1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/TargetPassConfig.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/InstVisitor.h" 25 #include "llvm/IR/IntrinsicsAMDGPU.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/KnownBits.h" 29 #include "llvm/Transforms/Utils/IntegerDivision.h" 30 31 #define DEBUG_TYPE "amdgpu-codegenprepare" 32 33 using namespace llvm; 34 35 namespace { 36 37 static cl::opt<bool> WidenLoads( 38 "amdgpu-codegenprepare-widen-constant-loads", 39 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 40 cl::ReallyHidden, 41 cl::init(false)); 42 43 static cl::opt<bool> Widen16BitOps( 44 "amdgpu-codegenprepare-widen-16-bit-ops", 45 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 46 cl::ReallyHidden, 47 cl::init(true)); 48 49 static cl::opt<bool> UseMul24Intrin( 50 "amdgpu-codegenprepare-mul24", 51 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 52 cl::ReallyHidden, 53 cl::init(true)); 54 55 // Legalize 64-bit division by using the generic IR expansion. 56 static cl::opt<bool> ExpandDiv64InIR( 57 "amdgpu-codegenprepare-expand-div64", 58 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 59 cl::ReallyHidden, 60 cl::init(false)); 61 62 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 63 // and is used for testing the legalizer. 64 static cl::opt<bool> DisableIDivExpand( 65 "amdgpu-codegenprepare-disable-idiv-expansion", 66 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 67 cl::ReallyHidden, 68 cl::init(false)); 69 70 class AMDGPUCodeGenPrepare : public FunctionPass, 71 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 72 const GCNSubtarget *ST = nullptr; 73 AssumptionCache *AC = nullptr; 74 DominatorTree *DT = nullptr; 75 LegacyDivergenceAnalysis *DA = nullptr; 76 Module *Mod = nullptr; 77 const DataLayout *DL = nullptr; 78 bool HasUnsafeFPMath = false; 79 bool HasFP32Denormals = false; 80 81 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 82 /// binary operation \p V. 83 /// 84 /// \returns Binary operation \p V. 85 /// \returns \p T's base element bit width. 86 unsigned getBaseElementBitWidth(const Type *T) const; 87 88 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 89 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 90 /// is returned. 91 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 92 93 /// \returns True if binary operation \p I is a signed binary operation, false 94 /// otherwise. 95 bool isSigned(const BinaryOperator &I) const; 96 97 /// \returns True if the condition of 'select' operation \p I comes from a 98 /// signed 'icmp' operation, false otherwise. 99 bool isSigned(const SelectInst &I) const; 100 101 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 102 /// false otherwise. 103 bool needsPromotionToI32(const Type *T) const; 104 105 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 106 /// operation. 107 /// 108 /// \details \p I's base element bit width must be greater than 1 and less 109 /// than or equal 16. Promotion is done by sign or zero extending operands to 110 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 111 /// truncating the result of 32 bit binary operation back to \p I's original 112 /// type. Division operation is not promoted. 113 /// 114 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 115 /// false otherwise. 116 bool promoteUniformOpToI32(BinaryOperator &I) const; 117 118 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 119 /// 120 /// \details \p I's base element bit width must be greater than 1 and less 121 /// than or equal 16. Promotion is done by sign or zero extending operands to 122 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 123 /// 124 /// \returns True. 125 bool promoteUniformOpToI32(ICmpInst &I) const; 126 127 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 128 /// operation. 129 /// 130 /// \details \p I's base element bit width must be greater than 1 and less 131 /// than or equal 16. Promotion is done by sign or zero extending operands to 132 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 133 /// result of 32 bit 'select' operation back to \p I's original type. 134 /// 135 /// \returns True. 136 bool promoteUniformOpToI32(SelectInst &I) const; 137 138 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 139 /// intrinsic. 140 /// 141 /// \details \p I's base element bit width must be greater than 1 and less 142 /// than or equal 16. Promotion is done by zero extending the operand to 32 143 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 144 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 145 /// shift amount is 32 minus \p I's base element bit width), and truncating 146 /// the result of the shift operation back to \p I's original type. 147 /// 148 /// \returns True. 149 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 150 151 152 unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const; 153 unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const; 154 bool isI24(Value *V, unsigned ScalarSize) const; 155 bool isU24(Value *V, unsigned ScalarSize) const; 156 157 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 158 /// SelectionDAG has an issue where an and asserting the bits are known 159 bool replaceMulWithMul24(BinaryOperator &I) const; 160 161 /// Perform same function as equivalently named function in DAGCombiner. Since 162 /// we expand some divisions here, we need to perform this before obscuring. 