1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUISelLowering.h"
18 #include "AMDGPULegalizerInfo.h"
19 #include "AMDGPUSubtarget.h"
20 #include "AMDGPUTargetMachine.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "SIISelLowering.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "SIRegisterInfo.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/CallingConvLower.h"
27 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/Support/LowLevelTypeImpl.h"
30 
31 #define DEBUG_TYPE "amdgpu-call-lowering"
32 
33 using namespace llvm;
34 
35 namespace {
36 
37 struct AMDGPUValueHandler : public CallLowering::ValueHandler {
38   AMDGPUValueHandler(bool IsIncoming, MachineIRBuilder &B,
39                      MachineRegisterInfo &MRI, CCAssignFn *AssignFn)
40       : ValueHandler(IsIncoming, B, MRI, AssignFn) {}
41 
42   /// Wrapper around extendRegister to ensure we extend to a full 32-bit
43   /// register.
44   Register extendRegisterMin32(Register ValVReg, CCValAssign &VA) {
45     if (VA.getLocVT().getSizeInBits() < 32) {
46       // 16-bit types are reported as legal for 32-bit registers. We need to
47       // extend and do a 32-bit copy to avoid the verifier complaining about it.
48       return MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
49     }
50 
51     return extendRegister(ValVReg, VA);
52   }
53 };
54 
55 struct AMDGPUOutgoingValueHandler : public AMDGPUValueHandler {
56   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
57                              MachineInstrBuilder MIB, CCAssignFn *AssignFn)
58       : AMDGPUValueHandler(false, B, MRI, AssignFn), MIB(MIB) {}
59 
60   MachineInstrBuilder MIB;
61 
62   Register getStackAddress(uint64_t Size, int64_t Offset,
63                            MachinePointerInfo &MPO) override {
64     llvm_unreachable("not implemented");
65   }
66 
67   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
68                             MachinePointerInfo &MPO, CCValAssign &VA) override {
69     llvm_unreachable("not implemented");
70   }
71 
72   void assignValueToReg(Register ValVReg, Register PhysReg,
73                         CCValAssign &VA) override {
74     Register ExtReg = extendRegisterMin32(ValVReg, VA);
75 
76     // If this is a scalar return, insert a readfirstlane just in case the value
77     // ends up in a VGPR.
78     // FIXME: Assert this is a shader return.
79     const SIRegisterInfo *TRI
80       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
81     if (TRI->isSGPRReg(MRI, PhysReg)) {
82       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
83                                               {MRI.getType(ExtReg)}, false)
84         .addReg(ExtReg);
85       ExtReg = ToSGPR.getReg(0);
86     }
87 
88     MIRBuilder.buildCopy(PhysReg, ExtReg);
89     MIB.addUse(PhysReg, RegState::Implicit);
90   }
91 
92   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
93                  CCValAssign::LocInfo LocInfo,
94                  const CallLowering::ArgInfo &Info,
95                  ISD::ArgFlagsTy Flags,
96                  CCState &State) override {
97     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
98   }
99 };
100 
101 struct AMDGPUIncomingArgHandler : public AMDGPUValueHandler {
102   uint64_t StackUsed = 0;
103 
104   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
105                            CCAssignFn *AssignFn)
106       : AMDGPUValueHandler(true, B, MRI, AssignFn) {}
107 
108   Register getStackAddress(uint64_t Size, int64_t Offset,
109                            MachinePointerInfo &MPO) override {
110     auto &MFI = MIRBuilder.getMF().getFrameInfo();
111     int FI = MFI.CreateFixedObject(Size, Offset, true);
112     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
113     auto AddrReg = MIRBuilder.buildFrameIndex(
114         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
115     StackUsed = std::max(StackUsed, Size + Offset);
116     return AddrReg.getReg(0);
117   }
118 
119   void assignValueToReg(Register ValVReg, Register PhysReg,
120                         CCValAssign &VA) override {
121     markPhysRegUsed(PhysReg);
122 
123     if (VA.getLocVT().getSizeInBits() < 32) {
124       // 16-bit types are reported as legal for 32-bit registers. We need to do
125       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
126       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
127       MIRBuilder.buildTrunc(ValVReg, Copy);
128       return;
129     }
130 
131     switch (VA.getLocInfo()) {
132     case CCValAssign::LocInfo::SExt:
133     case CCValAssign::LocInfo::ZExt:
134     case CCValAssign::LocInfo::AExt: {
135       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
136       MIRBuilder.buildTrunc(ValVReg, Copy);
137       break;
138     }
139     default:
140       MIRBuilder.buildCopy(ValVReg, PhysReg);
141       break;
142     }
143   }
144 
145   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
146                             MachinePointerInfo &MPO, CCValAssign &VA) override {
147     MachineFunction &MF = MIRBuilder.getMF();
148 
149     // The reported memory location may be wider than the value.
150     const LLT RegTy = MRI.getType(ValVReg);
151     MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
152 
153     // FIXME: Get alignment
154     auto MMO = MF.getMachineMemOperand(
155         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
156         inferAlignFromPtrInfo(MF, MPO));
157     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
158   }
159 
160   /// How the physical register gets marked varies between formal
161   /// parameters (it's a basic-block live-in), and a call instruction
162   /// (it's an implicit-def of the BL).
