1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUISelLowering.h"
18 #include "AMDGPUSubtarget.h"
19 #include "SIISelLowering.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "SIRegisterInfo.h"
22 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/Support/LowLevelTypeImpl.h"
28 
29 using namespace llvm;
30 
31 namespace {
32 
33 struct OutgoingValueHandler : public CallLowering::ValueHandler {
34   OutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
35                        MachineInstrBuilder MIB, CCAssignFn *AssignFn)
36       : ValueHandler(B, MRI, AssignFn), MIB(MIB) {}
37 
38   MachineInstrBuilder MIB;
39 
40   bool isIncomingArgumentHandler() const override { return false; }
41 
42   Register getStackAddress(uint64_t Size, int64_t Offset,
43                            MachinePointerInfo &MPO) override {
44     llvm_unreachable("not implemented");
45   }
46 
47   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
48                             MachinePointerInfo &MPO, CCValAssign &VA) override {
49     llvm_unreachable("not implemented");
50   }
51 
52   void assignValueToReg(Register ValVReg, Register PhysReg,
53                         CCValAssign &VA) override {
54     Register ExtReg;
55     if (VA.getLocVT().getSizeInBits() < 32) {
56       // 16-bit types are reported as legal for 32-bit registers. We need to
57       // extend and do a 32-bit copy to avoid the verifier complaining about it.
58       ExtReg = MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
59     } else
60       ExtReg = extendRegister(ValVReg, VA);
61 
62     // If this is a scalar return, insert a readfirstlane just in case the value
63     // ends up in a VGPR.
64     // FIXME: Assert this is a shader return.
65     const SIRegisterInfo *TRI
66       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
67     if (TRI->isSGPRReg(MRI, PhysReg)) {
68       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
69                                               {MRI.getType(ExtReg)}, false)
70         .addReg(ExtReg);
71       ExtReg = ToSGPR.getReg(0);
72     }
73 
74     MIRBuilder.buildCopy(PhysReg, ExtReg);
75     MIB.addUse(PhysReg, RegState::Implicit);
76   }
77 
78   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
79                  CCValAssign::LocInfo LocInfo,
80                  const CallLowering::ArgInfo &Info,
81                  ISD::ArgFlagsTy Flags,
82                  CCState &State) override {
83     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
84   }
85 };
86 
87 struct IncomingArgHandler : public CallLowering::ValueHandler {
88   uint64_t StackUsed = 0;
89 
90   IncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
91                      CCAssignFn *AssignFn)
92     : ValueHandler(B, MRI, AssignFn) {}
93 
94   Register getStackAddress(uint64_t Size, int64_t Offset,
95                            MachinePointerInfo &MPO) override {
96     auto &MFI = MIRBuilder.getMF().getFrameInfo();
97     int FI = MFI.CreateFixedObject(Size, Offset, true);
98     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
99     auto AddrReg = MIRBuilder.buildFrameIndex(
100         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
101     StackUsed = std::max(StackUsed, Size + Offset);
102     return AddrReg.getReg(0);
103   }
104 
105   void assignValueToReg(Register ValVReg, Register PhysReg,
106                         CCValAssign &VA) override {
107     markPhysRegUsed(PhysReg);
108 
109     if (VA.getLocVT().getSizeInBits() < 32) {
110       // 16-bit types are reported as legal for 32-bit registers. We need to do
111       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
112       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
113       MIRBuilder.buildTrunc(ValVReg, Copy);
114       return;
115     }
116 
117     switch (VA.getLocInfo()) {
118     case CCValAssign::LocInfo::SExt:
119     case CCValAssign::LocInfo::ZExt:
120     case CCValAssign::LocInfo::AExt: {
121       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
122       MIRBuilder.buildTrunc(ValVReg, Copy);
123       break;
124     }
125     default:
126       MIRBuilder.buildCopy(ValVReg, PhysReg);
127       break;
128     }
129   }
130 
131   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
132                             MachinePointerInfo &MPO, CCValAssign &VA) override {
133     MachineFunction &MF = MIRBuilder.getMF();
134     unsigned Align = inferAlignmentFromPtrInfo(MF, MPO);
135 
136     // FIXME: Get alignment
137     auto MMO = MF.getMachineMemOperand(
138         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
139         Align);
140     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
141   }
142 
143   /// How the physical register gets marked varies between formal
144   /// parameters (it's a basic-block live-in), and a call instruction
145   /// (it's an implicit-def of the BL).
146   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
147 
148   // FIXME: What is the point of this being a callback?
