1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUDiagnosticInfoUnsupported.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "SIInstrInfo.h" 32 using namespace llvm; 33 34 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), 38 ArgFlags.getOrigAlign()); 39 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 40 41 return true; 42 } 43 44 #include "AMDGPUGenCallingConv.inc" 45 46 // Find a larger type to do a load / store of a vector with. 47 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 48 unsigned StoreSize = VT.getStoreSizeInBits(); 49 if (StoreSize <= 32) 50 return EVT::getIntegerVT(Ctx, StoreSize); 51 52 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 53 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 54 } 55 56 // Type for a vector that will be loaded to. 57 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 58 unsigned StoreSize = VT.getStoreSizeInBits(); 59 if (StoreSize <= 32) 60 return EVT::getIntegerVT(Ctx, 32); 61 62 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 setOperationAction(ISD::Constant, MVT::i32, Legal); 69 setOperationAction(ISD::Constant, MVT::i64, Legal); 70 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 71 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 72 73 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 74 setOperationAction(ISD::BRIND, MVT::Other, Expand); 75 76 // This is totally unsupported, just custom lower to produce an error. 77 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 78 79 // We need to custom lower some of the intrinsics 80 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 81 82 // Library functions. These default to Expand, but we have instructions 83 // for them. 84 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 85 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 86 setOperationAction(ISD::FPOW, MVT::f32, Legal); 87 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 88 setOperationAction(ISD::FABS, MVT::f32, Legal); 89 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 90 setOperationAction(ISD::FRINT, MVT::f32, Legal); 91 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 92 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 93 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 94 95 setOperationAction(ISD::FROUND, MVT::f32, Custom); 96 setOperationAction(ISD::FROUND, MVT::f64, Custom); 97 98 setOperationAction(ISD::FREM, MVT::f32, Custom); 99 setOperationAction(ISD::FREM, MVT::f64, Custom); 100 101 // v_mad_f32 does not support denormals according to some sources. 102 if (!Subtarget->hasFP32Denormals()) 103 setOperationAction(ISD::FMAD, MVT::f32, Legal); 104 105 // Expand to fneg + fadd. 106 setOperationAction(ISD::FSUB, MVT::f64, Expand); 107 108 // Lower floating point store/load to integer store/load to reduce the number 109 // of patterns in tablegen. 110 setOperationAction(ISD::STORE, MVT::f32, Promote); 111 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 112 113 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 114 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 115 116 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 117 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 118 119 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 120 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 121 122 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 123 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 124 125 setOperationAction(ISD::STORE, MVT::f64, Promote); 126 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64); 127 128 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 129 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64); 130 131 // Custom lowering of vector stores is required for local address space 132 // stores. 133 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 134 135 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 136 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 137 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 138 139 // XXX: This can be change to Custom, once ExpandVectorStores can 140 // handle 64-bit stores. 141 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 142 143 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 144 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 145 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 146 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 147 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand); 148 149 150 setOperationAction(ISD::LOAD, MVT::f32, Promote); 151 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 152 153 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 155 156 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 158 159 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 161 162 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 164 165 setOperationAction(ISD::LOAD, MVT::f64, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64); 167 168 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64); 170 171 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 172 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 173 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 174 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 175 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 176 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 177 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 178 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 179 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 180 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 181 182 // There are no 64-bit extloads. These should be done as a 32-bit extload and 183 // an extension to 64-bit. 184 for (MVT VT : MVT::integer_valuetypes()) { 185 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 186 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 187 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 188 } 189 190 for (MVT VT : MVT::integer_vector_valuetypes()) { 191 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 193 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 194 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 195 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 196 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 197 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 198 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 199 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 200 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 201 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 202 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 203 } 204 205 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 206 207 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 208 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 209 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 210 setOperationAction(ISD::FRINT, MVT::f64, Custom); 211 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 212 } 213 214 if (!Subtarget->hasBFI()) { 215 // fcopysign can be done in a single instruction with BFI. 216 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 217 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 218 } 219 220 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 221 222 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 223 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 226 227 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 228 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 231 232 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 233 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 234 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 235 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 236 237 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 238 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 239 240 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 241 for (MVT VT : ScalarIntVTs) { 242 setOperationAction(ISD::SREM, VT, Expand); 243 setOperationAction(ISD::SDIV, VT, Expand); 244 245 // GPU does not have divrem function for signed or unsigned. 246 setOperationAction(ISD::SDIVREM, VT, Custom); 247 setOperationAction(ISD::UDIVREM, VT, Custom); 248 249 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 250 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 251 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 252 253 setOperationAction(ISD::BSWAP, VT, Expand); 254 setOperationAction(ISD::CTTZ, VT, Expand); 255 setOperationAction(ISD::CTLZ, VT, Expand); 256 } 257 258 if (!Subtarget->hasBCNT(32)) 259 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 260 261 if (!Subtarget->hasBCNT(64)) 262 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 263 264 // The hardware supports 32-bit ROTR, but not ROTL. 265 setOperationAction(ISD::ROTL, MVT::i32, Expand); 266 setOperationAction(ISD::ROTL, MVT::i64, Expand); 267 setOperationAction(ISD::ROTR, MVT::i64, Expand); 268 269 setOperationAction(ISD::MUL, MVT::i64, Expand); 270 setOperationAction(ISD::MULHU, MVT::i64, Expand); 271 setOperationAction(ISD::MULHS, MVT::i64, Expand); 272 setOperationAction(ISD::UDIV, MVT::i32, Expand); 273 setOperationAction(ISD::UREM, MVT::i32, Expand); 274 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 275 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 276 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 277 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 278 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 279 280 setOperationAction(ISD::SMIN, MVT::i32, Legal); 281 setOperationAction(ISD::UMIN, MVT::i32, Legal); 282 setOperationAction(ISD::SMAX, MVT::i32, Legal); 283 setOperationAction(ISD::UMAX, MVT::i32, Legal); 284 285 if (Subtarget->hasFFBH()) 286 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 287 else 288 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 289 290 if (!Subtarget->hasFFBL()) 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 292 293 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 294 295 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 296 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 297 298 static const MVT::SimpleValueType VectorIntTypes[] = { 299 MVT::v2i32, MVT::v4i32 300 }; 301 302 for (MVT VT : VectorIntTypes) { 303 // Expand the following operations for the current type by default. 304 setOperationAction(ISD::ADD, VT, Expand); 305 setOperationAction(ISD::AND, VT, Expand); 306 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 307 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 308 setOperationAction(ISD::MUL, VT, Expand); 309 setOperationAction(ISD::OR, VT, Expand); 310 setOperationAction(ISD::SHL, VT, Expand); 311 setOperationAction(ISD::SRA, VT, Expand); 312 setOperationAction(ISD::SRL, VT, Expand); 313 setOperationAction(ISD::ROTL, VT, Expand); 314 setOperationAction(ISD::ROTR, VT, Expand); 315 setOperationAction(ISD::SUB, VT, Expand); 316 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 317 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 318 setOperationAction(ISD::SDIV, VT, Expand); 319 setOperationAction(ISD::UDIV, VT, Expand); 320 setOperationAction(ISD::SREM, VT, Expand); 321 setOperationAction(ISD::UREM, VT, Expand); 322 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 323 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 324 setOperationAction(ISD::SDIVREM, VT, Custom); 325 setOperationAction(ISD::UDIVREM, VT, Expand); 326 setOperationAction(ISD::ADDC, VT, Expand); 327 setOperationAction(ISD::SUBC, VT, Expand); 328 setOperationAction(ISD::ADDE, VT, Expand); 329 setOperationAction(ISD::SUBE, VT, Expand); 330 setOperationAction(ISD::SELECT, VT, Expand); 331 setOperationAction(ISD::VSELECT, VT, Expand); 332 setOperationAction(ISD::SELECT_CC, VT, Expand); 333 setOperationAction(ISD::XOR, VT, Expand); 334 setOperationAction(ISD::BSWAP, VT, Expand); 335 setOperationAction(ISD::CTPOP, VT, Expand); 336 setOperationAction(ISD::CTTZ, VT, Expand); 337 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 338 setOperationAction(ISD::CTLZ, VT, Expand); 339 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 340 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 341 } 342 343 static const MVT::SimpleValueType FloatVectorTypes[] = { 344 MVT::v2f32, MVT::v4f32 345 }; 346 347 for (MVT VT : FloatVectorTypes) { 348 setOperationAction(ISD::FABS, VT, Expand); 349 setOperationAction(ISD::FMINNUM, VT, Expand); 350 setOperationAction(ISD::FMAXNUM, VT, Expand); 351 setOperationAction(ISD::FADD, VT, Expand); 352 setOperationAction(ISD::FCEIL, VT, Expand); 353 setOperationAction(ISD::FCOS, VT, Expand); 354 setOperationAction(ISD::FDIV, VT, Expand); 355 setOperationAction(ISD::FEXP2, VT, Expand); 356 setOperationAction(ISD::FLOG2, VT, Expand); 357 setOperationAction(ISD::FREM, VT, Expand); 358 setOperationAction(ISD::FPOW, VT, Expand); 359 setOperationAction(ISD::FFLOOR, VT, Expand); 360 setOperationAction(ISD::FTRUNC, VT, Expand); 361 setOperationAction(ISD::FMUL, VT, Expand); 362 setOperationAction(ISD::FMA, VT, Expand); 