1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUISelLowering.h" 18 #include "AMDGPULegalizerInfo.h" 19 #include "AMDGPUSubtarget.h" 20 #include "AMDGPUTargetMachine.h" 21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 22 #include "SIISelLowering.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "SIRegisterInfo.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/CallingConvLower.h" 27 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/Support/LowLevelTypeImpl.h" 30 31 #define DEBUG_TYPE "amdgpu-call-lowering" 32 33 using namespace llvm; 34 35 namespace { 36 37 struct AMDGPUValueHandler : public CallLowering::ValueHandler { 38 AMDGPUValueHandler(bool IsIncoming, MachineIRBuilder &B, 39 MachineRegisterInfo &MRI, CCAssignFn *AssignFn) 40 : ValueHandler(IsIncoming, B, MRI, AssignFn) {} 41 42 /// Wrapper around extendRegister to ensure we extend to a full 32-bit 43 /// register. 44 Register extendRegisterMin32(Register ValVReg, CCValAssign &VA) { 45 if (VA.getLocVT().getSizeInBits() < 32) { 46 // 16-bit types are reported as legal for 32-bit registers. We need to 47 // extend and do a 32-bit copy to avoid the verifier complaining about it. 48 return MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 49 } 50 51 return extendRegister(ValVReg, VA); 52 } 53 }; 54 55 struct AMDGPUOutgoingValueHandler : public AMDGPUValueHandler { 56 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 57 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 58 : AMDGPUValueHandler(false, B, MRI, AssignFn), MIB(MIB) {} 59 60 MachineInstrBuilder MIB; 61 62 Register getStackAddress(uint64_t Size, int64_t Offset, 63 MachinePointerInfo &MPO) override { 64 llvm_unreachable("not implemented"); 65 } 66 67 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 68 MachinePointerInfo &MPO, CCValAssign &VA) override { 69 llvm_unreachable("not implemented"); 70 } 71 72 void assignValueToReg(Register ValVReg, Register PhysReg, 73 CCValAssign &VA) override { 74 Register ExtReg = extendRegisterMin32(ValVReg, VA); 75 76 // If this is a scalar return, insert a readfirstlane just in case the value 77 // ends up in a VGPR. 78 // FIXME: Assert this is a shader return. 79 const SIRegisterInfo *TRI 80 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 81 if (TRI->isSGPRReg(MRI, PhysReg)) { 82 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 83 {MRI.getType(ExtReg)}, false) 84 .addReg(ExtReg); 85 ExtReg = ToSGPR.getReg(0); 86 } 87 88 MIRBuilder.buildCopy(PhysReg, ExtReg); 89 MIB.addUse(PhysReg, RegState::Implicit); 90 } 91 92 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, 93 CCValAssign::LocInfo LocInfo, 94 const CallLowering::ArgInfo &Info, 95 ISD::ArgFlagsTy Flags, 96 CCState &State) override { 97 return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State); 98 } 99 }; 100 101 struct AMDGPUIncomingArgHandler : public AMDGPUValueHandler { 102 uint64_t StackUsed = 0; 103 104 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 105 CCAssignFn *AssignFn) 106 : AMDGPUValueHandler(true, B, MRI, AssignFn) {} 107 108 Register getStackAddress(uint64_t Size, int64_t Offset, 109 MachinePointerInfo &MPO) override { 110 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 111 int FI = MFI.CreateFixedObject(Size, Offset, true); 112 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 113 auto AddrReg = MIRBuilder.buildFrameIndex( 114 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 115 StackUsed = std::max(StackUsed, Size + Offset); 116 return AddrReg.getReg(0); 117 } 118 119 void assignValueToReg(Register ValVReg, Register PhysReg, 120 CCValAssign &VA) override { 121 markPhysRegUsed(PhysReg); 122 123 if (VA.getLocVT().getSizeInBits() < 32) { 124 // 16-bit types are reported as legal for 32-bit registers. We need to do 125 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 126 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 127 MIRBuilder.buildTrunc(ValVReg, Copy); 128 return; 129 } 130 131 switch (VA.getLocInfo()) { 132 case CCValAssign::LocInfo::SExt: 133 case CCValAssign::LocInfo::ZExt: 134 case CCValAssign::LocInfo::AExt: { 135 auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg); 136 MIRBuilder.buildTrunc(ValVReg, Copy); 137 break; 138 } 139 default: 140 MIRBuilder.buildCopy(ValVReg, PhysReg); 141 break; 142 } 143 } 144 145 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize, 146 MachinePointerInfo &MPO, CCValAssign &VA) override { 147 MachineFunction &MF = MIRBuilder.getMF(); 148 149 // The reported memory location may be wider than the value. 150 const LLT RegTy = MRI.getType(ValVReg); 151 MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize); 152 153 // FIXME: Get alignment 154 auto MMO = MF.getMachineMemOperand( 155 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize, 156 inferAlignFromPtrInfo(MF, MPO)); 157 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 158 } 159 160 /// How the physical register gets marked varies between formal 161 /// parameters (it's a basic-block live-in), and a call instruction 162 /// (it's an implicit-def of the BL). 163 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 164 }; 165 166 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 167 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 168 CCAssignFn *AssignFn) 169 : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {} 170 171 void markPhysRegUsed(unsigned PhysReg) override { 172 MIRBuilder.getMBB().addLiveIn(PhysReg); 173 } 174 }; 175 176 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 177 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 178 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 179 : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} 180 181 void markPhysRegUsed(unsigned PhysReg) override { 182 MIB.addDef(PhysReg, RegState::Implicit); 183 } 184 185 MachineInstrBuilder MIB; 186 }; 187 188 struct AMDGPUOutgoingArgHandler : public AMDGPUValueHandler { 189 MachineInstrBuilder MIB; 190 CCAssignFn *AssignFnVarArg; 191 192 /// For tail calls, the byte offset of the call's argument area from the 193 /// callee's. Unused elsewhere. 