1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "SIRegisterInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 26 #define DEBUG_TYPE "amdgpu-call-lowering" 27 28 using namespace llvm; 29 30 namespace { 31 32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register. 33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler, 34 Register ValVReg, CCValAssign &VA) { 35 if (VA.getLocVT().getSizeInBits() < 32) { 36 // 16-bit types are reported as legal for 32-bit registers. We need to 37 // extend and do a 32-bit copy to avoid the verifier complaining about it. 38 return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 39 } 40 41 return Handler.extendRegister(ValVReg, VA); 42 } 43 44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler { 45 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 46 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 47 : OutgoingValueHandler(B, MRI, AssignFn), MIB(MIB) {} 48 49 MachineInstrBuilder MIB; 50 51 Register getStackAddress(uint64_t Size, int64_t Offset, 52 MachinePointerInfo &MPO, 53 ISD::ArgFlagsTy Flags) override { 54 llvm_unreachable("not implemented"); 55 } 56 57 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 58 MachinePointerInfo &MPO, CCValAssign &VA) override { 59 llvm_unreachable("not implemented"); 60 } 61 62 void assignValueToReg(Register ValVReg, Register PhysReg, 63 CCValAssign &VA) override { 64 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 65 66 // If this is a scalar return, insert a readfirstlane just in case the value 67 // ends up in a VGPR. 68 // FIXME: Assert this is a shader return. 69 const SIRegisterInfo *TRI 70 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 71 if (TRI->isSGPRReg(MRI, PhysReg)) { 72 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 73 {MRI.getType(ExtReg)}, false) 74 .addReg(ExtReg); 75 ExtReg = ToSGPR.getReg(0); 76 } 77 78 MIRBuilder.buildCopy(PhysReg, ExtReg); 79 MIB.addUse(PhysReg, RegState::Implicit); 80 } 81 }; 82 83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler { 84 uint64_t StackUsed = 0; 85 86 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 87 CCAssignFn *AssignFn) 88 : IncomingValueHandler(B, MRI, AssignFn) {} 89 90 Register getStackAddress(uint64_t Size, int64_t Offset, 91 MachinePointerInfo &MPO, 92 ISD::ArgFlagsTy Flags) override { 93 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 94 95 // Byval is assumed to be writable memory, but other stack passed arguments 96 // are not. 97 const bool IsImmutable = !Flags.isByVal(); 98 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); 99 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 100 auto AddrReg = MIRBuilder.buildFrameIndex( 101 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 102 StackUsed = std::max(StackUsed, Size + Offset); 103 return AddrReg.getReg(0); 104 } 105 106 void assignValueToReg(Register ValVReg, Register PhysReg, 107 CCValAssign &VA) override { 108 markPhysRegUsed(PhysReg); 109 110 if (VA.getLocVT().getSizeInBits() < 32) { 111 // 16-bit types are reported as legal for 32-bit registers. We need to do 112 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 113 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 114 115 // If we have signext/zeroext, it applies to the whole 32-bit register 116 // before truncation. 117 auto Extended = 118 buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT())); 119 MIRBuilder.buildTrunc(ValVReg, Extended); 120 return; 121 } 122 123 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); 124 } 125 126 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize, 127 MachinePointerInfo &MPO, CCValAssign &VA) override { 128 MachineFunction &MF = MIRBuilder.getMF(); 129 130 // The reported memory location may be wider than the value. 131 const LLT RegTy = MRI.getType(ValVReg); 132 MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize); 133 134 // FIXME: Get alignment 135 auto MMO = MF.getMachineMemOperand( 136 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize, 137 inferAlignFromPtrInfo(MF, MPO)); 138 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 139 } 140 141 /// How the physical register gets marked varies between formal 142 /// parameters (it's a basic-block live-in), and a call instruction 143 /// (it's an implicit-def of the BL). 