1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 
26 #define DEBUG_TYPE "amdgpu-call-lowering"
27 
28 using namespace llvm;
29 
30 namespace {
31 
32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
34                                     Register ValVReg, CCValAssign &VA) {
35   if (VA.getLocVT().getSizeInBits() < 32) {
36     // 16-bit types are reported as legal for 32-bit registers. We need to
37     // extend and do a 32-bit copy to avoid the verifier complaining about it.
38     return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
39   }
40 
41   return Handler.extendRegister(ValVReg, VA);
42 }
43 
44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
45   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
46                              MachineInstrBuilder MIB, CCAssignFn *AssignFn)
47       : OutgoingValueHandler(B, MRI, AssignFn), MIB(MIB) {}
48 
49   MachineInstrBuilder MIB;
50 
51   Register getStackAddress(uint64_t Size, int64_t Offset,
52                            MachinePointerInfo &MPO,
53                            ISD::ArgFlagsTy Flags) override {
54     llvm_unreachable("not implemented");
55   }
56 
57   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
58                             MachinePointerInfo &MPO, CCValAssign &VA) override {
59     llvm_unreachable("not implemented");
60   }
61 
62   void assignValueToReg(Register ValVReg, Register PhysReg,
63                         CCValAssign &VA) override {
64     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
65 
66     // If this is a scalar return, insert a readfirstlane just in case the value
67     // ends up in a VGPR.
68     // FIXME: Assert this is a shader return.
69     const SIRegisterInfo *TRI
70       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
71     if (TRI->isSGPRReg(MRI, PhysReg)) {
72       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
73                                               {MRI.getType(ExtReg)}, false)
74         .addReg(ExtReg);
75       ExtReg = ToSGPR.getReg(0);
76     }
77 
78     MIRBuilder.buildCopy(PhysReg, ExtReg);
79     MIB.addUse(PhysReg, RegState::Implicit);
80   }
81 
82   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
83                  CCValAssign::LocInfo LocInfo,
84                  const CallLowering::ArgInfo &Info,
85                  ISD::ArgFlagsTy Flags,
86                  CCState &State) override {
87     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
88   }
89 };
90 
91 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
92   uint64_t StackUsed = 0;
93 
94   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
95                            CCAssignFn *AssignFn)
96       : IncomingValueHandler(B, MRI, AssignFn) {}
97 
98   Register getStackAddress(uint64_t Size, int64_t Offset,
99                            MachinePointerInfo &MPO,
100                            ISD::ArgFlagsTy Flags) override {
101     auto &MFI = MIRBuilder.getMF().getFrameInfo();
102 
103     // Byval is assumed to be writable memory, but other stack passed arguments
104     // are not.
105     const bool IsImmutable = !Flags.isByVal();
106     int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
107     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
108     auto AddrReg = MIRBuilder.buildFrameIndex(
109         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
110     StackUsed = std::max(StackUsed, Size + Offset);
111     return AddrReg.getReg(0);
112   }
113 
114   void assignValueToReg(Register ValVReg, Register PhysReg,
115                         CCValAssign &VA) override {
116     markPhysRegUsed(PhysReg);
117 
118     if (VA.getLocVT().getSizeInBits() < 32) {
119       // 16-bit types are reported as legal for 32-bit registers. We need to do
120       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
121       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
122 
123       // If we have signext/zeroext, it applies to the whole 32-bit register
124       // before truncation.
125       auto Extended =
126           buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
127       MIRBuilder.buildTrunc(ValVReg, Extended);
128       return;
129     }
130 
131     IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
132   }
133 
134   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
135                             MachinePointerInfo &MPO, CCValAssign &VA) override {
136     MachineFunction &MF = MIRBuilder.getMF();
137 
138     // The reported memory location may be wider than the value.