163 bool foldBinOpIntoSelect(BinaryOperator &I) const; 164 165 bool divHasSpecialOptimization(BinaryOperator &I, 166 Value *Num, Value *Den) const; 167 int getDivNumBits(BinaryOperator &I, 168 Value *Num, Value *Den, 169 unsigned AtLeast, bool Signed) const; 170 171 /// Expands 24 bit div or rem. 172 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 173 Value *Num, Value *Den, 174 bool IsDiv, bool IsSigned) const; 175 176 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 177 Value *Num, Value *Den, unsigned NumBits, 178 bool IsDiv, bool IsSigned) const; 179 180 /// Expands 32 bit div or rem. 181 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 182 Value *Num, Value *Den) const; 183 184 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 185 Value *Num, Value *Den) const; 186 void expandDivRem64(BinaryOperator &I) const; 187 188 /// Widen a scalar load. 189 /// 190 /// \details \p Widen scalar load for uniform, small type loads from constant 191 // memory / to a full 32-bits and then truncate the input to allow a scalar 192 // load instead of a vector load. 193 // 194 /// \returns True. 195 196 bool canWidenScalarExtLoad(LoadInst &I) const; 197 198 public: 199 static char ID; 200 201 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 202 203 bool visitFDiv(BinaryOperator &I); 204 205 bool visitInstruction(Instruction &I) { return false; } 206 bool visitBinaryOperator(BinaryOperator &I); 207 bool visitLoadInst(LoadInst &I); 208 bool visitICmpInst(ICmpInst &I); 209 bool visitSelectInst(SelectInst &I); 210 211 bool visitIntrinsicInst(IntrinsicInst &I); 212 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 213 214 bool doInitialization(Module &M) override; 215 bool runOnFunction(Function &F) override; 216 217 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 218 219 void getAnalysisUsage(AnalysisUsage &AU) const override { 220 AU.addRequired<AssumptionCacheTracker>(); 221 AU.addRequired<LegacyDivergenceAnalysis>(); 222 223 // FIXME: Division expansion needs to preserve the dominator tree. 224 if (!ExpandDiv64InIR) 225 AU.setPreservesAll(); 226 } 227 }; 228 229 } // end anonymous namespace 230 231 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 232 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 233 234 if (T->isIntegerTy()) 235 return T->getIntegerBitWidth(); 236 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 237 } 238 239 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 240 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 241 242 if (T->isIntegerTy()) 243 return B.getInt32Ty(); 244 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 245 } 246 247 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 248 return I.getOpcode() == Instruction::AShr || 249 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 250 } 251 252 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 253 return isa<ICmpInst>(I.getOperand(0)) ? 254 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 255 } 256 257 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 258 if (!Widen16BitOps) 259 return false; 260 261 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 262 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 263 return true; 264 265 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 266 // TODO: The set of packed operations is more limited, so may want to 267 // promote some anyway. 268 if (ST->hasVOP3PInsts()) 269 return false; 270 271 return needsPromotionToI32(VT->getElementType()); 272 } 273 274 return false; 275 } 276 277 // Return true if the op promoted to i32 should have nsw set. 278 static bool promotedOpIsNSW(const Instruction &I) { 279 switch (I.getOpcode()) { 280 case Instruction::Shl: 281 case Instruction::Add: 282 case Instruction::Sub: 283 return true; 284 case Instruction::Mul: 285 return I.hasNoUnsignedWrap(); 286 default: 287 return false; 288 } 289 } 290 291 // Return true if the op promoted to i32 should have nuw set. 292 static bool promotedOpIsNUW(const Instruction &I) { 293 switch (I.getOpcode()) { 294 case Instruction::Shl: 295 case Instruction::Add: 296 case Instruction::Mul: 297 return true; 298 case Instruction::Sub: 299 return I.hasNoUnsignedWrap(); 300 default: 301 return false; 302 } 303 } 304 305 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 306 Type *Ty = I.getType(); 307 const DataLayout &DL = Mod->getDataLayout(); 308 int TySize = DL.getTypeSizeInBits(Ty); 309 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 310 311 return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I); 312 } 313 314 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 315 assert(needsPromotionToI32(I.getType()) && 316 "I does not need promotion to i32"); 317 318 if (I.getOpcode() == Instruction::SDiv || 319 I.getOpcode() == Instruction::UDiv || 320 I.getOpcode() == Instruction::SRem || 321 I.getOpcode() == Instruction::URem) 322 return false; 323 324 IRBuilder<> Builder(&I); 325 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 326 327 Type *I32Ty = getI32Ty(Builder, I.getType()); 328 Value *ExtOp0 = nullptr; 329 Value *ExtOp1 = nullptr; 330 Value *ExtRes = nullptr; 331 Value *TruncRes = nullptr; 332 333 if (isSigned(I)) { 334 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 335 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 336 } else { 337 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 338 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 339 } 340 341 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 342 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 343 if (promotedOpIsNSW(cast<Instruction>(I))) 344 Inst->setHasNoSignedWrap(); 345 346 if (promotedOpIsNUW(cast<Instruction>(I))) 347 Inst->setHasNoUnsignedWrap(); 348 349 