144 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 145 }; 146 147 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 148 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 149 CCAssignFn *AssignFn) 150 : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {} 151 152 void markPhysRegUsed(unsigned PhysReg) override { 153 MIRBuilder.getMBB().addLiveIn(PhysReg); 154 } 155 }; 156 157 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 158 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 159 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 160 : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} 161 162 void markPhysRegUsed(unsigned PhysReg) override { 163 MIB.addDef(PhysReg, RegState::Implicit); 164 } 165 166 MachineInstrBuilder MIB; 167 }; 168 169 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler { 170 CCAssignFn *AssignFnVarArg; 171 172 /// For tail calls, the byte offset of the call's argument area from the 173 /// callee's. Unused elsewhere. 174 int FPDiff; 175 176 // Cache the SP register vreg if we need it more than once in this call site. 177 Register SPReg; 178 179 bool IsTailCall; 180 181 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 182 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 183 CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg, 184 bool IsTailCall = false, int FPDiff = 0) 185 : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB, AssignFn), 186 AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) { 187 } 188 189 Register getStackAddress(uint64_t Size, int64_t Offset, 190 MachinePointerInfo &MPO, 191 ISD::ArgFlagsTy Flags) override { 192 MachineFunction &MF = MIRBuilder.getMF(); 193 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 194 const LLT S32 = LLT::scalar(32); 195 196 if (IsTailCall) { 197 llvm_unreachable("implement me"); 198 } 199 200 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 201 202 if (!SPReg) 203 SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0); 204 205 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 206 207 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 208 MPO = MachinePointerInfo::getStack(MF, Offset); 209 return AddrReg.getReg(0); 210 } 211 212 void assignValueToReg(Register ValVReg, Register PhysReg, 213 CCValAssign &VA) override { 214 MIB.addUse(PhysReg, RegState::Implicit); 215 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 216 MIRBuilder.buildCopy(PhysReg, ExtReg); 217 } 218 219 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 220 MachinePointerInfo &MPO, CCValAssign &VA) override { 221 MachineFunction &MF = MIRBuilder.getMF(); 222 uint64_t LocMemOffset = VA.getLocMemOffset(); 223 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 224 225 auto MMO = MF.getMachineMemOperand( 226 MPO, MachineMemOperand::MOStore, Size, 227 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 228 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 229 } 230 231 void assignValueToAddress(const CallLowering::ArgInfo &Arg, 232 unsigned ValRegIndex, Register Addr, 233 uint64_t MemSize, MachinePointerInfo &MPO, 234 CCValAssign &VA) override { 235 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 236 ? extendRegister(Arg.Regs[ValRegIndex], VA) 237 : Arg.Regs[ValRegIndex]; 238 239 // If we extended the value type we might need to adjust the MMO's 240 // Size. This happens if ComputeValueVTs widened a small type value to a 241 // legal register type (e.g. s8->s16) 242 const LLT RegTy = MRI.getType(ValVReg); 243 MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes()); 244 assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA); 245 } 246 }; 247 } 248 249 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 250 : CallLowering(&TLI) { 251 } 252 253 // FIXME: Compatability shim 254 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 255 switch (MIOpc) { 256 case TargetOpcode::G_SEXT: 257 return ISD::SIGN_EXTEND; 258 case TargetOpcode::G_ZEXT: 259 return ISD::ZERO_EXTEND; 260 case TargetOpcode::G_ANYEXT: 261 return ISD::ANY_EXTEND; 262 default: 263 llvm_unreachable("not an extend opcode"); 264 } 265 } 266 267 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, 268 CallingConv::ID CallConv, 269 SmallVectorImpl<BaseArgInfo> &Outs, 270 bool IsVarArg) const { 271 // For shaders. Vector types should be explicitly handled by CC. 272 if (AMDGPU::isEntryFunctionCC(CallConv)) 273 return true; 274 275 SmallVector<CCValAssign, 16> ArgLocs; 276 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 277 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 278 MF.getFunction().getContext()); 279 280 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); 281 } 282 283 /// Lower the return value for the already existing \p Ret. This assumes that 284 /// \p B's insertion point is correct. 