1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 22 #include "llvm/Analysis/Loads.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstVisitor.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Casting.h" 45 #include <cassert> 46 #include <iterator> 47 48 #define DEBUG_TYPE "amdgpu-codegenprepare" 49 50 using namespace llvm; 51 52 namespace { 53 54 static cl::opt<bool> WidenLoads( 55 "amdgpu-codegenprepare-widen-constant-loads", 56 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 57 cl::ReallyHidden, 58 cl::init(true)); 59 60 static cl::opt<bool> UseMul24Intrin( 61 "amdgpu-codegenprepare-mul24", 62 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 class AMDGPUCodeGenPrepare : public FunctionPass, 67 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 68 const GCNSubtarget *ST = nullptr; 69 AssumptionCache *AC = nullptr; 70 LegacyDivergenceAnalysis *DA = nullptr; 71 Module *Mod = nullptr; 72 const DataLayout *DL = nullptr; 73 bool HasUnsafeFPMath = false; 74 bool HasFP32Denormals = false; 75 76 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 77 /// binary operation \p V. 78 /// 79 /// \returns Binary operation \p V. 80 /// \returns \p T's base element bit width. 81 unsigned getBaseElementBitWidth(const Type *T) const; 82 83 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 84 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 85 /// is returned. 86 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 87 88 /// \returns True if binary operation \p I is a signed binary operation, false 89 /// otherwise. 90 bool isSigned(const BinaryOperator &I) const; 91 92 /// \returns True if the condition of 'select' operation \p I comes from a 93 /// signed 'icmp' operation, false otherwise. 94 bool isSigned(const SelectInst &I) const; 95 96 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 97 /// false otherwise. 98 bool needsPromotionToI32(const Type *T) const; 99 100 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 101 /// operation. 102 /// 103 /// \details \p I's base element bit width must be greater than 1 and less 104 /// than or equal 16. Promotion is done by sign or zero extending operands to 105 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 106 /// truncating the result of 32 bit binary operation back to \p I's original 107 /// type. Division operation is not promoted. 108 /// 109 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 110 /// false otherwise. 111 bool promoteUniformOpToI32(BinaryOperator &I) const; 112 113 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 114 /// 115 /// \details \p I's base element bit width must be greater than 1 and less 116 /// than or equal 16. Promotion is done by sign or zero extending operands to 117 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 118 /// 119 /// \returns True. 120 bool promoteUniformOpToI32(ICmpInst &I) const; 121 122 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 123 /// operation. 124 /// 125 /// \details \p I's base element bit width must be greater than 1 and less 126 /// than or equal 16. Promotion is done by sign or zero extending operands to 127 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 128 /// result of 32 bit 'select' operation back to \p I's original type. 129 /// 130 /// \returns True. 131 bool promoteUniformOpToI32(SelectInst &I) const; 132 133 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 134 /// intrinsic. 135 /// 136 /// \details \p I's base element bit width must be greater than 1 and less 137 /// than or equal 16. Promotion is done by zero extending the operand to 32 138 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 139 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 140 /// shift amount is 32 minus \p I's base element bit width), and truncating 141 /// the result of the shift operation back to \p I's original type. 142 /// 143 /// \returns True. 144 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 145 146 147 unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const; 148 unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const; 149 bool isI24(Value *V, unsigned ScalarSize) const; 150 bool isU24(Value *V, unsigned ScalarSize) const; 151 152 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 153 /// SelectionDAG has an issue where an and asserting the bits are known 154 bool replaceMulWithMul24(BinaryOperator &I) const; 155 156 /// Perform same function as equivalently named function in DAGCombiner. Since 157 /// we expand some divisions here, we need to perform this before obscuring. 