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 350 Inst->setIsExact(ExactOp->isExact()); 351 } 352 353 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 354 355 I.replaceAllUsesWith(TruncRes); 356 I.eraseFromParent(); 357 358 return true; 359 } 360 361 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 362 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 363 "I does not need promotion to i32"); 364 365 IRBuilder<> Builder(&I); 366 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 367 368 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 369 Value *ExtOp0 = nullptr; 370 Value *ExtOp1 = nullptr; 371 Value *NewICmp = nullptr; 372 373 if (I.isSigned()) { 374 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 375 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 376 } else { 377 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 378 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 379 } 380 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 381 382 I.replaceAllUsesWith(NewICmp); 383 I.eraseFromParent(); 384 385 return true; 386 } 387 388 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 389 assert(needsPromotionToI32(I.getType()) && 390 "I does not need promotion to i32"); 391 392 IRBuilder<> Builder(&I); 393 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 394 395 Type *I32Ty = getI32Ty(Builder, I.getType()); 396 Value *ExtOp1 = nullptr; 397 Value *ExtOp2 = nullptr; 398 Value *ExtRes = nullptr; 399 Value *TruncRes = nullptr; 400 401 if (isSigned(I)) { 402 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 403 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 404 } else { 405 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 406 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 407 } 408 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 409 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 410 411 I.replaceAllUsesWith(TruncRes); 412 I.eraseFromParent(); 413 414 return true; 415 } 416 417 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 418 IntrinsicInst &I) const { 419 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 420 "I must be bitreverse intrinsic"); 421 assert(needsPromotionToI32(I.getType()) && 422 "I does not need promotion to i32"); 423 424 IRBuilder<> Builder(&I); 425 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 426 427 Type *I32Ty = getI32Ty(Builder, I.getType()); 428 Function *I32 = 429 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 430 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 431 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 432 Value *LShrOp = 433 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 434 Value *TruncRes = 435 Builder.CreateTrunc(LShrOp, I.getType()); 436 437 I.replaceAllUsesWith(TruncRes); 438 I.eraseFromParent(); 439 440 return true; 441 } 442 443 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op, 444 unsigned ScalarSize) const { 445 KnownBits Known = computeKnownBits(Op, *DL, 0, AC); 446 return ScalarSize - Known.countMinLeadingZeros(); 447 } 448 449 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op, 450 unsigned ScalarSize) const { 451 // In order for this to be a signed 24-bit value, bit 23, must 452 // be a sign bit. 453 return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC); 454 } 455 456 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const { 457 return ScalarSize >= 24 && // Types less than 24-bit should be treated 458 // as unsigned 24-bit values. 459 numBitsSigned(V, ScalarSize) < 24; 460 } 461 462 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const { 463 return numBitsUnsigned(V, ScalarSize) <= 24; 464 } 465 466 static void extractValues(IRBuilder<> &Builder, 467 SmallVectorImpl<Value *> &Values, Value *V) { 468 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 469 if (!VT) { 470 Values.push_back(V); 471 return; 472 } 473 474 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 475 Values.push_back(Builder.CreateExtractElement(V, I)); 476 } 477 478 static Value *insertValues(IRBuilder<> &Builder, 479 Type *Ty, 480 SmallVectorImpl<Value *> &Values) { 481 if (Values.size() == 1) 482 return Values[0]; 483 484 Value *NewVal = UndefValue::get(Ty); 485 for (int I = 0, E = Values.size(); I != E; ++I) 486 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 487 488 return NewVal; 489 } 490 491 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 492 if (I.getOpcode() != Instruction::Mul) 493 return false; 494 495 Type *Ty = I.getType(); 496 unsigned Size = Ty->getScalarSizeInBits(); 497 if (Size <= 16 && ST->has16BitInsts()) 498 return false; 499 500 // Prefer scalar if this could be s_mul_i32 501 if (DA->isUniform(&I)) 502 return false; 503 504 Value *LHS = I.getOperand(0); 505 Value *RHS = I.getOperand(1); 506 IRBuilder<> Builder(&I); 507 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 508 509 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 510 511 // TODO: Should this try to match mulhi24? 