285 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 286 const Value *Val, ArrayRef<Register> VRegs, 287 MachineInstrBuilder &Ret) const { 288 if (!Val) 289 return true; 290 291 auto &MF = B.getMF(); 292 const auto &F = MF.getFunction(); 293 const DataLayout &DL = MF.getDataLayout(); 294 MachineRegisterInfo *MRI = B.getMRI(); 295 LLVMContext &Ctx = F.getContext(); 296 297 CallingConv::ID CC = F.getCallingConv(); 298 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 299 300 SmallVector<EVT, 8> SplitEVTs; 301 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 302 assert(VRegs.size() == SplitEVTs.size() && 303 "For each split Type there should be exactly one VReg."); 304 305 SmallVector<ArgInfo, 8> SplitRetInfos; 306 307 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 308 EVT VT = SplitEVTs[i]; 309 Register Reg = VRegs[i]; 310 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx)); 311 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 312 313 if (VT.isScalarInteger()) { 314 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 315 if (RetInfo.Flags[0].isSExt()) { 316 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 317 ExtendOp = TargetOpcode::G_SEXT; 318 } else if (RetInfo.Flags[0].isZExt()) { 319 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 320 ExtendOp = TargetOpcode::G_ZEXT; 321 } 322 323 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 324 extOpcodeToISDExtOpcode(ExtendOp)); 325 if (ExtVT != VT) { 326 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 327 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 328 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 329 } 330 } 331 332 if (Reg != RetInfo.Regs[0]) { 333 RetInfo.Regs[0] = Reg; 334 // Reset the arg flags after modifying Reg. 335 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 336 } 337 338 splitToValueTypes(RetInfo, SplitRetInfos, DL, CC); 339 } 340 341 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 342 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn); 343 return handleAssignments(B, SplitRetInfos, RetHandler, CC, F.isVarArg()); 344 } 345 346 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 347 ArrayRef<Register> VRegs, 348 FunctionLoweringInfo &FLI) const { 349 350 MachineFunction &MF = B.getMF(); 351 MachineRegisterInfo &MRI = MF.getRegInfo(); 352 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 353 MFI->setIfReturnsVoid(!Val); 354 355 assert(!Val == VRegs.empty() && "Return value without a vreg"); 356 357 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 358 const bool IsShader = AMDGPU::isShader(CC); 359 const bool IsWaveEnd = 360 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 361 if (IsWaveEnd) { 362 B.buildInstr(AMDGPU::S_ENDPGM) 363 .addImm(0); 364 return true; 365 } 366 367 auto const &ST = MF.getSubtarget<GCNSubtarget>(); 368 369 unsigned ReturnOpc = 370 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return; 371 372 auto Ret = B.buildInstrNoInsert(ReturnOpc); 373 Register ReturnAddrVReg; 374 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 375 ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass); 376 Ret.addUse(ReturnAddrVReg); 377 } 378 379 if (!FLI.CanLowerReturn) 380 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); 381 else if (!lowerReturnVal(B, Val, VRegs, Ret)) 382 return false; 383 384 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 385 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 386 Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF), 387 &AMDGPU::SGPR_64RegClass); 388 B.buildCopy(ReturnAddrVReg, LiveInReturn); 389 } 390 391 // TODO: Handle CalleeSavedRegsViaCopy. 392 393 B.insertInstr(Ret); 394 return true; 395 } 396 397 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 398 Type *ParamTy, 399 uint64_t Offset) const { 400 MachineFunction &MF = B.getMF(); 401 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 402 MachineRegisterInfo &MRI = MF.getRegInfo(); 403 Register KernArgSegmentPtr = 404 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 405 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 406 407 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 408 409 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 410 } 411 412 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy, 413 uint64_t Offset, Align Alignment, 414 Register DstReg) const { 415 MachineFunction &MF = B.getMF(); 416 const Function &F = MF.getFunction(); 417 const DataLayout &DL = F.getParent()->getDataLayout(); 418 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 419 unsigned TypeSize = DL.getTypeStoreSize(ParamTy); 420 421 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 422 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 423 lowerParameterPtr(PtrReg, B, ParamTy, Offset); 424 425 MachineMemOperand *MMO = MF.getMachineMemOperand( 426 PtrInfo, 427 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 428 MachineMemOperand::MOInvariant, 429 TypeSize, Alignment); 430 431 B.buildLoad(DstReg, PtrReg, *MMO); 432 } 433 434 // Allocate special inputs passed in user SGPRs. 