1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 
26 #define DEBUG_TYPE "amdgpu-call-lowering"
27 
28 using namespace llvm;
29 
30 namespace {
31 
32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
34                                     Register ValVReg, CCValAssign &VA) {
35   if (VA.getLocVT().getSizeInBits() < 32) {
36     // 16-bit types are reported as legal for 32-bit registers. We need to
37     // extend and do a 32-bit copy to avoid the verifier complaining about it.
38     return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
39   }
40 
41   return Handler.extendRegister(ValVReg, VA);
42 }
43 
44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
45   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
46                              MachineInstrBuilder MIB, CCAssignFn *AssignFn)
47       : OutgoingValueHandler(B, MRI, AssignFn), MIB(MIB) {}
48 
49   MachineInstrBuilder MIB;
50 
51   Register getStackAddress(uint64_t Size, int64_t Offset,
52                            MachinePointerInfo &MPO,
53                            ISD::ArgFlagsTy Flags) override {
54     llvm_unreachable("not implemented");
55   }
56 
57   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
58                             MachinePointerInfo &MPO, CCValAssign &VA) override {
59     llvm_unreachable("not implemented");
60   }
61 
62   void assignValueToReg(Register ValVReg, Register PhysReg,
63                         CCValAssign &VA) override {
64     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
65 
66     // If this is a scalar return, insert a readfirstlane just in case the value
67     // ends up in a VGPR.
68     // FIXME: Assert this is a shader return.
69     const SIRegisterInfo *TRI
70       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
71     if (TRI->isSGPRReg(MRI, PhysReg)) {
72       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
73                                               {MRI.getType(ExtReg)}, false)
74         .addReg(ExtReg);
75       ExtReg = ToSGPR.getReg(0);
76     }
77 
78     MIRBuilder.buildCopy(PhysReg, ExtReg);
79     MIB.addUse(PhysReg, RegState::Implicit);
80   }
81 };
82 
83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
84   uint64_t StackUsed = 0;
85 
86   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
87                            CCAssignFn *AssignFn)
88       : IncomingValueHandler(B, MRI, AssignFn) {}
89 
90   Register getStackAddress(uint64_t Size, int64_t Offset,
91                            MachinePointerInfo &MPO,
92                            ISD::ArgFlagsTy Flags) override {
93     auto &MFI = MIRBuilder.getMF().getFrameInfo();
94 
95     // Byval is assumed to be writable memory, but other stack passed arguments
96     // are not.
97     const bool IsImmutable = !Flags.isByVal();
98     int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
99     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
100     auto AddrReg = MIRBuilder.buildFrameIndex(
101         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
102     StackUsed = std::max(StackUsed, Size + Offset);
103     return AddrReg.getReg(0);
104   }
105 
106   void assignValueToReg(Register ValVReg, Register PhysReg,
107                         CCValAssign &VA) override {
108     markPhysRegUsed(PhysReg);
109 
110     if (VA.getLocVT().getSizeInBits() < 32) {
111       // 16-bit types are reported as legal for 32-bit registers. We need to do
112       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
113       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
114 
115       // If we have signext/zeroext, it applies to the whole 32-bit register
116       // before truncation.
117       auto Extended =
118           buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
119       MIRBuilder.buildTrunc(ValVReg, Extended);
120       return;
121     }
122 
123     IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
124   }
125 
126   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
127                             MachinePointerInfo &MPO, CCValAssign &VA) override {
128     MachineFunction &MF = MIRBuilder.getMF();
129 
130     // The reported memory location may be wider than the value.
131     const LLT RegTy = MRI.getType(ValVReg);
132     MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
133 
134     // FIXME: Get alignment
135     auto MMO = MF.getMachineMemOperand(
136         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
137         inferAlignFromPtrInfo(MF, MPO));
138     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
139   }
140 
141   /// How the physical register gets marked varies between formal
142   /// parameters (it's a basic-block live-in), and a call instruction
143   /// (it's an implicit-def of the BL).