194 int FPDiff; 195 196 // Cache the SP register vreg if we need it more than once in this call site. 197 Register SPReg; 198 199 bool IsTailCall; 200 201 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 202 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 203 CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg, 204 bool IsTailCall = false, int FPDiff = 0) 205 : AMDGPUValueHandler(false, MIRBuilder, MRI, AssignFn), MIB(MIB), 206 AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) { 207 } 208 209 Register getStackAddress(uint64_t Size, int64_t Offset, 210 MachinePointerInfo &MPO) override { 211 MachineFunction &MF = MIRBuilder.getMF(); 212 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 213 const LLT S32 = LLT::scalar(32); 214 215 if (IsTailCall) { 216 llvm_unreachable("implement me"); 217 } 218 219 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 220 221 if (!SPReg) 222 SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0); 223 224 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 225 226 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 227 MPO = MachinePointerInfo::getStack(MF, Offset); 228 return AddrReg.getReg(0); 229 } 230 231 void assignValueToReg(Register ValVReg, Register PhysReg, 232 CCValAssign &VA) override { 233 MIB.addUse(PhysReg, RegState::Implicit); 234 Register ExtReg = extendRegisterMin32(ValVReg, VA); 235 MIRBuilder.buildCopy(PhysReg, ExtReg); 236 } 237 238 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 239 MachinePointerInfo &MPO, CCValAssign &VA) override { 240 MachineFunction &MF = MIRBuilder.getMF(); 241 uint64_t LocMemOffset = VA.getLocMemOffset(); 242 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 243 244 auto MMO = MF.getMachineMemOperand( 245 MPO, MachineMemOperand::MOStore, Size, 246 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 247 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 248 } 249 250 void assignValueToAddress(const CallLowering::ArgInfo &Arg, Register Addr, 251 uint64_t MemSize, MachinePointerInfo &MPO, 252 CCValAssign &VA) override { 253 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 254 ? extendRegister(Arg.Regs[0], VA) 255 : Arg.Regs[0]; 256 257 // If we extended the value type we might need to adjust the MMO's 258 // Size. This happens if ComputeValueVTs widened a small type value to a 259 // legal register type (e.g. s8->s16) 260 const LLT RegTy = MRI.getType(ValVReg); 261 MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes()); 262 assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA); 263 } 264 }; 265 } 266 267 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 268 : CallLowering(&TLI) { 269 } 270 271 // FIXME: Compatability shim 272 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 273 switch (MIOpc) { 274 case TargetOpcode::G_SEXT: 275 return ISD::SIGN_EXTEND; 276 case TargetOpcode::G_ZEXT: 277 return ISD::ZERO_EXTEND; 278 case TargetOpcode::G_ANYEXT: 279 return ISD::ANY_EXTEND; 280 default: 281 llvm_unreachable("not an extend opcode"); 282 } 283 } 284 285 // FIXME: This should move to generic code. 286 void AMDGPUCallLowering::splitToValueTypes(MachineIRBuilder &B, 287 const ArgInfo &OrigArg, 288 SmallVectorImpl<ArgInfo> &SplitArgs, 289 const DataLayout &DL, 290 CallingConv::ID CallConv) const { 291 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 292 LLVMContext &Ctx = OrigArg.Ty->getContext(); 293 294 SmallVector<EVT, 4> SplitVTs; 295 ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs); 296 297 assert(OrigArg.Regs.size() == SplitVTs.size()); 298 299 if (SplitVTs.size() == 0) 300 return; 301 302 if (SplitVTs.size() == 1) { 303 // No splitting to do, but we want to replace the original type (e.g. [1 x 304 // double] -> double). 305 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 306 OrigArg.Flags[0], OrigArg.IsFixed); 307 return; 308 } 309 310 // Create one ArgInfo for each virtual register in the original ArgInfo. 311 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 312 313 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 314 OrigArg.Ty, CallConv, false); 315 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 316 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 317 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0], 318 OrigArg.IsFixed); 319 if (NeedsRegBlock) 320 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 321 } 322 323 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 324 } 325 326 void AMDGPUCallLowering::processSplitArgs( 327 MachineIRBuilder &B, const ArgInfo &OrigArg, 328 const SmallVectorImpl<ArgInfo> &SplitArg, 329 SmallVectorImpl<ArgInfo> &SplitArgs, const DataLayout &DL, 330 CallingConv::ID CallConv, bool IsOutgoing, 331 SplitArgTy PerformArgSplit) const { 332 LLVMContext &Ctx = OrigArg.Ty->getContext(); 333 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 334 335 // FIXME: This is mostly nasty pre-processing before handleAssignments. Most 336 // of this should be performed by handleAssignments. 337 338 int SplitIdx = 0; 339 for (const ArgInfo &SplitArg : SplitArg) { 340 Register Reg = OrigArg.Regs[SplitIdx]; 341 EVT VT = EVT::getEVT(SplitArg.Ty); 342 LLT LLTy = getLLTForType(*SplitArg.Ty, DL); 343 344 unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT); 345 MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT); 346 347 if (NumParts == 1) { 348 // No splitting to do, but we want to replace the original type (e.g. [1 x 349 // double] -> double). 350 SplitArgs.emplace_back(Reg, SplitArg.Ty, OrigArg.Flags, OrigArg.IsFixed); 351 352 ++SplitIdx; 353 continue; 354 } 355 356 SmallVector<Register, 8> SplitRegs; 357 Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx); 358 LLT PartLLT = getLLTForType(*PartTy, DL); 359 MachineRegisterInfo &MRI = *B.getMRI(); 360 361 // FIXME: Should we be reporting all of the part registers for a single 362 // argument, and let handleAssignments take care of the repacking? 