163   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
164 };
165 
166 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
167   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
168                    CCAssignFn *AssignFn)
169       : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {}
170 
171   void markPhysRegUsed(unsigned PhysReg) override {
172     MIRBuilder.getMBB().addLiveIn(PhysReg);
173   }
174 };
175 
176 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
177   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
178                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
179       : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
180 
181   void markPhysRegUsed(unsigned PhysReg) override {
182     MIB.addDef(PhysReg, RegState::Implicit);
183   }
184 
185   MachineInstrBuilder MIB;
186 };
187 
188 struct AMDGPUOutgoingArgHandler : public AMDGPUValueHandler {
189   MachineInstrBuilder MIB;
190   CCAssignFn *AssignFnVarArg;
191 
192   /// For tail calls, the byte offset of the call's argument area from the
193   /// callee's. Unused elsewhere.
194   int FPDiff;
195 
196   // Cache the SP register vreg if we need it more than once in this call site.
197   Register SPReg;
198 
199   bool IsTailCall;
200 
201   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
202                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
203                            CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg,
204                            bool IsTailCall = false, int FPDiff = 0)
205       : AMDGPUValueHandler(false, MIRBuilder, MRI, AssignFn), MIB(MIB),
206         AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) {
207   }
208 
209   Register getStackAddress(uint64_t Size, int64_t Offset,
210                            MachinePointerInfo &MPO) override {
211     MachineFunction &MF = MIRBuilder.getMF();
212     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
213     const LLT S32 = LLT::scalar(32);
214 
215     if (IsTailCall) {
216       llvm_unreachable("implement me");
217     }
218 
219     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
220 
221     if (!SPReg)
222       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
223 
224     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
225 
226     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
227     MPO = MachinePointerInfo::getStack(MF, Offset);
228     return AddrReg.getReg(0);
229   }
230 
231   void assignValueToReg(Register ValVReg, Register PhysReg,
232                         CCValAssign &VA) override {
233     MIB.addUse(PhysReg, RegState::Implicit);
234     Register ExtReg = extendRegisterMin32(ValVReg, VA);
235     MIRBuilder.buildCopy(PhysReg, ExtReg);
236   }
237 
238   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
239                             MachinePointerInfo &MPO, CCValAssign &VA) override {
240     MachineFunction &MF = MIRBuilder.getMF();
241     uint64_t LocMemOffset = VA.getLocMemOffset();
242     const auto &ST = MF.getSubtarget<GCNSubtarget>();
243 
244     auto MMO = MF.getMachineMemOperand(
245       MPO, MachineMemOperand::MOStore, Size,
246       commonAlignment(ST.getStackAlignment(), LocMemOffset));
247     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
248   }
249 
250   void assignValueToAddress(const CallLowering::ArgInfo &Arg, Register Addr,
251                             uint64_t Size, MachinePointerInfo &MPO,
252                             CCValAssign &VA) override {
253     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
254                            ? extendRegister(Arg.Regs[0], VA)
255                            : Arg.Regs[0];
256 
257     // If we extended we might need to adjust the MMO's Size.
258     const LLT RegTy = MRI.getType(ValVReg);
259     if (RegTy.getSizeInBytes() > Size)
260       Size = RegTy.getSizeInBytes();
261 
262     assignValueToAddress(ValVReg, Addr, Size, MPO, VA);
263   }
264 };
265 }
266 
267 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
268   : CallLowering(&TLI) {
269 }
270 
271 // FIXME: Compatability shim
272 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
273   switch (MIOpc) {
274   case TargetOpcode::G_SEXT:
275     return ISD::SIGN_EXTEND;
276   case TargetOpcode::G_ZEXT:
277     return ISD::ZERO_EXTEND;
278   case TargetOpcode::G_ANYEXT:
279     return ISD::ANY_EXTEND;
280   default:
281     llvm_unreachable("not an extend opcode");
282   }
283 }
284 
285 void AMDGPUCallLowering::splitToValueTypes(
286   MachineIRBuilder &B,
287   const ArgInfo &OrigArg,
288   SmallVectorImpl<ArgInfo> &SplitArgs,
289   const DataLayout &DL, CallingConv::ID CallConv,
290   bool IsOutgoing,
291   SplitArgTy PerformArgSplit) const {
292   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
293   LLVMContext &Ctx = OrigArg.Ty->getContext();
294 
295   if (OrigArg.Ty->isVoidTy())
296     return;
297 
298   SmallVector<EVT, 4> SplitVTs;
299   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
300 
301   assert(OrigArg.Regs.size() == SplitVTs.size());
302 
303   int SplitIdx = 0;
304   for (EVT VT : SplitVTs) {
305     Register Reg = OrigArg.Regs[SplitIdx];
306     Type *Ty = VT.getTypeForEVT(Ctx);
307     LLT LLTy = getLLTForType(*Ty, DL);
308 
309     if (IsOutgoing && VT.isScalarInteger()) {
310       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
311       if (OrigArg.Flags[0].isSExt()) {
312         assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
313         ExtendOp = TargetOpcode::G_SEXT;
314       } else if (OrigArg.Flags[0].isZExt()) {
315         assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
316         ExtendOp = TargetOpcode::G_ZEXT;
317       }
318 
319       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
320                                           extOpcodeToISDExtOpcode(ExtendOp));
321       if (ExtVT.getSizeInBits() != VT.getSizeInBits()) {
322         VT = ExtVT;
323         Ty = ExtVT.getTypeForEVT(Ctx);
324         LLTy = getLLTForType(*Ty, DL);
325         Reg = B.buildInstr(ExtendOp, {LLTy}, {Reg}).getReg(0);
326       }
327     }
328 
329     unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
330     MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
331 
332     if (NumParts == 1) {
333       // No splitting to do, but we want to replace the original type (e.g. [1 x
334       // double] -> double).
