1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUIntrinsicInfo.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "SIInstrInfo.h" 32 using namespace llvm; 33 34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 MachineFunction &MF = State.getMachineFunction(); 38 AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 39 40 uint64_t Offset = MFI->allocateKernArg(ValVT.getStoreSize(), 41 ArgFlags.getOrigAlign()); 42 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 43 return true; 44 } 45 46 #include "AMDGPUGenCallingConv.inc" 47 48 // Find a larger type to do a load / store of a vector with. 49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 50 unsigned StoreSize = VT.getStoreSizeInBits(); 51 if (StoreSize <= 32) 52 return EVT::getIntegerVT(Ctx, StoreSize); 53 54 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 55 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 56 } 57 58 // Type for a vector that will be loaded to. 59 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 60 unsigned StoreSize = VT.getStoreSizeInBits(); 61 if (StoreSize <= 32) 62 return EVT::getIntegerVT(Ctx, 32); 63 64 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 65 } 66 67 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 68 const AMDGPUSubtarget &STI) 69 : TargetLowering(TM), Subtarget(&STI) { 70 // Lower floating point store/load to integer store/load to reduce the number 71 // of patterns in tablegen. 72 setOperationAction(ISD::LOAD, MVT::f32, Promote); 73 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 74 75 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 76 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 77 78 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 79 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 80 81 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 82 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 83 84 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 85 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 86 87 setOperationAction(ISD::LOAD, MVT::i64, Promote); 88 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 89 90 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 91 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 92 93 setOperationAction(ISD::LOAD, MVT::f64, Promote); 94 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 95 96 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 97 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 98 99 // There are no 64-bit extloads. These should be done as a 32-bit extload and 100 // an extension to 64-bit. 101 for (MVT VT : MVT::integer_valuetypes()) { 102 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 103 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 104 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 105 } 106 107 for (MVT VT : MVT::integer_valuetypes()) { 108 if (VT == MVT::i64) 109 continue; 110 111 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 112 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 113 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 114 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 115 116 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 117 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 118 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 119 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 120 121 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 122 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 123 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 124 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 125 } 126 127 for (MVT VT : MVT::integer_vector_valuetypes()) { 128 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 129 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 130 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 131 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 132 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 133 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 134 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 135 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 136 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 137 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 138 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 139 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 140 } 141 142 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 143 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 145 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 146 147 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 148 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 149 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 150 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 151 152 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 153 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 154 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 155 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 156 157 setOperationAction(ISD::STORE, MVT::f32, Promote); 158 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 159 160 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 161 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 162 163 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 164 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 165 166 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 167 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 168 169 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 170 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 171 172 setOperationAction(ISD::STORE, MVT::i64, Promote); 173 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 174 175 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 176 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 177 178 setOperationAction(ISD::STORE, MVT::f64, Promote); 179 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 180 181 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 182 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 183 184 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 185 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 186 187 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 188 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 189 190 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 191 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 192 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 193 194 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 195 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 196 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 197 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 198 199 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 200 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 201 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 202 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 203 204 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 205 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 206 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 207 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 208 209 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 210 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 211 212 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 213 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 214 215 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 216 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 217 218 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 219 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 220 221 222 setOperationAction(ISD::Constant, MVT::i32, Legal); 223 setOperationAction(ISD::Constant, MVT::i64, Legal); 224 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 225 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 226 227 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 228 setOperationAction(ISD::BRIND, MVT::Other, Expand); 229 230 // This is totally unsupported, just custom lower to produce an error. 231 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 232 233 // We need to custom lower some of the intrinsics 234 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 235 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 236 237 // Library functions. These default to Expand, but we have instructions 238 // for them. 239 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 240 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 241 setOperationAction(ISD::FPOW, MVT::f32, Legal); 242 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 243 setOperationAction(ISD::FABS, MVT::f32, Legal); 244 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 245 setOperationAction(ISD::FRINT, MVT::f32, Legal); 246 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 247 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 248 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 249 250 setOperationAction(ISD::FROUND, MVT::f32, Custom); 251 setOperationAction(ISD::FROUND, MVT::f64, Custom); 252 253 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 254 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 255 256 setOperationAction(ISD::FREM, MVT::f32, Custom); 257 setOperationAction(ISD::FREM, MVT::f64, Custom); 258 259 // v_mad_f32 does not support denormals according to some sources. 260 if (!Subtarget->hasFP32Denormals()) 261 setOperationAction(ISD::FMAD, MVT::f32, Legal); 262 263 // Expand to fneg + fadd. 264 setOperationAction(ISD::FSUB, MVT::f64, Expand); 265 266 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 267 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 268 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 269 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 270 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 271 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 272 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 273 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 274 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 275 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 276 277 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 278 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 279 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 280 setOperationAction(ISD::FRINT, MVT::f64, Custom); 281 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 282 } 283 284 if (!Subtarget->hasBFI()) { 285 // fcopysign can be done in a single instruction with BFI. 286 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 287 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 288 } 289 290 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 291 292 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 293 for (MVT VT : ScalarIntVTs) { 294 // These should use [SU]DIVREM, so set them to expand 295 setOperationAction(ISD::SDIV, VT, Expand); 296 setOperationAction(ISD::UDIV, VT, Expand); 297 setOperationAction(ISD::SREM, VT, Expand); 298 setOperationAction(ISD::UREM, VT, Expand); 299 300 // GPU does not have divrem function for signed or unsigned. 301 setOperationAction(ISD::SDIVREM, VT, Custom); 302 setOperationAction(ISD::UDIVREM, VT, Custom); 303 304 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 305 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 306 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 307 308 setOperationAction(ISD::BSWAP, VT, Expand); 309 setOperationAction(ISD::CTTZ, VT, Expand); 310 setOperationAction(ISD::CTLZ, VT, Expand); 311 } 312 313 if (!Subtarget->hasBCNT(32)) 314 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 315 316 if (!Subtarget->hasBCNT(64)) 317 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 318 319 // The hardware supports 32-bit ROTR, but not ROTL. 320 setOperationAction(ISD::ROTL, MVT::i32, Expand); 321 setOperationAction(ISD::ROTL, MVT::i64, Expand); 322 setOperationAction(ISD::ROTR, MVT::i64, Expand); 323 324 setOperationAction(ISD::MUL, MVT::i64, Expand); 325 setOperationAction(ISD::MULHU, MVT::i64, Expand); 326 setOperationAction(ISD::MULHS, MVT::i64, Expand); 327 setOperationAction(ISD::UDIV, MVT::i32, Expand); 328 setOperationAction(ISD::UREM, MVT::i32, Expand); 329 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 330 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 331 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 332 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 333 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 334 335 setOperationAction(ISD::SMIN, MVT::i32, Legal); 336 setOperationAction(ISD::UMIN, MVT::i32, Legal); 337 setOperationAction(ISD::SMAX, MVT::i32, Legal); 338 setOperationAction(ISD::UMAX, MVT::i32, Legal); 339 340 if (Subtarget->hasFFBH()) 341 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 342 343 if (Subtarget->hasFFBL()) 344 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); 345 346 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 347 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 348 349 // We only really have 32-bit BFE instructions (and 16-bit on VI). 