(Op).getDebugLoc()); 1217 DAG.getContext()->diagnose(NoDynamicAlloca); 1218 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1219 return DAG.getMergeValues(Ops, SDLoc()); 1220 } 1221 1222 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1223 SelectionDAG &DAG) const { 1224 switch (Op.getOpcode()) { 1225 default: 1226 Op->print(errs(), &DAG); 1227 llvm_unreachable("Custom lowering code for this" 1228 "instruction is not implemented yet!"); 1229 break; 1230 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1231 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1232 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1233 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1234 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1235 case ISD::FREM: return LowerFREM(Op, DAG); 1236 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1237 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1238 case ISD::FRINT: return LowerFRINT(Op, DAG); 1239 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1240 case ISD::FROUND: return LowerFROUND(Op, DAG); 1241 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1242 case ISD::FLOG: 1243 return LowerFLOG(Op, DAG, numbers::ln2f); 1244 case ISD::FLOG10: 1245 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1246 case ISD::FEXP: 1247 return lowerFEXP(Op, DAG); 1248 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1249 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1250 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1251 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1252 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1253 case ISD::CTTZ: 1254 case ISD::CTTZ_ZERO_UNDEF: 1255 case ISD::CTLZ: 1256 case ISD::CTLZ_ZERO_UNDEF: 1257 return LowerCTLZ_CTTZ(Op, DAG); 1258 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1259 } 1260 return Op; 1261 } 1262 1263 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1264 SmallVectorImpl<SDValue> &Results, 1265 SelectionDAG &DAG) const { 1266 switch (N->getOpcode()) { 1267 case ISD::SIGN_EXTEND_INREG: 1268 // Different parts of legalization seem to interpret which type of 1269 // sign_extend_inreg is the one to check for custom lowering. The extended 1270 // from type is what really matters, but some places check for custom 1271 // lowering of the result type. This results in trying to use 1272 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1273 // nothing here and let the illegal result integer be handled normally. 1274 return; 1275 default: 1276 return; 1277 } 1278 } 1279 1280 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1281 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1282 if (!GVar || !GVar->hasInitializer()) 1283 return false; 1284 1285 return !isa<UndefValue>(GVar->getInitializer()); 1286 } 1287 1288 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1289 SDValue Op, 1290 SelectionDAG &DAG) const { 1291 1292 const DataLayout &DL = DAG.getDataLayout(); 1293 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1294 const GlobalValue *GV = G->getGlobal(); 1295 1296 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1297 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1298 if (!MFI->isEntryFunction()) { 1299 SDLoc DL(Op); 1300 const Function &Fn = DAG.getMachineFunction().getFunction(); 1301 DiagnosticInfoUnsupported BadLDSDecl( 1302 Fn, "local memory global used by non-kernel function", 1303 DL.getDebugLoc(), DS_Warning); 1304 DAG.getContext()->diagnose(BadLDSDecl); 1305 1306 // We currently don't have a way to correctly allocate LDS objects that 1307 // aren't directly associated with a kernel. We do force inlining of 1308 // functions that use local objects. However, if these dead functions are 1309 // not eliminated, we don't want a compile time error. Just emit a warning 1310 // and a trap, since there should be no callable path here. 1311 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1312 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1313 Trap, DAG.getRoot()); 1314 DAG.setRoot(OutputChain); 1315 return DAG.getUNDEF(Op.getValueType()); 1316 } 1317 1318 // XXX: What does the value of G->getOffset() mean? 1319 assert(G->getOffset() == 0 && 1320 "Do not know what to do with an non-zero offset"); 1321 1322 // TODO: We could emit code to handle the initialization somewhere. 1323 if (!hasDefinedInitializer(GV)) { 1324 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1325 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1326 } 1327 } 1328 1329 const Function &Fn = DAG.getMachineFunction().getFunction(); 1330 DiagnosticInfoUnsupported BadInit( 1331 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1332 DAG.getContext()->diagnose(BadInit); 1333 return SDValue(); 1334 } 1335 1336 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1337 SelectionDAG &DAG) const { 1338 SmallVector<SDValue, 8> Args; 1339 1340 EVT VT = Op.getValueType(); 1341 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1342 SDLoc SL(Op); 1343 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1344 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1345 1346 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1347 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1348 } 1349 1350 for (const SDUse &U : Op->ops()) 1351 DAG.ExtractVectorElements(U.get(), Args); 1352 1353 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1354 } 1355 1356 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1357 SelectionDAG &DAG) const { 1358 1359 SmallVector<SDValue, 8> Args; 1360 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1361 EVT VT = Op.getValueType(); 1362 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1363 VT.getVectorNumElements()); 1364 1365 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1366 } 1367 1368 /// Generate Min/Max node 1369 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1370 SDValue LHS, SDValue RHS, 1371 SDValue True, SDValue False, 1372 SDValue CC, 1373 DAGCombinerInfo &DCI) const { 1374 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1375 return SDValue(); 1376 1377 SelectionDAG &DAG = DCI.DAG; 1378 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1379 switch (CCOpcode) { 1380 case ISD::SETOEQ: 1381 case ISD::SETONE: 1382 case ISD::SETUNE: 1383 case ISD::SETNE: 1384 case ISD::SETUEQ: 1385 case ISD::SETEQ: 1386 case ISD::SETFALSE: 1387 case ISD::SETFALSE2: 1388 case ISD::SETTRUE: 1389 case ISD::SETTRUE2: 1390 case ISD::SETUO: 1391 case ISD::SETO: 1392 break; 1393 case ISD::SETULE: 1394 case ISD::SETULT: { 1395 if (LHS == True) 1396 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1397 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1398 } 1399 case ISD::SETOLE: 1400 case ISD::SETOLT: 1401 case ISD::SETLE: 1402 case ISD::SETLT: { 1403 // Ordered. Assume ordered for undefined. 1404 1405 // Only do this after legalization to avoid interfering with other combines 1406 // which might occur. 1407 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1408 !DCI.isCalledByLegalizer()) 1409 return SDValue(); 1410 1411 // We need to permute the operands to get the correct NaN behavior. The 1412 // selected operand is the second one based on the failing compare with NaN, 1413 // so permute it based on the compare type the hardware uses. 1414 if (LHS == True) 1415 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1416 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1417 } 1418 case ISD::SETUGE: 1419 case ISD::SETUGT: { 1420 if (LHS == True) 1421 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1422 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1423 } 1424 case ISD::SETGT: 1425 case ISD::SETGE: 1426 case ISD::SETOGE: 1427 case ISD::SETOGT: { 1428 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1429 !DCI.isCalledByLegalizer()) 1430 return SDValue(); 1431 1432 if (LHS == True) 1433 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1434 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1435 } 1436 case ISD::SETCC_INVALID: 1437 llvm_unreachable("Invalid setcc condcode!"); 1438 } 1439 return SDValue(); 1440 } 1441 1442 std::pair<SDValue, SDValue> 1443 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1444 SDLoc SL(Op); 1445 1446 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1447 1448 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1449 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1450 1451 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1452 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1453 1454 return std::make_pair(Lo, Hi); 1455 } 1456 1457 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1458 SDLoc SL(Op); 1459 1460 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1461 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1462 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1463 } 1464 1465 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1466 SDLoc SL(Op); 1467 1468 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1469 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1470 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1471 } 1472 1473 // Split a vector type into two parts. The first part is a power of two vector. 1474 // The second part is whatever is left over, and is a scalar if it would 1475 // otherwise be a 1-vector. 1476 std::pair<EVT, EVT> 1477 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1478 EVT LoVT, HiVT; 1479 EVT EltVT = VT.getVectorElementType(); 1480 unsigned NumElts = VT.getVectorNumElements(); 1481 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1482 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1483 HiVT = NumElts - LoNumElts == 1 1484 ? EltVT 1485 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1486 return std::make_pair(LoVT, HiVT); 1487 } 1488 1489 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1490 // scalar. 1491 std::pair<SDValue, SDValue> 1492 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1493 const EVT &LoVT, const EVT &HiVT, 1494 SelectionDAG &DAG) const { 1495 assert(LoVT.getVectorNumElements() + 1496 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1497 N.getValueType().getVectorNumElements() && 1498 "More vector elements requested than available!"); 1499 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1500 DAG.getVectorIdxConstant(0, DL)); 1501 SDValue Hi = DAG.getNode( 1502 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1503 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1504 return std::make_pair(Lo, Hi); 1505 } 1506 1507 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1508 SelectionDAG &DAG) const { 1509 LoadSDNode *Load = cast<LoadSDNode>(Op); 1510 EVT VT = Op.getValueType(); 1511 SDLoc SL(Op); 1512 1513 1514 // If this is a 2 element vector, we really want to scalarize and not create 1515 // weird 1 element vectors. 1516 if (VT.getVectorNumElements() == 2) { 1517 SDValue Ops[2]; 1518 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1519 return DAG.getMergeValues(Ops, SL); 1520 } 1521 1522 SDValue BasePtr = Load->getBasePtr(); 1523 EVT MemVT = Load->getMemoryVT(); 1524 1525 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1526 1527 EVT LoVT, HiVT; 1528 EVT LoMemVT, HiMemVT; 1529 SDValue Lo, Hi; 1530 1531 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1532 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1533 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1534 1535 unsigned Size = LoMemVT.getStoreSize(); 1536 unsigned BaseAlign = Load->getAlignment(); 1537 unsigned HiAlign = MinAlign(BaseAlign, Size); 1538 1539 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1540 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1541 BaseAlign, Load->getMemOperand()->getFlags()); 1542 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1543 SDValue HiLoad = 1544 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1545 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1546 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1547 1548 SDValue Join; 1549 if (LoVT == HiVT) { 1550 // This is the case that the vector is power of two so was evenly split. 1551 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1552 } else { 1553 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1554 DAG.getVectorIdxConstant(0, SL)); 1555 Join = DAG.getNode( 1556 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1557 VT, Join, HiLoad, 1558 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1559 } 1560 1561 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1562 LoLoad.getValue(1), HiLoad.getValue(1))}; 1563 1564 return DAG.getMergeValues(Ops, SL); 1565 } 1566 1567 // Widen a vector load from vec3 to vec4. 1568 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1569 SelectionDAG &DAG) const { 1570 LoadSDNode *Load = cast<LoadSDNode>(Op); 1571 EVT VT = Op.getValueType(); 1572 assert(VT.getVectorNumElements() == 3); 1573 SDValue BasePtr = Load->getBasePtr(); 1574 EVT MemVT = Load->getMemoryVT(); 1575 SDLoc SL(Op); 1576 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1577 unsigned BaseAlign = Load->getAlignment(); 1578 1579 EVT WideVT = 1580 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1581 EVT WideMemVT = 1582 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1583 SDValue WideLoad = DAG.getExtLoad( 1584 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1585 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1586 return DAG.getMergeValues( 1587 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1588 DAG.getVectorIdxConstant(0, SL)), 1589 WideLoad.getValue(1)}, 1590 SL); 1591 } 1592 1593 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1594 SelectionDAG &DAG) const { 1595 StoreSDNode *Store = cast<StoreSDNode>(Op); 1596 SDValue Val = Store->getValue(); 1597 EVT VT = Val.getValueType(); 1598 1599 // If this is a 2 element vector, we really want to scalarize and not create 1600 // weird 1 element vectors. 1601 if (VT.getVectorNumElements() == 2) 1602 return scalarizeVectorStore(Store, DAG); 1603 1604 EVT MemVT = Store->getMemoryVT(); 1605 SDValue Chain = Store->getChain(); 1606 SDValue BasePtr = Store->getBasePtr(); 1607 SDLoc SL(Op); 1608 1609 EVT LoVT, HiVT; 1610 EVT LoMemVT, HiMemVT; 1611 SDValue Lo, Hi; 1612 1613 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1614 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1615 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1616 1617 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1618 1619 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1620 unsigned BaseAlign = Store->getAlignment(); 1621 unsigned Size = LoMemVT.getStoreSize(); 1622 unsigned HiAlign = MinAlign(BaseAlign, Size); 1623 1624 SDValue LoStore = 1625 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1626 Store->getMemOperand()->getFlags()); 1627 SDValue HiStore = 1628 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1629 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1630 1631 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1632 } 1633 1634 // This is a shortcut for integer division because we have fast i32<->f32 1635 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1636 // float is enough to accurately represent up to a 24-bit signed integer. 