363 setOperationAction(ISD::FRINT, VT, Expand); 364 setOperationAction(ISD::FNEARBYINT, VT, Expand); 365 setOperationAction(ISD::FSQRT, VT, Expand); 366 setOperationAction(ISD::FSIN, VT, Expand); 367 setOperationAction(ISD::FSUB, VT, Expand); 368 setOperationAction(ISD::FNEG, VT, Expand); 369 setOperationAction(ISD::SELECT, VT, Expand); 370 setOperationAction(ISD::VSELECT, VT, Expand); 371 setOperationAction(ISD::SELECT_CC, VT, Expand); 372 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 373 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 374 } 375 376 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 377 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 378 379 setTargetDAGCombine(ISD::AND); 380 setTargetDAGCombine(ISD::SHL); 381 setTargetDAGCombine(ISD::SRA); 382 setTargetDAGCombine(ISD::SRL); 383 setTargetDAGCombine(ISD::MUL); 384 setTargetDAGCombine(ISD::SELECT); 385 setTargetDAGCombine(ISD::SELECT_CC); 386 setTargetDAGCombine(ISD::STORE); 387 388 setTargetDAGCombine(ISD::FADD); 389 setTargetDAGCombine(ISD::FSUB); 390 391 setBooleanContents(ZeroOrNegativeOneBooleanContent); 392 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 393 394 setSchedulingPreference(Sched::RegPressure); 395 setJumpIsExpensive(true); 396 397 // SI at least has hardware support for floating point exceptions, but no way 398 // of using or handling them is implemented. They are also optional in OpenCL 399 // (Section 7.3) 400 setHasFloatingPointExceptions(false); 401 402 setSelectIsExpensive(false); 403 PredictableSelectIsExpensive = false; 404 405 setFsqrtIsCheap(true); 406 407 // We want to find all load dependencies for long chains of stores to enable 408 // merging into very wide vectors. The problem is with vectors with > 4 409 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 410 // vectors are a legal type, even though we have to split the loads 411 // usually. When we can more precisely specify load legality per address 412 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 413 // smarter so that they can figure out what to do in 2 iterations without all 414 // N > 4 stores on the same chain. 415 GatherAllAliasesMaxDepth = 16; 416 417 // FIXME: Need to really handle these. 418 MaxStoresPerMemcpy = 4096; 419 MaxStoresPerMemmove = 4096; 420 MaxStoresPerMemset = 4096; 421 } 422 423 //===----------------------------------------------------------------------===// 424 // Target Information 425 //===----------------------------------------------------------------------===// 426 427 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 428 return MVT::i32; 429 } 430 431 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 432 return true; 433 } 434 435 // The backend supports 32 and 64 bit floating point immediates. 436 // FIXME: Why are we reporting vectors of FP immediates as legal? 437 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 438 EVT ScalarVT = VT.getScalarType(); 439 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 440 } 441 442 // We don't want to shrink f64 / f32 constants. 443 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 444 EVT ScalarVT = VT.getScalarType(); 445 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 446 } 447 448 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 449 ISD::LoadExtType, 450 EVT NewVT) const { 451 452 unsigned NewSize = NewVT.getStoreSizeInBits(); 453 454 // If we are reducing to a 32-bit load, this is always better. 455 if (NewSize == 32) 456 return true; 457 458 EVT OldVT = N->getValueType(0); 459 unsigned OldSize = OldVT.getStoreSizeInBits(); 460 461 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 462 // extloads, so doing one requires using a buffer_load. In cases where we 463 // still couldn't use a scalar load, using the wider load shouldn't really 464 // hurt anything. 465 466 // If the old size already had to be an extload, there's no harm in continuing 467 // to reduce the width. 468 return (OldSize < 32); 469 } 470 471 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 472 EVT CastTy) const { 473 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 474 return true; 475 476 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 477 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 478 479 return ((LScalarSize <= CastScalarSize) || 480 (CastScalarSize >= 32) || 481 (LScalarSize < 32)); 482 } 483 484 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 485 // profitable with the expansion for 64-bit since it's generally good to 486 // speculate things. 487 // FIXME: These should really have the size as a parameter. 488 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 489 return true; 490 } 491 492 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 493 return true; 494 } 495 496 //===---------------------------------------------------------------------===// 497 // Target Properties 498 //===---------------------------------------------------------------------===// 499 500 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 501 assert(VT.isFloatingPoint()); 502 return VT == MVT::f32 || VT == MVT::f64; 503 } 504 505 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 506 assert(VT.isFloatingPoint()); 507 return VT == MVT::f32 || VT == MVT::f64; 508 } 509 510 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 511 unsigned NumElem, 512 unsigned AS) const { 513 return true; 514 } 515 516 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 517 // There are few operations which truly have vector input operands. Any vector 518 // operation is going to involve operations on each component, and a 519 // build_vector will be a copy per element, so it always makes sense to use a 520 // build_vector input in place of the extracted element to avoid a copy into a 521 // super register. 522 // 523 // We should probably only do this if all users are extracts only, but this 524 // should be the common case. 525 return true; 526 } 527 528 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 529 // Truncate is just accessing a subregister. 530 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 531 } 532 533 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 534 // Truncate is just accessing a subregister. 535 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 536 (Dest->getPrimitiveSizeInBits() % 32 == 0); 537 } 538 539 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 540 unsigned SrcSize = Src->getScalarSizeInBits(); 541 unsigned DestSize = Dest->getScalarSizeInBits(); 542 543 return SrcSize == 32 && DestSize == 64; 544 } 545 546 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 547 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 548 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 549 // this will enable reducing 64-bit operations the 32-bit, which is always 550 // good. 551 return Src == MVT::i32 && Dest == MVT::i64; 552 } 553 554 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 555 return isZExtFree(Val.getValueType(), VT2); 556 } 557 558 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 559 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 560 // limited number of native 64-bit operations. Shrinking an operation to fit 561 // in a single 32-bit register should always be helpful. As currently used, 562 // this is much less general than the name suggests, and is only used in 563 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 564 // not profitable, and may actually be harmful. 565 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 566 } 567 568 //===---------------------------------------------------------------------===// 569 // TargetLowering Callbacks 570 //===---------------------------------------------------------------------===// 571 572 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 573 const SmallVectorImpl<ISD::InputArg> &Ins) const { 574 575 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 576 } 577 578 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 579 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 580 581 State.AnalyzeReturn(Outs, RetCC_SI); 582 } 583 584 SDValue AMDGPUTargetLowering::LowerReturn( 585 SDValue Chain, 586 CallingConv::ID CallConv, 587 bool isVarArg, 588 const SmallVectorImpl<ISD::OutputArg> &Outs, 589 const SmallVectorImpl<SDValue> &OutVals, 590 SDLoc DL, SelectionDAG &DAG) const { 591 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 592 } 593 594 //===---------------------------------------------------------------------===// 595 // Target specific lowering 596 //===---------------------------------------------------------------------===// 597 598 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 599 SmallVectorImpl<SDValue> &InVals) const { 600 SDValue Callee = CLI.Callee; 601 SelectionDAG &DAG = CLI.DAG; 602 603 const Function &Fn = *DAG.getMachineFunction().getFunction(); 604 605 StringRef FuncName("<unknown>"); 606 607 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 608 FuncName = G->getSymbol(); 609 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 610 FuncName = G->getGlobal()->getName(); 611 612 DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName); 613 DAG.getContext()->diagnose(NoCalls); 614 return SDValue(); 615 } 616 617 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 618 SelectionDAG &DAG) const { 619 const Function &Fn = *DAG.getMachineFunction().getFunction(); 620 621 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "dynamic alloca"); 622 DAG.getContext()->diagnose(NoDynamicAlloca); 623 return SDValue(); 624 } 625 626 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 627 SelectionDAG &DAG) const { 628 switch (Op.getOpcode()) { 629 default: 630 Op.getNode()->dump(); 631 llvm_unreachable("Custom lowering code for this" 632 "instruction is not implemented yet!"); 633 break; 634 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 635 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 636 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 637 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); 638 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 639 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 640 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 641 case ISD::FREM: return LowerFREM(Op, DAG); 642 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 643 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 644 case ISD::FRINT: return LowerFRINT(Op, DAG); 645 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 646 case ISD::FROUND: return LowerFROUND(Op, DAG); 647 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 648 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 649 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 650 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 651 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 652 case ISD::CTLZ: 653 case ISD::CTLZ_ZERO_UNDEF: 654 return LowerCTLZ(Op, DAG); 655 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 656 } 657 return Op; 658 } 659 660 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 661 SmallVectorImpl<SDValue> &Results, 662 SelectionDAG &DAG) const { 663 switch (N->getOpcode()) { 664 case ISD::SIGN_EXTEND_INREG: 665 // Different parts of legalization seem to interpret which type of 666 // sign_extend_inreg is the one to check for custom lowering. The extended 667 // from type is what really matters, but some places check for custom 668 // lowering of the result type. This results in trying to use 669 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 670 // nothing here and let the illegal result integer be handled normally. 