1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUISelLowering.h"
18 #include "AMDGPULegalizerInfo.h"
19 #include "AMDGPUSubtarget.h"
20 #include "AMDGPUTargetMachine.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "SIISelLowering.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "SIRegisterInfo.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/CallingConvLower.h"
27 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/Support/LowLevelTypeImpl.h"
30 
31 #define DEBUG_TYPE "amdgpu-call-lowering"
32 
33 using namespace llvm;
34 
35 namespace {
36 
37 struct AMDGPUValueHandler : public CallLowering::ValueHandler {
38   AMDGPUValueHandler(bool IsIncoming, MachineIRBuilder &B,
39                      MachineRegisterInfo &MRI, CCAssignFn *AssignFn)
40       : ValueHandler(IsIncoming, B, MRI, AssignFn) {}
41 
42   /// Wrapper around extendRegister to ensure we extend to a full 32-bit
43   /// register.
44   Register extendRegisterMin32(Register ValVReg, CCValAssign &VA) {
45     if (VA.getLocVT().getSizeInBits() < 32) {
46       // 16-bit types are reported as legal for 32-bit registers. We need to
47       // extend and do a 32-bit copy to avoid the verifier complaining about it.
48       return MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
49     }
50 
51     return extendRegister(ValVReg, VA);
52   }
53 };
54 
55 struct AMDGPUOutgoingValueHandler : public AMDGPUValueHandler {
56   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
57                              MachineInstrBuilder MIB, CCAssignFn *AssignFn)
58       : AMDGPUValueHandler(false, B, MRI, AssignFn), MIB(MIB) {}
59 
60   MachineInstrBuilder MIB;
61 
62   Register getStackAddress(uint64_t Size, int64_t Offset,
63                            MachinePointerInfo &MPO) override {
64     llvm_unreachable("not implemented");
65   }
66 
67   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
68                             MachinePointerInfo &MPO, CCValAssign &VA) override {
69     llvm_unreachable("not implemented");
70   }
71 
72   void assignValueToReg(Register ValVReg, Register PhysReg,
73                         CCValAssign &VA) override {
74     Register ExtReg = extendRegisterMin32(ValVReg, VA);
75 
76     // If this is a scalar return, insert a readfirstlane just in case the value
77     // ends up in a VGPR.
78     // FIXME: Assert this is a shader return.
79     const SIRegisterInfo *TRI
80       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
81     if (TRI->isSGPRReg(MRI, PhysReg)) {
82       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
83                                               {MRI.getType(ExtReg)}, false)
84         .addReg(ExtReg);
85       ExtReg = ToSGPR.getReg(0);
86     }
87 
88     MIRBuilder.buildCopy(PhysReg, ExtReg);
89     MIB.addUse(PhysReg, RegState::Implicit);
90   }
91 
92   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
93                  CCValAssign::LocInfo LocInfo,
94                  const CallLowering::ArgInfo &Info,
95                  ISD::ArgFlagsTy Flags,
96                  CCState &State) override {
97     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
98   }
99 };
100 
101 struct AMDGPUIncomingArgHandler : public AMDGPUValueHandler {
102   uint64_t StackUsed = 0;
103 
104   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
105                            CCAssignFn *AssignFn)
106       : AMDGPUValueHandler(true, B, MRI, AssignFn) {}
107 
108   Register getStackAddress(uint64_t Size, int64_t Offset,
109                            MachinePointerInfo &MPO) override {
110     auto &MFI = MIRBuilder.getMF().getFrameInfo();
111     int FI = MFI.CreateFixedObject(Size, Offset, true);
112     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
113     auto AddrReg = MIRBuilder.buildFrameIndex(
114         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
115     StackUsed = std::max(StackUsed, Size + Offset);
116     return AddrReg.getReg(0);
117   }
118 
119   void assignValueToReg(Register ValVReg, Register PhysReg,
120                         CCValAssign &VA) override {
121     markPhysRegUsed(PhysReg);
122 
123     if (VA.getLocVT().getSizeInBits() < 32) {
124       // 16-bit types are reported as legal for 32-bit registers. We need to do
125       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
126       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
127       MIRBuilder.buildTrunc(ValVReg, Copy);
128       return;
129     }
130 
131     switch (VA.getLocInfo()) {
132     case CCValAssign::LocInfo::SExt:
133     case CCValAssign::LocInfo::ZExt:
134     case CCValAssign::LocInfo::AExt: {
135       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
136       MIRBuilder.buildTrunc(ValVReg, Copy);
137       break;
138     }
139     default:
140       MIRBuilder.buildCopy(ValVReg, PhysReg);
141       break;
142     }
143   }
144 
145   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
146                             MachinePointerInfo &MPO, CCValAssign &VA) override {
147     MachineFunction &MF = MIRBuilder.getMF();
148 
149     // The reported memory location may be wider than the value.
150     const LLT RegTy = MRI.getType(ValVReg);
151     MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
152 
153     // FIXME: Get alignment
154     auto MMO = MF.getMachineMemOperand(
155         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
156         inferAlignFromPtrInfo(MF, MPO));
157     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
158   }
159 
160   /// How the physical register gets marked varies between formal
161   /// parameters (it's a basic-block live-in), and a call instruction
162   /// (it's an implicit-def of the BL).
