1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUSubtarget.h" 20 #include "AMDGPUTargetMachine.h" 21 #include "Utils/AMDGPUBaseInfo.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIInstrInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Support/MathExtras.h" 36 using namespace llvm; 37 38 #include "AMDGPUGenCallingConv.inc" 39 40 static cl::opt<bool> AMDGPUBypassSlowDiv( 41 "amdgpu-bypass-slow-div", 42 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 43 cl::init(true)); 44 45 // Find a larger type to do a load / store of a vector with. 46 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 47 unsigned StoreSize = VT.getStoreSizeInBits(); 48 if (StoreSize <= 32) 49 return EVT::getIntegerVT(Ctx, StoreSize); 50 51 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 52 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 53 } 54 55 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 56 EVT VT = Op.getValueType(); 57 KnownBits Known = DAG.computeKnownBits(Op); 58 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 59 } 60 61 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 62 EVT VT = Op.getValueType(); 63 64 // In order for this to be a signed 24-bit value, bit 23, must 65 // be a sign bit. 66 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 67 } 68 69 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 70 const AMDGPUSubtarget &STI) 71 : TargetLowering(TM), Subtarget(&STI) { 72 // Lower floating point store/load to integer store/load to reduce the number 73 // of patterns in tablegen. 74 setOperationAction(ISD::LOAD, MVT::f32, Promote); 75 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 76 77 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 78 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 79 80 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 81 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 82 83 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 84 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 85 86 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 87 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 88 89 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 90 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 91 92 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 93 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 94 95 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 96 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 97 98 setOperationAction(ISD::LOAD, MVT::i64, Promote); 99 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 100 101 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 102 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 103 104 setOperationAction(ISD::LOAD, MVT::f64, Promote); 105 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 106 107 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 108 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 109 110 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 111 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 112 113 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 114 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 115 116 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 117 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 118 119 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 120 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 121 122 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 123 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 124 125 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 126 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 127 128 // There are no 64-bit extloads. These should be done as a 32-bit extload and 129 // an extension to 64-bit. 130 for (MVT VT : MVT::integer_valuetypes()) { 131 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 132 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 133 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 134 } 135 136 for (MVT VT : MVT::integer_valuetypes()) { 137 if (VT == MVT::i64) 138 continue; 139 140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 144 145 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 149 150 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 154 } 155 156 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 159 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 161 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 162 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 164 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 165 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 168 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 171 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 172 } 173 174 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 175 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 181 182 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 187 188 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 189 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 190 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 193 194 setOperationAction(ISD::STORE, MVT::f32, Promote); 195 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 196 197 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 199 200 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 202 203 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 205 206 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 208 209 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 211 212 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 214 215 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 217 218 setOperationAction(ISD::STORE, MVT::i64, Promote); 219 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 220 221 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 223 224 setOperationAction(ISD::STORE, MVT::f64, Promote); 225 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 226 227 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 228 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 229 230 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 232 233 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 235 236 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 238 239 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 241 242 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 244 245 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 247 248 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 249 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 250 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 251 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 252 253 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 254 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 255 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 256 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 257 258 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 259 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 260 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 261 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 262 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 263 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 264 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 265 266 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 267 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 268 269 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 270 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 271 272 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 273 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 274 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 275 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 276 277 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 278 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 279 280 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 281 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 282 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 283 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 284 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 285 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 286 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 287 288 setOperationAction(ISD::Constant, MVT::i32, Legal); 289 setOperationAction(ISD::Constant, MVT::i64, Legal); 290 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 291 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 292 293 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 294 setOperationAction(ISD::BRIND, MVT::Other, Expand); 295 296 // This is totally unsupported, just custom lower to produce an error. 297 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 298 299 // Library functions. These default to Expand, but we have instructions 300 // for them. 301 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 302 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 303 setOperationAction(ISD::FPOW, MVT::f32, Legal); 304 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 305 setOperationAction(ISD::FABS, MVT::f32, Legal); 306 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 307 setOperationAction(ISD::FRINT, MVT::f32, Legal); 308 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 309 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 310 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 311 312 setOperationAction(ISD::FROUND, MVT::f32, Custom); 313 setOperationAction(ISD::FROUND, MVT::f64, Custom); 314 315 setOperationAction(ISD::FLOG, MVT::f32, Custom); 316 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 317 setOperationAction(ISD::FEXP, MVT::f32, Custom); 318 319 320 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 321 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 322 323 setOperationAction(ISD::FREM, MVT::f16, Custom); 324 setOperationAction(ISD::FREM, MVT::f32, Custom); 325 setOperationAction(ISD::FREM, MVT::f64, Custom); 326 327 // Expand to fneg + fadd. 328 setOperationAction(ISD::FSUB, MVT::f64, Expand); 329 330 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 331 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 332 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 333 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 334 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 335 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 336 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 337 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 338 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 339 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 340 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 341 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 342 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 343 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 344 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 345 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 346 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 347 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 350 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 352 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 353 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 354 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 355 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 356 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 357 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 358 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 359 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 360 361 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 362 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 363 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 364 365 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 366 for (MVT VT : ScalarIntVTs) { 367 // These should use [SU]DIVREM, so set them to expand 368 setOperationAction(ISD::SDIV, VT, Expand); 369 setOperationAction(ISD::UDIV, VT, Expand); 370 setOperationAction(ISD::SREM, VT, Expand); 371 setOperationAction(ISD::UREM, VT, Expand); 372 373 // GPU does not have divrem function for signed or unsigned. 374 setOperationAction(ISD::SDIVREM, VT, Custom); 375 setOperationAction(ISD::UDIVREM, VT, Custom); 376 377 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 378 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 379 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 380 381 setOperationAction(ISD::BSWAP, VT, Expand); 382 setOperationAction(ISD::CTTZ, VT, Expand); 383 setOperationAction(ISD::CTLZ, VT, Expand); 384 385 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 386 setOperationAction(ISD::ADDC, VT, Legal); 387 setOperationAction(ISD::SUBC, VT, Legal); 388 setOperationAction(ISD::ADDE, VT, Legal); 389 setOperationAction(ISD::SUBE, VT, Legal); 390 } 391 392 // The hardware supports 32-bit FSHR, but not FSHL. 393 setOperationAction(ISD::FSHR, MVT::i32, Legal); 394 395 // The hardware supports 32-bit ROTR, but not ROTL. 396 setOperationAction(ISD::ROTL, MVT::i32, Expand); 397 setOperationAction(ISD::ROTL, MVT::i64, Expand); 398 setOperationAction(ISD::ROTR, MVT::i64, Expand); 399 400 setOperationAction(ISD::MULHU, MVT::i16, Expand); 401 setOperationAction(ISD::MULHS, MVT::i16, Expand); 402 403 setOperationAction(ISD::MUL, MVT::i64, Expand); 404 setOperationAction(ISD::MULHU, MVT::i64, Expand); 405 setOperationAction(ISD::MULHS, MVT::i64, Expand); 406 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 407 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 408 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 409 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 410 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 411 412 setOperationAction(ISD::SMIN, MVT::i32, Legal); 413 setOperationAction(ISD::UMIN, MVT::i32, Legal); 414 setOperationAction(ISD::SMAX, MVT::i32, Legal); 415 setOperationAction(ISD::UMAX, MVT::i32, Legal); 416 417 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 418 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 419 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 420 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 421 422 static const MVT::SimpleValueType VectorIntTypes[] = { 423 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 424 }; 425 426 for (MVT VT : VectorIntTypes) { 427 // Expand the following operations for the current type by default. 428 setOperationAction(ISD::ADD, VT, Expand); 429 setOperationAction(ISD::AND, VT, Expand); 430 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 431 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 432 setOperationAction(ISD::MUL, VT, Expand); 433 setOperationAction(ISD::MULHU, VT, Expand); 434 setOperationAction(ISD::MULHS, VT, Expand); 435 setOperationAction(ISD::OR, VT, Expand); 436 setOperationAction(ISD::SHL, VT, Expand); 437 setOperationAction(ISD::SRA, VT, Expand); 438 setOperationAction(ISD::SRL, VT, Expand); 439 setOperationAction(ISD::ROTL, VT, Expand); 440 setOperationAction(ISD::ROTR, VT, Expand); 441 setOperationAction(ISD::SUB, VT, Expand); 442 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 443 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 444 setOperationAction(ISD::SDIV, VT, Expand); 445 setOperationAction(ISD::UDIV, VT, Expand); 446 setOperationAction(ISD::SREM, VT, Expand); 447 setOperationAction(ISD::UREM, VT, Expand); 448 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 449 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 450 setOperationAction(ISD::SDIVREM, VT, Expand); 451 setOperationAction(ISD::UDIVREM, VT, Expand); 452 setOperationAction(ISD::SELECT, VT, Expand); 453 setOperationAction(ISD::VSELECT, VT, Expand); 454 setOperationAction(ISD::SELECT_CC, VT, Expand); 455 setOperationAction(ISD::XOR, VT, Expand); 456 setOperationAction(ISD::BSWAP, VT, Expand); 457 setOperationAction(ISD::CTPOP, VT, Expand); 458 setOperationAction(ISD::CTTZ, VT, Expand); 459 setOperationAction(ISD::CTLZ, VT, Expand); 460 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 461 setOperationAction(ISD::SETCC, VT, Expand); 462 } 463 464 static const MVT::SimpleValueType FloatVectorTypes[] = { 465 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 466 }; 467 468 for (MVT VT : FloatVectorTypes) { 469 setOperationAction(ISD::FABS, VT, Expand); 470 setOperationAction(ISD::FMINNUM, VT, Expand); 471 setOperationAction(ISD::FMAXNUM, VT, Expand); 472 setOperationAction(ISD::FADD, VT, Expand); 473 setOperationAction(ISD::FCEIL, VT, Expand); 474 setOperationAction(ISD::FCOS, VT, Expand); 475 setOperationAction(ISD::FDIV, VT, Expand); 476 setOperationAction(ISD::FEXP2, VT, Expand); 477 setOperationAction(ISD::FEXP, VT, Expand); 478 setOperationAction(ISD::FLOG2, VT, Expand); 479 setOperationAction(ISD::FREM, VT, Expand); 480 setOperationAction(ISD::FLOG, VT, Expand); 481 setOperationAction(ISD::FLOG10, VT, Expand); 482 setOperationAction(ISD::FPOW, VT, Expand); 483 setOperationAction(ISD::FFLOOR, VT, Expand); 484 setOperationAction(ISD::FTRUNC, VT, Expand); 485 setOperationAction(ISD::FMUL, VT, Expand); 486 setOperationAction(ISD::FMA, VT, Expand); 487 setOperationAction(ISD::FRINT, VT, Expand); 488 setOperationAction(ISD::FNEARBYINT, VT, Expand); 489 setOperationAction(ISD::FSQRT, VT, Expand); 490 setOperationAction(ISD::FSIN, VT, Expand); 491 setOperationAction(ISD::FSUB, VT, Expand); 492 setOperationAction(ISD::FNEG, VT, Expand); 493 setOperationAction(ISD::VSELECT, VT, Expand); 494 setOperationAction(ISD::SELECT_CC, VT, Expand); 495 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 496 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 497 setOperationAction(ISD::SETCC, VT, Expand); 498 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 499 } 500 501 // This causes using an unrolled select operation rather than expansion with 502 // bit operations. This is in general better, but the alternative using BFI 503 // instructions may be better if the select sources are SGPRs. 504 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 505 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 506 507 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 508 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 509 510 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 511 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 512 513 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 514 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 515 516 // There are no libcalls of any kind. 517 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 518 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 519 520 setSchedulingPreference(Sched::RegPressure); 521 setJumpIsExpensive(true); 522 523 // FIXME: This is only partially true. If we have to do vector compares, any 524 // SGPR pair can be a condition register. If we have a uniform condition, we 525 // are better off doing SALU operations, where there is only one SCC. For now, 526 // we don't have a way of knowing during instruction selection if a condition 527 // will be uniform and we always use vector compares. Assume we are using 528 // vector compares until that is fixed. 529 setHasMultipleConditionRegisters(true); 530 531 setMinCmpXchgSizeInBits(32); 532 setSupportsUnalignedAtomics(false); 533 534 PredictableSelectIsExpensive = false; 535 536 // We want to find all load dependencies for long chains of stores to enable 537 // merging into very wide vectors. The problem is with vectors with > 4 538 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 539 // vectors are a legal type, even though we have to split the loads 540 // usually. When we can more precisely specify load legality per address 541 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 542 // smarter so that they can figure out what to do in 2 iterations without all 543 // N > 4 stores on the same chain. 544 GatherAllAliasesMaxDepth = 16; 545 546 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 547 // about these during lowering. 