350 // 351 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 352 // effort to match them now. We want this to be false for i64 cases when the 353 // extraction isn't restricted to the upper or lower half. Ideally we would 354 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 355 // span the midpoint are probably relatively rare, so don't worry about them 356 // for now. 357 if (Subtarget->hasBFE()) 358 setHasExtractBitsInsn(true); 359 360 static const MVT::SimpleValueType VectorIntTypes[] = { 361 MVT::v2i32, MVT::v4i32 362 }; 363 364 for (MVT VT : VectorIntTypes) { 365 // Expand the following operations for the current type by default. 366 setOperationAction(ISD::ADD, VT, Expand); 367 setOperationAction(ISD::AND, VT, Expand); 368 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 369 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 370 setOperationAction(ISD::MUL, VT, Expand); 371 setOperationAction(ISD::OR, VT, Expand); 372 setOperationAction(ISD::SHL, VT, Expand); 373 setOperationAction(ISD::SRA, VT, Expand); 374 setOperationAction(ISD::SRL, VT, Expand); 375 setOperationAction(ISD::ROTL, VT, Expand); 376 setOperationAction(ISD::ROTR, VT, Expand); 377 setOperationAction(ISD::SUB, VT, Expand); 378 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 379 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 380 setOperationAction(ISD::SDIV, VT, Expand); 381 setOperationAction(ISD::UDIV, VT, Expand); 382 setOperationAction(ISD::SREM, VT, Expand); 383 setOperationAction(ISD::UREM, VT, Expand); 384 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 385 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 386 setOperationAction(ISD::SDIVREM, VT, Custom); 387 setOperationAction(ISD::UDIVREM, VT, Expand); 388 setOperationAction(ISD::ADDC, VT, Expand); 389 setOperationAction(ISD::SUBC, VT, Expand); 390 setOperationAction(ISD::ADDE, VT, Expand); 391 setOperationAction(ISD::SUBE, VT, Expand); 392 setOperationAction(ISD::SELECT, VT, Expand); 393 setOperationAction(ISD::VSELECT, VT, Expand); 394 setOperationAction(ISD::SELECT_CC, VT, Expand); 395 setOperationAction(ISD::XOR, VT, Expand); 396 setOperationAction(ISD::BSWAP, VT, Expand); 397 setOperationAction(ISD::CTPOP, VT, Expand); 398 setOperationAction(ISD::CTTZ, VT, Expand); 399 setOperationAction(ISD::CTLZ, VT, Expand); 400 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 401 } 402 403 static const MVT::SimpleValueType FloatVectorTypes[] = { 404 MVT::v2f32, MVT::v4f32 405 }; 406 407 for (MVT VT : FloatVectorTypes) { 408 setOperationAction(ISD::FABS, VT, Expand); 409 setOperationAction(ISD::FMINNUM, VT, Expand); 410 setOperationAction(ISD::FMAXNUM, VT, Expand); 411 setOperationAction(ISD::FADD, VT, Expand); 412 setOperationAction(ISD::FCEIL, VT, Expand); 413 setOperationAction(ISD::FCOS, VT, Expand); 414 setOperationAction(ISD::FDIV, VT, Expand); 415 setOperationAction(ISD::FEXP2, VT, Expand); 416 setOperationAction(ISD::FLOG2, VT, Expand); 417 setOperationAction(ISD::FREM, VT, Expand); 418 setOperationAction(ISD::FPOW, VT, Expand); 419 setOperationAction(ISD::FFLOOR, VT, Expand); 420 setOperationAction(ISD::FTRUNC, VT, Expand); 421 setOperationAction(ISD::FMUL, VT, Expand); 422 setOperationAction(ISD::FMA, VT, Expand); 423 setOperationAction(ISD::FRINT, VT, Expand); 424 setOperationAction(ISD::FNEARBYINT, VT, Expand); 425 setOperationAction(ISD::FSQRT, VT, Expand); 426 setOperationAction(ISD::FSIN, VT, Expand); 427 setOperationAction(ISD::FSUB, VT, Expand); 428 setOperationAction(ISD::FNEG, VT, Expand); 429 setOperationAction(ISD::VSELECT, VT, Expand); 430 setOperationAction(ISD::SELECT_CC, VT, Expand); 431 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 432 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 433 } 434 435 // This causes using an unrolled select operation rather than expansion with 436 // bit operations. This is in general better, but the alternative using BFI 437 // instructions may be better if the select sources are SGPRs. 438 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 439 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 440 441 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 442 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 443 444 setBooleanContents(ZeroOrNegativeOneBooleanContent); 445 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 446 447 setSchedulingPreference(Sched::RegPressure); 448 setJumpIsExpensive(true); 449 450 // SI at least has hardware support for floating point exceptions, but no way 451 // of using or handling them is implemented. They are also optional in OpenCL 452 // (Section 7.3) 453 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 454 455 setSelectIsExpensive(false); 456 PredictableSelectIsExpensive = false; 457 458 setFsqrtIsCheap(true); 459 460 // We want to find all load dependencies for long chains of stores to enable 461 // merging into very wide vectors. The problem is with vectors with > 4 462 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 463 // vectors are a legal type, even though we have to split the loads 464 // usually. When we can more precisely specify load legality per address 465 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 466 // smarter so that they can figure out what to do in 2 iterations without all 467 // N > 4 stores on the same chain. 468 GatherAllAliasesMaxDepth = 16; 469 470 // FIXME: Need to really handle these. 471 MaxStoresPerMemcpy = 4096; 472 MaxStoresPerMemmove = 4096; 473 MaxStoresPerMemset = 4096; 474 475 setTargetDAGCombine(ISD::BITCAST); 476 setTargetDAGCombine(ISD::AND); 477 setTargetDAGCombine(ISD::SHL); 478 setTargetDAGCombine(ISD::SRA); 479 setTargetDAGCombine(ISD::SRL); 480 setTargetDAGCombine(ISD::MUL); 481 setTargetDAGCombine(ISD::SELECT); 482 setTargetDAGCombine(ISD::SELECT_CC); 483 setTargetDAGCombine(ISD::STORE); 484 setTargetDAGCombine(ISD::FADD); 485 setTargetDAGCombine(ISD::FSUB); 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Target Information 490 //===----------------------------------------------------------------------===// 491 492 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 493 return MVT::i32; 494 } 495 496 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 497 return true; 498 } 499 500 // The backend supports 32 and 64 bit floating point immediates. 501 // FIXME: Why are we reporting vectors of FP immediates as legal? 502 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 503 EVT ScalarVT = VT.getScalarType(); 504 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 505 } 506 507 // We don't want to shrink f64 / f32 constants. 508 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 509 EVT ScalarVT = VT.getScalarType(); 510 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 511 } 512 513 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 514 ISD::LoadExtType, 515 EVT NewVT) const { 516 517 unsigned NewSize = NewVT.getStoreSizeInBits(); 518 519 // If we are reducing to a 32-bit load, this is always better. 520 if (NewSize == 32) 521 return true; 522 523 EVT OldVT = N->getValueType(0); 524 unsigned OldSize = OldVT.getStoreSizeInBits(); 525 526 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 527 // extloads, so doing one requires using a buffer_load. In cases where we 528 // still couldn't use a scalar load, using the wider load shouldn't really 529 // hurt anything. 530 531 // If the old size already had to be an extload, there's no harm in continuing 532 // to reduce the width. 533 return (OldSize < 32); 534 } 535 536 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 537 EVT CastTy) const { 538 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 539 return true; 540 541 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 542 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 543 544 return ((LScalarSize <= CastScalarSize) || 545 (CastScalarSize >= 32) || 546 (LScalarSize < 32)); 547 } 548 549 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 550 // profitable with the expansion for 64-bit since it's generally good to 551 // speculate things. 552 // FIXME: These should really have the size as a parameter. 553 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 554 return true; 555 } 556 557 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 558 return true; 559 } 560 561 //===---------------------------------------------------------------------===// 562 // Target Properties 563 //===---------------------------------------------------------------------===// 564 565 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 566 assert(VT.isFloatingPoint()); 567 return VT == MVT::f32 || VT == MVT::f64; 568 } 569 570 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 571 assert(VT.isFloatingPoint()); 572 return VT == MVT::f32 || VT == MVT::f64; 573 } 574 575 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 576 unsigned NumElem, 577 unsigned AS) const { 578 return true; 579 } 580 581 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 582 // There are few operations which truly have vector input operands. Any vector 583 // operation is going to involve operations on each component, and a 584 // build_vector will be a copy per element, so it always makes sense to use a 585 // build_vector input in place of the extracted element to avoid a copy into a 586 // super register. 587 // 588 // We should probably only do this if all users are extracts only, but this 589 // should be the common case. 590 return true; 591 } 592 593 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 594 // Truncate is just accessing a subregister. 595 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 596 } 597 598 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 599 // Truncate is just accessing a subregister. 600 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 601 (Dest->getPrimitiveSizeInBits() % 32 == 0); 602 } 603 604 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 605 unsigned SrcSize = Src->getScalarSizeInBits(); 606 unsigned DestSize = Dest->getScalarSizeInBits(); 607 608 return SrcSize == 32 && DestSize == 64; 609 } 610 611 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 612 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 613 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 614 // this will enable reducing 64-bit operations the 32-bit, which is always 615 // good. 616 return Src == MVT::i32 && Dest == MVT::i64; 617 } 618 619 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 620 return isZExtFree(Val.getValueType(), VT2); 621 } 622 623 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 624 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 625 // limited number of native 64-bit operations. Shrinking an operation to fit 626 // in a single 32-bit register should always be helpful. As currently used, 627 // this is much less general than the name suggests, and is only used in 628 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 629 // not profitable, and may actually be harmful. 