139     const LLT RegTy = MRI.getType(ValVReg);
140     MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
141 
142     // FIXME: Get alignment
143     auto MMO = MF.getMachineMemOperand(
144         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
145         inferAlignFromPtrInfo(MF, MPO));
146     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
147   }
148 
149   /// How the physical register gets marked varies between formal
150   /// parameters (it's a basic-block live-in), and a call instruction
151   /// (it's an implicit-def of the BL).
152   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
153 };
154 
155 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
156   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
157                    CCAssignFn *AssignFn)
158       : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {}
159 
160   void markPhysRegUsed(unsigned PhysReg) override {
161     MIRBuilder.getMBB().addLiveIn(PhysReg);
162   }
163 };
164 
165 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
166   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
167                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
168       : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
169 
170   void markPhysRegUsed(unsigned PhysReg) override {
171     MIB.addDef(PhysReg, RegState::Implicit);
172   }
173 
174   MachineInstrBuilder MIB;
175 };
176 
177 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
178   CCAssignFn *AssignFnVarArg;
179 
180   /// For tail calls, the byte offset of the call's argument area from the
181   /// callee's. Unused elsewhere.
182   int FPDiff;
183 
184   // Cache the SP register vreg if we need it more than once in this call site.
185   Register SPReg;
186 
187   bool IsTailCall;
188 
189   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
190                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
191                            CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg,
192                            bool IsTailCall = false, int FPDiff = 0)
193       : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB, AssignFn),
194         AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) {
195   }
196 
197   Register getStackAddress(uint64_t Size, int64_t Offset,
198                            MachinePointerInfo &MPO,
199                            ISD::ArgFlagsTy Flags) override {
200     MachineFunction &MF = MIRBuilder.getMF();
201     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
202     const LLT S32 = LLT::scalar(32);
203 
204     if (IsTailCall) {
205       llvm_unreachable("implement me");
206     }
207 
208     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
209 
210     if (!SPReg)
211       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
212 
213     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
214 
215     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
216     MPO = MachinePointerInfo::getStack(MF, Offset);
217     return AddrReg.getReg(0);
218   }
219 
220   void assignValueToReg(Register ValVReg, Register PhysReg,
221                         CCValAssign &VA) override {
222     MIB.addUse(PhysReg, RegState::Implicit);
223     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
224     MIRBuilder.buildCopy(PhysReg, ExtReg);
225   }
226 
227   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
228                             MachinePointerInfo &MPO, CCValAssign &VA) override {
229     MachineFunction &MF = MIRBuilder.getMF();
230     uint64_t LocMemOffset = VA.getLocMemOffset();
231     const auto &ST = MF.getSubtarget<GCNSubtarget>();
232 
233     auto MMO = MF.getMachineMemOperand(
234       MPO, MachineMemOperand::MOStore, Size,
235       commonAlignment(ST.getStackAlignment(), LocMemOffset));
236     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
237   }
238 
239   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
240                             unsigned ValRegIndex, Register Addr,
241                             uint64_t MemSize, MachinePointerInfo &MPO,
242                             CCValAssign &VA) override {
243     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
244                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
245                            : Arg.Regs[ValRegIndex];
246 
247     // If we extended the value type we might need to adjust the MMO's
248     // Size. This happens if ComputeValueVTs widened a small type value to a
249     // legal register type (e.g. s8->s16)
250     const LLT RegTy = MRI.getType(ValVReg);
251     MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes());
252     assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA);
253   }
254 };
255 }
256 
257 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
258   : CallLowering(&TLI) {
259 }
260 
261 // FIXME: Compatability shim
262 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
263   switch (MIOpc) {
264   case TargetOpcode::G_SEXT:
265     return ISD::SIGN_EXTEND;
266   case TargetOpcode::G_ZEXT:
267     return ISD::ZERO_EXTEND;
268   case TargetOpcode::G_ANYEXT:
269     return ISD::ANY_EXTEND;
270   default:
271     llvm_unreachable("not an extend opcode");
272   }
273 }
274 
275 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
276                                         CallingConv::ID CallConv,
277                                         SmallVectorImpl<BaseArgInfo> &Outs,
278                                         bool IsVarArg) const {
279   // For shaders. Vector types should be explicitly handled by CC.