548 MaxStoresPerMemcpy = 0xffffffff; 549 MaxStoresPerMemmove = 0xffffffff; 550 MaxStoresPerMemset = 0xffffffff; 551 552 // The expansion for 64-bit division is enormous. 553 if (AMDGPUBypassSlowDiv) 554 addBypassSlowDiv(64, 32); 555 556 setTargetDAGCombine(ISD::BITCAST); 557 setTargetDAGCombine(ISD::SHL); 558 setTargetDAGCombine(ISD::SRA); 559 setTargetDAGCombine(ISD::SRL); 560 setTargetDAGCombine(ISD::TRUNCATE); 561 setTargetDAGCombine(ISD::MUL); 562 setTargetDAGCombine(ISD::MULHU); 563 setTargetDAGCombine(ISD::MULHS); 564 setTargetDAGCombine(ISD::SELECT); 565 setTargetDAGCombine(ISD::SELECT_CC); 566 setTargetDAGCombine(ISD::STORE); 567 setTargetDAGCombine(ISD::FADD); 568 setTargetDAGCombine(ISD::FSUB); 569 setTargetDAGCombine(ISD::FNEG); 570 setTargetDAGCombine(ISD::FABS); 571 setTargetDAGCombine(ISD::AssertZext); 572 setTargetDAGCombine(ISD::AssertSext); 573 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 574 } 575 576 //===----------------------------------------------------------------------===// 577 // Target Information 578 //===----------------------------------------------------------------------===// 579 580 LLVM_READNONE 581 static bool fnegFoldsIntoOp(unsigned Opc) { 582 switch (Opc) { 583 case ISD::FADD: 584 case ISD::FSUB: 585 case ISD::FMUL: 586 case ISD::FMA: 587 case ISD::FMAD: 588 case ISD::FMINNUM: 589 case ISD::FMAXNUM: 590 case ISD::FMINNUM_IEEE: 591 case ISD::FMAXNUM_IEEE: 592 case ISD::FSIN: 593 case ISD::FTRUNC: 594 case ISD::FRINT: 595 case ISD::FNEARBYINT: 596 case ISD::FCANONICALIZE: 597 case AMDGPUISD::RCP: 598 case AMDGPUISD::RCP_LEGACY: 599 case AMDGPUISD::RCP_IFLAG: 600 case AMDGPUISD::SIN_HW: 601 case AMDGPUISD::FMUL_LEGACY: 602 case AMDGPUISD::FMIN_LEGACY: 603 case AMDGPUISD::FMAX_LEGACY: 604 case AMDGPUISD::FMED3: 605 // TODO: handle llvm.amdgcn.fma.legacy 606 return true; 607 default: 608 return false; 609 } 610 } 611 612 /// \p returns true if the operation will definitely need to use a 64-bit 613 /// encoding, and thus will use a VOP3 encoding regardless of the source 614 /// modifiers. 615 LLVM_READONLY 616 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 617 return N->getNumOperands() > 2 || VT == MVT::f64; 618 } 619 620 // Most FP instructions support source modifiers, but this could be refined 621 // slightly. 622 LLVM_READONLY 623 static bool hasSourceMods(const SDNode *N) { 624 if (isa<MemSDNode>(N)) 625 return false; 626 627 switch (N->getOpcode()) { 628 case ISD::CopyToReg: 629 case ISD::SELECT: 630 case ISD::FDIV: 631 case ISD::FREM: 632 case ISD::INLINEASM: 633 case ISD::INLINEASM_BR: 634 case AMDGPUISD::DIV_SCALE: 635 case ISD::INTRINSIC_W_CHAIN: 636 637 // TODO: Should really be looking at the users of the bitcast. These are 638 // problematic because bitcasts are used to legalize all stores to integer 639 // types. 640 case ISD::BITCAST: 641 return false; 642 case ISD::INTRINSIC_WO_CHAIN: { 643 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 644 case Intrinsic::amdgcn_interp_p1: 645 case Intrinsic::amdgcn_interp_p2: 646 case Intrinsic::amdgcn_interp_mov: 647 case Intrinsic::amdgcn_interp_p1_f16: 648 case Intrinsic::amdgcn_interp_p2_f16: 649 return false; 650 default: 651 return true; 652 } 653 } 654 default: 655 return true; 656 } 657 } 658 659 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 660 unsigned CostThreshold) { 661 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 662 // it is truly free to use a source modifier in all cases. If there are 663 // multiple users but for each one will necessitate using VOP3, there will be 664 // a code size increase. Try to avoid increasing code size unless we know it 665 // will save on the instruction count. 666 unsigned NumMayIncreaseSize = 0; 667 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 668 669 // XXX - Should this limit number of uses to check? 670 for (const SDNode *U : N->uses()) { 671 if (!hasSourceMods(U)) 672 return false; 673 674 if (!opMustUseVOP3Encoding(U, VT)) { 675 if (++NumMayIncreaseSize > CostThreshold) 676 return false; 677 } 678 } 679 680 return true; 681 } 682 683 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 684 ISD::NodeType ExtendKind) const { 685 assert(!VT.isVector() && "only scalar expected"); 686 687 // Round to the next multiple of 32-bits. 688 unsigned Size = VT.getSizeInBits(); 689 if (Size <= 32) 690 return MVT::i32; 691 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 692 } 693 694 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 695 return MVT::i32; 696 } 697 698 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 699 return true; 700 } 701 702 // The backend supports 32 and 64 bit floating point immediates. 703 // FIXME: Why are we reporting vectors of FP immediates as legal? 704 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 705 bool ForCodeSize) const { 706 EVT ScalarVT = VT.getScalarType(); 707 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 708 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 709 } 710 711 // We don't want to shrink f64 / f32 constants. 712 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 713 EVT ScalarVT = VT.getScalarType(); 714 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 715 } 716 717 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 718 ISD::LoadExtType ExtTy, 719 EVT NewVT) const { 720 // TODO: This may be worth removing. Check regression tests for diffs. 721 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 722 return false; 723 724 unsigned NewSize = NewVT.getStoreSizeInBits(); 725 726 // If we are reducing to a 32-bit load or a smaller multi-dword load, 727 // this is always better. 728 if (NewSize >= 32) 729 return true; 730 731 EVT OldVT = N->getValueType(0); 732 unsigned OldSize = OldVT.getStoreSizeInBits(); 733 734 MemSDNode *MN = cast<MemSDNode>(N); 735 unsigned AS = MN->getAddressSpace(); 736 // Do not shrink an aligned scalar load to sub-dword. 737 // Scalar engine cannot do sub-dword loads. 738 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 739 (AS == AMDGPUAS::CONSTANT_ADDRESS || 740 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 741 (isa<LoadSDNode>(N) && 742 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 743 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 744 return false; 745 746 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 747 // extloads, so doing one requires using a buffer_load. In cases where we 748 // still couldn't use a scalar load, using the wider load shouldn't really 749 // hurt anything. 750 751 // If the old size already had to be an extload, there's no harm in continuing 752 // to reduce the width. 753 return (OldSize < 32); 754 } 755 756 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 757 const SelectionDAG &DAG, 758 const MachineMemOperand &MMO) const { 759 760 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 761 762 if (LoadTy.getScalarType() == MVT::i32) 763 return false; 764 765 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 766 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 767 768 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 769 return false; 770 771 bool Fast = false; 772 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 773 CastTy, MMO, &Fast) && 774 Fast; 775 } 776 777 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 778 // profitable with the expansion for 64-bit since it's generally good to 779 // speculate things. 780 // FIXME: These should really have the size as a parameter. 781 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 782 return true; 783 } 784 785 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 786 return true; 787 } 788 789 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 790 switch (N->getOpcode()) { 791 case ISD::EntryToken: 792 case ISD::TokenFactor: 793 return true; 794 case ISD::INTRINSIC_WO_CHAIN: { 795 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 796 switch (IntrID) { 797 case Intrinsic::amdgcn_readfirstlane: 798 case Intrinsic::amdgcn_readlane: 799 return true; 800 } 801 return false; 802 } 803 case ISD::LOAD: 804 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 805 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 806 return true; 807 return false; 808 } 809 return false; 810 } 811 812 SDValue AMDGPUTargetLowering::getNegatedExpression( 813 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 814 NegatibleCost &Cost, unsigned Depth) const { 815 816 switch (Op.getOpcode()) { 817 case ISD::FMA: 818 case ISD::FMAD: { 819 // Negating a fma is not free if it has users without source mods. 820 if (!allUsesHaveSourceMods(Op.getNode())) 821 return SDValue(); 822 break; 823 } 824 default: 825 break; 826 } 827 828 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 829 ForCodeSize, Cost, Depth); 830 } 831 832 //===---------------------------------------------------------------------===// 833 // Target Properties 834 //===---------------------------------------------------------------------===// 835 836 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 837 assert(VT.isFloatingPoint()); 838 839 // Packed operations do not have a fabs modifier. 840 return VT == MVT::f32 || VT == MVT::f64 || 841 (Subtarget->has16BitInsts() && VT == MVT::f16); 842 } 843 844 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 845 assert(VT.isFloatingPoint()); 846 return VT == MVT::f32 || VT == MVT::f64 || 847 (Subtarget->has16BitInsts() && VT == MVT::f16) || 848 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 849 } 850 851 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 852 unsigned NumElem, 853 unsigned AS) const { 854 return true; 855 } 856 857 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 858 // There are few operations which truly have vector input operands. Any vector 859 // operation is going to involve operations on each component, and a 860 // build_vector will be a copy per element, so it always makes sense to use a 861 // build_vector input in place of the extracted element to avoid a copy into a 862 // super register. 863 // 864 // We should probably only do this if all users are extracts only, but this 865 // should be the common case. 866 return true; 867 } 868 869 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 870 // Truncate is just accessing a subregister. 871 872 unsigned SrcSize = Source.getSizeInBits(); 873 unsigned DestSize = Dest.getSizeInBits(); 874 875 return DestSize < SrcSize && DestSize % 32 == 0 ; 876 } 877 878 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 879 // Truncate is just accessing a subregister. 880 881 unsigned SrcSize = Source->getScalarSizeInBits(); 882 unsigned DestSize = Dest->getScalarSizeInBits(); 883 884 if (DestSize== 16 && Subtarget->has16BitInsts()) 885 return SrcSize >= 32; 886 887 return DestSize < SrcSize && DestSize % 32 == 0; 888 } 889 890 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 891 unsigned SrcSize = Src->getScalarSizeInBits(); 892 unsigned DestSize = Dest->getScalarSizeInBits(); 893 894 if (SrcSize == 16 && Subtarget->has16BitInsts()) 895 return DestSize >= 32; 896 897 return SrcSize == 32 && DestSize == 64; 898 } 899 900 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 901 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 902 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 903 // this will enable reducing 64-bit operations the 32-bit, which is always 904 // good. 905 906 if (Src == MVT::i16) 907 return Dest == MVT::i32 ||Dest == MVT::i64 ; 908 909 return Src == MVT::i32 && Dest == MVT::i64; 910 } 911 912 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 913 return isZExtFree(Val.getValueType(), VT2); 914 } 915 916 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 917 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 918 // limited number of native 64-bit operations. Shrinking an operation to fit 919 // in a single 32-bit register should always be helpful. As currently used, 920 // this is much less general than the name suggests, and is only used in 921 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 922 // not profitable, and may actually be harmful. 923 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 924 } 925 926 //===---------------------------------------------------------------------===// 927 // TargetLowering Callbacks 928 //===---------------------------------------------------------------------===// 929 930 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 931 bool IsVarArg) { 932 switch (CC) { 933 case CallingConv::AMDGPU_VS: 934 case CallingConv::AMDGPU_GS: 935 case CallingConv::AMDGPU_PS: 936 case CallingConv::AMDGPU_CS: 937 case CallingConv::AMDGPU_HS: 938 case CallingConv::AMDGPU_ES: 939 case CallingConv::AMDGPU_LS: 940 return CC_AMDGPU; 941 case CallingConv::C: 942 case CallingConv::Fast: 943 case CallingConv::Cold: 944 return CC_AMDGPU_Func; 945 case CallingConv::AMDGPU_KERNEL: 946 case CallingConv::SPIR_KERNEL: 947 default: 948 report_fatal_error("Unsupported calling convention for call"); 949 } 950 } 951 952 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 953 bool IsVarArg) { 954 switch (CC) { 955 case CallingConv::AMDGPU_KERNEL: 956 case CallingConv::SPIR_KERNEL: 957 llvm_unreachable("kernels should not be handled here"); 958 case CallingConv::AMDGPU_VS: 959 case CallingConv::AMDGPU_GS: 960 case CallingConv::AMDGPU_PS: 961 case CallingConv::AMDGPU_CS: 962 case CallingConv::AMDGPU_HS: 963 case CallingConv::AMDGPU_ES: 964 case CallingConv::AMDGPU_LS: 965 return RetCC_SI_Shader; 966 case CallingConv::C: 967 case CallingConv::Fast: 968 case CallingConv::Cold: 969 return RetCC_AMDGPU_Func; 970 default: 971 report_fatal_error("Unsupported calling convention."); 972 } 973 } 974 975 /// The SelectionDAGBuilder will automatically promote function arguments 976 /// with illegal types. However, this does not work for the AMDGPU targets 977 /// since the function arguments are stored in memory as these illegal types. 978 /// In order to handle this properly we need to get the original types sizes 979 /// from the LLVM IR Function and fixup the ISD:InputArg values before 980 /// passing them to AnalyzeFormalArguments() 981 982 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 983 /// input values across multiple registers. Each item in the Ins array 984 /// represents a single value that will be stored in registers. Ins[x].VT is 985 /// the value type of the value that will be stored in the register, so 986 /// whatever SDNode we lower the argument to needs to be this type. 987 /// 988 /// In order to correctly lower the arguments we need to know the size of each 989 /// argument. Since Ins[x].VT gives us the size of the register that will 990 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 991 /// for the orignal function argument so that we can deduce the correct memory 992 /// type to use for Ins[x]. In most cases the correct memory type will be 993 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 994 /// we have a kernel argument of type v8i8, this argument will be split into 995 /// 8 parts and each part will be represented by its own item in the Ins array. 996 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 997 /// the argument before it was split. From this, we deduce that the memory type 998 /// for each individual part is i8. We pass the memory type as LocVT to the 999 /// calling convention analysis function and the register type (Ins[x].VT) as 1000 /// the ValVT. 1001 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1002 CCState &State, 1003 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1004 const MachineFunction &MF = State.getMachineFunction(); 1005 const Function &Fn = MF.getFunction(); 1006 LLVMContext &Ctx = Fn.getParent()->getContext(); 1007 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1008 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1009 CallingConv::ID CC = Fn.getCallingConv(); 1010 1011 Align MaxAlign = Align(1); 1012 uint64_t ExplicitArgOffset = 0; 1013 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1014 1015 unsigned InIndex = 0; 1016 1017 for (const Argument &Arg : Fn.args()) { 1018 const bool IsByRef = Arg.hasByRefAttr(); 1019 Type *BaseArgTy = Arg.getType(); 1020 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1021 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1022 if (!Alignment) 1023 Alignment = DL.getABITypeAlign(MemArgTy); 1024 MaxAlign = max(Alignment, MaxAlign); 1025 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1026 1027 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1028 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1029 1030 // We're basically throwing away everything passed into us and starting over 1031 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1032 // to us as computed in Ins. 1033 // 1034 // We also need to figure out what type legalization is trying to do to get 1035 // the correct memory offsets. 1036 1037 SmallVector<EVT, 16> ValueVTs; 1038 SmallVector<uint64_t, 16> Offsets; 1039 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1040 1041 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1042 Value != NumValues; ++Value) { 1043 uint64_t BasePartOffset = Offsets[Value]; 1044 1045 EVT ArgVT = ValueVTs[Value]; 1046 EVT MemVT = ArgVT; 1047 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1048 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1049 1050 if (NumRegs == 1) { 1051 // This argument is not split, so the IR type is the memory type. 1052 if (ArgVT.isExtended()) { 1053 // We have an extended type, like i24, so we should just use the 1054 // register type. 1055 MemVT = RegisterVT; 1056 } else { 1057 MemVT = ArgVT; 1058 } 1059 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1060 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1061 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1062 // We have a vector value which has been split into a vector with 1063 // the same scalar type, but fewer elements. This should handle 1064 // all the floating-point vector types. 1065 MemVT = RegisterVT; 1066 } else if (ArgVT.isVector() && 1067 ArgVT.getVectorNumElements() == NumRegs) { 1068 // This arg has been split so that each element is stored in a separate 1069 // register. 1070 MemVT = ArgVT.getScalarType(); 1071 } else if (ArgVT.isExtended()) { 1072 // We have an extended type, like i65. 1073 MemVT = RegisterVT; 1074 } else { 1075 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1076 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1077 if (RegisterVT.isInteger()) { 1078 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1079 } else if (RegisterVT.isVector()) { 1080 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1081 unsigned NumElements = RegisterVT.getVectorNumElements(); 1082 assert(MemoryBits % NumElements == 0); 1083 // This vector type has been split into another vector type with 1084 // a different elements size. 1085 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1086 MemoryBits / NumElements); 1087 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1088 } else { 1089 llvm_unreachable("cannot deduce memory type."); 1090 } 1091 } 1092 1093 // Convert one element vectors to scalar. 1094 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1095 MemVT = MemVT.getScalarType(); 1096 1097 // Round up vec3/vec5 argument. 1098 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1099 assert(MemVT.getVectorNumElements() == 3 || 1100 MemVT.getVectorNumElements() == 5); 1101 MemVT = MemVT.getPow2VectorType(State.getContext()); 1102 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1103 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1104 } 1105 1106 unsigned PartOffset = 0; 1107 for (unsigned i = 0; i != NumRegs; ++i) { 1108 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1109 BasePartOffset + PartOffset, 1110 MemVT.getSimpleVT(), 1111 CCValAssign::Full)); 1112 PartOffset += MemVT.getStoreSize(); 1113 } 1114 } 1115 } 1116 } 1117 1118 SDValue AMDGPUTargetLowering::LowerReturn( 1119 SDValue Chain, CallingConv::ID CallConv, 1120 bool isVarArg, 1121 const SmallVectorImpl<ISD::OutputArg> &Outs, 1122 const SmallVectorImpl<SDValue> &OutVals, 1123 const SDLoc &DL, SelectionDAG &DAG) const { 1124 // FIXME: Fails for r600 tests 1125 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1126 // "wave terminate should not have return values"); 1127 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1128 } 1129 1130 //===---------------------------------------------------------------------===// 1131 // Target specific lowering 1132 //===---------------------------------------------------------------------===// 1133 1134 /// Selects the correct CCAssignFn for a given CallingConvention value. 