630 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 631 } 632 633 //===---------------------------------------------------------------------===// 634 // TargetLowering Callbacks 635 //===---------------------------------------------------------------------===// 636 637 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 638 const SmallVectorImpl<ISD::InputArg> &Ins) const { 639 640 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 641 } 642 643 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, 644 const SmallVectorImpl<ISD::OutputArg> &Outs) const { 645 646 State.AnalyzeReturn(Outs, RetCC_SI); 647 } 648 649 SDValue 650 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 651 bool isVarArg, 652 const SmallVectorImpl<ISD::OutputArg> &Outs, 653 const SmallVectorImpl<SDValue> &OutVals, 654 const SDLoc &DL, SelectionDAG &DAG) const { 655 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 656 } 657 658 //===---------------------------------------------------------------------===// 659 // Target specific lowering 660 //===---------------------------------------------------------------------===// 661 662 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 663 SmallVectorImpl<SDValue> &InVals) const { 664 SDValue Callee = CLI.Callee; 665 SelectionDAG &DAG = CLI.DAG; 666 667 const Function &Fn = *DAG.getMachineFunction().getFunction(); 668 669 StringRef FuncName("<unknown>"); 670 671 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 672 FuncName = G->getSymbol(); 673 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 674 FuncName = G->getGlobal()->getName(); 675 676 DiagnosticInfoUnsupported NoCalls( 677 Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); 678 DAG.getContext()->diagnose(NoCalls); 679 680 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 681 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 682 683 return DAG.getEntryNode(); 684 } 685 686 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 687 SelectionDAG &DAG) const { 688 const Function &Fn = *DAG.getMachineFunction().getFunction(); 689 690 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 691 SDLoc(Op).getDebugLoc()); 692 DAG.getContext()->diagnose(NoDynamicAlloca); 693 return SDValue(); 694 } 695 696 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 697 SelectionDAG &DAG) const { 698 switch (Op.getOpcode()) { 699 default: 700 Op->dump(&DAG); 701 llvm_unreachable("Custom lowering code for this" 702 "instruction is not implemented yet!"); 703 break; 704 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 705 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 706 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 707 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 708 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 709 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 710 case ISD::FREM: return LowerFREM(Op, DAG); 711 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 712 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 713 case ISD::FRINT: return LowerFRINT(Op, DAG); 714 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 715 case ISD::FROUND: return LowerFROUND(Op, DAG); 716 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 717 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 718 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 719 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 720 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 721 case ISD::CTLZ: 722 case ISD::CTLZ_ZERO_UNDEF: 723 return LowerCTLZ(Op, DAG); 724 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 725 } 726 return Op; 727 } 728 729 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 730 SmallVectorImpl<SDValue> &Results, 731 SelectionDAG &DAG) const { 732 switch (N->getOpcode()) { 733 case ISD::SIGN_EXTEND_INREG: 734 // Different parts of legalization seem to interpret which type of 735 // sign_extend_inreg is the one to check for custom lowering. The extended 736 // from type is what really matters, but some places check for custom 737 // lowering of the result type. This results in trying to use 738 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 739 // nothing here and let the illegal result integer be handled normally. 740 return; 741 default: 742 return; 743 } 744 } 745 746 // FIXME: This implements accesses to initialized globals in the constant 747 // address space by copying them to private and accessing that. It does not 748 // properly handle illegal types or vectors. The private vector loads are not 749 // scalarized, and the illegal scalars hit an assertion. This technique will not 750 // work well with large initializers, and this should eventually be 751 // removed. Initialized globals should be placed into a data section that the 752 // runtime will load into a buffer before the kernel is executed. Uses of the 753 // global need to be replaced with a pointer loaded from an implicit kernel 754 // argument into this buffer holding the copy of the data, which will remove the 755 // need for any of this. 756 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 757 const GlobalValue *GV, 758 const SDValue &InitPtr, 759 SDValue Chain, 760 SelectionDAG &DAG) const { 761 const DataLayout &TD = DAG.getDataLayout(); 762 SDLoc DL(InitPtr); 763 Type *InitTy = Init->getType(); 764 765 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 766 EVT VT = EVT::getEVT(InitTy); 767 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 768 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 769 MachinePointerInfo(UndefValue::get(PtrTy)), false, 770 false, TD.getPrefTypeAlignment(InitTy)); 771 } 772 773 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 774 EVT VT = EVT::getEVT(CFP->getType()); 775 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 776 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 777 MachinePointerInfo(UndefValue::get(PtrTy)), false, 778 false, TD.getPrefTypeAlignment(CFP->getType())); 779 } 780 781 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 782 const StructLayout *SL = TD.getStructLayout(ST); 783 784 EVT PtrVT = InitPtr.getValueType(); 785 SmallVector<SDValue, 8> Chains; 786 787 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 788 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 789 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 790 791 Constant *Elt = Init->getAggregateElement(I); 792 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 793 } 794 795 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 796 } 797 798 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 799 EVT PtrVT = InitPtr.getValueType(); 800 801 unsigned NumElements; 802 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 803 NumElements = AT->getNumElements(); 804 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 805 NumElements = VT->getNumElements(); 806 else 807 llvm_unreachable("Unexpected type"); 808 809 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 810 SmallVector<SDValue, 8> Chains; 811 for (unsigned i = 0; i < NumElements; ++i) { 812 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 813 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 814 815 Constant *Elt = Init->getAggregateElement(i); 816 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 817 } 818 819 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 820 } 821 822 if (isa<UndefValue>(Init)) { 823 EVT VT = EVT::getEVT(InitTy); 824 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 825 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 826 MachinePointerInfo(UndefValue::get(PtrTy)), false, 827 false, TD.getPrefTypeAlignment(InitTy)); 828 } 829 830 Init->dump(); 831 llvm_unreachable("Unhandled constant initializer"); 832 } 833 834 static bool hasDefinedInitializer(const GlobalValue *GV) { 835 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 836 if (!GVar || !GVar->hasInitializer()) 837 return false; 838 839 return !isa<UndefValue>(GVar->getInitializer()); 840 } 841 842 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 843 SDValue Op, 844 SelectionDAG &DAG) const { 845 846 const DataLayout &DL = DAG.getDataLayout(); 847 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 848 const GlobalValue *GV = G->getGlobal(); 849 850 switch (G->getAddressSpace()) { 851 case AMDGPUAS::CONSTANT_ADDRESS: { 852 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 853 SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(G), ConstPtrVT); 854 return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(G), ConstPtrVT, GA); 855 } 856 case AMDGPUAS::LOCAL_ADDRESS: { 857 // XXX: What does the value of G->getOffset() mean? 858 assert(G->getOffset() == 0 && 859 "Do not know what to do with an non-zero offset"); 860 861 // TODO: We could emit code to handle the initialization somewhere. 862 if (hasDefinedInitializer(GV)) 863 break; 864 865 unsigned Offset; 866 if (MFI->LocalMemoryObjects.count(GV) == 0) { 867 unsigned Align = GV->getAlignment(); 868 if (Align == 0) 869 Align = DL.getABITypeAlignment(GV->getValueType()); 870 871 /// TODO: We should sort these to minimize wasted space due to alignment 872 /// padding. Currently the padding is decided by the first encountered use 873 /// during lowering. 874 Offset = MFI->LDSSize = alignTo(MFI->LDSSize, Align); 875 MFI->LocalMemoryObjects[GV] = Offset; 876 MFI->LDSSize += DL.getTypeAllocSize(GV->getValueType()); 877 } else { 878 Offset = MFI->LocalMemoryObjects[GV]; 879 } 880 881 return DAG.getConstant(Offset, SDLoc(Op), 882 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 883 } 884 } 885 886 const Function &Fn = *DAG.getMachineFunction().getFunction(); 887 DiagnosticInfoUnsupported BadInit( 888 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 889 DAG.getContext()->diagnose(BadInit); 890 return SDValue(); 891 } 892 893 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 894 SelectionDAG &DAG) const { 895 SmallVector<SDValue, 8> Args; 896 897 for (const SDUse &U : Op->ops()) 898 DAG.ExtractVectorElements(U.get(), Args); 899 900 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 901 } 902 903 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 904 SelectionDAG &DAG) const { 905 906 SmallVector<SDValue, 8> Args; 907 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 908 EVT VT = Op.getValueType(); 909 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 910 VT.getVectorNumElements()); 911 912 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 913 } 914 915 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 916 SelectionDAG &DAG) const { 917 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 918 SDLoc DL(Op); 919 EVT VT = Op.getValueType(); 920 921 switch (IntrinsicID) { 922 default: return Op; 923 case AMDGPUIntrinsic::AMDGPU_clamp: 924 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 925 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 926 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 927 928 case Intrinsic::AMDGPU_ldexp: // Legacy name 929 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 930 Op.getOperand(2)); 931 932 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 933 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 934 Op.getOperand(1), 935 Op.getOperand(2), 936 Op.getOperand(3)); 937 938 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 939 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 940 Op.getOperand(1), 941 Op.getOperand(2), 942 Op.getOperand(3)); 943 944 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 945 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 946 947 case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name 948 return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1)); 949 } 950 } 951 952 /// \brief Generate Min/Max node 953 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT, 954 SDValue LHS, SDValue RHS, 955 SDValue True, SDValue False, 956 SDValue CC, 957 DAGCombinerInfo &DCI) const { 958 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 959 return SDValue(); 960 961 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 962 return SDValue(); 963 964 SelectionDAG &DAG = DCI.DAG; 965 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 966 switch (CCOpcode) { 967 case ISD::SETOEQ: 968 case ISD::SETONE: 969 case ISD::SETUNE: 970 case ISD::SETNE: 971 case ISD::SETUEQ: 972 case ISD::SETEQ: 973 case ISD::SETFALSE: 974 case ISD::SETFALSE2: 975 case ISD::SETTRUE: 976 case ISD::SETTRUE2: 977 case ISD::SETUO: 978 case ISD::SETO: 979 break; 980 case ISD::SETULE: 981 case ISD::SETULT: { 982 if (LHS == True) 983 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 984 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 985 } 986 case ISD::SETOLE: 987 case ISD::SETOLT: 988 case ISD::SETLE: 989 case ISD::SETLT: { 990 // Ordered. Assume ordered for undefined. 991 992 // Only do this after legalization to avoid interfering with other combines 993 // which might occur. 