158 bool foldBinOpIntoSelect(BinaryOperator &I) const; 159 160 /// Expands 24 bit div or rem. 161 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 162 Value *Num, Value *Den, 163 bool IsDiv, bool IsSigned) const; 164 165 /// Expands 32 bit div or rem. 166 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 167 Value *Num, Value *Den) const; 168 169 /// Widen a scalar load. 170 /// 171 /// \details \p Widen scalar load for uniform, small type loads from constant 172 // memory / to a full 32-bits and then truncate the input to allow a scalar 173 // load instead of a vector load. 174 // 175 /// \returns True. 176 177 bool canWidenScalarExtLoad(LoadInst &I) const; 178 179 public: 180 static char ID; 181 182 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 183 184 bool visitFDiv(BinaryOperator &I); 185 186 bool visitInstruction(Instruction &I) { return false; } 187 bool visitBinaryOperator(BinaryOperator &I); 188 bool visitLoadInst(LoadInst &I); 189 bool visitICmpInst(ICmpInst &I); 190 bool visitSelectInst(SelectInst &I); 191 192 bool visitIntrinsicInst(IntrinsicInst &I); 193 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 194 195 bool doInitialization(Module &M) override; 196 bool runOnFunction(Function &F) override; 197 198 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 199 200 void getAnalysisUsage(AnalysisUsage &AU) const override { 201 AU.addRequired<AssumptionCacheTracker>(); 202 AU.addRequired<LegacyDivergenceAnalysis>(); 203 AU.setPreservesAll(); 204 } 205 }; 206 207 } // end anonymous namespace 208 209 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 210 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 211 212 if (T->isIntegerTy()) 213 return T->getIntegerBitWidth(); 214 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 215 } 216 217 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 218 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 219 220 if (T->isIntegerTy()) 221 return B.getInt32Ty(); 222 return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements()); 223 } 224 225 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 226 return I.getOpcode() == Instruction::AShr || 227 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 228 } 229 230 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 231 return isa<ICmpInst>(I.getOperand(0)) ? 232 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 233 } 234 235 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 236 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 237 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 238 return true; 239 240 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 241 // TODO: The set of packed operations is more limited, so may want to 242 // promote some anyway. 243 if (ST->hasVOP3PInsts()) 244 return false; 245 246 return needsPromotionToI32(VT->getElementType()); 247 } 248 249 return false; 250 } 251 252 // Return true if the op promoted to i32 should have nsw set. 253 static bool promotedOpIsNSW(const Instruction &I) { 254 switch (I.getOpcode()) { 255 case Instruction::Shl: 256 case Instruction::Add: 257 case Instruction::Sub: 258 return true; 259 case Instruction::Mul: 260 return I.hasNoUnsignedWrap(); 261 default: 262 return false; 263 } 264 } 265 266 // Return true if the op promoted to i32 should have nuw set. 267 static bool promotedOpIsNUW(const Instruction &I) { 268 switch (I.getOpcode()) { 269 case Instruction::Shl: 270 case Instruction::Add: 271 case Instruction::Mul: 272 return true; 273 case Instruction::Sub: 274 return I.hasNoUnsignedWrap(); 275 default: 276 return false; 277 } 278 } 279 280 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 281 Type *Ty = I.getType(); 282 const DataLayout &DL = Mod->getDataLayout(); 283 int TySize = DL.getTypeSizeInBits(Ty); 284 unsigned Align = I.getAlignment() ? 285 I.getAlignment() : DL.getABITypeAlignment(Ty); 286 287 return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I); 288 } 289 290 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 291 assert(needsPromotionToI32(I.getType()) && 292 "I does not need promotion to i32"); 293 294 if (I.getOpcode() == Instruction::SDiv || 295 I.getOpcode() == Instruction::UDiv || 296 I.getOpcode() == Instruction::SRem || 297 I.getOpcode() == Instruction::URem) 298 return false; 299 300 IRBuilder<> Builder(&I); 301 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 302 303 Type *I32Ty = getI32Ty(Builder, I.getType()); 304 Value *ExtOp0 = nullptr; 305 Value *ExtOp1 = nullptr; 306 Value *ExtRes = nullptr; 307 Value *TruncRes = nullptr; 308 309 if (isSigned(I)) { 310 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 311 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 312 } else { 313 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 314 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 315 } 316 317 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 318 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 319 if (promotedOpIsNSW(cast<Instruction>(I))) 320 Inst->setHasNoSignedWrap(); 321 322 if (promotedOpIsNUW(cast<Instruction>(I))) 323 Inst->setHasNoUnsignedWrap(); 324 325 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 326 Inst->setIsExact(ExactOp->isExact()); 327 } 328 329 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 330 331 I.replaceAllUsesWith(TruncRes); 332 I.eraseFromParent(); 333 334 return true; 335 } 336 337 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 338 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 339 "I does not need promotion to i32"); 340 341 IRBuilder<> Builder(&I); 