1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "llvm/ADT/FloatingPointMode.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstVisitor.h" 35 #include "llvm/IR/InstrTypes.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/IR/Value.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/KnownBits.h" 48 #include "llvm/Transforms/Utils/IntegerDivision.h" 49 #include <cassert> 50 #include <iterator> 51 52 #define DEBUG_TYPE "amdgpu-codegenprepare" 53 54 using namespace llvm; 55 56 namespace { 57 58 static cl::opt<bool> WidenLoads( 59 "amdgpu-codegenprepare-widen-constant-loads", 60 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 61 cl::ReallyHidden, 62 cl::init(false)); 63 64 static cl::opt<bool> Widen16BitOps( 65 "amdgpu-codegenprepare-widen-16-bit-ops", 66 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 67 cl::ReallyHidden, 68 cl::init(true)); 69 70 static cl::opt<bool> UseMul24Intrin( 71 "amdgpu-codegenprepare-mul24", 72 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 // Legalize 64-bit division by using the generic IR expansion. 77 static cl::opt<bool> ExpandDiv64InIR( 78 "amdgpu-codegenprepare-expand-div64", 79 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 80 cl::ReallyHidden, 81 cl::init(false)); 82 83 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 84 // and is used for testing the legalizer. 85 static cl::opt<bool> DisableIDivExpand( 86 "amdgpu-codegenprepare-disable-idiv-expansion", 87 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 88 cl::ReallyHidden, 89 cl::init(false)); 90 91 class AMDGPUCodeGenPrepare : public FunctionPass, 92 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 93 const GCNSubtarget *ST = nullptr; 94 AssumptionCache *AC = nullptr; 95 DominatorTree *DT = nullptr; 96 LegacyDivergenceAnalysis *DA = nullptr; 97 Module *Mod = nullptr; 98 const DataLayout *DL = nullptr; 99 bool HasUnsafeFPMath = false; 100 bool HasFP32Denormals = false; 101 102 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 103 /// binary operation \p V. 104 /// 105 /// \returns Binary operation \p V. 106 /// \returns \p T's base element bit width. 107 unsigned getBaseElementBitWidth(const Type *T) const; 108 109 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 110 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 111 /// is returned. 112 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 113 114 /// \returns True if binary operation \p I is a signed binary operation, false 115 /// otherwise. 116 bool isSigned(const BinaryOperator &I) const; 117 118 /// \returns True if the condition of 'select' operation \p I comes from a 119 /// signed 'icmp' operation, false otherwise. 120 bool isSigned(const SelectInst &I) const; 121 122 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 123 /// false otherwise. 124 bool needsPromotionToI32(const Type *T) const; 125 126 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 127 /// operation. 128 /// 129 /// \details \p I's base element bit width must be greater than 1 and less 130 /// than or equal 16. Promotion is done by sign or zero extending operands to 131 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 132 /// truncating the result of 32 bit binary operation back to \p I's original 133 /// type. Division operation is not promoted. 134 /// 135 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 136 /// false otherwise. 137 bool promoteUniformOpToI32(BinaryOperator &I) const; 138 139 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 140 /// 141 /// \details \p I's base element bit width must be greater than 1 and less 142 /// than or equal 16. Promotion is done by sign or zero extending operands to 143 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 144 /// 145 /// \returns True. 146 bool promoteUniformOpToI32(ICmpInst &I) const; 147 148 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 149 /// operation. 150 /// 151 /// \details \p I's base element bit width must be greater than 1 and less 152 /// than or equal 16. Promotion is done by sign or zero extending operands to 153 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 154 /// result of 32 bit 'select' operation back to \p I's original type. 155 /// 156 /// \returns True. 157 bool promoteUniformOpToI32(SelectInst &I) const; 158 159 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 160 /// intrinsic. 161 /// 162 /// \details \p I's base element bit width must be greater than 1 and less 163 /// than or equal 16. Promotion is done by zero extending the operand to 32 164 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 165 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 166 /// shift amount is 32 minus \p I's base element bit width), and truncating 167 /// the result of the shift operation back to \p I's original type. 168 /// 169 /// \returns True. 170 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 171 172 173 unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const; 174 unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const; 175 bool isI24(Value *V, unsigned ScalarSize) const; 176 bool isU24(Value *V, unsigned ScalarSize) const; 177 178 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 179 /// SelectionDAG has an issue where an and asserting the bits are known 180 bool replaceMulWithMul24(BinaryOperator &I) const; 181 182 /// Perform same function as equivalently named function in DAGCombiner. Since 183 /// we expand some divisions here, we need to perform this before obscuring. 