144   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
145 };
146 
147 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
148   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
149                    CCAssignFn *AssignFn)
150       : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {}
151 
152   void markPhysRegUsed(unsigned PhysReg) override {
153     MIRBuilder.getMBB().addLiveIn(PhysReg);
154   }
155 };
156 
157 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
158   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
159                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
160       : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
161 
162   void markPhysRegUsed(unsigned PhysReg) override {
163     MIB.addDef(PhysReg, RegState::Implicit);
164   }
165 
166   MachineInstrBuilder MIB;
167 };
168 
169 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
170   CCAssignFn *AssignFnVarArg;
171 
172   /// For tail calls, the byte offset of the call's argument area from the
173   /// callee's. Unused elsewhere.
174   int FPDiff;
175 
176   // Cache the SP register vreg if we need it more than once in this call site.
177   Register SPReg;
178 
179   bool IsTailCall;
180 
181   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
182                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
183                            CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg,
184                            bool IsTailCall = false, int FPDiff = 0)
185       : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB, AssignFn),
186         AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) {
187   }
188 
189   Register getStackAddress(uint64_t Size, int64_t Offset,
190                            MachinePointerInfo &MPO,
191                            ISD::ArgFlagsTy Flags) override {
192     MachineFunction &MF = MIRBuilder.getMF();
193     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
194     const LLT S32 = LLT::scalar(32);
195 
196     if (IsTailCall) {
197       llvm_unreachable("implement me");
198     }
199 
200     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
201 
202     if (!SPReg)
203       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
204 
205     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
206 
207     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
208     MPO = MachinePointerInfo::getStack(MF, Offset);
209     return AddrReg.getReg(0);
210   }
211 
212   void assignValueToReg(Register ValVReg, Register PhysReg,
213                         CCValAssign &VA) override {
214     MIB.addUse(PhysReg, RegState::Implicit);
215     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
216     MIRBuilder.buildCopy(PhysReg, ExtReg);
217   }
218 
219   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
220                             MachinePointerInfo &MPO, CCValAssign &VA) override {
221     MachineFunction &MF = MIRBuilder.getMF();
222     uint64_t LocMemOffset = VA.getLocMemOffset();
223     const auto &ST = MF.getSubtarget<GCNSubtarget>();
224 
225     auto MMO = MF.getMachineMemOperand(
226       MPO, MachineMemOperand::MOStore, Size,
227       commonAlignment(ST.getStackAlignment(), LocMemOffset));
228     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
229   }
230 
231   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
232                             unsigned ValRegIndex, Register Addr,
233                             uint64_t MemSize, MachinePointerInfo &MPO,
234                             CCValAssign &VA) override {
235     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
236                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
237                            : Arg.Regs[ValRegIndex];
238 
239     // If we extended the value type we might need to adjust the MMO's
240     // Size. This happens if ComputeValueVTs widened a small type value to a
241     // legal register type (e.g. s8->s16)
242     const LLT RegTy = MRI.getType(ValVReg);
243     MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes());
244     assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA);
245   }
246 };
247 }
248 
249 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
250   : CallLowering(&TLI) {
251 }
252 
253 // FIXME: Compatability shim
254 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
255   switch (MIOpc) {
256   case TargetOpcode::G_SEXT:
257     return ISD::SIGN_EXTEND;
258   case TargetOpcode::G_ZEXT:
259     return ISD::ZERO_EXTEND;
260   case TargetOpcode::G_ANYEXT:
261     return ISD::ANY_EXTEND;
262   default:
263     llvm_unreachable("not an extend opcode");
264   }
265 }
266 
267 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
268                                         CallingConv::ID CallConv,
269                                         SmallVectorImpl<BaseArgInfo> &Outs,
270                                         bool IsVarArg) const {
271   // For shaders. Vector types should be explicitly handled by CC.