163   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
164 };
165 
166 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
167   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
168                    CCAssignFn *AssignFn)
169       : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {}
170 
171   void markPhysRegUsed(unsigned PhysReg) override {
172     MIRBuilder.getMBB().addLiveIn(PhysReg);
173   }
174 };
175 
176 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
177   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
178                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
179       : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
180 
181   void markPhysRegUsed(unsigned PhysReg) override {
182     MIB.addDef(PhysReg, RegState::Implicit);
183   }
184 
185   MachineInstrBuilder MIB;
186 };
187 
188 struct AMDGPUOutgoingArgHandler : public AMDGPUValueHandler {
189   MachineInstrBuilder MIB;
190   CCAssignFn *AssignFnVarArg;
191 
192   /// For tail calls, the byte offset of the call's argument area from the
193   /// callee's. Unused elsewhere.
194   int FPDiff;
195 
196   // Cache the SP register vreg if we need it more than once in this call site.
197   Register SPReg;
198 
199   bool IsTailCall;
200 
201   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
202                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
203                            CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg,
204                            bool IsTailCall = false, int FPDiff = 0)
205       : AMDGPUValueHandler(false, MIRBuilder, MRI, AssignFn), MIB(MIB),
206         AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) {
207   }
208 
209   Register getStackAddress(uint64_t Size, int64_t Offset,
210                            MachinePointerInfo &MPO) override {
211     MachineFunction &MF = MIRBuilder.getMF();
212     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
213     const LLT S32 = LLT::scalar(32);
214 
215     if (IsTailCall) {
216       llvm_unreachable("implement me");
217     }
218 
219     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
220 
221     if (!SPReg)
222       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
223 
224     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
225 
226     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
227     MPO = MachinePointerInfo::getStack(MF, Offset);
228     return AddrReg.getReg(0);
229   }
230 
231   void assignValueToReg(Register ValVReg, Register PhysReg,
232                         CCValAssign &VA) override {
233     MIB.addUse(PhysReg, RegState::Implicit);
234     Register ExtReg = extendRegisterMin32(ValVReg, VA);
235     MIRBuilder.buildCopy(PhysReg, ExtReg);
236   }
237 
238   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
239                             MachinePointerInfo &MPO, CCValAssign &VA) override {
240     MachineFunction &MF = MIRBuilder.getMF();
241     uint64_t LocMemOffset = VA.getLocMemOffset();
242     const auto &ST = MF.getSubtarget<GCNSubtarget>();
243 
244     auto MMO = MF.getMachineMemOperand(
245       MPO, MachineMemOperand::MOStore, Size,
246       commonAlignment(ST.getStackAlignment(), LocMemOffset));
247     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
248   }
249 
250   void assignValueToAddress(const CallLowering::ArgInfo &Arg, Register Addr,
251                             uint64_t MemSize, MachinePointerInfo &MPO,
252                             CCValAssign &VA) override {
253     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
254                            ? extendRegister(Arg.Regs[0], VA)
255                            : Arg.Regs[0];
256 
257     // If we extended the value type we might need to adjust the MMO's
258     // Size. This happens if ComputeValueVTs widened a small type value to a
259     // legal register type (e.g. s8->s16)
260     const LLT RegTy = MRI.getType(ValVReg);
261     MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes());
262     assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA);
263   }
264 };
265 }
266 
267 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
268   : CallLowering(&TLI) {
269 }
270 
271 // FIXME: Compatability shim
272 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
273   switch (MIOpc) {
274   case TargetOpcode::G_SEXT:
275     return ISD::SIGN_EXTEND;
276   case TargetOpcode::G_ZEXT:
277     return ISD::ZERO_EXTEND;
278   case TargetOpcode::G_ANYEXT:
279     return ISD::ANY_EXTEND;
280   default:
281     llvm_unreachable("not an extend opcode");
282   }
283 }
284 
285 // FIXME: This should move to generic code.
286 void AMDGPUCallLowering::splitToValueTypes(MachineIRBuilder &B,
287                                            const ArgInfo &OrigArg,
288                                            SmallVectorImpl<ArgInfo> &SplitArgs,
289                                            const DataLayout &DL,
290                                            CallingConv::ID CallConv) const {
291   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
292   LLVMContext &Ctx = OrigArg.Ty->getContext();
293 
294   SmallVector<EVT, 4> SplitVTs;
295   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
296 
297   assert(OrigArg.Regs.size() == SplitVTs.size());
298 
299   if (SplitVTs.size() == 0)
300     return;
301 
302   if (SplitVTs.size() == 1) {
303     // No splitting to do, but we want to replace the original type (e.g. [1 x
304     // double] -> double).
305     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
306                            OrigArg.Flags[0], OrigArg.IsFixed);
307     return;
308   }
309 
310   // Create one ArgInfo for each virtual register in the original ArgInfo.
311   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
312 
313   bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
314       OrigArg.Ty, CallConv, false);
315   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
316     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
317     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
318                            OrigArg.IsFixed);
319     if (NeedsRegBlock)
320       SplitArgs.back().Flags[0].setInConsecutiveRegs();
321   }
322 
323   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
324 }
325 
326 void AMDGPUCallLowering::processSplitArgs(
327     MachineIRBuilder &B, const ArgInfo &OrigArg,
328     const SmallVectorImpl<ArgInfo> &SplitArg,
329     SmallVectorImpl<ArgInfo> &SplitArgs, const DataLayout &DL,
330     CallingConv::ID CallConv, bool IsOutgoing,
331     SplitArgTy PerformArgSplit) const {
332   LLVMContext &Ctx = OrigArg.Ty->getContext();
333   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
334 
335   // FIXME: This is mostly nasty pre-processing before handleAssignments. Most
336   // of this should be performed by handleAssignments.