1135 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1136 bool IsVarArg) { 1137 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1138 } 1139 1140 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1141 bool IsVarArg) { 1142 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1143 } 1144 1145 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1146 SelectionDAG &DAG, 1147 MachineFrameInfo &MFI, 1148 int ClobberedFI) const { 1149 SmallVector<SDValue, 8> ArgChains; 1150 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1151 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1152 1153 // Include the original chain at the beginning of the list. When this is 1154 // used by target LowerCall hooks, this helps legalize find the 1155 // CALLSEQ_BEGIN node. 1156 ArgChains.push_back(Chain); 1157 1158 // Add a chain value for each stack argument corresponding 1159 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1160 UE = DAG.getEntryNode().getNode()->use_end(); 1161 U != UE; ++U) { 1162 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1163 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1164 if (FI->getIndex() < 0) { 1165 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1166 int64_t InLastByte = InFirstByte; 1167 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1168 1169 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1170 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1171 ArgChains.push_back(SDValue(L, 1)); 1172 } 1173 } 1174 } 1175 } 1176 1177 // Build a tokenfactor for all the chains. 1178 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1179 } 1180 1181 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1182 SmallVectorImpl<SDValue> &InVals, 1183 StringRef Reason) const { 1184 SDValue Callee = CLI.Callee; 1185 SelectionDAG &DAG = CLI.DAG; 1186 1187 const Function &Fn = DAG.getMachineFunction().getFunction(); 1188 1189 StringRef FuncName("<unknown>"); 1190 1191 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1192 FuncName = G->getSymbol(); 1193 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1194 FuncName = G->getGlobal()->getName(); 1195 1196 DiagnosticInfoUnsupported NoCalls( 1197 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1198 DAG.getContext()->diagnose(NoCalls); 1199 1200 if (!CLI.IsTailCall) { 1201 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1202 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1203 } 1204 1205 return DAG.getEntryNode(); 1206 } 1207 1208 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1209 SmallVectorImpl<SDValue> &InVals) const { 1210 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1211 } 1212 1213 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1214 SelectionDAG &DAG) const { 1215 const Function &Fn = DAG.getMachineFunction().getFunction(); 1216 1217 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1218 SDLoc(Op).getDebugLoc()); 1219 DAG.getContext()->diagnose(NoDynamicAlloca); 1220 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1221 return DAG.getMergeValues(Ops, SDLoc()); 1222 } 1223 1224 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1225 SelectionDAG &DAG) const { 1226 switch (Op.getOpcode()) { 1227 default: 1228 Op->print(errs(), &DAG); 1229 llvm_unreachable("Custom lowering code for this " 1230 "instruction is not implemented yet!"); 1231 break; 1232 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1233 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1234 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1235 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1236 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1237 case ISD::FREM: return LowerFREM(Op, DAG); 1238 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1239 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1240 case ISD::FRINT: return LowerFRINT(Op, DAG); 1241 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1242 case ISD::FROUND: return LowerFROUND(Op, DAG); 1243 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1244 case ISD::FLOG: 1245 return LowerFLOG(Op, DAG, numbers::ln2f); 1246 case ISD::FLOG10: 1247 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1248 case ISD::FEXP: 1249 return lowerFEXP(Op, DAG); 1250 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1251 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1252 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1253 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1254 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1255 case ISD::CTTZ: 1256 case ISD::CTTZ_ZERO_UNDEF: 1257 case ISD::CTLZ: 1258 case ISD::CTLZ_ZERO_UNDEF: 1259 return LowerCTLZ_CTTZ(Op, DAG); 1260 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1261 } 1262 return Op; 1263 } 1264 1265 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1266 SmallVectorImpl<SDValue> &Results, 1267 SelectionDAG &DAG) const { 1268 switch (N->getOpcode()) { 1269 case ISD::SIGN_EXTEND_INREG: 1270 // Different parts of legalization seem to interpret which type of 1271 // sign_extend_inreg is the one to check for custom lowering. The extended 1272 // from type is what really matters, but some places check for custom 1273 // lowering of the result type. This results in trying to use 1274 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1275 // nothing here and let the illegal result integer be handled normally. 1276 return; 1277 default: 1278 return; 1279 } 1280 } 1281 1282 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1283 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1284 if (!GVar || !GVar->hasInitializer()) 1285 return false; 1286 1287 return !isa<UndefValue>(GVar->getInitializer()); 1288 } 1289 1290 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1291 SDValue Op, 1292 SelectionDAG &DAG) const { 1293 1294 const DataLayout &DL = DAG.getDataLayout(); 1295 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1296 const GlobalValue *GV = G->getGlobal(); 1297 1298 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1299 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1300 if (!MFI->isEntryFunction()) { 1301 SDLoc DL(Op); 1302 const Function &Fn = DAG.getMachineFunction().getFunction(); 1303 DiagnosticInfoUnsupported BadLDSDecl( 1304 Fn, "local memory global used by non-kernel function", 1305 DL.getDebugLoc(), DS_Warning); 1306 DAG.getContext()->diagnose(BadLDSDecl); 1307 1308 // We currently don't have a way to correctly allocate LDS objects that 1309 // aren't directly associated with a kernel. We do force inlining of 1310 // functions that use local objects. However, if these dead functions are 1311 // not eliminated, we don't want a compile time error. Just emit a warning 1312 // and a trap, since there should be no callable path here. 1313 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1314 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1315 Trap, DAG.getRoot()); 1316 DAG.setRoot(OutputChain); 1317 return DAG.getUNDEF(Op.getValueType()); 1318 } 1319 1320 // XXX: What does the value of G->getOffset() mean? 1321 assert(G->getOffset() == 0 && 1322 "Do not know what to do with an non-zero offset"); 1323 1324 // TODO: We could emit code to handle the initialization somewhere. 1325 if (!hasDefinedInitializer(GV)) { 1326 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1327 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1328 } 1329 } 1330 1331 const Function &Fn = DAG.getMachineFunction().getFunction(); 1332 DiagnosticInfoUnsupported BadInit( 1333 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1334 DAG.getContext()->diagnose(BadInit); 1335 return SDValue(); 1336 } 1337 1338 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1339 SelectionDAG &DAG) const { 1340 SmallVector<SDValue, 8> Args; 1341 1342 EVT VT = Op.getValueType(); 1343 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1344 SDLoc SL(Op); 1345 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1346 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1347 1348 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1349 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1350 } 1351 1352 for (const SDUse &U : Op->ops()) 1353 DAG.ExtractVectorElements(U.get(), Args); 1354 1355 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1356 } 1357 1358 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1359 SelectionDAG &DAG) const { 1360 1361 SmallVector<SDValue, 8> Args; 1362 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1363 EVT VT = Op.getValueType(); 1364 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1365 VT.getVectorNumElements()); 1366 1367 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1368 } 1369 1370 /// Generate Min/Max node 1371 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1372 SDValue LHS, SDValue RHS, 1373 SDValue True, SDValue False, 1374 SDValue CC, 1375 DAGCombinerInfo &DCI) const { 1376 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1377 return SDValue(); 1378 1379 SelectionDAG &DAG = DCI.DAG; 1380 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1381 switch (CCOpcode) { 1382 case ISD::SETOEQ: 1383 case ISD::SETONE: 1384 case ISD::SETUNE: 1385 case ISD::SETNE: 1386 case ISD::SETUEQ: 1387 case ISD::SETEQ: 1388 case ISD::SETFALSE: 1389 case ISD::SETFALSE2: 1390 case ISD::SETTRUE: 1391 case ISD::SETTRUE2: 1392 case ISD::SETUO: 1393 case ISD::SETO: 1394 break; 1395 case ISD::SETULE: 1396 case ISD::SETULT: { 1397 if (LHS == True) 1398 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1399 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1400 } 1401 case ISD::SETOLE: 1402 case ISD::SETOLT: 1403 case ISD::SETLE: 1404 case ISD::SETLT: { 1405 // Ordered. Assume ordered for undefined. 1406 1407 // Only do this after legalization to avoid interfering with other combines 1408 // which might occur. 1409 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1410 !DCI.isCalledByLegalizer()) 1411 return SDValue(); 1412 1413 // We need to permute the operands to get the correct NaN behavior. The 1414 // selected operand is the second one based on the failing compare with NaN, 1415 // so permute it based on the compare type the hardware uses. 1416 if (LHS == True) 1417 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1418 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1419 } 1420 case ISD::SETUGE: 1421 case ISD::SETUGT: { 1422 if (LHS == True) 1423 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1424 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1425 } 1426 case ISD::SETGT: 1427 case ISD::SETGE: 1428 case ISD::SETOGE: 1429 case ISD::SETOGT: { 1430 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1431 !DCI.isCalledByLegalizer()) 1432 return SDValue(); 1433 1434 if (LHS == True) 1435 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1436 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1437 } 1438 case ISD::SETCC_INVALID: 1439 llvm_unreachable("Invalid setcc condcode!"); 1440 } 1441 return SDValue(); 1442 } 1443 1444 std::pair<SDValue, SDValue> 1445 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1446 SDLoc SL(Op); 1447 1448 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1449 1450 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1451 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1452 1453 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1454 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1455 1456 return std::make_pair(Lo, Hi); 1457 } 1458 1459 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1460 SDLoc SL(Op); 1461 1462 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1463 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1464 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1465 } 1466 1467 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1468 SDLoc SL(Op); 1469 1470 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1471 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1472 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1473 } 1474 1475 // Split a vector type into two parts. The first part is a power of two vector. 1476 // The second part is whatever is left over, and is a scalar if it would 1477 // otherwise be a 1-vector. 1478 std::pair<EVT, EVT> 1479 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1480 EVT LoVT, HiVT; 1481 EVT EltVT = VT.getVectorElementType(); 1482 unsigned NumElts = VT.getVectorNumElements(); 1483 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1484 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1485 HiVT = NumElts - LoNumElts == 1 1486 ? EltVT 1487 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1488 return std::make_pair(LoVT, HiVT); 1489 } 1490 1491 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1492 // scalar. 1493 std::pair<SDValue, SDValue> 1494 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1495 const EVT &LoVT, const EVT &HiVT, 1496 SelectionDAG &DAG) const { 1497 assert(LoVT.getVectorNumElements() + 1498 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1499 N.getValueType().getVectorNumElements() && 1500 "More vector elements requested than available!"); 1501 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1502 DAG.getVectorIdxConstant(0, DL)); 1503 SDValue Hi = DAG.getNode( 1504 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1505 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1506 return std::make_pair(Lo, Hi); 1507 } 1508 1509 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1510 SelectionDAG &DAG) const { 1511 LoadSDNode *Load = cast<LoadSDNode>(Op); 1512 EVT VT = Op.getValueType(); 1513 SDLoc SL(Op); 1514 1515 1516 // If this is a 2 element vector, we really want to scalarize and not create 1517 // weird 1 element vectors. 1518 if (VT.getVectorNumElements() == 2) { 1519 SDValue Ops[2]; 1520 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1521 return DAG.getMergeValues(Ops, SL); 1522 } 1523 1524 SDValue BasePtr = Load->getBasePtr(); 1525 EVT MemVT = Load->getMemoryVT(); 1526 1527 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1528 1529 EVT LoVT, HiVT; 1530 EVT LoMemVT, HiMemVT; 1531 SDValue Lo, Hi; 1532 1533 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1534 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1535 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1536 1537 unsigned Size = LoMemVT.getStoreSize(); 1538 unsigned BaseAlign = Load->getAlignment(); 1539 unsigned HiAlign = MinAlign(BaseAlign, Size); 1540 1541 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1542 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1543 BaseAlign, Load->getMemOperand()->getFlags()); 1544 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1545 SDValue HiLoad = 1546 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1547 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1548 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1549 1550 SDValue Join; 1551 if (LoVT == HiVT) { 1552 // This is the case that the vector is power of two so was evenly split. 1553 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1554 } else { 1555 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1556 DAG.getVectorIdxConstant(0, SL)); 1557 Join = DAG.getNode( 1558 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1559 VT, Join, HiLoad, 1560 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1561 } 1562 1563 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1564 LoLoad.getValue(1), HiLoad.getValue(1))}; 1565 1566 return DAG.getMergeValues(Ops, SL); 1567 } 1568 1569 // Widen a vector load from vec3 to vec4. 1570 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1571 SelectionDAG &DAG) const { 1572 LoadSDNode *Load = cast<LoadSDNode>(Op); 1573 EVT VT = Op.getValueType(); 1574 assert(VT.getVectorNumElements() == 3); 1575 SDValue BasePtr = Load->getBasePtr(); 1576 EVT MemVT = Load->getMemoryVT(); 1577 SDLoc SL(Op); 1578 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1579 unsigned BaseAlign = Load->getAlignment(); 1580 1581 EVT WideVT = 1582 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1583 EVT WideMemVT = 1584 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1585 SDValue WideLoad = DAG.getExtLoad( 1586 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1587 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1588 return DAG.getMergeValues( 1589 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1590 DAG.getVectorIdxConstant(0, SL)), 1591 WideLoad.getValue(1)}, 1592 SL); 1593 } 1594 1595 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1596 SelectionDAG &DAG) const { 1597 StoreSDNode *Store = cast<StoreSDNode>(Op); 1598 SDValue Val = Store->getValue(); 1599 EVT VT = Val.getValueType(); 1600 1601 // If this is a 2 element vector, we really want to scalarize and not create 1602 // weird 1 element vectors. 1603 if (VT.getVectorNumElements() == 2) 1604 return scalarizeVectorStore(Store, DAG); 1605 1606 EVT MemVT = Store->getMemoryVT(); 1607 SDValue Chain = Store->getChain(); 1608 SDValue BasePtr = Store->getBasePtr(); 1609 SDLoc SL(Op); 1610 1611 EVT LoVT, HiVT; 1612 EVT LoMemVT, HiMemVT; 1613 SDValue Lo, Hi; 1614 1615 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1616 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1617 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1618 1619 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1620 1621 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1622 unsigned BaseAlign = Store->getAlignment(); 1623 unsigned Size = LoMemVT.getStoreSize(); 1624 unsigned HiAlign = MinAlign(BaseAlign, Size); 1625 1626 SDValue LoStore = 1627 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1628 Store->getMemOperand()->getFlags()); 1629 SDValue HiStore = 1630 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1631 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1632 1633 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1634 } 1635 1636 // This is a shortcut for integer division because we have fast i32<->f32 1637 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1638 // float is enough to accurately represent up to a 24-bit signed integer. 1639 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1640 bool Sign) const { 1641 SDLoc DL(Op); 1642 EVT VT = Op.getValueType(); 1643 SDValue LHS = Op.getOperand(0); 1644 SDValue RHS = Op.getOperand(1); 1645 MVT IntVT = MVT::i32; 1646 MVT FltVT = MVT::f32; 1647 1648 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1649 if (LHSSignBits < 9) 1650 return SDValue(); 1651 1652 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1653 if (RHSSignBits < 9) 1654 return SDValue(); 1655 1656 unsigned BitSize = VT.getSizeInBits(); 1657 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1658 unsigned DivBits = BitSize - SignBits; 1659 if (Sign) 1660 ++DivBits; 1661 1662 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1663 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1664 1665 SDValue jq = DAG.getConstant(1, DL, IntVT); 1666 1667 if (Sign) { 1668 // char|short jq = ia ^ ib; 1669 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1670 1671 // jq = jq >> (bitsize - 2) 1672 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1673 DAG.getConstant(BitSize - 2, DL, VT)); 1674 1675 // jq = jq | 0x1 1676 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1677 } 1678 1679 // int ia = (int)LHS; 1680 SDValue ia = LHS; 1681 1682 // int ib, (int)RHS; 1683 SDValue ib = RHS; 1684 1685 // float fa = (float)ia; 1686 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1687 1688 // float fb = (float)ib; 1689 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1690 1691 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1692 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1693 1694 // fq = trunc(fq); 1695 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1696 1697 // float fqneg = -fq; 1698 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1699 1700 MachineFunction &MF = DAG.getMachineFunction(); 1701 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1702 1703 // float fr = mad(fqneg, fb, fa); 1704 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1705 (unsigned)ISD::FMA : 1706 !MFI->getMode().allFP32Denormals() ? 