363 for (unsigned i = 0; i < NumParts; ++i) { 364 Register PartReg = MRI.createGenericVirtualRegister(PartLLT); 365 SplitRegs.push_back(PartReg); 366 SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags); 367 } 368 369 PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx); 370 371 ++SplitIdx; 372 } 373 } 374 375 // TODO: Move to generic code 376 static void unpackRegsToOrigType(MachineIRBuilder &B, 377 ArrayRef<Register> DstRegs, 378 Register SrcReg, 379 const CallLowering::ArgInfo &Info, 380 LLT SrcTy, 381 LLT PartTy) { 382 assert(DstRegs.size() > 1 && "Nothing to unpack"); 383 384 const unsigned PartSize = PartTy.getSizeInBits(); 385 386 if (SrcTy.isVector() && !PartTy.isVector() && 387 PartSize > SrcTy.getElementType().getSizeInBits()) { 388 // Vector was scalarized, and the elements extended. 389 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 390 for (int i = 0, e = DstRegs.size(); i != e; ++i) 391 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 392 return; 393 } 394 395 LLT GCDTy = getGCDType(SrcTy, PartTy); 396 if (GCDTy == PartTy) { 397 // If this already evenly divisible, we can create a simple unmerge. 398 B.buildUnmerge(DstRegs, SrcReg); 399 return; 400 } 401 402 MachineRegisterInfo &MRI = *B.getMRI(); 403 LLT DstTy = MRI.getType(DstRegs[0]); 404 LLT LCMTy = getLCMType(SrcTy, PartTy); 405 406 const unsigned LCMSize = LCMTy.getSizeInBits(); 407 const unsigned DstSize = DstTy.getSizeInBits(); 408 const unsigned SrcSize = SrcTy.getSizeInBits(); 409 410 Register UnmergeSrc = SrcReg; 411 if (LCMSize != SrcSize) { 412 // Widen to the common type. 413 Register Undef = B.buildUndef(SrcTy).getReg(0); 414 SmallVector<Register, 8> MergeParts(1, SrcReg); 415 for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize) 416 MergeParts.push_back(Undef); 417 418 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 419 } 420 421 // Unmerge to the original registers and pad with dead defs. 422 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 423 for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize; 424 Size += DstSize) { 425 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 426 } 427 428 B.buildUnmerge(UnmergeResults, UnmergeSrc); 429 } 430 431 /// Lower the return value for the already existing \p Ret. This assumes that 432 /// \p B's insertion point is correct. 433 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 434 const Value *Val, ArrayRef<Register> VRegs, 435 MachineInstrBuilder &Ret) const { 436 if (!Val) 437 return true; 438 439 auto &MF = B.getMF(); 440 const auto &F = MF.getFunction(); 441 const DataLayout &DL = MF.getDataLayout(); 442 MachineRegisterInfo *MRI = B.getMRI(); 443 LLVMContext &Ctx = F.getContext(); 444 445 CallingConv::ID CC = F.getCallingConv(); 446 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 447 448 SmallVector<EVT, 8> SplitEVTs; 449 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 450 assert(VRegs.size() == SplitEVTs.size() && 451 "For each split Type there should be exactly one VReg."); 452 453 // We pre-process the return value decomposed into EVTs. 454 SmallVector<ArgInfo, 8> PreSplitRetInfos; 455 456 // Further processing is applied to split the arguments from PreSplitRetInfos 457 // into 32-bit pieces in SplitRetInfos before passing off to 458 // handleAssignments. 459 SmallVector<ArgInfo, 8> SplitRetInfos; 460 461 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 462 EVT VT = SplitEVTs[i]; 463 Register Reg = VRegs[i]; 464 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx)); 465 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 466 467 if (VT.isScalarInteger()) { 468 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 469 if (RetInfo.Flags[0].isSExt()) { 470 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 471 ExtendOp = TargetOpcode::G_SEXT; 472 } else if (RetInfo.Flags[0].isZExt()) { 473 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 474 ExtendOp = TargetOpcode::G_ZEXT; 475 } 476 477 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 478 extOpcodeToISDExtOpcode(ExtendOp)); 479 if (ExtVT != VT) { 480 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 481 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 482 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 483 } 484 } 485 486 if (Reg != RetInfo.Regs[0]) { 487 RetInfo.Regs[0] = Reg; 488 // Reset the arg flags after modifying Reg. 489 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 490 } 491 492 splitToValueTypes(B, RetInfo, PreSplitRetInfos, DL, CC); 493 494 // FIXME: This splitting should mostly be done by handleAssignments 495 processSplitArgs(B, RetInfo, 496 PreSplitRetInfos, SplitRetInfos, DL, CC, true, 497 [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, 498 LLT PartLLT, int VTSplitIdx) { 499 unpackRegsToOrigType(B, Regs, SrcReg, 500 PreSplitRetInfos[VTSplitIdx], LLTy, 501 PartLLT); 502 }); 503 PreSplitRetInfos.clear(); 504 } 505 506 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 507 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn); 508 return handleAssignments(B, SplitRetInfos, RetHandler); 509 } 510 511 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 512 ArrayRef<Register> VRegs, 513 FunctionLoweringInfo &FLI) const { 514 515 MachineFunction &MF = B.getMF(); 516 MachineRegisterInfo &MRI = MF.getRegInfo(); 517 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 518 MFI->setIfReturnsVoid(!Val); 519 520 assert(!Val == VRegs.empty() && "Return value without a vreg"); 521 522 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 523 const bool IsShader = AMDGPU::isShader(CC); 524 const bool IsWaveEnd = 525 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 526 if (IsWaveEnd) { 527 B.buildInstr(AMDGPU::S_ENDPGM) 528 .addImm(0); 529 return true; 530 } 531 532 auto const &ST = MF.getSubtarget<GCNSubtarget>(); 533 534 unsigned ReturnOpc = 535 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return; 536 537 auto Ret = B.buildInstrNoInsert(ReturnOpc); 538 Register ReturnAddrVReg; 539 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 540 ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass); 541 Ret.addUse(ReturnAddrVReg); 542 } 543 544 if (!lowerReturnVal(B, Val, VRegs, Ret)) 545 return false; 546 547 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 548 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 549 Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF), 550 &AMDGPU::SGPR_64RegClass); 551 B.buildCopy(ReturnAddrVReg, LiveInReturn); 552 } 553 554 // TODO: Handle CalleeSavedRegsViaCopy. 