335       SplitArgs.emplace_back(Reg, Ty, OrigArg.Flags, OrigArg.IsFixed);
336 
337       ++SplitIdx;
338       continue;
339     }
340 
341     SmallVector<Register, 8> SplitRegs;
342     Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx);
343     LLT PartLLT = getLLTForType(*PartTy, DL);
344     MachineRegisterInfo &MRI = *B.getMRI();
345 
346     // FIXME: Should we be reporting all of the part registers for a single
347     // argument, and let handleAssignments take care of the repacking?
348     for (unsigned i = 0; i < NumParts; ++i) {
349       Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
350       SplitRegs.push_back(PartReg);
351       SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
352     }
353 
354     PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx);
355 
356     ++SplitIdx;
357   }
358 }
359 
360 // Get the appropriate type to make \p OrigTy \p Factor times bigger.
361 static LLT getMultipleType(LLT OrigTy, int Factor) {
362   if (OrigTy.isVector()) {
363     return LLT::vector(OrigTy.getNumElements() * Factor,
364                        OrigTy.getElementType());
365   }
366 
367   return LLT::scalar(OrigTy.getSizeInBits() * Factor);
368 }
369 
370 // TODO: Move to generic code
371 static void unpackRegsToOrigType(MachineIRBuilder &B,
372                                  ArrayRef<Register> DstRegs,
373                                  Register SrcReg,
374                                  const CallLowering::ArgInfo &Info,
375                                  LLT SrcTy,
376                                  LLT PartTy) {
377   assert(DstRegs.size() > 1 && "Nothing to unpack");
378 
379   const unsigned SrcSize = SrcTy.getSizeInBits();
380   const unsigned PartSize = PartTy.getSizeInBits();
381 
382   if (SrcTy.isVector() && !PartTy.isVector() &&
383       PartSize > SrcTy.getElementType().getSizeInBits()) {
384     // Vector was scalarized, and the elements extended.
385     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(),
386                                                   SrcReg);
387     for (int i = 0, e = DstRegs.size(); i != e; ++i)
388       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
389     return;
390   }
391 
392   if (SrcSize % PartSize == 0) {
393     B.buildUnmerge(DstRegs, SrcReg);
394     return;
395   }
396 
397   const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize;
398 
399   LLT BigTy = getMultipleType(PartTy, NumRoundedParts);
400   auto ImpDef = B.buildUndef(BigTy);
401 
402   auto Big = B.buildInsert(BigTy, ImpDef.getReg(0), SrcReg, 0).getReg(0);
403 
404   int64_t Offset = 0;
405   for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize)
406     B.buildExtract(DstRegs[i], Big, Offset);
407 }
408 
409 /// Lower the return value for the already existing \p Ret. This assumes that
410 /// \p B's insertion point is correct.
411 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
412                                         const Value *Val, ArrayRef<Register> VRegs,
413                                         MachineInstrBuilder &Ret) const {
414   if (!Val)
415     return true;
416 
417   auto &MF = B.getMF();
418   const auto &F = MF.getFunction();
419   const DataLayout &DL = MF.getDataLayout();
420   MachineRegisterInfo *MRI = B.getMRI();
421 
422   CallingConv::ID CC = F.getCallingConv();
423   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
424 
425   ArgInfo OrigRetInfo(VRegs, Val->getType());
426   setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
427   SmallVector<ArgInfo, 4> SplitRetInfos;
428 
429   splitToValueTypes(
430     B, OrigRetInfo, SplitRetInfos, DL, CC, true,
431     [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
432         int VTSplitIdx) {
433       unpackRegsToOrigType(B, Regs, SrcReg,
434                            SplitRetInfos[VTSplitIdx],
435                            LLTy, PartLLT);
436     });
437 
438   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
439   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
440   return handleAssignments(B, SplitRetInfos, RetHandler);
441 }
442 
443 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
444                                      const Value *Val,
445                                      ArrayRef<Register> VRegs) const {
446 
447   MachineFunction &MF = B.getMF();
448   MachineRegisterInfo &MRI = MF.getRegInfo();
449   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
450   MFI->setIfReturnsVoid(!Val);
451 
452   assert(!Val == VRegs.empty() && "Return value without a vreg");
453 
454   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
455   const bool IsShader = AMDGPU::isShader(CC);
456   const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
457                          AMDGPU::isKernel(CC);
458   if (IsWaveEnd) {
459     B.buildInstr(AMDGPU::S_ENDPGM)
460       .addImm(0);
461     return true;
462   }
463 
464   auto const &ST = MF.getSubtarget<GCNSubtarget>();
465 
466   unsigned ReturnOpc =
467       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
468 
469   auto Ret = B.buildInstrNoInsert(ReturnOpc);
470   Register ReturnAddrVReg;
471   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
472     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
473     Ret.addUse(ReturnAddrVReg);
474   }
475 
476   if (!lowerReturnVal(B, Val, VRegs, Ret))
477     return false;
478 
479   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
480     const SIRegisterInfo *TRI = ST.getRegisterInfo();
481     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
482                                          &AMDGPU::SGPR_64RegClass);
483     B.buildCopy(ReturnAddrVReg, LiveInReturn);
484   }
485 
486   // TODO: Handle CalleeSavedRegsViaCopy.