272   if (AMDGPU::isEntryFunctionCC(CallConv))
273     return true;
274 
275   SmallVector<CCValAssign, 16> ArgLocs;
276   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
277   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
278                  MF.getFunction().getContext());
279 
280   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
281 }
282 
283 /// Lower the return value for the already existing \p Ret. This assumes that
284 /// \p B's insertion point is correct.
285 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
286                                         const Value *Val, ArrayRef<Register> VRegs,
287                                         MachineInstrBuilder &Ret) const {
288   if (!Val)
289     return true;
290 
291   auto &MF = B.getMF();
292   const auto &F = MF.getFunction();
293   const DataLayout &DL = MF.getDataLayout();
294   MachineRegisterInfo *MRI = B.getMRI();
295   LLVMContext &Ctx = F.getContext();
296 
297   CallingConv::ID CC = F.getCallingConv();
298   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
299 
300   SmallVector<EVT, 8> SplitEVTs;
301   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
302   assert(VRegs.size() == SplitEVTs.size() &&
303          "For each split Type there should be exactly one VReg.");
304 
305   SmallVector<ArgInfo, 8> SplitRetInfos;
306 
307   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
308     EVT VT = SplitEVTs[i];
309     Register Reg = VRegs[i];
310     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx));
311     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
312 
313     if (VT.isScalarInteger()) {
314       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
315       if (RetInfo.Flags[0].isSExt()) {
316         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
317         ExtendOp = TargetOpcode::G_SEXT;
318       } else if (RetInfo.Flags[0].isZExt()) {
319         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
320         ExtendOp = TargetOpcode::G_ZEXT;
321       }
322 
323       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
324                                           extOpcodeToISDExtOpcode(ExtendOp));
325       if (ExtVT != VT) {
326         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
327         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
328         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
329       }
330     }
331 
332     if (Reg != RetInfo.Regs[0]) {
333       RetInfo.Regs[0] = Reg;
334       // Reset the arg flags after modifying Reg.
335       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
336     }
337 
338     splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
339   }
340 
341   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
342   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
343   return handleAssignments(B, SplitRetInfos, RetHandler, CC, F.isVarArg());
344 }
345 
346 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
347                                      ArrayRef<Register> VRegs,
348                                      FunctionLoweringInfo &FLI) const {
349 
350   MachineFunction &MF = B.getMF();
351   MachineRegisterInfo &MRI = MF.getRegInfo();
352   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
353   MFI->setIfReturnsVoid(!Val);
354 
355   assert(!Val == VRegs.empty() && "Return value without a vreg");
356 
357   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
358   const bool IsShader = AMDGPU::isShader(CC);
359   const bool IsWaveEnd =
360       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
361   if (IsWaveEnd) {
362     B.buildInstr(AMDGPU::S_ENDPGM)
363       .addImm(0);
364     return true;
365   }
366 
367   auto const &ST = MF.getSubtarget<GCNSubtarget>();
368 
369   unsigned ReturnOpc =
370       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
371 
372   auto Ret = B.buildInstrNoInsert(ReturnOpc);
373   Register ReturnAddrVReg;
374   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
375     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
376     Ret.addUse(ReturnAddrVReg);
377   }
378 
379   if (!FLI.CanLowerReturn)
380     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
381   else if (!lowerReturnVal(B, Val, VRegs, Ret))
382     return false;
383 
384   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
385     const SIRegisterInfo *TRI = ST.getRegisterInfo();
386     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
387                                          &AMDGPU::SGPR_64RegClass);
388     B.buildCopy(ReturnAddrVReg, LiveInReturn);
389   }
390 
391   // TODO: Handle CalleeSavedRegsViaCopy.