342 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 343 344 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 345 Value *ExtOp0 = nullptr; 346 Value *ExtOp1 = nullptr; 347 Value *NewICmp = nullptr; 348 349 if (I.isSigned()) { 350 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 351 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 352 } else { 353 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 354 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 355 } 356 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 357 358 I.replaceAllUsesWith(NewICmp); 359 I.eraseFromParent(); 360 361 return true; 362 } 363 364 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 365 assert(needsPromotionToI32(I.getType()) && 366 "I does not need promotion to i32"); 367 368 IRBuilder<> Builder(&I); 369 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 370 371 Type *I32Ty = getI32Ty(Builder, I.getType()); 372 Value *ExtOp1 = nullptr; 373 Value *ExtOp2 = nullptr; 374 Value *ExtRes = nullptr; 375 Value *TruncRes = nullptr; 376 377 if (isSigned(I)) { 378 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 379 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 380 } else { 381 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 382 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 383 } 384 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 385 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 386 387 I.replaceAllUsesWith(TruncRes); 388 I.eraseFromParent(); 389 390 return true; 391 } 392 393 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 394 IntrinsicInst &I) const { 395 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 396 "I must be bitreverse intrinsic"); 397 assert(needsPromotionToI32(I.getType()) && 398 "I does not need promotion to i32"); 399 400 IRBuilder<> Builder(&I); 401 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 402 403 Type *I32Ty = getI32Ty(Builder, I.getType()); 404 Function *I32 = 405 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 406 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 407 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 408 Value *LShrOp = 409 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 410 Value *TruncRes = 411 Builder.CreateTrunc(LShrOp, I.getType()); 412 413 I.replaceAllUsesWith(TruncRes); 414 I.eraseFromParent(); 415 416 return true; 417 } 418 419 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op, 420 unsigned ScalarSize) const { 421 KnownBits Known = computeKnownBits(Op, *DL, 0, AC); 422 return ScalarSize - Known.countMinLeadingZeros(); 423 } 424 425 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op, 426 unsigned ScalarSize) const { 427 // In order for this to be a signed 24-bit value, bit 23, must 428 // be a sign bit. 429 return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC); 430 } 431 432 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const { 433 return ScalarSize >= 24 && // Types less than 24-bit should be treated 434 // as unsigned 24-bit values. 435 numBitsSigned(V, ScalarSize) < 24; 436 } 437 438 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const { 439 return numBitsUnsigned(V, ScalarSize) <= 24; 440 } 441 442 static void extractValues(IRBuilder<> &Builder, 443 SmallVectorImpl<Value *> &Values, Value *V) { 444 VectorType *VT = dyn_cast<VectorType>(V->getType()); 445 if (!VT) { 446 Values.push_back(V); 447 return; 448 } 449 450 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 451 Values.push_back(Builder.CreateExtractElement(V, I)); 452 } 453 454 static Value *insertValues(IRBuilder<> &Builder, 455 Type *Ty, 456 SmallVectorImpl<Value *> &Values) { 457 if (Values.size() == 1) 458 return Values[0]; 459 460 Value *NewVal = UndefValue::get(Ty); 461 for (int I = 0, E = Values.size(); I != E; ++I) 462 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 463 464 return NewVal; 465 } 466 467 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 468 if (I.getOpcode() != Instruction::Mul) 469 return false; 470 471 Type *Ty = I.getType(); 472 unsigned Size = Ty->getScalarSizeInBits(); 473 if (Size <= 16 && ST->has16BitInsts()) 474 return false; 475 476 // Prefer scalar if this could be s_mul_i32 477 if (DA->isUniform(&I)) 478 return false; 479 480 Value *LHS = I.getOperand(0); 481 Value *RHS = I.getOperand(1); 482 IRBuilder<> Builder(&I); 483 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 484 485 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 486 487 // TODO: Should this try to match mulhi24? 