1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "llvm/ADT/FloatingPointMode.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstVisitor.h" 35 #include "llvm/IR/InstrTypes.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/IR/Value.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Transforms/Utils/IntegerDivision.h" 48 #include <cassert> 49 #include <iterator> 50 51 #define DEBUG_TYPE "amdgpu-codegenprepare" 52 53 using namespace llvm; 54 55 namespace { 56 57 static cl::opt<bool> WidenLoads( 58 "amdgpu-codegenprepare-widen-constant-loads", 59 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 60 cl::ReallyHidden, 61 cl::init(false)); 62 63 static cl::opt<bool> Widen16BitOps( 64 "amdgpu-codegenprepare-widen-16-bit-ops", 65 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 66 cl::ReallyHidden, 67 cl::init(true)); 68 69 static cl::opt<bool> UseMul24Intrin( 70 "amdgpu-codegenprepare-mul24", 71 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 72 cl::ReallyHidden, 73 cl::init(true)); 74 75 // Legalize 64-bit division by using the generic IR expansion. 76 static cl::opt<bool> ExpandDiv64InIR( 77 "amdgpu-codegenprepare-expand-div64", 78 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 79 cl::ReallyHidden, 80 cl::init(false)); 81 82 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 83 // and is used for testing the legalizer. 84 static cl::opt<bool> DisableIDivExpand( 85 "amdgpu-codegenprepare-disable-idiv-expansion", 86 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 87 cl::ReallyHidden, 88 cl::init(false)); 89 90 class AMDGPUCodeGenPrepare : public FunctionPass, 91 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 92 const GCNSubtarget *ST = nullptr; 93 AssumptionCache *AC = nullptr; 94 DominatorTree *DT = nullptr; 95 LegacyDivergenceAnalysis *DA = nullptr; 96 Module *Mod = nullptr; 97 const DataLayout *DL = nullptr; 98 bool HasUnsafeFPMath = false; 99 bool HasFP32Denormals = false; 100 101 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 102 /// binary operation \p V. 103 /// 104 /// \returns Binary operation \p V. 105 /// \returns \p T's base element bit width. 106 unsigned getBaseElementBitWidth(const Type *T) const; 107 108 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 109 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 110 /// is returned. 111 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 112 113 /// \returns True if binary operation \p I is a signed binary operation, false 114 /// otherwise. 115 bool isSigned(const BinaryOperator &I) const; 116 117 /// \returns True if the condition of 'select' operation \p I comes from a 118 /// signed 'icmp' operation, false otherwise. 119 bool isSigned(const SelectInst &I) const; 120 121 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 122 /// false otherwise. 123 bool needsPromotionToI32(const Type *T) const; 124 125 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 126 /// operation. 127 /// 128 /// \details \p I's base element bit width must be greater than 1 and less 129 /// than or equal 16. Promotion is done by sign or zero extending operands to 130 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 131 /// truncating the result of 32 bit binary operation back to \p I's original 132 /// type. Division operation is not promoted. 133 /// 134 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 135 /// false otherwise. 136 bool promoteUniformOpToI32(BinaryOperator &I) const; 137 138 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 139 /// 140 /// \details \p I's base element bit width must be greater than 1 and less 141 /// than or equal 16. Promotion is done by sign or zero extending operands to 142 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 143 /// 144 /// \returns True. 145 bool promoteUniformOpToI32(ICmpInst &I) const; 146 147 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 148 /// operation. 149 /// 150 /// \details \p I's base element bit width must be greater than 1 and less 151 /// than or equal 16. Promotion is done by sign or zero extending operands to 152 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 153 /// result of 32 bit 'select' operation back to \p I's original type. 154 /// 155 /// \returns True. 156 bool promoteUniformOpToI32(SelectInst &I) const; 157 158 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 159 /// intrinsic. 160 /// 161 /// \details \p I's base element bit width must be greater than 1 and less 162 /// than or equal 16. Promotion is done by zero extending the operand to 32 163 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 164 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 165 /// shift amount is 32 minus \p I's base element bit width), and truncating 166 /// the result of the shift operation back to \p I's original type. 167 /// 168 /// \returns True. 169 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 170 171 172 unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const; 173 unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const; 174 bool isI24(Value *V, unsigned ScalarSize) const; 175 bool isU24(Value *V, unsigned ScalarSize) const; 176 177 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 178 /// SelectionDAG has an issue where an and asserting the bits are known 179 bool replaceMulWithMul24(BinaryOperator &I) const; 180 181 /// Perform same function as equivalently named function in DAGCombiner. Since 182 /// we expand some divisions here, we need to perform this before obscuring. 