392 
393   B.insertInstr(Ret);
394   return true;
395 }
396 
397 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
398                                            Type *ParamTy,
399                                            uint64_t Offset) const {
400   MachineFunction &MF = B.getMF();
401   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
402   MachineRegisterInfo &MRI = MF.getRegInfo();
403   Register KernArgSegmentPtr =
404     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
405   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
406 
407   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
408 
409   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
410 }
411 
412 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
413                                         uint64_t Offset, Align Alignment,
414                                         Register DstReg) const {
415   MachineFunction &MF = B.getMF();
416   const Function &F = MF.getFunction();
417   const DataLayout &DL = F.getParent()->getDataLayout();
418   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
419   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
420 
421   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
422   Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
423   lowerParameterPtr(PtrReg, B, ParamTy, Offset);
424 
425   MachineMemOperand *MMO = MF.getMachineMemOperand(
426       PtrInfo,
427       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
428           MachineMemOperand::MOInvariant,
429       TypeSize, Alignment);
430 
431   B.buildLoad(DstReg, PtrReg, *MMO);
432 }
433 
434 // Allocate special inputs passed in user SGPRs.
435 static void allocateHSAUserSGPRs(CCState &CCInfo,
436                                  MachineIRBuilder &B,
437                                  MachineFunction &MF,
438                                  const SIRegisterInfo &TRI,
439                                  SIMachineFunctionInfo &Info) {
440   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
441   if (Info.hasPrivateSegmentBuffer()) {
442     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
443     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
444     CCInfo.AllocateReg(PrivateSegmentBufferReg);
445   }
446 
447   if (Info.hasDispatchPtr()) {
448     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
449     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
450     CCInfo.AllocateReg(DispatchPtrReg);
451   }
452 
453   if (Info.hasQueuePtr()) {
454     Register QueuePtrReg = Info.addQueuePtr(TRI);
455     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
456     CCInfo.AllocateReg(QueuePtrReg);
457   }
458 
459   if (Info.hasKernargSegmentPtr()) {
460     MachineRegisterInfo &MRI = MF.getRegInfo();
461     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
462     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
463     Register VReg = MRI.createGenericVirtualRegister(P4);
464     MRI.addLiveIn(InputPtrReg, VReg);
465     B.getMBB().addLiveIn(InputPtrReg);
466     B.buildCopy(VReg, InputPtrReg);
467     CCInfo.AllocateReg(InputPtrReg);
468   }
469 
470   if (Info.hasDispatchID()) {
471     Register DispatchIDReg = Info.addDispatchID(TRI);
472     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
473     CCInfo.AllocateReg(DispatchIDReg);
474   }
475 
476   if (Info.hasFlatScratchInit()) {
477     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
478     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
479     CCInfo.AllocateReg(FlatScratchInitReg);
480   }
481 
482   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
483   // these from the dispatch pointer.
484 }
485 
486 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
487     MachineIRBuilder &B, const Function &F,
488     ArrayRef<ArrayRef<Register>> VRegs) const {
489   MachineFunction &MF = B.getMF();
490   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
491   MachineRegisterInfo &MRI = MF.getRegInfo();
492   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
493   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
494   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
495   const DataLayout &DL = F.getParent()->getDataLayout();
496 
497   Info->allocateModuleLDSGlobal(F.getParent());
498 
499   SmallVector<CCValAssign, 16> ArgLocs;
500   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
501 
502   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
503 
504   unsigned i = 0;
505   const Align KernArgBaseAlign(16);
506   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
507   uint64_t ExplicitArgOffset = 0;
508 
509   // TODO: Align down to dword alignment and extract bits for extending loads.