487 
488   B.insertInstr(Ret);
489   return true;
490 }
491 
492 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
493                                            Type *ParamTy,
494                                            uint64_t Offset) const {
495   MachineFunction &MF = B.getMF();
496   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
497   MachineRegisterInfo &MRI = MF.getRegInfo();
498   Register KernArgSegmentPtr =
499     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
500   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
501 
502   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
503 
504   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
505 }
506 
507 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
508                                         uint64_t Offset, Align Alignment,
509                                         Register DstReg) const {
510   MachineFunction &MF = B.getMF();
511   const Function &F = MF.getFunction();
512   const DataLayout &DL = F.getParent()->getDataLayout();
513   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
514   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
515 
516   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
517   Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
518   lowerParameterPtr(PtrReg, B, ParamTy, Offset);
519 
520   MachineMemOperand *MMO = MF.getMachineMemOperand(
521       PtrInfo,
522       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
523           MachineMemOperand::MOInvariant,
524       TypeSize, Alignment);
525 
526   B.buildLoad(DstReg, PtrReg, *MMO);
527 }
528 
529 // Allocate special inputs passed in user SGPRs.
530 static void allocateHSAUserSGPRs(CCState &CCInfo,
531                                  MachineIRBuilder &B,
532                                  MachineFunction &MF,
533                                  const SIRegisterInfo &TRI,
534                                  SIMachineFunctionInfo &Info) {
535   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
536   if (Info.hasPrivateSegmentBuffer()) {
537     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
538     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
539     CCInfo.AllocateReg(PrivateSegmentBufferReg);
540   }
541 
542   if (Info.hasDispatchPtr()) {
543     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
544     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
545     CCInfo.AllocateReg(DispatchPtrReg);
546   }
547 
548   if (Info.hasQueuePtr()) {
549     Register QueuePtrReg = Info.addQueuePtr(TRI);
550     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
551     CCInfo.AllocateReg(QueuePtrReg);
552   }
553 
554   if (Info.hasKernargSegmentPtr()) {
555     MachineRegisterInfo &MRI = MF.getRegInfo();
556     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
557     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
558     Register VReg = MRI.createGenericVirtualRegister(P4);
559     MRI.addLiveIn(InputPtrReg, VReg);
560     B.getMBB().addLiveIn(InputPtrReg);
561     B.buildCopy(VReg, InputPtrReg);
562     CCInfo.AllocateReg(InputPtrReg);
563   }
564 
565   if (Info.hasDispatchID()) {
566     Register DispatchIDReg = Info.addDispatchID(TRI);
567     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
568     CCInfo.AllocateReg(DispatchIDReg);
569   }
570 
571   if (Info.hasFlatScratchInit()) {
572     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
573     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
574     CCInfo.AllocateReg(FlatScratchInitReg);
575   }
576 
577   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
578   // these from the dispatch pointer.
579 }
580 
581 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
582     MachineIRBuilder &B, const Function &F,
583     ArrayRef<ArrayRef<Register>> VRegs) const {
584   MachineFunction &MF = B.getMF();
585   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
586   MachineRegisterInfo &MRI = MF.getRegInfo();
587   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
588   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
589   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
590 
591   const DataLayout &DL = F.getParent()->getDataLayout();
592 
593   SmallVector<CCValAssign, 16> ArgLocs;
594   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
595 
596   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
597 
598   unsigned i = 0;
599   const Align KernArgBaseAlign(16);
600   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
601   uint64_t ExplicitArgOffset = 0;
602 
603   // TODO: Align down to dword alignment and extract bits for extending loads.