512 if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) { 513 IntrID = Intrinsic::amdgcn_mul_u24; 514 } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) { 515 IntrID = Intrinsic::amdgcn_mul_i24; 516 } else 517 return false; 518 519 SmallVector<Value *, 4> LHSVals; 520 SmallVector<Value *, 4> RHSVals; 521 SmallVector<Value *, 4> ResultVals; 522 extractValues(Builder, LHSVals, LHS); 523 extractValues(Builder, RHSVals, RHS); 524 525 526 IntegerType *I32Ty = Builder.getInt32Ty(); 527 FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID); 528 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 529 Value *LHS, *RHS; 530 if (IntrID == Intrinsic::amdgcn_mul_u24) { 531 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 532 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 533 } else { 534 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 535 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 536 } 537 538 Value *Result = Builder.CreateCall(Intrin, {LHS, RHS}); 539 540 if (IntrID == Intrinsic::amdgcn_mul_u24) { 541 ResultVals.push_back(Builder.CreateZExtOrTrunc(Result, 542 LHSVals[I]->getType())); 543 } else { 544 ResultVals.push_back(Builder.CreateSExtOrTrunc(Result, 545 LHSVals[I]->getType())); 546 } 547 } 548 549 Value *NewVal = insertValues(Builder, Ty, ResultVals); 550 NewVal->takeName(&I); 551 I.replaceAllUsesWith(NewVal); 552 I.eraseFromParent(); 553 554 return true; 555 } 556 557 // Find a select instruction, which may have been casted. This is mostly to deal 558 // with cases where i16 selects were promoted here to i32. 559 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 560 Cast = nullptr; 561 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 562 return Sel; 563 564 if ((Cast = dyn_cast<CastInst>(V))) { 565 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 566 return Sel; 567 } 568 569 return nullptr; 570 } 571 572 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 573 // Don't do this unless the old select is going away. We want to eliminate the 574 // binary operator, not replace a binop with a select. 575 int SelOpNo = 0; 576 577 CastInst *CastOp; 578 579 // TODO: Should probably try to handle some cases with multiple 580 // users. Duplicating the select may be profitable for division. 581 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 582 if (!Sel || !Sel->hasOneUse()) { 583 SelOpNo = 1; 584 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 585 } 586 587 if (!Sel || !Sel->hasOneUse()) 588 return false; 589 590 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 591 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 592 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 593 if (!CBO || !CT || !CF) 594 return false; 595 596 if (CastOp) { 597 if (!CastOp->hasOneUse()) 598 return false; 599 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 600 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 601 } 602 603 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 604 // need to handle divisions here. 605 Constant *FoldedT = SelOpNo ? 606 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 607 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 608 if (isa<ConstantExpr>(FoldedT)) 609 return false; 610 611 Constant *FoldedF = SelOpNo ? 612 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 613 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 614 if (isa<ConstantExpr>(FoldedF)) 615 return false; 616 617 IRBuilder<> Builder(&BO); 618 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 619 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 620 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 621 622 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 623 FoldedT, FoldedF); 624 NewSelect->takeName(&BO); 625 BO.replaceAllUsesWith(NewSelect); 626 BO.eraseFromParent(); 627 if (CastOp) 628 CastOp->eraseFromParent(); 629 Sel->eraseFromParent(); 630 return true; 631 } 632 633 // Optimize fdiv with rcp: 634 // 635 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 636 // allowed with unsafe-fp-math or afn. 637 // 638 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 639 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 640 bool RcpIsAccurate, IRBuilder<> &Builder, 641 Module *Mod) { 642 643 if (!AllowInaccurateRcp && !RcpIsAccurate) 644 return nullptr; 645 646 Type *Ty = Den->getType(); 647 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 648 if (AllowInaccurateRcp || RcpIsAccurate) { 649 if (CLHS->isExactlyValue(1.0)) { 650 Function *Decl = Intrinsic::getDeclaration( 651 Mod, Intrinsic::amdgcn_rcp, Ty); 652 653 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 654 // the CI documentation has a worst case error of 1 ulp. 655 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 656 // use it as long as we aren't trying to use denormals. 657 // 658 // v_rcp_f16 and v_rsq_f16 DO support denormals. 659 660 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 661 // insert rsq intrinsic here. 662 663 // 1.0 / x -> rcp(x) 664 return Builder.CreateCall(Decl, { Den }); 665 } 666 667 // Same as for 1.0, but expand the sign out of the constant. 668 if (CLHS->isExactlyValue(-1.0)) { 669 Function *Decl = Intrinsic::getDeclaration( 670 Mod, Intrinsic::amdgcn_rcp, Ty); 671 672 // -1.0 / x -> rcp (fneg x) 673 Value *FNeg = Builder.CreateFNeg(Den); 674 return Builder.CreateCall(Decl, { FNeg }); 675 } 676 } 677 } 678 679 if (AllowInaccurateRcp) { 680 Function *Decl = Intrinsic::getDeclaration( 681 Mod, Intrinsic::amdgcn_rcp, Ty); 682 683 // Turn into multiply by the reciprocal. 684 // x / y -> x * (1.0 / y) 685 Value *Recip = Builder.CreateCall(Decl, { Den }); 686 return Builder.CreateFMul(Num, Recip); 687 } 688 return nullptr; 689 } 690 691 // optimize with fdiv.fast: 692 // 693 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 694 // 695 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 696 // 697 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 698 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 699 bool HasDenormals, IRBuilder<> &Builder, 700 Module *Mod) { 701 // fdiv.fast can achieve 2.5 ULP accuracy. 702 if (ReqdAccuracy < 2.5f) 703 return nullptr; 704 705 // Only have fdiv.fast for f32. 