184 bool foldBinOpIntoSelect(BinaryOperator &I) const; 185 186 bool divHasSpecialOptimization(BinaryOperator &I, 187 Value *Num, Value *Den) const; 188 int getDivNumBits(BinaryOperator &I, 189 Value *Num, Value *Den, 190 unsigned AtLeast, bool Signed) const; 191 192 /// Expands 24 bit div or rem. 193 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 194 Value *Num, Value *Den, 195 bool IsDiv, bool IsSigned) const; 196 197 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 198 Value *Num, Value *Den, unsigned NumBits, 199 bool IsDiv, bool IsSigned) const; 200 201 /// Expands 32 bit div or rem. 202 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 203 Value *Num, Value *Den) const; 204 205 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 206 Value *Num, Value *Den) const; 207 void expandDivRem64(BinaryOperator &I) const; 208 209 /// Widen a scalar load. 210 /// 211 /// \details \p Widen scalar load for uniform, small type loads from constant 212 // memory / to a full 32-bits and then truncate the input to allow a scalar 213 // load instead of a vector load. 214 // 215 /// \returns True. 216 217 bool canWidenScalarExtLoad(LoadInst &I) const; 218 219 public: 220 static char ID; 221 222 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 223 224 bool visitFDiv(BinaryOperator &I); 225 226 bool visitInstruction(Instruction &I) { return false; } 227 bool visitBinaryOperator(BinaryOperator &I); 228 bool visitLoadInst(LoadInst &I); 229 bool visitICmpInst(ICmpInst &I); 230 bool visitSelectInst(SelectInst &I); 231 232 bool visitIntrinsicInst(IntrinsicInst &I); 233 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 234 235 bool doInitialization(Module &M) override; 236 bool runOnFunction(Function &F) override; 237 238 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 239 240 void getAnalysisUsage(AnalysisUsage &AU) const override { 241 AU.addRequired<AssumptionCacheTracker>(); 242 AU.addRequired<LegacyDivergenceAnalysis>(); 243 244 // FIXME: Division expansion needs to preserve the dominator tree. 245 if (!ExpandDiv64InIR) 246 AU.setPreservesAll(); 247 } 248 }; 249 250 } // end anonymous namespace 251 252 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 253 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 254 255 if (T->isIntegerTy()) 256 return T->getIntegerBitWidth(); 257 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 258 } 259 260 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 261 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 262 263 if (T->isIntegerTy()) 264 return B.getInt32Ty(); 265 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 266 } 267 268 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 269 return I.getOpcode() == Instruction::AShr || 270 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 271 } 272 273 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 274 return isa<ICmpInst>(I.getOperand(0)) ? 275 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 276 } 277 278 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 279 if (!Widen16BitOps) 280 return false; 281 282 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 283 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 284 return true; 285 286 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 287 // TODO: The set of packed operations is more limited, so may want to 288 // promote some anyway. 289 if (ST->hasVOP3PInsts()) 290 return false; 291 292 return needsPromotionToI32(VT->getElementType()); 293 } 294 295 return false; 296 } 297 298 // Return true if the op promoted to i32 should have nsw set. 299 static bool promotedOpIsNSW(const Instruction &I) { 300 switch (I.getOpcode()) { 301 case Instruction::Shl: 302 case Instruction::Add: 303 case Instruction::Sub: 304 return true; 305 case Instruction::Mul: 306 return I.hasNoUnsignedWrap(); 307 default: 308 return false; 309 } 310 } 311 312 // Return true if the op promoted to i32 should have nuw set. 313 static bool promotedOpIsNUW(const Instruction &I) { 314 switch (I.getOpcode()) { 315 case Instruction::Shl: 316 case Instruction::Add: 317 case Instruction::Mul: 318 return true; 319 case Instruction::Sub: 320 return I.hasNoUnsignedWrap(); 321 default: 322 return false; 323 } 324 } 325 326 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 327 Type *Ty = I.getType(); 328 const DataLayout &DL = Mod->getDataLayout(); 329 int TySize = DL.getTypeSizeInBits(Ty); 330 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 331 332 return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I); 333 } 334 335 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 336 assert(needsPromotionToI32(I.getType()) && 337 "I does not need promotion to i32"); 338 339 if (I.getOpcode() == Instruction::SDiv || 340 I.getOpcode() == Instruction::UDiv || 341 I.getOpcode() == Instruction::SRem || 342 I.getOpcode() == Instruction::URem) 343 return false; 344 345 IRBuilder<> Builder(&I); 346 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 347 348 Type *I32Ty = getI32Ty(Builder, I.getType()); 349 Value *ExtOp0 = nullptr; 350 Value *ExtOp1 = nullptr; 351 Value *ExtRes = nullptr; 352 Value *TruncRes = nullptr; 353 354 if (isSigned(I)) { 355 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 356 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 357 } else { 358 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 359 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 360 } 361 362 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 363 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 364 if (promotedOpIsNSW(cast<Instruction>(I))) 365 Inst->setHasNoSignedWrap(); 366 367 if (promotedOpIsNUW(cast<Instruction>(I))) 368 