671 return; 672 case ISD::LOAD: { 673 SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode(); 674 if (!Node) 675 return; 676 677 Results.push_back(SDValue(Node, 0)); 678 Results.push_back(SDValue(Node, 1)); 679 // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode 680 // function 681 DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1)); 682 return; 683 } 684 case ISD::STORE: { 685 SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG); 686 if (Lowered.getNode()) 687 Results.push_back(Lowered); 688 return; 689 } 690 default: 691 return; 692 } 693 } 694 695 // FIXME: This implements accesses to initialized globals in the constant 696 // address space by copying them to private and accessing that. It does not 697 // properly handle illegal types or vectors. The private vector loads are not 698 // scalarized, and the illegal scalars hit an assertion. This technique will not 699 // work well with large initializers, and this should eventually be 700 // removed. Initialized globals should be placed into a data section that the 701 // runtime will load into a buffer before the kernel is executed. Uses of the 702 // global need to be replaced with a pointer loaded from an implicit kernel 703 // argument into this buffer holding the copy of the data, which will remove the 704 // need for any of this. 705 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 706 const GlobalValue *GV, 707 const SDValue &InitPtr, 708 SDValue Chain, 709 SelectionDAG &DAG) const { 710 const DataLayout &TD = DAG.getDataLayout(); 711 SDLoc DL(InitPtr); 712 Type *InitTy = Init->getType(); 713 714 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 715 EVT VT = EVT::getEVT(InitTy); 716 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 717 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 718 MachinePointerInfo(UndefValue::get(PtrTy)), false, 719 false, TD.getPrefTypeAlignment(InitTy)); 720 } 721 722 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 723 EVT VT = EVT::getEVT(CFP->getType()); 724 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 725 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 726 MachinePointerInfo(UndefValue::get(PtrTy)), false, 727 false, TD.getPrefTypeAlignment(CFP->getType())); 728 } 729 730 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 731 const StructLayout *SL = TD.getStructLayout(ST); 732 733 EVT PtrVT = InitPtr.getValueType(); 734 SmallVector<SDValue, 8> Chains; 735 736 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 737 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 738 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 739 740 Constant *Elt = Init->getAggregateElement(I); 741 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 742 } 743 744 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 745 } 746 747 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 748 EVT PtrVT = InitPtr.getValueType(); 749 750 unsigned NumElements; 751 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 752 NumElements = AT->getNumElements(); 753 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 754 NumElements = VT->getNumElements(); 755 else 756 llvm_unreachable("Unexpected type"); 757 758 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 759 SmallVector<SDValue, 8> Chains; 760 for (unsigned i = 0; i < NumElements; ++i) { 761 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 762 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 763 764 Constant *Elt = Init->getAggregateElement(i); 765 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 766 } 767 768 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 769 } 770 771 if (isa<UndefValue>(Init)) { 772 EVT VT = EVT::getEVT(InitTy); 773 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 774 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 775 MachinePointerInfo(UndefValue::get(PtrTy)), false, 776 false, TD.getPrefTypeAlignment(InitTy)); 777 } 778 779 Init->dump(); 780 llvm_unreachable("Unhandled constant initializer"); 781 } 782 783 static bool hasDefinedInitializer(const GlobalValue *GV) { 784 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 785 if (!GVar || !GVar->hasInitializer()) 786 return false; 787 788 if (isa<UndefValue>(GVar->getInitializer())) 789 return false; 790 791 return true; 792 } 793 794 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 795 SDValue Op, 796 SelectionDAG &DAG) const { 797 798 const DataLayout &DL = DAG.getDataLayout(); 799 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 800 const GlobalValue *GV = G->getGlobal(); 801 802 switch (G->getAddressSpace()) { 803 case AMDGPUAS::LOCAL_ADDRESS: { 804 // XXX: What does the value of G->getOffset() mean? 805 assert(G->getOffset() == 0 && 806 "Do not know what to do with an non-zero offset"); 807 808 // TODO: We could emit code to handle the initialization somewhere. 809 if (hasDefinedInitializer(GV)) 810 break; 811 812 unsigned Offset; 813 if (MFI->LocalMemoryObjects.count(GV) == 0) { 814 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 815 Offset = MFI->LDSSize; 816 MFI->LocalMemoryObjects[GV] = Offset; 817 // XXX: Account for alignment? 818 MFI->LDSSize += Size; 819 } else { 820 Offset = MFI->LocalMemoryObjects[GV]; 821 } 822 823 return DAG.getConstant(Offset, SDLoc(Op), 824 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 825 } 826 case AMDGPUAS::CONSTANT_ADDRESS: { 827 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 828 Type *EltType = GV->getValueType(); 829 unsigned Size = DL.getTypeAllocSize(EltType); 830 unsigned Alignment = DL.getPrefTypeAlignment(EltType); 831 832 MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS); 833 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 834 835 int FI = FrameInfo->CreateStackObject(Size, Alignment, false); 836 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT); 837 838 const GlobalVariable *Var = cast<GlobalVariable>(GV); 839 if (!Var->hasInitializer()) { 840 // This has no use, but bugpoint will hit it. 841 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 842 } 843 844 const Constant *Init = Var->getInitializer(); 845 SmallVector<SDNode*, 8> WorkList; 846 847 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(), 848 E = DAG.getEntryNode()->use_end(); I != E; ++I) { 849 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD) 850 continue; 851 WorkList.push_back(*I); 852 } 853 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG); 854 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(), 855 E = WorkList.end(); I != E; ++I) { 856 SmallVector<SDValue, 8> Ops; 857 Ops.push_back(Chain); 858 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) { 859 Ops.push_back((*I)->getOperand(i)); 860 } 861 DAG.UpdateNodeOperands(*I, Ops); 862 } 863 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 864 } 865 } 866 867 const Function &Fn = *DAG.getMachineFunction().getFunction(); 868 DiagnosticInfoUnsupported BadInit(Fn, 869 "initializer for address space"); 870 DAG.getContext()->diagnose(BadInit); 871 return SDValue(); 872 } 873 874 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 875 SelectionDAG &DAG) const { 876 SmallVector<SDValue, 8> Args; 877 878 for (const SDUse &U : Op->ops()) 879 DAG.ExtractVectorElements(U.get(), Args); 880 881 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 882 } 883 884 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 885 SelectionDAG &DAG) const { 886 887 SmallVector<SDValue, 8> Args; 888 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 889 EVT VT = Op.getValueType(); 890 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 891 VT.getVectorNumElements()); 892 893 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 894 } 895 896 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op, 897 SelectionDAG &DAG) const { 898 899 MachineFunction &MF = DAG.getMachineFunction(); 900 const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering(); 901 902 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 903 904 unsigned FrameIndex = FIN->getIndex(); 905 unsigned IgnoredFrameReg; 906 unsigned Offset = 907 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); 908 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), 909 Op.getValueType()); 910 } 911 912 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 913 SelectionDAG &DAG) const { 914 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 915 SDLoc DL(Op); 916 EVT VT = Op.getValueType(); 917 918 switch (IntrinsicID) { 919 default: return Op; 920 case AMDGPUIntrinsic::AMDGPU_clamp: 921 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 922 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 923 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 924 925 case Intrinsic::AMDGPU_rsq_clamped: 926 assert(Subtarget->getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS); 927 return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1)); 928 929 case Intrinsic::AMDGPU_ldexp: // Legacy name 930 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 931 Op.getOperand(2)); 932 933 case AMDGPUIntrinsic::AMDGPU_umul24: 934 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, 935 Op.getOperand(1), Op.getOperand(2)); 936 937 case AMDGPUIntrinsic::AMDGPU_imul24: 938 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, 939 Op.getOperand(1), Op.getOperand(2)); 940 941 case AMDGPUIntrinsic::AMDGPU_umad24: 942 return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT, 943 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 944 945 case AMDGPUIntrinsic::AMDGPU_imad24: 946 return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT, 947 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 948 949 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 950 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 951 Op.getOperand(1), 952 Op.getOperand(2), 953 Op.getOperand(3)); 954 955 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 956 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 957 Op.getOperand(1), 958 Op.getOperand(2), 959 Op.getOperand(3)); 960 961 case AMDGPUIntrinsic::AMDGPU_bfi: 962 return DAG.getNode(AMDGPUISD::BFI, DL, VT, 963 Op.getOperand(1), 964 Op.getOperand(2), 965 Op.getOperand(3)); 966 967 case AMDGPUIntrinsic::AMDGPU_bfm: 968 return DAG.getNode(AMDGPUISD::BFM, DL, VT, 969 Op.getOperand(1), 970 Op.getOperand(2)); 971 972 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 973 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 974 975 case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name 976 return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1)); 977 } 978 } 979 980 /// \brief Generate Min/Max node 981 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, 982 EVT VT, 983 SDValue LHS, 984 SDValue RHS, 985 SDValue True, 986 SDValue False, 987 SDValue CC, 988 DAGCombinerInfo &DCI) const { 989 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 990 return SDValue(); 991 992 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 993 return SDValue(); 994 995 SelectionDAG &DAG = DCI.DAG; 996 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 997 switch (CCOpcode) { 998 case ISD::SETOEQ: 999 case ISD::SETONE: 1000 case ISD::SETUNE: 1001 case ISD::SETNE: 1002 case ISD::SETUEQ: 1003 case ISD::SETEQ: 1004 case ISD::SETFALSE: 1005 case ISD::SETFALSE2: 1006 case ISD::SETTRUE: 1007 case ISD::SETTRUE2: 1008 case ISD::SETUO: 1009 case ISD::SETO: 1010 break; 1011 case ISD::SETULE: 1012 case ISD::SETULT: { 1013 if (LHS == True) 1014 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1015 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1016 } 1017 case ISD::SETOLE: 1018 case ISD::SETOLT: 1019 case ISD::SETLE: 1020 case ISD::SETLT: { 1021 // Ordered. Assume ordered for undefined. 1022 1023 // Only do this after legalization to avoid interfering with other combines 1024 // which might occur. 1025 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1026 !DCI.isCalledByLegalizer()) 1027 return SDValue(); 1028 1029 // We need to permute the operands to get the correct NaN behavior. The 1030 // selected operand is the second one based on the failing compare with NaN, 1031 // so permute it based on the compare type the hardware uses. 1032 if (LHS == True) 1033 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1034 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1035 } 1036 case ISD::SETUGE: 1037 case ISD::SETUGT: { 1038 if (LHS == True) 1039 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1040 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1041 } 1042 case ISD::SETGT: 1043 case ISD::SETGE: 1044 case ISD::SETOGE: 1045 case ISD::SETOGT: { 1046 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1047 !DCI.isCalledByLegalizer()) 1048 return SDValue(); 1049 1050 if (LHS == True) 1051 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1052 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1053 } 1054 case ISD::SETCC_INVALID: 1055 llvm_unreachable("Invalid setcc condcode!"); 1056 } 1057 return SDValue(); 1058 } 1059 1060 std::pair<SDValue, SDValue> 1061 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1062 SDLoc SL(Op); 1063 1064 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1065 1066 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1067 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1068 1069 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1070 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1071 1072 return std::make_pair(Lo, Hi); 1073 } 1074 1075 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1076 SDLoc SL(Op); 1077 1078 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1079 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1080 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1081 } 1082 1083 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1084 SDLoc SL(Op); 1085 1086 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1087 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1088 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1089 } 1090 1091 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op, 1092 SelectionDAG &DAG) const { 1093 LoadSDNode *Load = cast<LoadSDNode>(Op); 1094 EVT MemVT = Load->getMemoryVT(); 1095 EVT MemEltVT = MemVT.getVectorElementType(); 1096 1097 EVT LoadVT = Op.getValueType(); 1098 EVT EltVT = LoadVT.getVectorElementType(); 1099 EVT PtrVT = Load->getBasePtr().getValueType(); 1100 1101 unsigned NumElts = Load->getMemoryVT().getVectorNumElements(); 1102 SmallVector<SDValue, 8> Loads; 1103 SmallVector<SDValue, 8> Chains; 1104 1105 SDLoc SL(Op); 1106 unsigned MemEltSize = MemEltVT.getStoreSize(); 1107 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1108 1109 for (unsigned i = 0; i < NumElts; ++i) { 1110 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(), 1111 DAG.getConstant(i * MemEltSize, SL, PtrVT)); 1112 1113 SDValue NewLoad 1114 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT, 1115 Load->getChain(), Ptr, 1116 SrcValue.getWithOffset(i * MemEltSize), 1117 MemEltVT, Load->isVolatile(), Load->isNonTemporal(), 1118 Load->isInvariant(), Load->getAlignment()); 1119 Loads.push_back(NewLoad.getValue(0)); 1120 Chains.push_back(NewLoad.getValue(1)); 1121 } 1122 1123 SDValue Ops[] = { 1124 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads), 1125 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains) 1126 }; 1127 1128 return DAG.getMergeValues(Ops, SL); 1129 } 1130 1131 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1132 SelectionDAG &DAG) const { 1133 EVT VT = Op.getValueType(); 1134 1135 // If this is a 2 element vector, we really want to scalarize and not create 1136 // weird 1 element vectors. 