183 bool foldBinOpIntoSelect(BinaryOperator &I) const; 184 185 bool divHasSpecialOptimization(BinaryOperator &I, 186 Value *Num, Value *Den) const; 187 int getDivNumBits(BinaryOperator &I, 188 Value *Num, Value *Den, 189 unsigned AtLeast, bool Signed) const; 190 191 /// Expands 24 bit div or rem. 192 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 193 Value *Num, Value *Den, 194 bool IsDiv, bool IsSigned) const; 195 196 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 197 Value *Num, Value *Den, unsigned NumBits, 198 bool IsDiv, bool IsSigned) const; 199 200 /// Expands 32 bit div or rem. 201 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 202 Value *Num, Value *Den) const; 203 204 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 205 Value *Num, Value *Den) const; 206 void expandDivRem64(BinaryOperator &I) const; 207 208 /// Widen a scalar load. 209 /// 210 /// \details \p Widen scalar load for uniform, small type loads from constant 211 // memory / to a full 32-bits and then truncate the input to allow a scalar 212 // load instead of a vector load. 213 // 214 /// \returns True. 215 216 bool canWidenScalarExtLoad(LoadInst &I) const; 217 218 public: 219 static char ID; 220 221 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 222 223 bool visitFDiv(BinaryOperator &I); 224 225 bool visitInstruction(Instruction &I) { return false; } 226 bool visitBinaryOperator(BinaryOperator &I); 227 bool visitLoadInst(LoadInst &I); 228 bool visitICmpInst(ICmpInst &I); 229 bool visitSelectInst(SelectInst &I); 230 231 bool visitIntrinsicInst(IntrinsicInst &I); 232 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 233 234 bool doInitialization(Module &M) override; 235 bool runOnFunction(Function &F) override; 236 237 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 238 239 void getAnalysisUsage(AnalysisUsage &AU) const override { 240 AU.addRequired<AssumptionCacheTracker>(); 241 AU.addRequired<LegacyDivergenceAnalysis>(); 242 243 // FIXME: Division expansion needs to preserve the dominator tree. 244 if (!ExpandDiv64InIR) 245 AU.setPreservesAll(); 246 } 247 }; 248 249 } // end anonymous namespace 250 251 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 252 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 253 254 if (T->isIntegerTy()) 255 return T->getIntegerBitWidth(); 256 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 257 } 258 259 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 260 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 261 262 if (T->isIntegerTy()) 263 return B.getInt32Ty(); 264 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 265 } 266 267 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 268 return I.getOpcode() == Instruction::AShr || 269 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 270 } 271 272 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 273 return isa<ICmpInst>(I.getOperand(0)) ? 274 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 275 } 276 277 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 278 if (!Widen16BitOps) 279 return false; 280 281 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 282 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 283 return true; 284 285 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 286 // TODO: The set of packed operations is more limited, so may want to 287 // promote some anyway. 288 if (ST->hasVOP3PInsts()) 289 return false; 290 291 return needsPromotionToI32(VT->getElementType()); 292 } 293 294 return false; 295 } 296 297 // Return true if the op promoted to i32 should have nsw set. 298 static bool promotedOpIsNSW(const Instruction &I) { 299 switch (I.getOpcode()) { 300 case Instruction::Shl: 301 case Instruction::Add: 302 case Instruction::Sub: 303 return true; 304 case Instruction::Mul: 305 return I.hasNoUnsignedWrap(); 306 default: 307 return false; 308 } 309 } 310 311 // Return true if the op promoted to i32 should have nuw set. 312 static bool promotedOpIsNUW(const Instruction &I) { 313 switch (I.getOpcode()) { 314 case Instruction::Shl: 315 case Instruction::Add: 316 case Instruction::Mul: 317 return true; 318 case Instruction::Sub: 319 return I.hasNoUnsignedWrap(); 320 default: 321 return false; 322 } 323 } 324 325 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 326 Type *Ty = I.getType(); 327 const DataLayout &DL = Mod->getDataLayout(); 328 int TySize = DL.getTypeSizeInBits(Ty); 329 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 330 331 return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I); 332 } 333 334 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 335 assert(needsPromotionToI32(I.getType()) && 336 "I does not need promotion to i32"); 337 338 if (I.getOpcode() == Instruction::SDiv || 339 I.getOpcode() == Instruction::UDiv || 340 I.getOpcode() == Instruction::SRem || 341 I.getOpcode() == Instruction::URem) 342 return false; 343 344 IRBuilder<> Builder(&I); 345 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 346 347 Type *I32Ty = getI32Ty(Builder, I.getType()); 348 Value *ExtOp0 = nullptr; 349 Value *ExtOp1 = nullptr; 350 Value *ExtRes = nullptr; 351 Value *TruncRes = nullptr; 352 353 if (isSigned(I)) { 354 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 355 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 356 } else { 357 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 358 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 359 } 360 361 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 362 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 363 if (promotedOpIsNSW(cast<Instruction>(I))) 364 Inst->setHasNoSignedWrap(); 365 366 if (promotedOpIsNUW(cast<Instruction>(I))) 