435 static void allocateHSAUserSGPRs(CCState &CCInfo, 436 MachineIRBuilder &B, 437 MachineFunction &MF, 438 const SIRegisterInfo &TRI, 439 SIMachineFunctionInfo &Info) { 440 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 441 if (Info.hasPrivateSegmentBuffer()) { 442 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 443 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 444 CCInfo.AllocateReg(PrivateSegmentBufferReg); 445 } 446 447 if (Info.hasDispatchPtr()) { 448 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 449 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 450 CCInfo.AllocateReg(DispatchPtrReg); 451 } 452 453 if (Info.hasQueuePtr()) { 454 Register QueuePtrReg = Info.addQueuePtr(TRI); 455 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 456 CCInfo.AllocateReg(QueuePtrReg); 457 } 458 459 if (Info.hasKernargSegmentPtr()) { 460 MachineRegisterInfo &MRI = MF.getRegInfo(); 461 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 462 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 463 Register VReg = MRI.createGenericVirtualRegister(P4); 464 MRI.addLiveIn(InputPtrReg, VReg); 465 B.getMBB().addLiveIn(InputPtrReg); 466 B.buildCopy(VReg, InputPtrReg); 467 CCInfo.AllocateReg(InputPtrReg); 468 } 469 470 if (Info.hasDispatchID()) { 471 Register DispatchIDReg = Info.addDispatchID(TRI); 472 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 473 CCInfo.AllocateReg(DispatchIDReg); 474 } 475 476 if (Info.hasFlatScratchInit()) { 477 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 478 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 479 CCInfo.AllocateReg(FlatScratchInitReg); 480 } 481 482 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 483 // these from the dispatch pointer. 484 } 485 486 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 487 MachineIRBuilder &B, const Function &F, 488 ArrayRef<ArrayRef<Register>> VRegs) const { 489 MachineFunction &MF = B.getMF(); 490 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 491 MachineRegisterInfo &MRI = MF.getRegInfo(); 492 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 493 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 494 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 495 const DataLayout &DL = F.getParent()->getDataLayout(); 496 497 Info->allocateModuleLDSGlobal(F.getParent()); 498 499 SmallVector<CCValAssign, 16> ArgLocs; 500 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 501 502 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 503 504 unsigned i = 0; 505 const Align KernArgBaseAlign(16); 506 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 507 uint64_t ExplicitArgOffset = 0; 508 509 // TODO: Align down to dword alignment and extract bits for extending loads. 510 for (auto &Arg : F.args()) { 511 const bool IsByRef = Arg.hasByRefAttr(); 512 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 513 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 514 if (AllocSize == 0) 515 continue; 516 517 MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None; 518 if (!ABIAlign) 519 ABIAlign = DL.getABITypeAlign(ArgTy); 520 521 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 522 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 523 524 if (Arg.use_empty()) { 525 ++i; 526 continue; 527 } 528 529 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 530 531 if (IsByRef) { 532 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 533 534 assert(VRegs[i].size() == 1 && 535 "expected only one register for byval pointers"); 536 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 537 lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset); 538 } else { 539 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 540 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 541 lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset); 542 543 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 544 } 545 } else { 546 ArrayRef<Register> OrigArgRegs = VRegs[i]; 547 Register ArgReg = 548 OrigArgRegs.size() == 