555 556 B.insertInstr(Ret); 557 return true; 558 } 559 560 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 561 Type *ParamTy, 562 uint64_t Offset) const { 563 MachineFunction &MF = B.getMF(); 564 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 565 MachineRegisterInfo &MRI = MF.getRegInfo(); 566 Register KernArgSegmentPtr = 567 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 568 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 569 570 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 571 572 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 573 } 574 575 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy, 576 uint64_t Offset, Align Alignment, 577 Register DstReg) const { 578 MachineFunction &MF = B.getMF(); 579 const Function &F = MF.getFunction(); 580 const DataLayout &DL = F.getParent()->getDataLayout(); 581 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 582 unsigned TypeSize = DL.getTypeStoreSize(ParamTy); 583 584 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 585 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 586 lowerParameterPtr(PtrReg, B, ParamTy, Offset); 587 588 MachineMemOperand *MMO = MF.getMachineMemOperand( 589 PtrInfo, 590 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 591 MachineMemOperand::MOInvariant, 592 TypeSize, Alignment); 593 594 B.buildLoad(DstReg, PtrReg, *MMO); 595 } 596 597 // Allocate special inputs passed in user SGPRs. 598 static void allocateHSAUserSGPRs(CCState &CCInfo, 599 MachineIRBuilder &B, 600 MachineFunction &MF, 601 const SIRegisterInfo &TRI, 602 SIMachineFunctionInfo &Info) { 603 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 604 if (Info.hasPrivateSegmentBuffer()) { 605 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 606 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 607 CCInfo.AllocateReg(PrivateSegmentBufferReg); 608 } 609 610 if (Info.hasDispatchPtr()) { 611 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 612 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 613 CCInfo.AllocateReg(DispatchPtrReg); 614 } 615 616 if (Info.hasQueuePtr()) { 617 Register QueuePtrReg = Info.addQueuePtr(TRI); 618 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 619 CCInfo.AllocateReg(QueuePtrReg); 620 } 621 622 if (Info.hasKernargSegmentPtr()) { 623 MachineRegisterInfo &MRI = MF.getRegInfo(); 624 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 625 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 626 Register VReg = MRI.createGenericVirtualRegister(P4); 627 MRI.addLiveIn(InputPtrReg, VReg); 628 B.getMBB().addLiveIn(InputPtrReg); 629 B.buildCopy(VReg, InputPtrReg); 630 CCInfo.AllocateReg(InputPtrReg); 631 } 632 633 if (Info.hasDispatchID()) { 634 Register DispatchIDReg = Info.addDispatchID(TRI); 635 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 636 CCInfo.AllocateReg(DispatchIDReg); 637 } 638 639 if (Info.hasFlatScratchInit()) { 640 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 641 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 642 CCInfo.AllocateReg(FlatScratchInitReg); 643 } 644 645 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 646 // these from the dispatch pointer. 647 } 648 649 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 650 MachineIRBuilder &B, const Function &F, 651 ArrayRef<ArrayRef<Register>> VRegs) const { 652 MachineFunction &MF = B.getMF(); 653 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 654 MachineRegisterInfo &MRI = MF.getRegInfo(); 655 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 656 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 657 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 658 659 const DataLayout &DL = F.getParent()->getDataLayout(); 660 661 SmallVector<CCValAssign, 16> ArgLocs; 662 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 663 664 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 665 666 unsigned i = 0; 667 const Align KernArgBaseAlign(16); 668 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 669 uint64_t ExplicitArgOffset = 0; 670 671 // TODO: Align down to dword alignment and extract bits for extending loads. 672 for (auto &Arg : F.args()) { 673 const bool IsByRef = Arg.hasByRefAttr(); 674 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 675 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 676 if (AllocSize == 0) 677 continue; 678 679 MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None; 680 if (!ABIAlign) 681 ABIAlign = DL.getABITypeAlign(ArgTy); 682 683 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 684 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 685 686 if (Arg.use_empty()) { 687 ++i; 688 continue; 689 } 690 691 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 692 693 if (IsByRef) { 694 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 695 696 assert(VRegs[i].size() == 1 && 697 "expected only one register for byval pointers"); 698 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 699 lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset); 700 } else { 701 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 702 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 703 lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset); 704 