367 Inst->setHasNoUnsignedWrap(); 368 369 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 370 Inst->setIsExact(ExactOp->isExact()); 371 } 372 373 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 374 375 I.replaceAllUsesWith(TruncRes); 376 I.eraseFromParent(); 377 378 return true; 379 } 380 381 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 382 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 383 "I does not need promotion to i32"); 384 385 IRBuilder<> Builder(&I); 386 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 387 388 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 389 Value *ExtOp0 = nullptr; 390 Value *ExtOp1 = nullptr; 391 Value *NewICmp = nullptr; 392 393 if (I.isSigned()) { 394 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 395 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 396 } else { 397 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 398 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 399 } 400 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 401 402 I.replaceAllUsesWith(NewICmp); 403 I.eraseFromParent(); 404 405 return true; 406 } 407 408 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 409 assert(needsPromotionToI32(I.getType()) && 410 "I does not need promotion to i32"); 411 412 IRBuilder<> Builder(&I); 413 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 414 415 Type *I32Ty = getI32Ty(Builder, I.getType()); 416 Value *ExtOp1 = nullptr; 417 Value *ExtOp2 = nullptr; 418 Value *ExtRes = nullptr; 419 Value *TruncRes = nullptr; 420 421 if (isSigned(I)) { 422 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 423 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 424 } else { 425 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 426 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 427 } 428 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 429 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 430 431 I.replaceAllUsesWith(TruncRes); 432 I.eraseFromParent(); 433 434 return true; 435 } 436 437 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 438 IntrinsicInst &I) const { 439 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 440 "I must be bitreverse intrinsic"); 441 assert(needsPromotionToI32(I.getType()) && 442 "I does not need promotion to i32"); 443 444 IRBuilder<> Builder(&I); 445 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 446 447 Type *I32Ty = getI32Ty(Builder, I.getType()); 448 Function *I32 = 449 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 450 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 451 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 452 Value *LShrOp = 453 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 454 Value *TruncRes = 455 Builder.CreateTrunc(LShrOp, I.getType()); 456 457 I.replaceAllUsesWith(TruncRes); 458 I.eraseFromParent(); 459 460 return true; 461 } 462 463 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op, 464 unsigned ScalarSize) const { 465 KnownBits Known = computeKnownBits(Op, *DL, 0, AC); 466 return ScalarSize - Known.countMinLeadingZeros(); 467 } 468 469 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op, 470 unsigned ScalarSize) const { 471 // In order for this to be a signed 24-bit value, bit 23, must 472 // be a sign bit. 473 return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC); 474 } 475 476 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const { 477 return ScalarSize >= 24 && // Types less than 24-bit should be treated 478 // as unsigned 24-bit values. 479 numBitsSigned(V, ScalarSize) < 24; 480 } 481 482 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const { 483 return numBitsUnsigned(V, ScalarSize) <= 24; 484 } 485 486 static void extractValues(IRBuilder<> &Builder, 487 SmallVectorImpl<Value *> &Values, Value *V) { 488 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 489 if (!VT) { 490 Values.push_back(V); 491 return; 492 } 493 494 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 495 Values.push_back(Builder.CreateExtractElement(V, I)); 496 } 497 498 static Value *insertValues(IRBuilder<> &Builder, 499 Type *Ty, 500 SmallVectorImpl<Value *> &Values) { 501 if (Values.size() == 1) 502 return Values[0]; 503 504 Value *NewVal = UndefValue::get(Ty); 505 for (int I = 0, E = Values.size(); I != E; ++I) 506 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 507 508 return NewVal; 509 } 510 511 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 512 if (I.getOpcode() != Instruction::Mul) 513 return false; 514 515 Type *Ty = I.getType(); 516 unsigned Size = Ty->getScalarSizeInBits(); 517 if (Size <= 16 && ST->has16BitInsts()) 518 return false; 519 520 // Prefer scalar if this could be s_mul_i32 521 if (DA->isUniform(&I)) 522 return false; 523 524 Value *LHS = I.getOperand(0); 525 Value *RHS = I.getOperand(1); 526 IRBuilder<> Builder(&I); 527 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 528 529 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 530 531 // TODO: Should this try to match mulhi24? 