1637 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1638 bool Sign) const { 1639 SDLoc DL(Op); 1640 EVT VT = Op.getValueType(); 1641 SDValue LHS = Op.getOperand(0); 1642 SDValue RHS = Op.getOperand(1); 1643 MVT IntVT = MVT::i32; 1644 MVT FltVT = MVT::f32; 1645 1646 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1647 if (LHSSignBits < 9) 1648 return SDValue(); 1649 1650 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1651 if (RHSSignBits < 9) 1652 return SDValue(); 1653 1654 unsigned BitSize = VT.getSizeInBits(); 1655 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1656 unsigned DivBits = BitSize - SignBits; 1657 if (Sign) 1658 ++DivBits; 1659 1660 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1661 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1662 1663 SDValue jq = DAG.getConstant(1, DL, IntVT); 1664 1665 if (Sign) { 1666 // char|short jq = ia ^ ib; 1667 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1668 1669 // jq = jq >> (bitsize - 2) 1670 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1671 DAG.getConstant(BitSize - 2, DL, VT)); 1672 1673 // jq = jq | 0x1 1674 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1675 } 1676 1677 // int ia = (int)LHS; 1678 SDValue ia = LHS; 1679 1680 // int ib, (int)RHS; 1681 SDValue ib = RHS; 1682 1683 // float fa = (float)ia; 1684 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1685 1686 // float fb = (float)ib; 1687 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1688 1689 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1690 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1691 1692 // fq = trunc(fq); 1693 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1694 1695 // float fqneg = -fq; 1696 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1697 1698 MachineFunction &MF = DAG.getMachineFunction(); 1699 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1700 1701 // float fr = mad(fqneg, fb, fa); 1702 unsigned OpCode = !MFI->getMode().allFP32Denormals() ? 1703 (unsigned)ISD::FMAD : 1704 (unsigned)AMDGPUISD::FMAD_FTZ; 1705 1706 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1707 1708 // int iq = (int)fq; 1709 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1710 1711 // fr = fabs(fr); 1712 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1713 1714 // fb = fabs(fb); 1715 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1716 1717 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1718 1719 // int cv = fr >= fb; 1720 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1721 1722 // jq = (cv ? jq : 0); 1723 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1724 1725 // dst = iq + jq; 1726 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1727 1728 // Rem needs compensation, it's easier to recompute it 1729 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1730 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1731 1732 // Truncate to number of bits this divide really is. 1733 if (Sign) { 1734 SDValue InRegSize 1735 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1736 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1737 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1738 } else { 1739 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1740 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1741 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1742 } 1743 1744 return DAG.getMergeValues({ Div, Rem }, DL); 1745 } 1746 1747 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1748 SelectionDAG &DAG, 1749 SmallVectorImpl<SDValue> &Results) const { 1750 SDLoc DL(Op); 1751 EVT VT = Op.getValueType(); 1752 1753 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1754 1755 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1756 1757 SDValue One = DAG.getConstant(1, DL, HalfVT); 1758 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1759 1760 //HiLo split 1761 SDValue LHS = Op.getOperand(0); 1762 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1763 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1764 1765 SDValue RHS = Op.getOperand(1); 1766 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1767 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1768 1769 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1770 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1771 1772 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1773 LHS_Lo, RHS_Lo); 1774 1775 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1776 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1777 1778 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1779 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1780 return; 1781 } 1782 1783 if (isTypeLegal(MVT::i64)) { 1784 MachineFunction &MF = DAG.getMachineFunction(); 1785 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1786 1787 // Compute denominator reciprocal. 1788 unsigned FMAD = !MFI->getMode().allFP32Denormals() ? 1789 (unsigned)ISD::FMAD : 1790 (unsigned)AMDGPUISD::FMAD_FTZ; 1791 1792 1793 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1794 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1795 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1796 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1797 Cvt_Lo); 1798 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1799 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1800 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1801 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1802 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1803 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1804 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1805 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1806 Mul1); 1807 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1808 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1809 SDValue Rcp64 = DAG.getBitcast(VT, 1810 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1811 1812 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1813 SDValue One64 = DAG.getConstant(1, DL, VT); 1814 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1815 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1816 1817 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1818 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1819 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1820 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1821 Zero); 1822 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1823 One); 1824 1825 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1826 Mulhi1_Lo, Zero1); 1827 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1828 Mulhi1_Hi, Add1_Lo.getValue(1)); 1829 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1830 SDValue Add1 = DAG.getBitcast(VT, 1831 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1832 1833 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1834 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1835 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1836 Zero); 1837 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1838 One); 1839 1840 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1841 Mulhi2_Lo, Zero1); 1842 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1843 Mulhi2_Hi, Add1_Lo.getValue(1)); 1844 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1845 Zero, Add2_Lo.getValue(1)); 1846 SDValue Add2 = DAG.getBitcast(VT, 1847 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1848 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1849 1850 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1851 1852 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1853 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1854 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1855 Mul3_Lo, Zero1); 1856 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1857 Mul3_Hi, Sub1_Lo.getValue(1)); 1858 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1859 SDValue Sub1 = DAG.getBitcast(VT, 1860 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1861 1862 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1863 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1864 ISD::SETUGE); 1865 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1866 ISD::SETUGE); 1867 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1868 1869 // TODO: Here and below portions of the code can be enclosed into if/endif. 1870 // Currently control flow is unconditional and we have 4 selects after 1871 // potential endif to substitute PHIs. 1872 1873 // if C3 != 0 ... 1874 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1875 RHS_Lo, Zero1); 1876 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1877 RHS_Hi, Sub1_Lo.getValue(1)); 1878 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1879 Zero, Sub2_Lo.getValue(1)); 1880 SDValue Sub2 = DAG.getBitcast(VT, 1881 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1882 1883 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1884 1885 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1886 ISD::SETUGE); 1887 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1888 ISD::SETUGE); 1889 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1890 1891 // if (C6 != 0) 1892 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1893 1894 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1895 RHS_Lo, Zero1); 1896 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1897 RHS_Hi, Sub2_Lo.getValue(1)); 1898 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1899 Zero, Sub3_Lo.getValue(1)); 1900 SDValue Sub3 = DAG.getBitcast(VT, 1901 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1902 1903 // endif C6 1904 // endif C3 1905 1906 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1907 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1908 1909 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1910 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1911 1912 Results.push_back(Div); 1913 Results.push_back(Rem); 1914 1915 return; 1916 } 1917 1918 // r600 expandion. 1919 // Get Speculative values 1920 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1921 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1922 1923 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1924 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1925 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1926 1927 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1928 SDValue DIV_Lo = Zero; 1929 1930 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1931 1932 for (unsigned i = 0; i < halfBitWidth; ++i) { 1933 const unsigned bitPos = halfBitWidth - i - 1; 1934 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1935 // Get value of high bit 1936 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1937 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1938 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1939 1940 // Shift 1941 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1942 // Add LHS high bit 1943 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1944 1945 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1946 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1947 1948 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1949 1950 // Update REM 1951 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1952 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1953 } 1954 1955 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1956 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1957 Results.push_back(DIV); 1958 Results.push_back(REM); 1959 } 1960 1961 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1962 SelectionDAG &DAG) const { 1963 SDLoc DL(Op); 1964 EVT VT = Op.getValueType(); 1965 1966 if (VT == MVT::i64) { 1967 SmallVector<SDValue, 2> Results; 1968 LowerUDIVREM64(Op, DAG, Results); 1969 return DAG.getMergeValues(Results, DL); 1970 } 1971 1972 if (VT == MVT::i32) { 1973 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1974 return Res; 1975 } 1976 1977 SDValue Num = Op.getOperand(0); 1978 SDValue Den = Op.getOperand(1); 1979 1980 // RCP = URECIP(Den) = 2^32 / Den + e 1981 // e is rounding error. 1982 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1983 1984 // RCP_LO = mul(RCP, Den) */ 1985 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1986 1987 // RCP_HI = mulhu (RCP, Den) */ 1988 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1989 1990 // NEG_RCP_LO = -RCP_LO 1991 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1992 RCP_LO); 1993 1994 const SDValue Zero = DAG.getConstant(0, DL, VT); 1995 const EVT CCVT = getSetCCResultType(DAG.getDataLayout(), 1996 *DAG.getContext(), VT); 1997 1998 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1999 SDValue CmpRcpHiZero = DAG.getSetCC(DL, CCVT, RCP_HI, Zero, ISD::SETEQ); 2000 SDValue ABS_RCP_LO = DAG.getNode(ISD::SELECT, 2001 DL, VT, CmpRcpHiZero, NEG_RCP_LO, RCP_LO); 2002 2003 // Calculate the rounding error from the URECIP instruction 2004 // E = mulhu(ABS_RCP_LO, RCP) 2005 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 2006 2007 // RCP_A_E = RCP + E 2008 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 2009 2010 // RCP_S_E = RCP - E 2011 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 2012 2013 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 2014 SDValue Tmp0 = DAG.getNode(ISD::SELECT, DL, VT, 2015 CmpRcpHiZero, RCP_A_E, RCP_S_E); 2016 2017 // Quotient = mulhu(Tmp0, Num) 2018 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 2019 2020 // Num_S_Remainder = Quotient * Den 2021 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 2022 2023 // Remainder = Num - Num_S_Remainder 2024 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 2025 2026 // Remainder_GE_Den = (Remainder >= Den) 2027 SDValue Remainder_GE_Den = DAG.getSetCC(DL, CCVT, Remainder, Den, ISD::SETUGE); 2028 2029 // Remainder_GE_Zero = (Num >= Num_S_Remainder) 2030 SDValue Remainder_GE_Zero = DAG.getSetCC(DL, CCVT, Num, Num_S_Remainder, 2031 ISD::SETUGE); 2032 2033 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 2034 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, CCVT, Remainder_GE_Den, 2035 Remainder_GE_Zero); 2036 2037 // Calculate Division result: 2038 2039 // Quotient_A_One = Quotient + 1 2040 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 2041 DAG.getConstant(1, DL, VT)); 2042 2043 // Quotient_S_One = Quotient - 1 2044 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 2045 DAG.getConstant(1, DL, VT)); 2046 2047 // Div = (Tmp1 ? Quotient_A_One : Quotient) 2048 SDValue Div = DAG.getNode(ISD::SELECT, DL, VT, Tmp1, 2049 Quotient_A_One, Quotient); 2050 2051 // Div = (Remainder_GE_Zero ? Div : Quotient_S_One) 2052 Div = DAG.getNode(ISD::SELECT, DL, VT, Remainder_GE_Zero, 2053 Div, Quotient_S_One); 2054 2055 // Calculate Rem result: 2056 2057 // Remainder_S_Den = Remainder - Den 2058 