337 
338   int SplitIdx = 0;
339   for (const ArgInfo &SplitArg : SplitArg) {
340     Register Reg = OrigArg.Regs[SplitIdx];
341     EVT VT = EVT::getEVT(SplitArg.Ty);
342     LLT LLTy = getLLTForType(*SplitArg.Ty, DL);
343 
344     unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
345     MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
346 
347     if (NumParts == 1) {
348       // No splitting to do, but we want to replace the original type (e.g. [1 x
349       // double] -> double).
350       SplitArgs.emplace_back(Reg, SplitArg.Ty, OrigArg.Flags, OrigArg.IsFixed);
351 
352       ++SplitIdx;
353       continue;
354     }
355 
356     SmallVector<Register, 8> SplitRegs;
357     Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx);
358     LLT PartLLT = getLLTForType(*PartTy, DL);
359     MachineRegisterInfo &MRI = *B.getMRI();
360 
361     // FIXME: Should we be reporting all of the part registers for a single
362     // argument, and let handleAssignments take care of the repacking?
363     for (unsigned i = 0; i < NumParts; ++i) {
364       Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
365       SplitRegs.push_back(PartReg);
366       SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
367     }
368 
369     PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx);
370 
371     ++SplitIdx;
372   }
373 }
374 
375 // TODO: Move to generic code
376 static void unpackRegsToOrigType(MachineIRBuilder &B,
377                                  ArrayRef<Register> DstRegs,
378                                  Register SrcReg,
379                                  const CallLowering::ArgInfo &Info,
380                                  LLT SrcTy,
381                                  LLT PartTy) {
382   assert(DstRegs.size() > 1 && "Nothing to unpack");
383 
384   const unsigned PartSize = PartTy.getSizeInBits();
385 
386   if (SrcTy.isVector() && !PartTy.isVector() &&
387       PartSize > SrcTy.getElementType().getSizeInBits()) {
388     // Vector was scalarized, and the elements extended.
389     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
390     for (int i = 0, e = DstRegs.size(); i != e; ++i)
391       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
392     return;
393   }
394 
395   LLT GCDTy = getGCDType(SrcTy, PartTy);
396   if (GCDTy == PartTy) {
397     // If this already evenly divisible, we can create a simple unmerge.
398     B.buildUnmerge(DstRegs, SrcReg);
399     return;
400   }
401 
402   MachineRegisterInfo &MRI = *B.getMRI();
403   LLT DstTy = MRI.getType(DstRegs[0]);
404   LLT LCMTy = getLCMType(SrcTy, PartTy);
405 
406   const unsigned LCMSize = LCMTy.getSizeInBits();
407   const unsigned DstSize = DstTy.getSizeInBits();
408   const unsigned SrcSize = SrcTy.getSizeInBits();
409 
410   Register UnmergeSrc = SrcReg;
411   if (LCMSize != SrcSize) {
412     // Widen to the common type.
413     Register Undef = B.buildUndef(SrcTy).getReg(0);
414     SmallVector<Register, 8> MergeParts(1, SrcReg);
415     for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize)
416       MergeParts.push_back(Undef);
417 
418     UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
419   }
420 
421   // Unmerge to the original registers and pad with dead defs.
422   SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
423   for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize;
424        Size += DstSize) {
425     UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
426   }
427 
428   B.buildUnmerge(UnmergeResults, UnmergeSrc);
429 }
430 
431 /// Lower the return value for the already existing \p Ret. This assumes that
432 /// \p B's insertion point is correct.
433 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
434                                         const Value *Val, ArrayRef<Register> VRegs,
435                                         MachineInstrBuilder &Ret) const {
436   if (!Val)
437     return true;
438 
439   auto &MF = B.getMF();
440   const auto &F = MF.getFunction();
441   const DataLayout &DL = MF.getDataLayout();
442   MachineRegisterInfo *MRI = B.getMRI();
443   LLVMContext &Ctx = F.getContext();
444 
445   CallingConv::ID CC = F.getCallingConv();
446   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
447 
448   SmallVector<EVT, 8> SplitEVTs;
449   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
450   assert(VRegs.size() == SplitEVTs.size() &&
451          "For each split Type there should be exactly one VReg.");
452 
453   // We pre-process the return value decomposed into EVTs.
454   SmallVector<ArgInfo, 8> PreSplitRetInfos;
455 
456   // Further processing is applied to split the arguments from PreSplitRetInfos
457   // into 32-bit pieces in SplitRetInfos before passing off to
458   // handleAssignments.
459   SmallVector<ArgInfo, 8> SplitRetInfos;
460 
461   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
462     EVT VT = SplitEVTs[i];
463     Register Reg = VRegs[i];
464     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx));
465     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
466 
467     if (VT.isScalarInteger()) {
468       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
469       if (RetInfo.Flags[0].isSExt()) {
470         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
471         ExtendOp = TargetOpcode::G_SEXT;
472       } else if (RetInfo.Flags[0].isZExt()) {
473         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
474         ExtendOp = TargetOpcode::G_ZEXT;
475       }
476 
477       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
478                                           extOpcodeToISDExtOpcode(ExtendOp));
479       if (ExtVT != VT) {
480         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
481         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
482         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
483       }
484     }
485 
486     if (Reg != RetInfo.Regs[0]) {
487       RetInfo.Regs[0] = Reg;
488       // Reset the arg flags after modifying Reg.