532 if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) { 533 IntrID = Intrinsic::amdgcn_mul_u24; 534 } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) { 535 IntrID = Intrinsic::amdgcn_mul_i24; 536 } else 537 return false; 538 539 SmallVector<Value *, 4> LHSVals; 540 SmallVector<Value *, 4> RHSVals; 541 SmallVector<Value *, 4> ResultVals; 542 extractValues(Builder, LHSVals, LHS); 543 extractValues(Builder, RHSVals, RHS); 544 545 546 IntegerType *I32Ty = Builder.getInt32Ty(); 547 FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID); 548 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 549 Value *LHS, *RHS; 550 if (IntrID == Intrinsic::amdgcn_mul_u24) { 551 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 552 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 553 } else { 554 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 555 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 556 } 557 558 Value *Result = Builder.CreateCall(Intrin, {LHS, RHS}); 559 560 if (IntrID == Intrinsic::amdgcn_mul_u24) { 561 ResultVals.push_back(Builder.CreateZExtOrTrunc(Result, 562 LHSVals[I]->getType())); 563 } else { 564 ResultVals.push_back(Builder.CreateSExtOrTrunc(Result, 565 LHSVals[I]->getType())); 566 } 567 } 568 569 Value *NewVal = insertValues(Builder, Ty, ResultVals); 570 NewVal->takeName(&I); 571 I.replaceAllUsesWith(NewVal); 572 I.eraseFromParent(); 573 574 return true; 575 } 576 577 // Find a select instruction, which may have been casted. This is mostly to deal 578 // with cases where i16 selects were promoted here to i32. 579 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 580 Cast = nullptr; 581 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 582 return Sel; 583 584 if ((Cast = dyn_cast<CastInst>(V))) { 585 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 586 return Sel; 587 } 588 589 return nullptr; 590 } 591 592 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 593 // Don't do this unless the old select is going away. We want to eliminate the 594 // binary operator, not replace a binop with a select. 595 int SelOpNo = 0; 596 597 CastInst *CastOp; 598 599 // TODO: Should probably try to handle some cases with multiple 600 // users. Duplicating the select may be profitable for division. 601 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 602 if (!Sel || !Sel->hasOneUse()) { 603 SelOpNo = 1; 604 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 605 } 606 607 if (!Sel || !Sel->hasOneUse()) 608 return false; 609 610 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 611 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 612 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 613 if (!CBO || !CT || !CF) 614 return false; 615 616 if (CastOp) { 617 if (!CastOp->hasOneUse()) 618 return false; 619 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 620 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 621 } 622 623 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 624 // need to handle divisions here. 625 Constant *FoldedT = SelOpNo ? 626 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 627 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 628 if (isa<ConstantExpr>(FoldedT)) 629 return false; 630 631 Constant *FoldedF = SelOpNo ? 632 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 633 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 634 if (isa<ConstantExpr>(FoldedF)) 635 return false; 636 637 IRBuilder<> Builder(&BO); 638 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 639 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 640 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 641 642 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 643 FoldedT, FoldedF); 644 NewSelect->takeName(&BO); 645 BO.replaceAllUsesWith(NewSelect); 646 BO.eraseFromParent(); 647 if (CastOp) 648 CastOp->eraseFromParent(); 649 Sel->eraseFromParent(); 650 return true; 651 } 652 653 // Optimize fdiv with rcp: 654 // 655 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 656 // allowed with unsafe-fp-math or afn. 657 // 658 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 659 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 660 bool RcpIsAccurate, IRBuilder<> &Builder, 661 Module *Mod) { 662 663 if (!AllowInaccurateRcp && !RcpIsAccurate) 664 return nullptr; 665 666 Type *Ty = Den->getType(); 667 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 668 if (AllowInaccurateRcp || RcpIsAccurate) { 669 if (CLHS->isExactlyValue(1.0)) { 670 Function *Decl = Intrinsic::getDeclaration( 671 Mod, Intrinsic::amdgcn_rcp, Ty); 672 673 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 674 // the CI documentation has a worst case error of 1 ulp. 675 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 676 // use it as long as we aren't trying to use denormals. 677 // 678 // v_rcp_f16 and v_rsq_f16 DO support denormals. 679 680 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 681 // insert rsq intrinsic here. 682 683 // 1.0 / x -> rcp(x) 684 return Builder.CreateCall(Decl, { Den }); 685 } 686 687 // Same as for 1.0, but expand the sign out of the constant. 688 if (CLHS->isExactlyValue(-1.0)) { 689 Function *Decl = Intrinsic::getDeclaration( 690 Mod, Intrinsic::amdgcn_rcp, Ty); 691 692 // -1.0 / x -> rcp (fneg x) 693 Value *FNeg = Builder.CreateFNeg(Den); 694 return Builder.CreateCall(Decl, { FNeg }); 695 } 696 } 697 } 698 699 if (AllowInaccurateRcp) { 700 Function *Decl = Intrinsic::getDeclaration( 701 Mod, Intrinsic::amdgcn_rcp, Ty); 702 703 // Turn into multiply by the reciprocal. 704 // x / y -> x * (1.0 / y) 705 Value *Recip = Builder.CreateCall(Decl, { Den }); 706 return Builder.CreateFMul(Num, Recip); 707 } 708 return nullptr; 709 } 710 711 // optimize with fdiv.fast: 712 // 713 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 714 // 715 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 716 // 717 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 718 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 719 bool HasDenormals, IRBuilder<> &Builder, 720 Module *Mod) { 721 // fdiv.fast can achieve 2.5 ULP accuracy. 722 if (ReqdAccuracy < 2.5f) 723 return nullptr; 724 725 // Only have fdiv.fast for f32. 