149   bool isIncomingArgumentHandler() const override { return true; }
150 };
151 
152 struct FormalArgHandler : public IncomingArgHandler {
153   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
154                    CCAssignFn *AssignFn)
155     : IncomingArgHandler(B, MRI, AssignFn) {}
156 
157   void markPhysRegUsed(unsigned PhysReg) override {
158     MIRBuilder.getMBB().addLiveIn(PhysReg);
159   }
160 };
161 
162 }
163 
164 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
165   : CallLowering(&TLI) {
166 }
167 
168 // FIXME: Compatability shim
169 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
170   switch (MIOpc) {
171   case TargetOpcode::G_SEXT:
172     return ISD::SIGN_EXTEND;
173   case TargetOpcode::G_ZEXT:
174     return ISD::ZERO_EXTEND;
175   case TargetOpcode::G_ANYEXT:
176     return ISD::ANY_EXTEND;
177   default:
178     llvm_unreachable("not an extend opcode");
179   }
180 }
181 
182 void AMDGPUCallLowering::splitToValueTypes(
183   MachineIRBuilder &B,
184   const ArgInfo &OrigArg, unsigned OrigArgIdx,
185   SmallVectorImpl<ArgInfo> &SplitArgs,
186   const DataLayout &DL, CallingConv::ID CallConv,
187   SplitArgTy PerformArgSplit) const {
188   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
189   LLVMContext &Ctx = OrigArg.Ty->getContext();
190 
191   if (OrigArg.Ty->isVoidTy())
192     return;
193 
194   SmallVector<EVT, 4> SplitVTs;
195   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
196 
197   assert(OrigArg.Regs.size() == SplitVTs.size());
198 
199   int SplitIdx = 0;
200   for (EVT VT : SplitVTs) {
201     Register Reg = OrigArg.Regs[SplitIdx];
202     Type *Ty = VT.getTypeForEVT(Ctx);
203     LLT LLTy = getLLTForType(*Ty, DL);
204 
205     if (OrigArgIdx == AttributeList::ReturnIndex && VT.isScalarInteger()) {
206       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
207       if (OrigArg.Flags[0].isSExt()) {
208         assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
209         ExtendOp = TargetOpcode::G_SEXT;
210       } else if (OrigArg.Flags[0].isZExt()) {
211         assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
212         ExtendOp = TargetOpcode::G_ZEXT;
213       }
214 
215       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
216                                           extOpcodeToISDExtOpcode(ExtendOp));
217       if (ExtVT != VT) {
218         VT = ExtVT;
219         Ty = ExtVT.getTypeForEVT(Ctx);
220         LLTy = getLLTForType(*Ty, DL);
221         Reg = B.buildInstr(ExtendOp, {LLTy}, {Reg}).getReg(0);
222       }
223     }
224 
225     unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
226     MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
227 
228     if (NumParts == 1) {
229       // No splitting to do, but we want to replace the original type (e.g. [1 x
230       // double] -> double).
231       SplitArgs.emplace_back(Reg, Ty, OrigArg.Flags, OrigArg.IsFixed);
232 
233       ++SplitIdx;
234       continue;
235     }
236 
237     SmallVector<Register, 8> SplitRegs;
238     Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx);
239     LLT PartLLT = getLLTForType(*PartTy, DL);
240     MachineRegisterInfo &MRI = *B.getMRI();
241 
242     // FIXME: Should we be reporting all of the part registers for a single
243     // argument, and let handleAssignments take care of the repacking?
244     for (unsigned i = 0; i < NumParts; ++i) {
245       Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
246       SplitRegs.push_back(PartReg);
247       SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
248     }
249 
250     PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx);
251 
252     ++SplitIdx;
253   }
254 }
255 
256 // Get the appropriate type to make \p OrigTy \p Factor times bigger.
257 static LLT getMultipleType(LLT OrigTy, int Factor) {
258   if (OrigTy.isVector()) {
259     return LLT::vector(OrigTy.getNumElements() * Factor,
260                        OrigTy.getElementType());
261   }
262 
263   return LLT::scalar(OrigTy.getSizeInBits() * Factor);
264 }
265 
266 // TODO: Move to generic code
267 static void unpackRegsToOrigType(MachineIRBuilder &B,
268                                  ArrayRef<Register> DstRegs,
269                                  Register SrcReg,
270                                  const CallLowering::ArgInfo &Info,
271                                  LLT SrcTy,
272                                  LLT PartTy) {
273   assert(DstRegs.size() > 1 && "Nothing to unpack");
274 
275   const unsigned SrcSize = SrcTy.getSizeInBits();
276   const unsigned PartSize = PartTy.getSizeInBits();
277 
278   if (SrcTy.isVector() && !PartTy.isVector() &&
279       PartSize > SrcTy.getElementType().getSizeInBits()) {
280     // Vector was scalarized, and the elements extended.