280   if (AMDGPU::isEntryFunctionCC(CallConv))
281     return true;
282 
283   SmallVector<CCValAssign, 16> ArgLocs;
284   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
285   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
286                  MF.getFunction().getContext());
287 
288   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
289 }
290 
291 /// Lower the return value for the already existing \p Ret. This assumes that
292 /// \p B's insertion point is correct.
293 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
294                                         const Value *Val, ArrayRef<Register> VRegs,
295                                         MachineInstrBuilder &Ret) const {
296   if (!Val)
297     return true;
298 
299   auto &MF = B.getMF();
300   const auto &F = MF.getFunction();
301   const DataLayout &DL = MF.getDataLayout();
302   MachineRegisterInfo *MRI = B.getMRI();
303   LLVMContext &Ctx = F.getContext();
304 
305   CallingConv::ID CC = F.getCallingConv();
306   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
307 
308   SmallVector<EVT, 8> SplitEVTs;
309   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
310   assert(VRegs.size() == SplitEVTs.size() &&
311          "For each split Type there should be exactly one VReg.");
312 
313   SmallVector<ArgInfo, 8> SplitRetInfos;
314 
315   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
316     EVT VT = SplitEVTs[i];
317     Register Reg = VRegs[i];
318     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx));
319     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
320 
321     if (VT.isScalarInteger()) {
322       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
323       if (RetInfo.Flags[0].isSExt()) {
324         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
325         ExtendOp = TargetOpcode::G_SEXT;
326       } else if (RetInfo.Flags[0].isZExt()) {
327         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
328         ExtendOp = TargetOpcode::G_ZEXT;
329       }
330 
331       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
332                                           extOpcodeToISDExtOpcode(ExtendOp));
333       if (ExtVT != VT) {
334         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
335         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
336         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
337       }
338     }
339 
340     if (Reg != RetInfo.Regs[0]) {
341       RetInfo.Regs[0] = Reg;
342       // Reset the arg flags after modifying Reg.
343       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
344     }
345 
346     splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
347   }
348 
349   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
350   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
351   return handleAssignments(B, SplitRetInfos, RetHandler, CC, F.isVarArg());
352 }
353 
354 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
355                                      ArrayRef<Register> VRegs,
356                                      FunctionLoweringInfo &FLI) const {
357 
358   MachineFunction &MF = B.getMF();
359   MachineRegisterInfo &MRI = MF.getRegInfo();
360   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
361   MFI->setIfReturnsVoid(!Val);
362 
363   assert(!Val == VRegs.empty() && "Return value without a vreg");
364 
365   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
366   const bool IsShader = AMDGPU::isShader(CC);
367   const bool IsWaveEnd =
368       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
369   if (IsWaveEnd) {
370     B.buildInstr(AMDGPU::S_ENDPGM)
371       .addImm(0);
372     return true;
373   }
374 
375   auto const &ST = MF.getSubtarget<GCNSubtarget>();
376 
377   unsigned ReturnOpc =
378       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
379 
380   auto Ret = B.buildInstrNoInsert(ReturnOpc);
381   Register ReturnAddrVReg;
382   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
383     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
384     Ret.addUse(ReturnAddrVReg);
385   }
386 
387   if (!FLI.CanLowerReturn)
388     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
389   else if (!lowerReturnVal(B, Val, VRegs, Ret))
390     return false;
391 
392   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
393     const SIRegisterInfo *TRI = ST.getRegisterInfo();
394     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
395                                          &AMDGPU::SGPR_64RegClass);
396     B.buildCopy(ReturnAddrVReg, LiveInReturn);
397   }
398 
399   // TODO: Handle CalleeSavedRegsViaCopy.