994 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 995 !DCI.isCalledByLegalizer()) 996 return SDValue(); 997 998 // We need to permute the operands to get the correct NaN behavior. The 999 // selected operand is the second one based on the failing compare with NaN, 1000 // so permute it based on the compare type the hardware uses. 1001 if (LHS == True) 1002 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1003 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1004 } 1005 case ISD::SETUGE: 1006 case ISD::SETUGT: { 1007 if (LHS == True) 1008 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1009 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1010 } 1011 case ISD::SETGT: 1012 case ISD::SETGE: 1013 case ISD::SETOGE: 1014 case ISD::SETOGT: { 1015 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1016 !DCI.isCalledByLegalizer()) 1017 return SDValue(); 1018 1019 if (LHS == True) 1020 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1021 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1022 } 1023 case ISD::SETCC_INVALID: 1024 llvm_unreachable("Invalid setcc condcode!"); 1025 } 1026 return SDValue(); 1027 } 1028 1029 std::pair<SDValue, SDValue> 1030 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1031 SDLoc SL(Op); 1032 1033 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1034 1035 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1036 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1037 1038 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1039 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1040 1041 return std::make_pair(Lo, Hi); 1042 } 1043 1044 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1045 SDLoc SL(Op); 1046 1047 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1048 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1049 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1050 } 1051 1052 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1053 SDLoc SL(Op); 1054 1055 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1056 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1057 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1058 } 1059 1060 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1061 SelectionDAG &DAG) const { 1062 LoadSDNode *Load = cast<LoadSDNode>(Op); 1063 EVT VT = Op.getValueType(); 1064 1065 1066 // If this is a 2 element vector, we really want to scalarize and not create 1067 // weird 1 element vectors. 1068 if (VT.getVectorNumElements() == 2) 1069 return scalarizeVectorLoad(Load, DAG); 1070 1071 SDValue BasePtr = Load->getBasePtr(); 1072 EVT PtrVT = BasePtr.getValueType(); 1073 EVT MemVT = Load->getMemoryVT(); 1074 SDLoc SL(Op); 1075 1076 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1077 1078 EVT LoVT, HiVT; 1079 EVT LoMemVT, HiMemVT; 1080 SDValue Lo, Hi; 1081 1082 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1083 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1084 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1085 1086 unsigned Size = LoMemVT.getStoreSize(); 1087 unsigned BaseAlign = Load->getAlignment(); 1088 unsigned HiAlign = MinAlign(BaseAlign, Size); 1089 1090 SDValue LoLoad 1091 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1092 Load->getChain(), BasePtr, 1093 SrcValue, 1094 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1095 Load->isInvariant(), BaseAlign); 1096 1097 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1098 DAG.getConstant(Size, SL, PtrVT)); 1099 1100 SDValue HiLoad 1101 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1102 Load->getChain(), HiPtr, 1103 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1104 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1105 Load->isInvariant(), HiAlign); 1106 1107 SDValue Ops[] = { 1108 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1109 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1110 LoLoad.getValue(1), HiLoad.getValue(1)) 1111 }; 1112 1113 return DAG.getMergeValues(Ops, SL); 1114 } 1115 1116 // FIXME: This isn't doing anything for SI. This should be used in a target 1117 // combine during type legalization. 1118 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1119 SelectionDAG &DAG) const { 1120 StoreSDNode *Store = cast<StoreSDNode>(Op); 1121 EVT MemVT = Store->getMemoryVT(); 1122 unsigned MemBits = MemVT.getSizeInBits(); 1123 1124 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1125 // truncating store into an i32 store. 1126 // XXX: We could also handle optimize other vector bitwidths. 1127 if (!MemVT.isVector() || MemBits > 32) { 1128 return SDValue(); 1129 } 1130 1131 SDLoc DL(Op); 1132 SDValue Value = Store->getValue(); 1133 EVT VT = Value.getValueType(); 1134 EVT ElemVT = VT.getVectorElementType(); 1135 SDValue Ptr = Store->getBasePtr(); 1136 EVT MemEltVT = MemVT.getVectorElementType(); 1137 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1138 unsigned MemNumElements = MemVT.getVectorNumElements(); 1139 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1140 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1141 1142 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1143 1144 SDValue PackedValue; 1145 for (unsigned i = 0; i < MemNumElements; ++i) { 1146 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1147 DAG.getConstant(i, DL, MVT::i32)); 1148 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1149 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1150 1151 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1152 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1153 1154 if (i == 0) { 1155 PackedValue = Elt; 1156 } else { 1157 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1158 } 1159 } 1160 1161 if (PackedSize < 32) { 1162 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1163 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1164 Store->getMemOperand()->getPointerInfo(), 1165 PackedVT, 1166 Store->isNonTemporal(), Store->isVolatile(), 1167 Store->getAlignment()); 1168 } 1169 1170 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1171 Store->getMemOperand()->getPointerInfo(), 1172 Store->isVolatile(), Store->isNonTemporal(), 1173 Store->getAlignment()); 1174 } 1175 1176 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1177 SelectionDAG &DAG) const { 1178 StoreSDNode *Store = cast<StoreSDNode>(Op); 1179 SDValue Val = Store->getValue(); 1180 EVT VT = Val.getValueType(); 1181 1182 // If this is a 2 element vector, we really want to scalarize and not create 1183 // weird 1 element vectors. 1184 if (VT.getVectorNumElements() == 2) 1185 return scalarizeVectorStore(Store, DAG); 1186 1187 EVT MemVT = Store->getMemoryVT(); 1188 SDValue Chain = Store->getChain(); 1189 SDValue BasePtr = Store->getBasePtr(); 1190 SDLoc SL(Op); 1191 1192 EVT LoVT, HiVT; 1193 EVT LoMemVT, HiMemVT; 1194 SDValue Lo, Hi; 1195 1196 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1197 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1198 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1199 1200 EVT PtrVT = BasePtr.getValueType(); 1201 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1202 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1203 PtrVT)); 1204 1205 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1206 unsigned BaseAlign = Store->getAlignment(); 1207 unsigned Size = LoMemVT.getStoreSize(); 1208 unsigned HiAlign = MinAlign(BaseAlign, Size); 1209 1210 SDValue LoStore 1211 = DAG.getTruncStore(Chain, SL, Lo, 1212 BasePtr, 1213 SrcValue, 1214 LoMemVT, 1215 Store->isNonTemporal(), 1216 Store->isVolatile(), 1217 BaseAlign); 1218 SDValue HiStore 1219 = DAG.getTruncStore(Chain, SL, Hi, 1220 HiPtr, 1221 SrcValue.getWithOffset(Size), 1222 HiMemVT, 1223 Store->isNonTemporal(), 1224 Store->isVolatile(), 1225 HiAlign); 1226 1227 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1228 } 1229 1230 // This is a shortcut for integer division because we have fast i32<->f32 1231 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1232 // float is enough to accurately represent up to a 24-bit signed integer. 1233 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1234 bool Sign) const { 1235 SDLoc DL(Op); 1236 EVT VT = Op.getValueType(); 1237 SDValue LHS = Op.getOperand(0); 1238 SDValue RHS = Op.getOperand(1); 1239 MVT IntVT = MVT::i32; 1240 MVT FltVT = MVT::f32; 1241 1242 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1243 if (LHSSignBits < 9) 1244 return SDValue(); 1245 1246 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1247 if (RHSSignBits < 9) 1248 return SDValue(); 1249 1250 unsigned BitSize = VT.getSizeInBits(); 1251 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1252 unsigned DivBits = BitSize - SignBits; 1253 if (Sign) 1254 ++DivBits; 1255 1256 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1257 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1258 1259 SDValue jq = DAG.getConstant(1, DL, IntVT); 1260 1261 if (Sign) { 1262 // char|short jq = ia ^ ib; 1263 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1264 1265 // jq = jq >> (bitsize - 2) 1266 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1267 DAG.getConstant(BitSize - 2, DL, VT)); 1268 1269 // jq = jq | 0x1 1270 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1271 } 1272 1273 // int ia = (int)LHS; 1274 SDValue ia = LHS; 1275 1276 // int ib, (int)RHS; 1277 SDValue ib = RHS; 1278 1279 // float fa = (float)ia; 1280 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1281 1282 // float fb = (float)ib; 1283 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1284 1285 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1286 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1287 1288 // fq = trunc(fq); 1289 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1290 1291 // float fqneg = -fq; 1292 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1293 1294 // float fr = mad(fqneg, fb, fa); 1295 SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa); 1296 1297 // int iq = (int)fq; 1298 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1299 1300 // fr = fabs(fr); 1301 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1302 1303 // fb = fabs(fb); 1304 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1305 1306 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1307 1308 // int cv = fr >= fb; 1309 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1310 1311 // jq = (cv ? jq : 0); 1312 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1313 1314 // dst = iq + jq; 1315 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1316 1317 // Rem needs compensation, it's easier to recompute it 1318 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1319 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1320 1321 // Truncate to number of bits this divide really is. 1322 if (Sign) { 1323 SDValue InRegSize 1324 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1325 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1326 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1327 } else { 1328 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1329 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1330 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1331 } 1332 1333 return DAG.getMergeValues({ Div, Rem }, DL); 1334 } 1335 1336 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1337 SelectionDAG &DAG, 1338 SmallVectorImpl<SDValue> &Results) const { 1339 assert(Op.getValueType() == MVT::i64); 1340 1341 SDLoc DL(Op); 1342 EVT VT = Op.getValueType(); 1343 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1344 1345 SDValue one = DAG.getConstant(1, DL, HalfVT); 1346 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1347 1348 //HiLo split 1349 SDValue LHS = Op.getOperand(0); 1350 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1351 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1352 1353 SDValue RHS = Op.getOperand(1); 1354 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1355 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1356 1357 if (VT == MVT::i64 && 1358 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1359 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1360 1361 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1362 LHS_Lo, RHS_Lo); 1363 1364 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); 1365 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); 1366 1367 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1368 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1369 return; 1370 } 1371 1372 // Get Speculative values 1373 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1374 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1375 1376 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1377 