726 Type *Ty = Den->getType(); 727 if (!Ty->isFloatTy()) 728 return nullptr; 729 730 bool NumIsOne = false; 731 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 732 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 733 NumIsOne = true; 734 } 735 736 // fdiv does not support denormals. But 1.0/x is always fine to use it. 737 if (HasDenormals && !NumIsOne) 738 return nullptr; 739 740 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 741 return Builder.CreateCall(Decl, { Num, Den }); 742 } 743 744 // Optimizations is performed based on fpmath, fast math flags as well as 745 // denormals to optimize fdiv with either rcp or fdiv.fast. 746 // 747 // With rcp: 748 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 749 // allowed with unsafe-fp-math or afn. 750 // 751 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 752 // 753 // With fdiv.fast: 754 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 755 // 756 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 757 // 758 // NOTE: rcp is the preference in cases that both are legal. 759 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 760 761 Type *Ty = FDiv.getType()->getScalarType(); 762 763 // No intrinsic for fdiv16 if target does not support f16. 764 if (Ty->isHalfTy() && !ST->has16BitInsts()) 765 return false; 766 767 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 768 const float ReqdAccuracy = FPOp->getFPAccuracy(); 769 770 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 771 FastMathFlags FMF = FPOp->getFastMathFlags(); 772 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 773 774 // rcp_f16 is accurate for !fpmath >= 1.0ulp. 775 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 776 // rcp_f64 is never accurate. 777 const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || 778 (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); 779 780 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 781 Builder.setFastMathFlags(FMF); 782 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 783 784 Value *Num = FDiv.getOperand(0); 785 Value *Den = FDiv.getOperand(1); 786 787 Value *NewFDiv = nullptr; 788 if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) { 789 NewFDiv = UndefValue::get(VT); 790 791 // FIXME: Doesn't do the right thing for cases where the vector is partially 792 // constant. This works when the scalarizer pass is run first. 793 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 794 Value *NumEltI = Builder.CreateExtractElement(Num, I); 795 Value *DenEltI = Builder.CreateExtractElement(Den, I); 796 // Try rcp first. 797 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 798 RcpIsAccurate, Builder, Mod); 799 if (!NewElt) // Try fdiv.fast. 800 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 801 HasFP32Denormals, Builder, Mod); 802 if (!NewElt) // Keep the original. 803 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 804 805 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 806 } 807 } else { // Scalar FDiv. 808 // Try rcp first. 809 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 810 Builder, Mod); 811 if (!NewFDiv) { // Try fdiv.fast. 812 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, 813 Builder, Mod); 814 } 815 } 816 817 if (NewFDiv) { 818 FDiv.replaceAllUsesWith(NewFDiv); 819 NewFDiv->takeName(&FDiv); 820 FDiv.eraseFromParent(); 821 } 822 823 return !!NewFDiv; 824 } 825 826 static bool hasUnsafeFPMath(const Function &F) { 827 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 828 return Attr.getValueAsString() == "true"; 829 } 830 831 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 832 Value *LHS, Value *RHS) { 833 Type *I32Ty = Builder.getInt32Ty(); 834 Type *I64Ty = Builder.getInt64Ty(); 835 836 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 837 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 838 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 839 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 840 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 841 Hi = Builder.CreateTrunc(Hi, I32Ty); 842 return std::make_pair(Lo, Hi); 843 } 844 845 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 846 return getMul64(Builder, LHS, RHS).second; 847 } 848 849 /// Figure out how many bits are really needed for this ddivision. \p AtLeast is 850 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 851 /// first one is insufficient. Returns -1 on failure. 852 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I, 853 Value *Num, Value *Den, 854 unsigned AtLeast, bool IsSigned) const { 855 const DataLayout &DL = Mod->getDataLayout(); 856 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 857 if (LHSSignBits < AtLeast) 858 return -1; 859 860 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 861 if (RHSSignBits < AtLeast) 862 return -1; 863 864 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 865 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 866 if (IsSigned) 867 ++DivBits; 868 return DivBits; 869 } 870 871 // The fractional part of a float is enough to accurately represent up to 872 // a 24-bit signed integer. 