Inst->setHasNoUnsignedWrap(); 369 370 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 371 Inst->setIsExact(ExactOp->isExact()); 372 } 373 374 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 375 376 I.replaceAllUsesWith(TruncRes); 377 I.eraseFromParent(); 378 379 return true; 380 } 381 382 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 383 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 384 "I does not need promotion to i32"); 385 386 IRBuilder<> Builder(&I); 387 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 388 389 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 390 Value *ExtOp0 = nullptr; 391 Value *ExtOp1 = nullptr; 392 Value *NewICmp = nullptr; 393 394 if (I.isSigned()) { 395 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 396 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 397 } else { 398 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 399 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 400 } 401 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 402 403 I.replaceAllUsesWith(NewICmp); 404 I.eraseFromParent(); 405 406 return true; 407 } 408 409 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 410 assert(needsPromotionToI32(I.getType()) && 411 "I does not need promotion to i32"); 412 413 IRBuilder<> Builder(&I); 414 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 415 416 Type *I32Ty = getI32Ty(Builder, I.getType()); 417 Value *ExtOp1 = nullptr; 418 Value *ExtOp2 = nullptr; 419 Value *ExtRes = nullptr; 420 Value *TruncRes = nullptr; 421 422 if (isSigned(I)) { 423 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 424 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 425 } else { 426 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 427 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 428 } 429 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 430 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 431 432 I.replaceAllUsesWith(TruncRes); 433 I.eraseFromParent(); 434 435 return true; 436 } 437 438 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 439 IntrinsicInst &I) const { 440 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 441 "I must be bitreverse intrinsic"); 442 assert(needsPromotionToI32(I.getType()) && 443 "I does not need promotion to i32"); 444 445 IRBuilder<> Builder(&I); 446 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 447 448 Type *I32Ty = getI32Ty(Builder, I.getType()); 449 Function *I32 = 450 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 451 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 452 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 453 Value *LShrOp = 454 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 455 Value *TruncRes = 456 Builder.CreateTrunc(LShrOp, I.getType()); 457 458 I.replaceAllUsesWith(TruncRes); 459 I.eraseFromParent(); 460 461 return true; 462 } 463 464 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op, 465 unsigned ScalarSize) const { 466 KnownBits Known = computeKnownBits(Op, *DL, 0, AC); 467 return ScalarSize - Known.countMinLeadingZeros(); 468 } 469 470 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op, 471 unsigned ScalarSize) const { 472 // In order for this to be a signed 24-bit value, bit 23, must 473 // be a sign bit. 474 return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC); 475 } 476 477 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const { 478 return ScalarSize >= 24 && // Types less than 24-bit should be treated 479 // as unsigned 24-bit values. 480 numBitsSigned(V, ScalarSize) < 24; 481 } 482 483 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const { 484 return numBitsUnsigned(V, ScalarSize) <= 24; 485 } 486 487 static void extractValues(IRBuilder<> &Builder, 488 SmallVectorImpl<Value *> &Values, Value *V) { 489 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 490 if (!VT) { 491 Values.push_back(V); 492 return; 493 } 494 495 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 496 Values.push_back(Builder.CreateExtractElement(V, I)); 497 } 498 499 static Value *insertValues(IRBuilder<> &Builder, 500 Type *Ty, 501 SmallVectorImpl<Value *> &Values) { 502 if (Values.size() == 1) 503 return Values[0]; 504 505 Value *NewVal = UndefValue::get(Ty); 506 for (int I = 0, E = Values.size(); I != E; ++I) 507 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 508 509 return NewVal; 510 } 511 512 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 513 if (I.getOpcode() != Instruction::Mul) 514 return false; 515 516 Type *Ty = I.getType(); 517 unsigned Size = Ty->getScalarSizeInBits(); 518 if (Size <= 16 && ST->has16BitInsts()) 519 return false; 520 521 // Prefer scalar if this could be s_mul_i32 522 if (DA->isUniform(&I)) 523 return false; 524 525 Value *LHS = I.getOperand(0); 526 Value *RHS = I.getOperand(1); 527 IRBuilder<> Builder(&I); 528 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 529 530 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 531 532 // TODO: Should this try to match mulhi24? 