400 
401   B.insertInstr(Ret);
402   return true;
403 }
404 
405 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
406                                            Type *ParamTy,
407                                            uint64_t Offset) const {
408   MachineFunction &MF = B.getMF();
409   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
410   MachineRegisterInfo &MRI = MF.getRegInfo();
411   Register KernArgSegmentPtr =
412     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
413   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
414 
415   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
416 
417   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
418 }
419 
420 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
421                                         uint64_t Offset, Align Alignment,
422                                         Register DstReg) const {
423   MachineFunction &MF = B.getMF();
424   const Function &F = MF.getFunction();
425   const DataLayout &DL = F.getParent()->getDataLayout();
426   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
427   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
428 
429   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
430   Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
431   lowerParameterPtr(PtrReg, B, ParamTy, Offset);
432 
433   MachineMemOperand *MMO = MF.getMachineMemOperand(
434       PtrInfo,
435       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
436           MachineMemOperand::MOInvariant,
437       TypeSize, Alignment);
438 
439   B.buildLoad(DstReg, PtrReg, *MMO);
440 }
441 
442 // Allocate special inputs passed in user SGPRs.
443 static void allocateHSAUserSGPRs(CCState &CCInfo,
444                                  MachineIRBuilder &B,
445                                  MachineFunction &MF,
446                                  const SIRegisterInfo &TRI,
447                                  SIMachineFunctionInfo &Info) {
448   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
449   if (Info.hasPrivateSegmentBuffer()) {
450     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
451     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
452     CCInfo.AllocateReg(PrivateSegmentBufferReg);
453   }
454 
455   if (Info.hasDispatchPtr()) {
456     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
457     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
458     CCInfo.AllocateReg(DispatchPtrReg);
459   }
460 
461   if (Info.hasQueuePtr()) {
462     Register QueuePtrReg = Info.addQueuePtr(TRI);
463     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
464     CCInfo.AllocateReg(QueuePtrReg);
465   }
466 
467   if (Info.hasKernargSegmentPtr()) {
468     MachineRegisterInfo &MRI = MF.getRegInfo();
469     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
470     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
471     Register VReg = MRI.createGenericVirtualRegister(P4);
472     MRI.addLiveIn(InputPtrReg, VReg);
473     B.getMBB().addLiveIn(InputPtrReg);
474     B.buildCopy(VReg, InputPtrReg);
475     CCInfo.AllocateReg(InputPtrReg);
476   }
477 
478   if (Info.hasDispatchID()) {
479     Register DispatchIDReg = Info.addDispatchID(TRI);
480     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
481     CCInfo.AllocateReg(DispatchIDReg);
482   }
483 
484   if (Info.hasFlatScratchInit()) {
485     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
486     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
487     CCInfo.AllocateReg(FlatScratchInitReg);
488   }
489 
490   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
491   // these from the dispatch pointer.
492 }
493 
494 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
495     MachineIRBuilder &B, const Function &F,
496     ArrayRef<ArrayRef<Register>> VRegs) const {
497   MachineFunction &MF = B.getMF();
498   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
499   MachineRegisterInfo &MRI = MF.getRegInfo();
500   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
501   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
502   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
503 
504   const DataLayout &DL = F.getParent()->getDataLayout();
505 
506   SmallVector<CCValAssign, 16> ArgLocs;
507   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
508 
509   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
510 
511   unsigned i = 0;
512   const Align KernArgBaseAlign(16);
513   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
514   uint64_t ExplicitArgOffset = 0;
515 
516   // TODO: Align down to dword alignment and extract bits for extending loads.