705 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 706 } 707 } else { 708 ArrayRef<Register> OrigArgRegs = VRegs[i]; 709 Register ArgReg = 710 OrigArgRegs.size() == 1 711 ? OrigArgRegs[0] 712 : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL)); 713 714 lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg); 715 if (OrigArgRegs.size() > 1) 716 unpackRegs(OrigArgRegs, ArgReg, ArgTy, B); 717 } 718 719 ++i; 720 } 721 722 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 723 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 724 return true; 725 } 726 727 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 728 static MachineInstrBuilder mergeVectorRegsToResultRegs( 729 MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) { 730 MachineRegisterInfo &MRI = *B.getMRI(); 731 LLT LLTy = MRI.getType(DstRegs[0]); 732 LLT PartLLT = MRI.getType(SrcRegs[0]); 733 734 // Deal with v3s16 split into v2s16 735 LLT LCMTy = getLCMType(LLTy, PartLLT); 736 if (LCMTy == LLTy) { 737 // Common case where no padding is needed. 738 assert(DstRegs.size() == 1); 739 return B.buildConcatVectors(DstRegs[0], SrcRegs); 740 } 741 742 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 743 Register Undef = B.buildUndef(PartLLT).getReg(0); 744 745 // Build vector of undefs. 746 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 747 748 // Replace the first sources with the real registers. 749 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 750 751 auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs); 752 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 753 754 SmallVector<Register, 8> PadDstRegs(NumDst); 755 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 756 757 // Create the excess dead defs for the unmerge. 758 for (int I = DstRegs.size(); I != NumDst; ++I) 759 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 760 761 return B.buildUnmerge(PadDstRegs, Widened); 762 } 763 764 // TODO: Move this to generic code 765 static void packSplitRegsToOrigType(MachineIRBuilder &B, 766 ArrayRef<Register> OrigRegs, 767 ArrayRef<Register> Regs, 768 LLT LLTy, 769 LLT PartLLT) { 770 MachineRegisterInfo &MRI = *B.getMRI(); 771 772 if (!LLTy.isVector() && !PartLLT.isVector()) { 773 assert(OrigRegs.size() == 1); 774 LLT OrigTy = MRI.getType(OrigRegs[0]); 775 776 unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size(); 777 if (SrcSize == OrigTy.getSizeInBits()) 778 B.buildMerge(OrigRegs[0], Regs); 779 else { 780 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 781 B.buildTrunc(OrigRegs[0], Widened); 782 } 783 784 return; 785 } 786 787 if (LLTy.isVector() && PartLLT.isVector()) { 788 assert(OrigRegs.size() == 1); 789 assert(LLTy.getElementType() == PartLLT.getElementType()); 790 mergeVectorRegsToResultRegs(B, OrigRegs, Regs); 791 return; 792 } 793 794 assert(LLTy.isVector() && !PartLLT.isVector()); 795 796 LLT DstEltTy = LLTy.getElementType(); 797 798 // Pointer information was discarded. We'll need to coerce some register types 799 // to avoid violating type constraints. 800 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 801 802 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 803 804 if (DstEltTy == PartLLT) { 805 // Vector was trivially scalarized. 806 807 if (RealDstEltTy.isPointer()) { 808 for (Register Reg : Regs) 809 MRI.setType(Reg, RealDstEltTy); 810 } 811 812 B.buildBuildVector(OrigRegs[0], Regs); 813 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 814 // Deal with vector with 64-bit elements decomposed to 32-bit 815 // registers. Need to create intermediate 64-bit elements. 816 SmallVector<Register, 8> EltMerges; 817 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 818 819 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 820 821 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 822 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 823 // Fix the type in case this is really a vector of pointers. 824 MRI.setType(Merge.getReg(0), RealDstEltTy); 825 EltMerges.push_back(Merge.getReg(0)); 826 Regs = Regs.drop_front(PartsPerElt); 827 } 828 829 B.buildBuildVector(OrigRegs[0], EltMerges); 830 } else { 831 // Vector was split, and elements promoted to a wider type. 832 LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT); 833 auto BV = B.buildBuildVector(BVType, Regs); 834 B.buildTrunc(OrigRegs[0], BV); 835 } 836 } 837 838 bool AMDGPUCallLowering::lowerFormalArguments( 839 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 840 FunctionLoweringInfo &FLI) const { 841 CallingConv::ID CC = F.getCallingConv(); 842 843 // The infrastructure for normal calling convention lowering is essentially 844 // useless for kernels. We want to avoid any kind of legalization or argument 845 // splitting. 846 if (CC == CallingConv::AMDGPU_KERNEL) 847 return lowerFormalArgumentsKernel(B, F, VRegs); 848 849 const bool IsGraphics = AMDGPU::isGraphics(CC); 850 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 851 852 MachineFunction &MF = B.getMF(); 853 MachineBasicBlock &MBB = B.getMBB(); 854 MachineRegisterInfo &MRI = MF.getRegInfo(); 855 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 856 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 857 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 858 const DataLayout &DL = F.getParent()->getDataLayout(); 859 860 861 SmallVector<CCValAssign, 16> ArgLocs; 862 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 863 864 if (!IsEntryFunc) { 865 Register ReturnAddrReg = TRI->getReturnAddressReg(MF); 866 Register LiveInReturn = MF.addLiveIn(ReturnAddrReg, 867 &AMDGPU::SGPR_64RegClass); 868 MBB.addLiveIn(ReturnAddrReg); 869 B.buildCopy(LiveInReturn, ReturnAddrReg); 870 } 871 872 if (Info->hasImplicitBufferPtr()) { 873 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 874 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 875 CCInfo.AllocateReg(ImplicitBufferPtrReg); 876 } 877 878 SmallVector<ArgInfo, 8> SplitArg; 879 SmallVector<ArgInfo, 32> SplitArgs; 880 unsigned Idx = 0; 881 unsigned PSInputNum = 0; 882 883 for (auto &Arg : F.args()) { 884 if (DL.getTypeStoreSize(Arg.getType()) == 0) 885 continue; 886 887 const bool InReg = Arg.hasAttribute(Attribute::InReg); 888 889 // SGPR arguments to functions not implemented. 