488 if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) { 489 IntrID = Intrinsic::amdgcn_mul_u24; 490 } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) { 491 IntrID = Intrinsic::amdgcn_mul_i24; 492 } else 493 return false; 494 495 SmallVector<Value *, 4> LHSVals; 496 SmallVector<Value *, 4> RHSVals; 497 SmallVector<Value *, 4> ResultVals; 498 extractValues(Builder, LHSVals, LHS); 499 extractValues(Builder, RHSVals, RHS); 500 501 502 IntegerType *I32Ty = Builder.getInt32Ty(); 503 FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID); 504 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 505 Value *LHS, *RHS; 506 if (IntrID == Intrinsic::amdgcn_mul_u24) { 507 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 508 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 509 } else { 510 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 511 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 512 } 513 514 Value *Result = Builder.CreateCall(Intrin, {LHS, RHS}); 515 516 if (IntrID == Intrinsic::amdgcn_mul_u24) { 517 ResultVals.push_back(Builder.CreateZExtOrTrunc(Result, 518 LHSVals[I]->getType())); 519 } else { 520 ResultVals.push_back(Builder.CreateSExtOrTrunc(Result, 521 LHSVals[I]->getType())); 522 } 523 } 524 525 Value *NewVal = insertValues(Builder, Ty, ResultVals); 526 NewVal->takeName(&I); 527 I.replaceAllUsesWith(NewVal); 528 I.eraseFromParent(); 529 530 return true; 531 } 532 533 // Find a select instruction, which may have been casted. This is mostly to deal 534 // with cases where i16 selects were promoted here to i32. 535 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 536 Cast = nullptr; 537 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 538 return Sel; 539 540 if ((Cast = dyn_cast<CastInst>(V))) { 541 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 542 return Sel; 543 } 544 545 return nullptr; 546 } 547 548 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 549 // Don't do this unless the old select is going away. We want to eliminate the 550 // binary operator, not replace a binop with a select. 551 int SelOpNo = 0; 552 553 CastInst *CastOp; 554 555 // TODO: Should probably try to handle some cases with multiple 556 // users. Duplicating the select may be profitable for division. 557 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 558 if (!Sel || !Sel->hasOneUse()) { 559 SelOpNo = 1; 560 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 561 } 562 563 if (!Sel || !Sel->hasOneUse()) 564 return false; 565 566 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 567 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 568 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 569 if (!CBO || !CT || !CF) 570 return false; 571 572 if (CastOp) { 573 if (!CastOp->hasOneUse()) 574 return false; 575 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 576 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 577 } 578 579 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 580 // need to handle divisions here. 581 Constant *FoldedT = SelOpNo ? 582 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 583 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 584 if (isa<ConstantExpr>(FoldedT)) 585 return false; 586 587 Constant *FoldedF = SelOpNo ? 588 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 589 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 590 if (isa<ConstantExpr>(FoldedF)) 591 return false; 592 593 IRBuilder<> Builder(&BO); 594 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 595 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 596 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 597 598 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 599 FoldedT, FoldedF); 600 NewSelect->takeName(&BO); 601 BO.replaceAllUsesWith(NewSelect); 602 BO.eraseFromParent(); 603 if (CastOp) 604 CastOp->eraseFromParent(); 605 Sel->eraseFromParent(); 606 return true; 607 } 608 609 static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) { 610 const ConstantFP *CNum = dyn_cast<ConstantFP>(Num); 611 if (!CNum) 612 return HasDenormals; 613 614 if (UnsafeDiv) 615 return true; 616 617 bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0); 618 619 // Reciprocal f32 is handled separately without denormals. 620 return HasDenormals ^ IsOne; 621 } 622 623 // Insert an intrinsic for fast fdiv for safe math situations where we can 624 // reduce precision. Leave fdiv for situations where the generic node is 625 // expected to be optimized. 626 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 627 Type *Ty = FDiv.getType(); 628 629 if (!Ty->getScalarType()->isFloatTy()) 630 return false; 631 632 MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath); 633 if (!FPMath) 634 return false; 635 636 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 637 float ULP = FPOp->getFPAccuracy(); 638 if (ULP < 2.5f) 639 return false; 640 641 FastMathFlags FMF = FPOp->getFastMathFlags(); 642 bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() || 643 FMF.allowReciprocal(); 644 645 // With UnsafeDiv node will be optimized to just rcp and mul. 646 if (UnsafeDiv) 647 return false; 648 649 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath); 650 Builder.setFastMathFlags(FMF); 651 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 652 653 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 654 655 Value *Num = FDiv.getOperand(0); 656 Value *Den = FDiv.getOperand(1); 657 658 Value *NewFDiv = nullptr; 659 660 if (VectorType *VT = dyn_cast<VectorType>(Ty)) { 661 NewFDiv = UndefValue::get(VT); 662 663 // FIXME: Doesn't do the right thing for cases where the vector is partially 664 // constant. This works when the scalarizer pass is run first. 