517   for (auto &Arg : F.args()) {
518     const bool IsByRef = Arg.hasByRefAttr();
519     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
520     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
521     if (AllocSize == 0)
522       continue;
523 
524     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
525     if (!ABIAlign)
526       ABIAlign = DL.getABITypeAlign(ArgTy);
527 
528     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
529     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
530 
531     if (Arg.use_empty()) {
532       ++i;
533       continue;
534     }
535 
536     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
537 
538     if (IsByRef) {
539       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
540 
541       assert(VRegs[i].size() == 1 &&
542              "expected only one register for byval pointers");
543       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
544         lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
545       } else {
546         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
547         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
548         lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
549 
550         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
551       }
552     } else {
553       ArrayRef<Register> OrigArgRegs = VRegs[i];
554       Register ArgReg =
555         OrigArgRegs.size() == 1
556         ? OrigArgRegs[0]
557         : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
558 
559       lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
560       if (OrigArgRegs.size() > 1)
561         unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
562     }
563 
564     ++i;
565   }
566 
567   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
568   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
569   return true;
570 }
571 
572 bool AMDGPUCallLowering::lowerFormalArguments(
573     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
574     FunctionLoweringInfo &FLI) const {
575   CallingConv::ID CC = F.getCallingConv();
576 
577   // The infrastructure for normal calling convention lowering is essentially
578   // useless for kernels. We want to avoid any kind of legalization or argument
579   // splitting.
580   if (CC == CallingConv::AMDGPU_KERNEL)
581     return lowerFormalArgumentsKernel(B, F, VRegs);
582 
583   const bool IsGraphics = AMDGPU::isGraphics(CC);
584   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
585 
586   MachineFunction &MF = B.getMF();
587   MachineBasicBlock &MBB = B.getMBB();
588   MachineRegisterInfo &MRI = MF.getRegInfo();
589   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
590   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
591   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
592   const DataLayout &DL = F.getParent()->getDataLayout();
593 
594 
595   SmallVector<CCValAssign, 16> ArgLocs;
596   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
597 
598   if (!IsEntryFunc) {
599     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
600     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
601                                          &AMDGPU::SGPR_64RegClass);
602     MBB.addLiveIn(ReturnAddrReg);
603     B.buildCopy(LiveInReturn, ReturnAddrReg);
604   }
605 
606   if (Info->hasImplicitBufferPtr()) {
607     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
608     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
609     CCInfo.AllocateReg(ImplicitBufferPtrReg);
610   }
611 
612   SmallVector<ArgInfo, 32> SplitArgs;
613   unsigned Idx = 0;
614   unsigned PSInputNum = 0;
615 
616   // Insert the hidden sret parameter if the return value won't fit in the
617   // return registers.
618   if (!FLI.CanLowerReturn)
619     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
620 
621   for (auto &Arg : F.args()) {
622     if (DL.getTypeStoreSize(Arg.getType()) == 0)
623       continue;
624 
625     const bool InReg = Arg.hasAttribute(Attribute::InReg);
626 
627     // SGPR arguments to functions not implemented.
628     if (!IsGraphics && InReg)
629       return false;
630 
631     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
632         Arg.hasAttribute(Attribute::SwiftError) ||
633         Arg.hasAttribute(Attribute::Nest))
634       return false;
635 
636     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
637       const bool ArgUsed = !Arg.use_empty();
638       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
639 
640       if (!SkipArg) {
641         Info->markPSInputAllocated(PSInputNum);
642         if (ArgUsed)
643           Info->markPSInputEnabled(PSInputNum);
644       }
645 
646       ++PSInputNum;
647 
648       if (SkipArg) {
649         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
650           B.buildUndef(VRegs[Idx][I]);
651 
652         ++Idx;
653         continue;
654       }
655     }
656 
657     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
658     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
659     setArgFlags(OrigArg, OrigArgIdx, DL, F);
660 
661     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
662     ++Idx;
663   }
664 
665   // At least one interpolation mode must be enabled or else the GPU will
666   // hang.
667   //
668   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
669   // set PSInputAddr, the user wants to enable some bits after the compilation
670   // based on run-time states. Since we can't know what the final PSInputEna
671   // will look like, so we shouldn't do anything here and the user should take
672   // responsibility for the correct programming.