890 if (!IsGraphics && InReg) 891 return false; 892 893 if (Arg.hasAttribute(Attribute::SwiftSelf) || 894 Arg.hasAttribute(Attribute::SwiftError) || 895 Arg.hasAttribute(Attribute::Nest)) 896 return false; 897 898 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 899 const bool ArgUsed = !Arg.use_empty(); 900 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 901 902 if (!SkipArg) { 903 Info->markPSInputAllocated(PSInputNum); 904 if (ArgUsed) 905 Info->markPSInputEnabled(PSInputNum); 906 } 907 908 ++PSInputNum; 909 910 if (SkipArg) { 911 for (int I = 0, E = VRegs[Idx].size(); I != E; ++I) 912 B.buildUndef(VRegs[Idx][I]); 913 914 ++Idx; 915 continue; 916 } 917 } 918 919 ArgInfo OrigArg(VRegs[Idx], Arg.getType()); 920 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 921 setArgFlags(OrigArg, OrigArgIdx, DL, F); 922 923 SplitArg.clear(); 924 splitToValueTypes(B, OrigArg, SplitArg, DL, CC); 925 926 processSplitArgs(B, OrigArg, SplitArg, SplitArgs, DL, CC, false, 927 // FIXME: We should probably be passing multiple registers 928 // to handleAssignments to do this 929 [&](ArrayRef<Register> Regs, Register DstReg, LLT LLTy, 930 LLT PartLLT, int VTSplitIdx) { 931 assert(DstReg == VRegs[Idx][VTSplitIdx]); 932 packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs, 933 LLTy, PartLLT); 934 }); 935 936 ++Idx; 937 } 938 939 // At least one interpolation mode must be enabled or else the GPU will 940 // hang. 941 // 942 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 943 // set PSInputAddr, the user wants to enable some bits after the compilation 944 // based on run-time states. Since we can't know what the final PSInputEna 945 // will look like, so we shouldn't do anything here and the user should take 946 // responsibility for the correct programming. 947 // 948 // Otherwise, the following restrictions apply: 949 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 950 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 951 // enabled too. 952 if (CC == CallingConv::AMDGPU_PS) { 953 if ((Info->getPSInputAddr() & 0x7F) == 0 || 954 ((Info->getPSInputAddr() & 0xF) == 0 && 955 Info->isPSInputAllocated(11))) { 956 CCInfo.AllocateReg(AMDGPU::VGPR0); 957 CCInfo.AllocateReg(AMDGPU::VGPR1); 958 Info->markPSInputAllocated(0); 959 Info->markPSInputEnabled(0); 960 } 961 962 if (Subtarget.isAmdPalOS()) { 963 // For isAmdPalOS, the user does not enable some bits after compilation 964 // based on run-time states; the register values being generated here are 965 // the final ones set in hardware. Therefore we need to apply the 966 // workaround to PSInputAddr and PSInputEnable together. (The case where 967 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 968 // set up an input arg for a particular interpolation mode, but nothing 969 // uses that input arg. Really we should have an earlier pass that removes 970 // such an arg.) 971 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 972 if ((PsInputBits & 0x7F) == 0 || 973 ((PsInputBits & 0xF) == 0 && 974 (PsInputBits >> 11 & 1))) 975 Info->markPSInputEnabled( 976 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 977 } 978 } 979 980 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 981 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 982 983 if (!MBB.empty()) 984 B.setInstr(*MBB.begin()); 985 986 if (!IsEntryFunc) { 987 // For the fixed ABI, pass workitem IDs in the last argument register. 988 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 989 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 990 } 991 992 FormalArgHandler Handler(B, MRI, AssignFn); 993 if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler)) 994 return false; 995 996 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 997 // Special inputs come after user arguments. 998 TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 999 } 1000 1001 // Start adding system SGPRs. 1002 if (IsEntryFunc) { 1003 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 1004 } else { 1005 if (!Subtarget.enableFlatScratch()) 1006 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 1007 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 1008 } 1009 1010 // Move back to the end of the basic block. 1011 B.setMBB(MBB); 1012 1013 return true; 1014 } 1015 1016 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 1017 CCState &CCInfo, 1018 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 1019 CallLoweringInfo &Info) const { 1020 MachineFunction &MF = MIRBuilder.getMF(); 1021 1022 const AMDGPUFunctionArgInfo *CalleeArgInfo 1023 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 1024 1025 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1026 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 1027 1028 1029 // TODO: Unify with private memory register handling. This is complicated by 1030 // the fact that at least in kernels, the input argument is not necessarily 1031 // in the same location as the input. 