510   for (auto &Arg : F.args()) {
511     const bool IsByRef = Arg.hasByRefAttr();
512     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
513     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
514     if (AllocSize == 0)
515       continue;
516 
517     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
518     if (!ABIAlign)
519       ABIAlign = DL.getABITypeAlign(ArgTy);
520 
521     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
522     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
523 
524     if (Arg.use_empty()) {
525       ++i;
526       continue;
527     }
528 
529     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
530 
531     if (IsByRef) {
532       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
533 
534       assert(VRegs[i].size() == 1 &&
535              "expected only one register for byval pointers");
536       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
537         lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
538       } else {
539         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
540         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
541         lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
542 
543         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
544       }
545     } else {
546       ArrayRef<Register> OrigArgRegs = VRegs[i];
547       Register ArgReg =
548         OrigArgRegs.size() == 1
549         ? OrigArgRegs[0]
550         : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
551 
552       lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
553       if (OrigArgRegs.size() > 1)
554         unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
555     }
556 
557     ++i;
558   }
559 
560   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
561   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
562   return true;
563 }
564 
565 bool AMDGPUCallLowering::lowerFormalArguments(
566     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
567     FunctionLoweringInfo &FLI) const {
568   CallingConv::ID CC = F.getCallingConv();
569 
570   // The infrastructure for normal calling convention lowering is essentially
571   // useless for kernels. We want to avoid any kind of legalization or argument
572   // splitting.
573   if (CC == CallingConv::AMDGPU_KERNEL)
574     return lowerFormalArgumentsKernel(B, F, VRegs);
575 
576   const bool IsGraphics = AMDGPU::isGraphics(CC);
577   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
578 
579   MachineFunction &MF = B.getMF();
580   MachineBasicBlock &MBB = B.getMBB();
581   MachineRegisterInfo &MRI = MF.getRegInfo();
582   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
583   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
584   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
585   const DataLayout &DL = F.getParent()->getDataLayout();
586 
587   Info->allocateModuleLDSGlobal(F.getParent());
588 
589   SmallVector<CCValAssign, 16> ArgLocs;
590   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
591 
592   if (!IsEntryFunc) {
593     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
594     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
595                                          &AMDGPU::SGPR_64RegClass);
596     MBB.addLiveIn(ReturnAddrReg);
597     B.buildCopy(LiveInReturn, ReturnAddrReg);
598   }
599 
600   if (Info->hasImplicitBufferPtr()) {
601     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
602     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
603     CCInfo.AllocateReg(ImplicitBufferPtrReg);
604   }
605 
606   SmallVector<ArgInfo, 32> SplitArgs;
607   unsigned Idx = 0;
608   unsigned PSInputNum = 0;
609 
610   // Insert the hidden sret parameter if the return value won't fit in the
611   // return registers.
612   if (!FLI.CanLowerReturn)
613     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
614 
615   for (auto &Arg : F.args()) {
616     if (DL.getTypeStoreSize(Arg.getType()) == 0)
617       continue;
618 
619     const bool InReg = Arg.hasAttribute(Attribute::InReg);
620 
621     // SGPR arguments to functions not implemented.
622     if (!IsGraphics && InReg)
623       return false;
624 
625     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
626         Arg.hasAttribute(Attribute::SwiftError) ||
627         Arg.hasAttribute(Attribute::Nest))
628       return false;
629 
630     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
631       const bool ArgUsed = !Arg.use_empty();
632       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
633 
634       if (!SkipArg) {
635         Info->markPSInputAllocated(PSInputNum);
636         if (ArgUsed)
637           Info->markPSInputEnabled(PSInputNum);
638       }
639 
640       ++PSInputNum;
641 
642       if (SkipArg) {
643         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
644           B.buildUndef(VRegs[Idx][I]);
645 
646         ++Idx;
647         continue;
648       }
649     }
650 
651     ArgInfo OrigArg(VRegs[Idx], Arg);
652     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
653     setArgFlags(OrigArg, OrigArgIdx, DL, F);
654 
655     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
656     ++Idx;
657   }
658 
659   // At least one interpolation mode must be enabled or else the GPU will
660   // hang.
661   //
662   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
663   // set PSInputAddr, the user wants to enable some bits after the compilation
664   // based on run-time states. Since we can't know what the final PSInputEna
665   // will look like, so we shouldn't do anything here and the user should take
666   // responsibility for the correct programming.