706 Type *Ty = Den->getType(); 707 if (!Ty->isFloatTy()) 708 return nullptr; 709 710 bool NumIsOne = false; 711 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 712 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 713 NumIsOne = true; 714 } 715 716 // fdiv does not support denormals. But 1.0/x is always fine to use it. 717 if (HasDenormals && !NumIsOne) 718 return nullptr; 719 720 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 721 return Builder.CreateCall(Decl, { Num, Den }); 722 } 723 724 // Optimizations is performed based on fpmath, fast math flags as well as 725 // denormals to optimize fdiv with either rcp or fdiv.fast. 726 // 727 // With rcp: 728 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 729 // allowed with unsafe-fp-math or afn. 730 // 731 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 732 // 733 // With fdiv.fast: 734 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 735 // 736 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 737 // 738 // NOTE: rcp is the preference in cases that both are legal. 739 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 740 741 Type *Ty = FDiv.getType()->getScalarType(); 742 743 // No intrinsic for fdiv16 if target does not support f16. 744 if (Ty->isHalfTy() && !ST->has16BitInsts()) 745 return false; 746 747 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 748 const float ReqdAccuracy = FPOp->getFPAccuracy(); 749 750 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 751 FastMathFlags FMF = FPOp->getFastMathFlags(); 752 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 753 754 // rcp_f16 is accurate for !fpmath >= 1.0ulp. 755 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 756 // rcp_f64 is never accurate. 757 const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || 758 (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); 759 760 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 761 Builder.setFastMathFlags(FMF); 762 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 763 764 Value *Num = FDiv.getOperand(0); 765 Value *Den = FDiv.getOperand(1); 766 767 Value *NewFDiv = nullptr; 768 if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) { 769 NewFDiv = UndefValue::get(VT); 770 771 // FIXME: Doesn't do the right thing for cases where the vector is partially 772 // constant. This works when the scalarizer pass is run first. 773 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 774 Value *NumEltI = Builder.CreateExtractElement(Num, I); 775 Value *DenEltI = Builder.CreateExtractElement(Den, I); 776 // Try rcp first. 777 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 778 RcpIsAccurate, Builder, Mod); 779 if (!NewElt) // Try fdiv.fast. 780 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 781 HasFP32Denormals, Builder, Mod); 782 if (!NewElt) // Keep the original. 783 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 784 785 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 786 } 787 } else { // Scalar FDiv. 788 // Try rcp first. 789 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 790 Builder, Mod); 791 if (!NewFDiv) { // Try fdiv.fast. 792 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, 793 Builder, Mod); 794 } 795 } 796 797 if (NewFDiv) { 798 FDiv.replaceAllUsesWith(NewFDiv); 799 NewFDiv->takeName(&FDiv); 800 FDiv.eraseFromParent(); 801 } 802 803 return !!NewFDiv; 804 } 805 806 static bool hasUnsafeFPMath(const Function &F) { 807 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 808 return Attr.getValueAsString() == "true"; 809 } 810 811 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 812 Value *LHS, Value *RHS) { 813 Type *I32Ty = Builder.getInt32Ty(); 814 Type *I64Ty = Builder.getInt64Ty(); 815 816 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 817 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 818 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 819 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 820 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 821 Hi = Builder.CreateTrunc(Hi, I32Ty); 822 return std::make_pair(Lo, Hi); 823 } 824 825 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 826 return getMul64(Builder, LHS, RHS).second; 827 } 828 829 /// Figure out how many bits are really needed for this ddivision. \p AtLeast is 830 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 831 /// first one is insufficient. Returns -1 on failure. 832 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I, 833 Value *Num, Value *Den, 834 unsigned AtLeast, bool IsSigned) const { 835 const DataLayout &DL = Mod->getDataLayout(); 836 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 837 if (LHSSignBits < AtLeast) 838 return -1; 839 840 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 841 if (RHSSignBits < AtLeast) 842 return -1; 843 844 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 845 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 846 if (IsSigned) 847 ++DivBits; 848 return DivBits; 849 } 850 851 // The fractional part of a float is enough to accurately represent up to 852 // a 24-bit signed integer. 