604   for (auto &Arg : F.args()) {
605     const bool IsByRef = Arg.hasByRefAttr();
606     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
607     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
608     if (AllocSize == 0)
609       continue;
610 
611     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
612     if (!ABIAlign)
613       ABIAlign = DL.getABITypeAlign(ArgTy);
614 
615     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
616     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
617 
618     if (Arg.use_empty()) {
619       ++i;
620       continue;
621     }
622 
623     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
624 
625     if (IsByRef) {
626       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
627 
628       assert(VRegs[i].size() == 1 &&
629              "expected only one register for byval pointers");
630       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
631         lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
632       } else {
633         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
634         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
635         lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
636 
637         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
638       }
639     } else {
640       ArrayRef<Register> OrigArgRegs = VRegs[i];
641       Register ArgReg =
642         OrigArgRegs.size() == 1
643         ? OrigArgRegs[0]
644         : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
645 
646       lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
647       if (OrigArgRegs.size() > 1)
648         unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
649     }
650 
651     ++i;
652   }
653 
654   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
655   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
656   return true;
657 }
658 
659 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
660 static MachineInstrBuilder mergeVectorRegsToResultRegs(
661   MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) {
662   MachineRegisterInfo &MRI = *B.getMRI();
663   LLT LLTy = MRI.getType(DstRegs[0]);
664   LLT PartLLT = MRI.getType(SrcRegs[0]);
665 
666   // Deal with v3s16 split into v2s16
667   LLT LCMTy = getLCMType(LLTy, PartLLT);
668   if (LCMTy == LLTy) {
669     // Common case where no padding is needed.
670     assert(DstRegs.size() == 1);
671     return B.buildConcatVectors(DstRegs[0], SrcRegs);
672   }
673 
674   const int NumWide =  LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
675   Register Undef = B.buildUndef(PartLLT).getReg(0);
676 
677   // Build vector of undefs.
678   SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
679 
680   // Replace the first sources with the real registers.
681   std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
682 
683   auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
684   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
685 
686   SmallVector<Register, 8> PadDstRegs(NumDst);
687   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
688 
689   // Create the excess dead defs for the unmerge.
690   for (int I = DstRegs.size(); I != NumDst; ++I)
691     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
692 
693   return B.buildUnmerge(PadDstRegs, Widened);
694 }
695 
696 // TODO: Move this to generic code
697 static void packSplitRegsToOrigType(MachineIRBuilder &B,
698                                     ArrayRef<Register> OrigRegs,
699                                     ArrayRef<Register> Regs,
700                                     LLT LLTy,
701                                     LLT PartLLT) {
702   MachineRegisterInfo &MRI = *B.getMRI();
703 
704   if (!LLTy.isVector() && !PartLLT.isVector()) {
705     assert(OrigRegs.size() == 1);
706     LLT OrigTy = MRI.getType(OrigRegs[0]);
707 
708     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
709     if (SrcSize == OrigTy.getSizeInBits())
710       B.buildMerge(OrigRegs[0], Regs);
711     else {
712       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
713       B.buildTrunc(OrigRegs[0], Widened);
714     }
715 
716     return;
717   }
718 
719   if (LLTy.isVector() && PartLLT.isVector()) {
720     assert(OrigRegs.size() == 1);
721     assert(LLTy.getElementType() == PartLLT.getElementType());
722     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
723     return;
724   }
725 
726   assert(LLTy.isVector() && !PartLLT.isVector());
727 
728   LLT DstEltTy = LLTy.getElementType();
729 
730   // Pointer information was discarded. We'll need to coerce some register types
731   // to avoid violating type constraints.
732   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
733 
734   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
735 
736   if (DstEltTy == PartLLT) {
737     // Vector was trivially scalarized.
738 
739     if (RealDstEltTy.isPointer()) {
740       for (Register Reg : Regs)
741         MRI.setType(Reg, RealDstEltTy);
742     }
743 
744     B.buildBuildVector(OrigRegs[0], Regs);
745   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
746     // Deal with vector with 64-bit elements decomposed to 32-bit
747     // registers. Need to create intermediate 64-bit elements.
748     SmallVector<Register, 8> EltMerges;
749     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
750 
751     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
752 
753     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I)  {
754       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
755       // Fix the type in case this is really a vector of pointers.
756       MRI.setType(Merge.getReg(0), RealDstEltTy);
757       EltMerges.push_back(Merge.getReg(0));
758       Regs = Regs.drop_front(PartsPerElt);
759     }
760 
761     B.buildBuildVector(OrigRegs[0], EltMerges);
762   } else {
763     // Vector was split, and elements promoted to a wider type.
764     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
765     auto BV = B.buildBuildVector(BVType, Regs);
766     B.buildTrunc(OrigRegs[0], BV);
767   }
768 }
769 
770 bool AMDGPUCallLowering::lowerFormalArguments(
771     MachineIRBuilder &B, const Function &F,
772     ArrayRef<ArrayRef<Register>> VRegs) const {
773   CallingConv::ID CC = F.getCallingConv();
774 
775   // The infrastructure for normal calling convention lowering is essentially
776   // useless for kernels. We want to avoid any kind of legalization or argument
777   // splitting.
778   if (CC == CallingConv::AMDGPU_KERNEL)
779     return lowerFormalArgumentsKernel(B, F, VRegs);
780 
781   const bool IsShader = AMDGPU::isShader(CC);
782   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
783 
784   MachineFunction &MF = B.getMF();
785   MachineBasicBlock &MBB = B.getMBB();
786   MachineRegisterInfo &MRI = MF.getRegInfo();
787   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
788   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
789   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
790   const DataLayout &DL = F.getParent()->getDataLayout();
791 
792 
793   SmallVector<CCValAssign, 16> ArgLocs;
794   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
795 
796   if (!IsEntryFunc) {
797     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
798     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
799                                          &AMDGPU::SGPR_64RegClass);
800     MBB.addLiveIn(ReturnAddrReg);
801     B.buildCopy(LiveInReturn, ReturnAddrReg);
802   }
803 
804   if (Info->hasImplicitBufferPtr()) {
805     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
806     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
807     CCInfo.AllocateReg(ImplicitBufferPtrReg);
808   }
809 
810 
811   SmallVector<ArgInfo, 32> SplitArgs;
812   unsigned Idx = 0;
813   unsigned PSInputNum = 0;
814 
815   for (auto &Arg : F.args()) {
816     if (DL.getTypeStoreSize(Arg.getType()) == 0)
817       continue;
818 
819     const bool InReg = Arg.hasAttribute(Attribute::InReg);
820 
821     // SGPR arguments to functions not implemented.