489       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
490     }
491 
492     splitToValueTypes(B, RetInfo, PreSplitRetInfos, DL, CC);
493 
494     // FIXME: This splitting should mostly be done by handleAssignments
495     processSplitArgs(B, RetInfo,
496                      PreSplitRetInfos, SplitRetInfos, DL, CC, true,
497                      [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy,
498                          LLT PartLLT, int VTSplitIdx) {
499                        unpackRegsToOrigType(B, Regs, SrcReg,
500                                             PreSplitRetInfos[VTSplitIdx], LLTy,
501                                             PartLLT);
502                      });
503     PreSplitRetInfos.clear();
504   }
505 
506   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
507   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
508   return handleAssignments(B, SplitRetInfos, RetHandler);
509 }
510 
511 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
512                                      ArrayRef<Register> VRegs,
513                                      FunctionLoweringInfo &FLI) const {
514 
515   MachineFunction &MF = B.getMF();
516   MachineRegisterInfo &MRI = MF.getRegInfo();
517   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
518   MFI->setIfReturnsVoid(!Val);
519 
520   assert(!Val == VRegs.empty() && "Return value without a vreg");
521 
522   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
523   const bool IsShader = AMDGPU::isShader(CC);
524   const bool IsWaveEnd =
525       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
526   if (IsWaveEnd) {
527     B.buildInstr(AMDGPU::S_ENDPGM)
528       .addImm(0);
529     return true;
530   }
531 
532   auto const &ST = MF.getSubtarget<GCNSubtarget>();
533 
534   unsigned ReturnOpc =
535       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
536 
537   auto Ret = B.buildInstrNoInsert(ReturnOpc);
538   Register ReturnAddrVReg;
539   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
540     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
541     Ret.addUse(ReturnAddrVReg);
542   }
543 
544   if (!lowerReturnVal(B, Val, VRegs, Ret))
545     return false;
546 
547   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
548     const SIRegisterInfo *TRI = ST.getRegisterInfo();
549     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
550                                          &AMDGPU::SGPR_64RegClass);
551     B.buildCopy(ReturnAddrVReg, LiveInReturn);
552   }
553 
554   // TODO: Handle CalleeSavedRegsViaCopy.
555 
556   B.insertInstr(Ret);
557   return true;
558 }
559 
560 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
561                                            Type *ParamTy,
562                                            uint64_t Offset) const {
563   MachineFunction &MF = B.getMF();
564   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
565   MachineRegisterInfo &MRI = MF.getRegInfo();
566   Register KernArgSegmentPtr =
567     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
568   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
569 
570   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
571 
572   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
573 }
574 
575 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
576                                         uint64_t Offset, Align Alignment,
577                                         Register DstReg) const {
578   MachineFunction &MF = B.getMF();
579   const Function &F = MF.getFunction();
580   const DataLayout &DL = F.getParent()->getDataLayout();
581   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
582   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
583 
584   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
585   Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
586   lowerParameterPtr(PtrReg, B, ParamTy, Offset);
587 
588   MachineMemOperand *MMO = MF.getMachineMemOperand(
589       PtrInfo,
590       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
591           MachineMemOperand::MOInvariant,
592       TypeSize, Alignment);
593 
594   B.buildLoad(DstReg, PtrReg, *MMO);
595 }
596 
597 // Allocate special inputs passed in user SGPRs.
598 static void allocateHSAUserSGPRs(CCState &CCInfo,
599                                  MachineIRBuilder &B,
600                                  MachineFunction &MF,
601                                  const SIRegisterInfo &TRI,
602                                  SIMachineFunctionInfo &Info) {
603   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
604   if (Info.hasPrivateSegmentBuffer()) {
605     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
606     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
607     CCInfo.AllocateReg(PrivateSegmentBufferReg);
608   }
609 
610   if (Info.hasDispatchPtr()) {
611     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
612     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
613     CCInfo.AllocateReg(DispatchPtrReg);
614   }
615 
616   if (Info.hasQueuePtr()) {
617     Register QueuePtrReg = Info.addQueuePtr(TRI);
618     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
619     CCInfo.AllocateReg(QueuePtrReg);
620   }
621 
622   if (Info.hasKernargSegmentPtr()) {
623     MachineRegisterInfo &MRI = MF.getRegInfo();
624     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
625     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
626     Register VReg = MRI.createGenericVirtualRegister(P4);
627     MRI.addLiveIn(InputPtrReg, VReg);
628     B.getMBB().addLiveIn(InputPtrReg);
629     B.buildCopy(VReg, InputPtrReg);
630     CCInfo.AllocateReg(InputPtrReg);
631   }
632 
633   if (Info.hasDispatchID()) {
634     Register DispatchIDReg = Info.addDispatchID(TRI);
635     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
636     CCInfo.AllocateReg(DispatchIDReg);
637   }
638 
639   if (Info.hasFlatScratchInit()) {
640     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
641     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
642     CCInfo.AllocateReg(FlatScratchInitReg);
643   }
644 
645   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
646   // these from the dispatch pointer.
647 }
648 
649 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
650     MachineIRBuilder &B, const Function &F,
651     ArrayRef<ArrayRef<Register>> VRegs) const {
652   MachineFunction &MF = B.getMF();
653   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
654   MachineRegisterInfo &MRI = MF.getRegInfo();
655   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
656   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
657   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
658 
659   const DataLayout &DL = F.getParent()->getDataLayout();
660 
661   SmallVector<CCValAssign, 16> ArgLocs;
662   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
663 
664   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
665 
666   unsigned i = 0;
667   const Align KernArgBaseAlign(16);
668   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
669   uint64_t ExplicitArgOffset = 0;
670 
671   // TODO: Align down to dword alignment and extract bits for extending loads.