1032 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 1033 AMDGPUFunctionArgInfo::DISPATCH_PTR, 1034 AMDGPUFunctionArgInfo::QUEUE_PTR, 1035 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 1036 AMDGPUFunctionArgInfo::DISPATCH_ID, 1037 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 1038 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 1039 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 1040 }; 1041 1042 MachineRegisterInfo &MRI = MF.getRegInfo(); 1043 1044 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1045 const AMDGPULegalizerInfo *LI 1046 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 1047 1048 for (auto InputID : InputRegs) { 1049 const ArgDescriptor *OutgoingArg; 1050 const TargetRegisterClass *ArgRC; 1051 LLT ArgTy; 1052 1053 std::tie(OutgoingArg, ArgRC, ArgTy) = 1054 CalleeArgInfo->getPreloadedValue(InputID); 1055 if (!OutgoingArg) 1056 continue; 1057 1058 const ArgDescriptor *IncomingArg; 1059 const TargetRegisterClass *IncomingArgRC; 1060 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 1061 CallerArgInfo.getPreloadedValue(InputID); 1062 assert(IncomingArgRC == ArgRC); 1063 1064 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 1065 1066 if (IncomingArg) { 1067 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 1068 } else { 1069 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 1070 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 1071 } 1072 1073 if (OutgoingArg->isRegister()) { 1074 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 1075 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 1076 report_fatal_error("failed to allocate implicit input argument"); 1077 } else { 1078 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 1079 return false; 1080 } 1081 } 1082 1083 // Pack workitem IDs into a single register or pass it as is if already 1084 // packed. 1085 const ArgDescriptor *OutgoingArg; 1086 const TargetRegisterClass *ArgRC; 1087 LLT ArgTy; 1088 1089 std::tie(OutgoingArg, ArgRC, ArgTy) = 1090 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 1091 if (!OutgoingArg) 1092 std::tie(OutgoingArg, ArgRC, ArgTy) = 1093 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 1094 if (!OutgoingArg) 1095 std::tie(OutgoingArg, ArgRC, ArgTy) = 1096 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 1097 if (!OutgoingArg) 1098 return false; 1099 1100 auto WorkitemIDX = 1101 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 1102 auto WorkitemIDY = 1103 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 1104 auto WorkitemIDZ = 1105 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 1106 1107 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 1108 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 1109 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 1110 const LLT S32 = LLT::scalar(32); 1111 1112 // If incoming ids are not packed we need to pack them. 1113 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 1114 Register InputReg; 1115 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) { 1116 InputReg = MRI.createGenericVirtualRegister(S32); 1117 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 1118 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 1119 } 1120 1121 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { 1122 Register Y = MRI.createGenericVirtualRegister(S32); 1123 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 1124 std::get<2>(WorkitemIDY)); 1125 1126 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 1127 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 1128 } 1129 1130 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { 1131 Register Z = MRI.createGenericVirtualRegister(S32); 1132 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 1133 std::get<2>(WorkitemIDZ)); 1134 1135 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 1136 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 1137 } 1138 1139 if (!InputReg) { 1140 InputReg = MRI.createGenericVirtualRegister(S32); 1141 1142 // Workitem ids are already packed, any of present incoming arguments will 1143 // carry all required fields. 1144 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 1145 IncomingArgX ? *IncomingArgX : 1146 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 1147 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 1148 &AMDGPU::VGPR_32RegClass, S32); 1149 } 1150 1151 if (OutgoingArg->isRegister()) { 1152 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 1153 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 1154 report_fatal_error("failed to allocate implicit input argument"); 1155 } else { 1156 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 1157 return false; 1158 } 1159 1160 return true; 1161 } 1162 1163 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 1164 /// CC. 1165 static std::pair<CCAssignFn *, CCAssignFn *> 1166 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 1167 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 1168 } 1169 1170 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 1171 bool IsTailCall) { 1172 return AMDGPU::SI_CALL; 1173 } 1174 1175 // Add operands to call instruction to track the callee. 1176 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 1177 MachineIRBuilder &MIRBuilder, 1178 AMDGPUCallLowering::CallLoweringInfo &Info) { 1179 if (Info.Callee.isReg()) { 1180 CallInst.addReg(Info.Callee.getReg()); 1181 CallInst.addImm(0); 1182 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 1183 // The call lowering lightly assumed we can directly encode a call target in 1184 // the instruction, which is not the case. Materialize the address here. 1185 const GlobalValue *GV = Info.Callee.getGlobal(); 1186 auto Ptr = MIRBuilder.buildGlobalValue( 1187 LLT::pointer(GV->getAddressSpace(), 64), GV); 1188 CallInst.addReg(Ptr.getReg(0)); 1189 CallInst.add(Info.Callee); 1190 } else 1191 return false; 1192 1193 return true; 1194 } 1195 1196 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1197 CallLoweringInfo &Info) const { 1198 if (Info.IsVarArg) { 1199 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 1200 return false; 1201 } 1202 1203 MachineFunction &MF = MIRBuilder.getMF(); 1204 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1205 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1206 1207 const Function &F = MF.getFunction(); 1208 MachineRegisterInfo &MRI = MF.getRegInfo(); 1209 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1210 const DataLayout &DL = F.getParent()->getDataLayout(); 1211 CallingConv::ID CallConv = F.getCallingConv(); 1212 1213 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 1214 CallConv != CallingConv::AMDGPU_Gfx) { 