822     if (!IsShader && InReg)
823       return false;
824 
825     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
826         Arg.hasAttribute(Attribute::SwiftError) ||
827         Arg.hasAttribute(Attribute::Nest))
828       return false;
829 
830     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
831       const bool ArgUsed = !Arg.use_empty();
832       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
833 
834       if (!SkipArg) {
835         Info->markPSInputAllocated(PSInputNum);
836         if (ArgUsed)
837           Info->markPSInputEnabled(PSInputNum);
838       }
839 
840       ++PSInputNum;
841 
842       if (SkipArg) {
843         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
844           B.buildUndef(VRegs[Idx][I]);
845 
846         ++Idx;
847         continue;
848       }
849     }
850 
851     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
852     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
853     setArgFlags(OrigArg, OrigArgIdx, DL, F);
854 
855     splitToValueTypes(
856       B, OrigArg, SplitArgs, DL, CC, false,
857       // FIXME: We should probably be passing multiple registers to
858       // handleAssignments to do this
859       [&](ArrayRef<Register> Regs, Register DstReg,
860           LLT LLTy, LLT PartLLT, int VTSplitIdx) {
861         assert(DstReg == VRegs[Idx][VTSplitIdx]);
862         packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
863                                 LLTy, PartLLT);
864       });
865 
866     ++Idx;
867   }
868 
869   // At least one interpolation mode must be enabled or else the GPU will
870   // hang.
871   //
872   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
873   // set PSInputAddr, the user wants to enable some bits after the compilation
874   // based on run-time states. Since we can't know what the final PSInputEna
875   // will look like, so we shouldn't do anything here and the user should take
876   // responsibility for the correct programming.
877   //
878   // Otherwise, the following restrictions apply:
879   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
880   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
881   //   enabled too.
882   if (CC == CallingConv::AMDGPU_PS) {
883     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
884         ((Info->getPSInputAddr() & 0xF) == 0 &&
885          Info->isPSInputAllocated(11))) {
886       CCInfo.AllocateReg(AMDGPU::VGPR0);
887       CCInfo.AllocateReg(AMDGPU::VGPR1);
888       Info->markPSInputAllocated(0);
889       Info->markPSInputEnabled(0);
890     }
891 
892     if (Subtarget.isAmdPalOS()) {
893       // For isAmdPalOS, the user does not enable some bits after compilation
894       // based on run-time states; the register values being generated here are
895       // the final ones set in hardware. Therefore we need to apply the
896       // workaround to PSInputAddr and PSInputEnable together.  (The case where
897       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
898       // set up an input arg for a particular interpolation mode, but nothing
899       // uses that input arg. Really we should have an earlier pass that removes
900       // such an arg.)
901       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
902       if ((PsInputBits & 0x7F) == 0 ||
903           ((PsInputBits & 0xF) == 0 &&
904            (PsInputBits >> 11 & 1)))
905         Info->markPSInputEnabled(
906           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
907     }
908   }
909 
910   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
911   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
912 
913   if (!MBB.empty())
914     B.setInstr(*MBB.begin());
915 
916   if (!IsEntryFunc) {
917     // For the fixed ABI, pass workitem IDs in the last argument register.
918     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
919       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
920   }
921 
922   FormalArgHandler Handler(B, MRI, AssignFn);
923   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
924     return false;
925 
926   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
927     // Special inputs come after user arguments.
928     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
929   }
930 
931   // Start adding system SGPRs.
932   if (IsEntryFunc) {
933     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
934   } else {
935     CCInfo.AllocateReg(Info->getScratchRSrcReg());
936     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
937   }
938 
939   // Move back to the end of the basic block.
940   B.setMBB(MBB);
941 
942   return true;
943 }
944 
945 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
946                                            CCState &CCInfo,
947                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
948                                            CallLoweringInfo &Info) const {
949   MachineFunction &MF = MIRBuilder.getMF();
950 
951   const AMDGPUFunctionArgInfo *CalleeArgInfo
952     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
953 
954   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
955   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
956 
957 
958   // TODO: Unify with private memory register handling. This is complicated by
959   // the fact that at least in kernels, the input argument is not necessarily
960   // in the same location as the input.