672   for (auto &Arg : F.args()) {
673     const bool IsByRef = Arg.hasByRefAttr();
674     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
675     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
676     if (AllocSize == 0)
677       continue;
678 
679     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
680     if (!ABIAlign)
681       ABIAlign = DL.getABITypeAlign(ArgTy);
682 
683     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
684     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
685 
686     if (Arg.use_empty()) {
687       ++i;
688       continue;
689     }
690 
691     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
692 
693     if (IsByRef) {
694       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
695 
696       assert(VRegs[i].size() == 1 &&
697              "expected only one register for byval pointers");
698       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
699         lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
700       } else {
701         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
702         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
703         lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
704 
705         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
706       }
707     } else {
708       ArrayRef<Register> OrigArgRegs = VRegs[i];
709       Register ArgReg =
710         OrigArgRegs.size() == 1
711         ? OrigArgRegs[0]
712         : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
713 
714       lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
715       if (OrigArgRegs.size() > 1)
716         unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
717     }
718 
719     ++i;
720   }
721 
722   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
723   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
724   return true;
725 }
726 
727 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
728 static MachineInstrBuilder mergeVectorRegsToResultRegs(
729   MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) {
730   MachineRegisterInfo &MRI = *B.getMRI();
731   LLT LLTy = MRI.getType(DstRegs[0]);
732   LLT PartLLT = MRI.getType(SrcRegs[0]);
733 
734   // Deal with v3s16 split into v2s16
735   LLT LCMTy = getLCMType(LLTy, PartLLT);
736   if (LCMTy == LLTy) {
737     // Common case where no padding is needed.
738     assert(DstRegs.size() == 1);
739     return B.buildConcatVectors(DstRegs[0], SrcRegs);
740   }
741 
742   const int NumWide =  LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
743   Register Undef = B.buildUndef(PartLLT).getReg(0);
744 
745   // Build vector of undefs.
746   SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
747 
748   // Replace the first sources with the real registers.
749   std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
750 
751   auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
752   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
753 
754   SmallVector<Register, 8> PadDstRegs(NumDst);
755   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
756 
757   // Create the excess dead defs for the unmerge.
758   for (int I = DstRegs.size(); I != NumDst; ++I)
759     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
760 
761   return B.buildUnmerge(PadDstRegs, Widened);
762 }
763 
764 // TODO: Move this to generic code
765 static void packSplitRegsToOrigType(MachineIRBuilder &B,
766                                     ArrayRef<Register> OrigRegs,
767                                     ArrayRef<Register> Regs,
768                                     LLT LLTy,
769                                     LLT PartLLT) {
770   MachineRegisterInfo &MRI = *B.getMRI();
771 
772   if (!LLTy.isVector() && !PartLLT.isVector()) {
773     assert(OrigRegs.size() == 1);
774     LLT OrigTy = MRI.getType(OrigRegs[0]);
775 
776     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
777     if (SrcSize == OrigTy.getSizeInBits())
778       B.buildMerge(OrigRegs[0], Regs);
779     else {
780       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
781       B.buildTrunc(OrigRegs[0], Widened);
782     }
783 
784     return;
785   }
786 
787   if (LLTy.isVector() && PartLLT.isVector()) {
788     assert(OrigRegs.size() == 1);
789     assert(LLTy.getElementType() == PartLLT.getElementType());
790     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
791     return;
792   }
793 
794   assert(LLTy.isVector() && !PartLLT.isVector());
795 
796   LLT DstEltTy = LLTy.getElementType();
797 
798   // Pointer information was discarded. We'll need to coerce some register types
799   // to avoid violating type constraints.
800   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
801 
802   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
803 
804   if (DstEltTy == PartLLT) {
805     // Vector was trivially scalarized.
806 
807     if (RealDstEltTy.isPointer()) {
808       for (Register Reg : Regs)
809         MRI.setType(Reg, RealDstEltTy);
810     }
811 
812     B.buildBuildVector(OrigRegs[0], Regs);
813   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
814     // Deal with vector with 64-bit elements decomposed to 32-bit
815     // registers. Need to create intermediate 64-bit elements.
816     SmallVector<Register, 8> EltMerges;
817     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
818 
819     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
820 
821     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I)  {
822       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
823       // Fix the type in case this is really a vector of pointers.
824       MRI.setType(Merge.getReg(0), RealDstEltTy);
825       EltMerges.push_back(Merge.getReg(0));
826       Regs = Regs.drop_front(PartsPerElt);
827     }
828 
829     B.buildBuildVector(OrigRegs[0], EltMerges);
830   } else {
831     // Vector was split, and elements promoted to a wider type.
832     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
833     auto BV = B.buildBuildVector(BVType, Regs);
834     B.buildTrunc(OrigRegs[0], BV);
835   }
836 }
837 
838 bool AMDGPUCallLowering::lowerFormalArguments(
839     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
840     FunctionLoweringInfo &FLI) const {
841   CallingConv::ID CC = F.getCallingConv();
842 
843   // The infrastructure for normal calling convention lowering is essentially
844   // useless for kernels. We want to avoid any kind of legalization or argument
845   // splitting.