665 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 666 Value *NumEltI = Builder.CreateExtractElement(Num, I); 667 Value *DenEltI = Builder.CreateExtractElement(Den, I); 668 Value *NewElt; 669 670 if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasFP32Denormals)) { 671 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 672 } else { 673 NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI }); 674 } 675 676 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 677 } 678 } else { 679 if (!shouldKeepFDivF32(Num, UnsafeDiv, HasFP32Denormals)) 680 NewFDiv = Builder.CreateCall(Decl, { Num, Den }); 681 } 682 683 if (NewFDiv) { 684 FDiv.replaceAllUsesWith(NewFDiv); 685 NewFDiv->takeName(&FDiv); 686 FDiv.eraseFromParent(); 687 } 688 689 return !!NewFDiv; 690 } 691 692 static bool hasUnsafeFPMath(const Function &F) { 693 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 694 return Attr.getValueAsString() == "true"; 695 } 696 697 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 698 Value *LHS, Value *RHS) { 699 Type *I32Ty = Builder.getInt32Ty(); 700 Type *I64Ty = Builder.getInt64Ty(); 701 702 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 703 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 704 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 705 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 706 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 707 Hi = Builder.CreateTrunc(Hi, I32Ty); 708 return std::make_pair(Lo, Hi); 709 } 710 711 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 712 return getMul64(Builder, LHS, RHS).second; 713 } 714 715 // The fractional part of a float is enough to accurately represent up to 716 // a 24-bit signed integer. 717 Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 718 BinaryOperator &I, 719 Value *Num, Value *Den, 720 bool IsDiv, bool IsSigned) const { 721 assert(Num->getType()->isIntegerTy(32)); 722 723 const DataLayout &DL = Mod->getDataLayout(); 724 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 725 if (LHSSignBits < 9) 726 return nullptr; 727 728 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 729 if (RHSSignBits < 9) 730 return nullptr; 731 732 733 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 734 unsigned DivBits = 32 - SignBits; 735 if (IsSigned) 736 ++DivBits; 737 738 Type *I32Ty = Builder.getInt32Ty(); 739 Type *F32Ty = Builder.getFloatTy(); 740 ConstantInt *One = Builder.getInt32(1); 741 Value *JQ = One; 742 743 if (IsSigned) { 744 // char|short jq = ia ^ ib; 745 JQ = Builder.CreateXor(Num, Den); 746 747 // jq = jq >> (bitsize - 2) 748 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 749 750 // jq = jq | 0x1 751 JQ = Builder.CreateOr(JQ, One); 752 } 753 754 // int ia = (int)LHS; 755 Value *IA = Num; 756 757 // int ib, (int)RHS; 758 Value *IB = Den; 759 760 // float fa = (float)ia; 761 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 762 : Builder.CreateUIToFP(IA, F32Ty); 763 764 // float fb = (float)ib; 765 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 766 : Builder.CreateUIToFP(IB,F32Ty); 767 768 Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB); 769 Value *FQM = Builder.CreateFMul(FA, RCP); 770 771 // fq = trunc(fqm); 772 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 773 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 774 775 // float fqneg = -fq; 776 Value *FQNeg = Builder.CreateFNeg(FQ); 777 778 // float fr = mad(fqneg, fb, fa); 779 Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz, 780 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 781 782 // int iq = (int)fq; 783 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 784 : Builder.CreateFPToUI(FQ, I32Ty); 785 786 // fr = fabs(fr); 787 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 788 789 // fb = fabs(fb); 790 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 791 792 // int cv = fr >= fb; 793 Value *CV = Builder.CreateFCmpOGE(FR, FB); 794 795 // jq = (cv ? jq : 0); 796 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 797 798 // dst = iq + jq; 799 Value *Div = Builder.CreateAdd(IQ, JQ); 800 801 Value *Res = Div; 802 if (!IsDiv) { 803 // Rem needs compensation, it's easier to recompute it 804 Value *Rem = Builder.CreateMul(Div, Den); 805 Res = Builder.CreateSub(Num, Rem); 806 } 807 808 // Extend in register from the number of bits this divide really is. 809 if (IsSigned) { 810 Res = Builder.CreateShl(Res, 32 - DivBits); 811 Res = Builder.CreateAShr(Res, 32 - DivBits); 812 } else { 813 ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 814 Res = Builder.CreateAnd(Res, TruncMask); 815 } 816 817 return Res; 818 } 819 820 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 821 BinaryOperator &I, 822 Value *Num, Value *Den) const { 823 Instruction::BinaryOps Opc = I.getOpcode(); 824 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 825 Opc == Instruction::SRem || Opc == Instruction::SDiv); 826 827 FastMathFlags FMF; 828 