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 2059 2060 // Remainder_A_Den = Remainder + Den 2061 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 2062 2063 // Rem = (Tmp1 ? Remainder_S_Den : Remainder) 2064 SDValue Rem = DAG.getNode(ISD::SELECT, DL, VT, Tmp1, 2065 Remainder_S_Den, Remainder); 2066 2067 // Rem = (Remainder_GE_Zero ? Rem : Remainder_A_Den) 2068 Rem = DAG.getNode(ISD::SELECT, DL, VT, 2069 Remainder_GE_Zero, Rem, Remainder_A_Den); 2070 SDValue Ops[2] = { 2071 Div, 2072 Rem 2073 }; 2074 return DAG.getMergeValues(Ops, DL); 2075 } 2076 2077 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2078 SelectionDAG &DAG) const { 2079 SDLoc DL(Op); 2080 EVT VT = Op.getValueType(); 2081 2082 SDValue LHS = Op.getOperand(0); 2083 SDValue RHS = Op.getOperand(1); 2084 2085 SDValue Zero = DAG.getConstant(0, DL, VT); 2086 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2087 2088 if (VT == MVT::i32) { 2089 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2090 return Res; 2091 } 2092 2093 if (VT == MVT::i64 && 2094 DAG.ComputeNumSignBits(LHS) > 32 && 2095 DAG.ComputeNumSignBits(RHS) > 32) { 2096 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2097 2098 //HiLo split 2099 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2100 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2101 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2102 LHS_Lo, RHS_Lo); 2103 SDValue Res[2] = { 2104 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2105 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2106 }; 2107 return DAG.getMergeValues(Res, DL); 2108 } 2109 2110 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2111 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2112 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2113 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2114 2115 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2116 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2117 2118 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2119 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2120 2121 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2122 SDValue Rem = Div.getValue(1); 2123 2124 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2125 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2126 2127 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2128 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2129 2130 SDValue Res[2] = { 2131 Div, 2132 Rem 2133 }; 2134 return DAG.getMergeValues(Res, DL); 2135 } 2136 2137 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2138 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2139 SDLoc SL(Op); 2140 EVT VT = Op.getValueType(); 2141 SDValue X = Op.getOperand(0); 2142 SDValue Y = Op.getOperand(1); 2143 2144 // TODO: Should this propagate fast-math-flags? 2145 2146 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2147 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2148 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2149 2150 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2151 } 2152 2153 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2154 SDLoc SL(Op); 2155 SDValue Src = Op.getOperand(0); 2156 2157 // result = trunc(src) 2158 // if (src > 0.0 && src != result) 2159 // result += 1.0 2160 2161 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2162 2163 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2164 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2165 2166 EVT SetCCVT = 2167 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2168 2169 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2170 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2171 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2172 2173 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2174 // TODO: Should this propagate fast-math-flags? 2175 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2176 } 2177 2178 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2179 SelectionDAG &DAG) { 2180 const unsigned FractBits = 52; 2181 const unsigned ExpBits = 11; 2182 2183 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2184 Hi, 2185 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2186 DAG.getConstant(ExpBits, SL, MVT::i32)); 2187 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2188 DAG.getConstant(1023, SL, MVT::i32)); 2189 2190 return Exp; 2191 } 2192 2193 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2194 SDLoc SL(Op); 2195 SDValue Src = Op.getOperand(0); 2196 2197 assert(Op.getValueType() == MVT::f64); 2198 2199 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2200 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2201 2202 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2203 2204 // Extract the upper half, since this is where we will find the sign and 2205 // exponent. 2206 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2207 2208 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2209 2210 const unsigned FractBits = 52; 2211 2212 // Extract the sign bit. 2213 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2214 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2215 2216 // Extend back to 64-bits. 2217 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2218 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2219 2220 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2221 const SDValue FractMask 2222 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2223 2224 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2225 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2226 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2227 2228 EVT SetCCVT = 2229 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2230 2231 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2232 2233 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2234 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2235 2236 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2237 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2238 2239 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2240 } 2241 2242 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2243 SDLoc SL(Op); 2244 SDValue Src = Op.getOperand(0); 2245 2246 assert(Op.getValueType() == MVT::f64); 2247 2248 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2249 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2250 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2251 2252 // TODO: Should this propagate fast-math-flags? 2253 2254 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2255 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2256 2257 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2258 2259 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2260 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2261 2262 EVT SetCCVT = 2263 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2264 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2265 2266 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2267 } 2268 2269 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2270 // FNEARBYINT and FRINT are the same, except in their handling of FP 2271 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2272 // rint, so just treat them as equivalent. 2273 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2274 } 2275 2276 // XXX - May require not supporting f32 denormals? 2277 2278 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2279 // compare and vselect end up producing worse code than scalarizing the whole 2280 // operation. 2281 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2282 SDLoc SL(Op); 2283 SDValue X = Op.getOperand(0); 2284 EVT VT = Op.getValueType(); 2285 2286 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2287 2288 // TODO: Should this propagate fast-math-flags? 2289 2290 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2291 2292 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2293 2294 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2295 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2296 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2297 2298 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2299 2300 EVT SetCCVT = 2301 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2302 2303 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2304 2305 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2306 2307 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2308 } 2309 2310 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2311 SDLoc SL(Op); 2312 SDValue Src = Op.getOperand(0); 2313 2314 // result = trunc(src); 2315 // if (src < 0.0 && src != result) 2316 // result += -1.0. 2317 2318 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2319 2320 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2321 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2322 2323 EVT SetCCVT = 2324 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2325 2326 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2327 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2328 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2329 2330 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2331 // TODO: Should this propagate fast-math-flags? 2332 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2333 } 2334 2335 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2336 double Log2BaseInverted) const { 2337 EVT VT = Op.getValueType(); 2338 2339 SDLoc SL(Op); 2340 SDValue Operand = Op.getOperand(0); 2341 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2342 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2343 2344 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2345 } 2346 2347 // exp2(M_LOG2E_F * f); 2348 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2349 EVT VT = Op.getValueType(); 2350 SDLoc SL(Op); 2351 SDValue Src = Op.getOperand(0); 2352 2353 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2354 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2355 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2356 } 2357 2358 static bool isCtlzOpc(unsigned Opc) { 2359 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2360 } 2361 2362 static bool isCttzOpc(unsigned Opc) { 2363 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2364 } 2365 2366 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2367 SDLoc SL(Op); 2368 SDValue Src = Op.getOperand(0); 2369 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2370 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2371 2372 unsigned ISDOpc, NewOpc; 2373 if (isCtlzOpc(Op.getOpcode())) { 2374 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2375 NewOpc = AMDGPUISD::FFBH_U32; 2376 } else if (isCttzOpc(Op.getOpcode())) { 2377 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2378 NewOpc = AMDGPUISD::FFBL_B32; 2379 } else 2380 llvm_unreachable("Unexpected OPCode!!!"); 2381 2382 2383 if (ZeroUndef && Src.getValueType() == MVT::i32) 2384 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2385 2386 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2387 2388 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2389 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2390 2391 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2392 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2393 2394 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2395 *DAG.getContext(), MVT::i32); 2396 2397 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2398 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2399 2400 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2401 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2402 2403 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2404 SDValue Add, NewOpr; 2405 if (isCtlzOpc(Op.getOpcode())) { 2406 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2407 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2408 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2409 } else { 2410 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2411 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2412 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2413 } 2414 2415 if (!ZeroUndef) { 2416 // Test if the full 64-bit input is zero. 2417 2418 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2419 // which we probably don't want. 2420 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2421 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2422 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2423 2424 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2425 // with the same cycles, otherwise it is slower. 2426 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2427 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2428 2429 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2430 2431 // The instruction returns -1 for 0 input, but the defined intrinsic 2432 // behavior is to return the number of bits. 2433 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2434 SrcIsZero, Bits32, NewOpr); 2435 } 2436 2437 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2438 } 2439 2440 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2441 bool Signed) const { 2442 // Unsigned 2443 // cul2f(ulong u) 2444 //{ 2445 // uint lz = clz(u); 2446 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2447 // u = (u << lz) & 0x7fffffffffffffffUL; 2448 // ulong t = u & 0xffffffffffUL; 2449 // uint v = (e << 23) | (uint)(u >> 40); 2450 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2451 // return as_float(v + r); 2452 //} 2453 // Signed 2454 // cl2f(long l) 2455 //{ 2456 // long s = l >> 63; 2457 // float r = cul2f((l + s) ^ s); 2458 // return s ? -r : r; 2459 //} 2460 2461 SDLoc SL(Op); 2462 SDValue Src = Op.getOperand(0); 2463 SDValue L = Src; 2464 2465 SDValue S; 2466 if (Signed) { 2467 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2468 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2469 2470 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2471 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2472 } 2473 2474 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2475 *DAG.getContext(), MVT::f32); 2476 2477 2478 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2479 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2480 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2481 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2482 2483 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2484 SDValue E = DAG.getSelect(SL, MVT::i32, 2485 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2486 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2487 ZeroI32); 2488 2489 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2490 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2491 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2492 2493 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2494 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2495 2496 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2497 U, DAG.getConstant(40, SL, MVT::i64)); 2498 2499 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2500 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2501 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2502 2503 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2504 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2505 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2506 2507 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2508 2509 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2510 2511 SDValue R = DAG.getSelect(SL, MVT::i32, 2512 RCmp, 2513 One, 2514 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2515 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2516 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2517 2518 if (!Signed) 2519 return R; 2520 2521 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2522 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2523 } 2524 2525 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2526 bool Signed) const { 2527 SDLoc SL(Op); 2528 SDValue Src = Op.getOperand(0); 2529 2530 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2531 2532 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2533 DAG.getConstant(0, SL, MVT::i32)); 2534 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2535 DAG.getConstant(1, SL, MVT::i32)); 2536 2537 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2538 SL, MVT::f64, Hi); 2539 2540 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2541 2542 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2543 DAG.getConstant(32, SL, MVT::i32)); 2544 // TODO: Should this propagate fast-math-flags? 