873 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 874 BinaryOperator &I, 875 Value *Num, Value *Den, 876 bool IsDiv, bool IsSigned) const { 877 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 878 if (DivBits == -1) 879 return nullptr; 880 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 881 } 882 883 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder, 884 BinaryOperator &I, 885 Value *Num, Value *Den, 886 unsigned DivBits, 887 bool IsDiv, bool IsSigned) const { 888 Type *I32Ty = Builder.getInt32Ty(); 889 Num = Builder.CreateTrunc(Num, I32Ty); 890 Den = Builder.CreateTrunc(Den, I32Ty); 891 892 Type *F32Ty = Builder.getFloatTy(); 893 ConstantInt *One = Builder.getInt32(1); 894 Value *JQ = One; 895 896 if (IsSigned) { 897 // char|short jq = ia ^ ib; 898 JQ = Builder.CreateXor(Num, Den); 899 900 // jq = jq >> (bitsize - 2) 901 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 902 903 // jq = jq | 0x1 904 JQ = Builder.CreateOr(JQ, One); 905 } 906 907 // int ia = (int)LHS; 908 Value *IA = Num; 909 910 // int ib, (int)RHS; 911 Value *IB = Den; 912 913 // float fa = (float)ia; 914 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 915 : Builder.CreateUIToFP(IA, F32Ty); 916 917 // float fb = (float)ib; 918 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 919 : Builder.CreateUIToFP(IB,F32Ty); 920 921 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 922 Builder.getFloatTy()); 923 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 924 Value *FQM = Builder.CreateFMul(FA, RCP); 925 926 // fq = trunc(fqm); 927 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 928 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 929 930 // float fqneg = -fq; 931 Value *FQNeg = Builder.CreateFNeg(FQ); 932 933 // float fr = mad(fqneg, fb, fa); 934 auto FMAD = !ST->hasMadMacF32Insts() 935 ? Intrinsic::fma 936 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 937 Value *FR = Builder.CreateIntrinsic(FMAD, 938 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 939 940 // int iq = (int)fq; 941 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 942 : Builder.CreateFPToUI(FQ, I32Ty); 943 944 // fr = fabs(fr); 945 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 946 947 // fb = fabs(fb); 948 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 949 950 // int cv = fr >= fb; 951 Value *CV = Builder.CreateFCmpOGE(FR, FB); 952 953 // jq = (cv ? jq : 0); 954 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 955 956 // dst = iq + jq; 957 Value *Div = Builder.CreateAdd(IQ, JQ); 958 959 Value *Res = Div; 960 if (!IsDiv) { 961 // Rem needs compensation, it's easier to recompute it 962 Value *Rem = Builder.CreateMul(Div, Den); 963 Res = Builder.CreateSub(Num, Rem); 964 } 965 966 if (DivBits != 0 && DivBits < 32) { 967 // Extend in register from the number of bits this divide really is. 968 if (IsSigned) { 969 int InRegBits = 32 - DivBits; 970 971 Res = Builder.CreateShl(Res, InRegBits); 972 Res = Builder.CreateAShr(Res, InRegBits); 973 } else { 974 ConstantInt *TruncMask 975 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 976 Res = Builder.CreateAnd(Res, TruncMask); 977 } 978 } 979 980 return Res; 981 } 982 983 // Try to recognize special cases the DAG will emit special, better expansions 984 // than the general expansion we do here. 985 986 // TODO: It would be better to just directly handle those optimizations here. 987 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization( 988 BinaryOperator &I, Value *Num, Value *Den) const { 989 if (Constant *C = dyn_cast<Constant>(Den)) { 990 // Arbitrary constants get a better expansion as long as a wider mulhi is 991 // legal. 992 if (C->getType()->getScalarSizeInBits() <= 32) 993 return true; 994 995 // TODO: Sdiv check for not exact for some reason. 996 997 // If there's no wider mulhi, there's only a better expansion for powers of 998 // two. 999 // TODO: Should really know for each vector element. 1000 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 1001 return true; 1002 1003 return false; 1004 } 1005 1006 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1007 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1008 if (BinOpDen->getOpcode() == Instruction::Shl && 1009 isa<Constant>(BinOpDen->getOperand(0)) && 1010 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1011 0, AC, &I, DT)) { 1012 return true; 1013 } 1014 } 1015 1016 return false; 1017 } 1018 1019 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1020 // Check whether the sign can be determined statically. 1021 KnownBits Known = computeKnownBits(V, *DL); 1022 if (Known.isNegative()) 1023 return Constant::getAllOnesValue(V->getType()); 1024 if (Known.isNonNegative()) 1025 return Constant::getNullValue(V->getType()); 1026 return Builder.CreateAShr(V, Builder.getInt32(31)); 1027 } 1028 1029 Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 1030 BinaryOperator &I, Value *X, 1031 Value *Y) const { 1032 Instruction::BinaryOps Opc = I.getOpcode(); 1033 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1034 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1035 1036 FastMathFlags FMF; 1037 FMF.setFast(); 1038 Builder.setFastMathFlags(FMF); 1039 1040 if (divHasSpecialOptimization(I, X, Y)) 1041 return nullptr; // Keep it for later optimization. 1042 1043 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1044 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1045 1046 Type *Ty = X->getType(); 1047 Type *I32Ty = Builder.getInt32Ty(); 1048 Type *F32Ty = Builder.getFloatTy(); 1049 1050 if (Ty->getScalarSizeInBits() < 32) { 1051 if (IsSigned) { 1052 X = Builder.CreateSExt(X, I32Ty); 1053 Y = Builder.CreateSExt(Y, I32Ty); 1054 } else { 1055 X = Builder.CreateZExt(X, I32Ty); 1056 Y = Builder.CreateZExt(Y, I32Ty); 1057 } 1058 } 1059 1060 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1061 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1062 Builder.CreateZExtOrTrunc(Res, Ty); 1063 } 1064 1065 ConstantInt *Zero = Builder.getInt32(0); 1066 ConstantInt *One = Builder.getInt32(1); 1067 1068 Value *Sign = nullptr; 1069 if (IsSigned) { 1070 Value *SignX = getSign32(X, Builder, DL); 1071 Value *SignY = getSign32(Y, Builder, DL); 1072 // Remainder sign is the same as LHS 1073 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1074 1075 X = Builder.CreateAdd(X, SignX); 1076 Y = Builder.CreateAdd(Y, SignY); 1077 1078 X = Builder.CreateXor(X, SignX); 1079 Y = Builder.CreateXor(Y, SignY); 1080 } 1081 1082 // The algorithm here is based on ideas from "Software Integer Division", Tom 1083 // Rodeheffer, August 2008. 