1 549 ? OrigArgRegs[0] 550 : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL)); 551 552 lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg); 553 if (OrigArgRegs.size() > 1) 554 unpackRegs(OrigArgRegs, ArgReg, ArgTy, B); 555 } 556 557 ++i; 558 } 559 560 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 561 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 562 return true; 563 } 564 565 bool AMDGPUCallLowering::lowerFormalArguments( 566 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 567 FunctionLoweringInfo &FLI) const { 568 CallingConv::ID CC = F.getCallingConv(); 569 570 // The infrastructure for normal calling convention lowering is essentially 571 // useless for kernels. We want to avoid any kind of legalization or argument 572 // splitting. 573 if (CC == CallingConv::AMDGPU_KERNEL) 574 return lowerFormalArgumentsKernel(B, F, VRegs); 575 576 const bool IsGraphics = AMDGPU::isGraphics(CC); 577 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 578 579 MachineFunction &MF = B.getMF(); 580 MachineBasicBlock &MBB = B.getMBB(); 581 MachineRegisterInfo &MRI = MF.getRegInfo(); 582 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 583 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 584 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 585 const DataLayout &DL = F.getParent()->getDataLayout(); 586 587 Info->allocateModuleLDSGlobal(F.getParent()); 588 589 SmallVector<CCValAssign, 16> ArgLocs; 590 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 591 592 if (!IsEntryFunc) { 593 Register ReturnAddrReg = TRI->getReturnAddressReg(MF); 594 Register LiveInReturn = MF.addLiveIn(ReturnAddrReg, 595 &AMDGPU::SGPR_64RegClass); 596 MBB.addLiveIn(ReturnAddrReg); 597 B.buildCopy(LiveInReturn, ReturnAddrReg); 598 } 599 600 if (Info->hasImplicitBufferPtr()) { 601 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 602 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 603 CCInfo.AllocateReg(ImplicitBufferPtrReg); 604 } 605 606 SmallVector<ArgInfo, 32> SplitArgs; 607 unsigned Idx = 0; 608 unsigned PSInputNum = 0; 609 610 // Insert the hidden sret parameter if the return value won't fit in the 611 // return registers. 612 if (!FLI.CanLowerReturn) 613 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 614 615 for (auto &Arg : F.args()) { 616 if (DL.getTypeStoreSize(Arg.getType()) == 0) 617 continue; 618 619 const bool InReg = Arg.hasAttribute(Attribute::InReg); 620 621 // SGPR arguments to functions not implemented. 622 if (!IsGraphics && InReg) 623 return false; 624 625 if (Arg.hasAttribute(Attribute::SwiftSelf) || 626 Arg.hasAttribute(Attribute::SwiftError) || 627 Arg.hasAttribute(Attribute::Nest)) 628 return false; 629 630 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 631 const bool ArgUsed = !Arg.use_empty(); 632 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 633 634 if (!SkipArg) { 635 Info->markPSInputAllocated(PSInputNum); 636 if (ArgUsed) 637 Info->markPSInputEnabled(PSInputNum); 638 } 639 640 ++PSInputNum; 641 642 if (SkipArg) { 643 for (int I = 0, E = VRegs[Idx].size(); I != E; ++I) 644 B.buildUndef(VRegs[Idx][I]); 645 646 ++Idx; 647 continue; 648 } 649 } 650 651 ArgInfo OrigArg(VRegs[Idx], Arg); 652 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 653 setArgFlags(OrigArg, OrigArgIdx, DL, F); 654 655 splitToValueTypes(OrigArg, SplitArgs, DL, CC); 656 ++Idx; 657 } 658 659 // At least one interpolation mode must be enabled or else the GPU will 660 // hang. 661 // 662 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 663 // set PSInputAddr, the user wants to enable some bits after the compilation 664 // based on run-time states. Since we can't know what the final PSInputEna 665 // will look like, so we shouldn't do anything here and the user should take 666 // responsibility for the correct programming. 667 // 668 // Otherwise, the following restrictions apply: 669 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 670 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 671 // enabled too. 672 if (CC == CallingConv::AMDGPU_PS) { 673 if ((Info->getPSInputAddr() & 0x7F) == 0 || 674 ((Info->getPSInputAddr() & 0xF) == 0 && 675 Info->isPSInputAllocated(11))) { 676 CCInfo.AllocateReg(AMDGPU::VGPR0); 677 CCInfo.AllocateReg(AMDGPU::VGPR1); 678 Info->markPSInputAllocated(0); 679 Info->markPSInputEnabled(0); 680 } 681 682 if (Subtarget.isAmdPalOS()) { 683 // For isAmdPalOS, the user does not enable some bits after compilation 684 // based on run-time states; the register values being generated