1707 (unsigned)ISD::FMAD : 1708 (unsigned)AMDGPUISD::FMAD_FTZ; 1709 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1710 1711 // int iq = (int)fq; 1712 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1713 1714 // fr = fabs(fr); 1715 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1716 1717 // fb = fabs(fb); 1718 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1719 1720 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1721 1722 // int cv = fr >= fb; 1723 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1724 1725 // jq = (cv ? jq : 0); 1726 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1727 1728 // dst = iq + jq; 1729 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1730 1731 // Rem needs compensation, it's easier to recompute it 1732 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1733 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1734 1735 // Truncate to number of bits this divide really is. 1736 if (Sign) { 1737 SDValue InRegSize 1738 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1739 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1740 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1741 } else { 1742 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1743 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1744 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1745 } 1746 1747 return DAG.getMergeValues({ Div, Rem }, DL); 1748 } 1749 1750 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1751 SelectionDAG &DAG, 1752 SmallVectorImpl<SDValue> &Results) const { 1753 SDLoc DL(Op); 1754 EVT VT = Op.getValueType(); 1755 1756 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1757 1758 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1759 1760 SDValue One = DAG.getConstant(1, DL, HalfVT); 1761 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1762 1763 //HiLo split 1764 SDValue LHS = Op.getOperand(0); 1765 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1766 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1767 1768 SDValue RHS = Op.getOperand(1); 1769 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1770 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1771 1772 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1773 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1774 1775 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1776 LHS_Lo, RHS_Lo); 1777 1778 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1779 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1780 1781 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1782 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1783 return; 1784 } 1785 1786 if (isTypeLegal(MVT::i64)) { 1787 MachineFunction &MF = DAG.getMachineFunction(); 1788 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1789 1790 // Compute denominator reciprocal. 1791 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1792 (unsigned)ISD::FMA : 1793 !MFI->getMode().allFP32Denormals() ? 1794 (unsigned)ISD::FMAD : 1795 (unsigned)AMDGPUISD::FMAD_FTZ; 1796 1797 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1798 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1799 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1800 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1801 Cvt_Lo); 1802 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1803 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1804 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1805 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1806 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1807 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1808 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1809 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1810 Mul1); 1811 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1812 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1813 SDValue Rcp64 = DAG.getBitcast(VT, 1814 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1815 1816 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1817 SDValue One64 = DAG.getConstant(1, DL, VT); 1818 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1819 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1820 1821 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1822 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1823 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1824 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1825 Zero); 1826 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1827 One); 1828 1829 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1830 Mulhi1_Lo, Zero1); 1831 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1832 Mulhi1_Hi, Add1_Lo.getValue(1)); 1833 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1834 SDValue Add1 = DAG.getBitcast(VT, 1835 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1836 1837 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1838 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1839 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1840 Zero); 1841 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1842 One); 1843 1844 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1845 Mulhi2_Lo, Zero1); 1846 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1847 Mulhi2_Hi, Add1_Lo.getValue(1)); 1848 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1849 Zero, Add2_Lo.getValue(1)); 1850 SDValue Add2 = DAG.getBitcast(VT, 1851 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1852 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1853 1854 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1855 1856 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1857 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1858 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1859 Mul3_Lo, Zero1); 1860 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1861 Mul3_Hi, Sub1_Lo.getValue(1)); 1862 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1863 SDValue Sub1 = DAG.getBitcast(VT, 1864 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1865 1866 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1867 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1868 ISD::SETUGE); 1869 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1870 ISD::SETUGE); 1871 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1872 1873 // TODO: Here and below portions of the code can be enclosed into if/endif. 1874 // Currently control flow is unconditional and we have 4 selects after 1875 // potential endif to substitute PHIs. 1876 1877 // if C3 != 0 ... 1878 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1879 RHS_Lo, Zero1); 1880 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1881 RHS_Hi, Sub1_Lo.getValue(1)); 1882 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1883 Zero, Sub2_Lo.getValue(1)); 1884 SDValue Sub2 = DAG.getBitcast(VT, 1885 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1886 1887 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1888 1889 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1890 ISD::SETUGE); 1891 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1892 ISD::SETUGE); 1893 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1894 1895 // if (C6 != 0) 1896 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1897 1898 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1899 RHS_Lo, Zero1); 1900 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1901 RHS_Hi, Sub2_Lo.getValue(1)); 1902 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1903 Zero, Sub3_Lo.getValue(1)); 1904 SDValue Sub3 = DAG.getBitcast(VT, 1905 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1906 1907 // endif C6 1908 // endif C3 1909 1910 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1911 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1912 1913 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1914 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1915 1916 Results.push_back(Div); 1917 Results.push_back(Rem); 1918 1919 return; 1920 } 1921 1922 // r600 expandion. 1923 // Get Speculative values 1924 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1925 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1926 1927 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1928 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1929 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1930 1931 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1932 SDValue DIV_Lo = Zero; 1933 1934 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1935 1936 for (unsigned i = 0; i < halfBitWidth; ++i) { 1937 const unsigned bitPos = halfBitWidth - i - 1; 1938 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1939 // Get value of high bit 1940 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1941 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1942 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1943 1944 // Shift 1945 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1946 // Add LHS high bit 1947 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1948 1949 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1950 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1951 1952 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1953 1954 // Update REM 1955 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1956 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1957 } 1958 1959 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1960 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1961 Results.push_back(DIV); 1962 Results.push_back(REM); 1963 } 1964 1965 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1966 SelectionDAG &DAG) const { 1967 SDLoc DL(Op); 1968 EVT VT = Op.getValueType(); 1969 1970 if (VT == MVT::i64) { 1971 SmallVector<SDValue, 2> Results; 1972 LowerUDIVREM64(Op, DAG, Results); 1973 return DAG.getMergeValues(Results, DL); 1974 } 1975 1976 if (VT == MVT::i32) { 1977 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1978 return Res; 1979 } 1980 1981 SDValue X = Op.getOperand(0); 1982 SDValue Y = Op.getOperand(1); 1983 1984 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 1985 // algorithm used here. 1986 1987 // Initial estimate of inv(y). 1988 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 1989 1990 // One round of UNR. 1991 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 1992 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 1993 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 1994 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 1995 1996 // Quotient/remainder estimate. 1997 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 1998 SDValue R = 1999 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 2000 2001 // First quotient/remainder refinement. 2002 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2003 SDValue One = DAG.getConstant(1, DL, VT); 2004 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2005 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2006 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2007 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2008 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2009 2010 // Second quotient/remainder refinement. 2011 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2012 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2013 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2014 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2015 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2016 2017 return DAG.getMergeValues({Q, R}, DL); 2018 } 2019 2020 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2021 SelectionDAG &DAG) const { 2022 SDLoc DL(Op); 2023 EVT VT = Op.getValueType(); 2024 2025 SDValue LHS = Op.getOperand(0); 2026 SDValue RHS = Op.getOperand(1); 2027 2028 SDValue Zero = DAG.getConstant(0, DL, VT); 2029 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2030 2031 if (VT == MVT::i32) { 2032 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2033 return Res; 2034 } 2035 2036 if (VT == MVT::i64 && 2037 DAG.ComputeNumSignBits(LHS) > 32 && 2038 DAG.ComputeNumSignBits(RHS) > 32) { 2039 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2040 2041 //HiLo split 2042 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2043 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2044 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2045 LHS_Lo, RHS_Lo); 2046 SDValue Res[2] = { 2047 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2048 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2049 }; 2050 return DAG.getMergeValues(Res, DL); 2051 } 2052 2053 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2054 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2055 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2056 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2057 2058 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2059 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2060 2061 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2062 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2063 2064 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2065 SDValue Rem = Div.getValue(1); 2066 2067 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2068 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2069 2070 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2071 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2072 2073 SDValue Res[2] = { 2074 Div, 2075 Rem 2076 }; 2077 return DAG.getMergeValues(Res, DL); 2078 } 2079 2080 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2081 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2082 SDLoc SL(Op); 2083 EVT VT = Op.getValueType(); 2084 auto Flags = Op->getFlags(); 2085 SDValue X = Op.getOperand(0); 2086 SDValue Y = Op.getOperand(1); 2087 2088 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2089 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2090 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2091 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2092 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2093 } 2094 2095 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2096 SDLoc SL(Op); 2097 SDValue Src = Op.getOperand(0); 2098 2099 // result = trunc(src) 2100 // if (src > 0.0 && src != result) 2101 // result += 1.0 2102 2103 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2104 2105 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2106 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2107 2108 EVT SetCCVT = 2109 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2110 2111 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2112 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2113 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2114 2115 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2116 // TODO: Should this propagate fast-math-flags? 2117 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2118 } 2119 2120 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2121 SelectionDAG &DAG) { 2122 const unsigned FractBits = 52; 2123 const unsigned ExpBits = 11; 2124 2125 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2126 Hi, 2127 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2128 DAG.getConstant(ExpBits, SL, MVT::i32)); 2129 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2130 DAG.getConstant(1023, SL, MVT::i32)); 2131 2132 return Exp; 2133 } 2134 2135 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2136 SDLoc SL(Op); 2137 SDValue Src = Op.getOperand(0); 2138 2139 assert(Op.getValueType() == MVT::f64); 2140 2141 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2142 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2143 2144 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2145 2146 // Extract the upper half, since this is where we will find the sign and 2147 // exponent. 2148 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2149 2150 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2151 2152 const unsigned FractBits = 52; 2153 2154 // Extract the sign bit. 2155 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2156 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2157 2158 // Extend back to 64-bits. 2159 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2160 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2161 2162 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2163 const SDValue FractMask 2164 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2165 2166 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2167 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2168 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2169 2170 EVT SetCCVT = 2171 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2172 2173 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2174 2175 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2176 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2177 2178 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2179 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2180 2181 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2182 } 2183 2184 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2185 SDLoc SL(Op); 2186 SDValue Src = Op.getOperand(0); 2187 2188 assert(Op.getValueType() == MVT::f64); 2189 2190 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2191 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2192 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2193 2194 // TODO: Should this propagate fast-math-flags? 2195 2196 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2197 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2198 2199 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2200 2201 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2202 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2203 2204 EVT SetCCVT = 2205 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2206 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2207 2208 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2209 } 2210 2211 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2212 // FNEARBYINT and FRINT are the same, except in their handling of FP 2213 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2214 // rint, so just treat them as equivalent. 2215 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2216 } 2217 2218 // XXX - May require not supporting f32 denormals? 2219 2220 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2221 // compare and vselect end up producing worse code than scalarizing the whole 2222 // operation. 2223 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2224 SDLoc SL(Op); 2225 SDValue X = Op.getOperand(0); 2226 EVT VT = Op.getValueType(); 2227 2228 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2229 2230 // TODO: Should this propagate fast-math-flags? 2231 2232 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2233 2234 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2235 2236 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2237 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2238 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2239 2240 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2241 2242 EVT SetCCVT = 2243 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2244 2245 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2246 2247 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2248 2249 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2250 } 2251 2252 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2253 SDLoc SL(Op); 2254 SDValue Src = Op.getOperand(0); 2255 2256 // result = trunc(src); 2257 // if (src < 0.0 && src != result) 2258 // result += -1.0. 