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); 1378 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1379 1380 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1381 SDValue DIV_Lo = zero; 1382 1383 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1384 1385 for (unsigned i = 0; i < halfBitWidth; ++i) { 1386 const unsigned bitPos = halfBitWidth - i - 1; 1387 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1388 // Get value of high bit 1389 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1390 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1391 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1392 1393 // Shift 1394 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1395 // Add LHS high bit 1396 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1397 1398 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1399 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1400 1401 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1402 1403 // Update REM 1404 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1405 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1406 } 1407 1408 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1409 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1410 Results.push_back(DIV); 1411 Results.push_back(REM); 1412 } 1413 1414 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1415 SelectionDAG &DAG) const { 1416 SDLoc DL(Op); 1417 EVT VT = Op.getValueType(); 1418 1419 if (VT == MVT::i64) { 1420 SmallVector<SDValue, 2> Results; 1421 LowerUDIVREM64(Op, DAG, Results); 1422 return DAG.getMergeValues(Results, DL); 1423 } 1424 1425 if (VT == MVT::i32) { 1426 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1427 return Res; 1428 } 1429 1430 SDValue Num = Op.getOperand(0); 1431 SDValue Den = Op.getOperand(1); 1432 1433 // RCP = URECIP(Den) = 2^32 / Den + e 1434 // e is rounding error. 1435 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1436 1437 // RCP_LO = mul(RCP, Den) */ 1438 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1439 1440 // RCP_HI = mulhu (RCP, Den) */ 1441 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1442 1443 // NEG_RCP_LO = -RCP_LO 1444 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1445 RCP_LO); 1446 1447 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1448 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1449 NEG_RCP_LO, RCP_LO, 1450 ISD::SETEQ); 1451 // Calculate the rounding error from the URECIP instruction 1452 // E = mulhu(ABS_RCP_LO, RCP) 1453 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1454 1455 // RCP_A_E = RCP + E 1456 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1457 1458 // RCP_S_E = RCP - E 1459 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1460 1461 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1462 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1463 RCP_A_E, RCP_S_E, 1464 ISD::SETEQ); 1465 // Quotient = mulhu(Tmp0, Num) 1466 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1467 1468 // Num_S_Remainder = Quotient * Den 1469 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1470 1471 // Remainder = Num - Num_S_Remainder 1472 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1473 1474 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1475 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1476 DAG.getConstant(-1, DL, VT), 1477 DAG.getConstant(0, DL, VT), 1478 ISD::SETUGE); 1479 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1480 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1481 Num_S_Remainder, 1482 DAG.getConstant(-1, DL, VT), 1483 DAG.getConstant(0, DL, VT), 1484 ISD::SETUGE); 1485 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1486 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1487 Remainder_GE_Zero); 1488 1489 // Calculate Division result: 1490 1491 // Quotient_A_One = Quotient + 1 1492 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1493 DAG.getConstant(1, DL, VT)); 1494 1495 // Quotient_S_One = Quotient - 1 1496 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1497 DAG.getConstant(1, DL, VT)); 1498 1499 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1500 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1501 Quotient, Quotient_A_One, ISD::SETEQ); 1502 1503 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1504 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1505 Quotient_S_One, Div, ISD::SETEQ); 1506 1507 // Calculate Rem result: 1508 1509 // Remainder_S_Den = Remainder - Den 1510 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1511 1512 // Remainder_A_Den = Remainder + Den 1513 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1514 1515 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1516 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1517 Remainder, Remainder_S_Den, ISD::SETEQ); 1518 1519 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1520 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1521 Remainder_A_Den, Rem, ISD::SETEQ); 1522 SDValue Ops[2] = { 1523 Div, 1524 Rem 1525 }; 1526 return DAG.getMergeValues(Ops, DL); 1527 } 1528 1529 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1530 SelectionDAG &DAG) const { 1531 SDLoc DL(Op); 1532 EVT VT = Op.getValueType(); 1533 1534 SDValue LHS = Op.getOperand(0); 1535 SDValue RHS = Op.getOperand(1); 1536 1537 SDValue Zero = DAG.getConstant(0, DL, VT); 1538 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1539 1540 if (VT == MVT::i32) { 1541 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1542 return Res; 1543 } 1544 1545 if (VT == MVT::i64 && 1546 DAG.ComputeNumSignBits(LHS) > 32 && 1547 DAG.ComputeNumSignBits(RHS) > 32) { 1548 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1549 1550 //HiLo split 1551 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1552 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1553 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1554 LHS_Lo, RHS_Lo); 1555 SDValue Res[2] = { 1556 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1557 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1558 }; 1559 return DAG.getMergeValues(Res, DL); 1560 } 1561 1562 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1563 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1564 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1565 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1566 1567 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1568 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1569 1570 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1571 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1572 1573 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1574 SDValue Rem = Div.getValue(1); 1575 1576 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1577 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1578 1579 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1580 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1581 1582 SDValue Res[2] = { 1583 Div, 1584 Rem 1585 }; 1586 return DAG.getMergeValues(Res, DL); 1587 } 1588 1589 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1590 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1591 SDLoc SL(Op); 1592 EVT VT = Op.getValueType(); 1593 SDValue X = Op.getOperand(0); 1594 SDValue Y = Op.getOperand(1); 1595 1596 // TODO: Should this propagate fast-math-flags? 1597 1598 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1599 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1600 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1601 1602 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1603 } 1604 1605 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1606 SDLoc SL(Op); 1607 SDValue Src = Op.getOperand(0); 1608 1609 // result = trunc(src) 1610 // if (src > 0.0 && src != result) 1611 // result += 1.0 1612 1613 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1614 1615 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1616 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1617 1618 EVT SetCCVT = 1619 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1620 1621 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1622 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1623 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1624 1625 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1626 // TODO: Should this propagate fast-math-flags? 1627 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1628 } 1629 1630 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1631 SelectionDAG &DAG) { 1632 const unsigned FractBits = 52; 1633 const unsigned ExpBits = 11; 1634 1635 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1636 Hi, 1637 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1638 DAG.getConstant(ExpBits, SL, MVT::i32)); 1639 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1640 DAG.getConstant(1023, SL, MVT::i32)); 1641 1642 return Exp; 1643 } 1644 1645 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1646 SDLoc SL(Op); 1647 SDValue Src = Op.getOperand(0); 1648 1649 assert(Op.getValueType() == MVT::f64); 1650 1651 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1652 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1653 1654 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1655 1656 // Extract the upper half, since this is where we will find the sign and 1657 // exponent. 1658 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1659 1660 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1661 1662 const unsigned FractBits = 52; 1663 1664 // Extract the sign bit. 1665 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1666 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1667 1668 // Extend back to to 64-bits. 1669 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 1670 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1671 1672 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1673 const SDValue FractMask 1674 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1675 1676 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1677 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1678 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1679 1680 EVT SetCCVT = 1681 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1682 1683 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1684 1685 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1686 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1687 1688 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 1689 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 1690 1691 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 1692 } 1693 1694 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 1695 SDLoc SL(Op); 1696 SDValue Src = Op.getOperand(0); 1697 1698 assert(Op.getValueType() == MVT::f64); 1699 1700 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 1701 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 1702 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 1703 1704 // TODO: Should this propagate fast-math-flags? 1705 1706 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 1707 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 1708 1709 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 1710 1711 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 1712 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 1713 1714 EVT SetCCVT = 1715 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1716 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 1717 1718 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 1719 } 1720 1721 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 1722 // FNEARBYINT and FRINT are the same, except in their handling of FP 1723 // exceptions. Those aren't really meaningful for us, and OpenCL only has 1724 // rint, so just treat them as equivalent. 1725 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 1726 } 1727 1728 // XXX - May require not supporting f32 denormals? 1729 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 1730 SDLoc SL(Op); 1731 SDValue X = Op.getOperand(0); 1732 1733 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 1734 1735 // TODO: Should this propagate fast-math-flags? 