FMF.setFast(); 829 Builder.setFastMathFlags(FMF); 830 831 if (isa<Constant>(Den)) 832 return nullptr; // Keep it for optimization 833 834 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 835 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 836 837 Type *Ty = Num->getType(); 838 Type *I32Ty = Builder.getInt32Ty(); 839 Type *F32Ty = Builder.getFloatTy(); 840 841 if (Ty->getScalarSizeInBits() < 32) { 842 if (IsSigned) { 843 Num = Builder.CreateSExt(Num, I32Ty); 844 Den = Builder.CreateSExt(Den, I32Ty); 845 } else { 846 Num = Builder.CreateZExt(Num, I32Ty); 847 Den = Builder.CreateZExt(Den, I32Ty); 848 } 849 } 850 851 if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) { 852 Res = Builder.CreateTrunc(Res, Ty); 853 return Res; 854 } 855 856 ConstantInt *Zero = Builder.getInt32(0); 857 ConstantInt *One = Builder.getInt32(1); 858 ConstantInt *MinusOne = Builder.getInt32(~0); 859 860 Value *Sign = nullptr; 861 if (IsSigned) { 862 ConstantInt *K31 = Builder.getInt32(31); 863 Value *LHSign = Builder.CreateAShr(Num, K31); 864 Value *RHSign = Builder.CreateAShr(Den, K31); 865 // Remainder sign is the same as LHS 866 Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign; 867 868 Num = Builder.CreateAdd(Num, LHSign); 869 Den = Builder.CreateAdd(Den, RHSign); 870 871 Num = Builder.CreateXor(Num, LHSign); 872 Den = Builder.CreateXor(Den, RHSign); 873 } 874 875 // RCP = URECIP(Den) = 2^32 / Den + e 876 // e is rounding error. 877 Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty); 878 Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32); 879 Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000)); 880 Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1); 881 Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty); 882 883 // RCP_LO, RCP_HI = mul(RCP, Den) */ 884 Value *RCP_LO, *RCP_HI; 885 std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den); 886 887 // NEG_RCP_LO = -RCP_LO 888 Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO); 889 890 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 891 Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero); 892 Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO); 893 894 // Calculate the rounding error from the URECIP instruction 895 // E = mulhu(ABS_RCP_LO, RCP) 896 Value *E = getMulHu(Builder, ABS_RCP_LO, RCP); 897 898 // RCP_A_E = RCP + E 899 Value *RCP_A_E = Builder.CreateAdd(RCP, E); 900 901 // RCP_S_E = RCP - E 902 Value *RCP_S_E = Builder.CreateSub(RCP, E); 903 904 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 905 Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E); 906 907 // Quotient = mulhu(Tmp0, Num) 908 Value *Quotient = getMulHu(Builder, Tmp0, Num); 909 910 // Num_S_Remainder = Quotient * Den 911 Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den); 912 913 // Remainder = Num - Num_S_Remainder 914 Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder); 915 916 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 917 Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den); 918 Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero); 919 920 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 921 Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder); 922 Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, 923 MinusOne, Zero); 924 925 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 926 Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero); 927 Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero); 928 929 Value *Res; 930 if (IsDiv) { 931 // Quotient_A_One = Quotient + 1 932 Value *Quotient_A_One = Builder.CreateAdd(Quotient, One); 933 934 // Quotient_S_One = Quotient - 1 935 Value *Quotient_S_One = Builder.CreateSub(Quotient, One); 936 937 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 938 Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One); 939 940 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 941 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One); 942 } else { 943 // Remainder_S_Den = Remainder - Den 944 Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den); 945 946 // Remainder_A_Den = Remainder + Den 947 Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den); 948 949 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 950 Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den); 951 952 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 953 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den); 954 } 955 956 if (IsSigned) { 957 Res = Builder.CreateXor(Res, Sign); 958 Res = Builder.CreateSub(Res, Sign); 959 } 960 961 Res = Builder.CreateTrunc(Res, Ty); 962 963 return Res; 964 } 965 966 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 967 if (foldBinOpIntoSelect(I)) 968 return true; 969 970 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 971 DA->isUniform(&I) && promoteUniformOpToI32(I)) 972 return true; 973 974 if (UseMul24Intrin && replaceMulWithMul24(I)) 975 return true; 976 977 bool Changed = false; 978 Instruction::BinaryOps Opc = I.getOpcode(); 979 Type *Ty = I.getType(); 980 