961   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
962     AMDGPUFunctionArgInfo::DISPATCH_PTR,
963     AMDGPUFunctionArgInfo::QUEUE_PTR,
964     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
965     AMDGPUFunctionArgInfo::DISPATCH_ID,
966     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
967     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
968     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
969   };
970 
971   MachineRegisterInfo &MRI = MF.getRegInfo();
972 
973   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
974   const AMDGPULegalizerInfo *LI
975     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
976 
977   for (auto InputID : InputRegs) {
978     const ArgDescriptor *OutgoingArg;
979     const TargetRegisterClass *ArgRC;
980     LLT ArgTy;
981 
982     std::tie(OutgoingArg, ArgRC, ArgTy) =
983         CalleeArgInfo->getPreloadedValue(InputID);
984     if (!OutgoingArg)
985       continue;
986 
987     const ArgDescriptor *IncomingArg;
988     const TargetRegisterClass *IncomingArgRC;
989     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
990         CallerArgInfo.getPreloadedValue(InputID);
991     assert(IncomingArgRC == ArgRC);
992 
993     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
994 
995     if (IncomingArg) {
996       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
997     } else {
998       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
999       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
1000     }
1001 
1002     if (OutgoingArg->isRegister()) {
1003       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
1004       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
1005         report_fatal_error("failed to allocate implicit input argument");
1006     } else {
1007       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
1008       return false;
1009     }
1010   }
1011 
1012   // Pack workitem IDs into a single register or pass it as is if already
1013   // packed.
1014   const ArgDescriptor *OutgoingArg;
1015   const TargetRegisterClass *ArgRC;
1016   LLT ArgTy;
1017 
1018   std::tie(OutgoingArg, ArgRC, ArgTy) =
1019       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
1020   if (!OutgoingArg)
1021     std::tie(OutgoingArg, ArgRC, ArgTy) =
1022         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
1023   if (!OutgoingArg)
1024     std::tie(OutgoingArg, ArgRC, ArgTy) =
1025         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
1026   if (!OutgoingArg)
1027     return false;
1028 
1029   auto WorkitemIDX =
1030       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
1031   auto WorkitemIDY =
1032       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
1033   auto WorkitemIDZ =
1034       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
1035 
1036   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
1037   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
1038   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
1039   const LLT S32 = LLT::scalar(32);
1040 
1041   // If incoming ids are not packed we need to pack them.
1042   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
1043   Register InputReg;
1044   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
1045     InputReg = MRI.createGenericVirtualRegister(S32);
1046     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
1047                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
1048   }
1049 
1050   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
1051     Register Y = MRI.createGenericVirtualRegister(S32);
1052     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
1053                        std::get<2>(WorkitemIDY));
1054 
1055     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
1056     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
1057   }
1058 
1059   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
1060     Register Z = MRI.createGenericVirtualRegister(S32);
1061     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
1062                        std::get<2>(WorkitemIDZ));
1063 
1064     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
1065     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
1066   }
1067 
1068   if (!InputReg) {
1069     InputReg = MRI.createGenericVirtualRegister(S32);
1070 
1071     // Workitem ids are already packed, any of present incoming arguments will
1072     // carry all required fields.
1073     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
1074       IncomingArgX ? *IncomingArgX :
1075         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
1076     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
1077                        &AMDGPU::VGPR_32RegClass, S32);
1078   }
1079 
1080   if (OutgoingArg->isRegister()) {
1081     ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
1082     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
1083       report_fatal_error("failed to allocate implicit input argument");
1084   } else {
1085     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
1086     return false;
1087   }
1088 
1089   return true;
1090 }
1091 
1092 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
1093 /// CC.
1094 static std::pair<CCAssignFn *, CCAssignFn *>
1095 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
1096   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
1097 }
1098 
1099 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
1100                               bool IsTailCall) {
1101   return AMDGPU::SI_CALL;
1102 }
1103 
1104 // Add operands to call instruction to track the callee.
1105 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
1106                                   MachineIRBuilder &MIRBuilder,
1107                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
1108   if (Info.Callee.isReg()) {
1109     CallInst.addReg(Info.Callee.getReg());
1110     CallInst.addImm(0);
1111   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
1112     // The call lowering lightly assumed we can directly encode a call target in
1113     // the instruction, which is not the case. Materialize the address here.
1114     const GlobalValue *GV = Info.Callee.getGlobal();
1115     auto Ptr = MIRBuilder.buildGlobalValue(
1116       LLT::pointer(GV->getAddressSpace(), 64), GV);
1117     CallInst.addReg(Ptr.getReg(0));
1118     CallInst.add(Info.Callee);
1119   } else
1120     return false;
1121 
1122   return true;
1123 }
1124 
1125 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1126                                    CallLoweringInfo &Info) const {
1127   if (!AMDGPUTargetMachine::EnableFixedFunctionABI) {
1128     LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
1129     return false;
1130   }
1131 
1132   if (Info.IsVarArg) {
1133     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1134     return false;
1135   }
1136 
1137   MachineFunction &MF = MIRBuilder.getMF();
1138   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1139   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1140 
1141   const Function &F = MF.getFunction();
1142   MachineRegisterInfo &MRI = MF.getRegInfo();
1143   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1144   const DataLayout &DL = F.getParent()->getDataLayout();
1145 
1146   if (AMDGPU::isShader(F.getCallingConv())) {
1147     LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n");
1148     return false;
1149   }
1150 
1151   SmallVector<ArgInfo, 8> OutArgs;
1152   SmallVector<ArgInfo, 4> SplitRetInfos;
1153 
1154   for (auto &OrigArg : Info.OrigArgs) {
1155     splitToValueTypes(
1156       MIRBuilder, OrigArg, OutArgs, DL, Info.CallConv, true,
1157       // FIXME: We should probably be passing multiple registers to
1158       // handleAssignments to do this
1159       [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
1160           int VTSplitIdx) {
1161         unpackRegsToOrigType(MIRBuilder, Regs, SrcReg, OrigArg, LLTy, PartLLT);
1162       });
1163   }
1164 
1165   // If we can lower as a tail call, do that instead.