1137 if (VT.getVectorNumElements() == 2) 1138 return ScalarizeVectorLoad(Op, DAG); 1139 1140 LoadSDNode *Load = cast<LoadSDNode>(Op); 1141 SDValue BasePtr = Load->getBasePtr(); 1142 EVT PtrVT = BasePtr.getValueType(); 1143 EVT MemVT = Load->getMemoryVT(); 1144 SDLoc SL(Op); 1145 1146 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1147 1148 EVT LoVT, HiVT; 1149 EVT LoMemVT, HiMemVT; 1150 SDValue Lo, Hi; 1151 1152 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1153 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1154 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1155 1156 unsigned Size = LoMemVT.getStoreSize(); 1157 unsigned BaseAlign = Load->getAlignment(); 1158 unsigned HiAlign = MinAlign(BaseAlign, Size); 1159 1160 SDValue LoLoad 1161 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1162 Load->getChain(), BasePtr, 1163 SrcValue, 1164 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1165 Load->isInvariant(), BaseAlign); 1166 1167 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1168 DAG.getConstant(Size, SL, PtrVT)); 1169 1170 SDValue HiLoad 1171 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1172 Load->getChain(), HiPtr, 1173 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1174 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1175 Load->isInvariant(), HiAlign); 1176 1177 SDValue Ops[] = { 1178 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1179 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1180 LoLoad.getValue(1), HiLoad.getValue(1)) 1181 }; 1182 1183 return DAG.getMergeValues(Ops, SL); 1184 } 1185 1186 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1187 SelectionDAG &DAG) const { 1188 StoreSDNode *Store = cast<StoreSDNode>(Op); 1189 EVT MemVT = Store->getMemoryVT(); 1190 unsigned MemBits = MemVT.getSizeInBits(); 1191 1192 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1193 // truncating store into an i32 store. 1194 // XXX: We could also handle optimize other vector bitwidths. 1195 if (!MemVT.isVector() || MemBits > 32) { 1196 return SDValue(); 1197 } 1198 1199 SDLoc DL(Op); 1200 SDValue Value = Store->getValue(); 1201 EVT VT = Value.getValueType(); 1202 EVT ElemVT = VT.getVectorElementType(); 1203 SDValue Ptr = Store->getBasePtr(); 1204 EVT MemEltVT = MemVT.getVectorElementType(); 1205 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1206 unsigned MemNumElements = MemVT.getVectorNumElements(); 1207 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1208 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1209 1210 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1211 1212 SDValue PackedValue; 1213 for (unsigned i = 0; i < MemNumElements; ++i) { 1214 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1215 DAG.getConstant(i, DL, MVT::i32)); 1216 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1217 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1218 1219 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1220 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1221 1222 if (i == 0) { 1223 PackedValue = Elt; 1224 } else { 1225 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1226 } 1227 } 1228 1229 if (PackedSize < 32) { 1230 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1231 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1232 Store->getMemOperand()->getPointerInfo(), 1233 PackedVT, 1234 Store->isNonTemporal(), Store->isVolatile(), 1235 Store->getAlignment()); 1236 } 1237 1238 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1239 Store->getMemOperand()->getPointerInfo(), 1240 Store->isVolatile(), Store->isNonTemporal(), 1241 Store->getAlignment()); 1242 } 1243 1244 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op, 1245 SelectionDAG &DAG) const { 1246 StoreSDNode *Store = cast<StoreSDNode>(Op); 1247 EVT MemEltVT = Store->getMemoryVT().getVectorElementType(); 1248 EVT EltVT = Store->getValue().getValueType().getVectorElementType(); 1249 EVT PtrVT = Store->getBasePtr().getValueType(); 1250 unsigned NumElts = Store->getMemoryVT().getVectorNumElements(); 1251 SDLoc SL(Op); 1252 1253 SmallVector<SDValue, 8> Chains; 1254 1255 unsigned EltSize = MemEltVT.getStoreSize(); 1256 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1257 1258 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1259 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 1260 Store->getValue(), 1261 DAG.getConstant(i, SL, MVT::i32)); 1262 1263 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT); 1264 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset); 1265 SDValue NewStore = 1266 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr, 1267 SrcValue.getWithOffset(i * EltSize), 1268 MemEltVT, Store->isNonTemporal(), Store->isVolatile(), 1269 Store->getAlignment()); 1270 Chains.push_back(NewStore); 1271 } 1272 1273 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains); 1274 } 1275 1276 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1277 SelectionDAG &DAG) const { 1278 StoreSDNode *Store = cast<StoreSDNode>(Op); 1279 SDValue Val = Store->getValue(); 1280 EVT VT = Val.getValueType(); 1281 1282 // If this is a 2 element vector, we really want to scalarize and not create 1283 // weird 1 element vectors. 1284 if (VT.getVectorNumElements() == 2) 1285 return ScalarizeVectorStore(Op, DAG); 1286 1287 EVT MemVT = Store->getMemoryVT(); 1288 SDValue Chain = Store->getChain(); 1289 SDValue BasePtr = Store->getBasePtr(); 1290 SDLoc SL(Op); 1291 1292 EVT LoVT, HiVT; 1293 EVT LoMemVT, HiMemVT; 1294 SDValue Lo, Hi; 1295 1296 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1297 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1298 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1299 1300 EVT PtrVT = BasePtr.getValueType(); 1301 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1302 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1303 PtrVT)); 1304 1305 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1306 unsigned BaseAlign = Store->getAlignment(); 1307 unsigned Size = LoMemVT.getStoreSize(); 1308 unsigned HiAlign = MinAlign(BaseAlign, Size); 1309 1310 SDValue LoStore 1311 = DAG.getTruncStore(Chain, SL, Lo, 1312 BasePtr, 1313 SrcValue, 1314 LoMemVT, 1315 Store->isNonTemporal(), 1316 Store->isVolatile(), 1317 BaseAlign); 1318 SDValue HiStore 1319 = DAG.getTruncStore(Chain, SL, Hi, 1320 HiPtr, 1321 SrcValue.getWithOffset(Size), 1322 HiMemVT, 1323 Store->isNonTemporal(), 1324 Store->isVolatile(), 1325 HiAlign); 1326 1327 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1328 } 1329 1330 1331 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1332 SDLoc DL(Op); 1333 LoadSDNode *Load = cast<LoadSDNode>(Op); 1334 ISD::LoadExtType ExtType = Load->getExtensionType(); 1335 EVT VT = Op.getValueType(); 1336 EVT MemVT = Load->getMemoryVT(); 1337 1338 if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) { 1339 assert(VT == MVT::i1 && "Only i1 non-extloads expected"); 1340 // FIXME: Copied from PPC 1341 // First, load into 32 bits, then truncate to 1 bit. 1342 1343 SDValue Chain = Load->getChain(); 1344 SDValue BasePtr = Load->getBasePtr(); 1345 MachineMemOperand *MMO = Load->getMemOperand(); 1346 1347 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 1348 BasePtr, MVT::i8, MMO); 1349 1350 SDValue Ops[] = { 1351 DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD), 1352 NewLD.getValue(1) 1353 }; 1354 1355 return DAG.getMergeValues(Ops, DL); 1356 } 1357 1358 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS || 1359 Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS || 1360 ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32)) 1361 return SDValue(); 1362 1363 // <SI && AS=PRIVATE && EXTLOAD && size < 32bit, 1364 // register (2-)byte extract. 1365 1366 // Get Register holding the target. 1367 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(), 1368 DAG.getConstant(2, DL, MVT::i32)); 1369 // Load the Register. 1370 SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(), 1371 Load->getChain(), Ptr, 1372 DAG.getTargetConstant(0, DL, MVT::i32), 1373 Op.getOperand(2)); 1374 1375 // Get offset within the register. 1376 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, 1377 Load->getBasePtr(), 1378 DAG.getConstant(0x3, DL, MVT::i32)); 1379 1380 // Bit offset of target byte (byteIdx * 8). 1381 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1382 DAG.getConstant(3, DL, MVT::i32)); 1383 1384 // Shift to the right. 1385 Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt); 1386 1387 // Eliminate the upper bits by setting them to ... 1388 EVT MemEltVT = MemVT.getScalarType(); 1389 1390 // ... ones. 1391 if (ExtType == ISD::SEXTLOAD) { 1392 SDValue MemEltVTNode = DAG.getValueType(MemEltVT); 1393 1394 SDValue Ops[] = { 1395 DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode), 1396 Load->getChain() 1397 }; 1398 1399 return DAG.getMergeValues(Ops, DL); 1400 } 1401 1402 // ... or zeros. 1403 SDValue Ops[] = { 1404 DAG.getZeroExtendInReg(Ret, DL, MemEltVT), 1405 Load->getChain() 1406 }; 1407 1408 return DAG.getMergeValues(Ops, DL); 1409 } 1410 1411 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1412 SDLoc DL(Op); 1413 SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG); 1414 if (Result.getNode()) { 1415 return Result; 1416 } 1417 1418 StoreSDNode *Store = cast<StoreSDNode>(Op); 1419 SDValue Chain = Store->getChain(); 1420 if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1421 Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && 1422 Store->getValue().getValueType().isVector()) { 1423 return SplitVectorStore(Op, DAG); 1424 } 1425 1426 EVT MemVT = Store->getMemoryVT(); 1427 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS && 1428 MemVT.bitsLT(MVT::i32)) { 1429 unsigned Mask = 0; 1430 if (Store->getMemoryVT() == MVT::i8) { 1431 Mask = 0xff; 1432 } else if (Store->getMemoryVT() == MVT::i16) { 1433 Mask = 0xffff; 1434 } 1435 SDValue BasePtr = Store->getBasePtr(); 1436 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr, 1437 DAG.getConstant(2, DL, MVT::i32)); 1438 SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32, 1439 Chain, Ptr, 1440 DAG.getTargetConstant(0, DL, MVT::i32)); 1441 1442 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr, 1443 DAG.getConstant(0x3, DL, MVT::i32)); 1444 1445 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1446 DAG.getConstant(3, DL, MVT::i32)); 1447 1448 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, 1449 Store->getValue()); 1450 1451 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); 1452 1453 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, 1454 MaskedValue, ShiftAmt); 1455 1456 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, 1457 DAG.getConstant(Mask, DL, MVT::i32), 1458 ShiftAmt); 1459 DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask, 1460 DAG.getConstant(0xffffffff, DL, MVT::i32)); 1461 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); 1462 1463 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); 1464 return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, 1465 Chain, Value, Ptr, 1466 DAG.getTargetConstant(0, DL, MVT::i32)); 1467 } 1468 return SDValue(); 1469 } 1470 1471 // This is a shortcut for integer division because we have fast i32<->f32 1472 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1473 // float is enough to accurately represent up to a 24-bit integer. 1474 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const { 1475 SDLoc DL(Op); 1476 EVT VT = Op.getValueType(); 1477 SDValue LHS = Op.getOperand(0); 1478 SDValue RHS = Op.getOperand(1); 1479 MVT IntVT = MVT::i32; 1480 MVT FltVT = MVT::f32; 1481 1482 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1483 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1484 1485 if (VT.isVector()) { 1486 unsigned NElts = VT.getVectorNumElements(); 1487 IntVT = MVT::getVectorVT(MVT::i32, NElts); 1488 FltVT = MVT::getVectorVT(MVT::f32, NElts); 1489 } 1490 1491 unsigned BitSize = VT.getScalarType().getSizeInBits(); 1492 1493 SDValue jq = DAG.getConstant(1, DL, IntVT); 1494 1495 if (sign) { 1496 // char|short jq = ia ^ ib; 1497 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1498 1499 // jq = jq >> (bitsize - 2) 1500 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1501 DAG.getConstant(BitSize - 2, DL, VT)); 1502 1503 // jq = jq | 0x1 1504 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1505 1506 // jq = (int)jq 1507 jq = DAG.getSExtOrTrunc(jq, DL, IntVT); 1508 } 1509 1510 // int ia = (int)LHS; 1511 SDValue ia = sign ? 