667   //
668   // Otherwise, the following restrictions apply:
669   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
670   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
671   //   enabled too.
672   if (CC == CallingConv::AMDGPU_PS) {
673     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
674         ((Info->getPSInputAddr() & 0xF) == 0 &&
675          Info->isPSInputAllocated(11))) {
676       CCInfo.AllocateReg(AMDGPU::VGPR0);
677       CCInfo.AllocateReg(AMDGPU::VGPR1);
678       Info->markPSInputAllocated(0);
679       Info->markPSInputEnabled(0);
680     }
681 
682     if (Subtarget.isAmdPalOS()) {
683       // For isAmdPalOS, the user does not enable some bits after compilation
684       // based on run-time states; the register values being generated here are
685       // the final ones set in hardware. Therefore we need to apply the
686       // workaround to PSInputAddr and PSInputEnable together.  (The case where
687       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
688       // set up an input arg for a particular interpolation mode, but nothing
689       // uses that input arg. Really we should have an earlier pass that removes
690       // such an arg.)
691       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
692       if ((PsInputBits & 0x7F) == 0 ||
693           ((PsInputBits & 0xF) == 0 &&
694            (PsInputBits >> 11 & 1)))
695         Info->markPSInputEnabled(
696           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
697     }
698   }
699 
700   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
701   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
702 
703   if (!MBB.empty())
704     B.setInstr(*MBB.begin());
705 
706   if (!IsEntryFunc) {
707     // For the fixed ABI, pass workitem IDs in the last argument register.
708     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
709       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
710   }
711 
712   FormalArgHandler Handler(B, MRI, AssignFn);
713   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
714     return false;
715 
716   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
717     // Special inputs come after user arguments.
718     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
719   }
720 
721   // Start adding system SGPRs.
722   if (IsEntryFunc) {
723     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
724   } else {
725     if (!Subtarget.enableFlatScratch())
726       CCInfo.AllocateReg(Info->getScratchRSrcReg());
727     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
728   }
729 
730   // Move back to the end of the basic block.
731   B.setMBB(MBB);
732 
733   return true;
734 }
735 
736 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
737                                            CCState &CCInfo,
738                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
739                                            CallLoweringInfo &Info) const {
740   MachineFunction &MF = MIRBuilder.getMF();
741 
742   const AMDGPUFunctionArgInfo *CalleeArgInfo
743     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
744 
745   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
746   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
747 
748 
749   // TODO: Unify with private memory register handling. This is complicated by
750   // the fact that at least in kernels, the input argument is not necessarily
751   // in the same location as the input.
752   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
753     AMDGPUFunctionArgInfo::DISPATCH_PTR,
754     AMDGPUFunctionArgInfo::QUEUE_PTR,
755     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
756     AMDGPUFunctionArgInfo::DISPATCH_ID,
757     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
758     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
759     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
760   };
761 
762   MachineRegisterInfo &MRI = MF.getRegInfo();
763 
764   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
765   const AMDGPULegalizerInfo *LI
766     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
767 
768   for (auto InputID : InputRegs) {
769     const ArgDescriptor *OutgoingArg;
770     const TargetRegisterClass *ArgRC;
771     LLT ArgTy;
772 
773     std::tie(OutgoingArg, ArgRC, ArgTy) =
774         CalleeArgInfo->getPreloadedValue(InputID);
775     if (!OutgoingArg)
776       continue;
777 
778     const ArgDescriptor *IncomingArg;
779     const TargetRegisterClass *IncomingArgRC;
780     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
781         CallerArgInfo.getPreloadedValue(InputID);
782     assert(IncomingArgRC == ArgRC);
783 
784     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
785 
786     if (IncomingArg) {
787       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
788     } else {
789       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
790       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
791     }
792 
793     if (OutgoingArg->isRegister()) {
794       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
795       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
796         report_fatal_error("failed to allocate implicit input argument");
797     } else {
798       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
799       return false;
800     }
801   }
802 
803   // Pack workitem IDs into a single register or pass it as is if already
804   // packed.