673   //
674   // Otherwise, the following restrictions apply:
675   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
676   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
677   //   enabled too.
678   if (CC == CallingConv::AMDGPU_PS) {
679     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
680         ((Info->getPSInputAddr() & 0xF) == 0 &&
681          Info->isPSInputAllocated(11))) {
682       CCInfo.AllocateReg(AMDGPU::VGPR0);
683       CCInfo.AllocateReg(AMDGPU::VGPR1);
684       Info->markPSInputAllocated(0);
685       Info->markPSInputEnabled(0);
686     }
687 
688     if (Subtarget.isAmdPalOS()) {
689       // For isAmdPalOS, the user does not enable some bits after compilation
690       // based on run-time states; the register values being generated here are
691       // the final ones set in hardware. Therefore we need to apply the
692       // workaround to PSInputAddr and PSInputEnable together.  (The case where
693       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
694       // set up an input arg for a particular interpolation mode, but nothing
695       // uses that input arg. Really we should have an earlier pass that removes
696       // such an arg.)
697       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
698       if ((PsInputBits & 0x7F) == 0 ||
699           ((PsInputBits & 0xF) == 0 &&
700            (PsInputBits >> 11 & 1)))
701         Info->markPSInputEnabled(
702           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
703     }
704   }
705 
706   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
707   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
708 
709   if (!MBB.empty())
710     B.setInstr(*MBB.begin());
711 
712   if (!IsEntryFunc) {
713     // For the fixed ABI, pass workitem IDs in the last argument register.
714     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
715       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
716   }
717 
718   FormalArgHandler Handler(B, MRI, AssignFn);
719   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
720     return false;
721 
722   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
723     // Special inputs come after user arguments.
724     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
725   }
726 
727   // Start adding system SGPRs.
728   if (IsEntryFunc) {
729     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
730   } else {
731     if (!Subtarget.enableFlatScratch())
732       CCInfo.AllocateReg(Info->getScratchRSrcReg());
733     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
734   }
735 
736   // Move back to the end of the basic block.
737   B.setMBB(MBB);
738 
739   return true;
740 }
741 
742 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
743                                            CCState &CCInfo,
744                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
745                                            CallLoweringInfo &Info) const {
746   MachineFunction &MF = MIRBuilder.getMF();
747 
748   const AMDGPUFunctionArgInfo *CalleeArgInfo
749     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
750 
751   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
752   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
753 
754 
755   // TODO: Unify with private memory register handling. This is complicated by
756   // the fact that at least in kernels, the input argument is not necessarily
757   // in the same location as the input.
758   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
759     AMDGPUFunctionArgInfo::DISPATCH_PTR,
760     AMDGPUFunctionArgInfo::QUEUE_PTR,
761     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
762     AMDGPUFunctionArgInfo::DISPATCH_ID,
763     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
764     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
765     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
766   };
767 
768   MachineRegisterInfo &MRI = MF.getRegInfo();
769 
770   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
771   const AMDGPULegalizerInfo *LI
772     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
773 
774   for (auto InputID : InputRegs) {
775     const ArgDescriptor *OutgoingArg;
776     const TargetRegisterClass *ArgRC;
777     LLT ArgTy;
778 
779     std::tie(OutgoingArg, ArgRC, ArgTy) =
780         CalleeArgInfo->getPreloadedValue(InputID);
781     if (!OutgoingArg)
782       continue;
783 
784     const ArgDescriptor *IncomingArg;
785     const TargetRegisterClass *IncomingArgRC;
786     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
787         CallerArgInfo.getPreloadedValue(InputID);
788     assert(IncomingArgRC == ArgRC);
789 
790     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
791 
792     if (IncomingArg) {
793       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
794     } else {
795       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
796       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
797     }
798 
799     if (OutgoingArg->isRegister()) {
800       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
801       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
802         report_fatal_error("failed to allocate implicit input argument");
803     } else {
804       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
805       return false;
806     }
807   }
808 
809   // Pack workitem IDs into a single register or pass it as is if already
810   // packed.