1736 1737 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 1738 1739 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 1740 1741 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 1742 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1743 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 1744 1745 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 1746 1747 EVT SetCCVT = 1748 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1749 1750 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 1751 1752 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 1753 1754 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 1755 } 1756 1757 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 1758 SDLoc SL(Op); 1759 SDValue X = Op.getOperand(0); 1760 1761 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 1762 1763 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1764 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1765 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 1766 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 1767 EVT SetCCVT = 1768 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1769 1770 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1771 1772 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 1773 1774 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1775 1776 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 1777 MVT::i64); 1778 1779 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 1780 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 1781 DAG.getConstant(INT64_C(0x0008000000000000), SL, 1782 MVT::i64), 1783 Exp); 1784 1785 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 1786 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 1787 DAG.getConstant(0, SL, MVT::i64), Tmp0, 1788 ISD::SETNE); 1789 1790 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 1791 D, DAG.getConstant(0, SL, MVT::i64)); 1792 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 1793 1794 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 1795 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 1796 1797 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1798 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1799 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 1800 1801 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 1802 ExpEqNegOne, 1803 DAG.getConstantFP(1.0, SL, MVT::f64), 1804 DAG.getConstantFP(0.0, SL, MVT::f64)); 1805 1806 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 1807 1808 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 1809 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 1810 1811 return K; 1812 } 1813 1814 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 1815 EVT VT = Op.getValueType(); 1816 1817 if (VT == MVT::f32) 1818 return LowerFROUND32(Op, DAG); 1819 1820 if (VT == MVT::f64) 1821 return LowerFROUND64(Op, DAG); 1822 1823 llvm_unreachable("unhandled type"); 1824 } 1825 1826 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 1827 SDLoc SL(Op); 1828 SDValue Src = Op.getOperand(0); 1829 1830 // result = trunc(src); 1831 // if (src < 0.0 && src != result) 1832 // result += -1.0. 1833 1834 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1835 1836 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1837 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 1838 1839 EVT SetCCVT = 1840 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1841 1842 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 1843 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1844 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1845 1846 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 1847 // TODO: Should this propagate fast-math-flags? 1848 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1849 } 1850 1851 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 1852 SDLoc SL(Op); 1853 SDValue Src = Op.getOperand(0); 1854 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 1855 1856 if (ZeroUndef && Src.getValueType() == MVT::i32) 1857 return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); 1858 1859 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1860 1861 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1862 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1863 1864 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1865 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1866 1867 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1868 *DAG.getContext(), MVT::i32); 1869 1870 SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); 1871 1872 SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); 1873 SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); 1874 1875 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 1876 SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); 1877 1878 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 1879 SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); 1880 1881 if (!ZeroUndef) { 1882 // Test if the full 64-bit input is zero. 1883 1884 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 1885 // which we probably don't want. 1886 SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); 1887 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); 1888 1889 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 1890 // with the same cycles, otherwise it is slower. 1891 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 1892 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 1893 1894 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 1895 1896 // The instruction returns -1 for 0 input, but the defined intrinsic 1897 // behavior is to return the number of bits. 1898 NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, 1899 SrcIsZero, Bits32, NewCtlz); 1900 } 1901 1902 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); 1903 } 1904 1905 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 1906 bool Signed) const { 1907 // Unsigned 1908 // cul2f(ulong u) 1909 //{ 1910 // uint lz = clz(u); 1911 // uint e = (u != 0) ? 127U + 63U - lz : 0; 1912 // u = (u << lz) & 0x7fffffffffffffffUL; 1913 // ulong t = u & 0xffffffffffUL; 1914 // uint v = (e << 23) | (uint)(u >> 40); 1915 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 1916 // return as_float(v + r); 1917 //} 1918 // Signed 1919 // cl2f(long l) 1920 //{ 1921 // long s = l >> 63; 1922 // float r = cul2f((l + s) ^ s); 1923 // return s ? -r : r; 1924 //} 1925 1926 SDLoc SL(Op); 1927 SDValue Src = Op.getOperand(0); 1928 SDValue L = Src; 1929 1930 SDValue S; 1931 if (Signed) { 1932 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 1933 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 1934 1935 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 1936 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 1937 } 1938 1939 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 1940 *DAG.getContext(), MVT::f32); 1941 1942 1943 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 1944 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 1945 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 1946 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 1947 1948 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 1949 SDValue E = DAG.getSelect(SL, MVT::i32, 1950 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 1951 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 1952 ZeroI32); 1953 1954 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 1955 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 1956 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 1957 1958 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 1959 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 1960 1961 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 1962 U, DAG.getConstant(40, SL, MVT::i64)); 1963 1964 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 1965 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 1966 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 1967 1968 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 1969 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 1970 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 1971 1972 SDValue One = DAG.getConstant(1, SL, MVT::i32); 1973 1974 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 1975 1976 SDValue R = DAG.getSelect(SL, MVT::i32, 1977 RCmp, 1978 One, 1979 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 1980 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 1981 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 1982 1983 if (!Signed) 1984 return R; 1985 1986 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 1987 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 1988 } 1989 1990 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 1991 bool Signed) const { 1992 SDLoc SL(Op); 1993 SDValue Src = Op.getOperand(0); 1994 1995 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1996 1997 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 1998 DAG.getConstant(0, SL, MVT::i32)); 1999 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2000 DAG.getConstant(1, SL, MVT::i32)); 2001 2002 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2003 SL, MVT::f64, Hi); 2004 2005 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2006 2007 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2008 DAG.getConstant(32, SL, MVT::i32)); 2009 // TODO: Should this propagate fast-math-flags? 2010 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2011 } 2012 2013 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2014 SelectionDAG &DAG) const { 2015 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2016 "operation should be legal"); 2017 2018 EVT DestVT = Op.getValueType(); 2019 if (DestVT == MVT::f64) 2020 return LowerINT_TO_FP64(Op, DAG, false); 2021 2022 if (DestVT == MVT::f32) 2023 return LowerINT_TO_FP32(Op, DAG, false); 2024 2025 return SDValue(); 2026 } 2027 2028 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2029 SelectionDAG &DAG) const { 2030 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2031 "operation should be legal"); 2032 2033 EVT DestVT = Op.getValueType(); 2034 if (DestVT == MVT::f32) 2035 return LowerINT_TO_FP32(Op, DAG, true); 2036 2037 if (DestVT == MVT::f64) 2038 return LowerINT_TO_FP64(Op, DAG, true); 2039 2040 return SDValue(); 2041 } 2042 2043 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2044 bool Signed) const { 2045 SDLoc SL(Op); 2046 2047 SDValue Src = Op.getOperand(0); 2048 2049 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2050 2051 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2052 MVT::f64); 2053 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2054 MVT::f64); 2055 // TODO: Should this propagate fast-math-flags? 2056 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2057 2058 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2059 2060 2061 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2062 2063 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2064 MVT::i32, FloorMul); 2065 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2066 2067 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2068 2069 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2070 } 2071 2072 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2073 SelectionDAG &DAG) const { 2074 SDValue Src = Op.getOperand(0); 2075 2076 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2077 return LowerFP64_TO_INT(Op, DAG, true); 2078 2079 return SDValue(); 2080 } 2081 2082 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2083 SelectionDAG &DAG) const { 2084 SDValue Src = Op.getOperand(0); 2085 2086 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2087 return LowerFP64_TO_INT(Op, DAG, false); 2088 2089 return SDValue(); 2090 } 2091 2092 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2093 SelectionDAG &DAG) const { 2094 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2095 MVT VT = Op.getSimpleValueType(); 2096 MVT ScalarVT = VT.getScalarType(); 2097 2098 if (!VT.isVector()) 2099 return SDValue(); 2100 2101 SDValue Src = Op.getOperand(0); 2102 SDLoc DL(Op); 2103 2104 // TODO: Don't scalarize on Evergreen? 