281     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(),
282                                                   SrcReg);
283     for (int i = 0, e = DstRegs.size(); i != e; ++i)
284       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
285     return;
286   }
287 
288   if (SrcSize % PartSize == 0) {
289     B.buildUnmerge(DstRegs, SrcReg);
290     return;
291   }
292 
293   const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize;
294 
295   LLT BigTy = getMultipleType(PartTy, NumRoundedParts);
296   auto ImpDef = B.buildUndef(BigTy);
297 
298   auto Big = B.buildInsert(BigTy, ImpDef.getReg(0), SrcReg, 0).getReg(0);
299 
300   int64_t Offset = 0;
301   for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize)
302     B.buildExtract(DstRegs[i], Big, Offset);
303 }
304 
305 /// Lower the return value for the already existing \p Ret. This assumes that
306 /// \p B's insertion point is correct.
307 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
308                                         const Value *Val, ArrayRef<Register> VRegs,
309                                         MachineInstrBuilder &Ret) const {
310   if (!Val)
311     return true;
312 
313   auto &MF = B.getMF();
314   const auto &F = MF.getFunction();
315   const DataLayout &DL = MF.getDataLayout();
316   MachineRegisterInfo *MRI = B.getMRI();
317 
318   CallingConv::ID CC = F.getCallingConv();
319   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
320 
321   ArgInfo OrigRetInfo(VRegs, Val->getType());
322   setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
323   SmallVector<ArgInfo, 4> SplitRetInfos;
324 
325   splitToValueTypes(
326     B, OrigRetInfo, AttributeList::ReturnIndex, SplitRetInfos, DL, CC,
327     [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
328         int VTSplitIdx) {
329       unpackRegsToOrigType(B, Regs, SrcReg,
330                            SplitRetInfos[VTSplitIdx],
331                            LLTy, PartLLT);
332     });
333 
334   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
335   OutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
336   return handleAssignments(B, SplitRetInfos, RetHandler);
337 }
338 
339 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
340                                      const Value *Val,
341                                      ArrayRef<Register> VRegs) const {
342 
343   MachineFunction &MF = B.getMF();
344   MachineRegisterInfo &MRI = MF.getRegInfo();
345   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
346   MFI->setIfReturnsVoid(!Val);
347 
348   assert(!Val == VRegs.empty() && "Return value without a vreg");
349 
350   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
351   const bool IsShader = AMDGPU::isShader(CC);
352   const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
353                          AMDGPU::isKernel(CC);
354   if (IsWaveEnd) {
355     B.buildInstr(AMDGPU::S_ENDPGM)
356       .addImm(0);
357     return true;
358   }
359 
360   auto const &ST = MF.getSubtarget<GCNSubtarget>();
361 
362   unsigned ReturnOpc =
363       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
364 
365   auto Ret = B.buildInstrNoInsert(ReturnOpc);
366   Register ReturnAddrVReg;
367   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
368     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
369     Ret.addUse(ReturnAddrVReg);
370   }
371 
372   if (!lowerReturnVal(B, Val, VRegs, Ret))
373     return false;
374 
375   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
376     const SIRegisterInfo *TRI = ST.getRegisterInfo();
377     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
378                                          &AMDGPU::SGPR_64RegClass);
379     B.buildCopy(ReturnAddrVReg, LiveInReturn);
380   }
381 
382   // TODO: Handle CalleeSavedRegsViaCopy.