533 if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) { 534 IntrID = Intrinsic::amdgcn_mul_u24; 535 } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) { 536 IntrID = Intrinsic::amdgcn_mul_i24; 537 } else 538 return false; 539 540 SmallVector<Value *, 4> LHSVals; 541 SmallVector<Value *, 4> RHSVals; 542 SmallVector<Value *, 4> ResultVals; 543 extractValues(Builder, LHSVals, LHS); 544 extractValues(Builder, RHSVals, RHS); 545 546 547 IntegerType *I32Ty = Builder.getInt32Ty(); 548 FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID); 549 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 550 Value *LHS, *RHS; 551 if (IntrID == Intrinsic::amdgcn_mul_u24) { 552 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 553 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 554 } else { 555 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 556 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 557 } 558 559 Value *Result = Builder.CreateCall(Intrin, {LHS, RHS}); 560 561 if (IntrID == Intrinsic::amdgcn_mul_u24) { 562 ResultVals.push_back(Builder.CreateZExtOrTrunc(Result, 563 LHSVals[I]->getType())); 564 } else { 565 ResultVals.push_back(Builder.CreateSExtOrTrunc(Result, 566 LHSVals[I]->getType())); 567 } 568 } 569 570 Value *NewVal = insertValues(Builder, Ty, ResultVals); 571 NewVal->takeName(&I); 572 I.replaceAllUsesWith(NewVal); 573 I.eraseFromParent(); 574 575 return true; 576 } 577 578 // Find a select instruction, which may have been casted. This is mostly to deal 579 // with cases where i16 selects were promoted here to i32. 580 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 581 Cast = nullptr; 582 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 583 return Sel; 584 585 if ((Cast = dyn_cast<CastInst>(V))) { 586 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 587 return Sel; 588 } 589 590 return nullptr; 591 } 592 593 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 594 // Don't do this unless the old select is going away. We want to eliminate the 595 // binary operator, not replace a binop with a select. 596 int SelOpNo = 0; 597 598 CastInst *CastOp; 599 600 // TODO: Should probably try to handle some cases with multiple 601 // users. Duplicating the select may be profitable for division. 602 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 603 if (!Sel || !Sel->hasOneUse()) { 604 SelOpNo = 1; 605 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 606 } 607 608 if (!Sel || !Sel->hasOneUse()) 609 return false; 610 611 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 612 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 613 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 614 if (!CBO || !CT || !CF) 615 return false; 616 617 if (CastOp) { 618 if (!CastOp->hasOneUse()) 619 return false; 620 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 621 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 622 } 623 624 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 625 // need to handle divisions here. 626 Constant *FoldedT = SelOpNo ? 627 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 628 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 629 if (isa<ConstantExpr>(FoldedT)) 630 return false; 631 632 Constant *FoldedF = SelOpNo ? 633 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 634 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 635 if (isa<ConstantExpr>(FoldedF)) 636 return false; 637 638 IRBuilder<> Builder(&BO); 639 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 640 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 641 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 642 643 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 644 FoldedT, FoldedF); 645 NewSelect->takeName(&BO); 646 BO.replaceAllUsesWith(NewSelect); 647 BO.eraseFromParent(); 648 if (CastOp) 649 CastOp->eraseFromParent(); 650 Sel->eraseFromParent(); 651 return true; 652 } 653 654 // Optimize fdiv with rcp: 655 // 656 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 657 // allowed with unsafe-fp-math or afn. 658 // 659 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 660 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 661 bool RcpIsAccurate, IRBuilder<> &Builder, 662 Module *Mod) { 663 664 if (!AllowInaccurateRcp && !RcpIsAccurate) 665 return nullptr; 666 667 Type *Ty = Den->getType(); 668 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 669 if (AllowInaccurateRcp || RcpIsAccurate) { 670 if (CLHS->isExactlyValue(1.0)) { 671 Function *Decl = Intrinsic::getDeclaration( 672 Mod, Intrinsic::amdgcn_rcp, Ty); 673 674 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 675 // the CI documentation has a worst case error of 1 ulp. 676 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 677 // use it as long as we aren't trying to use denormals. 678 // 679 // v_rcp_f16 and v_rsq_f16 DO support denormals. 680 681 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 682 // insert rsq intrinsic here. 683 684 // 1.0 / x -> rcp(x) 685 return Builder.CreateCall(Decl, { Den }); 686 } 687 688 // Same as for 1.0, but expand the sign out of the constant. 689 if (CLHS->isExactlyValue(-1.0)) { 690 Function *Decl = Intrinsic::getDeclaration( 691 Mod, Intrinsic::amdgcn_rcp, Ty); 692 693 // -1.0 / x -> rcp (fneg x) 694 Value *FNeg = Builder.CreateFNeg(Den); 695 return Builder.CreateCall(Decl, { FNeg }); 696 } 697 } 698 } 699 700 if (AllowInaccurateRcp) { 701 Function *Decl = Intrinsic::getDeclaration( 702 Mod, Intrinsic::amdgcn_rcp, Ty); 703 704 // Turn into multiply by the reciprocal. 705 // x / y -> x * (1.0 / y) 706 Value *Recip = Builder.CreateCall(Decl, { Den }); 707 return Builder.CreateFMul(Num, Recip); 708 } 709 return nullptr; 710 } 711 712 // optimize with fdiv.fast: 713 // 714 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 715 // 716 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 717 // 718 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 719 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 720 bool HasDenormals, IRBuilder<> &Builder, 721 Module *Mod) { 722 // fdiv.fast can achieve 2.5 ULP accuracy. 723 if (ReqdAccuracy < 2.5f) 724 return nullptr; 725 726 // Only have fdiv.fast for f32. 