1512 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT); 1513 1514 // int ib, (int)RHS; 1515 SDValue ib = sign ? 1516 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT); 1517 1518 // float fa = (float)ia; 1519 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1520 1521 // float fb = (float)ib; 1522 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1523 1524 // TODO: Should this propagate fast-math-flags? 1525 // float fq = native_divide(fa, fb); 1526 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1527 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1528 1529 // fq = trunc(fq); 1530 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1531 1532 // float fqneg = -fq; 1533 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1534 1535 // float fr = mad(fqneg, fb, fa); 1536 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT, 1537 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa); 1538 1539 // int iq = (int)fq; 1540 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1541 1542 // fr = fabs(fr); 1543 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1544 1545 // fb = fabs(fb); 1546 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1547 1548 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1549 1550 // int cv = fr >= fb; 1551 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1552 1553 // jq = (cv ? jq : 0); 1554 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1555 1556 // dst = trunc/extend to legal type 1557 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT); 1558 1559 // dst = iq + jq; 1560 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1561 1562 // Rem needs compensation, it's easier to recompute it 1563 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1564 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1565 1566 SDValue Res[2] = { 1567 Div, 1568 Rem 1569 }; 1570 return DAG.getMergeValues(Res, DL); 1571 } 1572 1573 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1574 SelectionDAG &DAG, 1575 SmallVectorImpl<SDValue> &Results) const { 1576 assert(Op.getValueType() == MVT::i64); 1577 1578 SDLoc DL(Op); 1579 EVT VT = Op.getValueType(); 1580 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1581 1582 SDValue one = DAG.getConstant(1, DL, HalfVT); 1583 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1584 1585 //HiLo split 1586 SDValue LHS = Op.getOperand(0); 1587 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1588 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1589 1590 SDValue RHS = Op.getOperand(1); 1591 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1592 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1593 1594 if (VT == MVT::i64 && 1595 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1596 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1597 1598 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1599 LHS_Lo, RHS_Lo); 1600 1601 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero); 1602 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero); 1603 Results.push_back(DIV); 1604 Results.push_back(REM); 1605 return; 1606 } 1607 1608 // Get Speculative values 1609 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1610 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1611 1612 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1613 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero); 1614 1615 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1616 SDValue DIV_Lo = zero; 1617 1618 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1619 1620 for (unsigned i = 0; i < halfBitWidth; ++i) { 1621 const unsigned bitPos = halfBitWidth - i - 1; 1622 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1623 // Get value of high bit 1624 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1625 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1626 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1627 1628 // Shift 1629 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1630 // Add LHS high bit 1631 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1632 1633 SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT); 1634 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1635 1636 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1637 1638 // Update REM 1639 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1640 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1641 } 1642 1643 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi); 1644 Results.push_back(DIV); 1645 Results.push_back(REM); 1646 } 1647 1648 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1649 SelectionDAG &DAG) const { 1650 SDLoc DL(Op); 1651 EVT VT = Op.getValueType(); 1652 1653 if (VT == MVT::i64) { 1654 SmallVector<SDValue, 2> Results; 1655 LowerUDIVREM64(Op, DAG, Results); 1656 return DAG.getMergeValues(Results, DL); 1657 } 1658 1659 SDValue Num = Op.getOperand(0); 1660 SDValue Den = Op.getOperand(1); 1661 1662 if (VT == MVT::i32) { 1663 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) && 1664 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) { 1665 // TODO: We technically could do this for i64, but shouldn't that just be 1666 // handled by something generally reducing 64-bit division on 32-bit 1667 // values to 32-bit? 1668 return LowerDIVREM24(Op, DAG, false); 1669 } 1670 } 1671 1672 // RCP = URECIP(Den) = 2^32 / Den + e 1673 // e is rounding error. 1674 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1675 1676 // RCP_LO = mul(RCP, Den) */ 1677 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1678 1679 // RCP_HI = mulhu (RCP, Den) */ 1680 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1681 1682 // NEG_RCP_LO = -RCP_LO 1683 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1684 RCP_LO); 1685 1686 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1687 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1688 NEG_RCP_LO, RCP_LO, 1689 ISD::SETEQ); 1690 // Calculate the rounding error from the URECIP instruction 1691 // E = mulhu(ABS_RCP_LO, RCP) 1692 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1693 1694 // RCP_A_E = RCP + E 1695 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1696 1697 // RCP_S_E = RCP - E 1698 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1699 1700 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1701 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1702 RCP_A_E, RCP_S_E, 1703 ISD::SETEQ); 1704 // Quotient = mulhu(Tmp0, Num) 1705 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1706 1707 // Num_S_Remainder = Quotient * Den 1708 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1709 1710 // Remainder = Num - Num_S_Remainder 1711 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1712 1713 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1714 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1715 DAG.getConstant(-1, DL, VT), 1716 DAG.getConstant(0, DL, VT), 1717 ISD::SETUGE); 1718 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1719 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1720 Num_S_Remainder, 1721 DAG.getConstant(-1, DL, VT), 1722 DAG.getConstant(0, DL, VT), 1723 ISD::SETUGE); 1724 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1725 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1726 Remainder_GE_Zero); 1727 1728 // Calculate Division result: 1729 1730 // Quotient_A_One = Quotient + 1 1731 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1732 DAG.getConstant(1, DL, VT)); 1733 1734 // Quotient_S_One = Quotient - 1 1735 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1736 DAG.getConstant(1, DL, VT)); 1737 1738 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1739 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1740 Quotient, Quotient_A_One, ISD::SETEQ); 1741 1742 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1743 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1744 Quotient_S_One, Div, ISD::SETEQ); 1745 1746 // Calculate Rem result: 1747 1748 // Remainder_S_Den = Remainder - Den 1749 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1750 1751 // Remainder_A_Den = Remainder + Den 1752 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1753 1754 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1755 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1756 Remainder, Remainder_S_Den, ISD::SETEQ); 1757 1758 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1759 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1760 Remainder_A_Den, Rem, ISD::SETEQ); 1761 SDValue Ops[2] = { 1762 Div, 1763 Rem 1764 }; 1765 return DAG.getMergeValues(Ops, DL); 1766 } 1767 1768 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1769 SelectionDAG &DAG) const { 1770 SDLoc DL(Op); 1771 EVT VT = Op.getValueType(); 1772 1773 SDValue LHS = Op.getOperand(0); 1774 SDValue RHS = Op.getOperand(1); 1775 1776 SDValue Zero = DAG.getConstant(0, DL, VT); 1777 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1778 1779 if (VT == MVT::i32 && 1780 DAG.ComputeNumSignBits(LHS) > 8 && 1781 DAG.ComputeNumSignBits(RHS) > 8) { 1782 return LowerDIVREM24(Op, DAG, true); 1783 } 1784 if (VT == MVT::i64 && 1785 DAG.ComputeNumSignBits(LHS) > 32 && 1786 DAG.ComputeNumSignBits(RHS) > 32) { 1787 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1788 1789 //HiLo split 1790 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1791 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1792 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1793 LHS_Lo, RHS_Lo); 1794 SDValue Res[2] = { 1795 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1796 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1797 }; 1798 return DAG.getMergeValues(Res, DL); 1799 } 1800 1801 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1802 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1803 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1804 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1805 1806 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1807 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1808 1809 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1810 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1811 1812 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1813 SDValue Rem = Div.getValue(1); 1814 1815 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1816 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1817 1818 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1819 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1820 1821 SDValue Res[2] = { 1822 Div, 1823 Rem 1824 }; 1825 return DAG.getMergeValues(Res, DL); 1826 } 1827 1828 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1829 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1830 SDLoc SL(Op); 1831 EVT VT = Op.getValueType(); 1832 SDValue X = Op.getOperand(0); 1833 SDValue Y = Op.getOperand(1); 1834 1835 // TODO: Should this propagate fast-math-flags? 1836 1837 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1838 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1839 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1840 1841 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1842 } 1843 1844 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1845 SDLoc SL(Op); 1846 SDValue Src = Op.getOperand(0); 1847 1848 // result = trunc(src) 1849 // if (src > 0.0 && src != result) 1850 // result += 1.0 1851 1852 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1853 1854 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1855 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1856 1857 EVT SetCCVT = 1858 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1859 1860 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1861 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1862 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1863 1864 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1865 // TODO: Should this propagate fast-math-flags? 1866 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1867 } 1868 1869 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { 1870 const unsigned FractBits = 52; 1871 const unsigned ExpBits = 11; 1872 1873 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1874 Hi, 1875 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1876 DAG.getConstant(ExpBits, SL, MVT::i32)); 1877 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1878 DAG.getConstant(1023, SL, MVT::i32)); 1879 1880 return Exp; 1881 } 1882 1883 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1884 SDLoc SL(Op); 1885 SDValue Src = Op.getOperand(0); 1886 1887 assert(Op.getValueType() == MVT::f64); 1888 1889 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1890 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1891 1892 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1893 1894 // Extract the upper half, since this is where we will find the sign and 1895 // exponent. 