2259 2260 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2261 2262 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2263 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2264 2265 EVT SetCCVT = 2266 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2267 2268 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2269 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2270 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2271 2272 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2273 // TODO: Should this propagate fast-math-flags? 2274 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2275 } 2276 2277 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2278 double Log2BaseInverted) const { 2279 EVT VT = Op.getValueType(); 2280 2281 SDLoc SL(Op); 2282 SDValue Operand = Op.getOperand(0); 2283 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2284 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2285 2286 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2287 } 2288 2289 // exp2(M_LOG2E_F * f); 2290 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2291 EVT VT = Op.getValueType(); 2292 SDLoc SL(Op); 2293 SDValue Src = Op.getOperand(0); 2294 2295 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2296 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2297 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2298 } 2299 2300 static bool isCtlzOpc(unsigned Opc) { 2301 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2302 } 2303 2304 static bool isCttzOpc(unsigned Opc) { 2305 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2306 } 2307 2308 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2309 SDLoc SL(Op); 2310 SDValue Src = Op.getOperand(0); 2311 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2312 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2313 2314 unsigned ISDOpc, NewOpc; 2315 if (isCtlzOpc(Op.getOpcode())) { 2316 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2317 NewOpc = AMDGPUISD::FFBH_U32; 2318 } else if (isCttzOpc(Op.getOpcode())) { 2319 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2320 NewOpc = AMDGPUISD::FFBL_B32; 2321 } else 2322 llvm_unreachable("Unexpected OPCode!!!"); 2323 2324 2325 if (ZeroUndef && Src.getValueType() == MVT::i32) 2326 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2327 2328 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2329 2330 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2331 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2332 2333 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2334 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2335 2336 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2337 *DAG.getContext(), MVT::i32); 2338 2339 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2340 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2341 2342 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2343 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2344 2345 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2346 SDValue Add, NewOpr; 2347 if (isCtlzOpc(Op.getOpcode())) { 2348 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2349 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2350 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2351 } else { 2352 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2353 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2354 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2355 } 2356 2357 if (!ZeroUndef) { 2358 // Test if the full 64-bit input is zero. 2359 2360 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2361 // which we probably don't want. 2362 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2363 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2364 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2365 2366 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2367 // with the same cycles, otherwise it is slower. 2368 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2369 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2370 2371 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2372 2373 // The instruction returns -1 for 0 input, but the defined intrinsic 2374 // behavior is to return the number of bits. 2375 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2376 SrcIsZero, Bits32, NewOpr); 2377 } 2378 2379 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2380 } 2381 2382 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2383 bool Signed) const { 2384 // Unsigned 2385 // cul2f(ulong u) 2386 //{ 2387 // uint lz = clz(u); 2388 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2389 // u = (u << lz) & 0x7fffffffffffffffUL; 2390 // ulong t = u & 0xffffffffffUL; 2391 // uint v = (e << 23) | (uint)(u >> 40); 2392 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2393 // return as_float(v + r); 2394 //} 2395 // Signed 2396 // cl2f(long l) 2397 //{ 2398 // long s = l >> 63; 2399 // float r = cul2f((l + s) ^ s); 2400 // return s ? -r : r; 2401 //} 2402 2403 SDLoc SL(Op); 2404 SDValue Src = Op.getOperand(0); 2405 SDValue L = Src; 2406 2407 SDValue S; 2408 if (Signed) { 2409 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2410 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2411 2412 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2413 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2414 } 2415 2416 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2417 *DAG.getContext(), MVT::f32); 2418 2419 2420 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2421 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2422 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2423 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2424 2425 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2426 SDValue E = DAG.getSelect(SL, MVT::i32, 2427 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2428 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2429 ZeroI32); 2430 2431 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2432 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2433 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2434 2435 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2436 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2437 2438 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2439 U, DAG.getConstant(40, SL, MVT::i64)); 2440 2441 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2442 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2443 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2444 2445 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2446 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2447 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2448 2449 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2450 2451 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2452 2453 SDValue R = DAG.getSelect(SL, MVT::i32, 2454 RCmp, 2455 One, 2456 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2457 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2458 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2459 2460 if (!Signed) 2461 return R; 2462 2463 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2464 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2465 } 2466 2467 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2468 bool Signed) const { 2469 SDLoc SL(Op); 2470 SDValue Src = Op.getOperand(0); 2471 2472 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2473 2474 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2475 DAG.getConstant(0, SL, MVT::i32)); 2476 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2477 DAG.getConstant(1, SL, MVT::i32)); 2478 2479 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2480 SL, MVT::f64, Hi); 2481 2482 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2483 2484 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2485 DAG.getConstant(32, SL, MVT::i32)); 2486 // TODO: Should this propagate fast-math-flags? 2487 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2488 } 2489 2490 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2491 SelectionDAG &DAG) const { 2492 // TODO: Factor out code common with LowerSINT_TO_FP. 2493 EVT DestVT = Op.getValueType(); 2494 SDValue Src = Op.getOperand(0); 2495 EVT SrcVT = Src.getValueType(); 2496 2497 if (SrcVT == MVT::i16) { 2498 if (DestVT == MVT::f16) 2499 return Op; 2500 SDLoc DL(Op); 2501 2502 // Promote src to i32 2503 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2504 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2505 } 2506 2507 assert(SrcVT == MVT::i64 && "operation should be legal"); 2508 2509 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2510 SDLoc DL(Op); 2511 2512 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2513 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2514 SDValue FPRound = 2515 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2516 2517 return FPRound; 2518 } 2519 2520 if (DestVT == MVT::f32) 2521 return LowerINT_TO_FP32(Op, DAG, false); 2522 2523 assert(DestVT == MVT::f64); 2524 return LowerINT_TO_FP64(Op, DAG, false); 2525 } 2526 2527 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2528 SelectionDAG &DAG) const { 2529 EVT DestVT = Op.getValueType(); 2530 2531 SDValue Src = Op.getOperand(0); 2532 EVT SrcVT = Src.getValueType(); 2533 2534 if (SrcVT == MVT::i16) { 2535 if (DestVT == MVT::f16) 2536 return Op; 2537 2538 SDLoc DL(Op); 2539 // Promote src to i32 2540 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2541 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2542 } 2543 2544 assert(SrcVT == MVT::i64 && "operation should be legal"); 2545 2546 // TODO: Factor out code common with LowerUINT_TO_FP. 2547 2548 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2549 SDLoc DL(Op); 2550 SDValue Src = Op.getOperand(0); 2551 2552 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2553 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2554 SDValue FPRound = 2555 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2556 2557 return FPRound; 2558 } 2559 2560 if (DestVT == MVT::f32) 2561 return LowerINT_TO_FP32(Op, DAG, true); 2562 2563 assert(DestVT == MVT::f64); 2564 return LowerINT_TO_FP64(Op, DAG, true); 2565 } 2566 2567 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2568 bool Signed) const { 2569 SDLoc SL(Op); 2570 2571 SDValue Src = Op.getOperand(0); 2572 2573 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2574 2575 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2576 MVT::f64); 2577 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2578 MVT::f64); 2579 // TODO: Should this propagate fast-math-flags? 2580 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2581 2582 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2583 2584 2585 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2586 2587 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2588 MVT::i32, FloorMul); 2589 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2590 2591 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2592 2593 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2594 } 2595 2596 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2597 SDLoc DL(Op); 2598 SDValue N0 = Op.getOperand(0); 2599 2600 // Convert to target node to get known bits 2601 if (N0.getValueType() == MVT::f32) 2602 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2603 2604 if (getTargetMachine().Options.UnsafeFPMath) { 2605 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2606 return SDValue(); 2607 } 2608 2609 assert(N0.getSimpleValueType() == MVT::f64); 2610 2611 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2612 const unsigned ExpMask = 0x7ff; 2613 const unsigned ExpBiasf64 = 1023; 2614 const unsigned ExpBiasf16 = 15; 2615 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2616 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2617 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2618 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2619 DAG.getConstant(32, DL, MVT::i64)); 2620 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2621 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2622 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2623 DAG.getConstant(20, DL, MVT::i64)); 2624 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2625 DAG.getConstant(ExpMask, DL, MVT::i32)); 2626 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2627 // add the f16 bias (15) to get the biased exponent for the f16 format. 2628 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2629 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2630 2631 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2632 DAG.getConstant(8, DL, MVT::i32)); 2633 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2634 DAG.getConstant(0xffe, DL, MVT::i32)); 2635 2636 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2637 DAG.getConstant(0x1ff, DL, MVT::i32)); 2638 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2639 2640 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2641 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2642 2643 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2644 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2645 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2646 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2647 2648 // N = M | (E << 12); 2649 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2650 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2651 DAG.getConstant(12, DL, MVT::i32))); 2652 2653 // B = clamp(1-E, 0, 13); 2654 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2655 One, E); 2656 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2657 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2658 DAG.getConstant(13, DL, MVT::i32)); 2659 2660 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2661 DAG.getConstant(0x1000, DL, MVT::i32)); 2662 2663 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2664 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2665 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2666 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2667 2668 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2669 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2670 DAG.getConstant(0x7, DL, MVT::i32)); 2671 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2672 DAG.getConstant(2, DL, MVT::i32)); 2673 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2674 One, Zero, ISD::SETEQ); 2675 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2676 One, Zero, ISD::SETGT); 2677 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2678 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2679 2680 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2681 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2682 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2683 I, V, ISD::SETEQ); 2684 2685 // Extract the sign bit. 2686 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2687 DAG.getConstant(16, DL, MVT::i32)); 2688 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2689 DAG.getConstant(0x8000, DL, MVT::i32)); 2690 2691 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2692 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2693 } 2694 2695 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2696 SelectionDAG &DAG) const { 2697 SDValue Src = Op.getOperand(0); 2698 2699 // TODO: Factor out code common with LowerFP_TO_UINT. 2700 2701 EVT SrcVT = Src.getValueType(); 2702 if (SrcVT == MVT::f16 || 2703 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2704 SDLoc DL(Op); 2705 2706 SDValue FpToInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i32, Src); 2707 return DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, FpToInt32); 2708 } 2709 2710 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2711 return LowerFP64_TO_INT(Op, DAG, true); 2712 2713 return SDValue(); 2714 } 2715 2716 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2717 SelectionDAG &DAG) const { 2718 SDValue Src = Op.getOperand(0); 2719 2720 // TODO: Factor out code common with LowerFP_TO_SINT. 2721 2722 EVT SrcVT = Src.getValueType(); 2723 if (SrcVT == MVT::f16 || 2724 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2725 SDLoc DL(Op); 2726 2727 SDValue FpToUInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i32, Src); 2728 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, FpToUInt32); 2729 } 2730 2731 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2732 return LowerFP64_TO_INT(Op, DAG, false); 2733 2734 return SDValue(); 2735 } 2736 2737 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2738 SelectionDAG &DAG) const { 2739 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2740 MVT VT = Op.getSimpleValueType(); 2741 MVT ScalarVT = VT.getScalarType(); 2742 2743 assert(VT.isVector()); 2744 2745 SDValue Src = Op.getOperand(0); 2746 SDLoc DL(Op); 2747 2748 // TODO: Don't scalarize on Evergreen? 2749 unsigned NElts = VT.getVectorNumElements(); 2750 SmallVector<SDValue, 8> Args; 2751 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2752 2753 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2754 for (unsigned I = 0; I < NElts; ++I) 2755 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2756 2757 return DAG.getBuildVector(VT, DL, Args); 2758 } 2759 2760 //===----------------------------------------------------------------------===// 2761 // Custom DAG optimizations 2762 //===----------------------------------------------------------------------===// 2763 2764 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2765 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2766 } 2767 2768 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2769 EVT VT = Op.getValueType(); 2770 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2771 // as unsigned 24-bit values. 