811   const ArgDescriptor *OutgoingArg;
812   const TargetRegisterClass *ArgRC;
813   LLT ArgTy;
814 
815   std::tie(OutgoingArg, ArgRC, ArgTy) =
816       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
817   if (!OutgoingArg)
818     std::tie(OutgoingArg, ArgRC, ArgTy) =
819         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
820   if (!OutgoingArg)
821     std::tie(OutgoingArg, ArgRC, ArgTy) =
822         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
823   if (!OutgoingArg)
824     return false;
825 
826   auto WorkitemIDX =
827       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
828   auto WorkitemIDY =
829       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
830   auto WorkitemIDZ =
831       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
832 
833   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
834   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
835   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
836   const LLT S32 = LLT::scalar(32);
837 
838   // If incoming ids are not packed we need to pack them.
839   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
840   Register InputReg;
841   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
842     InputReg = MRI.createGenericVirtualRegister(S32);
843     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
844                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
845   }
846 
847   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
848     Register Y = MRI.createGenericVirtualRegister(S32);
849     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
850                        std::get<2>(WorkitemIDY));
851 
852     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
853     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
854   }
855 
856   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
857     Register Z = MRI.createGenericVirtualRegister(S32);
858     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
859                        std::get<2>(WorkitemIDZ));
860 
861     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
862     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
863   }
864 
865   if (!InputReg) {
866     InputReg = MRI.createGenericVirtualRegister(S32);
867 
868     // Workitem ids are already packed, any of present incoming arguments will
869     // carry all required fields.
870     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
871       IncomingArgX ? *IncomingArgX :
872         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
873     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
874                        &AMDGPU::VGPR_32RegClass, S32);
875   }
876 
877   if (OutgoingArg->isRegister()) {
878     ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
879     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
880       report_fatal_error("failed to allocate implicit input argument");
881   } else {
882     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
883     return false;
884   }
885 
886   return true;
887 }
888 
889 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
890 /// CC.
891 static std::pair<CCAssignFn *, CCAssignFn *>
892 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
893   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
894 }
895 
896 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
897                               bool IsTailCall) {
898   return AMDGPU::SI_CALL;
899 }
900 
901 // Add operands to call instruction to track the callee.
902 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
903                                   MachineIRBuilder &MIRBuilder,
904                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
905   if (Info.Callee.isReg()) {
906     CallInst.addReg(Info.Callee.getReg());
907     CallInst.addImm(0);
908   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
909     // The call lowering lightly assumed we can directly encode a call target in
910     // the instruction, which is not the case. Materialize the address here.
911     const GlobalValue *GV = Info.Callee.getGlobal();
912     auto Ptr = MIRBuilder.buildGlobalValue(
913       LLT::pointer(GV->getAddressSpace(), 64), GV);
914     CallInst.addReg(Ptr.getReg(0));
915     CallInst.add(Info.Callee);
916   } else
917     return false;
918 
919   return true;
920 }
921 
922 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
923                                    CallLoweringInfo &Info) const {
924   if (Info.IsVarArg) {
925     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
926     return false;
927   }
928 
929   MachineFunction &MF = MIRBuilder.getMF();
930   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
931   const SIRegisterInfo *TRI = ST.getRegisterInfo();
932 
933   const Function &F = MF.getFunction();
934   MachineRegisterInfo &MRI = MF.getRegInfo();
935   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
936   const DataLayout &DL = F.getParent()->getDataLayout();
937   CallingConv::ID CallConv = F.getCallingConv();
938 
939   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
940       CallConv != CallingConv::AMDGPU_Gfx) {
941     LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
942     return false;
943   }
944 
945   if (AMDGPU::isShader(CallConv)) {
946     LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n");
947     return false;
948   }
949 
950   SmallVector<ArgInfo, 8> OutArgs;
951   for (auto &OrigArg : Info.OrigArgs)
952     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
953 
954   SmallVector<ArgInfo, 8> InArgs;
955   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
956     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
957 
958   // If we can lower as a tail call, do that instead.