here are 685 // the final ones set in hardware. Therefore we need to apply the 686 // workaround to PSInputAddr and PSInputEnable together. (The case where 687 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 688 // set up an input arg for a particular interpolation mode, but nothing 689 // uses that input arg. Really we should have an earlier pass that removes 690 // such an arg.) 691 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 692 if ((PsInputBits & 0x7F) == 0 || 693 ((PsInputBits & 0xF) == 0 && 694 (PsInputBits >> 11 & 1))) 695 Info->markPSInputEnabled( 696 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 697 } 698 } 699 700 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 701 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 702 703 if (!MBB.empty()) 704 B.setInstr(*MBB.begin()); 705 706 if (!IsEntryFunc) { 707 // For the fixed ABI, pass workitem IDs in the last argument register. 708 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 709 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 710 } 711 712 FormalArgHandler Handler(B, MRI, AssignFn); 713 if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler)) 714 return false; 715 716 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 717 // Special inputs come after user arguments. 718 TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 719 } 720 721 // Start adding system SGPRs. 722 if (IsEntryFunc) { 723 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 724 } else { 725 if (!Subtarget.enableFlatScratch()) 726 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 727 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 728 } 729 730 // Move back to the end of the basic block. 731 B.setMBB(MBB); 732 733 return true; 734 } 735 736 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 737 CCState &CCInfo, 738 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 739 CallLoweringInfo &Info) const { 740 MachineFunction &MF = MIRBuilder.getMF(); 741 742 const AMDGPUFunctionArgInfo *CalleeArgInfo 743 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 744 745 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 746 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 747 748 749 // TODO: Unify with private memory register handling. This is complicated by 750 // the fact that at least in kernels, the input argument is not necessarily 751 // in the same location as the input. 752 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 753 AMDGPUFunctionArgInfo::DISPATCH_PTR, 754 AMDGPUFunctionArgInfo::QUEUE_PTR, 755 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 756 AMDGPUFunctionArgInfo::DISPATCH_ID, 757 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 758 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 759 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 760 }; 761 762 MachineRegisterInfo &MRI = MF.getRegInfo(); 763 764 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 765 const AMDGPULegalizerInfo *LI 766 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 767 768 for (auto InputID : InputRegs) { 769 const ArgDescriptor *OutgoingArg; 770 const TargetRegisterClass *ArgRC; 771 LLT ArgTy; 772 773 std::tie(OutgoingArg, ArgRC, ArgTy) = 774 CalleeArgInfo->getPreloadedValue(InputID); 775 if (!OutgoingArg) 776 continue; 777 778 const ArgDescriptor *IncomingArg; 779 const TargetRegisterClass *IncomingArgRC; 780 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 781 CallerArgInfo.getPreloadedValue(InputID); 782 assert(IncomingArgRC == ArgRC); 783 784 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 785 786 if (IncomingArg) { 787 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 788 } else { 789 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 790 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 791 } 792 793 if (OutgoingArg->isRegister()) { 794 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 795 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 796 report_fatal_error("failed to allocate implicit input argument"); 797 } else { 798 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 799 return false; 800 } 801 } 802 803 // Pack workitem IDs into a single register or pass it as is if already 804 // packed. 