2772 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2773 } 2774 2775 static SDValue simplifyI24(SDNode *Node24, 2776 TargetLowering::DAGCombinerInfo &DCI) { 2777 SelectionDAG &DAG = DCI.DAG; 2778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2779 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2780 2781 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2782 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2783 unsigned NewOpcode = Node24->getOpcode(); 2784 if (IsIntrin) { 2785 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2786 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2787 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2788 } 2789 2790 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2791 2792 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2793 // the operands to have other uses, but will only perform simplifications that 2794 // involve bypassing some nodes for this user. 2795 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2796 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2797 if (DemandedLHS || DemandedRHS) 2798 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2799 DemandedLHS ? DemandedLHS : LHS, 2800 DemandedRHS ? DemandedRHS : RHS); 2801 2802 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2803 // operands if this node is the only user. 2804 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2805 return SDValue(Node24, 0); 2806 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2807 return SDValue(Node24, 0); 2808 2809 return SDValue(); 2810 } 2811 2812 template <typename IntTy> 2813 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2814 uint32_t Width, const SDLoc &DL) { 2815 if (Width + Offset < 32) { 2816 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2817 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2818 return DAG.getConstant(Result, DL, MVT::i32); 2819 } 2820 2821 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2822 } 2823 2824 static bool hasVolatileUser(SDNode *Val) { 2825 for (SDNode *U : Val->uses()) { 2826 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2827 if (M->isVolatile()) 2828 return true; 2829 } 2830 } 2831 2832 return false; 2833 } 2834 2835 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2836 // i32 vectors are the canonical memory type. 2837 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2838 return false; 2839 2840 if (!VT.isByteSized()) 2841 return false; 2842 2843 unsigned Size = VT.getStoreSize(); 2844 2845 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2846 return false; 2847 2848 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2849 return false; 2850 2851 return true; 2852 } 2853 2854 // Replace load of an illegal type with a store of a bitcast to a friendlier 2855 // type. 2856 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2857 DAGCombinerInfo &DCI) const { 2858 if (!DCI.isBeforeLegalize()) 2859 return SDValue(); 2860 2861 LoadSDNode *LN = cast<LoadSDNode>(N); 2862 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2863 return SDValue(); 2864 2865 SDLoc SL(N); 2866 SelectionDAG &DAG = DCI.DAG; 2867 EVT VT = LN->getMemoryVT(); 2868 2869 unsigned Size = VT.getStoreSize(); 2870 Align Alignment = LN->getAlign(); 2871 if (Alignment < Size && isTypeLegal(VT)) { 2872 bool IsFast; 2873 unsigned AS = LN->getAddressSpace(); 2874 2875 // Expand unaligned loads earlier than legalization. Due to visitation order 2876 // problems during legalization, the emitted instructions to pack and unpack 2877 // the bytes again are not eliminated in the case of an unaligned copy. 2878 if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(), 2879 LN->getMemOperand()->getFlags(), 2880 &IsFast)) { 2881 SDValue Ops[2]; 2882 2883 if (VT.isVector()) 2884 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2885 else 2886 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2887 2888 return DAG.getMergeValues(Ops, SDLoc(N)); 2889 } 2890 2891 if (!IsFast) 2892 return SDValue(); 2893 } 2894 2895 if (!shouldCombineMemoryType(VT)) 2896 return SDValue(); 2897 2898 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2899 2900 SDValue NewLoad 2901 = DAG.getLoad(NewVT, SL, LN->getChain(), 2902 LN->getBasePtr(), LN->getMemOperand()); 2903 2904 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2905 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2906 return SDValue(N, 0); 2907 } 2908 2909 // Replace store of an illegal type with a store of a bitcast to a friendlier 2910 // type. 2911 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2912 DAGCombinerInfo &DCI) const { 2913 if (!DCI.isBeforeLegalize()) 2914 return SDValue(); 2915 2916 StoreSDNode *SN = cast<StoreSDNode>(N); 2917 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 2918 return SDValue(); 2919 2920 EVT VT = SN->getMemoryVT(); 2921 unsigned Size = VT.getStoreSize(); 2922 2923 SDLoc SL(N); 2924 SelectionDAG &DAG = DCI.DAG; 2925 Align Alignment = SN->getAlign(); 2926 if (Alignment < Size && isTypeLegal(VT)) { 2927 bool IsFast; 2928 unsigned AS = SN->getAddressSpace(); 2929 2930 // Expand unaligned stores earlier than legalization. Due to visitation 2931 // order problems during legalization, the emitted instructions to pack and 2932 // unpack the bytes again are not eliminated in the case of an unaligned 2933 // copy. 2934 if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(), 2935 SN->getMemOperand()->getFlags(), 2936 &IsFast)) { 2937 if (VT.isVector()) 2938 return scalarizeVectorStore(SN, DAG); 2939 2940 return expandUnalignedStore(SN, DAG); 2941 } 2942 2943 if (!IsFast) 2944 return SDValue(); 2945 } 2946 2947 if (!shouldCombineMemoryType(VT)) 2948 return SDValue(); 2949 2950 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2951 SDValue Val = SN->getValue(); 2952 2953 //DCI.AddToWorklist(Val.getNode()); 2954 2955 bool OtherUses = !Val.hasOneUse(); 2956 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2957 if (OtherUses) { 2958 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2959 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2960 } 2961 2962 return DAG.getStore(SN->getChain(), SL, CastVal, 2963 SN->getBasePtr(), SN->getMemOperand()); 2964 } 2965 2966 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2967 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2968 // issues. 2969 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2970 DAGCombinerInfo &DCI) const { 2971 SelectionDAG &DAG = DCI.DAG; 2972 SDValue N0 = N->getOperand(0); 2973 2974 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2975 // (vt2 (truncate (assertzext vt0:x, vt1))) 2976 if (N0.getOpcode() == ISD::TRUNCATE) { 2977 SDValue N1 = N->getOperand(1); 2978 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2979 SDLoc SL(N); 2980 2981 SDValue Src = N0.getOperand(0); 2982 EVT SrcVT = Src.getValueType(); 2983 if (SrcVT.bitsGE(ExtVT)) { 2984 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2985 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2986 } 2987 } 2988 2989 return SDValue(); 2990 } 2991 2992 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 2993 SDNode *N, DAGCombinerInfo &DCI) const { 2994 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2995 switch (IID) { 2996 case Intrinsic::amdgcn_mul_i24: 2997 case Intrinsic::amdgcn_mul_u24: 2998 return simplifyI24(N, DCI); 2999 case Intrinsic::amdgcn_fract: 3000 case Intrinsic::amdgcn_rsq: 3001 case Intrinsic::amdgcn_rcp_legacy: 3002 case Intrinsic::amdgcn_rsq_legacy: 3003 case Intrinsic::amdgcn_rsq_clamp: 3004 case Intrinsic::amdgcn_ldexp: { 3005 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3006 SDValue Src = N->getOperand(1); 3007 return Src.isUndef() ? Src : SDValue(); 3008 } 3009 default: 3010 return SDValue(); 3011 } 3012 } 3013 3014 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3015 /// binary operation \p Opc to it with the corresponding constant operands. 3016 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3017 DAGCombinerInfo &DCI, const SDLoc &SL, 3018 unsigned Opc, SDValue LHS, 3019 uint32_t ValLo, uint32_t ValHi) const { 3020 SelectionDAG &DAG = DCI.DAG; 3021 SDValue Lo, Hi; 3022 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3023 3024 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3025 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3026 3027 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3028 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3029 3030 // Re-visit the ands. It's possible we eliminated one of them and it could 3031 // simplify the vector. 3032 DCI.AddToWorklist(Lo.getNode()); 3033 DCI.AddToWorklist(Hi.getNode()); 3034 3035 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3036 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3037 } 3038 3039 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3040 DAGCombinerInfo &DCI) const { 3041 EVT VT = N->getValueType(0); 3042 3043 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3044 if (!RHS) 3045 return SDValue(); 3046 3047 SDValue LHS = N->getOperand(0); 3048 unsigned RHSVal = RHS->getZExtValue(); 3049 if (!RHSVal) 3050 return LHS; 3051 3052 SDLoc SL(N); 3053 SelectionDAG &DAG = DCI.DAG; 3054 3055 switch (LHS->getOpcode()) { 3056 default: 3057 break; 3058 case ISD::ZERO_EXTEND: 3059 case ISD::SIGN_EXTEND: 3060 case ISD::ANY_EXTEND: { 3061 SDValue X = LHS->getOperand(0); 3062 3063 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3064 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3065 // Prefer build_vector as the canonical form if packed types are legal. 3066 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3067 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3068 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3069 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3070 } 3071 3072 // shl (ext x) => zext (shl x), if shift does not overflow int 3073 if (VT != MVT::i64) 3074 break; 3075 KnownBits Known = DAG.computeKnownBits(X); 3076 unsigned LZ = Known.countMinLeadingZeros(); 3077 if (LZ < RHSVal) 3078 break; 3079 EVT XVT = X.getValueType(); 3080 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3081 return DAG.getZExtOrTrunc(Shl, SL, VT); 3082 } 3083 } 3084 3085 if (VT != MVT::i64) 3086 return SDValue(); 3087 3088 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3089 3090 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3091 // common case, splitting this into a move and a 32-bit shift is faster and 3092 // the same code size. 3093 if (RHSVal < 32) 3094 return SDValue(); 3095 3096 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3097 3098 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3099 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3100 3101 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3102 3103 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3104 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3105 } 3106 3107 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3108 DAGCombinerInfo &DCI) const { 3109 if (N->getValueType(0) != MVT::i64) 3110 return SDValue(); 3111 3112 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3113 if (!RHS) 3114 return SDValue(); 3115 3116 SelectionDAG &DAG = DCI.DAG; 3117 SDLoc SL(N); 3118 unsigned RHSVal = RHS->getZExtValue(); 3119 3120 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3121 if (RHSVal == 32) { 3122 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3123 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3124 DAG.getConstant(31, SL, MVT::i32)); 3125 3126 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3127 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3128 } 3129 3130 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3131 if (RHSVal == 63) { 3132 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3133 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3134 DAG.getConstant(31, SL, MVT::i32)); 3135 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3136 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3137 } 3138 3139 return SDValue(); 3140 } 3141 3142 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3143 DAGCombinerInfo &DCI) const { 3144 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3145 if (!RHS) 3146 return SDValue(); 3147 3148 EVT VT = N->getValueType(0); 3149 SDValue LHS = N->getOperand(0); 3150 unsigned ShiftAmt = RHS->getZExtValue(); 3151 SelectionDAG &DAG = DCI.DAG; 3152 SDLoc SL(N); 3153 3154 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3155 // this improves the ability to match BFE patterns in isel. 3156 if (LHS.getOpcode() == ISD::AND) { 3157 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3158 if (Mask->getAPIntValue().isShiftedMask() && 3159 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3160 return DAG.getNode( 3161 ISD::AND, SL, VT, 3162 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3163 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3164 } 3165 } 3166 } 3167 3168 if (VT != MVT::i64) 3169 return SDValue(); 3170 3171 if (ShiftAmt < 32) 3172 return SDValue(); 3173 3174 // srl i64:x, C for C >= 32 3175 // => 3176 // build_pair (srl hi_32(x), C - 32), 0 3177 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3178 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3179 3180 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3181 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3182 3183 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3184 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3185 3186 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3187 3188 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3189 } 3190 3191 SDValue AMDGPUTargetLowering::performTruncateCombine( 3192 SDNode *N, DAGCombinerInfo &DCI) const { 3193 SDLoc SL(N); 3194 SelectionDAG &DAG = DCI.DAG; 3195 EVT VT = N->getValueType(0); 3196 SDValue Src = N->getOperand(0); 3197 3198 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3199 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3200 SDValue Vec = Src.getOperand(0); 3201 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3202 SDValue Elt0 = Vec.getOperand(0); 3203 EVT EltVT = Elt0.getValueType(); 3204 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { 3205 if (EltVT.isFloatingPoint()) { 3206 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3207 EltVT.changeTypeToInteger(), Elt0); 3208 } 3209 3210 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3211 } 3212 } 3213 } 3214 3215 // Equivalent of above for accessing the high element of a vector as an 3216 // integer operation. 3217 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3218 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3219 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3220 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3221 SDValue BV = stripBitcast(Src.getOperand(0)); 3222 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3223 BV.getValueType().getVectorNumElements() == 2) { 3224 SDValue SrcElt = BV.getOperand(1); 3225 EVT SrcEltVT = SrcElt.getValueType(); 3226 if (SrcEltVT.isFloatingPoint()) { 3227 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3228 SrcEltVT.changeTypeToInteger(), SrcElt); 3229 } 3230 3231 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3232 } 3233 } 3234 } 3235 } 3236 3237 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3238 // 3239 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3240 // i16 (trunc (srl (i32 (trunc x), K))) 3241 if (VT.getScalarSizeInBits() < 32) { 3242 EVT SrcVT = Src.getValueType(); 3243 if (SrcVT.getScalarSizeInBits() > 32 && 3244 (Src.getOpcode() == ISD::SRL || 3245 Src.getOpcode() == ISD::SRA || 3246 Src.getOpcode() == ISD::SHL)) { 3247 SDValue Amt = Src.getOperand(1); 3248 KnownBits Known = DAG.computeKnownBits(Amt); 3249 unsigned Size = VT.getScalarSizeInBits(); 3250 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3251 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3252 EVT MidVT = VT.isVector() ? 3253 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3254 VT.getVectorNumElements()) : MVT::i32; 3255 3256 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3257 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3258 Src.getOperand(0)); 3259 DCI.AddToWorklist(Trunc.getNode()); 3260 3261 if (Amt.getValueType() != NewShiftVT) { 3262 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3263 DCI.AddToWorklist(Amt.getNode()); 3264 } 3265 3266 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3267 Trunc, Amt); 3268 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3269 } 3270 } 3271 } 3272 3273 return SDValue(); 3274 } 3275 3276 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3277 // instructions. If we only match on the legalized i64 mul expansion, 3278 // SimplifyDemandedBits will be unable to remove them because there will be 3279 // multiple uses due to the separate mul + mulh[su]. 3280 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3281 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3282 if (Size <= 32) { 3283 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3284 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3285 } 3286 3287 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3288 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3289 3290 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3291 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3292 3293 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); 3294 } 3295 3296 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3297 DAGCombinerInfo &DCI) const { 3298 EVT VT = N->getValueType(0); 3299 3300 unsigned Size = VT.getSizeInBits(); 3301 if (VT.isVector() || Size > 64) 3302 return SDValue(); 3303 3304 // There are i16 integer mul/mad. 3305 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3306 return SDValue(); 3307 3308 SelectionDAG &DAG = DCI.DAG; 3309 SDLoc DL(N); 3310 3311 SDValue N0 = N->getOperand(0); 3312 SDValue N1 = N->getOperand(1); 3313 3314 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3315 // in the source into any_extends if the result of the mul is truncated. Since 3316 // we can assume the high bits are whatever we want, use the underlying value 3317 // to avoid the unknown high bits from interfering. 3318 if (N0.getOpcode() == ISD::ANY_EXTEND) 3319 N0 = N0.getOperand(0); 3320 3321 if (N1.getOpcode() == ISD::ANY_EXTEND) 3322 N1 = N1.getOperand(0); 3323 3324 SDValue Mul; 3325 3326 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3327 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3328 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3329 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3330 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3331 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3332 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3333 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3334 } else { 3335 return SDValue(); 3336 } 3337 3338 // We need to use sext even for MUL_U24, because MUL_U24 is used 3339 // for signed multiply of 8 and 16-bit types. 3340 return DAG.getSExtOrTrunc(Mul, DL, VT); 3341 } 3342 3343 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3344 DAGCombinerInfo &DCI) const { 3345 EVT VT = N->getValueType(0); 3346 3347 if (!Subtarget->hasMulI24() || VT.isVector()) 3348 return SDValue(); 3349 3350 SelectionDAG &DAG = DCI.DAG; 3351 SDLoc DL(N); 3352 3353 SDValue N0 = N->getOperand(0); 3354 SDValue N1 = N->getOperand(1); 3355 3356 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3357 return SDValue(); 3358 3359 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3360 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3361 3362 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3363 DCI.AddToWorklist(Mulhi.getNode()); 3364 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3365 } 3366 3367 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3368 DAGCombinerInfo &DCI) const { 3369 EVT VT = N->getValueType(0); 3370 3371 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3372 return SDValue(); 3373 3374 SelectionDAG &DAG = DCI.DAG; 3375 SDLoc DL(N); 3376 3377 SDValue N0 = N->getOperand(0); 3378 SDValue N1 = N->getOperand(1); 3379 3380 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3381 return SDValue(); 3382 3383 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3384 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3385 3386 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3387 DCI.AddToWorklist(Mulhi.getNode()); 3388 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3389 } 3390 3391 static bool isNegativeOne(SDValue Val) { 3392 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3393 return C->isAllOnesValue(); 3394 return false; 3395 } 3396 3397 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3398 SDValue Op, 3399 const SDLoc &DL, 3400 unsigned Opc) const { 3401 EVT VT = Op.getValueType(); 3402 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3403 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3404 LegalVT != MVT::i16)) 3405 return SDValue(); 3406 3407 if (VT != MVT::i32) 3408 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3409 3410 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3411 if (VT != MVT::i32) 3412 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3413 3414 return FFBX; 3415 } 3416 3417 // The native instructions return -1 on 0 input. Optimize out a select that 3418 // produces -1 on 0. 3419 // 3420 // TODO: If zero is not undef, we could also do this if the output is compared 3421 // against the bitwidth. 