2545 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2546 } 2547 2548 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2549 SelectionDAG &DAG) const { 2550 // TODO: Factor out code common with LowerSINT_TO_FP. 2551 EVT DestVT = Op.getValueType(); 2552 SDValue Src = Op.getOperand(0); 2553 EVT SrcVT = Src.getValueType(); 2554 2555 if (SrcVT == MVT::i16) { 2556 if (DestVT == MVT::f16) 2557 return Op; 2558 SDLoc DL(Op); 2559 2560 // Promote src to i32 2561 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2562 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2563 } 2564 2565 assert(SrcVT == MVT::i64 && "operation should be legal"); 2566 2567 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2568 SDLoc DL(Op); 2569 2570 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2571 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2572 SDValue FPRound = 2573 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2574 2575 return FPRound; 2576 } 2577 2578 if (DestVT == MVT::f32) 2579 return LowerINT_TO_FP32(Op, DAG, false); 2580 2581 assert(DestVT == MVT::f64); 2582 return LowerINT_TO_FP64(Op, DAG, false); 2583 } 2584 2585 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2586 SelectionDAG &DAG) const { 2587 EVT DestVT = Op.getValueType(); 2588 2589 SDValue Src = Op.getOperand(0); 2590 EVT SrcVT = Src.getValueType(); 2591 2592 if (SrcVT == MVT::i16) { 2593 if (DestVT == MVT::f16) 2594 return Op; 2595 2596 SDLoc DL(Op); 2597 // Promote src to i32 2598 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2599 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2600 } 2601 2602 assert(SrcVT == MVT::i64 && "operation should be legal"); 2603 2604 // TODO: Factor out code common with LowerUINT_TO_FP. 2605 2606 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2607 SDLoc DL(Op); 2608 SDValue Src = Op.getOperand(0); 2609 2610 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2611 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2612 SDValue FPRound = 2613 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2614 2615 return FPRound; 2616 } 2617 2618 if (DestVT == MVT::f32) 2619 return LowerINT_TO_FP32(Op, DAG, true); 2620 2621 assert(DestVT == MVT::f64); 2622 return LowerINT_TO_FP64(Op, DAG, true); 2623 } 2624 2625 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2626 bool Signed) const { 2627 SDLoc SL(Op); 2628 2629 SDValue Src = Op.getOperand(0); 2630 2631 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2632 2633 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2634 MVT::f64); 2635 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2636 MVT::f64); 2637 // TODO: Should this propagate fast-math-flags? 2638 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2639 2640 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2641 2642 2643 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2644 2645 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2646 MVT::i32, FloorMul); 2647 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2648 2649 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2650 2651 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2652 } 2653 2654 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2655 SDLoc DL(Op); 2656 SDValue N0 = Op.getOperand(0); 2657 2658 // Convert to target node to get known bits 2659 if (N0.getValueType() == MVT::f32) 2660 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2661 2662 if (getTargetMachine().Options.UnsafeFPMath) { 2663 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2664 return SDValue(); 2665 } 2666 2667 assert(N0.getSimpleValueType() == MVT::f64); 2668 2669 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2670 const unsigned ExpMask = 0x7ff; 2671 const unsigned ExpBiasf64 = 1023; 2672 const unsigned ExpBiasf16 = 15; 2673 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2674 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2675 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2676 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2677 DAG.getConstant(32, DL, MVT::i64)); 2678 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2679 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2680 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2681 DAG.getConstant(20, DL, MVT::i64)); 2682 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2683 DAG.getConstant(ExpMask, DL, MVT::i32)); 2684 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2685 // add the f16 bias (15) to get the biased exponent for the f16 format. 2686 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2687 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2688 2689 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2690 DAG.getConstant(8, DL, MVT::i32)); 2691 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2692 DAG.getConstant(0xffe, DL, MVT::i32)); 2693 2694 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2695 DAG.getConstant(0x1ff, DL, MVT::i32)); 2696 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2697 2698 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2699 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2700 2701 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2702 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2703 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2704 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2705 2706 // N = M | (E << 12); 2707 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2708 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2709 DAG.getConstant(12, DL, MVT::i32))); 2710 2711 // B = clamp(1-E, 0, 13); 2712 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2713 One, E); 2714 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2715 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2716 DAG.getConstant(13, DL, MVT::i32)); 2717 2718 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2719 DAG.getConstant(0x1000, DL, MVT::i32)); 2720 2721 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2722 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2723 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2724 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2725 2726 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2727 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2728 DAG.getConstant(0x7, DL, MVT::i32)); 2729 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2730 DAG.getConstant(2, DL, MVT::i32)); 2731 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2732 One, Zero, ISD::SETEQ); 2733 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2734 One, Zero, ISD::SETGT); 2735 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2736 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2737 2738 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2739 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2740 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2741 I, V, ISD::SETEQ); 2742 2743 // Extract the sign bit. 2744 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2745 DAG.getConstant(16, DL, MVT::i32)); 2746 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2747 DAG.getConstant(0x8000, DL, MVT::i32)); 2748 2749 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2750 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2751 } 2752 2753 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2754 SelectionDAG &DAG) const { 2755 SDValue Src = Op.getOperand(0); 2756 2757 // TODO: Factor out code common with LowerFP_TO_UINT. 2758 2759 EVT SrcVT = Src.getValueType(); 2760 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2761 SDLoc DL(Op); 2762 2763 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2764 SDValue FpToInt32 = 2765 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2766 2767 return FpToInt32; 2768 } 2769 2770 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2771 return LowerFP64_TO_INT(Op, DAG, true); 2772 2773 return SDValue(); 2774 } 2775 2776 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2777 SelectionDAG &DAG) const { 2778 SDValue Src = Op.getOperand(0); 2779 2780 // TODO: Factor out code common with LowerFP_TO_SINT. 2781 2782 EVT SrcVT = Src.getValueType(); 2783 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2784 SDLoc DL(Op); 2785 2786 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2787 SDValue FpToInt32 = 2788 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2789 2790 return FpToInt32; 2791 } 2792 2793 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2794 return LowerFP64_TO_INT(Op, DAG, false); 2795 2796 return SDValue(); 2797 } 2798 2799 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2800 SelectionDAG &DAG) const { 2801 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2802 MVT VT = Op.getSimpleValueType(); 2803 MVT ScalarVT = VT.getScalarType(); 2804 2805 assert(VT.isVector()); 2806 2807 SDValue Src = Op.getOperand(0); 2808 SDLoc DL(Op); 2809 2810 // TODO: Don't scalarize on Evergreen? 2811 unsigned NElts = VT.getVectorNumElements(); 2812 SmallVector<SDValue, 8> Args; 2813 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2814 2815 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2816 for (unsigned I = 0; I < NElts; ++I) 2817 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2818 2819 return DAG.getBuildVector(VT, DL, Args); 2820 } 2821 2822 //===----------------------------------------------------------------------===// 2823 // Custom DAG optimizations 2824 //===----------------------------------------------------------------------===// 2825 2826 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2827 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2828 } 2829 2830 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2831 EVT VT = Op.getValueType(); 2832 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2833 // as unsigned 24-bit values. 2834 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2835 } 2836 2837 static SDValue simplifyI24(SDNode *Node24, 2838 TargetLowering::DAGCombinerInfo &DCI) { 2839 SelectionDAG &DAG = DCI.DAG; 2840 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2841 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2842 2843 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2844 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2845 unsigned NewOpcode = Node24->getOpcode(); 2846 if (IsIntrin) { 2847 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2848 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2849 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2850 } 2851 2852 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2853 2854 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2855 // the operands to have other uses, but will only perform simplifications that 2856 // involve bypassing some nodes for this user. 2857 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2858 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2859 if (DemandedLHS || DemandedRHS) 2860 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2861 DemandedLHS ? DemandedLHS : LHS, 2862 DemandedRHS ? DemandedRHS : RHS); 2863 2864 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2865 // operands if this node is the only user. 2866 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2867 return SDValue(Node24, 0); 2868 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2869 return SDValue(Node24, 0); 2870 2871 return SDValue(); 2872 } 2873 2874 template <typename IntTy> 2875 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2876 uint32_t Width, const SDLoc &DL) { 2877 if (Width + Offset < 32) { 2878 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2879 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2880 return DAG.getConstant(Result, DL, MVT::i32); 2881 } 2882 2883 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2884 } 2885 2886 static bool hasVolatileUser(SDNode *Val) { 2887 for (SDNode *U : Val->uses()) { 2888 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2889 if (M->isVolatile()) 2890 return true; 2891 } 2892 } 2893 2894 return false; 2895 } 2896 2897 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2898 // i32 vectors are the canonical memory type. 2899 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2900 return false; 2901 2902 if (!VT.isByteSized()) 2903 return false; 2904 2905 unsigned Size = VT.getStoreSize(); 2906 2907 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2908 return false; 2909 2910 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2911 return false; 2912 2913 return true; 2914 } 2915 2916 // Replace load of an illegal type with a store of a bitcast to a friendlier 2917 // type. 2918 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2919 DAGCombinerInfo &DCI) const { 2920 if (!DCI.isBeforeLegalize()) 2921 return SDValue(); 2922 2923 LoadSDNode *LN = cast<LoadSDNode>(N); 2924 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2925 return SDValue(); 2926 2927 SDLoc SL(N); 2928 SelectionDAG &DAG = DCI.DAG; 2929 EVT VT = LN->getMemoryVT(); 2930 2931 unsigned Size = VT.getStoreSize(); 2932 unsigned Align = LN->getAlignment(); 2933 if (Align < Size && isTypeLegal(VT)) { 2934 bool IsFast; 2935 unsigned AS = LN->getAddressSpace(); 2936 2937 // Expand unaligned loads earlier than legalization. Due to visitation order 2938 // problems during legalization, the emitted instructions to pack and unpack 2939 // the bytes again are not eliminated in the case of