1896 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1897 1898 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1899 1900 const unsigned FractBits = 52; 1901 1902 // Extract the sign bit. 1903 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1904 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1905 1906 // Extend back to to 64-bits. 1907 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 1908 Zero, SignBit); 1909 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1910 1911 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1912 const SDValue FractMask 1913 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1914 1915 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1916 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1917 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1918 1919 EVT SetCCVT = 1920 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1921 1922 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1923 1924 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1925 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1926 1927 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1928 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1929 1930 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1931 } 1932 1933 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1934 SDLoc SL(Op); 1935 SDValue Src = Op.getOperand(0); 1936 1937 assert(Op.getValueType() == MVT::f64); 1938 1939 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 1940 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1941 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1942 1943 // TODO: Should this propagate fast-math-flags? 1944 1945 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1946 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1947 1948 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1949 1950 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 1951 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1952 1953 EVT SetCCVT = 1954 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1955 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1956 1957 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1958 } 1959 1960 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1961 // FNEARBYINT and FRINT are the same, except in their handling of FP 1962 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1963 // rint, so just treat them as equivalent. 1964 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1965 } 1966 1967 // XXX - May require not supporting f32 denormals? 1968 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1969 SDLoc SL(Op); 1970 SDValue X = Op.getOperand(0); 1971 1972 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1973 1974 // TODO: Should this propagate fast-math-flags? 1975 1976 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1977 1978 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1979 1980 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1981 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1982 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1983 1984 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1985 1986 EVT SetCCVT = 1987 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1988 1989 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1990 1991 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1992 1993 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1994 } 1995 1996 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1997 SDLoc SL(Op); 1998 SDValue X = Op.getOperand(0); 1999 2000 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2001 2002 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2003 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2004 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2005 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2006 EVT SetCCVT = 2007 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2008 2009 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2010 2011 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2012 2013 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2014 2015 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2016 MVT::i64); 2017 2018 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2019 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2020 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2021 MVT::i64), 2022 Exp); 2023 2024 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2025 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2026 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2027 ISD::SETNE); 2028 2029 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2030 D, DAG.getConstant(0, SL, MVT::i64)); 2031 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2032 2033 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2034 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2035 2036 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2037 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2038 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2039 2040 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2041 ExpEqNegOne, 2042 DAG.getConstantFP(1.0, SL, MVT::f64), 2043 DAG.getConstantFP(0.0, SL, MVT::f64)); 2044 2045 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2046 2047 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2048 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2049 2050 return K; 2051 } 2052 2053 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2054 EVT VT = Op.getValueType(); 2055 2056 if (VT == MVT::f32) 2057 return LowerFROUND32(Op, DAG); 2058 2059 if (VT == MVT::f64) 2060 return LowerFROUND64(Op, DAG); 2061 2062 llvm_unreachable("unhandled type"); 2063 } 2064 2065 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2066 SDLoc SL(Op); 2067 SDValue Src = Op.getOperand(0); 2068 2069 // result = trunc(src); 2070 // if (src < 0.0 && src != result) 2071 // result += -1.0. 2072 2073 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2074 2075 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2076 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2077 2078 EVT SetCCVT = 2079 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2080 2081 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2082 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2083 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2084 2085 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2086 // TODO: Should this propagate fast-math-flags? 2087 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2088 } 2089 2090 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 2091 SDLoc SL(Op); 2092 SDValue Src = Op.getOperand(0); 2093 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2094 2095 if (ZeroUndef && Src.getValueType() == MVT::i32) 2096 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 2097 2098 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2099 2100 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2101 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2102 2103 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2104 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2105 2106 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2107 *DAG.getContext(), MVT::i32); 2108 2109 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 2110 2111 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 2112 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 2113 2114 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2115 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 2116 2117 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2118 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 2119 2120 if (!ZeroUndef) { 2121 // Test if the full 64-bit input is zero. 2122 2123 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2124 // which we probably don't want. 2125 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 2126 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 2127 2128 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2129 // with the same cycles, otherwise it is slower. 2130 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2131 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2132 2133 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2134 2135 // The instruction returns -1 for 0 input, but the defined intrinsic 2136 // behavior is to return the number of bits. 2137 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2138 SrcIsZero, Bits32, NewCtlz); 2139 } 2140 2141 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 2142 } 2143 2144 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2145 bool Signed) const { 2146 // Unsigned 2147 // cul2f(ulong u) 2148 //{ 2149 // uint lz = clz(u); 2150 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2151 // u = (u << lz) & 0x7fffffffffffffffUL; 2152 // ulong t = u & 0xffffffffffUL; 2153 // uint v = (e << 23) | (uint)(u >> 40); 2154 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2155 // return as_float(v + r); 2156 //} 2157 // Signed 2158 // cl2f(long l) 2159 //{ 2160 // long s = l >> 63; 2161 // float r = cul2f((l + s) ^ s); 2162 // return s ? -r : r; 2163 //} 2164 2165 SDLoc SL(Op); 2166 SDValue Src = Op.getOperand(0); 2167 SDValue L = Src; 2168 2169 SDValue S; 2170 if (Signed) { 2171 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2172 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2173 2174 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2175 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2176 } 2177 2178 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2179 *DAG.getContext(), MVT::f32); 2180 2181 2182 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2183 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2184 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2185 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2186 2187 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2188 SDValue E = DAG.getSelect(SL, MVT::i32, 2189 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2190 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2191 ZeroI32); 2192 2193 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2194 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2195 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2196 2197 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2198 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2199 2200 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2201 U, DAG.getConstant(40, SL, MVT::i64)); 2202 2203 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2204 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2205 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2206 2207 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2208 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2209 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2210 2211 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2212 2213 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2214 2215 SDValue R = DAG.getSelect(SL, MVT::i32, 2216 RCmp, 2217 One, 2218 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2219 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2220 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2221 2222 if (!Signed) 2223 return R; 2224 2225 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2226 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2227 } 2228 2229 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2230 bool Signed) const { 2231 SDLoc SL(Op); 2232 SDValue Src = Op.getOperand(0); 2233 2234 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2235 2236 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2237 DAG.getConstant(0, SL, MVT::i32)); 2238 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2239 DAG.getConstant(1, SL, MVT::i32)); 2240 2241 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2242 SL, MVT::f64, Hi); 2243 2244 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2245 2246 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2247 DAG.getConstant(32, SL, MVT::i32)); 2248 // TODO: Should this propagate fast-math-flags? 2249 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2250 } 2251 2252 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2253 SelectionDAG &DAG) const { 2254 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2255 "operation should be legal"); 2256 2257 EVT DestVT = Op.getValueType(); 2258 if (DestVT == MVT::f64) 2259 return LowerINT_TO_FP64(Op, DAG, false); 2260 2261 if (DestVT == MVT::f32) 2262 return LowerINT_TO_FP32(Op, DAG, false); 2263 2264 return SDValue(); 2265 } 2266 2267 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2268 SelectionDAG &DAG) const { 2269 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2270 "operation should be legal"); 2271 2272 EVT DestVT = Op.getValueType(); 2273 if (DestVT == MVT::f32) 2274 return LowerINT_TO_FP32(Op, DAG, true); 2275 2276 if (DestVT == MVT::f64) 2277 return LowerINT_TO_FP64(Op, DAG, true); 2278 2279 return SDValue(); 2280 } 2281 2282 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2283 bool Signed) const { 2284 SDLoc SL(Op); 2285 2286 SDValue Src = Op.getOperand(0); 2287 2288 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2289 2290 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2291 MVT::f64); 2292 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2293 MVT::f64); 2294 // TODO: Should this propagate fast-math-flags? 