805 const ArgDescriptor *OutgoingArg; 806 const TargetRegisterClass *ArgRC; 807 LLT ArgTy; 808 809 std::tie(OutgoingArg, ArgRC, ArgTy) = 810 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 811 if (!OutgoingArg) 812 std::tie(OutgoingArg, ArgRC, ArgTy) = 813 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 814 if (!OutgoingArg) 815 std::tie(OutgoingArg, ArgRC, ArgTy) = 816 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 817 if (!OutgoingArg) 818 return false; 819 820 auto WorkitemIDX = 821 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 822 auto WorkitemIDY = 823 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 824 auto WorkitemIDZ = 825 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 826 827 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 828 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 829 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 830 const LLT S32 = LLT::scalar(32); 831 832 // If incoming ids are not packed we need to pack them. 833 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 834 Register InputReg; 835 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) { 836 InputReg = MRI.createGenericVirtualRegister(S32); 837 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 838 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 839 } 840 841 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { 842 Register Y = MRI.createGenericVirtualRegister(S32); 843 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 844 std::get<2>(WorkitemIDY)); 845 846 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 847 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 848 } 849 850 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { 851 Register Z = MRI.createGenericVirtualRegister(S32); 852 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 853 std::get<2>(WorkitemIDZ)); 854 855 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 856 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 857 } 858 859 if (!InputReg) { 860 InputReg = MRI.createGenericVirtualRegister(S32); 861 862 // Workitem ids are already packed, any of present incoming arguments will 863 // carry all required fields. 864 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 865 IncomingArgX ? *IncomingArgX : 866 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 867 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 868 &AMDGPU::VGPR_32RegClass, S32); 869 } 870 871 if (OutgoingArg->isRegister()) { 872 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 873 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 874 report_fatal_error("failed to allocate implicit input argument"); 875 } else { 876 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 877 return false; 878 } 879 880 return true; 881 } 882 883 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 884 /// CC. 885 static std::pair<CCAssignFn *, CCAssignFn *> 886 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 887 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 888 } 889 890 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 891 bool IsTailCall) { 892 return AMDGPU::SI_CALL; 893 } 894 895 // Add operands to call instruction to track the callee. 896 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 897 MachineIRBuilder &MIRBuilder, 898 AMDGPUCallLowering::CallLoweringInfo &Info) { 899 if (Info.Callee.isReg()) { 900 CallInst.addReg(Info.Callee.getReg()); 901 CallInst.addImm(0); 902 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 903 // The call lowering lightly assumed we can directly encode a call target in 904 // the instruction, which is not the case. Materialize the address here. 905 const GlobalValue *GV = Info.Callee.getGlobal(); 906 auto Ptr = MIRBuilder.buildGlobalValue( 907 LLT::pointer(GV->getAddressSpace(), 64), GV); 908 CallInst.addReg(Ptr.getReg(0)); 909 CallInst.add(Info.Callee); 910 } else 911 return false; 912 913 return true; 914 } 915 916 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 917 CallLoweringInfo &Info) const { 918 if (Info.IsVarArg) { 919 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 920 return false; 921 } 922 923 MachineFunction &MF = MIRBuilder.getMF(); 924 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 925 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 926 927 const Function &F = MF.getFunction(); 928 MachineRegisterInfo &MRI = MF.getRegInfo(); 929 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 930 const DataLayout &DL = F.getParent()->getDataLayout(); 931 CallingConv::ID CallConv = F.getCallingConv(); 932 933 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 934 CallConv != CallingConv::AMDGPU_Gfx) { 935 LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n"); 936 return false; 937 } 938 939 if (AMDGPU::isShader(CallConv)) { 940 LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n"); 941 return false; 942 } 943 944 SmallVector<ArgInfo, 8> OutArgs; 945 for (auto &OrigArg : Info.OrigArgs) 946 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); 947 948 SmallVector<ArgInfo, 8> InArgs; 949 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) 950 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); 951 952 // If we can lower as a tail call, do that instead. 