an unaligned copy. 2940 if (!allowsMisalignedMemoryAccesses( 2941 VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { 2942 SDValue Ops[2]; 2943 2944 if (VT.isVector()) 2945 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2946 else 2947 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2948 2949 return DAG.getMergeValues(Ops, SDLoc(N)); 2950 } 2951 2952 if (!IsFast) 2953 return SDValue(); 2954 } 2955 2956 if (!shouldCombineMemoryType(VT)) 2957 return SDValue(); 2958 2959 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2960 2961 SDValue NewLoad 2962 = DAG.getLoad(NewVT, SL, LN->getChain(), 2963 LN->getBasePtr(), LN->getMemOperand()); 2964 2965 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2966 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2967 return SDValue(N, 0); 2968 } 2969 2970 // Replace store of an illegal type with a store of a bitcast to a friendlier 2971 // type. 2972 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2973 DAGCombinerInfo &DCI) const { 2974 if (!DCI.isBeforeLegalize()) 2975 return SDValue(); 2976 2977 StoreSDNode *SN = cast<StoreSDNode>(N); 2978 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 2979 return SDValue(); 2980 2981 EVT VT = SN->getMemoryVT(); 2982 unsigned Size = VT.getStoreSize(); 2983 2984 SDLoc SL(N); 2985 SelectionDAG &DAG = DCI.DAG; 2986 unsigned Align = SN->getAlignment(); 2987 if (Align < Size && isTypeLegal(VT)) { 2988 bool IsFast; 2989 unsigned AS = SN->getAddressSpace(); 2990 2991 // Expand unaligned stores earlier than legalization. Due to visitation 2992 // order problems during legalization, the emitted instructions to pack and 2993 // unpack the bytes again are not eliminated in the case of an unaligned 2994 // copy. 2995 if (!allowsMisalignedMemoryAccesses( 2996 VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { 2997 if (VT.isVector()) 2998 return scalarizeVectorStore(SN, DAG); 2999 3000 return expandUnalignedStore(SN, DAG); 3001 } 3002 3003 if (!IsFast) 3004 return SDValue(); 3005 } 3006 3007 if (!shouldCombineMemoryType(VT)) 3008 return SDValue(); 3009 3010 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3011 SDValue Val = SN->getValue(); 3012 3013 //DCI.AddToWorklist(Val.getNode()); 3014 3015 bool OtherUses = !Val.hasOneUse(); 3016 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 3017 if (OtherUses) { 3018 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3019 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3020 } 3021 3022 return DAG.getStore(SN->getChain(), SL, CastVal, 3023 SN->getBasePtr(), SN->getMemOperand()); 3024 } 3025 3026 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3027 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3028 // issues. 3029 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3030 DAGCombinerInfo &DCI) const { 3031 SelectionDAG &DAG = DCI.DAG; 3032 SDValue N0 = N->getOperand(0); 3033 3034 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3035 // (vt2 (truncate (assertzext vt0:x, vt1))) 3036 if (N0.getOpcode() == ISD::TRUNCATE) { 3037 SDValue N1 = N->getOperand(1); 3038 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3039 SDLoc SL(N); 3040 3041 SDValue Src = N0.getOperand(0); 3042 EVT SrcVT = Src.getValueType(); 3043 if (SrcVT.bitsGE(ExtVT)) { 3044 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3045 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3046 } 3047 } 3048 3049 return SDValue(); 3050 } 3051 3052 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3053 SDNode *N, DAGCombinerInfo &DCI) const { 3054 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3055 switch (IID) { 3056 case Intrinsic::amdgcn_mul_i24: 3057 case Intrinsic::amdgcn_mul_u24: 3058 return simplifyI24(N, DCI); 3059 case Intrinsic::amdgcn_fract: 3060 case Intrinsic::amdgcn_rsq: 3061 case Intrinsic::amdgcn_rcp_legacy: 3062 case Intrinsic::amdgcn_rsq_legacy: 3063 case Intrinsic::amdgcn_rsq_clamp: 3064 case Intrinsic::amdgcn_ldexp: { 3065 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3066 SDValue Src = N->getOperand(1); 3067 return Src.isUndef() ? Src : SDValue(); 3068 } 3069 default: 3070 return SDValue(); 3071 } 3072 } 3073 3074 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3075 /// binary operation \p Opc to it with the corresponding constant operands. 3076 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3077 DAGCombinerInfo &DCI, const SDLoc &SL, 3078 unsigned Opc, SDValue LHS, 3079 uint32_t ValLo, uint32_t ValHi) const { 3080 SelectionDAG &DAG = DCI.DAG; 3081 SDValue Lo, Hi; 3082 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3083 3084 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3085 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3086 3087 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3088 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3089 3090 // Re-visit the ands. It's possible we eliminated one of them and it could 3091 // simplify the vector. 3092 DCI.AddToWorklist(Lo.getNode()); 3093 DCI.AddToWorklist(Hi.getNode()); 3094 3095 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3096 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3097 } 3098 3099 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3100 DAGCombinerInfo &DCI) const { 3101 EVT VT = N->getValueType(0); 3102 3103 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3104 if (!RHS) 3105 return SDValue(); 3106 3107 SDValue LHS = N->getOperand(0); 3108 unsigned RHSVal = RHS->getZExtValue(); 3109 if (!RHSVal) 3110 return LHS; 3111 3112 SDLoc SL(N); 3113 SelectionDAG &DAG = DCI.DAG; 3114 3115 switch (LHS->getOpcode()) { 3116 default: 3117 break; 3118 case ISD::ZERO_EXTEND: 3119 case ISD::SIGN_EXTEND: 3120 case ISD::ANY_EXTEND: { 3121 SDValue X = LHS->getOperand(0); 3122 3123 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3124 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3125 // Prefer build_vector as the canonical form if packed types are legal. 3126 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3127 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3128 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3129 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3130 } 3131 3132 // shl (ext x) => zext (shl x), if shift does not overflow int 3133 if (VT != MVT::i64) 3134 break; 3135 KnownBits Known = DAG.computeKnownBits(X); 3136 unsigned LZ = Known.countMinLeadingZeros(); 3137 if (LZ < RHSVal) 3138 break; 3139 EVT XVT = X.getValueType(); 3140 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3141 return DAG.getZExtOrTrunc(Shl, SL, VT); 3142 } 3143 } 3144 3145 if (VT != MVT::i64) 3146 return SDValue(); 3147 3148 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3149 3150 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3151 // common case, splitting this into a move and a 32-bit shift is faster and 3152 // the same code size. 3153 if (RHSVal < 32) 3154 return SDValue(); 3155 3156 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3157 3158 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3159 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3160 3161 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3162 3163 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3164 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3165 } 3166 3167 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3168 DAGCombinerInfo &DCI) const { 3169 if (N->getValueType(0) != MVT::i64) 3170 return SDValue(); 3171 3172 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3173 if (!RHS) 3174 return SDValue(); 3175 3176 SelectionDAG &DAG = DCI.DAG; 3177 SDLoc SL(N); 3178 unsigned RHSVal = RHS->getZExtValue(); 3179 3180 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3181 if (RHSVal == 32) { 3182 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3183 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3184 DAG.getConstant(31, SL, MVT::i32)); 3185 3186 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3187 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3188 } 3189 3190 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3191 if (RHSVal == 63) { 3192 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3193 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3194 DAG.getConstant(31, SL, MVT::i32)); 3195 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3196 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3197 } 3198 3199 return SDValue(); 3200 } 3201 3202 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3203 DAGCombinerInfo &DCI) const { 3204 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3205 if (!RHS) 3206 return SDValue(); 3207 3208 EVT VT = N->getValueType(0); 3209 SDValue LHS = N->getOperand(0); 3210 unsigned ShiftAmt = RHS->getZExtValue(); 3211 SelectionDAG &DAG = DCI.DAG; 3212 SDLoc SL(N); 3213 3214 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3215 // this improves the ability to match BFE patterns in isel. 3216 if (LHS.getOpcode() == ISD::AND) { 3217 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3218 if (Mask->getAPIntValue().isShiftedMask() && 3219 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3220 return DAG.getNode( 3221 ISD::AND, SL, VT, 3222 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3223 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3224 } 3225 } 3226 } 3227 3228 if (VT != MVT::i64) 3229 return SDValue(); 3230 3231 if (ShiftAmt < 32) 3232 return SDValue(); 3233 3234 // srl i64:x, C for C >= 32 3235 // => 3236 // build_pair (srl hi_32(x), C - 32), 0 3237 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3238 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3239 3240 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3241 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3242 3243 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3244 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3245 3246 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3247 3248 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3249 } 3250 3251 SDValue AMDGPUTargetLowering::performTruncateCombine( 3252 SDNode *N, DAGCombinerInfo &DCI) const { 3253 SDLoc SL(N); 3254 SelectionDAG &DAG = DCI.DAG; 3255 EVT VT = N->getValueType(0); 3256 SDValue Src = N->getOperand(0); 3257 3258 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3259 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3260 SDValue Vec = Src.getOperand(0); 3261 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3262 SDValue Elt0 = Vec.getOperand(0); 3263 EVT EltVT = Elt0.getValueType(); 3264 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3265 if (EltVT.isFloatingPoint()) { 3266 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3267 EltVT.changeTypeToInteger(), Elt0); 3268 } 3269 3270 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3271 } 3272 } 3273 } 3274 3275 // Equivalent of above for accessing the high element of a vector as an 3276 // integer operation. 3277 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3278 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3279 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3280 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3281 SDValue BV = stripBitcast(Src.getOperand(0)); 3282 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3283 BV.getValueType().getVectorNumElements() == 2) { 3284 SDValue SrcElt = BV.getOperand(1); 3285 EVT SrcEltVT = SrcElt.getValueType(); 3286 if (SrcEltVT.isFloatingPoint()) { 3287 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3288 SrcEltVT.changeTypeToInteger(), SrcElt); 3289 } 3290 3291 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3292 } 3293 } 3294 } 3295 } 3296 3297 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3298 // 3299 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3300 // i16 (trunc (srl (i32 (trunc x), K))) 3301 if (VT.getScalarSizeInBits() < 32) { 3302 EVT SrcVT = Src.getValueType(); 3303 if (SrcVT.getScalarSizeInBits() > 32 && 3304 (Src.getOpcode() == ISD::SRL || 3305 Src.getOpcode() == ISD::SRA || 3306 Src.getOpcode() == ISD::SHL)) { 3307 SDValue Amt = Src.getOperand(1); 3308 KnownBits Known = DAG.computeKnownBits(Amt); 3309 unsigned Size = VT.getScalarSizeInBits(); 3310 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3311 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3312 EVT MidVT = VT.isVector() ? 3313 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3314 VT.getVectorNumElements()) : MVT::i32; 3315 3316 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3317 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3318 Src.getOperand(0)); 3319 DCI.AddToWorklist(Trunc.getNode()); 3320 3321 if (Amt.getValueType() != NewShiftVT) { 3322 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3323 DCI.AddToWorklist(Amt.getNode()); 3324 } 3325 3326 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3327 Trunc, Amt); 3328 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3329 } 3330 } 3331 } 3332 3333 return SDValue(); 3334 } 3335 3336 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3337 // instructions. If we only match on the legalized i64 mul expansion, 3338 // SimplifyDemandedBits will be unable to remove them because there will be 3339 // multiple uses due to the separate mul + mulh[su]. 3340 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3341 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3342 if (Size <= 32) { 3343 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3344 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3345 } 3346 3347 // Because we want to eliminate extension instructions before the 3348 // operation, we need to create a single user here (i.e. not the separate 3349 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3350 3351 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3352 3353 SDValue Mul = DAG.getNode(MulOpc, SL, 3354 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3355 3356 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3357 Mul.getValue(0), Mul.getValue(1)); 3358 } 3359 3360 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3361 DAGCombinerInfo &DCI) const { 3362 EVT VT = N->getValueType(0); 3363 3364 unsigned Size = VT.getSizeInBits(); 3365 if (VT.isVector() || Size > 64) 3366 return SDValue(); 3367 3368 // There are i16 integer mul/mad. 3369 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3370 return SDValue(); 3371 3372 SelectionDAG &DAG = DCI.DAG; 3373 SDLoc DL(N); 3374 3375 SDValue N0 = N->getOperand(0); 3376 SDValue N1 = N->getOperand(1); 3377 3378 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3379 // in the source into any_extends if the result of the mul is truncated. Since 3380 // we can assume the high bits are whatever we want, use the underlying value 3381 // to avoid the unknown high bits from interfering. 