1084 // 1085 // unsigned udiv(unsigned x, unsigned y) { 1086 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1087 // // that this is a lower bound on inv(y), even if some of the calculations 1088 // // round up. 1089 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1090 // 1091 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1092 // // Empirically this is guaranteed to give a "two-y" lower bound on 1093 // // inv(y). 1094 // z += umulh(z, -y * z); 1095 // 1096 // // Quotient/remainder estimate. 1097 // unsigned q = umulh(x, z); 1098 // unsigned r = x - q * y; 1099 // 1100 // // Two rounds of quotient/remainder refinement. 1101 // if (r >= y) { 1102 // ++q; 1103 // r -= y; 1104 // } 1105 // if (r >= y) { 1106 // ++q; 1107 // r -= y; 1108 // } 1109 // 1110 // return q; 1111 // } 1112 1113 // Initial estimate of inv(y). 1114 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1115 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1116 Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1117 Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE)); 1118 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1119 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1120 1121 // One round of UNR. 1122 Value *NegY = Builder.CreateSub(Zero, Y); 1123 Value *NegYZ = Builder.CreateMul(NegY, Z); 1124 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1125 1126 // Quotient/remainder estimate. 1127 Value *Q = getMulHu(Builder, X, Z); 1128 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1129 1130 // First quotient/remainder refinement. 1131 Value *Cond = Builder.CreateICmpUGE(R, Y); 1132 if (IsDiv) 1133 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1134 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1135 1136 // Second quotient/remainder refinement. 1137 Cond = Builder.CreateICmpUGE(R, Y); 1138 Value *Res; 1139 if (IsDiv) 1140 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1141 else 1142 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1143 1144 if (IsSigned) { 1145 Res = Builder.CreateXor(Res, Sign); 1146 Res = Builder.CreateSub(Res, Sign); 1147 } 1148 1149 Res = Builder.CreateTrunc(Res, Ty); 1150 1151 return Res; 1152 } 1153 1154 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder, 1155 BinaryOperator &I, 1156 Value *Num, Value *Den) const { 1157 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1158 return nullptr; // Keep it for later optimization. 1159 1160 Instruction::BinaryOps Opc = I.getOpcode(); 1161 1162 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1163 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1164 1165 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1166 if (NumDivBits == -1) 1167 return nullptr; 1168 1169 Value *Narrowed = nullptr; 1170 if (NumDivBits <= 24) { 1171 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1172 IsDiv, IsSigned); 1173 } else if (NumDivBits <= 32) { 1174 Narrowed = expandDivRem32(Builder, I, Num, Den); 1175 } 1176 1177 if (Narrowed) { 1178 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1179 Builder.CreateZExt(Narrowed, Num->getType()); 1180 } 1181 1182 return nullptr; 1183 } 1184 1185 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const { 1186 Instruction::BinaryOps Opc = I.getOpcode(); 1187 // Do the general expansion. 1188 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1189 expandDivisionUpTo64Bits(&I); 1190 return; 1191 } 1192 1193 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1194 expandRemainderUpTo64Bits(&I); 1195 return; 1196 } 1197 1198 llvm_unreachable("not a division"); 1199 } 1200 1201 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 1202 if (foldBinOpIntoSelect(I)) 1203 return true; 1204 1205 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1206 DA->isUniform(&I) && promoteUniformOpToI32(I)) 1207 return true; 1208 1209 if (UseMul24Intrin && replaceMulWithMul24(I)) 1210 return true; 1211 1212 bool Changed = false; 1213 Instruction::BinaryOps Opc = I.getOpcode(); 1214 Type *Ty = I.getType(); 1215 Value *NewDiv = nullptr; 1216 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1217 1218 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1219 1220 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1221 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1222 ScalarSize <= 64 && 1223 !DisableIDivExpand) { 1224 Value *Num = I.getOperand(0); 1225 Value *Den = I.getOperand(1); 1226 IRBuilder<> Builder(&I); 1227 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1228 1229 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1230 NewDiv = UndefValue::get(VT); 1231 1232 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1233 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1234 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1235 1236 Value *NewElt; 1237 if (ScalarSize <= 32) { 1238 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1239 if (!NewElt) 1240 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1241 } else { 1242 // See if this 64-bit division can be shrunk to 32/24-bits before 1243 // producing the general expansion. 