1166   bool CanTailCallOpt = false;
1167 
1168   // We must emit a tail call if we have musttail.
1169   if (Info.IsMustTailCall && !CanTailCallOpt) {
1170     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1171     return false;
1172   }
1173 
1174   // Find out which ABI gets to decide where things go.
1175   CCAssignFn *AssignFnFixed;
1176   CCAssignFn *AssignFnVarArg;
1177   std::tie(AssignFnFixed, AssignFnVarArg) =
1178       getAssignFnsForCC(Info.CallConv, TLI);
1179 
1180   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1181     .addImm(0)
1182     .addImm(0);
1183 
1184   // Create a temporarily-floating call instruction so we can add the implicit
1185   // uses of arg registers.
1186   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
1187 
1188   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1189   MIB.addDef(TRI->getReturnAddressReg(MF));
1190 
1191   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1192     return false;
1193 
1194   // Tell the call which registers are clobbered.
1195   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1196   MIB.addRegMask(Mask);
1197 
1198   SmallVector<CCValAssign, 16> ArgLocs;
1199   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1200 
1201   // We could pass MIB and directly add the implicit uses to the call
1202   // now. However, as an aesthetic choice, place implicit argument operands
1203   // after the ordinary user argument registers.
1204   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1205 
1206   if (AMDGPUTargetMachine::EnableFixedFunctionABI) {
1207     // With a fixed ABI, allocate fixed registers before user arguments.
1208     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1209       return false;
1210   }
1211 
1212   // Do the actual argument marshalling.
1213   SmallVector<Register, 8> PhysRegs;
1214   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
1215                                    AssignFnVarArg, false);
1216   if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler))
1217     return false;
1218 
1219   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1220 
1221   // Insert copies for the SRD. In the HSA case, this should be an identity
1222   // copy.
1223   auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32),
1224                                              MFI->getScratchRSrcReg());
1225   MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1226   MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1227 
1228   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1229     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1230     MIB.addReg(ArgReg.first, RegState::Implicit);
1231   }
1232 
1233   // Get a count of how many bytes are to be pushed on the stack.
1234   unsigned NumBytes = CCInfo.getNextStackOffset();
1235 
1236   // If Callee is a reg, since it is used by a target specific
1237   // instruction, it must have a register class matching the
1238   // constraint of that instruction.
1239 
1240   // FIXME: We should define regbankselectable call instructions to handle
1241   // divergent call targets.
1242   if (MIB->getOperand(1).isReg()) {
1243     MIB->getOperand(1).setReg(constrainOperandRegClass(
1244         MF, *TRI, MRI, *ST.getInstrInfo(),
1245         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1246         1));
1247   }
1248 
1249   auto OrigInsertPt = MIRBuilder.getInsertPt();
1250 
1251   // Now we can add the actual call instruction to the correct position.
1252   MIRBuilder.insertInstr(MIB);
1253 
1254   // Insert this now to give us an anchor point for managing the insert point.
1255   MachineInstrBuilder CallSeqEnd =
1256     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN);
1257 
1258   SmallVector<ArgInfo, 8> InArgs;
1259   if (!Info.OrigRet.Ty->isVoidTy()) {
1260     splitToValueTypes(
1261       MIRBuilder, Info.OrigRet, InArgs, DL, Info.CallConv, false,
1262       [&](ArrayRef<Register> Regs, Register DstReg,
1263           LLT LLTy, LLT PartLLT, int VTSplitIdx) {
1264         assert(DstReg == Info.OrigRet.Regs[VTSplitIdx]);
1265         packSplitRegsToOrigType(MIRBuilder,  Info.OrigRet.Regs[VTSplitIdx],
1266                                 Regs, LLTy, PartLLT);
1267       });
1268   }
1269 
1270   // Make sure the raw argument copies are inserted before the marshalling to
1271   // the original types.
1272   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd);
1273 
1274   // Finally we can copy the returned value back into its virtual-register. In
1275   // symmetry with the arguments, the physical register must be an
1276   // implicit-define of the call instruction.
1277   if (!Info.OrigRet.Ty->isVoidTy()) {
1278     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1279                                                       Info.IsVarArg);
1280     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1281     if (!handleAssignments(MIRBuilder, InArgs, Handler))
1282       return false;
1283   }
1284 
1285   uint64_t CalleePopBytes = NumBytes;
1286   CallSeqEnd.addImm(0)
1287             .addImm(CalleePopBytes);
1288 
1289   // Restore the insert point to after the call sequence.
1290   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt);
1291   return true;
1292 }
1293