3382 if (N0.getOpcode() == ISD::ANY_EXTEND) 3383 N0 = N0.getOperand(0); 3384 3385 if (N1.getOpcode() == ISD::ANY_EXTEND) 3386 N1 = N1.getOperand(0); 3387 3388 SDValue Mul; 3389 3390 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3391 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3392 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3393 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3394 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3395 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3396 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3397 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3398 } else { 3399 return SDValue(); 3400 } 3401 3402 // We need to use sext even for MUL_U24, because MUL_U24 is used 3403 // for signed multiply of 8 and 16-bit types. 3404 return DAG.getSExtOrTrunc(Mul, DL, VT); 3405 } 3406 3407 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3408 DAGCombinerInfo &DCI) const { 3409 EVT VT = N->getValueType(0); 3410 3411 if (!Subtarget->hasMulI24() || VT.isVector()) 3412 return SDValue(); 3413 3414 SelectionDAG &DAG = DCI.DAG; 3415 SDLoc DL(N); 3416 3417 SDValue N0 = N->getOperand(0); 3418 SDValue N1 = N->getOperand(1); 3419 3420 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3421 return SDValue(); 3422 3423 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3424 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3425 3426 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3427 DCI.AddToWorklist(Mulhi.getNode()); 3428 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3429 } 3430 3431 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3432 DAGCombinerInfo &DCI) const { 3433 EVT VT = N->getValueType(0); 3434 3435 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3436 return SDValue(); 3437 3438 SelectionDAG &DAG = DCI.DAG; 3439 SDLoc DL(N); 3440 3441 SDValue N0 = N->getOperand(0); 3442 SDValue N1 = N->getOperand(1); 3443 3444 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3445 return SDValue(); 3446 3447 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3448 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3449 3450 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3451 DCI.AddToWorklist(Mulhi.getNode()); 3452 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3453 } 3454 3455 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3456 SDNode *N, DAGCombinerInfo &DCI) const { 3457 SelectionDAG &DAG = DCI.DAG; 3458 3459 // Simplify demanded bits before splitting into multiple users. 3460 if (SDValue V = simplifyI24(N, DCI)) 3461 return V; 3462 3463 SDValue N0 = N->getOperand(0); 3464 SDValue N1 = N->getOperand(1); 3465 3466 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3467 3468 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3469 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3470 3471 SDLoc SL(N); 3472 3473 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3474 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3475 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3476 } 3477 3478 static bool isNegativeOne(SDValue Val) { 3479 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3480 return C->isAllOnesValue(); 3481 return false; 3482 } 3483 3484 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3485 SDValue Op, 3486 const SDLoc &DL, 3487 unsigned Opc) const { 3488 EVT VT = Op.getValueType(); 3489 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3490 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3491 LegalVT != MVT::i16)) 3492 return SDValue(); 3493 3494 if (VT != MVT::i32) 3495 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3496 3497 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3498 if (VT != MVT::i32) 3499 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3500 3501 return FFBX; 3502 } 3503 3504 // The native instructions return -1 on 0 input. Optimize out a select that 3505 // produces -1 on 0. 3506 // 3507 // TODO: If zero is not undef, we could also do this if the output is compared 3508 // against the bitwidth. 3509 // 3510 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3511 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3512 SDValue LHS, SDValue RHS, 3513 DAGCombinerInfo &DCI) const { 3514 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3515 if (!CmpRhs || !CmpRhs->isNullValue()) 3516 return SDValue(); 3517 3518 SelectionDAG &DAG = DCI.DAG; 3519 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3520 SDValue CmpLHS = Cond.getOperand(0); 3521 3522 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3523 AMDGPUISD::FFBH_U32; 3524 3525 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3526 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3527 if (CCOpcode == ISD::SETEQ && 3528 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3529 RHS.getOperand(0) == CmpLHS && 3530 isNegativeOne(LHS)) { 3531 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3532 } 3533 3534 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3535 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3536 if (CCOpcode == ISD::SETNE && 3537 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3538 LHS.getOperand(0) == CmpLHS && 3539 isNegativeOne(RHS)) { 3540 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3541 } 3542 3543 return SDValue(); 3544 } 3545 3546 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3547 unsigned Op, 3548 const SDLoc &SL, 3549 SDValue Cond, 3550 SDValue N1, 3551 SDValue N2) { 3552 SelectionDAG &DAG = DCI.DAG; 3553 EVT VT = N1.getValueType(); 3554 3555 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3556 N1.getOperand(0), N2.getOperand(0)); 3557 DCI.AddToWorklist(NewSelect.getNode()); 3558 return DAG.getNode(Op, SL, VT, NewSelect); 3559 } 3560 3561 // Pull a free FP operation out of a select so it may fold into uses. 3562 // 3563 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3564 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3565 // 3566 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3567 // select c, (fabs x), +k -> fabs (select c, x, k) 3568 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3569 SDValue N) { 3570 SelectionDAG &DAG = DCI.DAG; 3571 SDValue Cond = N.getOperand(0); 3572 SDValue LHS = N.getOperand(1); 3573 SDValue RHS = N.getOperand(2); 3574 3575 EVT VT = N.getValueType(); 3576 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3577 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3578 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3579 SDLoc(N), Cond, LHS, RHS); 3580 } 3581 3582 bool Inv = false; 3583 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3584 std::swap(LHS, RHS); 3585 Inv = true; 3586 } 3587 3588 // TODO: Support vector constants. 3589 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3590 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3591 SDLoc SL(N); 3592 // If one side is an fneg/fabs and the other is a constant, we can push the 3593 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3594 SDValue NewLHS = LHS.getOperand(0); 3595 SDValue NewRHS = RHS; 3596 3597 // Careful: if the neg can be folded up, don't try to pull it back down. 3598 bool ShouldFoldNeg = true; 3599 3600 if (NewLHS.hasOneUse()) { 3601 unsigned Opc = NewLHS.getOpcode(); 3602 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3603 ShouldFoldNeg = false; 3604 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3605 ShouldFoldNeg = false; 3606 } 3607 3608 if (ShouldFoldNeg) { 3609 if (LHS.getOpcode() == ISD::FNEG) 3610 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3611 else if (CRHS->isNegative()) 3612 return SDValue(); 3613 3614 if (Inv) 3615 std::swap(NewLHS, NewRHS); 3616 3617 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3618 Cond, NewLHS, NewRHS); 3619 DCI.AddToWorklist(NewSelect.getNode()); 3620 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3621 } 3622 } 3623 3624 return SDValue(); 3625 } 3626 3627 3628 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3629 DAGCombinerInfo &DCI) const { 3630 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3631 return Folded; 3632 3633 SDValue Cond = N->getOperand(0); 3634 if (Cond.getOpcode() != ISD::SETCC) 3635 return SDValue(); 3636 3637 EVT VT = N->getValueType(0); 3638 SDValue LHS = Cond.getOperand(0); 3639 SDValue RHS = Cond.getOperand(1); 3640 SDValue CC = Cond.getOperand(2); 3641 3642 SDValue True = N->getOperand(1); 3643 SDValue False = N->getOperand(2); 3644 3645 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3646 SelectionDAG &DAG = DCI.DAG; 3647 if (DAG.isConstantValueOfAnyType(True) && 3648 !DAG.isConstantValueOfAnyType(False)) { 3649 // Swap cmp + select pair to move constant to false input. 3650 // This will allow using VOPC cndmasks more often. 3651 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3652 3653 SDLoc SL(N); 3654 ISD::CondCode NewCC = 3655 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3656 3657 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3658 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3659 } 3660 3661 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3662 SDValue MinMax 3663 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3664 // Revisit this node so we can catch min3/max3/med3 patterns. 3665 //DCI.AddToWorklist(MinMax.getNode()); 3666 return MinMax; 3667 } 3668 } 3669 3670 // There's no reason to not do this if the condition has other uses. 3671 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3672 } 3673 3674 static bool isInv2Pi(const APFloat &APF) { 3675 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3676 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3677 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3678 3679 return APF.bitwiseIsEqual(KF16) || 3680 APF.bitwiseIsEqual(KF32) || 3681 APF.bitwiseIsEqual(KF64); 3682 } 3683 3684 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3685 // additional cost to negate them. 3686 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3687 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3688 if (C->isZero() && !C->isNegative()) 3689 return true; 3690 3691 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3692 return true; 3693 } 3694 3695 return false; 3696 } 3697 3698 static unsigned inverseMinMax(unsigned Opc) { 3699 switch (Opc) { 3700 case ISD::FMAXNUM: 3701 return ISD::FMINNUM; 3702 case ISD::FMINNUM: 3703 return ISD::FMAXNUM; 3704 case ISD::FMAXNUM_IEEE: 3705 return ISD::FMINNUM_IEEE; 3706 case ISD::FMINNUM_IEEE: 3707 return ISD::FMAXNUM_IEEE; 3708 case AMDGPUISD::FMAX_LEGACY: 3709 return AMDGPUISD::FMIN_LEGACY; 3710 case AMDGPUISD::FMIN_LEGACY: 3711 return AMDGPUISD::FMAX_LEGACY; 3712 default: 3713 llvm_unreachable("invalid min/max opcode"); 3714 } 3715 } 3716 3717 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3718 DAGCombinerInfo &DCI) const { 3719 SelectionDAG &DAG = DCI.DAG; 3720 SDValue N0 = N->getOperand(0); 3721 EVT VT = N->getValueType(0); 3722 3723 unsigned Opc = N0.getOpcode(); 3724 3725 // If the input has multiple uses and we can either fold the negate down, or 3726 // the other uses cannot, give up. This both prevents unprofitable 3727 // transformations and infinite loops: we won't repeatedly try to fold around 3728 // a negate that has no 'good' form. 3729 if (N0.hasOneUse()) { 3730 // This may be able to fold into the source, but at a code size cost. Don't 3731 // fold if the fold into the user is free. 3732 if (allUsesHaveSourceMods(N, 0)) 3733 return SDValue(); 3734 } else { 3735 if (fnegFoldsIntoOp(Opc) && 3736 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3737 return SDValue(); 3738 } 3739 3740 SDLoc SL(N); 3741 switch (Opc) { 3742 case ISD::FADD: { 3743 if (!mayIgnoreSignedZero(N0)) 3744 return SDValue(); 3745 3746 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3747 SDValue LHS = N0.getOperand(0); 3748 SDValue RHS = N0.getOperand(1); 3749 3750 if (LHS.getOpcode() != ISD::FNEG) 3751 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3752 else 3753 LHS = LHS.getOperand(0); 3754 3755 if (RHS.getOpcode() != ISD::FNEG) 3756 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3757 else 3758 RHS = RHS.getOperand(0); 3759 3760 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3761 if (Res.getOpcode() != ISD::FADD) 3762 return SDValue(); // Op got folded away. 3763 if (!N0.hasOneUse()) 3764 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3765 return Res; 3766 } 3767 case ISD::FMUL: 3768 case AMDGPUISD::FMUL_LEGACY: { 3769 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3770 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3771 SDValue LHS = N0.getOperand(0); 3772 SDValue RHS = N0.getOperand(1); 3773 3774 if (LHS.getOpcode() == ISD::FNEG) 3775 LHS = LHS.getOperand(0); 3776 else if (RHS.getOpcode() == ISD::FNEG) 3777 RHS = RHS.getOperand(0); 3778 else 3779 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3780 3781 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3782 if (Res.getOpcode() != Opc) 3783 return SDValue(); // Op got folded away. 3784 if (!N0.hasOneUse()) 3785 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3786 return Res; 3787 } 3788 case ISD::FMA: 3789 case ISD::FMAD: { 3790 if (!mayIgnoreSignedZero(N0)) 3791 return SDValue(); 3792 3793 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3794 SDValue LHS = N0.getOperand(0); 3795 SDValue MHS = N0.getOperand(1); 3796 SDValue RHS = N0.getOperand(2); 3797 3798 if (LHS.getOpcode() == ISD::FNEG) 3799 LHS = LHS.getOperand(0); 3800 else if (MHS.getOpcode() == ISD::FNEG) 3801 MHS = MHS.getOperand(0); 3802 else 3803 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3804 3805 if (RHS.getOpcode() != ISD::FNEG) 3806 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3807 else 3808 RHS = RHS.getOperand(0); 3809 3810 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3811 if (Res.getOpcode() != Opc) 3812 return SDValue(); // Op got folded away. 3813 if (!N0.hasOneUse()) 3814 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3815 return Res; 3816 } 3817 case ISD::FMAXNUM: 3818 case ISD::FMINNUM: 3819 case ISD::FMAXNUM_IEEE: 3820 case ISD::FMINNUM_IEEE: 3821 case AMDGPUISD::FMAX_LEGACY: 3822 case AMDGPUISD::FMIN_LEGACY: { 3823 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3824 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3825 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3826 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3827 3828 SDValue LHS = N0.getOperand(0); 3829 SDValue RHS = N0.getOperand(1); 3830 3831 // 0 doesn't have a negated inline immediate. 3832 // TODO: This constant check should be generalized to other operations. 