1244 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1245 if (!NewElt) { 1246 // The general 64-bit expansion introduces control flow and doesn't 1247 // return the new value. Just insert a scalar copy and defer 1248 // expanding it. 1249 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1250 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1251 } 1252 } 1253 1254 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1255 } 1256 } else { 1257 if (ScalarSize <= 32) 1258 NewDiv = expandDivRem32(Builder, I, Num, Den); 1259 else { 1260 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1261 if (!NewDiv) 1262 Div64ToExpand.push_back(&I); 1263 } 1264 } 1265 1266 if (NewDiv) { 1267 I.replaceAllUsesWith(NewDiv); 1268 I.eraseFromParent(); 1269 Changed = true; 1270 } 1271 } 1272 1273 if (ExpandDiv64InIR) { 1274 // TODO: We get much worse code in specially handled constant cases. 1275 for (BinaryOperator *Div : Div64ToExpand) { 1276 expandDivRem64(*Div); 1277 Changed = true; 1278 } 1279 } 1280 1281 return Changed; 1282 } 1283 1284 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 1285 if (!WidenLoads) 1286 return false; 1287 1288 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1289 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1290 canWidenScalarExtLoad(I)) { 1291 IRBuilder<> Builder(&I); 1292 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1293 1294 Type *I32Ty = Builder.getInt32Ty(); 1295 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 1296 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 1297 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 1298 WidenLoad->copyMetadata(I); 1299 1300 // If we have range metadata, we need to convert the type, and not make 1301 // assumptions about the high bits. 1302 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1303 ConstantInt *Lower = 1304 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1305 1306 if (Lower->getValue().isNullValue()) { 1307 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1308 } else { 1309 Metadata *LowAndHigh[] = { 1310 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1311 // Don't make assumptions about the high bits. 1312 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1313 }; 1314 1315 WidenLoad->setMetadata(LLVMContext::MD_range, 1316 MDNode::get(Mod->getContext(), LowAndHigh)); 1317 } 1318 } 1319 1320 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1321 Type *IntNTy = Builder.getIntNTy(TySize); 1322 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1323 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1324 I.replaceAllUsesWith(ValOrig); 1325 I.eraseFromParent(); 1326 return true; 1327 } 1328 1329 return false; 1330 } 1331 1332 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1333 bool Changed = false; 1334 1335 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1336 DA->isUniform(&I)) 1337 Changed |= promoteUniformOpToI32(I); 1338 1339 return Changed; 1340 } 1341 1342 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1343 bool Changed = false; 1344 1345 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1346 DA->isUniform(&I)) 1347 Changed |= promoteUniformOpToI32(I); 1348 1349 return Changed; 1350 } 1351 1352 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1353 switch (I.getIntrinsicID()) { 1354 case Intrinsic::bitreverse: 1355 return visitBitreverseIntrinsicInst(I); 1356 default: 1357 return false; 1358 } 1359 } 1360 1361 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1362 bool Changed = false; 1363 1364 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1365 DA->isUniform(&I)) 1366 Changed |= promoteUniformBitreverseToI32(I); 1367 1368 return Changed; 1369 } 1370 1371 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1372 Mod = &M; 1373 DL = &Mod->getDataLayout(); 1374 return false; 1375 } 1376 1377 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1378 if (skipFunction(F)) 1379 return false; 1380 1381 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1382 if (!TPC) 1383 return false; 1384 1385 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1386 ST = &TM.getSubtarget<GCNSubtarget>(F); 1387 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1388 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1389 1390 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1391 DT = DTWP ? &DTWP->getDomTree() : nullptr; 1392 1393 HasUnsafeFPMath = hasUnsafeFPMath(F); 1394 1395 AMDGPU::SIModeRegisterDefaults Mode(F); 1396 HasFP32Denormals = Mode.allFP32Denormals(); 1397 1398 bool MadeChange = false; 1399 1400 Function::iterator NextBB; 1401 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 1402 BasicBlock *BB = &*FI; 1403 NextBB = std::next(FI); 1404 1405 BasicBlock::iterator Next; 1406 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) { 1407 Next = std::next(I); 1408 1409 MadeChange |= visit(*I); 1410 1411 if (Next != E) { // Control flow changed 1412 BasicBlock *NextInstBB = Next->getParent(); 1413 if (NextInstBB != BB) { 1414 BB = NextInstBB; 1415 E = BB->end(); 1416 FE = F.end(); 1417 } 1418 } 1419 } 1420 } 1421 1422 return MadeChange; 1423 } 1424 1425 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1426 "AMDGPU IR optimizations", false, false) 1427 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1428 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 1429 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1430 false, false) 1431 1432 char AMDGPUCodeGenPrepare::ID = 0; 1433 1434 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1435 return new AMDGPUCodeGenPrepare(); 1436 } 1437