2295 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2296 2297 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2298 2299 2300 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2301 2302 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2303 MVT::i32, FloorMul); 2304 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2305 2306 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi); 2307 2308 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2309 } 2310 2311 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2312 SelectionDAG &DAG) const { 2313 SDValue Src = Op.getOperand(0); 2314 2315 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2316 return LowerFP64_TO_INT(Op, DAG, true); 2317 2318 return SDValue(); 2319 } 2320 2321 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2322 SelectionDAG &DAG) const { 2323 SDValue Src = Op.getOperand(0); 2324 2325 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2326 return LowerFP64_TO_INT(Op, DAG, false); 2327 2328 return SDValue(); 2329 } 2330 2331 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2332 SelectionDAG &DAG) const { 2333 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2334 MVT VT = Op.getSimpleValueType(); 2335 MVT ScalarVT = VT.getScalarType(); 2336 2337 if (!VT.isVector()) 2338 return SDValue(); 2339 2340 SDValue Src = Op.getOperand(0); 2341 SDLoc DL(Op); 2342 2343 // TODO: Don't scalarize on Evergreen? 2344 unsigned NElts = VT.getVectorNumElements(); 2345 SmallVector<SDValue, 8> Args; 2346 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2347 2348 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2349 for (unsigned I = 0; I < NElts; ++I) 2350 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2351 2352 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args); 2353 } 2354 2355 //===----------------------------------------------------------------------===// 2356 // Custom DAG optimizations 2357 //===----------------------------------------------------------------------===// 2358 2359 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2360 APInt KnownZero, KnownOne; 2361 EVT VT = Op.getValueType(); 2362 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2363 2364 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2365 } 2366 2367 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2368 EVT VT = Op.getValueType(); 2369 2370 // In order for this to be a signed 24-bit value, bit 23, must 2371 // be a sign bit. 2372 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2373 // as unsigned 24-bit values. 2374 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2375 } 2376 2377 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2378 2379 SelectionDAG &DAG = DCI.DAG; 2380 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2381 EVT VT = Op.getValueType(); 2382 2383 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2384 APInt KnownZero, KnownOne; 2385 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2386 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2387 DCI.CommitTargetLoweringOpt(TLO); 2388 } 2389 2390 template <typename IntTy> 2391 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, 2392 uint32_t Offset, uint32_t Width, SDLoc DL) { 2393 if (Width + Offset < 32) { 2394 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2395 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2396 return DAG.getConstant(Result, DL, MVT::i32); 2397 } 2398 2399 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2400 } 2401 2402 static bool usesAllNormalStores(SDNode *LoadVal) { 2403 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2404 if (!ISD::isNormalStore(*I)) 2405 return false; 2406 } 2407 2408 return true; 2409 } 2410 2411 // If we have a copy of an illegal type, replace it with a load / store of an 2412 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2413 // instructions emitted when handling extloads and truncstores. Ideally we could 2414 // recognize the pack / unpack pattern to eliminate it. 2415 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2416 DAGCombinerInfo &DCI) const { 2417 if (!DCI.isBeforeLegalize()) 2418 return SDValue(); 2419 2420 StoreSDNode *SN = cast<StoreSDNode>(N); 2421 SDValue Value = SN->getValue(); 2422 EVT VT = Value.getValueType(); 2423 2424 if (isTypeLegal(VT) || SN->isVolatile() || 2425 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2426 return SDValue(); 2427 2428 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2429 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2430 return SDValue(); 2431 2432 EVT MemVT = LoadVal->getMemoryVT(); 2433 2434 SDLoc SL(N); 2435 SelectionDAG &DAG = DCI.DAG; 2436 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2437 2438 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2439 LoadVT, SL, 2440 LoadVal->getChain(), 2441 LoadVal->getBasePtr(), 2442 LoadVal->getOffset(), 2443 LoadVT, 2444 LoadVal->getMemOperand()); 2445 2446 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2447 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2448 2449 return DAG.getStore(SN->getChain(), SL, NewLoad, 2450 SN->getBasePtr(), SN->getMemOperand()); 2451 } 2452 2453 // TODO: Should repeat for other bit ops. 2454 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N, 2455 DAGCombinerInfo &DCI) const { 2456 if (N->getValueType(0) != MVT::i64) 2457 return SDValue(); 2458 2459 // Break up 64-bit and of a constant into two 32-bit ands. This will typically 2460 // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer 2461 // combine opportunities since most 64-bit operations are decomposed this way. 2462 // TODO: We won't want this for SALU especially if it is an inline immediate. 2463 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2464 if (!RHS) 2465 return SDValue(); 2466 2467 uint64_t Val = RHS->getZExtValue(); 2468 if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) { 2469 // If either half of the constant is 0, this is really a 32-bit and, so 2470 // split it. If we can re-use the full materialized constant, keep it. 2471 return SDValue(); 2472 } 2473 2474 SDLoc SL(N); 2475 SelectionDAG &DAG = DCI.DAG; 2476 2477 SDValue Lo, Hi; 2478 std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG); 2479 2480 SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32); 2481 SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32); 2482 2483 SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS); 2484 SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS); 2485 2486 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, LoAnd, HiAnd); 2487 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2488 } 2489 2490 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2491 DAGCombinerInfo &DCI) const { 2492 if (N->getValueType(0) != MVT::i64) 2493 return SDValue(); 2494 2495 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2496 2497 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2498 // common case, splitting this into a move and a 32-bit shift is faster and 2499 // the same code size. 2500 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2501 if (!RHS) 2502 return SDValue(); 2503 2504 unsigned RHSVal = RHS->getZExtValue(); 2505 if (RHSVal < 32) 2506 return SDValue(); 2507 2508 SDValue LHS = N->getOperand(0); 2509 2510 SDLoc SL(N); 2511 SelectionDAG &DAG = DCI.DAG; 2512 2513 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2514 2515 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2516 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2517 2518 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2519 2520 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Zero, NewShift); 2521 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2522 } 2523 2524 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2525 DAGCombinerInfo &DCI) const { 2526 if (N->getValueType(0) != MVT::i64) 2527 return SDValue(); 2528 2529 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2530 if (!RHS) 2531 return SDValue(); 2532 2533 SelectionDAG &DAG = DCI.DAG; 2534 SDLoc SL(N); 2535 unsigned RHSVal = RHS->getZExtValue(); 2536 2537 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2538 if (RHSVal == 32) { 2539 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2540 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2541 DAG.getConstant(31, SL, MVT::i32)); 2542 2543 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2544 Hi, NewShift); 2545 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2546 } 2547 2548 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2549 if (RHSVal == 63) { 2550 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2551 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2552 DAG.getConstant(31, SL, MVT::i32)); 2553 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2554 NewShift, NewShift); 2555 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2556 } 2557 2558 return SDValue(); 2559 } 2560 2561 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2562 DAGCombinerInfo &DCI) const { 2563 if (N->getValueType(0) != MVT::i64) 2564 return SDValue(); 2565 2566 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2567 if (!RHS) 2568 return SDValue(); 2569 2570 unsigned ShiftAmt = RHS->getZExtValue(); 2571 if (ShiftAmt < 32) 2572 return SDValue(); 2573 2574 // srl i64:x, C for C >= 32 2575 // => 2576 // build_pair (srl hi_32(x), C - 32), 0 2577 2578 SelectionDAG &DAG = DCI.DAG; 2579 SDLoc SL(N); 2580 2581 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2582 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2583 2584 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2585 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2586 VecOp, One); 2587 2588 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2589 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2590 2591 SDValue BuildPair = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2592 NewShift, Zero); 2593 2594 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2595 } 2596 2597 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2598 DAGCombinerInfo &DCI) const { 2599 EVT VT = N->getValueType(0); 2600 2601 if (VT.isVector() || VT.getSizeInBits() > 32) 2602 return SDValue(); 2603 2604 SelectionDAG &DAG = DCI.DAG; 2605 SDLoc DL(N); 2606 2607 SDValue N0 = N->getOperand(0); 2608 SDValue N1 = N->getOperand(1); 2609 SDValue Mul; 2610 2611 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2612 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2613 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2614 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2615 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2616 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2617 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2618 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2619 } else { 2620 return SDValue(); 2621 } 2622 2623 // We need to use sext even for MUL_U24, because MUL_U24 is used 2624 // for signed multiply of 8 and 16-bit types. 2625 return DAG.getSExtOrTrunc(Mul, DL, VT); 2626 } 2627 2628 static bool isNegativeOne(SDValue Val) { 2629 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2630 return C->isAllOnesValue(); 2631 return false; 2632 } 2633 2634 static bool isCtlzOpc(unsigned Opc) { 2635 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2636 } 2637 2638 // Get FFBH node if the incoming op may have been type legalized from a smaller 2639 // type VT. 2640 // Need to match pre-legalized type because the generic legalization inserts the 2641 // add/sub between the select and compare. 2642 static SDValue getFFBH_U32(const TargetLowering &TLI, 2643 SelectionDAG &DAG, SDLoc SL, SDValue Op) { 2644 EVT VT = Op.getValueType(); 2645 EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2646 if (LegalVT != MVT::i32) 2647 return SDValue(); 2648 2649 if (VT != MVT::i32) 2650 Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op); 2651 2652 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op); 2653 if (VT != MVT::i32) 2654 FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH); 2655 2656 return FFBH; 2657 } 2658 2659 // The native instructions return -1 on 0 input. Optimize out a select that 2660 // produces -1 on 0. 2661 // 2662 // TODO: If zero is not undef, we could also do this if the output is compared 2663 // against the bitwidth. 