3833 if (isConstantCostlierToNegate(RHS)) 3834 return SDValue(); 3835 3836 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3837 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3838 unsigned Opposite = inverseMinMax(Opc); 3839 3840 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3841 if (Res.getOpcode() != Opposite) 3842 return SDValue(); // Op got folded away. 3843 if (!N0.hasOneUse()) 3844 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3845 return Res; 3846 } 3847 case AMDGPUISD::FMED3: { 3848 SDValue Ops[3]; 3849 for (unsigned I = 0; I < 3; ++I) 3850 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3851 3852 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3853 if (Res.getOpcode() != AMDGPUISD::FMED3) 3854 return SDValue(); // Op got folded away. 3855 if (!N0.hasOneUse()) 3856 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3857 return Res; 3858 } 3859 case ISD::FP_EXTEND: 3860 case ISD::FTRUNC: 3861 case ISD::FRINT: 3862 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3863 case ISD::FSIN: 3864 case ISD::FCANONICALIZE: 3865 case AMDGPUISD::RCP: 3866 case AMDGPUISD::RCP_LEGACY: 3867 case AMDGPUISD::RCP_IFLAG: 3868 case AMDGPUISD::SIN_HW: { 3869 SDValue CvtSrc = N0.getOperand(0); 3870 if (CvtSrc.getOpcode() == ISD::FNEG) { 3871 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3872 // (fneg (rcp (fneg x))) -> (rcp x) 3873 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3874 } 3875 3876 if (!N0.hasOneUse()) 3877 return SDValue(); 3878 3879 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3880 // (fneg (rcp x)) -> (rcp (fneg x)) 3881 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3882 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3883 } 3884 case ISD::FP_ROUND: { 3885 SDValue CvtSrc = N0.getOperand(0); 3886 3887 if (CvtSrc.getOpcode() == ISD::FNEG) { 3888 // (fneg (fp_round (fneg x))) -> (fp_round x) 3889 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3890 CvtSrc.getOperand(0), N0.getOperand(1)); 3891 } 3892 3893 if (!N0.hasOneUse()) 3894 return SDValue(); 3895 3896 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3897 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3898 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3899 } 3900 case ISD::FP16_TO_FP: { 3901 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3902 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3903 // Put the fneg back as a legal source operation that can be matched later. 3904 SDLoc SL(N); 3905 3906 SDValue Src = N0.getOperand(0); 3907 EVT SrcVT = Src.getValueType(); 3908 3909 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3910 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3911 DAG.getConstant(0x8000, SL, SrcVT)); 3912 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3913 } 3914 default: 3915 return SDValue(); 3916 } 3917 } 3918 3919 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3920 DAGCombinerInfo &DCI) const { 3921 SelectionDAG &DAG = DCI.DAG; 3922 SDValue N0 = N->getOperand(0); 3923 3924 if (!N0.hasOneUse()) 3925 return SDValue(); 3926 3927 switch (N0.getOpcode()) { 3928 case ISD::FP16_TO_FP: { 3929 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3930 SDLoc SL(N); 3931 SDValue Src = N0.getOperand(0); 3932 EVT SrcVT = Src.getValueType(); 3933 3934 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3935 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3936 DAG.getConstant(0x7fff, SL, SrcVT)); 3937 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3938 } 3939 default: 3940 return SDValue(); 3941 } 3942 } 3943 3944 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3945 DAGCombinerInfo &DCI) const { 3946 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3947 if (!CFP) 3948 return SDValue(); 3949 3950 // XXX - Should this flush denormals? 3951 const APFloat &Val = CFP->getValueAPF(); 3952 APFloat One(Val.getSemantics(), "1.0"); 3953 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3954 } 3955 3956 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3957 DAGCombinerInfo &DCI) const { 3958 SelectionDAG &DAG = DCI.DAG; 3959 SDLoc DL(N); 3960 3961 switch(N->getOpcode()) { 3962 default: 3963 break; 3964 case ISD::BITCAST: { 3965 EVT DestVT = N->getValueType(0); 3966 3967 // Push casts through vector builds. This helps avoid emitting a large 3968 // number of copies when materializing floating point vector constants. 3969 // 3970 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3971 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3972 if (DestVT.isVector()) { 3973 SDValue Src = N->getOperand(0); 3974 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3975 EVT SrcVT = Src.getValueType(); 3976 unsigned NElts = DestVT.getVectorNumElements(); 3977 3978 if (SrcVT.getVectorNumElements() == NElts) { 3979 EVT DestEltVT = DestVT.getVectorElementType(); 3980 3981 SmallVector<SDValue, 8> CastedElts; 3982 SDLoc SL(N); 3983 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3984 SDValue Elt = Src.getOperand(I); 3985 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3986 } 3987 3988 return DAG.getBuildVector(DestVT, SL, CastedElts); 3989 } 3990 } 3991 } 3992 3993 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3994 break; 3995 3996 // Fold bitcasts of constants. 3997 // 3998 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3999 // TODO: Generalize and move to DAGCombiner 4000 SDValue Src = N->getOperand(0); 4001 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 4002 if (Src.getValueType() == MVT::i64) { 4003 SDLoc SL(N); 4004 uint64_t CVal = C->getZExtValue(); 4005 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4006 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4007 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4008 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 4009 } 4010 } 4011 4012 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 4013 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 4014 SDLoc SL(N); 4015 uint64_t CVal = Val.getZExtValue(); 4016 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4017 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4018 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4019 4020 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 4021 } 4022 4023 break; 4024 } 4025 case ISD::SHL: { 4026 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4027 break; 4028 4029 return performShlCombine(N, DCI); 4030 } 4031 case ISD::SRL: { 4032 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4033 break; 4034 4035 return performSrlCombine(N, DCI); 4036 } 4037 case ISD::SRA: { 4038 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4039 break; 4040 4041 return performSraCombine(N, DCI); 4042 } 4043 case ISD::TRUNCATE: 4044 return performTruncateCombine(N, DCI); 4045 case ISD::MUL: 4046 return performMulCombine(N, DCI); 4047 case ISD::MULHS: 4048 return performMulhsCombine(N, DCI); 4049 case ISD::MULHU: 4050 return performMulhuCombine(N, DCI); 4051 case AMDGPUISD::MUL_I24: 4052 case AMDGPUISD::MUL_U24: 4053 case AMDGPUISD::MULHI_I24: 4054 case AMDGPUISD::MULHI_U24: { 4055 if (SDValue V = simplifyI24(N, DCI)) 4056 return V; 4057 return SDValue(); 4058 } 4059 case AMDGPUISD::MUL_LOHI_I24: 4060 case AMDGPUISD::MUL_LOHI_U24: 4061 return performMulLoHi24Combine(N, DCI); 4062 case ISD::SELECT: 4063 return performSelectCombine(N, DCI); 4064 case ISD::FNEG: 4065 return performFNegCombine(N, DCI); 4066 case ISD::FABS: 4067 return performFAbsCombine(N, DCI); 4068 case AMDGPUISD::BFE_I32: 4069 case AMDGPUISD::BFE_U32: { 4070 assert(!N->getValueType(0).isVector() && 4071 "Vector handling of BFE not implemented"); 4072 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4073 if (!Width) 4074 break; 4075 4076 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4077 if (WidthVal == 0) 4078 return DAG.getConstant(0, DL, MVT::i32); 4079 4080 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4081 if (!Offset) 4082 break; 4083 4084 SDValue BitsFrom = N->getOperand(0); 4085 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4086 4087 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4088 4089 if (OffsetVal == 0) { 4090 // This is already sign / zero extended, so try to fold away extra BFEs. 4091 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4092 4093 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4094 if (OpSignBits >= SignBits) 4095 return BitsFrom; 4096 4097 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4098 if (Signed) { 4099 // This is a sign_extend_inreg. Replace it to take advantage of existing 4100 // DAG Combines. If not eliminated, we will match back to BFE during 4101 // selection. 4102 4103 // TODO: The sext_inreg of extended types ends, although we can could 4104 // handle them in a single BFE. 4105 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4106 DAG.getValueType(SmallVT)); 4107 } 4108 4109 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4110 } 4111 4112 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4113 if (Signed) { 4114 return constantFoldBFE<int32_t>(DAG, 4115 CVal->getSExtValue(), 4116 OffsetVal, 4117 WidthVal, 4118 DL); 4119 } 4120 4121 return constantFoldBFE<uint32_t>(DAG, 4122 CVal->getZExtValue(), 4123 OffsetVal, 4124 WidthVal, 4125 DL); 4126 } 4127 4128 if ((OffsetVal + WidthVal) >= 32 && 4129 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4130 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4131 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4132 BitsFrom, ShiftVal); 4133 } 4134 4135 if (BitsFrom.hasOneUse()) { 4136 APInt Demanded = APInt::getBitsSet(32, 4137 OffsetVal, 4138 OffsetVal + WidthVal); 4139 4140 KnownBits Known; 4141 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4142 !DCI.isBeforeLegalizeOps()); 4143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4144 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4145 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4146 DCI.CommitTargetLoweringOpt(TLO); 4147 } 4148 } 4149 4150 break; 4151 } 4152 case ISD::LOAD: 4153 return performLoadCombine(N, DCI); 4154 case ISD::STORE: 4155 return performStoreCombine(N, DCI); 4156 case AMDGPUISD::RCP: 4157 case AMDGPUISD::RCP_IFLAG: 4158 return performRcpCombine(N, DCI); 4159 case ISD::AssertZext: 4160 case ISD::AssertSext: 4161 return performAssertSZExtCombine(N, DCI); 4162 case ISD::INTRINSIC_WO_CHAIN: 4163 return performIntrinsicWOChainCombine(N, DCI); 4164 } 4165 return SDValue(); 4166 } 4167 4168 //===----------------------------------------------------------------------===// 4169 // Helper functions 4170 //===----------------------------------------------------------------------===// 4171 4172 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4173 const TargetRegisterClass *RC, 4174 Register Reg, EVT VT, 4175 const SDLoc &SL, 4176 bool RawReg) const { 4177 MachineFunction &MF = DAG.getMachineFunction(); 4178 MachineRegisterInfo &MRI = MF.getRegInfo(); 4179 Register VReg; 4180 4181 if (!MRI.isLiveIn(Reg)) { 4182 VReg = MRI.createVirtualRegister(RC); 4183 MRI.addLiveIn(Reg, VReg); 4184 } else { 4185 VReg = MRI.getLiveInVirtReg(Reg); 4186 } 4187 4188 if (RawReg) 4189 return DAG.getRegister(VReg, VT); 4190 4191 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4192 } 4193 4194 // This may be called multiple times, and nothing prevents creating multiple 4195 // objects at the same offset. See if we already defined this object. 4196 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4197 int64_t Offset) { 4198 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4199 if (MFI.getObjectOffset(I) == Offset) { 4200 assert(MFI.getObjectSize(I) == Size); 4201 return I; 4202 } 4203 } 4204 4205 return MFI.CreateFixedObject(Size, Offset, true); 4206 } 4207 4208 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4209 EVT VT, 4210 const SDLoc &SL, 4211 int64_t Offset) const { 4212 MachineFunction &MF = DAG.getMachineFunction(); 4213 MachineFrameInfo &MFI = MF.getFrameInfo(); 4214 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4215 4216 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4217 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4218 4219 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4220 MachineMemOperand::MODereferenceable | 4221 MachineMemOperand::MOInvariant); 4222 } 4223 4224 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4225 const SDLoc &SL, 4226 SDValue Chain, 4227 SDValue ArgVal, 4228 int64_t Offset) const { 4229 MachineFunction &MF = DAG.getMachineFunction(); 4230 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4231 4232 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4233 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4234 MachineMemOperand::MODereferenceable); 4235 return Store; 4236 } 4237 4238 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4239 const TargetRegisterClass *RC, 4240 EVT VT, const SDLoc &SL, 4241 const ArgDescriptor &Arg) const { 4242 assert(Arg && "Attempting to load missing argument"); 4243 4244 SDValue V = Arg.isRegister() ? 4245 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4246 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4247 4248 if (!Arg.isMasked()) 4249 return V; 4250 4251 unsigned Mask = Arg.getMask(); 4252 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4253 V = DAG.getNode(ISD::SRL, SL, VT, V, 4254 DAG.getShiftAmountConstant(Shift, VT, SL)); 4255 return DAG.getNode(ISD::AND, SL, VT, V, 4256 DAG.getConstant(Mask >> Shift, SL, VT)); 4257 } 4258 4259 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4260 const MachineFunction &MF, const ImplicitParameter Param) const { 4261 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4262 const AMDGPUSubtarget &ST = 4263 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4264 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4265 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4266 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4267 ExplicitArgOffset; 4268 switch (Param) { 4269 case GRID_DIM: 4270 return ArgOffset; 4271 case GRID_OFFSET: 4272 return ArgOffset + 4; 4273 } 4274 llvm_unreachable("unexpected implicit parameter type"); 4275 } 4276 4277 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4278 4279 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4280 switch ((AMDGPUISD::NodeType)Opcode) { 4281 case AMDGPUISD::FIRST_NUMBER: break; 4282 // AMDIL DAG nodes 4283 NODE_NAME_CASE(UMUL); 4284 NODE_NAME_CASE(BRANCH_COND); 4285 4286 // AMDGPU DAG nodes 4287 NODE_NAME_CASE(IF) 4288 NODE_NAME_CASE(ELSE) 4289 NODE_NAME_CASE(LOOP) 4290 NODE_NAME_CASE(CALL) 4291 NODE_NAME_CASE(TC_RETURN) 4292 NODE_NAME_CASE(TRAP) 4293 NODE_NAME_CASE(RET_FLAG) 4294 NODE_NAME_CASE(RETURN_TO_EPILOG) 4295 NODE_NAME_CASE(ENDPGM) 4296 NODE_NAME_CASE(DWORDADDR) 4297 NODE_NAME_CASE(FRACT) 4298 NODE_NAME_CASE(SETCC) 4299 NODE_NAME_CASE(SETREG) 4300 NODE_NAME_CASE(DENORM_MODE) 4301 NODE_NAME_CASE(FMA_W_CHAIN) 4302 NODE_NAME_CASE(FMUL_W_CHAIN) 4303 NODE_NAME_CASE(CLAMP) 4304 NODE_NAME_CASE(COS_HW) 4305 NODE_NAME_CASE(SIN_HW) 4306 NODE_NAME_CASE(FMAX_LEGACY) 4307 NODE_NAME_CASE(FMIN_LEGACY) 4308 NODE_NAME_CASE(FMAX3) 4309 NODE_NAME_CASE(SMAX3) 4310 NODE_NAME_CASE(UMAX3) 4311 NODE_NAME_CASE(FMIN3) 4312 NODE_NAME_CASE(SMIN3) 4313 NODE_NAME_CASE(UMIN3) 4314 NODE_NAME_CASE(FMED3) 4315 NODE_NAME_CASE(SMED3) 4316 NODE_NAME_CASE(UMED3) 4317 NODE_NAME_CASE(FDOT2) 4318 NODE_NAME_CASE(URECIP) 4319 NODE_NAME_CASE(DIV_SCALE) 4320 NODE_NAME_CASE(DIV_FMAS) 4321 NODE_NAME_CASE(DIV_FIXUP) 4322 NODE_NAME_CASE(FMAD_FTZ) 4323 NODE_NAME_CASE(TRIG_PREOP) 4324 NODE_NAME_CASE(RCP) 4325 NODE_NAME_CASE(RSQ) 4326 NODE_NAME_CASE(RCP_LEGACY) 4327 NODE_NAME_CASE(RCP_IFLAG) 4328 