383 
384   B.insertInstr(Ret);
385   return true;
386 }
387 
388 Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &B,
389                                                Type *ParamTy,
390                                                uint64_t Offset) const {
391 
392   MachineFunction &MF = B.getMF();
393   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
394   MachineRegisterInfo &MRI = MF.getRegInfo();
395   const Function &F = MF.getFunction();
396   const DataLayout &DL = F.getParent()->getDataLayout();
397   PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
398   LLT PtrType = getLLTForType(*PtrTy, DL);
399   Register KernArgSegmentPtr =
400     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
401   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
402 
403   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
404 
405   return B.buildPtrAdd(PtrType, KernArgSegmentVReg, OffsetReg).getReg(0);
406 }
407 
408 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B,
409                                         Type *ParamTy, uint64_t Offset,
410                                         unsigned Align,
411                                         Register DstReg) const {
412   MachineFunction &MF = B.getMF();
413   const Function &F = MF.getFunction();
414   const DataLayout &DL = F.getParent()->getDataLayout();
415   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
416   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
417   Register PtrReg = lowerParameterPtr(B, ParamTy, Offset);
418 
419   MachineMemOperand *MMO =
420       MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad |
421                                        MachineMemOperand::MODereferenceable |
422                                        MachineMemOperand::MOInvariant,
423                                        TypeSize, Align);
424 
425   B.buildLoad(DstReg, PtrReg, *MMO);
426 }
427 
428 // Allocate special inputs passed in user SGPRs.
429 static void allocateHSAUserSGPRs(CCState &CCInfo,
430                                  MachineIRBuilder &B,
431                                  MachineFunction &MF,
432                                  const SIRegisterInfo &TRI,
433                                  SIMachineFunctionInfo &Info) {
434   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
435   if (Info.hasPrivateSegmentBuffer()) {
436     unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
437     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
438     CCInfo.AllocateReg(PrivateSegmentBufferReg);
439   }
440 
441   if (Info.hasDispatchPtr()) {
442     unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
443     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
444     CCInfo.AllocateReg(DispatchPtrReg);
445   }
446 
447   if (Info.hasQueuePtr()) {
448     unsigned QueuePtrReg = Info.addQueuePtr(TRI);
449     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
450     CCInfo.AllocateReg(QueuePtrReg);
451   }
452 
453   if (Info.hasKernargSegmentPtr()) {
454     MachineRegisterInfo &MRI = MF.getRegInfo();
455     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
456     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
457     Register VReg = MRI.createGenericVirtualRegister(P4);
458     MRI.addLiveIn(InputPtrReg, VReg);
459     B.getMBB().addLiveIn(InputPtrReg);
460     B.buildCopy(VReg, InputPtrReg);
461     CCInfo.AllocateReg(InputPtrReg);
462   }
463 
464   if (Info.hasDispatchID()) {
465     unsigned DispatchIDReg = Info.addDispatchID(TRI);
466     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
467     CCInfo.AllocateReg(DispatchIDReg);
468   }
469 
470   if (Info.hasFlatScratchInit()) {
471     unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
472     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
473     CCInfo.AllocateReg(FlatScratchInitReg);
474   }
475 
476   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
477   // these from the dispatch pointer.
478 }
479 
480 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
481     MachineIRBuilder &B, const Function &F,
482     ArrayRef<ArrayRef<Register>> VRegs) const {
483   MachineFunction &MF = B.getMF();
484   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
485   MachineRegisterInfo &MRI = MF.getRegInfo();
486   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
487   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
488   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
489 
490   const DataLayout &DL = F.getParent()->getDataLayout();
491 
492   SmallVector<CCValAssign, 16> ArgLocs;
493   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
494 
495   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
496 
497   unsigned i = 0;
498   const unsigned KernArgBaseAlign = 16;
499   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
500   uint64_t ExplicitArgOffset = 0;
501 
502   // TODO: Align down to dword alignment and extract bits for extending loads.
503   for (auto &Arg : F.args()) {
504     Type *ArgTy = Arg.getType();
505     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
506     if (AllocSize == 0)
507       continue;
508 
509     unsigned ABIAlign = DL.getABITypeAlignment(ArgTy);
510 
511     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
512     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
513 
514     ArrayRef<Register> OrigArgRegs = VRegs[i];
515     Register ArgReg =
516       OrigArgRegs.size() == 1
517       ? OrigArgRegs[0]
518       : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
519     unsigned Align = MinAlign(KernArgBaseAlign, ArgOffset);
520     ArgOffset = alignTo(ArgOffset, DL.getABITypeAlignment(ArgTy));
521     lowerParameter(B, ArgTy, ArgOffset, Align, ArgReg);
522     if (OrigArgRegs.size() > 1)
523       unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
524     ++i;
525   }
526 
527   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
528   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
529   return true;
530 }
531 
532 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
533 static MachineInstrBuilder mergeVectorRegsToResultRegs(
534   MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) {
535   MachineRegisterInfo &MRI = *B.getMRI();
536   LLT LLTy = MRI.getType(DstRegs[0]);
537   LLT PartLLT = MRI.getType(SrcRegs[0]);
538 
539   // Deal with v3s16 split into v2s16
540   LLT LCMTy = getLCMType(LLTy, PartLLT);
541   if (LCMTy == LLTy) {
542     // Common case where no padding is needed.