727 Type *Ty = Den->getType(); 728 if (!Ty->isFloatTy()) 729 return nullptr; 730 731 bool NumIsOne = false; 732 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 733 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 734 NumIsOne = true; 735 } 736 737 // fdiv does not support denormals. But 1.0/x is always fine to use it. 738 if (HasDenormals && !NumIsOne) 739 return nullptr; 740 741 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 742 return Builder.CreateCall(Decl, { Num, Den }); 743 } 744 745 // Optimizations is performed based on fpmath, fast math flags as well as 746 // denormals to optimize fdiv with either rcp or fdiv.fast. 747 // 748 // With rcp: 749 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 750 // allowed with unsafe-fp-math or afn. 751 // 752 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 753 // 754 // With fdiv.fast: 755 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 756 // 757 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 758 // 759 // NOTE: rcp is the preference in cases that both are legal. 760 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 761 762 Type *Ty = FDiv.getType()->getScalarType(); 763 764 // No intrinsic for fdiv16 if target does not support f16. 765 if (Ty->isHalfTy() && !ST->has16BitInsts()) 766 return false; 767 768 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 769 const float ReqdAccuracy = FPOp->getFPAccuracy(); 770 771 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 772 FastMathFlags FMF = FPOp->getFastMathFlags(); 773 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 774 775 // rcp_f16 is accurate for !fpmath >= 1.0ulp. 776 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 777 // rcp_f64 is never accurate. 778 const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || 779 (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); 780 781 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 782 Builder.setFastMathFlags(FMF); 783 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 784 785 Value *Num = FDiv.getOperand(0); 786 Value *Den = FDiv.getOperand(1); 787 788 Value *NewFDiv = nullptr; 789 if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) { 790 NewFDiv = UndefValue::get(VT); 791 792 // FIXME: Doesn't do the right thing for cases where the vector is partially 793 // constant. This works when the scalarizer pass is run first. 794 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 795 Value *NumEltI = Builder.CreateExtractElement(Num, I); 796 Value *DenEltI = Builder.CreateExtractElement(Den, I); 797 // Try rcp first. 798 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 799 RcpIsAccurate, Builder, Mod); 800 if (!NewElt) // Try fdiv.fast. 801 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 802 HasFP32Denormals, Builder, Mod); 803 if (!NewElt) // Keep the original. 804 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 805 806 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 807 } 808 } else { // Scalar FDiv. 809 // Try rcp first. 810 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 811 Builder, Mod); 812 if (!NewFDiv) { // Try fdiv.fast. 813 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, 814 Builder, Mod); 815 } 816 } 817 818 if (NewFDiv) { 819 FDiv.replaceAllUsesWith(NewFDiv); 820 NewFDiv->takeName(&FDiv); 821 FDiv.eraseFromParent(); 822 } 823 824 return !!NewFDiv; 825 } 826 827 static bool hasUnsafeFPMath(const Function &F) { 828 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 829 return Attr.getValueAsString() == "true"; 830 } 831 832 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 833 Value *LHS, Value *RHS) { 834 Type *I32Ty = Builder.getInt32Ty(); 835 Type *I64Ty = Builder.getInt64Ty(); 836 837 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 838 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 839 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 840 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 841 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 842 Hi = Builder.CreateTrunc(Hi, I32Ty); 843 return std::make_pair(Lo, Hi); 844 } 845 846 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 847 return getMul64(Builder, LHS, RHS).second; 848 } 849 850 /// Figure out how many bits are really needed for this ddivision. \p AtLeast is 851 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 852 /// first one is insufficient. Returns -1 on failure. 853 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I, 854 Value *Num, Value *Den, 855 unsigned AtLeast, bool IsSigned) const { 856 const DataLayout &DL = Mod->getDataLayout(); 857 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 858 if (LHSSignBits < AtLeast) 859 return -1; 860 861 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 862 if (RHSSignBits < AtLeast) 863 return -1; 864 865 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 866 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 867 if (IsSigned) 868 ++DivBits; 869 return DivBits; 870 } 871 872 // The fractional part of a float is enough to accurately represent up to 873 // a 24-bit signed integer. 