846   if (CC == CallingConv::AMDGPU_KERNEL)
847     return lowerFormalArgumentsKernel(B, F, VRegs);
848 
849   const bool IsGraphics = AMDGPU::isGraphics(CC);
850   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
851 
852   MachineFunction &MF = B.getMF();
853   MachineBasicBlock &MBB = B.getMBB();
854   MachineRegisterInfo &MRI = MF.getRegInfo();
855   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
856   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
857   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
858   const DataLayout &DL = F.getParent()->getDataLayout();
859 
860 
861   SmallVector<CCValAssign, 16> ArgLocs;
862   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
863 
864   if (!IsEntryFunc) {
865     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
866     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
867                                          &AMDGPU::SGPR_64RegClass);
868     MBB.addLiveIn(ReturnAddrReg);
869     B.buildCopy(LiveInReturn, ReturnAddrReg);
870   }
871 
872   if (Info->hasImplicitBufferPtr()) {
873     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
874     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
875     CCInfo.AllocateReg(ImplicitBufferPtrReg);
876   }
877 
878   SmallVector<ArgInfo, 8> SplitArg;
879   SmallVector<ArgInfo, 32> SplitArgs;
880   unsigned Idx = 0;
881   unsigned PSInputNum = 0;
882 
883   for (auto &Arg : F.args()) {
884     if (DL.getTypeStoreSize(Arg.getType()) == 0)
885       continue;
886 
887     const bool InReg = Arg.hasAttribute(Attribute::InReg);
888 
889     // SGPR arguments to functions not implemented.
890     if (!IsGraphics && InReg)
891       return false;
892 
893     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
894         Arg.hasAttribute(Attribute::SwiftError) ||
895         Arg.hasAttribute(Attribute::Nest))
896       return false;
897 
898     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
899       const bool ArgUsed = !Arg.use_empty();
900       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
901 
902       if (!SkipArg) {
903         Info->markPSInputAllocated(PSInputNum);
904         if (ArgUsed)
905           Info->markPSInputEnabled(PSInputNum);
906       }
907 
908       ++PSInputNum;
909 
910       if (SkipArg) {
911         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
912           B.buildUndef(VRegs[Idx][I]);
913 
914         ++Idx;
915         continue;
916       }
917     }
918 
919     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
920     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
921     setArgFlags(OrigArg, OrigArgIdx, DL, F);
922 
923     SplitArg.clear();
924     splitToValueTypes(B, OrigArg, SplitArg, DL, CC);
925 
926     processSplitArgs(B, OrigArg, SplitArg, SplitArgs, DL, CC, false,
927                      // FIXME: We should probably be passing multiple registers
928                      // to handleAssignments to do this
929                      [&](ArrayRef<Register> Regs, Register DstReg, LLT LLTy,
930                          LLT PartLLT, int VTSplitIdx) {
931                        assert(DstReg == VRegs[Idx][VTSplitIdx]);
932                        packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
933                                                LLTy, PartLLT);
934                      });
935 
936     ++Idx;
937   }
938 
939   // At least one interpolation mode must be enabled or else the GPU will
940   // hang.
941   //
942   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
943   // set PSInputAddr, the user wants to enable some bits after the compilation
944   // based on run-time states. Since we can't know what the final PSInputEna
945   // will look like, so we shouldn't do anything here and the user should take
946   // responsibility for the correct programming.
947   //
948   // Otherwise, the following restrictions apply:
949   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
950   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
951   //   enabled too.
952   if (CC == CallingConv::AMDGPU_PS) {
953     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
954         ((Info->getPSInputAddr() & 0xF) == 0 &&
955          Info->isPSInputAllocated(11))) {
956       CCInfo.AllocateReg(AMDGPU::VGPR0);
957       CCInfo.AllocateReg(AMDGPU::VGPR1);
958       Info->markPSInputAllocated(0);
959       Info->markPSInputEnabled(0);
960     }
961 
962     if (Subtarget.isAmdPalOS()) {
963       // For isAmdPalOS, the user does not enable some bits after compilation
964       // based on run-time states; the register values being generated here are
965       // the final ones set in hardware. Therefore we need to apply the
966       // workaround to PSInputAddr and PSInputEnable together.  (The case where
967       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
968       // set up an input arg for a particular interpolation mode, but nothing
969       // uses that input arg. Really we should have an earlier pass that removes
970       // such an arg.)
971       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
972       if ((PsInputBits & 0x7F) == 0 ||
973           ((PsInputBits & 0xF) == 0 &&
974            (PsInputBits >> 11 & 1)))
975         Info->markPSInputEnabled(
976           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
977     }
978   }
979 
980   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
981   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
982 
983   if (!MBB.empty())
984     B.setInstr(*MBB.begin());
985 
986   if (!IsEntryFunc) {
987     // For the fixed ABI, pass workitem IDs in the last argument register.
988     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
989       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
990   }
991 
992   FormalArgHandler Handler(B, MRI, AssignFn);
993   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
994     return false;
995 
996   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
997     // Special inputs come after user arguments.
998     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
999   }
1000 
1001   // Start adding system SGPRs.
1002   if (IsEntryFunc) {
1003     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
1004   } else {
1005     if (!Subtarget.enableFlatScratch())
1006       CCInfo.AllocateReg(Info->getScratchRSrcReg());
1007     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
1008   }
1009 
1010   // Move back to the end of the basic block.
1011   B.setMBB(MBB);
1012 
1013   return true;
1014 }
1015 
1016 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
1017                                            CCState &CCInfo,
1018                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
1019                                            CallLoweringInfo &Info) const {
1020   MachineFunction &MF = MIRBuilder.getMF();
1021 
1022   const AMDGPUFunctionArgInfo *CalleeArgInfo
1023     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
1024 
1025   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1026   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
1027 
1028 
1029   // TODO: Unify with private memory register handling. This is complicated by
1030   // the fact that at least in kernels, the input argument is not necessarily
1031   // in the same location as the input.