3422 // 3423 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3424 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3425 SDValue LHS, SDValue RHS, 3426 DAGCombinerInfo &DCI) const { 3427 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3428 if (!CmpRhs || !CmpRhs->isNullValue()) 3429 return SDValue(); 3430 3431 SelectionDAG &DAG = DCI.DAG; 3432 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3433 SDValue CmpLHS = Cond.getOperand(0); 3434 3435 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3436 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3437 if (CCOpcode == ISD::SETEQ && 3438 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3439 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3440 unsigned Opc = 3441 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3442 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3443 } 3444 3445 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3446 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3447 if (CCOpcode == ISD::SETNE && 3448 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3449 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3450 unsigned Opc = 3451 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3452 3453 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3454 } 3455 3456 return SDValue(); 3457 } 3458 3459 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3460 unsigned Op, 3461 const SDLoc &SL, 3462 SDValue Cond, 3463 SDValue N1, 3464 SDValue N2) { 3465 SelectionDAG &DAG = DCI.DAG; 3466 EVT VT = N1.getValueType(); 3467 3468 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3469 N1.getOperand(0), N2.getOperand(0)); 3470 DCI.AddToWorklist(NewSelect.getNode()); 3471 return DAG.getNode(Op, SL, VT, NewSelect); 3472 } 3473 3474 // Pull a free FP operation out of a select so it may fold into uses. 3475 // 3476 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3477 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3478 // 3479 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3480 // select c, (fabs x), +k -> fabs (select c, x, k) 3481 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3482 SDValue N) { 3483 SelectionDAG &DAG = DCI.DAG; 3484 SDValue Cond = N.getOperand(0); 3485 SDValue LHS = N.getOperand(1); 3486 SDValue RHS = N.getOperand(2); 3487 3488 EVT VT = N.getValueType(); 3489 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3490 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3491 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3492 SDLoc(N), Cond, LHS, RHS); 3493 } 3494 3495 bool Inv = false; 3496 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3497 std::swap(LHS, RHS); 3498 Inv = true; 3499 } 3500 3501 // TODO: Support vector constants. 3502 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3503 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3504 SDLoc SL(N); 3505 // If one side is an fneg/fabs and the other is a constant, we can push the 3506 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3507 SDValue NewLHS = LHS.getOperand(0); 3508 SDValue NewRHS = RHS; 3509 3510 // Careful: if the neg can be folded up, don't try to pull it back down. 3511 bool ShouldFoldNeg = true; 3512 3513 if (NewLHS.hasOneUse()) { 3514 unsigned Opc = NewLHS.getOpcode(); 3515 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3516 ShouldFoldNeg = false; 3517 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3518 ShouldFoldNeg = false; 3519 } 3520 3521 if (ShouldFoldNeg) { 3522 if (LHS.getOpcode() == ISD::FNEG) 3523 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3524 else if (CRHS->isNegative()) 3525 return SDValue(); 3526 3527 if (Inv) 3528 std::swap(NewLHS, NewRHS); 3529 3530 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3531 Cond, NewLHS, NewRHS); 3532 DCI.AddToWorklist(NewSelect.getNode()); 3533 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3534 } 3535 } 3536 3537 return SDValue(); 3538 } 3539 3540 3541 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3542 DAGCombinerInfo &DCI) const { 3543 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3544 return Folded; 3545 3546 SDValue Cond = N->getOperand(0); 3547 if (Cond.getOpcode() != ISD::SETCC) 3548 return SDValue(); 3549 3550 EVT VT = N->getValueType(0); 3551 SDValue LHS = Cond.getOperand(0); 3552 SDValue RHS = Cond.getOperand(1); 3553 SDValue CC = Cond.getOperand(2); 3554 3555 SDValue True = N->getOperand(1); 3556 SDValue False = N->getOperand(2); 3557 3558 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3559 SelectionDAG &DAG = DCI.DAG; 3560 if (DAG.isConstantValueOfAnyType(True) && 3561 !DAG.isConstantValueOfAnyType(False)) { 3562 // Swap cmp + select pair to move constant to false input. 3563 // This will allow using VOPC cndmasks more often. 3564 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3565 3566 SDLoc SL(N); 3567 ISD::CondCode NewCC = 3568 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3569 3570 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3571 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3572 } 3573 3574 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3575 SDValue MinMax 3576 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3577 // Revisit this node so we can catch min3/max3/med3 patterns. 3578 //DCI.AddToWorklist(MinMax.getNode()); 3579 return MinMax; 3580 } 3581 } 3582 3583 // There's no reason to not do this if the condition has other uses. 3584 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3585 } 3586 3587 static bool isInv2Pi(const APFloat &APF) { 3588 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3589 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3590 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3591 3592 return APF.bitwiseIsEqual(KF16) || 3593 APF.bitwiseIsEqual(KF32) || 3594 APF.bitwiseIsEqual(KF64); 3595 } 3596 3597 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3598 // additional cost to negate them. 3599 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3600 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3601 if (C->isZero() && !C->isNegative()) 3602 return true; 3603 3604 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3605 return true; 3606 } 3607 3608 return false; 3609 } 3610 3611 static unsigned inverseMinMax(unsigned Opc) { 3612 switch (Opc) { 3613 case ISD::FMAXNUM: 3614 return ISD::FMINNUM; 3615 case ISD::FMINNUM: 3616 return ISD::FMAXNUM; 3617 case ISD::FMAXNUM_IEEE: 3618 return ISD::FMINNUM_IEEE; 3619 case ISD::FMINNUM_IEEE: 3620 return ISD::FMAXNUM_IEEE; 3621 case AMDGPUISD::FMAX_LEGACY: 3622 return AMDGPUISD::FMIN_LEGACY; 3623 case AMDGPUISD::FMIN_LEGACY: 3624 return AMDGPUISD::FMAX_LEGACY; 3625 default: 3626 llvm_unreachable("invalid min/max opcode"); 3627 } 3628 } 3629 3630 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3631 DAGCombinerInfo &DCI) const { 3632 SelectionDAG &DAG = DCI.DAG; 3633 SDValue N0 = N->getOperand(0); 3634 EVT VT = N->getValueType(0); 3635 3636 unsigned Opc = N0.getOpcode(); 3637 3638 // If the input has multiple uses and we can either fold the negate down, or 3639 // the other uses cannot, give up. This both prevents unprofitable 3640 // transformations and infinite loops: we won't repeatedly try to fold around 3641 // a negate that has no 'good' form. 3642 if (N0.hasOneUse()) { 3643 // This may be able to fold into the source, but at a code size cost. Don't 3644 // fold if the fold into the user is free. 3645 if (allUsesHaveSourceMods(N, 0)) 3646 return SDValue(); 3647 } else { 3648 if (fnegFoldsIntoOp(Opc) && 3649 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3650 return SDValue(); 3651 } 3652 3653 SDLoc SL(N); 3654 switch (Opc) { 3655 case ISD::FADD: { 3656 if (!mayIgnoreSignedZero(N0)) 3657 return SDValue(); 3658 3659 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3660 SDValue LHS = N0.getOperand(0); 3661 SDValue RHS = N0.getOperand(1); 3662 3663 if (LHS.getOpcode() != ISD::FNEG) 3664 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3665 else 3666 LHS = LHS.getOperand(0); 3667 3668 if (RHS.getOpcode() != ISD::FNEG) 3669 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3670 else 3671 RHS = RHS.getOperand(0); 3672 3673 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3674 if (Res.getOpcode() != ISD::FADD) 3675 return SDValue(); // Op got folded away. 3676 if (!N0.hasOneUse()) 3677 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3678 return Res; 3679 } 3680 case ISD::FMUL: 3681 case AMDGPUISD::FMUL_LEGACY: { 3682 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3683 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3684 SDValue LHS = N0.getOperand(0); 3685 SDValue RHS = N0.getOperand(1); 3686 3687 if (LHS.getOpcode() == ISD::FNEG) 3688 LHS = LHS.getOperand(0); 3689 else if (RHS.getOpcode() == ISD::FNEG) 3690 RHS = RHS.getOperand(0); 3691 else 3692 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3693 3694 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3695 if (Res.getOpcode() != Opc) 3696 return SDValue(); // Op got folded away. 3697 if (!N0.hasOneUse()) 3698 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3699 return Res; 3700 } 3701 case ISD::FMA: 3702 case ISD::FMAD: { 3703 // TODO: handle llvm.amdgcn.fma.legacy 3704 if (!mayIgnoreSignedZero(N0)) 3705 return SDValue(); 3706 3707 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3708 SDValue LHS = N0.getOperand(0); 3709 SDValue MHS = N0.getOperand(1); 3710 SDValue RHS = N0.getOperand(2); 3711 3712 if (LHS.getOpcode() == ISD::FNEG) 3713 LHS = LHS.getOperand(0); 3714 else if (MHS.getOpcode() == ISD::FNEG) 3715 MHS = MHS.getOperand(0); 3716 else 3717 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3718 3719 if (RHS.getOpcode() != ISD::FNEG) 3720 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3721 else 3722 RHS = RHS.getOperand(0); 3723 3724 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3725 if (Res.getOpcode() != Opc) 3726 return SDValue(); // Op got folded away. 3727 if (!N0.hasOneUse()) 3728 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3729 return Res; 3730 } 3731 case ISD::FMAXNUM: 3732 case ISD::FMINNUM: 3733 case ISD::FMAXNUM_IEEE: 3734 case ISD::FMINNUM_IEEE: 3735 case AMDGPUISD::FMAX_LEGACY: 3736 case AMDGPUISD::FMIN_LEGACY: { 3737 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3738 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3739 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3740 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3741 3742 SDValue LHS = N0.getOperand(0); 3743 SDValue RHS = N0.getOperand(1); 3744 3745 // 0 doesn't have a negated inline immediate. 3746 // TODO: This constant check should be generalized to other operations. 3747 if (isConstantCostlierToNegate(RHS)) 3748 return SDValue(); 3749 3750 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3751 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3752 unsigned Opposite = inverseMinMax(Opc); 3753 3754 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3755 if (Res.getOpcode() != Opposite) 3756 return SDValue(); // Op got folded away. 3757 if (!N0.hasOneUse()) 3758 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3759 return Res; 3760 } 3761 case AMDGPUISD::FMED3: { 3762 SDValue Ops[3]; 3763 for (unsigned I = 0; I < 3; ++I) 3764 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3765 3766 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3767 if (Res.getOpcode() != AMDGPUISD::FMED3) 3768 return SDValue(); // Op got folded away. 3769 3770 if (!N0.hasOneUse()) { 3771 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3772 DAG.ReplaceAllUsesWith(N0, Neg); 3773 3774 for (SDNode *U : Neg->uses()) 3775 DCI.AddToWorklist(U); 3776 } 3777 3778 return Res; 3779 } 3780 case ISD::FP_EXTEND: 3781 case ISD::FTRUNC: 3782 case ISD::FRINT: 3783 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3784 case ISD::FSIN: 3785 case ISD::FCANONICALIZE: 3786 case AMDGPUISD::RCP: 3787 case AMDGPUISD::RCP_LEGACY: 3788 case AMDGPUISD::RCP_IFLAG: 3789 case AMDGPUISD::SIN_HW: { 3790 SDValue CvtSrc = N0.getOperand(0); 3791 if (CvtSrc.getOpcode() == ISD::FNEG) { 3792 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3793 // (fneg (rcp (fneg x))) -> (rcp x) 3794 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3795 } 3796 3797 if (!N0.hasOneUse()) 3798 return SDValue(); 3799 3800 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3801 // (fneg (rcp x)) -> (rcp (fneg x)) 3802 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3803 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3804 } 3805 case ISD::FP_ROUND: { 3806 SDValue CvtSrc = N0.getOperand(0); 3807 3808 if (CvtSrc.getOpcode() == ISD::FNEG) { 3809 // (fneg (fp_round (fneg x))) -> (fp_round x) 3810 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3811 CvtSrc.getOperand(0), N0.getOperand(1)); 3812 } 3813 3814 if (!N0.hasOneUse()) 3815 return SDValue(); 3816 3817 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3818 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3819 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3820 } 3821 case ISD::FP16_TO_FP: { 3822 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3823 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3824 // Put the fneg back as a legal source operation that can be matched later. 3825 SDLoc SL(N); 3826 3827 SDValue Src = N0.getOperand(0); 3828 EVT SrcVT = Src.getValueType(); 3829 3830 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3831 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3832 DAG.getConstant(0x8000, SL, SrcVT)); 3833 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3834 } 3835 default: 3836 return SDValue(); 3837 } 3838 } 3839 3840 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3841 DAGCombinerInfo &DCI) const { 3842 SelectionDAG &DAG = DCI.DAG; 3843 SDValue N0 = N->getOperand(0); 3844 3845 if (!N0.hasOneUse()) 3846 return SDValue(); 3847 3848 switch (N0.getOpcode()) { 3849 case ISD::FP16_TO_FP: { 3850 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3851 SDLoc SL(N); 3852 SDValue Src = N0.getOperand(0); 3853 EVT SrcVT = Src.getValueType(); 3854 3855 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3856 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3857 DAG.getConstant(0x7fff, SL, SrcVT)); 3858 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3859 } 3860 default: 3861 return SDValue(); 3862 } 3863 } 3864 3865 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3866 DAGCombinerInfo &DCI) const { 3867 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3868 if (!CFP) 3869 return SDValue(); 3870 3871 // XXX - Should this flush denormals? 3872 const APFloat &Val = CFP->getValueAPF(); 3873 APFloat One(Val.getSemantics(), "1.0"); 3874 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3875 } 3876 3877 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3878 DAGCombinerInfo &DCI) const { 3879 SelectionDAG &DAG = DCI.DAG; 3880 SDLoc DL(N); 3881 3882 switch(N->getOpcode()) { 3883 default: 3884 break; 3885 case ISD::BITCAST: { 3886 EVT DestVT = N->getValueType(0); 3887 3888 // Push casts through vector builds. This helps avoid emitting a large 3889 // number of copies when materializing floating point vector constants. 3890 // 3891 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3892 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3893 if (DestVT.isVector()) { 3894 SDValue Src = N->getOperand(0); 3895 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3896 EVT SrcVT = Src.getValueType(); 3897 unsigned NElts = DestVT.getVectorNumElements(); 3898 3899 if (SrcVT.getVectorNumElements() == NElts) { 3900 EVT DestEltVT = DestVT.getVectorElementType(); 3901 3902 SmallVector<SDValue, 8> CastedElts; 3903 SDLoc SL(N); 3904 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3905 SDValue Elt = Src.getOperand(I); 3906 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3907 } 3908 3909 return DAG.getBuildVector(DestVT, SL, CastedElts); 3910 } 3911 } 3912 } 3913 3914 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 3915 break; 3916 3917 // Fold bitcasts of constants. 3918 // 3919 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3920 // TODO: Generalize and move to DAGCombiner 3921 SDValue Src = N->getOperand(0); 3922 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3923 SDLoc SL(N); 3924 uint64_t CVal = C->getZExtValue(); 3925 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3926 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3927 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3928 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3929 } 3930 3931 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3932 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3933 SDLoc SL(N); 3934 uint64_t CVal = Val.getZExtValue(); 3935 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3936 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3937 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3938 3939 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3940 } 3941 3942 break; 3943 } 3944 case ISD::SHL: { 3945 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3946 break; 3947 3948 return performShlCombine(N, DCI); 3949 } 3950 case ISD::SRL: { 3951 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3952 break; 3953 3954 return performSrlCombine(N, DCI); 3955 } 3956 case ISD::SRA: { 3957 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3958 break; 3959 3960 return performSraCombine(N, DCI); 3961 } 3962 case ISD::TRUNCATE: 3963 return performTruncateCombine(N, DCI); 3964 case ISD::MUL: 3965 return performMulCombine(N, DCI); 3966 case ISD::MULHS: 3967 return performMulhsCombine(N, DCI); 3968 case ISD::MULHU: 3969 return performMulhuCombine(N, DCI); 3970 case AMDGPUISD::MUL_I24: 3971 case AMDGPUISD::MUL_U24: 3972 case AMDGPUISD::MULHI_I24: 3973 case AMDGPUISD::MULHI_U24: { 3974 if (SDValue V = simplifyI24(N, DCI)) 3975 return V; 3976 return SDValue(); 3977 } 3978 case ISD::SELECT: 3979 return performSelectCombine(N, DCI); 3980 case ISD::FNEG: 3981 return performFNegCombine(N, DCI); 3982 case ISD::FABS: 3983 return performFAbsCombine(N, DCI); 3984 case AMDGPUISD::BFE_I32: 3985 case AMDGPUISD::BFE_U32: { 3986 assert(!N->getValueType(0).isVector() && 3987 "Vector handling of BFE not implemented"); 3988 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3989 if (!Width) 3990 break; 3991 3992 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3993 if (WidthVal == 0) 3994 return DAG.getConstant(0, DL, MVT::i32); 3995 3996 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3997 if (!Offset) 3998 break; 3999 4000 SDValue BitsFrom = N->getOperand(0); 4001 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4002 4003 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4004 4005 if (OffsetVal == 0) { 4006 // This is already sign / zero extended, so try to fold away extra BFEs. 4007 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4008 4009 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4010 if (OpSignBits >= SignBits) 4011 return BitsFrom; 4012 4013 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4014 if (Signed) { 4015 // This is a sign_extend_inreg. Replace it to take advantage of existing 4016 // DAG Combines. If not eliminated, we will match back to BFE during 4017 // selection. 4018 4019 // TODO: The sext_inreg of extended types ends, although we can could 4020 // handle them in a single BFE. 4021 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4022 DAG.getValueType(SmallVT)); 4023 } 4024 4025 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4026 } 4027 4028 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4029 if (Signed) { 4030 return constantFoldBFE<int32_t>(DAG, 4031 CVal->getSExtValue(), 4032 OffsetVal, 4033 WidthVal, 4034 DL); 4035 } 4036 4037 return constantFoldBFE<uint32_t>(DAG, 4038 CVal->getZExtValue(), 4039 OffsetVal, 4040 WidthVal, 4041 DL); 4042 } 4043 4044 if ((OffsetVal + WidthVal) >= 32 && 4045 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4046 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4047 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4048 BitsFrom, ShiftVal); 4049 } 4050 4051 if (BitsFrom.hasOneUse()) { 4052 APInt Demanded = APInt::getBitsSet(32, 4053 OffsetVal, 4054 OffsetVal + WidthVal); 4055 4056 KnownBits Known; 4057 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4058 !DCI.isBeforeLegalizeOps()); 4059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4060 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4061 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4062 DCI.CommitTargetLoweringOpt(TLO); 4063 } 4064 } 4065 4066 break; 4067 } 4068 case ISD::LOAD: 4069 return performLoadCombine(N, DCI); 4070 case ISD::STORE: 4071 return performStoreCombine(N, DCI); 4072 case AMDGPUISD::RCP: 4073 case AMDGPUISD::RCP_IFLAG: 4074 return performRcpCombine(N, DCI); 4075 case ISD::AssertZext: 4076 case ISD::AssertSext: 4077 return performAssertSZExtCombine(N, DCI); 4078 case ISD::INTRINSIC_WO_CHAIN: 4079 return performIntrinsicWOChainCombine(N, DCI); 4080 } 4081 return SDValue(); 4082 } 4083 4084 //===----------------------------------------------------------------------===// 4085 // Helper functions 4086 //===----------------------------------------------------------------------===// 4087 4088 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4089 const TargetRegisterClass *RC, 4090 Register Reg, EVT VT, 4091 const SDLoc &SL, 4092 bool RawReg) const { 4093 MachineFunction &MF = DAG.getMachineFunction(); 4094 MachineRegisterInfo &MRI = MF.getRegInfo(); 4095 Register VReg; 4096 4097 if (!MRI.isLiveIn(Reg)) { 4098 VReg = MRI.createVirtualRegister(RC); 4099 MRI.addLiveIn(Reg, VReg); 4100 } else { 4101 VReg = MRI.getLiveInVirtReg(Reg); 4102 } 4103 4104 if (RawReg) 4105 return DAG.getRegister(VReg, VT); 4106 4107 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4108 } 4109 4110 // This may be called multiple times, and nothing prevents creating multiple 4111 // objects at the same offset. See if we already defined this object. 