NODE_NAME_CASE(FMUL_LEGACY) 4329 NODE_NAME_CASE(RSQ_CLAMP) 4330 NODE_NAME_CASE(LDEXP) 4331 NODE_NAME_CASE(FP_CLASS) 4332 NODE_NAME_CASE(DOT4) 4333 NODE_NAME_CASE(CARRY) 4334 NODE_NAME_CASE(BORROW) 4335 NODE_NAME_CASE(BFE_U32) 4336 NODE_NAME_CASE(BFE_I32) 4337 NODE_NAME_CASE(BFI) 4338 NODE_NAME_CASE(BFM) 4339 NODE_NAME_CASE(FFBH_U32) 4340 NODE_NAME_CASE(FFBH_I32) 4341 NODE_NAME_CASE(FFBL_B32) 4342 NODE_NAME_CASE(MUL_U24) 4343 NODE_NAME_CASE(MUL_I24) 4344 NODE_NAME_CASE(MULHI_U24) 4345 NODE_NAME_CASE(MULHI_I24) 4346 NODE_NAME_CASE(MUL_LOHI_U24) 4347 NODE_NAME_CASE(MUL_LOHI_I24) 4348 NODE_NAME_CASE(MAD_U24) 4349 NODE_NAME_CASE(MAD_I24) 4350 NODE_NAME_CASE(MAD_I64_I32) 4351 NODE_NAME_CASE(MAD_U64_U32) 4352 NODE_NAME_CASE(PERM) 4353 NODE_NAME_CASE(TEXTURE_FETCH) 4354 NODE_NAME_CASE(R600_EXPORT) 4355 NODE_NAME_CASE(CONST_ADDRESS) 4356 NODE_NAME_CASE(REGISTER_LOAD) 4357 NODE_NAME_CASE(REGISTER_STORE) 4358 NODE_NAME_CASE(SAMPLE) 4359 NODE_NAME_CASE(SAMPLEB) 4360 NODE_NAME_CASE(SAMPLED) 4361 NODE_NAME_CASE(SAMPLEL) 4362 NODE_NAME_CASE(CVT_F32_UBYTE0) 4363 NODE_NAME_CASE(CVT_F32_UBYTE1) 4364 NODE_NAME_CASE(CVT_F32_UBYTE2) 4365 NODE_NAME_CASE(CVT_F32_UBYTE3) 4366 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4367 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4368 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4369 NODE_NAME_CASE(CVT_PK_I16_I32) 4370 NODE_NAME_CASE(CVT_PK_U16_U32) 4371 NODE_NAME_CASE(FP_TO_FP16) 4372 NODE_NAME_CASE(FP16_ZEXT) 4373 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4374 NODE_NAME_CASE(CONST_DATA_PTR) 4375 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4376 NODE_NAME_CASE(LDS) 4377 NODE_NAME_CASE(DUMMY_CHAIN) 4378 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4379 NODE_NAME_CASE(LOAD_D16_HI) 4380 NODE_NAME_CASE(LOAD_D16_LO) 4381 NODE_NAME_CASE(LOAD_D16_HI_I8) 4382 NODE_NAME_CASE(LOAD_D16_HI_U8) 4383 NODE_NAME_CASE(LOAD_D16_LO_I8) 4384 NODE_NAME_CASE(LOAD_D16_LO_U8) 4385 NODE_NAME_CASE(STORE_MSKOR) 4386 NODE_NAME_CASE(LOAD_CONSTANT) 4387 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4388 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4389 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4390 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4391 NODE_NAME_CASE(DS_ORDERED_COUNT) 4392 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4393 NODE_NAME_CASE(ATOMIC_INC) 4394 NODE_NAME_CASE(ATOMIC_DEC) 4395 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4396 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4397 NODE_NAME_CASE(BUFFER_LOAD) 4398 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4399 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4400 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4401 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4402 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4403 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4404 NODE_NAME_CASE(SBUFFER_LOAD) 4405 NODE_NAME_CASE(BUFFER_STORE) 4406 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4407 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4408 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4409 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4410 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4411 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4412 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4413 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4414 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4415 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4416 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4417 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4418 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4419 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4420 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4421 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4422 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4423 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4424 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) 4425 NODE_NAME_CASE(ATOMIC_PK_FADD) 4426 4427 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4428 } 4429 return nullptr; 4430 } 4431 4432 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4433 SelectionDAG &DAG, int Enabled, 4434 int &RefinementSteps, 4435 bool &UseOneConstNR, 4436 bool Reciprocal) const { 4437 EVT VT = Operand.getValueType(); 4438 4439 if (VT == MVT::f32) { 4440 RefinementSteps = 0; 4441 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4442 } 4443 4444 // TODO: There is also f64 rsq instruction, but the documentation is less 4445 // clear on its precision. 4446 4447 return SDValue(); 4448 } 4449 4450 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4451 SelectionDAG &DAG, int Enabled, 4452 int &RefinementSteps) const { 4453 EVT VT = Operand.getValueType(); 4454 4455 if (VT == MVT::f32) { 4456 // Reciprocal, < 1 ulp error. 4457 // 4458 // This reciprocal approximation converges to < 0.5 ulp error with one 4459 // newton rhapson performed with two fused multiple adds (FMAs). 4460 4461 RefinementSteps = 0; 4462 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4463 } 4464 4465 // TODO: There is also f64 rcp instruction, but the documentation is less 4466 // clear on its precision. 4467 4468 return SDValue(); 4469 } 4470 4471 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4472 const SDValue Op, KnownBits &Known, 4473 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4474 4475 Known.resetAll(); // Don't know anything. 4476 4477 unsigned Opc = Op.getOpcode(); 4478 4479 switch (Opc) { 4480 default: 4481 break; 4482 case AMDGPUISD::CARRY: 4483 case AMDGPUISD::BORROW: { 4484 Known.Zero = APInt::getHighBitsSet(32, 31); 4485 break; 4486 } 4487 4488 case AMDGPUISD::BFE_I32: 4489 case AMDGPUISD::BFE_U32: { 4490 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4491 if (!CWidth) 4492 return; 4493 4494 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4495 4496 if (Opc == AMDGPUISD::BFE_U32) 4497 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4498 4499 break; 4500 } 4501 case AMDGPUISD::FP_TO_FP16: 4502 case AMDGPUISD::FP16_ZEXT: { 4503 unsigned BitWidth = Known.getBitWidth(); 4504 4505 // High bits are zero. 4506 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4507 break; 4508 } 4509 case AMDGPUISD::MUL_U24: 4510 case AMDGPUISD::MUL_I24: { 4511 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4512 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4513 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4514 RHSKnown.countMinTrailingZeros(); 4515 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4516 // Skip extra check if all bits are known zeros. 4517 if (TrailZ >= 32) 4518 break; 4519 4520 // Truncate to 24 bits. 4521 LHSKnown = LHSKnown.trunc(24); 4522 RHSKnown = RHSKnown.trunc(24); 4523 4524 if (Opc == AMDGPUISD::MUL_I24) { 4525 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4526 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4527 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4528 if (MaxValBits >= 32) 4529 break; 4530 bool LHSNegative = LHSKnown.isNegative(); 4531 bool LHSNonNegative = LHSKnown.isNonNegative(); 4532 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4533 bool RHSNegative = RHSKnown.isNegative(); 4534 bool RHSNonNegative = RHSKnown.isNonNegative(); 4535 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4536 4537 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4538 Known.Zero.setHighBits(32 - MaxValBits); 4539 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4540 Known.One.setHighBits(32 - MaxValBits); 4541 } else { 4542 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4543 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4544 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4545 if (MaxValBits >= 32) 4546 break; 4547 Known.Zero.setHighBits(32 - MaxValBits); 4548 } 4549 break; 4550 } 4551 case AMDGPUISD::PERM: { 4552 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4553 if (!CMask) 4554 return; 4555 4556 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4557 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4558 unsigned Sel = CMask->getZExtValue(); 4559 4560 for (unsigned I = 0; I < 32; I += 8) { 4561 unsigned SelBits = Sel & 0xff; 4562 if (SelBits < 4) { 4563 SelBits *= 8; 4564 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4565 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4566 } else if (SelBits < 7) { 4567 SelBits = (SelBits & 3) * 8; 4568 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4569 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4570 } else if (SelBits == 0x0c) { 4571 Known.Zero |= 0xFFull << I; 4572 } else if (SelBits > 0x0c) { 4573 Known.One |= 0xFFull << I; 4574 } 4575 Sel >>= 8; 4576 } 4577 break; 4578 } 4579 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4580 Known.Zero.setHighBits(24); 4581 break; 4582 } 4583 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4584 Known.Zero.setHighBits(16); 4585 break; 4586 } 4587 case AMDGPUISD::LDS: { 4588 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4589 unsigned Align = GA->getGlobal()->getAlignment(); 4590 4591 Known.Zero.setHighBits(16); 4592 if (Align) 4593 Known.Zero.setLowBits(Log2_32(Align)); 4594 break; 4595 } 4596 case ISD::INTRINSIC_WO_CHAIN: { 4597 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4598 switch (IID) { 4599 case Intrinsic::amdgcn_mbcnt_lo: 4600 case Intrinsic::amdgcn_mbcnt_hi: { 4601 const GCNSubtarget &ST = 4602 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4603 // These return at most the wavefront size - 1. 4604 unsigned Size = Op.getValueType().getSizeInBits(); 4605 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4606 break; 4607 } 4608 default: 4609 break; 4610 } 4611 } 4612 } 4613 } 4614 4615 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4616 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4617 unsigned Depth) const { 4618 switch (Op.getOpcode()) { 4619 case AMDGPUISD::BFE_I32: { 4620 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4621 if (!Width) 4622 return 1; 4623 4624 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4625 if (!isNullConstant(Op.getOperand(1))) 4626 return SignBits; 4627 4628 // TODO: Could probably figure something out with non-0 offsets. 4629 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4630 return std::max(SignBits, Op0SignBits); 4631 } 4632 4633 case AMDGPUISD::BFE_U32: { 4634 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4635 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4636 } 4637 4638 case AMDGPUISD::CARRY: 4639 case AMDGPUISD::BORROW: 4640 return 31; 4641 case AMDGPUISD::BUFFER_LOAD_BYTE: 4642 return 25; 4643 case AMDGPUISD::BUFFER_LOAD_SHORT: 4644 return 17; 4645 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4646 return 24; 4647 case AMDGPUISD::BUFFER_LOAD_USHORT: 4648 return 16; 4649 case AMDGPUISD::FP_TO_FP16: 4650 case AMDGPUISD::FP16_ZEXT: 4651 return 16; 4652 default: 4653 return 1; 4654 } 4655 } 4656 4657 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4658 GISelKnownBits &Analysis, Register R, 4659 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4660 unsigned Depth) const { 4661 const MachineInstr *MI = MRI.getVRegDef(R); 4662 if (!MI) 4663 return 1; 4664 4665 // TODO: Check range metadata on MMO. 4666 switch (MI->getOpcode()) { 4667 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4668 return 25; 4669 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4670 return 17; 4671 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4672 return 24; 4673 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4674 return 16; 4675 default: 4676 return 1; 4677 } 4678 } 4679 4680 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4681 const SelectionDAG &DAG, 4682 bool SNaN, 4683 unsigned Depth) const { 4684 unsigned Opcode = Op.getOpcode(); 4685 switch (Opcode) { 4686 case AMDGPUISD::FMIN_LEGACY: 4687 case AMDGPUISD::FMAX_LEGACY: { 4688 if (SNaN) 4689 return true; 4690 4691 // TODO: Can check no nans on one of the operands for each one, but which 4692 // one? 4693 return false; 4694 } 4695 case AMDGPUISD::FMUL_LEGACY: 4696 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4697 if (SNaN) 4698 return true; 4699 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4700 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4701 } 4702 case AMDGPUISD::FMED3: 4703 case AMDGPUISD::FMIN3: 4704 case AMDGPUISD::FMAX3: 4705 case AMDGPUISD::FMAD_FTZ: { 4706 if (SNaN) 4707 return true; 4708 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4709 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4710 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4711 } 4712 case AMDGPUISD::CVT_F32_UBYTE0: 4713 case AMDGPUISD::CVT_F32_UBYTE1: 4714 case AMDGPUISD::CVT_F32_UBYTE2: 4715 case AMDGPUISD::CVT_F32_UBYTE3: 4716 return true; 4717 4718 case AMDGPUISD::RCP: 4719 case AMDGPUISD::RSQ: 4720 case AMDGPUISD::RCP_LEGACY: 4721 case AMDGPUISD::RSQ_CLAMP: { 4722 if (SNaN) 4723 return true; 4724 4725 // TODO: Need is known positive check. 4726 return false; 4727 } 4728 case AMDGPUISD::LDEXP: 4729 case AMDGPUISD::FRACT: { 4730 if (SNaN) 4731 return true; 4732 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4733 } 4734 case AMDGPUISD::DIV_SCALE: 4735 case AMDGPUISD::DIV_FMAS: 4736 case AMDGPUISD::DIV_FIXUP: 4737 case AMDGPUISD::TRIG_PREOP: 4738 // TODO: Refine on operands. 4739 return SNaN; 4740 case AMDGPUISD::SIN_HW: 4741 case AMDGPUISD::COS_HW: { 4742 // TODO: Need check for infinity 4743 return SNaN; 4744 } 4745 case ISD::INTRINSIC_WO_CHAIN: { 4746 unsigned IntrinsicID 4747 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4748 // TODO: Handle more intrinsics 4749 switch (IntrinsicID) { 4750 case Intrinsic::amdgcn_cubeid: 4751 return true; 4752 4753 case Intrinsic::amdgcn_frexp_mant: { 4754 if (SNaN) 4755 return true; 4756 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4757 } 4758 case Intrinsic::amdgcn_cvt_pkrtz: { 4759 if (SNaN) 4760 return true; 4761 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4762 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4763 } 4764 case Intrinsic::amdgcn_rcp: 4765 case Intrinsic::amdgcn_rsq: 4766 case Intrinsic::amdgcn_rcp_legacy: 4767 case Intrinsic::amdgcn_rsq_legacy: 4768 case Intrinsic::amdgcn_rsq_clamp: { 4769 if (SNaN) 4770 return true; 4771 4772 // TODO: Need is known positive check. 4773 return false; 4774 } 4775 case Intrinsic::amdgcn_fdot2: 4776 // TODO: Refine on operand 4777 return SNaN; 4778 default: 4779 return false; 4780 } 4781 } 4782 default: 4783 return false; 4784 } 4785 } 4786 4787 TargetLowering::AtomicExpansionKind 4788 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4789 switch (RMW->getOperation()) { 4790 case AtomicRMWInst::Nand: 4791 case AtomicRMWInst::FAdd: 4792 case AtomicRMWInst::FSub: 4793 return AtomicExpansionKind::CmpXChg; 4794 default: 4795 return AtomicExpansionKind::None; 4796 } 4797 } 4798