853 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 854 BinaryOperator &I, 855 Value *Num, Value *Den, 856 bool IsDiv, bool IsSigned) const { 857 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 858 if (DivBits == -1) 859 return nullptr; 860 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 861 } 862 863 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder, 864 BinaryOperator &I, 865 Value *Num, Value *Den, 866 unsigned DivBits, 867 bool IsDiv, bool IsSigned) const { 868 Type *I32Ty = Builder.getInt32Ty(); 869 Num = Builder.CreateTrunc(Num, I32Ty); 870 Den = Builder.CreateTrunc(Den, I32Ty); 871 872 Type *F32Ty = Builder.getFloatTy(); 873 ConstantInt *One = Builder.getInt32(1); 874 Value *JQ = One; 875 876 if (IsSigned) { 877 // char|short jq = ia ^ ib; 878 JQ = Builder.CreateXor(Num, Den); 879 880 // jq = jq >> (bitsize - 2) 881 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 882 883 // jq = jq | 0x1 884 JQ = Builder.CreateOr(JQ, One); 885 } 886 887 // int ia = (int)LHS; 888 Value *IA = Num; 889 890 // int ib, (int)RHS; 891 Value *IB = Den; 892 893 // float fa = (float)ia; 894 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 895 : Builder.CreateUIToFP(IA, F32Ty); 896 897 // float fb = (float)ib; 898 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 899 : Builder.CreateUIToFP(IB,F32Ty); 900 901 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 902 Builder.getFloatTy()); 903 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 904 Value *FQM = Builder.CreateFMul(FA, RCP); 905 906 // fq = trunc(fqm); 907 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 908 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 909 910 // float fqneg = -fq; 911 Value *FQNeg = Builder.CreateFNeg(FQ); 912 913 // float fr = mad(fqneg, fb, fa); 914 auto FMAD = !ST->hasMadMacF32Insts() 915 ? Intrinsic::fma 916 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 917 Value *FR = Builder.CreateIntrinsic(FMAD, 918 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 919 920 // int iq = (int)fq; 921 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 922 : Builder.CreateFPToUI(FQ, I32Ty); 923 924 // fr = fabs(fr); 925 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 926 927 // fb = fabs(fb); 928 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 929 930 // int cv = fr >= fb; 931 Value *CV = Builder.CreateFCmpOGE(FR, FB); 932 933 // jq = (cv ? jq : 0); 934 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 935 936 // dst = iq + jq; 937 Value *Div = Builder.CreateAdd(IQ, JQ); 938 939 Value *Res = Div; 940 if (!IsDiv) { 941 // Rem needs compensation, it's easier to recompute it 942 Value *Rem = Builder.CreateMul(Div, Den); 943 Res = Builder.CreateSub(Num, Rem); 944 } 945 946 if (DivBits != 0 && DivBits < 32) { 947 // Extend in register from the number of bits this divide really is. 948 if (IsSigned) { 949 int InRegBits = 32 - DivBits; 950 951 Res = Builder.CreateShl(Res, InRegBits); 952 Res = Builder.CreateAShr(Res, InRegBits); 953 } else { 954 ConstantInt *TruncMask 955 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 956 Res = Builder.CreateAnd(Res, TruncMask); 957 } 958 } 959 960 return Res; 961 } 962 963 // Try to recognize special cases the DAG will emit special, better expansions 964 // than the general expansion we do here. 965 966 // TODO: It would be better to just directly handle those optimizations here. 967 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization( 968 BinaryOperator &I, Value *Num, Value *Den) const { 969 if (Constant *C = dyn_cast<Constant>(Den)) { 970 // Arbitrary constants get a better expansion as long as a wider mulhi is 971 // legal. 972 if (C->getType()->getScalarSizeInBits() <= 32) 973 return true; 974 975 // TODO: Sdiv check for not exact for some reason. 976 977 // If there's no wider mulhi, there's only a better expansion for powers of 978 // two. 979 // TODO: Should really know for each vector element. 980 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 981 return true; 982 983 return false; 984 } 985 986 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 987 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 988 if (BinOpDen->getOpcode() == Instruction::Shl && 989 isa<Constant>(BinOpDen->getOperand(0)) && 990 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 991 0, AC, &I, DT)) { 992 return true; 993 } 994 } 995 996 return false; 997 } 998 999 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1000 // Check whether the sign can be determined statically. 1001 KnownBits Known = computeKnownBits(V, *DL); 1002 if (Known.isNegative()) 1003 return Constant::getAllOnesValue(V->getType()); 1004 if (Known.isNonNegative()) 1005 return Constant::getNullValue(V->getType()); 1006 return Builder.CreateAShr(V, Builder.getInt32(31)); 1007 } 1008 1009 Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 1010 BinaryOperator &I, Value *X, 1011 Value *Y) const { 1012 Instruction::BinaryOps Opc = I.getOpcode(); 1013 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1014 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1015 1016 FastMathFlags FMF; 1017 FMF.setFast(); 1018 Builder.setFastMathFlags(FMF); 1019 1020 if (divHasSpecialOptimization(I, X, Y)) 1021 return nullptr; // Keep it for later optimization. 1022 1023 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1024 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1025 1026 Type *Ty = X->getType(); 1027 Type *I32Ty = Builder.getInt32Ty(); 1028 Type *F32Ty = Builder.getFloatTy(); 1029 1030 if (Ty->getScalarSizeInBits() < 32) { 1031 if (IsSigned) { 1032 X = Builder.CreateSExt(X, I32Ty); 1033 Y = Builder.CreateSExt(Y, I32Ty); 1034 } else { 1035 X = Builder.CreateZExt(X, I32Ty); 1036 Y = Builder.CreateZExt(Y, I32Ty); 1037 } 1038 } 1039 1040 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1041 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1042 Builder.CreateZExtOrTrunc(Res, Ty); 1043 } 1044 1045 ConstantInt *Zero = Builder.getInt32(0); 1046 ConstantInt *One = Builder.getInt32(1); 1047 1048 Value *Sign = nullptr; 1049 if (IsSigned) { 1050 Value *SignX = getSign32(X, Builder, DL); 1051 Value *SignY = getSign32(Y, Builder, DL); 1052 // Remainder sign is the same as LHS 1053 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1054 1055 X = Builder.CreateAdd(X, SignX); 1056 Y = Builder.CreateAdd(Y, SignY); 1057 1058 X = Builder.CreateXor(X, SignX); 1059 Y = Builder.CreateXor(Y, SignY); 1060 } 1061 1062 // The algorithm here is based on ideas from "Software Integer Division", Tom 1063 // Rodeheffer, August 2008. 