543     assert(DstRegs.size() == 1);
544     return B.buildConcatVectors(DstRegs[0], SrcRegs);
545   }
546 
547   const int NumWide =  LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
548   Register Undef = B.buildUndef(PartLLT).getReg(0);
549 
550   // Build vector of undefs.
551   SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
552 
553   // Replace the first sources with the real registers.
554   std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
555 
556   auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
557   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
558 
559   SmallVector<Register, 8> PadDstRegs(NumDst);
560   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
561 
562   // Create the excess dead defs for the unmerge.
563   for (int I = DstRegs.size(); I != NumDst; ++I)
564     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
565 
566   return B.buildUnmerge(PadDstRegs, Widened);
567 }
568 
569 // TODO: Move this to generic code
570 static void packSplitRegsToOrigType(MachineIRBuilder &B,
571                                     ArrayRef<Register> OrigRegs,
572                                     ArrayRef<Register> Regs,
573                                     LLT LLTy,
574                                     LLT PartLLT) {
575   MachineRegisterInfo &MRI = *B.getMRI();
576 
577   if (!LLTy.isVector() && !PartLLT.isVector()) {
578     assert(OrigRegs.size() == 1);
579     LLT OrigTy = MRI.getType(OrigRegs[0]);
580 
581     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
582     if (SrcSize == OrigTy.getSizeInBits())
583       B.buildMerge(OrigRegs[0], Regs);
584     else {
585       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
586       B.buildTrunc(OrigRegs[0], Widened);
587     }
588 
589     return;
590   }
591 
592   if (LLTy.isVector() && PartLLT.isVector()) {
593     assert(OrigRegs.size() == 1);
594     assert(LLTy.getElementType() == PartLLT.getElementType());
595     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
596     return;
597   }
598 
599   assert(LLTy.isVector() && !PartLLT.isVector());
600 
601   LLT DstEltTy = LLTy.getElementType();
602 
603   // Pointer information was discarded. We'll need to coerce some register types
604   // to avoid violating type constraints.
605   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
606 
607   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
608 
609   if (DstEltTy == PartLLT) {
610     // Vector was trivially scalarized.
611 
612     if (RealDstEltTy.isPointer()) {
613       for (Register Reg : Regs)
614         MRI.setType(Reg, RealDstEltTy);
615     }
616 
617     B.buildBuildVector(OrigRegs[0], Regs);
618   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
619     // Deal with vector with 64-bit elements decomposed to 32-bit
620     // registers. Need to create intermediate 64-bit elements.
621     SmallVector<Register, 8> EltMerges;
622     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
623 
624     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
625 
626     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I)  {
627       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
628       // Fix the type in case this is really a vector of pointers.
629       MRI.setType(Merge.getReg(0), RealDstEltTy);
630       EltMerges.push_back(Merge.getReg(0));
631       Regs = Regs.drop_front(PartsPerElt);
632     }
633 
634     B.buildBuildVector(OrigRegs[0], EltMerges);
635   } else {
636     // Vector was split, and elements promoted to a wider type.
637     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
638     auto BV = B.buildBuildVector(BVType, Regs);
639     B.buildTrunc(OrigRegs[0], BV);
640   }
641 }
642 
643 bool AMDGPUCallLowering::lowerFormalArguments(
644     MachineIRBuilder &B, const Function &F,
645     ArrayRef<ArrayRef<Register>> VRegs) const {
646   CallingConv::ID CC = F.getCallingConv();
647 
648   // The infrastructure for normal calling convention lowering is essentially
649   // useless for kernels. We want to avoid any kind of legalization or argument
650   // splitting.