4112 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4113 int64_t Offset) { 4114 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4115 if (MFI.getObjectOffset(I) == Offset) { 4116 assert(MFI.getObjectSize(I) == Size); 4117 return I; 4118 } 4119 } 4120 4121 return MFI.CreateFixedObject(Size, Offset, true); 4122 } 4123 4124 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4125 EVT VT, 4126 const SDLoc &SL, 4127 int64_t Offset) const { 4128 MachineFunction &MF = DAG.getMachineFunction(); 4129 MachineFrameInfo &MFI = MF.getFrameInfo(); 4130 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4131 4132 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4133 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4134 4135 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4136 MachineMemOperand::MODereferenceable | 4137 MachineMemOperand::MOInvariant); 4138 } 4139 4140 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4141 const SDLoc &SL, 4142 SDValue Chain, 4143 SDValue ArgVal, 4144 int64_t Offset) const { 4145 MachineFunction &MF = DAG.getMachineFunction(); 4146 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4147 4148 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4149 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4150 MachineMemOperand::MODereferenceable); 4151 return Store; 4152 } 4153 4154 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4155 const TargetRegisterClass *RC, 4156 EVT VT, const SDLoc &SL, 4157 const ArgDescriptor &Arg) const { 4158 assert(Arg && "Attempting to load missing argument"); 4159 4160 SDValue V = Arg.isRegister() ? 4161 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4162 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4163 4164 if (!Arg.isMasked()) 4165 return V; 4166 4167 unsigned Mask = Arg.getMask(); 4168 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4169 V = DAG.getNode(ISD::SRL, SL, VT, V, 4170 DAG.getShiftAmountConstant(Shift, VT, SL)); 4171 return DAG.getNode(ISD::AND, SL, VT, V, 4172 DAG.getConstant(Mask >> Shift, SL, VT)); 4173 } 4174 4175 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4176 const MachineFunction &MF, const ImplicitParameter Param) const { 4177 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4178 const AMDGPUSubtarget &ST = 4179 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4180 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4181 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4182 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4183 ExplicitArgOffset; 4184 switch (Param) { 4185 case GRID_DIM: 4186 return ArgOffset; 4187 case GRID_OFFSET: 4188 return ArgOffset + 4; 4189 } 4190 llvm_unreachable("unexpected implicit parameter type"); 4191 } 4192 4193 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4194 4195 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4196 switch ((AMDGPUISD::NodeType)Opcode) { 4197 case AMDGPUISD::FIRST_NUMBER: break; 4198 // AMDIL DAG nodes 4199 NODE_NAME_CASE(UMUL); 4200 NODE_NAME_CASE(BRANCH_COND); 4201 4202 // AMDGPU DAG nodes 4203 NODE_NAME_CASE(IF) 4204 NODE_NAME_CASE(ELSE) 4205 NODE_NAME_CASE(LOOP) 4206 NODE_NAME_CASE(CALL) 4207 NODE_NAME_CASE(TC_RETURN) 4208 NODE_NAME_CASE(TRAP) 4209 NODE_NAME_CASE(RET_FLAG) 4210 NODE_NAME_CASE(RETURN_TO_EPILOG) 4211 NODE_NAME_CASE(ENDPGM) 4212 NODE_NAME_CASE(DWORDADDR) 4213 NODE_NAME_CASE(FRACT) 4214 NODE_NAME_CASE(SETCC) 4215 NODE_NAME_CASE(SETREG) 4216 NODE_NAME_CASE(DENORM_MODE) 4217 NODE_NAME_CASE(FMA_W_CHAIN) 4218 NODE_NAME_CASE(FMUL_W_CHAIN) 4219 NODE_NAME_CASE(CLAMP) 4220 NODE_NAME_CASE(COS_HW) 4221 NODE_NAME_CASE(SIN_HW) 4222 NODE_NAME_CASE(FMAX_LEGACY) 4223 NODE_NAME_CASE(FMIN_LEGACY) 4224 NODE_NAME_CASE(FMAX3) 4225 NODE_NAME_CASE(SMAX3) 4226 NODE_NAME_CASE(UMAX3) 4227 NODE_NAME_CASE(FMIN3) 4228 NODE_NAME_CASE(SMIN3) 4229 NODE_NAME_CASE(UMIN3) 4230 NODE_NAME_CASE(FMED3) 4231 NODE_NAME_CASE(SMED3) 4232 NODE_NAME_CASE(UMED3) 4233 NODE_NAME_CASE(FDOT2) 4234 NODE_NAME_CASE(URECIP) 4235 NODE_NAME_CASE(DIV_SCALE) 4236 NODE_NAME_CASE(DIV_FMAS) 4237 NODE_NAME_CASE(DIV_FIXUP) 4238 NODE_NAME_CASE(FMAD_FTZ) 4239 NODE_NAME_CASE(RCP) 4240 NODE_NAME_CASE(RSQ) 4241 NODE_NAME_CASE(RCP_LEGACY) 4242 NODE_NAME_CASE(RCP_IFLAG) 4243 NODE_NAME_CASE(FMUL_LEGACY) 4244 NODE_NAME_CASE(RSQ_CLAMP) 4245 NODE_NAME_CASE(LDEXP) 4246 NODE_NAME_CASE(FP_CLASS) 4247 NODE_NAME_CASE(DOT4) 4248 NODE_NAME_CASE(CARRY) 4249 NODE_NAME_CASE(BORROW) 4250 NODE_NAME_CASE(BFE_U32) 4251 NODE_NAME_CASE(BFE_I32) 4252 NODE_NAME_CASE(BFI) 4253 NODE_NAME_CASE(BFM) 4254 NODE_NAME_CASE(FFBH_U32) 4255 NODE_NAME_CASE(FFBH_I32) 4256 NODE_NAME_CASE(FFBL_B32) 4257 NODE_NAME_CASE(MUL_U24) 4258 NODE_NAME_CASE(MUL_I24) 4259 NODE_NAME_CASE(MULHI_U24) 4260 NODE_NAME_CASE(MULHI_I24) 4261 NODE_NAME_CASE(MAD_U24) 4262 NODE_NAME_CASE(MAD_I24) 4263 NODE_NAME_CASE(MAD_I64_I32) 4264 NODE_NAME_CASE(MAD_U64_U32) 4265 NODE_NAME_CASE(PERM) 4266 NODE_NAME_CASE(TEXTURE_FETCH) 4267 NODE_NAME_CASE(R600_EXPORT) 4268 NODE_NAME_CASE(CONST_ADDRESS) 4269 NODE_NAME_CASE(REGISTER_LOAD) 4270 NODE_NAME_CASE(REGISTER_STORE) 4271 NODE_NAME_CASE(SAMPLE) 4272 NODE_NAME_CASE(SAMPLEB) 4273 NODE_NAME_CASE(SAMPLED) 4274 NODE_NAME_CASE(SAMPLEL) 4275 NODE_NAME_CASE(CVT_F32_UBYTE0) 4276 NODE_NAME_CASE(CVT_F32_UBYTE1) 4277 NODE_NAME_CASE(CVT_F32_UBYTE2) 4278 NODE_NAME_CASE(CVT_F32_UBYTE3) 4279 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4280 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4281 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4282 NODE_NAME_CASE(CVT_PK_I16_I32) 4283 NODE_NAME_CASE(CVT_PK_U16_U32) 4284 NODE_NAME_CASE(FP_TO_FP16) 4285 NODE_NAME_CASE(FP16_ZEXT) 4286 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4287 NODE_NAME_CASE(CONST_DATA_PTR) 4288 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4289 NODE_NAME_CASE(LDS) 4290 NODE_NAME_CASE(DUMMY_CHAIN) 4291 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4292 NODE_NAME_CASE(LOAD_D16_HI) 4293 NODE_NAME_CASE(LOAD_D16_LO) 4294 NODE_NAME_CASE(LOAD_D16_HI_I8) 4295 NODE_NAME_CASE(LOAD_D16_HI_U8) 4296 NODE_NAME_CASE(LOAD_D16_LO_I8) 4297 NODE_NAME_CASE(LOAD_D16_LO_U8) 4298 NODE_NAME_CASE(STORE_MSKOR) 4299 NODE_NAME_CASE(LOAD_CONSTANT) 4300 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4301 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4302 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4303 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4304 NODE_NAME_CASE(DS_ORDERED_COUNT) 4305 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4306 NODE_NAME_CASE(ATOMIC_INC) 4307 NODE_NAME_CASE(ATOMIC_DEC) 4308 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4309 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4310 NODE_NAME_CASE(BUFFER_LOAD) 4311 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4312 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4313 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4314 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4315 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4316 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4317 NODE_NAME_CASE(SBUFFER_LOAD) 4318 NODE_NAME_CASE(BUFFER_STORE) 4319 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4320 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4321 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4322 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4323 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4324 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4325 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4326 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4327 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4328 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4329 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4330 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4331 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4332 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4333 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4334 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4335 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4336 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4337 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4338 4339 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4340 } 4341 return nullptr; 4342 } 4343 4344 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4345 SelectionDAG &DAG, int Enabled, 4346 int &RefinementSteps, 4347 bool &UseOneConstNR, 4348 bool Reciprocal) const { 4349 EVT VT = Operand.getValueType(); 4350 4351 if (VT == MVT::f32) { 4352 RefinementSteps = 0; 4353 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4354 } 4355 4356 // TODO: There is also f64 rsq instruction, but the documentation is less 4357 // clear on its precision. 4358 4359 return SDValue(); 4360 } 4361 4362 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4363 SelectionDAG &DAG, int Enabled, 4364 int &RefinementSteps) const { 4365 EVT VT = Operand.getValueType(); 4366 4367 if (VT == MVT::f32) { 4368 // Reciprocal, < 1 ulp error. 4369 // 4370 // This reciprocal approximation converges to < 0.5 ulp error with one 4371 // newton rhapson performed with two fused multiple adds (FMAs). 4372 4373 RefinementSteps = 0; 4374 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4375 } 4376 4377 // TODO: There is also f64 rcp instruction, but the documentation is less 4378 // clear on its precision. 4379 4380 return SDValue(); 4381 } 4382 4383 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4384 const SDValue Op, KnownBits &Known, 4385 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4386 4387 Known.resetAll(); // Don't know anything. 4388 4389 unsigned Opc = Op.getOpcode(); 4390 4391 switch (Opc) { 4392 default: 4393 break; 4394 case AMDGPUISD::CARRY: 4395 case AMDGPUISD::BORROW: { 4396 Known.Zero = APInt::getHighBitsSet(32, 31); 4397 break; 4398 } 4399 4400 case AMDGPUISD::BFE_I32: 4401 case AMDGPUISD::BFE_U32: { 4402 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4403 if (!CWidth) 4404 return; 4405 4406 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4407 4408 if (Opc == AMDGPUISD::BFE_U32) 4409 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4410 4411 break; 4412 } 4413 case AMDGPUISD::FP_TO_FP16: 4414 case AMDGPUISD::FP16_ZEXT: { 4415 unsigned BitWidth = Known.getBitWidth(); 4416 4417 // High bits are zero. 4418 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4419 break; 4420 } 4421 case AMDGPUISD::MUL_U24: 4422 case AMDGPUISD::MUL_I24: { 4423 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4424 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4425 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4426 RHSKnown.countMinTrailingZeros(); 4427 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4428 // Skip extra check if all bits are known zeros. 4429 if (TrailZ >= 32) 4430 break; 4431 4432 // Truncate to 24 bits. 4433 LHSKnown = LHSKnown.trunc(24); 4434 RHSKnown = RHSKnown.trunc(24); 4435 4436 if (Opc == AMDGPUISD::MUL_I24) { 4437 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4438 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4439 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4440 if (MaxValBits >= 32) 4441 break; 4442 bool LHSNegative = LHSKnown.isNegative(); 4443 bool LHSNonNegative = LHSKnown.isNonNegative(); 4444 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4445 bool RHSNegative = RHSKnown.isNegative(); 4446 bool RHSNonNegative = RHSKnown.isNonNegative(); 4447 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4448 4449 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4450 Known.Zero.setHighBits(32 - MaxValBits); 4451 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4452 Known.One.setHighBits(32 - MaxValBits); 4453 } else { 4454 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4455 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4456 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4457 if (MaxValBits >= 32) 4458 break; 4459 Known.Zero.setHighBits(32 - MaxValBits); 4460 } 4461 break; 4462 } 4463 case AMDGPUISD::PERM: { 4464 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4465 if (!CMask) 4466 return; 4467 4468 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4469 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4470 unsigned Sel = CMask->getZExtValue(); 4471 4472 for (unsigned I = 0; I < 32; I += 8) { 4473 unsigned SelBits = Sel & 0xff; 4474 if (SelBits < 4) { 4475 SelBits *= 8; 4476 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4477 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4478 } else if (SelBits < 7) { 4479 SelBits = (SelBits & 3) * 8; 4480 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4481 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4482 } else if (SelBits == 0x0c) { 4483 Known.Zero |= 0xFFull << I; 4484 } else if (SelBits > 0x0c) { 4485 Known.One |= 0xFFull << I; 4486 } 4487 Sel >>= 8; 4488 } 4489 break; 4490 } 4491 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4492 Known.Zero.setHighBits(24); 4493 break; 4494 } 4495 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4496 Known.Zero.setHighBits(16); 4497 break; 4498 } 4499 case AMDGPUISD::LDS: { 4500 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4501 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4502 4503 Known.Zero.setHighBits(16); 4504 Known.Zero.setLowBits(Log2(Alignment)); 4505 break; 4506 } 4507 case ISD::INTRINSIC_WO_CHAIN: { 4508 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4509 switch (IID) { 4510 case Intrinsic::amdgcn_mbcnt_lo: 4511 case Intrinsic::amdgcn_mbcnt_hi: { 4512 const GCNSubtarget &ST = 4513 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4514 // These return at most the wavefront size - 1. 4515 unsigned Size = Op.getValueType().getSizeInBits(); 4516 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4517 break; 4518 } 4519 default: 4520 break; 4521 } 4522 } 4523 } 4524 } 4525 4526 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4527 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4528 unsigned Depth) const { 4529 switch (Op.getOpcode()) { 4530 case AMDGPUISD::BFE_I32: { 4531 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4532 if (!Width) 4533 return 1; 4534 4535 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4536 if (!isNullConstant(Op.getOperand(1))) 4537 return SignBits; 4538 4539 // TODO: Could probably figure something out with non-0 offsets. 4540 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4541 return std::max(SignBits, Op0SignBits); 4542 } 4543 4544 case AMDGPUISD::BFE_U32: { 4545 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4546 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4547 } 4548 4549 case AMDGPUISD::CARRY: 4550 case AMDGPUISD::BORROW: 4551 return 31; 4552 case AMDGPUISD::BUFFER_LOAD_BYTE: 4553 return 25; 4554 case AMDGPUISD::BUFFER_LOAD_SHORT: 4555 return 17; 4556 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4557 return 24; 4558 case AMDGPUISD::BUFFER_LOAD_USHORT: 4559 return 16; 4560 case AMDGPUISD::FP_TO_FP16: 4561 case AMDGPUISD::FP16_ZEXT: 4562 return 16; 4563 default: 4564 return 1; 4565 } 4566 } 4567 4568 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4569 GISelKnownBits &Analysis, Register R, 4570 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4571 unsigned Depth) const { 4572 const MachineInstr *MI = MRI.getVRegDef(R); 4573 if (!MI) 4574 return 1; 4575 4576 // TODO: Check range metadata on MMO. 4577 switch (MI->getOpcode()) { 4578 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4579 return 25; 4580 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4581 return 17; 4582 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4583 return 24; 4584 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4585 return 16; 4586 default: 4587 return 1; 4588 } 4589 } 4590 4591 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4592 const SelectionDAG &DAG, 4593 bool SNaN, 4594 unsigned Depth) const { 4595 unsigned Opcode = Op.getOpcode(); 4596 switch (Opcode) { 4597 case AMDGPUISD::FMIN_LEGACY: 4598 case AMDGPUISD::FMAX_LEGACY: { 4599 if (SNaN) 4600 return true; 4601 4602 // TODO: Can check no nans on one of the operands for each one, but which 4603 // one? 4604 return false; 4605 } 4606 case AMDGPUISD::FMUL_LEGACY: 4607 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4608 if (SNaN) 4609 return true; 4610 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4611 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4612 } 4613 case AMDGPUISD::FMED3: 4614 case AMDGPUISD::FMIN3: 4615 case AMDGPUISD::FMAX3: 4616 case AMDGPUISD::FMAD_FTZ: { 4617 if (SNaN) 4618 return true; 4619 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4620 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4621 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4622 } 4623 case AMDGPUISD::CVT_F32_UBYTE0: 4624 case AMDGPUISD::CVT_F32_UBYTE1: 4625 case AMDGPUISD::CVT_F32_UBYTE2: 4626 case AMDGPUISD::CVT_F32_UBYTE3: 4627 return true; 4628 4629 case AMDGPUISD::RCP: 4630 case AMDGPUISD::RSQ: 4631 case AMDGPUISD::RCP_LEGACY: 4632 case AMDGPUISD::RSQ_CLAMP: { 4633 if (SNaN) 4634 return true; 4635 4636 // TODO: Need is known positive check. 4637 return false; 4638 } 4639 case AMDGPUISD::LDEXP: 4640 case AMDGPUISD::FRACT: { 4641 if (SNaN) 4642 return true; 4643 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4644 } 4645 case AMDGPUISD::DIV_SCALE: 4646 case AMDGPUISD::DIV_FMAS: 4647 case AMDGPUISD::DIV_FIXUP: 4648 // TODO: Refine on operands. 4649 return SNaN; 4650 case AMDGPUISD::SIN_HW: 4651 case AMDGPUISD::COS_HW: { 4652 // TODO: Need check for infinity 4653 return SNaN; 4654 } 4655 case ISD::INTRINSIC_WO_CHAIN: { 4656 unsigned IntrinsicID 4657 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4658 // TODO: Handle more intrinsics 4659 switch (IntrinsicID) { 4660 case Intrinsic::amdgcn_cubeid: 4661 return true; 4662 4663 case Intrinsic::amdgcn_frexp_mant: { 4664 if (SNaN) 4665 return true; 4666 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4667 } 4668 case Intrinsic::amdgcn_cvt_pkrtz: { 4669 if (SNaN) 4670 return true; 4671 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4672 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4673 } 4674 case Intrinsic::amdgcn_rcp: 4675 case Intrinsic::amdgcn_rsq: 4676 case Intrinsic::amdgcn_rcp_legacy: 4677 case Intrinsic::amdgcn_rsq_legacy: 4678 case Intrinsic::amdgcn_rsq_clamp: { 4679 if (SNaN) 4680 return true; 4681 4682 // TODO: Need is known positive check. 4683 return false; 4684 } 4685 case Intrinsic::amdgcn_trig_preop: 4686 case Intrinsic::amdgcn_fdot2: 4687 // TODO: Refine on operand 4688 return SNaN; 4689 case Intrinsic::amdgcn_fma_legacy: 4690 if (SNaN) 4691 return true; 4692 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4693 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && 4694 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); 4695 default: 4696 return false; 4697 } 4698 } 4699 default: 4700 return false; 4701 } 4702 } 4703 4704 TargetLowering::AtomicExpansionKind 4705 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4706 switch (RMW->getOperation()) { 4707 case AtomicRMWInst::Nand: 4708 case AtomicRMWInst::FAdd: 4709 case AtomicRMWInst::FSub: 4710 return AtomicExpansionKind::CmpXChg; 4711 default: 4712 return AtomicExpansionKind::None; 4713 } 4714 } 4715