1032   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
1033     AMDGPUFunctionArgInfo::DISPATCH_PTR,
1034     AMDGPUFunctionArgInfo::QUEUE_PTR,
1035     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
1036     AMDGPUFunctionArgInfo::DISPATCH_ID,
1037     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
1038     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
1039     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
1040   };
1041 
1042   MachineRegisterInfo &MRI = MF.getRegInfo();
1043 
1044   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1045   const AMDGPULegalizerInfo *LI
1046     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
1047 
1048   for (auto InputID : InputRegs) {
1049     const ArgDescriptor *OutgoingArg;
1050     const TargetRegisterClass *ArgRC;
1051     LLT ArgTy;
1052 
1053     std::tie(OutgoingArg, ArgRC, ArgTy) =
1054         CalleeArgInfo->getPreloadedValue(InputID);
1055     if (!OutgoingArg)
1056       continue;
1057 
1058     const ArgDescriptor *IncomingArg;
1059     const TargetRegisterClass *IncomingArgRC;
1060     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
1061         CallerArgInfo.getPreloadedValue(InputID);
1062     assert(IncomingArgRC == ArgRC);
1063 
1064     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
1065 
1066     if (IncomingArg) {
1067       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
1068     } else {
1069       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
1070       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
1071     }
1072 
1073     if (OutgoingArg->isRegister()) {
1074       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
1075       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
1076         report_fatal_error("failed to allocate implicit input argument");
1077     } else {
1078       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
1079       return false;
1080     }
1081   }
1082 
1083   // Pack workitem IDs into a single register or pass it as is if already
1084   // packed.
1085   const ArgDescriptor *OutgoingArg;
1086   const TargetRegisterClass *ArgRC;
1087   LLT ArgTy;
1088 
1089   std::tie(OutgoingArg, ArgRC, ArgTy) =
1090       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
1091   if (!OutgoingArg)
1092     std::tie(OutgoingArg, ArgRC, ArgTy) =
1093         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
1094   if (!OutgoingArg)
1095     std::tie(OutgoingArg, ArgRC, ArgTy) =
1096         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
1097   if (!OutgoingArg)
1098     return false;
1099 
1100   auto WorkitemIDX =
1101       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
1102   auto WorkitemIDY =
1103       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
1104   auto WorkitemIDZ =
1105       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
1106 
1107   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
1108   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
1109   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
1110   const LLT S32 = LLT::scalar(32);
1111 
1112   // If incoming ids are not packed we need to pack them.
1113   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
1114   Register InputReg;
1115   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
1116     InputReg = MRI.createGenericVirtualRegister(S32);
1117     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
1118                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
1119   }
1120 
1121   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
1122     Register Y = MRI.createGenericVirtualRegister(S32);
1123     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
1124                        std::get<2>(WorkitemIDY));
1125 
1126     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
1127     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
1128   }
1129 
1130   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
1131     Register Z = MRI.createGenericVirtualRegister(S32);
1132     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
1133                        std::get<2>(WorkitemIDZ));
1134 
1135     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
1136     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
1137   }
1138 
1139   if (!InputReg) {
1140     InputReg = MRI.createGenericVirtualRegister(S32);
1141 
1142     // Workitem ids are already packed, any of present incoming arguments will
1143     // carry all required fields.
1144     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
1145       IncomingArgX ? *IncomingArgX :
1146         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
1147     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
1148                        &AMDGPU::VGPR_32RegClass, S32);
1149   }
1150 
1151   if (OutgoingArg->isRegister()) {
1152     ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
1153     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
1154       report_fatal_error("failed to allocate implicit input argument");
1155   } else {
1156     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
1157     return false;
1158   }
1159 
1160   return true;
1161 }
1162 
1163 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
1164 /// CC.
1165 static std::pair<CCAssignFn *, CCAssignFn *>
1166 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
1167   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
1168 }
1169 
1170 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
1171                               bool IsTailCall) {
1172   return AMDGPU::SI_CALL;
1173 }
1174 
1175 // Add operands to call instruction to track the callee.
1176 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
1177                                   MachineIRBuilder &MIRBuilder,
1178                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
1179   if (Info.Callee.isReg()) {
1180     CallInst.addReg(Info.Callee.getReg());
1181     CallInst.addImm(0);
1182   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
1183     // The call lowering lightly assumed we can directly encode a call target in
1184     // the instruction, which is not the case. Materialize the address here.
1185     const GlobalValue *GV = Info.Callee.getGlobal();
1186     auto Ptr = MIRBuilder.buildGlobalValue(
1187       LLT::pointer(GV->getAddressSpace(), 64), GV);
1188     CallInst.addReg(Ptr.getReg(0));
1189     CallInst.add(Info.Callee);
1190   } else
1191     return false;
1192 
1193   return true;
1194 }
1195 
1196 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1197                                    CallLoweringInfo &Info) const {
1198   if (Info.IsVarArg) {
1199     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1200     return false;
1201   }
1202 
1203   MachineFunction &MF = MIRBuilder.getMF();
1204   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1205   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1206 
1207   const Function &F = MF.getFunction();
1208   MachineRegisterInfo &MRI = MF.getRegInfo();
1209   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1210   const DataLayout &DL = F.getParent()->getDataLayout();
1211   CallingConv::ID CallConv = F.getCallingConv();
1212 
1213   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
1214       CallConv != CallingConv::AMDGPU_Gfx) {
1215     LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
1216     return false;
1217   }
1218 
1219   if (AMDGPU::isShader(CallConv)) {
1220     LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n");
1221     return false;
1222   }
1223 
1224   SmallVector<ArgInfo, 8> OutArgs;
1225 
1226   SmallVector<ArgInfo, 8> SplitArg;
1227   for (auto &OrigArg : Info.OrigArgs) {
1228     splitToValueTypes(MIRBuilder, OrigArg, SplitArg, DL, Info.CallConv);
1229 
1230     processSplitArgs(
1231       MIRBuilder, OrigArg, SplitArg, OutArgs, DL, Info.CallConv, true,
1232       // FIXME: We should probably be passing multiple registers to
1233       // handleAssignments to do this
1234       [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
1235           int VTSplitIdx) {
1236         unpackRegsToOrigType(MIRBuilder, Regs, SrcReg, OrigArg, LLTy, PartLLT);
1237       });
1238 
1239     SplitArg.clear();
1240   }
1241 
1242   // If we can lower as a tail call, do that instead.