2664 // 2665 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2666 SDValue AMDGPUTargetLowering::performCtlzCombine(SDLoc SL, 2667 SDValue Cond, 2668 SDValue LHS, 2669 SDValue RHS, 2670 DAGCombinerInfo &DCI) const { 2671 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2672 if (!CmpRhs || !CmpRhs->isNullValue()) 2673 return SDValue(); 2674 2675 SelectionDAG &DAG = DCI.DAG; 2676 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2677 SDValue CmpLHS = Cond.getOperand(0); 2678 2679 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2680 if (CCOpcode == ISD::SETEQ && 2681 isCtlzOpc(RHS.getOpcode()) && 2682 RHS.getOperand(0) == CmpLHS && 2683 isNegativeOne(LHS)) { 2684 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2685 } 2686 2687 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2688 if (CCOpcode == ISD::SETNE && 2689 isCtlzOpc(LHS.getOpcode()) && 2690 LHS.getOperand(0) == CmpLHS && 2691 isNegativeOne(RHS)) { 2692 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2693 } 2694 2695 return SDValue(); 2696 } 2697 2698 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2699 DAGCombinerInfo &DCI) const { 2700 SDValue Cond = N->getOperand(0); 2701 if (Cond.getOpcode() != ISD::SETCC) 2702 return SDValue(); 2703 2704 EVT VT = N->getValueType(0); 2705 SDValue LHS = Cond.getOperand(0); 2706 SDValue RHS = Cond.getOperand(1); 2707 SDValue CC = Cond.getOperand(2); 2708 2709 SDValue True = N->getOperand(1); 2710 SDValue False = N->getOperand(2); 2711 2712 if (VT == MVT::f32 && Cond.hasOneUse()) 2713 return CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2714 2715 // There's no reason to not do this if the condition has other uses. 2716 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2717 } 2718 2719 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2720 DAGCombinerInfo &DCI) const { 2721 SelectionDAG &DAG = DCI.DAG; 2722 SDLoc DL(N); 2723 2724 switch(N->getOpcode()) { 2725 default: 2726 break; 2727 case ISD::SHL: { 2728 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2729 break; 2730 2731 return performShlCombine(N, DCI); 2732 } 2733 case ISD::SRL: { 2734 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2735 break; 2736 2737 return performSrlCombine(N, DCI); 2738 } 2739 case ISD::SRA: { 2740 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2741 break; 2742 2743 return performSraCombine(N, DCI); 2744 } 2745 case ISD::AND: { 2746 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2747 break; 2748 2749 return performAndCombine(N, DCI); 2750 } 2751 case ISD::MUL: 2752 return performMulCombine(N, DCI); 2753 case AMDGPUISD::MUL_I24: 2754 case AMDGPUISD::MUL_U24: { 2755 SDValue N0 = N->getOperand(0); 2756 SDValue N1 = N->getOperand(1); 2757 simplifyI24(N0, DCI); 2758 simplifyI24(N1, DCI); 2759 return SDValue(); 2760 } 2761 case ISD::SELECT: 2762 return performSelectCombine(N, DCI); 2763 case AMDGPUISD::BFE_I32: 2764 case AMDGPUISD::BFE_U32: { 2765 assert(!N->getValueType(0).isVector() && 2766 "Vector handling of BFE not implemented"); 2767 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2768 if (!Width) 2769 break; 2770 2771 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2772 if (WidthVal == 0) 2773 return DAG.getConstant(0, DL, MVT::i32); 2774 2775 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2776 if (!Offset) 2777 break; 2778 2779 SDValue BitsFrom = N->getOperand(0); 2780 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2781 2782 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2783 2784 if (OffsetVal == 0) { 2785 // This is already sign / zero extended, so try to fold away extra BFEs. 2786 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2787 2788 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2789 if (OpSignBits >= SignBits) 2790 return BitsFrom; 2791 2792 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2793 if (Signed) { 2794 // This is a sign_extend_inreg. Replace it to take advantage of existing 2795 // DAG Combines. If not eliminated, we will match back to BFE during 2796 // selection. 2797 2798 // TODO: The sext_inreg of extended types ends, although we can could 2799 // handle them in a single BFE. 2800 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2801 DAG.getValueType(SmallVT)); 2802 } 2803 2804 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2805 } 2806 2807 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2808 if (Signed) { 2809 return constantFoldBFE<int32_t>(DAG, 2810 CVal->getSExtValue(), 2811 OffsetVal, 2812 WidthVal, 2813 DL); 2814 } 2815 2816 return constantFoldBFE<uint32_t>(DAG, 2817 CVal->getZExtValue(), 2818 OffsetVal, 2819 WidthVal, 2820 DL); 2821 } 2822 2823 if ((OffsetVal + WidthVal) >= 32) { 2824 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2825 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2826 BitsFrom, ShiftVal); 2827 } 2828 2829 if (BitsFrom.hasOneUse()) { 2830 APInt Demanded = APInt::getBitsSet(32, 2831 OffsetVal, 2832 OffsetVal + WidthVal); 2833 2834 APInt KnownZero, KnownOne; 2835 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2836 !DCI.isBeforeLegalizeOps()); 2837 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2838 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2839 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2840 KnownZero, KnownOne, TLO)) { 2841 DCI.CommitTargetLoweringOpt(TLO); 2842 } 2843 } 2844 2845 break; 2846 } 2847 2848 case ISD::STORE: 2849 return performStoreCombine(N, DCI); 2850 } 2851 return SDValue(); 2852 } 2853 2854 //===----------------------------------------------------------------------===// 2855 // Helper functions 2856 //===----------------------------------------------------------------------===// 2857 2858 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2859 SelectionDAG &DAG, 2860 const Function *F, 2861 const SmallVectorImpl<ISD::InputArg> &Ins, 2862 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2863 2864 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2865 if (Ins[i].ArgVT == Ins[i].VT) { 2866 OrigIns.push_back(Ins[i]); 2867 continue; 2868 } 2869 2870 EVT VT; 2871 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2872 // Vector has been split into scalars. 2873 VT = Ins[i].ArgVT.getVectorElementType(); 2874 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2875 Ins[i].ArgVT.getVectorElementType() != 2876 Ins[i].VT.getVectorElementType()) { 2877 // Vector elements have been promoted 2878 VT = Ins[i].ArgVT; 2879 } else { 2880 // Vector has been spilt into smaller vectors. 2881 VT = Ins[i].VT; 2882 } 2883 2884 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2885 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2886 OrigIns.push_back(Arg); 2887 } 2888 } 2889 2890 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const { 2891 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2892 return CFP->isExactlyValue(1.0); 2893 } 2894 return isAllOnesConstant(Op); 2895 } 2896 2897 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const { 2898 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2899 return CFP->getValueAPF().isZero(); 2900 } 2901 return isNullConstant(Op); 2902 } 2903 2904 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2905 const TargetRegisterClass *RC, 2906 unsigned Reg, EVT VT) const { 2907 MachineFunction &MF = DAG.getMachineFunction(); 2908 MachineRegisterInfo &MRI = MF.getRegInfo(); 2909 unsigned VirtualRegister; 2910 if (!MRI.isLiveIn(Reg)) { 2911 VirtualRegister = MRI.createVirtualRegister(RC); 2912 MRI.addLiveIn(Reg, VirtualRegister); 2913 } else { 2914 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2915 } 2916 return DAG.getRegister(VirtualRegister, VT); 2917 } 2918 2919 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2920 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2921 uint64_t ArgOffset = MFI->ABIArgOffset; 2922 switch (Param) { 2923 case GRID_DIM: 2924 return ArgOffset; 2925 case GRID_OFFSET: 2926 return ArgOffset + 4; 2927 } 2928 llvm_unreachable("unexpected implicit parameter type"); 2929 } 2930 2931 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2932 2933 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2934 switch ((AMDGPUISD::NodeType)Opcode) { 2935 case AMDGPUISD::FIRST_NUMBER: break; 2936 // AMDIL DAG nodes 2937 NODE_NAME_CASE(CALL); 2938 NODE_NAME_CASE(UMUL); 2939 NODE_NAME_CASE(RET_FLAG); 2940 NODE_NAME_CASE(BRANCH_COND); 2941 2942 // AMDGPU DAG nodes 2943 NODE_NAME_CASE(DWORDADDR) 2944 NODE_NAME_CASE(FRACT) 2945 NODE_NAME_CASE(CLAMP) 2946 NODE_NAME_CASE(COS_HW) 2947 NODE_NAME_CASE(SIN_HW) 2948 NODE_NAME_CASE(FMAX_LEGACY) 2949 NODE_NAME_CASE(FMIN_LEGACY) 2950 NODE_NAME_CASE(FMAX3) 2951 NODE_NAME_CASE(SMAX3) 2952 NODE_NAME_CASE(UMAX3) 2953 NODE_NAME_CASE(FMIN3) 2954 NODE_NAME_CASE(SMIN3) 2955 NODE_NAME_CASE(UMIN3) 2956 NODE_NAME_CASE(URECIP) 2957 NODE_NAME_CASE(DIV_SCALE) 2958 NODE_NAME_CASE(DIV_FMAS) 2959 NODE_NAME_CASE(DIV_FIXUP) 2960 NODE_NAME_CASE(TRIG_PREOP) 2961 NODE_NAME_CASE(RCP) 2962 NODE_NAME_CASE(RSQ) 2963 NODE_NAME_CASE(RSQ_LEGACY) 2964 NODE_NAME_CASE(RSQ_CLAMPED) 2965 NODE_NAME_CASE(LDEXP) 2966 NODE_NAME_CASE(FP_CLASS) 2967 NODE_NAME_CASE(DOT4) 2968 NODE_NAME_CASE(CARRY) 2969 NODE_NAME_CASE(BORROW) 2970 NODE_NAME_CASE(BFE_U32) 2971 NODE_NAME_CASE(BFE_I32) 2972 NODE_NAME_CASE(BFI) 2973 NODE_NAME_CASE(BFM) 2974 NODE_NAME_CASE(FFBH_U32) 2975 NODE_NAME_CASE(MUL_U24) 2976 NODE_NAME_CASE(MUL_I24) 2977 NODE_NAME_CASE(MAD_U24) 2978 NODE_NAME_CASE(MAD_I24) 2979 NODE_NAME_CASE(TEXTURE_FETCH) 2980 NODE_NAME_CASE(EXPORT) 2981 NODE_NAME_CASE(CONST_ADDRESS) 2982 NODE_NAME_CASE(REGISTER_LOAD) 2983 NODE_NAME_CASE(REGISTER_STORE) 2984 NODE_NAME_CASE(LOAD_CONSTANT) 2985 NODE_NAME_CASE(LOAD_INPUT) 2986 NODE_NAME_CASE(SAMPLE) 2987 NODE_NAME_CASE(SAMPLEB) 2988 NODE_NAME_CASE(SAMPLED) 2989 NODE_NAME_CASE(SAMPLEL) 2990 NODE_NAME_CASE(CVT_F32_UBYTE0) 2991 NODE_NAME_CASE(CVT_F32_UBYTE1) 2992 NODE_NAME_CASE(CVT_F32_UBYTE2) 2993 NODE_NAME_CASE(CVT_F32_UBYTE3) 2994 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2995 NODE_NAME_CASE(CONST_DATA_PTR) 2996 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2997 NODE_NAME_CASE(SENDMSG) 2998 NODE_NAME_CASE(INTERP_MOV) 2999 NODE_NAME_CASE(INTERP_P1) 3000 NODE_NAME_CASE(INTERP_P2) 3001 NODE_NAME_CASE(STORE_MSKOR) 3002 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 3003 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 3004 } 3005 return nullptr; 3006 } 3007 3008 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 3009 DAGCombinerInfo &DCI, 3010 unsigned &RefinementSteps, 3011 bool &UseOneConstNR) const { 3012 SelectionDAG &DAG = DCI.DAG; 3013 EVT VT = Operand.getValueType(); 3014 3015 if (VT == MVT::f32) { 3016 RefinementSteps = 0; 3017 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 3018 } 3019 3020 // TODO: There is also f64 rsq instruction, but the documentation is less 3021 // clear on its precision. 3022 3023 return SDValue(); 3024 } 3025 3026 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 3027 DAGCombinerInfo &DCI, 3028 unsigned &RefinementSteps) const { 3029 SelectionDAG &DAG = DCI.DAG; 3030 EVT VT = Operand.getValueType(); 3031 3032 if (VT == MVT::f32) { 3033 // Reciprocal, < 1 ulp error. 3034 // 3035 // This reciprocal approximation converges to < 0.5 ulp error with one 3036 // newton rhapson performed with two fused multiple adds (FMAs). 3037 3038 RefinementSteps = 0; 3039 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 3040 } 3041 3042 // TODO: There is also f64 rcp instruction, but the documentation is less 3043 // clear on its precision. 3044 3045 return SDValue(); 3046 } 3047 3048 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 3049 const SDValue Op, 3050 APInt &KnownZero, 3051 APInt &KnownOne, 3052 const SelectionDAG &DAG, 3053 unsigned Depth) const { 3054 3055 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 3056 3057 APInt KnownZero2; 3058 APInt KnownOne2; 3059 unsigned Opc = Op.getOpcode(); 3060 3061 switch (Opc) { 3062 default: 3063 break; 3064 case AMDGPUISD::CARRY: 3065 case AMDGPUISD::BORROW: { 3066 KnownZero = APInt::getHighBitsSet(32, 31); 3067 break; 3068 } 3069 3070 case AMDGPUISD::BFE_I32: 3071 case AMDGPUISD::BFE_U32: { 3072 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3073 if (!CWidth) 3074 return; 3075 3076 unsigned BitWidth = 32; 3077 uint32_t Width = CWidth->getZExtValue() & 0x1f; 3078 3079 if (Opc == AMDGPUISD::BFE_U32) 3080 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 3081 3082 break; 3083 } 3084 } 3085 } 3086 3087 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 3088 SDValue Op, 3089 const SelectionDAG &DAG, 3090 unsigned Depth) const { 3091 switch (Op.getOpcode()) { 3092 case AMDGPUISD::BFE_I32: { 3093 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3094 if (!Width) 3095 return 1; 3096 3097 unsigned SignBits = 32 - Width->getZExtValue() + 1; 3098 if (!isNullConstant(Op.getOperand(1))) 3099 return SignBits; 3100 3101 // TODO: Could probably figure something out with non-0 offsets. 3102 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3103 return std::max(SignBits, Op0SignBits); 3104 } 3105 3106 case AMDGPUISD::BFE_U32: { 3107 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3108 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 3109 } 3110 3111 case AMDGPUISD::CARRY: 3112 case AMDGPUISD::BORROW: 3113 return 31; 3114 3115 default: 3116 return 1; 3117 } 3118 } 3119