2105 unsigned NElts = VT.getVectorNumElements(); 2106 SmallVector<SDValue, 8> Args; 2107 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2108 2109 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2110 for (unsigned I = 0; I < NElts; ++I) 2111 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2112 2113 return DAG.getBuildVector(VT, DL, Args); 2114 } 2115 2116 //===----------------------------------------------------------------------===// 2117 // Custom DAG optimizations 2118 //===----------------------------------------------------------------------===// 2119 2120 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2121 APInt KnownZero, KnownOne; 2122 EVT VT = Op.getValueType(); 2123 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2124 2125 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2126 } 2127 2128 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2129 EVT VT = Op.getValueType(); 2130 2131 // In order for this to be a signed 24-bit value, bit 23, must 2132 // be a sign bit. 2133 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2134 // as unsigned 24-bit values. 2135 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2136 } 2137 2138 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2139 2140 SelectionDAG &DAG = DCI.DAG; 2141 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2142 EVT VT = Op.getValueType(); 2143 2144 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2145 APInt KnownZero, KnownOne; 2146 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2147 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2148 DCI.CommitTargetLoweringOpt(TLO); 2149 } 2150 2151 template <typename IntTy> 2152 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2153 uint32_t Width, const SDLoc &DL) { 2154 if (Width + Offset < 32) { 2155 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2156 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2157 return DAG.getConstant(Result, DL, MVT::i32); 2158 } 2159 2160 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2161 } 2162 2163 static bool usesAllNormalStores(SDNode *LoadVal) { 2164 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2165 if (!ISD::isNormalStore(*I)) 2166 return false; 2167 } 2168 2169 return true; 2170 } 2171 2172 // If we have a copy of an illegal type, replace it with a load / store of an 2173 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2174 // instructions emitted when handling extloads and truncstores. Ideally we could 2175 // recognize the pack / unpack pattern to eliminate it. 2176 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2177 DAGCombinerInfo &DCI) const { 2178 if (!DCI.isBeforeLegalize()) 2179 return SDValue(); 2180 2181 StoreSDNode *SN = cast<StoreSDNode>(N); 2182 SDValue Value = SN->getValue(); 2183 EVT VT = Value.getValueType(); 2184 2185 if (isTypeLegal(VT) || SN->isVolatile() || 2186 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2187 return SDValue(); 2188 2189 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2190 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2191 return SDValue(); 2192 2193 EVT MemVT = LoadVal->getMemoryVT(); 2194 if (!MemVT.isRound()) 2195 return SDValue(); 2196 2197 SDLoc SL(N); 2198 SelectionDAG &DAG = DCI.DAG; 2199 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2200 2201 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2202 LoadVT, SL, 2203 LoadVal->getChain(), 2204 LoadVal->getBasePtr(), 2205 LoadVal->getOffset(), 2206 LoadVT, 2207 LoadVal->getMemOperand()); 2208 2209 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2210 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2211 2212 return DAG.getStore(SN->getChain(), SL, NewLoad, 2213 SN->getBasePtr(), SN->getMemOperand()); 2214 } 2215 2216 // TODO: Should repeat for other bit ops. 2217 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N, 2218 DAGCombinerInfo &DCI) const { 2219 if (N->getValueType(0) != MVT::i64) 2220 return SDValue(); 2221 2222 // Break up 64-bit and of a constant into two 32-bit ands. This will typically 2223 // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer 2224 // combine opportunities since most 64-bit operations are decomposed this way. 2225 // TODO: We won't want this for SALU especially if it is an inline immediate. 2226 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2227 if (!RHS) 2228 return SDValue(); 2229 2230 uint64_t Val = RHS->getZExtValue(); 2231 if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) { 2232 // If either half of the constant is 0, this is really a 32-bit and, so 2233 // split it. If we can re-use the full materialized constant, keep it. 2234 return SDValue(); 2235 } 2236 2237 SDLoc SL(N); 2238 SelectionDAG &DAG = DCI.DAG; 2239 2240 SDValue Lo, Hi; 2241 std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG); 2242 2243 SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32); 2244 SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32); 2245 2246 SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS); 2247 SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS); 2248 2249 // Re-visit the ands. It's possible we eliminated one of them and it could 2250 // simplify the vector. 2251 DCI.AddToWorklist(Lo.getNode()); 2252 DCI.AddToWorklist(Hi.getNode()); 2253 2254 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2255 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2256 } 2257 2258 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2259 DAGCombinerInfo &DCI) const { 2260 if (N->getValueType(0) != MVT::i64) 2261 return SDValue(); 2262 2263 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2264 2265 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2266 // common case, splitting this into a move and a 32-bit shift is faster and 2267 // the same code size. 2268 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2269 if (!RHS) 2270 return SDValue(); 2271 2272 unsigned RHSVal = RHS->getZExtValue(); 2273 if (RHSVal < 32) 2274 return SDValue(); 2275 2276 SDValue LHS = N->getOperand(0); 2277 2278 SDLoc SL(N); 2279 SelectionDAG &DAG = DCI.DAG; 2280 2281 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 2282 2283 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2284 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 2285 2286 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2287 2288 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 2289 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2290 } 2291 2292 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 2293 DAGCombinerInfo &DCI) const { 2294 if (N->getValueType(0) != MVT::i64) 2295 return SDValue(); 2296 2297 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2298 if (!RHS) 2299 return SDValue(); 2300 2301 SelectionDAG &DAG = DCI.DAG; 2302 SDLoc SL(N); 2303 unsigned RHSVal = RHS->getZExtValue(); 2304 2305 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 2306 if (RHSVal == 32) { 2307 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2308 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2309 DAG.getConstant(31, SL, MVT::i32)); 2310 2311 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 2312 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2313 } 2314 2315 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 2316 if (RHSVal == 63) { 2317 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 2318 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 2319 DAG.getConstant(31, SL, MVT::i32)); 2320 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 2321 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 2322 } 2323 2324 return SDValue(); 2325 } 2326 2327 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 2328 DAGCombinerInfo &DCI) const { 2329 if (N->getValueType(0) != MVT::i64) 2330 return SDValue(); 2331 2332 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2333 if (!RHS) 2334 return SDValue(); 2335 2336 unsigned ShiftAmt = RHS->getZExtValue(); 2337 if (ShiftAmt < 32) 2338 return SDValue(); 2339 2340 // srl i64:x, C for C >= 32 2341 // => 2342 // build_pair (srl hi_32(x), C - 32), 0 2343 2344 SelectionDAG &DAG = DCI.DAG; 2345 SDLoc SL(N); 2346 2347 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2348 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2349 2350 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 2351 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 2352 VecOp, One); 2353 2354 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 2355 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 2356 2357 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 2358 2359 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 2360 } 2361 2362 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2363 DAGCombinerInfo &DCI) const { 2364 EVT VT = N->getValueType(0); 2365 2366 if (VT.isVector() || VT.getSizeInBits() > 32) 2367 return SDValue(); 2368 2369 SelectionDAG &DAG = DCI.DAG; 2370 SDLoc DL(N); 2371 2372 SDValue N0 = N->getOperand(0); 2373 SDValue N1 = N->getOperand(1); 2374 SDValue Mul; 2375 2376 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2377 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2378 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2379 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2380 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2381 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2382 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2383 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2384 } else { 2385 return SDValue(); 2386 } 2387 2388 // We need to use sext even for MUL_U24, because MUL_U24 is used 2389 // for signed multiply of 8 and 16-bit types. 2390 return DAG.getSExtOrTrunc(Mul, DL, VT); 2391 } 2392 2393 static bool isNegativeOne(SDValue Val) { 2394 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 2395 return C->isAllOnesValue(); 2396 return false; 2397 } 2398 2399 static bool isCtlzOpc(unsigned Opc) { 2400 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2401 } 2402 2403 // Get FFBH node if the incoming op may have been type legalized from a smaller 2404 // type VT. 2405 // Need to match pre-legalized type because the generic legalization inserts the 2406 // add/sub between the select and compare. 2407 static SDValue getFFBH_U32(const TargetLowering &TLI, SelectionDAG &DAG, 2408 const SDLoc &SL, SDValue Op) { 2409 EVT VT = Op.getValueType(); 2410 EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2411 if (LegalVT != MVT::i32) 2412 return SDValue(); 2413 2414 if (VT != MVT::i32) 2415 Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op); 2416 2417 SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op); 2418 if (VT != MVT::i32) 2419 FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH); 2420 2421 return FFBH; 2422 } 2423 2424 // The native instructions return -1 on 0 input. Optimize out a select that 2425 // produces -1 on 0. 2426 // 2427 // TODO: If zero is not undef, we could also do this if the output is compared 2428 // against the bitwidth. 2429 // 2430 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 2431 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, 2432 SDValue LHS, SDValue RHS, 2433 DAGCombinerInfo &DCI) const { 2434 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2435 if (!CmpRhs || !CmpRhs->isNullValue()) 2436 return SDValue(); 2437 2438 SelectionDAG &DAG = DCI.DAG; 2439 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2440 SDValue CmpLHS = Cond.getOperand(0); 2441 2442 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 2443 if (CCOpcode == ISD::SETEQ && 2444 isCtlzOpc(RHS.getOpcode()) && 2445 RHS.getOperand(0) == CmpLHS && 2446 isNegativeOne(LHS)) { 2447 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2448 } 2449 2450 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 2451 if (CCOpcode == ISD::SETNE && 2452 isCtlzOpc(LHS.getOpcode()) && 2453 LHS.getOperand(0) == CmpLHS && 2454 isNegativeOne(RHS)) { 2455 return getFFBH_U32(*this, DAG, SL, CmpLHS); 2456 } 2457 2458 return SDValue(); 2459 } 2460 2461 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 2462 DAGCombinerInfo &DCI) const { 2463 SDValue Cond = N->getOperand(0); 2464 if (Cond.getOpcode() != ISD::SETCC) 2465 return SDValue(); 2466 2467 EVT VT = N->getValueType(0); 2468 SDValue LHS = Cond.getOperand(0); 2469 SDValue RHS = Cond.getOperand(1); 2470 SDValue CC = Cond.getOperand(2); 2471 2472 SDValue True = N->getOperand(1); 2473 SDValue False = N->getOperand(2); 2474 2475 if (VT == MVT::f32 && Cond.hasOneUse()) { 2476 SDValue MinMax 2477 = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 2478 // Revisit this node so we can catch min3/max3/med3 patterns. 2479 //DCI.AddToWorklist(MinMax.getNode()); 2480 return MinMax; 2481 } 2482 2483 // There's no reason to not do this if the condition has other uses. 2484 return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); 2485 } 2486 2487 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2488 DAGCombinerInfo &DCI) const { 2489 SelectionDAG &DAG = DCI.DAG; 2490 SDLoc DL(N); 2491 2492 switch(N->getOpcode()) { 2493 default: 2494 break; 2495 case ISD::BITCAST: { 2496 EVT DestVT = N->getValueType(0); 2497 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 2498 break; 2499 2500 // Fold bitcasts of constants. 