874 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 875 BinaryOperator &I, 876 Value *Num, Value *Den, 877 bool IsDiv, bool IsSigned) const { 878 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 879 if (DivBits == -1) 880 return nullptr; 881 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 882 } 883 884 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder, 885 BinaryOperator &I, 886 Value *Num, Value *Den, 887 unsigned DivBits, 888 bool IsDiv, bool IsSigned) const { 889 Type *I32Ty = Builder.getInt32Ty(); 890 Num = Builder.CreateTrunc(Num, I32Ty); 891 Den = Builder.CreateTrunc(Den, I32Ty); 892 893 Type *F32Ty = Builder.getFloatTy(); 894 ConstantInt *One = Builder.getInt32(1); 895 Value *JQ = One; 896 897 if (IsSigned) { 898 // char|short jq = ia ^ ib; 899 JQ = Builder.CreateXor(Num, Den); 900 901 // jq = jq >> (bitsize - 2) 902 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 903 904 // jq = jq | 0x1 905 JQ = Builder.CreateOr(JQ, One); 906 } 907 908 // int ia = (int)LHS; 909 Value *IA = Num; 910 911 // int ib, (int)RHS; 912 Value *IB = Den; 913 914 // float fa = (float)ia; 915 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 916 : Builder.CreateUIToFP(IA, F32Ty); 917 918 // float fb = (float)ib; 919 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 920 : Builder.CreateUIToFP(IB,F32Ty); 921 922 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 923 Builder.getFloatTy()); 924 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 925 Value *FQM = Builder.CreateFMul(FA, RCP); 926 927 // fq = trunc(fqm); 928 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 929 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 930 931 // float fqneg = -fq; 932 Value *FQNeg = Builder.CreateFNeg(FQ); 933 934 // float fr = mad(fqneg, fb, fa); 935 auto FMAD = !ST->hasMadMacF32Insts() 936 ? Intrinsic::fma 937 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 938 Value *FR = Builder.CreateIntrinsic(FMAD, 939 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 940 941 // int iq = (int)fq; 942 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 943 : Builder.CreateFPToUI(FQ, I32Ty); 944 945 // fr = fabs(fr); 946 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 947 948 // fb = fabs(fb); 949 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 950 951 // int cv = fr >= fb; 952 Value *CV = Builder.CreateFCmpOGE(FR, FB); 953 954 // jq = (cv ? jq : 0); 955 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 956 957 // dst = iq + jq; 958 Value *Div = Builder.CreateAdd(IQ, JQ); 959 960 Value *Res = Div; 961 if (!IsDiv) { 962 // Rem needs compensation, it's easier to recompute it 963 Value *Rem = Builder.CreateMul(Div, Den); 964 Res = Builder.CreateSub(Num, Rem); 965 } 966 967 if (DivBits != 0 && DivBits < 32) { 968 // Extend in register from the number of bits this divide really is. 969 if (IsSigned) { 970 int InRegBits = 32 - DivBits; 971 972 Res = Builder.CreateShl(Res, InRegBits); 973 Res = Builder.CreateAShr(Res, InRegBits); 974 } else { 975 ConstantInt *TruncMask 976 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 977 Res = Builder.CreateAnd(Res, TruncMask); 978 } 979 } 980 981 return Res; 982 } 983 984 // Try to recognize special cases the DAG will emit special, better expansions 985 // than the general expansion we do here. 986 987 // TODO: It would be better to just directly handle those optimizations here. 988 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization( 989 BinaryOperator &I, Value *Num, Value *Den) const { 990 if (Constant *C = dyn_cast<Constant>(Den)) { 991 // Arbitrary constants get a better expansion as long as a wider mulhi is 992 // legal. 993 if (C->getType()->getScalarSizeInBits() <= 32) 994 return true; 995 996 // TODO: Sdiv check for not exact for some reason. 997 998 // If there's no wider mulhi, there's only a better expansion for powers of 999 // two. 1000 // TODO: Should really know for each vector element. 1001 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 1002 return true; 1003 1004 return false; 1005 } 1006 1007 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1008 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1009 if (BinOpDen->getOpcode() == Instruction::Shl && 1010 isa<Constant>(BinOpDen->getOperand(0)) && 1011 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1012 0, AC, &I, DT)) { 1013 return true; 1014 } 1015 } 1016 1017 return false; 1018 } 1019 1020 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1021 // Check whether the sign can be determined statically. 1022 KnownBits Known = computeKnownBits(V, *DL); 1023 if (Known.isNegative()) 1024 return Constant::getAllOnesValue(V->getType()); 1025 if (Known.isNonNegative()) 1026 return Constant::getNullValue(V->getType()); 1027 return Builder.CreateAShr(V, Builder.getInt32(31)); 1028 } 1029 1030 Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 1031 BinaryOperator &I, Value *X, 1032 Value *Y) const { 1033 Instruction::BinaryOps Opc = I.getOpcode(); 1034 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1035 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1036 1037 FastMathFlags FMF; 1038 FMF.setFast(); 1039 Builder.setFastMathFlags(FMF); 1040 1041 if (divHasSpecialOptimization(I, X, Y)) 1042 return nullptr; // Keep it for later optimization. 1043 1044 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1045 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1046 1047 Type *Ty = X->getType(); 1048 Type *I32Ty = Builder.getInt32Ty(); 1049 Type *F32Ty = Builder.getFloatTy(); 1050 1051 if (Ty->getScalarSizeInBits() < 32) { 1052 if (IsSigned) { 1053 X = Builder.CreateSExt(X, I32Ty); 1054 Y = Builder.CreateSExt(Y, I32Ty); 1055 } else { 1056 X = Builder.CreateZExt(X, I32Ty); 1057 Y = Builder.CreateZExt(Y, I32Ty); 1058 } 1059 } 1060 1061 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1062 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1063 Builder.CreateZExtOrTrunc(Res, Ty); 1064 } 1065 1066 ConstantInt *Zero = Builder.getInt32(0); 1067 ConstantInt *One = Builder.getInt32(1); 1068 1069 Value *Sign = nullptr; 1070 if (IsSigned) { 1071 Value *SignX = getSign32(X, Builder, DL); 1072 Value *SignY = getSign32(Y, Builder, DL); 1073 // Remainder sign is the same as LHS 1074 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1075 1076 X = Builder.CreateAdd(X, SignX); 1077 Y = Builder.CreateAdd(Y, SignY); 1078 1079 X = Builder.CreateXor(X, SignX); 1080 Y = Builder.CreateXor(Y, SignY); 1081 } 1082 1083 // The algorithm here is based on ideas from "Software Integer Division", Tom 1084 // Rodeheffer, August 2008. 