959   bool CanTailCallOpt = false;
960 
961   // We must emit a tail call if we have musttail.
962   if (Info.IsMustTailCall && !CanTailCallOpt) {
963     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
964     return false;
965   }
966 
967   // Find out which ABI gets to decide where things go.
968   CCAssignFn *AssignFnFixed;
969   CCAssignFn *AssignFnVarArg;
970   std::tie(AssignFnFixed, AssignFnVarArg) =
971       getAssignFnsForCC(Info.CallConv, TLI);
972 
973   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
974     .addImm(0)
975     .addImm(0);
976 
977   // Create a temporarily-floating call instruction so we can add the implicit
978   // uses of arg registers.
979   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
980 
981   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
982   MIB.addDef(TRI->getReturnAddressReg(MF));
983 
984   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
985     return false;
986 
987   // Tell the call which registers are clobbered.
988   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
989   MIB.addRegMask(Mask);
990 
991   SmallVector<CCValAssign, 16> ArgLocs;
992   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
993 
994   // We could pass MIB and directly add the implicit uses to the call
995   // now. However, as an aesthetic choice, place implicit argument operands
996   // after the ordinary user argument registers.
997   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
998 
999   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
1000       Info.CallConv != CallingConv::AMDGPU_Gfx) {
1001     // With a fixed ABI, allocate fixed registers before user arguments.
1002     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1003       return false;
1004   }
1005 
1006   // Do the actual argument marshalling.
1007   SmallVector<Register, 8> PhysRegs;
1008   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
1009                                    AssignFnVarArg, false);
1010   if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler))
1011     return false;
1012 
1013   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1014 
1015   if (!ST.enableFlatScratch()) {
1016     // Insert copies for the SRD. In the HSA case, this should be an identity
1017     // copy.
1018     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32),
1019                                                MFI->getScratchRSrcReg());
1020     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1021     MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1022   }
1023 
1024   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1025     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1026     MIB.addReg(ArgReg.first, RegState::Implicit);
1027   }
1028 
1029   // Get a count of how many bytes are to be pushed on the stack.
1030   unsigned NumBytes = CCInfo.getNextStackOffset();
1031 
1032   // If Callee is a reg, since it is used by a target specific
1033   // instruction, it must have a register class matching the
1034   // constraint of that instruction.
1035 
1036   // FIXME: We should define regbankselectable call instructions to handle
1037   // divergent call targets.
1038   if (MIB->getOperand(1).isReg()) {
1039     MIB->getOperand(1).setReg(constrainOperandRegClass(
1040         MF, *TRI, MRI, *ST.getInstrInfo(),
1041         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1042         1));
1043   }
1044 
1045   // Now we can add the actual call instruction to the correct position.
1046   MIRBuilder.insertInstr(MIB);
1047 
1048   // Finally we can copy the returned value back into its virtual-register. In
1049   // symmetry with the arguments, the physical register must be an
1050   // implicit-define of the call instruction.
1051   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1052     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1053                                                       Info.IsVarArg);
1054     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1055     if (!handleAssignments(MIRBuilder, InArgs, Handler, Info.CallConv,
1056                            Info.IsVarArg))
1057       return false;
1058   }
1059 
1060   uint64_t CalleePopBytes = NumBytes;
1061 
1062   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
1063             .addImm(0)
1064             .addImm(CalleePopBytes);
1065 
1066   if (!Info.CanLowerReturn) {
1067     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1068                     Info.DemoteRegister, Info.DemoteStackIndex);
1069   }
1070 
1071   return true;
1072 }
1073