2501 // 2502 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 2503 // TODO: Generalize and move to DAGCombiner 2504 SDValue Src = N->getOperand(0); 2505 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 2506 assert(Src.getValueType() == MVT::i64); 2507 SDLoc SL(N); 2508 uint64_t CVal = C->getZExtValue(); 2509 return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, 2510 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2511 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2512 } 2513 2514 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 2515 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 2516 SDLoc SL(N); 2517 uint64_t CVal = Val.getZExtValue(); 2518 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 2519 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 2520 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 2521 2522 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 2523 } 2524 2525 break; 2526 } 2527 case ISD::SHL: { 2528 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2529 break; 2530 2531 return performShlCombine(N, DCI); 2532 } 2533 case ISD::SRL: { 2534 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2535 break; 2536 2537 return performSrlCombine(N, DCI); 2538 } 2539 case ISD::SRA: { 2540 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2541 break; 2542 2543 return performSraCombine(N, DCI); 2544 } 2545 case ISD::AND: { 2546 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2547 break; 2548 2549 return performAndCombine(N, DCI); 2550 } 2551 case ISD::MUL: 2552 return performMulCombine(N, DCI); 2553 case AMDGPUISD::MUL_I24: 2554 case AMDGPUISD::MUL_U24: { 2555 SDValue N0 = N->getOperand(0); 2556 SDValue N1 = N->getOperand(1); 2557 simplifyI24(N0, DCI); 2558 simplifyI24(N1, DCI); 2559 return SDValue(); 2560 } 2561 case ISD::SELECT: 2562 return performSelectCombine(N, DCI); 2563 case AMDGPUISD::BFE_I32: 2564 case AMDGPUISD::BFE_U32: { 2565 assert(!N->getValueType(0).isVector() && 2566 "Vector handling of BFE not implemented"); 2567 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2568 if (!Width) 2569 break; 2570 2571 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2572 if (WidthVal == 0) 2573 return DAG.getConstant(0, DL, MVT::i32); 2574 2575 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2576 if (!Offset) 2577 break; 2578 2579 SDValue BitsFrom = N->getOperand(0); 2580 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2581 2582 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2583 2584 if (OffsetVal == 0) { 2585 // This is already sign / zero extended, so try to fold away extra BFEs. 2586 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2587 2588 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2589 if (OpSignBits >= SignBits) 2590 return BitsFrom; 2591 2592 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2593 if (Signed) { 2594 // This is a sign_extend_inreg. Replace it to take advantage of existing 2595 // DAG Combines. If not eliminated, we will match back to BFE during 2596 // selection. 2597 2598 // TODO: The sext_inreg of extended types ends, although we can could 2599 // handle them in a single BFE. 2600 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2601 DAG.getValueType(SmallVT)); 2602 } 2603 2604 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2605 } 2606 2607 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2608 if (Signed) { 2609 return constantFoldBFE<int32_t>(DAG, 2610 CVal->getSExtValue(), 2611 OffsetVal, 2612 WidthVal, 2613 DL); 2614 } 2615 2616 return constantFoldBFE<uint32_t>(DAG, 2617 CVal->getZExtValue(), 2618 OffsetVal, 2619 WidthVal, 2620 DL); 2621 } 2622 2623 if ((OffsetVal + WidthVal) >= 32) { 2624 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2625 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2626 BitsFrom, ShiftVal); 2627 } 2628 2629 if (BitsFrom.hasOneUse()) { 2630 APInt Demanded = APInt::getBitsSet(32, 2631 OffsetVal, 2632 OffsetVal + WidthVal); 2633 2634 APInt KnownZero, KnownOne; 2635 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2636 !DCI.isBeforeLegalizeOps()); 2637 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2638 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2639 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2640 KnownZero, KnownOne, TLO)) { 2641 DCI.CommitTargetLoweringOpt(TLO); 2642 } 2643 } 2644 2645 break; 2646 } 2647 2648 case ISD::STORE: 2649 return performStoreCombine(N, DCI); 2650 } 2651 return SDValue(); 2652 } 2653 2654 //===----------------------------------------------------------------------===// 2655 // Helper functions 2656 //===----------------------------------------------------------------------===// 2657 2658 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2659 SelectionDAG &DAG, 2660 const Function *F, 2661 const SmallVectorImpl<ISD::InputArg> &Ins, 2662 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2663 2664 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2665 if (Ins[i].ArgVT == Ins[i].VT) { 2666 OrigIns.push_back(Ins[i]); 2667 continue; 2668 } 2669 2670 EVT VT; 2671 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2672 // Vector has been split into scalars. 2673 VT = Ins[i].ArgVT.getVectorElementType(); 2674 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2675 Ins[i].ArgVT.getVectorElementType() != 2676 Ins[i].VT.getVectorElementType()) { 2677 // Vector elements have been promoted 2678 VT = Ins[i].ArgVT; 2679 } else { 2680 // Vector has been spilt into smaller vectors. 2681 VT = Ins[i].VT; 2682 } 2683 2684 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2685 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2686 OrigIns.push_back(Arg); 2687 } 2688 } 2689 2690 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2691 const TargetRegisterClass *RC, 2692 unsigned Reg, EVT VT) const { 2693 MachineFunction &MF = DAG.getMachineFunction(); 2694 MachineRegisterInfo &MRI = MF.getRegInfo(); 2695 unsigned VirtualRegister; 2696 if (!MRI.isLiveIn(Reg)) { 2697 VirtualRegister = MRI.createVirtualRegister(RC); 2698 MRI.addLiveIn(Reg, VirtualRegister); 2699 } else { 2700 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2701 } 2702 return DAG.getRegister(VirtualRegister, VT); 2703 } 2704 2705 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2706 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2707 uint64_t ArgOffset = MFI->ABIArgOffset; 2708 switch (Param) { 2709 case GRID_DIM: 2710 return ArgOffset; 2711 case GRID_OFFSET: 2712 return ArgOffset + 4; 2713 } 2714 llvm_unreachable("unexpected implicit parameter type"); 2715 } 2716 2717 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2718 2719 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2720 switch ((AMDGPUISD::NodeType)Opcode) { 2721 case AMDGPUISD::FIRST_NUMBER: break; 2722 // AMDIL DAG nodes 2723 NODE_NAME_CASE(CALL); 2724 NODE_NAME_CASE(UMUL); 2725 NODE_NAME_CASE(RET_FLAG); 2726 NODE_NAME_CASE(BRANCH_COND); 2727 2728 // AMDGPU DAG nodes 2729 NODE_NAME_CASE(DWORDADDR) 2730 NODE_NAME_CASE(FRACT) 2731 NODE_NAME_CASE(CLAMP) 2732 NODE_NAME_CASE(COS_HW) 2733 NODE_NAME_CASE(SIN_HW) 2734 NODE_NAME_CASE(FMAX_LEGACY) 2735 NODE_NAME_CASE(FMIN_LEGACY) 2736 NODE_NAME_CASE(FMAX3) 2737 NODE_NAME_CASE(SMAX3) 2738 NODE_NAME_CASE(UMAX3) 2739 NODE_NAME_CASE(FMIN3) 2740 NODE_NAME_CASE(SMIN3) 2741 NODE_NAME_CASE(UMIN3) 2742 NODE_NAME_CASE(FMED3) 2743 NODE_NAME_CASE(SMED3) 2744 NODE_NAME_CASE(UMED3) 2745 NODE_NAME_CASE(URECIP) 2746 NODE_NAME_CASE(DIV_SCALE) 2747 NODE_NAME_CASE(DIV_FMAS) 2748 NODE_NAME_CASE(DIV_FIXUP) 2749 NODE_NAME_CASE(TRIG_PREOP) 2750 NODE_NAME_CASE(RCP) 2751 NODE_NAME_CASE(RSQ) 2752 NODE_NAME_CASE(RSQ_LEGACY) 2753 NODE_NAME_CASE(RSQ_CLAMP) 2754 NODE_NAME_CASE(LDEXP) 2755 NODE_NAME_CASE(FP_CLASS) 2756 NODE_NAME_CASE(DOT4) 2757 NODE_NAME_CASE(CARRY) 2758 NODE_NAME_CASE(BORROW) 2759 NODE_NAME_CASE(BFE_U32) 2760 NODE_NAME_CASE(BFE_I32) 2761 NODE_NAME_CASE(BFI) 2762 NODE_NAME_CASE(BFM) 2763 NODE_NAME_CASE(FFBH_U32) 2764 NODE_NAME_CASE(MUL_U24) 2765 NODE_NAME_CASE(MUL_I24) 2766 NODE_NAME_CASE(MAD_U24) 2767 NODE_NAME_CASE(MAD_I24) 2768 NODE_NAME_CASE(TEXTURE_FETCH) 2769 NODE_NAME_CASE(EXPORT) 2770 NODE_NAME_CASE(CONST_ADDRESS) 2771 NODE_NAME_CASE(REGISTER_LOAD) 2772 NODE_NAME_CASE(REGISTER_STORE) 2773 NODE_NAME_CASE(LOAD_INPUT) 2774 NODE_NAME_CASE(SAMPLE) 2775 NODE_NAME_CASE(SAMPLEB) 2776 NODE_NAME_CASE(SAMPLED) 2777 NODE_NAME_CASE(SAMPLEL) 2778 NODE_NAME_CASE(CVT_F32_UBYTE0) 2779 NODE_NAME_CASE(CVT_F32_UBYTE1) 2780 NODE_NAME_CASE(CVT_F32_UBYTE2) 2781 NODE_NAME_CASE(CVT_F32_UBYTE3) 2782 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2783 NODE_NAME_CASE(CONST_DATA_PTR) 2784 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 2785 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2786 NODE_NAME_CASE(SENDMSG) 2787 NODE_NAME_CASE(INTERP_MOV) 2788 NODE_NAME_CASE(INTERP_P1) 2789 NODE_NAME_CASE(INTERP_P2) 2790 NODE_NAME_CASE(STORE_MSKOR) 2791 NODE_NAME_CASE(LOAD_CONSTANT) 2792 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2793 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 2794 NODE_NAME_CASE(ATOMIC_INC) 2795 NODE_NAME_CASE(ATOMIC_DEC) 2796 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2797 } 2798 return nullptr; 2799 } 2800 2801 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2802 DAGCombinerInfo &DCI, 2803 unsigned &RefinementSteps, 2804 bool &UseOneConstNR) const { 2805 SelectionDAG &DAG = DCI.DAG; 2806 EVT VT = Operand.getValueType(); 2807 2808 if (VT == MVT::f32) { 2809 RefinementSteps = 0; 2810 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2811 } 2812 2813 // TODO: There is also f64 rsq instruction, but the documentation is less 2814 // clear on its precision. 2815 2816 return SDValue(); 2817 } 2818 2819 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2820 DAGCombinerInfo &DCI, 2821 unsigned &RefinementSteps) const { 2822 SelectionDAG &DAG = DCI.DAG; 2823 EVT VT = Operand.getValueType(); 2824 2825 if (VT == MVT::f32) { 2826 // Reciprocal, < 1 ulp error. 2827 // 2828 // This reciprocal approximation converges to < 0.5 ulp error with one 2829 // newton rhapson performed with two fused multiple adds (FMAs). 2830 2831 RefinementSteps = 0; 2832 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2833 } 2834 2835 // TODO: There is also f64 rcp instruction, but the documentation is less 2836 // clear on its precision. 2837 2838 return SDValue(); 2839 } 2840 2841 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2842 const SDValue Op, 2843 APInt &KnownZero, 2844 APInt &KnownOne, 2845 const SelectionDAG &DAG, 2846 unsigned Depth) const { 2847 2848 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2849 2850 APInt KnownZero2; 2851 APInt KnownOne2; 2852 unsigned Opc = Op.getOpcode(); 2853 2854 switch (Opc) { 2855 default: 2856 break; 2857 case AMDGPUISD::CARRY: 2858 case AMDGPUISD::BORROW: { 2859 KnownZero = APInt::getHighBitsSet(32, 31); 2860 break; 2861 } 2862 2863 case AMDGPUISD::BFE_I32: 2864 case AMDGPUISD::BFE_U32: { 2865 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2866 if (!CWidth) 2867 return; 2868 2869 unsigned BitWidth = 32; 2870 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2871 2872 if (Opc == AMDGPUISD::BFE_U32) 2873 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2874 2875 break; 2876 } 2877 } 2878 } 2879 2880 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2881 SDValue Op, 2882 const SelectionDAG &DAG, 2883 unsigned Depth) const { 2884 switch (Op.getOpcode()) { 2885 case AMDGPUISD::BFE_I32: { 2886 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2887 if (!Width) 2888 return 1; 2889 2890 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2891 if (!isNullConstant(Op.getOperand(1))) 2892 return SignBits; 2893 2894 // TODO: Could probably figure something out with non-0 offsets. 2895 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2896 return std::max(SignBits, Op0SignBits); 2897 } 2898 2899 case AMDGPUISD::BFE_U32: { 2900 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2901 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2902 } 2903 2904 case AMDGPUISD::CARRY: 2905 case AMDGPUISD::BORROW: 2906 return 31; 2907 2908 default: 2909 return 1; 2910 } 2911 } 2912