1064 // 1065 // unsigned udiv(unsigned x, unsigned y) { 1066 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1067 // // that this is a lower bound on inv(y), even if some of the calculations 1068 // // round up. 1069 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1070 // 1071 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1072 // // Empirically this is guaranteed to give a "two-y" lower bound on 1073 // // inv(y). 1074 // z += umulh(z, -y * z); 1075 // 1076 // // Quotient/remainder estimate. 1077 // unsigned q = umulh(x, z); 1078 // unsigned r = x - q * y; 1079 // 1080 // // Two rounds of quotient/remainder refinement. 1081 // if (r >= y) { 1082 // ++q; 1083 // r -= y; 1084 // } 1085 // if (r >= y) { 1086 // ++q; 1087 // r -= y; 1088 // } 1089 // 1090 // return q; 1091 // } 1092 1093 // Initial estimate of inv(y). 1094 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1095 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1096 Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1097 Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE)); 1098 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1099 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1100 1101 // One round of UNR. 1102 Value *NegY = Builder.CreateSub(Zero, Y); 1103 Value *NegYZ = Builder.CreateMul(NegY, Z); 1104 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1105 1106 // Quotient/remainder estimate. 1107 Value *Q = getMulHu(Builder, X, Z); 1108 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1109 1110 // First quotient/remainder refinement. 1111 Value *Cond = Builder.CreateICmpUGE(R, Y); 1112 if (IsDiv) 1113 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1114 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1115 1116 // Second quotient/remainder refinement. 1117 Cond = Builder.CreateICmpUGE(R, Y); 1118 Value *Res; 1119 if (IsDiv) 1120 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1121 else 1122 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1123 1124 if (IsSigned) { 1125 Res = Builder.CreateXor(Res, Sign); 1126 Res = Builder.CreateSub(Res, Sign); 1127 } 1128 1129 Res = Builder.CreateTrunc(Res, Ty); 1130 1131 return Res; 1132 } 1133 1134 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder, 1135 BinaryOperator &I, 1136 Value *Num, Value *Den) const { 1137 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1138 return nullptr; // Keep it for later optimization. 1139 1140 Instruction::BinaryOps Opc = I.getOpcode(); 1141 1142 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1143 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1144 1145 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1146 if (NumDivBits == -1) 1147 return nullptr; 1148 1149 Value *Narrowed = nullptr; 1150 if (NumDivBits <= 24) { 1151 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1152 IsDiv, IsSigned); 1153 } else if (NumDivBits <= 32) { 1154 Narrowed = expandDivRem32(Builder, I, Num, Den); 1155 } 1156 1157 if (Narrowed) { 1158 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1159 Builder.CreateZExt(Narrowed, Num->getType()); 1160 } 1161 1162 return nullptr; 1163 } 1164 1165 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const { 1166 Instruction::BinaryOps Opc = I.getOpcode(); 1167 // Do the general expansion. 1168 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1169 expandDivisionUpTo64Bits(&I); 1170 return; 1171 } 1172 1173 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1174 expandRemainderUpTo64Bits(&I); 1175 return; 1176 } 1177 1178 llvm_unreachable("not a division"); 1179 } 1180 1181 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 1182 if (foldBinOpIntoSelect(I)) 1183 return true; 1184 1185 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1186 DA->isUniform(&I) && promoteUniformOpToI32(I)) 1187 return true; 1188 1189 if (UseMul24Intrin && replaceMulWithMul24(I)) 1190 return true; 1191 1192 bool Changed = false; 1193 Instruction::BinaryOps Opc = I.getOpcode(); 1194 Type *Ty = I.getType(); 1195 Value *NewDiv = nullptr; 1196 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1197 1198 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1199 1200 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1201 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1202 ScalarSize <= 64 && 1203 !DisableIDivExpand) { 1204 Value *Num = I.getOperand(0); 1205 Value *Den = I.getOperand(1); 1206 IRBuilder<> Builder(&I); 1207 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1208 1209 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1210 NewDiv = UndefValue::get(VT); 1211 1212 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1213 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1214 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1215 1216 Value *NewElt; 1217 if (ScalarSize <= 32) { 1218 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1219 if (!NewElt) 1220 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1221 } else { 1222 // See if this 64-bit division can be shrunk to 32/24-bits before 1223 // producing the general expansion. 