1085 // 1086 // unsigned udiv(unsigned x, unsigned y) { 1087 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1088 // // that this is a lower bound on inv(y), even if some of the calculations 1089 // // round up. 1090 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1091 // 1092 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1093 // // Empirically this is guaranteed to give a "two-y" lower bound on 1094 // // inv(y). 1095 // z += umulh(z, -y * z); 1096 // 1097 // // Quotient/remainder estimate. 1098 // unsigned q = umulh(x, z); 1099 // unsigned r = x - q * y; 1100 // 1101 // // Two rounds of quotient/remainder refinement. 1102 // if (r >= y) { 1103 // ++q; 1104 // r -= y; 1105 // } 1106 // if (r >= y) { 1107 // ++q; 1108 // r -= y; 1109 // } 1110 // 1111 // return q; 1112 // } 1113 1114 // Initial estimate of inv(y). 1115 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1116 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1117 Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1118 Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE)); 1119 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1120 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1121 1122 // One round of UNR. 1123 Value *NegY = Builder.CreateSub(Zero, Y); 1124 Value *NegYZ = Builder.CreateMul(NegY, Z); 1125 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1126 1127 // Quotient/remainder estimate. 1128 Value *Q = getMulHu(Builder, X, Z); 1129 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1130 1131 // First quotient/remainder refinement. 1132 Value *Cond = Builder.CreateICmpUGE(R, Y); 1133 if (IsDiv) 1134 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1135 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1136 1137 // Second quotient/remainder refinement. 1138 Cond = Builder.CreateICmpUGE(R, Y); 1139 Value *Res; 1140 if (IsDiv) 1141 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1142 else 1143 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1144 1145 if (IsSigned) { 1146 Res = Builder.CreateXor(Res, Sign); 1147 Res = Builder.CreateSub(Res, Sign); 1148 } 1149 1150 Res = Builder.CreateTrunc(Res, Ty); 1151 1152 return Res; 1153 } 1154 1155 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder, 1156 BinaryOperator &I, 1157 Value *Num, Value *Den) const { 1158 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1159 return nullptr; // Keep it for later optimization. 1160 1161 Instruction::BinaryOps Opc = I.getOpcode(); 1162 1163 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1164 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1165 1166 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1167 if (NumDivBits == -1) 1168 return nullptr; 1169 1170 Value *Narrowed = nullptr; 1171 if (NumDivBits <= 24) { 1172 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1173 IsDiv, IsSigned); 1174 } else if (NumDivBits <= 32) { 1175 Narrowed = expandDivRem32(Builder, I, Num, Den); 1176 } 1177 1178 if (Narrowed) { 1179 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1180 Builder.CreateZExt(Narrowed, Num->getType()); 1181 } 1182 1183 return nullptr; 1184 } 1185 1186 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const { 1187 Instruction::BinaryOps Opc = I.getOpcode(); 1188 // Do the general expansion. 1189 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1190 expandDivisionUpTo64Bits(&I); 1191 return; 1192 } 1193 1194 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1195 expandRemainderUpTo64Bits(&I); 1196 return; 1197 } 1198 1199 llvm_unreachable("not a division"); 1200 } 1201 1202 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 1203 if (foldBinOpIntoSelect(I)) 1204 return true; 1205 1206 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1207 DA->isUniform(&I) && promoteUniformOpToI32(I)) 1208 return true; 1209 1210 if (UseMul24Intrin && replaceMulWithMul24(I)) 1211 return true; 1212 1213 bool Changed = false; 1214 Instruction::BinaryOps Opc = I.getOpcode(); 1215 Type *Ty = I.getType(); 1216 Value *NewDiv = nullptr; 1217 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1218 1219 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1220 1221 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1222 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1223 ScalarSize <= 64 && 1224 !DisableIDivExpand) { 1225 Value *Num = I.getOperand(0); 1226 Value *Den = I.getOperand(1); 1227 IRBuilder<> Builder(&I); 1228 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1229 1230 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1231 NewDiv = UndefValue::get(VT); 1232 1233 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1234 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1235 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1236 1237 Value *NewElt; 1238 if (ScalarSize <= 32) { 1239 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1240 if (!NewElt) 1241 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1242 } else { 1243 // See if this 64-bit division can be shrunk to 32/24-bits before 1244 // producing the general expansion. 