805   const ArgDescriptor *OutgoingArg;
806   const TargetRegisterClass *ArgRC;
807   LLT ArgTy;
808 
809   std::tie(OutgoingArg, ArgRC, ArgTy) =
810       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
811   if (!OutgoingArg)
812     std::tie(OutgoingArg, ArgRC, ArgTy) =
813         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
814   if (!OutgoingArg)
815     std::tie(OutgoingArg, ArgRC, ArgTy) =
816         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
817   if (!OutgoingArg)
818     return false;
819 
820   auto WorkitemIDX =
821       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
822   auto WorkitemIDY =
823       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
824   auto WorkitemIDZ =
825       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
826 
827   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
828   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
829   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
830   const LLT S32 = LLT::scalar(32);
831 
832   // If incoming ids are not packed we need to pack them.
833   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
834   Register InputReg;
835   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
836     InputReg = MRI.createGenericVirtualRegister(S32);
837     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
838                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
839   }
840 
841   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
842     Register Y = MRI.createGenericVirtualRegister(S32);
843     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
844                        std::get<2>(WorkitemIDY));
845 
846     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
847     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
848   }
849 
850   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
851     Register Z = MRI.createGenericVirtualRegister(S32);
852     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
853                        std::get<2>(WorkitemIDZ));
854 
855     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
856     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
857   }
858 
859   if (!InputReg) {
860     InputReg = MRI.createGenericVirtualRegister(S32);
861 
862     // Workitem ids are already packed, any of present incoming arguments will
863     // carry all required fields.
864     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
865       IncomingArgX ? *IncomingArgX :
866         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
867     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
868                        &AMDGPU::VGPR_32RegClass, S32);
869   }
870 
871   if (OutgoingArg->isRegister()) {
872     ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
873     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
874       report_fatal_error("failed to allocate implicit input argument");
875   } else {
876     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
877     return false;
878   }
879 
880   return true;
881 }
882 
883 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
884 /// CC.
885 static std::pair<CCAssignFn *, CCAssignFn *>
886 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
887   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
888 }
889 
890 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
891                               bool IsTailCall) {
892   return AMDGPU::SI_CALL;
893 }
894 
895 // Add operands to call instruction to track the callee.
896 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
897                                   MachineIRBuilder &MIRBuilder,
898                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
899   if (Info.Callee.isReg()) {
900     CallInst.addReg(Info.Callee.getReg());
901     CallInst.addImm(0);
902   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
903     // The call lowering lightly assumed we can directly encode a call target in
904     // the instruction, which is not the case. Materialize the address here.
905     const GlobalValue *GV = Info.Callee.getGlobal();
906     auto Ptr = MIRBuilder.buildGlobalValue(
907       LLT::pointer(GV->getAddressSpace(), 64), GV);
908     CallInst.addReg(Ptr.getReg(0));
909     CallInst.add(Info.Callee);
910   } else
911     return false;
912 
913   return true;
914 }
915 
916 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
917                                    CallLoweringInfo &Info) const {
918   if (Info.IsVarArg) {
919     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
920     return false;
921   }
922 
923   MachineFunction &MF = MIRBuilder.getMF();
924   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
925   const SIRegisterInfo *TRI = ST.getRegisterInfo();
926 
927   const Function &F = MF.getFunction();
928   MachineRegisterInfo &MRI = MF.getRegInfo();
929   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
930   const DataLayout &DL = F.getParent()->getDataLayout();
931   CallingConv::ID CallConv = F.getCallingConv();
932 
933   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
934       CallConv != CallingConv::AMDGPU_Gfx) {
935     LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
936     return false;
937   }
938 
939   if (AMDGPU::isShader(CallConv)) {
940     LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n");
941     return false;
942   }
943 
944   SmallVector<ArgInfo, 8> OutArgs;
945   for (auto &OrigArg : Info.OrigArgs)
946     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
947 
948   SmallVector<ArgInfo, 8> InArgs;
949   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
950     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
951 
952   // If we can lower as a tail call, do that instead.