1215 LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n"); 1216 return false; 1217 } 1218 1219 if (AMDGPU::isShader(CallConv)) { 1220 LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n"); 1221 return false; 1222 } 1223 1224 SmallVector<ArgInfo, 8> OutArgs; 1225 1226 SmallVector<ArgInfo, 8> SplitArg; 1227 for (auto &OrigArg : Info.OrigArgs) { 1228 splitToValueTypes(MIRBuilder, OrigArg, SplitArg, DL, Info.CallConv); 1229 1230 processSplitArgs( 1231 MIRBuilder, OrigArg, SplitArg, OutArgs, DL, Info.CallConv, true, 1232 // FIXME: We should probably be passing multiple registers to 1233 // handleAssignments to do this 1234 [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT, 1235 int VTSplitIdx) { 1236 unpackRegsToOrigType(MIRBuilder, Regs, SrcReg, OrigArg, LLTy, PartLLT); 1237 }); 1238 1239 SplitArg.clear(); 1240 } 1241 1242 // If we can lower as a tail call, do that instead. 1243 bool CanTailCallOpt = false; 1244 1245 // We must emit a tail call if we have musttail. 1246 if (Info.IsMustTailCall && !CanTailCallOpt) { 1247 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1248 return false; 1249 } 1250 1251 // Find out which ABI gets to decide where things go. 1252 CCAssignFn *AssignFnFixed; 1253 CCAssignFn *AssignFnVarArg; 1254 std::tie(AssignFnFixed, AssignFnVarArg) = 1255 getAssignFnsForCC(Info.CallConv, TLI); 1256 1257 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 1258 .addImm(0) 1259 .addImm(0); 1260 1261 // Create a temporarily-floating call instruction so we can add the implicit 1262 // uses of arg registers. 1263 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 1264 1265 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1266 MIB.addDef(TRI->getReturnAddressReg(MF)); 1267 1268 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1269 return false; 1270 1271 // Tell the call which registers are clobbered. 1272 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 1273 MIB.addRegMask(Mask); 1274 1275 SmallVector<CCValAssign, 16> ArgLocs; 1276 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1277 1278 // We could pass MIB and directly add the implicit uses to the call 1279 // now. However, as an aesthetic choice, place implicit argument operands 1280 // after the ordinary user argument registers. 1281 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1282 1283 if (AMDGPUTargetMachine::EnableFixedFunctionABI) { 1284 // With a fixed ABI, allocate fixed registers before user arguments. 1285 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1286 return false; 1287 } 1288 1289 // Do the actual argument marshalling. 1290 SmallVector<Register, 8> PhysRegs; 1291 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed, 1292 AssignFnVarArg, false); 1293 if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler)) 1294 return false; 1295 1296 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1297 1298 if (!ST.enableFlatScratch()) { 1299 // Insert copies for the SRD. In the HSA case, this should be an identity 1300 // copy. 1301 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32), 1302 MFI->getScratchRSrcReg()); 1303 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 1304 MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); 1305 } 1306 1307 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1308 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1309 MIB.addReg(ArgReg.first, RegState::Implicit); 1310 } 1311 1312 // Get a count of how many bytes are to be pushed on the stack. 1313 unsigned NumBytes = CCInfo.getNextStackOffset(); 1314 1315 // If Callee is a reg, since it is used by a target specific 1316 // instruction, it must have a register class matching the 1317 // constraint of that instruction. 1318 1319 // FIXME: We should define regbankselectable call instructions to handle 1320 // divergent call targets. 1321 if (MIB->getOperand(1).isReg()) { 1322 MIB->getOperand(1).setReg(constrainOperandRegClass( 1323 MF, *TRI, MRI, *ST.getInstrInfo(), 1324 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1325 1)); 1326 } 1327 1328 auto OrigInsertPt = MIRBuilder.getInsertPt(); 1329 1330 // Now we can add the actual call instruction to the correct position. 1331 MIRBuilder.insertInstr(MIB); 1332 1333 // Insert this now to give us an anchor point for managing the insert point. 1334 MachineInstrBuilder CallSeqEnd = 1335 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN); 1336 1337 SmallVector<ArgInfo, 8> InArgs; 1338 if (!Info.OrigRet.Ty->isVoidTy()) { 1339 SmallVector<ArgInfo, 8> PreSplitRetInfos; 1340 1341 splitToValueTypes( 1342 MIRBuilder, Info.OrigRet, PreSplitRetInfos/*InArgs*/, DL, Info.CallConv); 1343 1344 processSplitArgs(MIRBuilder, Info.OrigRet, 1345 PreSplitRetInfos, InArgs/*SplitRetInfos*/, DL, Info.CallConv, false, 1346 [&](ArrayRef<Register> Regs, Register DstReg, 1347 LLT LLTy, LLT PartLLT, int VTSplitIdx) { 1348 assert(DstReg == Info.OrigRet.Regs[VTSplitIdx]); 1349 packSplitRegsToOrigType(MIRBuilder, Info.OrigRet.Regs[VTSplitIdx], 1350 Regs, LLTy, PartLLT); 1351 }); 1352 } 1353 1354 // Make sure the raw argument copies are inserted before the marshalling to 1355 // the original types. 1356 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd); 1357 1358 // Finally we can copy the returned value back into its virtual-register. In 1359 // symmetry with the arguments, the physical register must be an 1360 // implicit-define of the call instruction. 1361 if (!Info.OrigRet.Ty->isVoidTy()) { 1362 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1363 Info.IsVarArg); 1364 CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn); 1365 if (!handleAssignments(MIRBuilder, InArgs, Handler)) 1366 return false; 1367 } 1368 1369 uint64_t CalleePopBytes = NumBytes; 1370 CallSeqEnd.addImm(0) 1371 .addImm(CalleePopBytes); 1372 1373 // Restore the insert point to after the call sequence. 1374 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt); 1375 return true; 1376 } 1377