1224 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1225 if (!NewElt) { 1226 // The general 64-bit expansion introduces control flow and doesn't 1227 // return the new value. Just insert a scalar copy and defer 1228 // expanding it. 1229 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1230 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1231 } 1232 } 1233 1234 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1235 } 1236 } else { 1237 if (ScalarSize <= 32) 1238 NewDiv = expandDivRem32(Builder, I, Num, Den); 1239 else { 1240 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1241 if (!NewDiv) 1242 Div64ToExpand.push_back(&I); 1243 } 1244 } 1245 1246 if (NewDiv) { 1247 I.replaceAllUsesWith(NewDiv); 1248 I.eraseFromParent(); 1249 Changed = true; 1250 } 1251 } 1252 1253 if (ExpandDiv64InIR) { 1254 // TODO: We get much worse code in specially handled constant cases. 1255 for (BinaryOperator *Div : Div64ToExpand) { 1256 expandDivRem64(*Div); 1257 Changed = true; 1258 } 1259 } 1260 1261 return Changed; 1262 } 1263 1264 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 1265 if (!WidenLoads) 1266 return false; 1267 1268 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1269 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1270 canWidenScalarExtLoad(I)) { 1271 IRBuilder<> Builder(&I); 1272 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1273 1274 Type *I32Ty = Builder.getInt32Ty(); 1275 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 1276 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 1277 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 1278 WidenLoad->copyMetadata(I); 1279 1280 // If we have range metadata, we need to convert the type, and not make 1281 // assumptions about the high bits. 1282 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1283 ConstantInt *Lower = 1284 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1285 1286 if (Lower->getValue().isNullValue()) { 1287 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1288 } else { 1289 Metadata *LowAndHigh[] = { 1290 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1291 // Don't make assumptions about the high bits. 1292 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1293 }; 1294 1295 WidenLoad->setMetadata(LLVMContext::MD_range, 1296 MDNode::get(Mod->getContext(), LowAndHigh)); 1297 } 1298 } 1299 1300 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1301 Type *IntNTy = Builder.getIntNTy(TySize); 1302 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1303 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1304 I.replaceAllUsesWith(ValOrig); 1305 I.eraseFromParent(); 1306 return true; 1307 } 1308 1309 return false; 1310 } 1311 1312 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1313 bool Changed = false; 1314 1315 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1316 DA->isUniform(&I)) 1317 Changed |= promoteUniformOpToI32(I); 1318 1319 return Changed; 1320 } 1321 1322 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1323 bool Changed = false; 1324 1325 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1326 DA->isUniform(&I)) 1327 Changed |= promoteUniformOpToI32(I); 1328 1329 return Changed; 1330 } 1331 1332 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1333 switch (I.getIntrinsicID()) { 1334 case Intrinsic::bitreverse: 1335 return visitBitreverseIntrinsicInst(I); 1336 default: 1337 return false; 1338 } 1339 } 1340 1341 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1342 bool Changed = false; 1343 1344 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1345 DA->isUniform(&I)) 1346 Changed |= promoteUniformBitreverseToI32(I); 1347 1348 return Changed; 1349 } 1350 1351 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1352 Mod = &M; 1353 DL = &Mod->getDataLayout(); 1354 return false; 1355 } 1356 1357 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1358 if (skipFunction(F)) 1359 return false; 1360 1361 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1362 if (!TPC) 1363 return false; 1364 1365 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1366 ST = &TM.getSubtarget<GCNSubtarget>(F); 1367 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1368 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1369 1370 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1371 DT = DTWP ? &DTWP->getDomTree() : nullptr; 1372 1373 HasUnsafeFPMath = hasUnsafeFPMath(F); 1374 1375 AMDGPU::SIModeRegisterDefaults Mode(F); 1376 HasFP32Denormals = Mode.allFP32Denormals(); 1377 1378 bool MadeChange = false; 1379 1380 Function::iterator NextBB; 1381 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 1382 BasicBlock *BB = &*FI; 1383 NextBB = std::next(FI); 1384 1385 BasicBlock::iterator Next; 1386 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) { 1387 Next = std::next(I); 1388 1389 MadeChange |= visit(*I); 1390 1391 if (Next != E) { // Control flow changed 1392 BasicBlock *NextInstBB = Next->getParent(); 1393 if (NextInstBB != BB) { 1394 BB = NextInstBB; 1395 E = BB->end(); 1396 FE = F.end(); 1397 } 1398 } 1399 } 1400 } 1401 1402 return MadeChange; 1403 } 1404 1405 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1406 "AMDGPU IR optimizations", false, false) 1407 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1408 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 1409 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1410 false, false) 1411 1412 char AMDGPUCodeGenPrepare::ID = 0; 1413 1414 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1415 return new AMDGPUCodeGenPrepare(); 1416 } 1417