953   bool CanTailCallOpt = false;
954 
955   // We must emit a tail call if we have musttail.
956   if (Info.IsMustTailCall && !CanTailCallOpt) {
957     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
958     return false;
959   }
960 
961   // Find out which ABI gets to decide where things go.
962   CCAssignFn *AssignFnFixed;
963   CCAssignFn *AssignFnVarArg;
964   std::tie(AssignFnFixed, AssignFnVarArg) =
965       getAssignFnsForCC(Info.CallConv, TLI);
966 
967   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
968     .addImm(0)
969     .addImm(0);
970 
971   // Create a temporarily-floating call instruction so we can add the implicit
972   // uses of arg registers.
973   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
974 
975   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
976   MIB.addDef(TRI->getReturnAddressReg(MF));
977 
978   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
979     return false;
980 
981   // Tell the call which registers are clobbered.
982   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
983   MIB.addRegMask(Mask);
984 
985   SmallVector<CCValAssign, 16> ArgLocs;
986   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
987 
988   // We could pass MIB and directly add the implicit uses to the call
989   // now. However, as an aesthetic choice, place implicit argument operands
990   // after the ordinary user argument registers.
991   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
992 
993   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
994       Info.CallConv != CallingConv::AMDGPU_Gfx) {
995     // With a fixed ABI, allocate fixed registers before user arguments.
996     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
997       return false;
998   }
999 
1000   // Do the actual argument marshalling.
1001   SmallVector<Register, 8> PhysRegs;
1002   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
1003                                    AssignFnVarArg, false);
1004   if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler))
1005     return false;
1006 
1007   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1008 
1009   if (!ST.enableFlatScratch()) {
1010     // Insert copies for the SRD. In the HSA case, this should be an identity
1011     // copy.
1012     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32),
1013                                                MFI->getScratchRSrcReg());
1014     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1015     MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1016   }
1017 
1018   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1019     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1020     MIB.addReg(ArgReg.first, RegState::Implicit);
1021   }
1022 
1023   // Get a count of how many bytes are to be pushed on the stack.
1024   unsigned NumBytes = CCInfo.getNextStackOffset();
1025 
1026   // If Callee is a reg, since it is used by a target specific
1027   // instruction, it must have a register class matching the
1028   // constraint of that instruction.
1029 
1030   // FIXME: We should define regbankselectable call instructions to handle
1031   // divergent call targets.
1032   if (MIB->getOperand(1).isReg()) {
1033     MIB->getOperand(1).setReg(constrainOperandRegClass(
1034         MF, *TRI, MRI, *ST.getInstrInfo(),
1035         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1036         1));
1037   }
1038 
1039   // Now we can add the actual call instruction to the correct position.
1040   MIRBuilder.insertInstr(MIB);
1041 
1042   // Finally we can copy the returned value back into its virtual-register. In
1043   // symmetry with the arguments, the physical register must be an
1044   // implicit-define of the call instruction.
1045   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1046     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1047                                                       Info.IsVarArg);
1048     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1049     if (!handleAssignments(MIRBuilder, InArgs, Handler, Info.CallConv,
1050                            Info.IsVarArg))
1051       return false;
1052   }
1053 
1054   uint64_t CalleePopBytes = NumBytes;
1055 
1056   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
1057             .addImm(0)
1058             .addImm(CalleePopBytes);
1059 
1060   if (!Info.CanLowerReturn) {
1061     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1062                     Info.DemoteRegister, Info.DemoteStackIndex);
1063   }
1064 
1065   return true;
1066 }
1067