Value *NewDiv = nullptr; 981 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 982 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 983 Ty->getScalarSizeInBits() <= 32) { 984 Value *Num = I.getOperand(0); 985 Value *Den = I.getOperand(1); 986 IRBuilder<> Builder(&I); 987 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 988 989 if (VectorType *VT = dyn_cast<VectorType>(Ty)) { 990 NewDiv = UndefValue::get(VT); 991 992 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 993 Value *NumEltN = Builder.CreateExtractElement(Num, N); 994 Value *DenEltN = Builder.CreateExtractElement(Den, N); 995 Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 996 if (!NewElt) 997 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 998 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 999 } 1000 } else { 1001 NewDiv = expandDivRem32(Builder, I, Num, Den); 1002 } 1003 1004 if (NewDiv) { 1005 I.replaceAllUsesWith(NewDiv); 1006 I.eraseFromParent(); 1007 Changed = true; 1008 } 1009 } 1010 1011 return Changed; 1012 } 1013 1014 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 1015 if (!WidenLoads) 1016 return false; 1017 1018 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1019 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1020 canWidenScalarExtLoad(I)) { 1021 IRBuilder<> Builder(&I); 1022 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1023 1024 Type *I32Ty = Builder.getInt32Ty(); 1025 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 1026 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 1027 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 1028 WidenLoad->copyMetadata(I); 1029 1030 // If we have range metadata, we need to convert the type, and not make 1031 // assumptions about the high bits. 1032 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1033 ConstantInt *Lower = 1034 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1035 1036 if (Lower->getValue().isNullValue()) { 1037 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1038 } else { 1039 Metadata *LowAndHigh[] = { 1040 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1041 // Don't make assumptions about the high bits. 1042 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1043 }; 1044 1045 WidenLoad->setMetadata(LLVMContext::MD_range, 1046 MDNode::get(Mod->getContext(), LowAndHigh)); 1047 } 1048 } 1049 1050 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1051 Type *IntNTy = Builder.getIntNTy(TySize); 1052 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1053 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1054 I.replaceAllUsesWith(ValOrig); 1055 I.eraseFromParent(); 1056 return true; 1057 } 1058 1059 return false; 1060 } 1061 1062 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1063 bool Changed = false; 1064 1065 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1066 DA->isUniform(&I)) 1067 Changed |= promoteUniformOpToI32(I); 1068 1069 return Changed; 1070 } 1071 1072 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1073 bool Changed = false; 1074 1075 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1076 DA->isUniform(&I)) 1077 Changed |= promoteUniformOpToI32(I); 1078 1079 return Changed; 1080 } 1081 1082 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1083 switch (I.getIntrinsicID()) { 1084 case Intrinsic::bitreverse: 1085 return visitBitreverseIntrinsicInst(I); 1086 default: 1087 return false; 1088 } 1089 } 1090 1091 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1092 bool Changed = false; 1093 1094 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1095 DA->isUniform(&I)) 1096 Changed |= promoteUniformBitreverseToI32(I); 1097 1098 return Changed; 1099 } 1100 1101 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1102 Mod = &M; 1103 DL = &Mod->getDataLayout(); 1104 return false; 1105 } 1106 1107 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1108 if (skipFunction(F)) 1109 return false; 1110 1111 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1112 if (!TPC) 1113 return false; 1114 1115 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1116 ST = &TM.getSubtarget<GCNSubtarget>(F); 1117 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1118 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1119 HasUnsafeFPMath = hasUnsafeFPMath(F); 1120 HasFP32Denormals = ST->hasFP32Denormals(F); 1121 1122 bool MadeChange = false; 1123 1124 for (BasicBlock &BB : F) { 1125 BasicBlock::iterator Next; 1126 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) { 1127 Next = std::next(I); 1128 MadeChange |= visit(*I); 1129 } 1130 } 1131 1132 return MadeChange; 1133 } 1134 1135 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1136 "AMDGPU IR optimizations", false, false) 1137 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1138 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 1139 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1140 false, false) 1141 1142 char AMDGPUCodeGenPrepare::ID = 0; 1143 1144 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1145 return new AMDGPUCodeGenPrepare(); 1146 } 1147