651   if (CC == CallingConv::AMDGPU_KERNEL)
652     return lowerFormalArgumentsKernel(B, F, VRegs);
653 
654   const bool IsShader = AMDGPU::isShader(CC);
655   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
656 
657   MachineFunction &MF = B.getMF();
658   MachineBasicBlock &MBB = B.getMBB();
659   MachineRegisterInfo &MRI = MF.getRegInfo();
660   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
661   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
662   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
663   const DataLayout &DL = F.getParent()->getDataLayout();
664 
665 
666   SmallVector<CCValAssign, 16> ArgLocs;
667   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
668 
669   if (!IsEntryFunc) {
670     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
671     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
672                                          &AMDGPU::SGPR_64RegClass);
673     MBB.addLiveIn(ReturnAddrReg);
674     B.buildCopy(LiveInReturn, ReturnAddrReg);
675   }
676 
677   if (Info->hasImplicitBufferPtr()) {
678     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
679     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
680     CCInfo.AllocateReg(ImplicitBufferPtrReg);
681   }
682 
683 
684   SmallVector<ArgInfo, 32> SplitArgs;
685   unsigned Idx = 0;
686   unsigned PSInputNum = 0;
687 
688   for (auto &Arg : F.args()) {
689     if (DL.getTypeStoreSize(Arg.getType()) == 0)
690       continue;
691 
692     const bool InReg = Arg.hasAttribute(Attribute::InReg);
693 
694     // SGPR arguments to functions not implemented.
695     if (!IsShader && InReg)
696       return false;
697 
698     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
699         Arg.hasAttribute(Attribute::SwiftError) ||
700         Arg.hasAttribute(Attribute::Nest))
701       return false;
702 
703     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
704       const bool ArgUsed = !Arg.use_empty();
705       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
706 
707       if (!SkipArg) {
708         Info->markPSInputAllocated(PSInputNum);
709         if (ArgUsed)
710           Info->markPSInputEnabled(PSInputNum);
711       }
712 
713       ++PSInputNum;
714 
715       if (SkipArg) {
716         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
717           B.buildUndef(VRegs[Idx][I]);
718 
719         ++Idx;
720         continue;
721       }
722     }
723 
724     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
725     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
726     setArgFlags(OrigArg, OrigArgIdx, DL, F);
727 
728     splitToValueTypes(
729       B, OrigArg, OrigArgIdx, SplitArgs, DL, CC,
730       // FIXME: We should probably be passing multiple registers to
731       // handleAssignments to do this
732       [&](ArrayRef<Register> Regs, Register DstReg,
733           LLT LLTy, LLT PartLLT, int VTSplitIdx) {
734         assert(DstReg == VRegs[Idx][VTSplitIdx]);
735         packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
736                                 LLTy, PartLLT);
737       });
738 
739     ++Idx;
740   }
741 
742   // At least one interpolation mode must be enabled or else the GPU will
743   // hang.
744   //
745   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
746   // set PSInputAddr, the user wants to enable some bits after the compilation
747   // based on run-time states. Since we can't know what the final PSInputEna
748   // will look like, so we shouldn't do anything here and the user should take
749   // responsibility for the correct programming.
750   //
751   // Otherwise, the following restrictions apply:
752   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
753   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
754   //   enabled too.
755   if (CC == CallingConv::AMDGPU_PS) {
756     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
757         ((Info->getPSInputAddr() & 0xF) == 0 &&
758          Info->isPSInputAllocated(11))) {
759       CCInfo.AllocateReg(AMDGPU::VGPR0);
760       CCInfo.AllocateReg(AMDGPU::VGPR1);
761       Info->markPSInputAllocated(0);
762       Info->markPSInputEnabled(0);
763     }
764 
765     if (Subtarget.isAmdPalOS()) {
766       // For isAmdPalOS, the user does not enable some bits after compilation
767       // based on run-time states; the register values being generated here are
768       // the final ones set in hardware. Therefore we need to apply the
769       // workaround to PSInputAddr and PSInputEnable together.  (The case where
770       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
771       // set up an input arg for a particular interpolation mode, but nothing
772       // uses that input arg. Really we should have an earlier pass that removes
773       // such an arg.)
774       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
775       if ((PsInputBits & 0x7F) == 0 ||
776           ((PsInputBits & 0xF) == 0 &&
777            (PsInputBits >> 11 & 1)))
778         Info->markPSInputEnabled(
779           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
780     }
781   }
782 
783   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
784   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
785 
786   if (!MBB.empty())
787     B.setInstr(*MBB.begin());
788 
789   FormalArgHandler Handler(B, MRI, AssignFn);
790   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
791     return false;
792 
793   if (!IsEntryFunc) {
794     // Special inputs come after user arguments.
795     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
796   }
797 
798   // Start adding system SGPRs.
799   if (IsEntryFunc) {
800     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
801   } else {
802     CCInfo.AllocateReg(Info->getScratchRSrcReg());
803     CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
804     CCInfo.AllocateReg(Info->getFrameOffsetReg());
805     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
806   }
807 
808   // Move back to the end of the basic block.
809   B.setMBB(MBB);
810 
811   return true;
812 }
813