953 bool CanTailCallOpt = false; 954 955 // We must emit a tail call if we have musttail. 956 if (Info.IsMustTailCall && !CanTailCallOpt) { 957 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 958 return false; 959 } 960 961 // Find out which ABI gets to decide where things go. 962 CCAssignFn *AssignFnFixed; 963 CCAssignFn *AssignFnVarArg; 964 std::tie(AssignFnFixed, AssignFnVarArg) = 965 getAssignFnsForCC(Info.CallConv, TLI); 966 967 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 968 .addImm(0) 969 .addImm(0); 970 971 // Create a temporarily-floating call instruction so we can add the implicit 972 // uses of arg registers. 973 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 974 975 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 976 MIB.addDef(TRI->getReturnAddressReg(MF)); 977 978 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 979 return false; 980 981 // Tell the call which registers are clobbered. 982 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 983 MIB.addRegMask(Mask); 984 985 SmallVector<CCValAssign, 16> ArgLocs; 986 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 987 988 // We could pass MIB and directly add the implicit uses to the call 989 // now. However, as an aesthetic choice, place implicit argument operands 990 // after the ordinary user argument registers. 991 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 992 993 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 994 Info.CallConv != CallingConv::AMDGPU_Gfx) { 995 // With a fixed ABI, allocate fixed registers before user arguments. 996 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 997 return false; 998 } 999 1000 // Do the actual argument marshalling. 1001 SmallVector<Register, 8> PhysRegs; 1002 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed, 1003 AssignFnVarArg, false); 1004 if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler)) 1005 return false; 1006 1007 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1008 1009 if (!ST.enableFlatScratch()) { 1010 // Insert copies for the SRD. In the HSA case, this should be an identity 1011 // copy. 1012 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32), 1013 MFI->getScratchRSrcReg()); 1014 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 1015 MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); 1016 } 1017 1018 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1019 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1020 MIB.addReg(ArgReg.first, RegState::Implicit); 1021 } 1022 1023 // Get a count of how many bytes are to be pushed on the stack. 1024 unsigned NumBytes = CCInfo.getNextStackOffset(); 1025 1026 // If Callee is a reg, since it is used by a target specific 1027 // instruction, it must have a register class matching the 1028 // constraint of that instruction. 1029 1030 // FIXME: We should define regbankselectable call instructions to handle 1031 // divergent call targets. 1032 if (MIB->getOperand(1).isReg()) { 1033 MIB->getOperand(1).setReg(constrainOperandRegClass( 1034 MF, *TRI, MRI, *ST.getInstrInfo(), 1035 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1036 1)); 1037 } 1038 1039 // Now we can add the actual call instruction to the correct position. 1040 MIRBuilder.insertInstr(MIB); 1041 1042 // Finally we can copy the returned value back into its virtual-register. In 1043 // symmetry with the arguments, the physical register must be an 1044 // implicit-define of the call instruction. 1045 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1046 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1047 Info.IsVarArg); 1048 CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn); 1049 if (!handleAssignments(MIRBuilder, InArgs, Handler, Info.CallConv, 1050 Info.IsVarArg)) 1051 return false; 1052 } 1053 1054 uint64_t CalleePopBytes = NumBytes; 1055 1056 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN) 1057 .addImm(0) 1058 .addImm(CalleePopBytes); 1059 1060 if (!Info.CanLowerReturn) { 1061 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1062 Info.DemoteRegister, Info.DemoteStackIndex); 1063 } 1064 1065 return true; 1066 } 1067