1245 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1246 if (!NewElt) { 1247 // The general 64-bit expansion introduces control flow and doesn't 1248 // return the new value. Just insert a scalar copy and defer 1249 // expanding it. 1250 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1251 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1252 } 1253 } 1254 1255 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1256 } 1257 } else { 1258 if (ScalarSize <= 32) 1259 NewDiv = expandDivRem32(Builder, I, Num, Den); 1260 else { 1261 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1262 if (!NewDiv) 1263 Div64ToExpand.push_back(&I); 1264 } 1265 } 1266 1267 if (NewDiv) { 1268 I.replaceAllUsesWith(NewDiv); 1269 I.eraseFromParent(); 1270 Changed = true; 1271 } 1272 } 1273 1274 if (ExpandDiv64InIR) { 1275 // TODO: We get much worse code in specially handled constant cases. 1276 for (BinaryOperator *Div : Div64ToExpand) { 1277 expandDivRem64(*Div); 1278 Changed = true; 1279 } 1280 } 1281 1282 return Changed; 1283 } 1284 1285 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 1286 if (!WidenLoads) 1287 return false; 1288 1289 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1290 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1291 canWidenScalarExtLoad(I)) { 1292 IRBuilder<> Builder(&I); 1293 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1294 1295 Type *I32Ty = Builder.getInt32Ty(); 1296 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 1297 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 1298 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 1299 WidenLoad->copyMetadata(I); 1300 1301 // If we have range metadata, we need to convert the type, and not make 1302 // assumptions about the high bits. 1303 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1304 ConstantInt *Lower = 1305 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1306 1307 if (Lower->getValue().isNullValue()) { 1308 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1309 } else { 1310 Metadata *LowAndHigh[] = { 1311 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1312 // Don't make assumptions about the high bits. 1313 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1314 }; 1315 1316 WidenLoad->setMetadata(LLVMContext::MD_range, 1317 MDNode::get(Mod->getContext(), LowAndHigh)); 1318 } 1319 } 1320 1321 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1322 Type *IntNTy = Builder.getIntNTy(TySize); 1323 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1324 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1325 I.replaceAllUsesWith(ValOrig); 1326 I.eraseFromParent(); 1327 return true; 1328 } 1329 1330 return false; 1331 } 1332 1333 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1334 bool Changed = false; 1335 1336 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1337 DA->isUniform(&I)) 1338 Changed |= promoteUniformOpToI32(I); 1339 1340 return Changed; 1341 } 1342 1343 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1344 bool Changed = false; 1345 1346 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1347 DA->isUniform(&I)) 1348 Changed |= promoteUniformOpToI32(I); 1349 1350 return Changed; 1351 } 1352 1353 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1354 switch (I.getIntrinsicID()) { 1355 case Intrinsic::bitreverse: 1356 return visitBitreverseIntrinsicInst(I); 1357 default: 1358 return false; 1359 } 1360 } 1361 1362 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1363 bool Changed = false; 1364 1365 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1366 DA->isUniform(&I)) 1367 Changed |= promoteUniformBitreverseToI32(I); 1368 1369 return Changed; 1370 } 1371 1372 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1373 Mod = &M; 1374 DL = &Mod->getDataLayout(); 1375 return false; 1376 } 1377 1378 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1379 if (skipFunction(F)) 1380 return false; 1381 1382 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1383 if (!TPC) 1384 return false; 1385 1386 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1387 ST = &TM.getSubtarget<GCNSubtarget>(F); 1388 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1389 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1390 1391 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1392 DT = DTWP ? &DTWP->getDomTree() : nullptr; 1393 1394 HasUnsafeFPMath = hasUnsafeFPMath(F); 1395 1396 AMDGPU::SIModeRegisterDefaults Mode(F); 1397 HasFP32Denormals = Mode.allFP32Denormals(); 1398 1399 bool MadeChange = false; 1400 1401 Function::iterator NextBB; 1402 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 1403 BasicBlock *BB = &*FI; 1404 NextBB = std::next(FI); 1405 1406 BasicBlock::iterator Next; 1407 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) { 1408 Next = std::next(I); 1409 1410 MadeChange |= visit(*I); 1411 1412 if (Next != E) { // Control flow changed 1413 BasicBlock *NextInstBB = Next->getParent(); 1414 if (NextInstBB != BB) { 1415 BB = NextInstBB; 1416 E = BB->end(); 1417 FE = F.end(); 1418 } 1419 } 1420 } 1421 } 1422 1423 return MadeChange; 1424 } 1425 1426 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1427 "AMDGPU IR optimizations", false, false) 1428 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1429 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 1430 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1431 false, false) 1432 1433 char AMDGPUCodeGenPrepare::ID = 0; 1434 1435 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1436 return new AMDGPUCodeGenPrepare(); 1437 } 1438