1243   bool CanTailCallOpt = false;
1244 
1245   // We must emit a tail call if we have musttail.
1246   if (Info.IsMustTailCall && !CanTailCallOpt) {
1247     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1248     return false;
1249   }
1250 
1251   // Find out which ABI gets to decide where things go.
1252   CCAssignFn *AssignFnFixed;
1253   CCAssignFn *AssignFnVarArg;
1254   std::tie(AssignFnFixed, AssignFnVarArg) =
1255       getAssignFnsForCC(Info.CallConv, TLI);
1256 
1257   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1258     .addImm(0)
1259     .addImm(0);
1260 
1261   // Create a temporarily-floating call instruction so we can add the implicit
1262   // uses of arg registers.
1263   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
1264 
1265   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1266   MIB.addDef(TRI->getReturnAddressReg(MF));
1267 
1268   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1269     return false;
1270 
1271   // Tell the call which registers are clobbered.
1272   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1273   MIB.addRegMask(Mask);
1274 
1275   SmallVector<CCValAssign, 16> ArgLocs;
1276   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1277 
1278   // We could pass MIB and directly add the implicit uses to the call
1279   // now. However, as an aesthetic choice, place implicit argument operands
1280   // after the ordinary user argument registers.
1281   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1282 
1283   if (AMDGPUTargetMachine::EnableFixedFunctionABI) {
1284     // With a fixed ABI, allocate fixed registers before user arguments.
1285     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1286       return false;
1287   }
1288 
1289   // Do the actual argument marshalling.
1290   SmallVector<Register, 8> PhysRegs;
1291   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
1292                                    AssignFnVarArg, false);
1293   if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler))
1294     return false;
1295 
1296   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1297 
1298   if (!ST.enableFlatScratch()) {
1299     // Insert copies for the SRD. In the HSA case, this should be an identity
1300     // copy.
1301     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32),
1302                                                MFI->getScratchRSrcReg());
1303     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1304     MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1305   }
1306 
1307   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1308     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1309     MIB.addReg(ArgReg.first, RegState::Implicit);
1310   }
1311 
1312   // Get a count of how many bytes are to be pushed on the stack.
1313   unsigned NumBytes = CCInfo.getNextStackOffset();
1314 
1315   // If Callee is a reg, since it is used by a target specific
1316   // instruction, it must have a register class matching the
1317   // constraint of that instruction.
1318 
1319   // FIXME: We should define regbankselectable call instructions to handle
1320   // divergent call targets.
1321   if (MIB->getOperand(1).isReg()) {
1322     MIB->getOperand(1).setReg(constrainOperandRegClass(
1323         MF, *TRI, MRI, *ST.getInstrInfo(),
1324         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1325         1));
1326   }
1327 
1328   auto OrigInsertPt = MIRBuilder.getInsertPt();
1329 
1330   // Now we can add the actual call instruction to the correct position.
1331   MIRBuilder.insertInstr(MIB);
1332 
1333   // Insert this now to give us an anchor point for managing the insert point.
1334   MachineInstrBuilder CallSeqEnd =
1335     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN);
1336 
1337   SmallVector<ArgInfo, 8> InArgs;
1338   if (!Info.OrigRet.Ty->isVoidTy()) {
1339     SmallVector<ArgInfo, 8> PreSplitRetInfos;
1340 
1341     splitToValueTypes(
1342       MIRBuilder, Info.OrigRet, PreSplitRetInfos/*InArgs*/, DL, Info.CallConv);
1343 
1344     processSplitArgs(MIRBuilder, Info.OrigRet,
1345                      PreSplitRetInfos, InArgs/*SplitRetInfos*/, DL, Info.CallConv, false,
1346                      [&](ArrayRef<Register> Regs, Register DstReg,
1347                          LLT LLTy, LLT PartLLT, int VTSplitIdx) {
1348                        assert(DstReg == Info.OrigRet.Regs[VTSplitIdx]);
1349                        packSplitRegsToOrigType(MIRBuilder, Info.OrigRet.Regs[VTSplitIdx],
1350                                                Regs, LLTy, PartLLT);
1351                      });
1352   }
1353 
1354   // Make sure the raw argument copies are inserted before the marshalling to
1355   // the original types.
1356   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd);
1357 
1358   // Finally we can copy the returned value back into its virtual-register. In
1359   // symmetry with the arguments, the physical register must be an
1360   // implicit-define of the call instruction.
1361   if (!Info.OrigRet.Ty->isVoidTy()) {
1362     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1363                                                       Info.IsVarArg);
1364     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1365     if (!handleAssignments(MIRBuilder, InArgs, Handler))
1366       return false;
1367   }
1368 
1369   uint64_t CalleePopBytes = NumBytes;
1370   CallSeqEnd.addImm(0)
1371             .addImm(CalleePopBytes);
1372 
1373   // Restore the insert point to after the call sequence.
1374   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt);
1375   return true;
1376 }
1377