1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "SIRegisterInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 26 #define DEBUG_TYPE "amdgpu-call-lowering" 27 28 using namespace llvm; 29 30 namespace { 31 32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register. 33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler, 34 Register ValVReg, CCValAssign &VA) { 35 if (VA.getLocVT().getSizeInBits() < 32) { 36 // 16-bit types are reported as legal for 32-bit registers. We need to 37 // extend and do a 32-bit copy to avoid the verifier complaining about it. 38 return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 39 } 40 41 return Handler.extendRegister(ValVReg, VA); 42 } 43 44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler { 45 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 46 MachineInstrBuilder MIB) 47 : OutgoingValueHandler(B, MRI), MIB(MIB) {} 48 49 MachineInstrBuilder MIB; 50 51 Register getStackAddress(uint64_t Size, int64_t Offset, 52 MachinePointerInfo &MPO, 53 ISD::ArgFlagsTy Flags) override { 54 llvm_unreachable("not implemented"); 55 } 56 57 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 58 MachinePointerInfo &MPO, CCValAssign &VA) override { 59 llvm_unreachable("not implemented"); 60 } 61 62 void assignValueToReg(Register ValVReg, Register PhysReg, 63 CCValAssign VA) override { 64 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 65 66 // If this is a scalar return, insert a readfirstlane just in case the value 67 // ends up in a VGPR. 68 // FIXME: Assert this is a shader return. 69 const SIRegisterInfo *TRI 70 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 71 if (TRI->isSGPRReg(MRI, PhysReg)) { 72 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 73 {MRI.getType(ExtReg)}, false) 74 .addReg(ExtReg); 75 ExtReg = ToSGPR.getReg(0); 76 } 77 78 MIRBuilder.buildCopy(PhysReg, ExtReg); 79 MIB.addUse(PhysReg, RegState::Implicit); 80 } 81 }; 82 83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler { 84 uint64_t StackUsed = 0; 85 86 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 87 : IncomingValueHandler(B, MRI) {} 88 89 Register getStackAddress(uint64_t Size, int64_t Offset, 90 MachinePointerInfo &MPO, 91 ISD::ArgFlagsTy Flags) override { 92 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 93 94 // Byval is assumed to be writable memory, but other stack passed arguments 95 // are not. 96 const bool IsImmutable = !Flags.isByVal(); 97 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); 98 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 99 auto AddrReg = MIRBuilder.buildFrameIndex( 100 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 101 StackUsed = std::max(StackUsed, Size + Offset); 102 return AddrReg.getReg(0); 103 } 104 105 void assignValueToReg(Register ValVReg, Register PhysReg, 106 CCValAssign VA) override { 107 markPhysRegUsed(PhysReg); 108 109 if (VA.getLocVT().getSizeInBits() < 32) { 110 // 16-bit types are reported as legal for 32-bit registers. We need to do 111 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 112 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 113 114 // If we have signext/zeroext, it applies to the whole 32-bit register 115 // before truncation. 116 auto Extended = 117 buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT())); 118 MIRBuilder.buildTrunc(ValVReg, Extended); 119 return; 120 } 121 122 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); 123 } 124 125 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 126 MachinePointerInfo &MPO, CCValAssign &VA) override { 127 MachineFunction &MF = MIRBuilder.getMF(); 128 129 auto MMO = MF.getMachineMemOperand( 130 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy, 131 inferAlignFromPtrInfo(MF, MPO)); 132 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 133 } 134 135 /// How the physical register gets marked varies between formal 136 /// parameters (it's a basic-block live-in), and a call instruction 137 /// (it's an implicit-def of the BL). 138 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 139 }; 140 141 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 142 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 143 : AMDGPUIncomingArgHandler(B, MRI) {} 144 145 void markPhysRegUsed(unsigned PhysReg) override { 146 MIRBuilder.getMBB().addLiveIn(PhysReg); 147 } 148 }; 149 150 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 151 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 152 MachineInstrBuilder MIB) 153 : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} 154 155 void markPhysRegUsed(unsigned PhysReg) override { 156 MIB.addDef(PhysReg, RegState::Implicit); 157 } 158 159 MachineInstrBuilder MIB; 160 }; 161 162 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler { 163 /// For tail calls, the byte offset of the call's argument area from the 164 /// callee's. Unused elsewhere. 165 int FPDiff; 166 167 // Cache the SP register vreg if we need it more than once in this call site. 168 Register SPReg; 169 170 bool IsTailCall; 171 172 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 173 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 174 bool IsTailCall = false, int FPDiff = 0) 175 : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff), 176 IsTailCall(IsTailCall) {} 177 178 Register getStackAddress(uint64_t Size, int64_t Offset, 179 MachinePointerInfo &MPO, 180 ISD::ArgFlagsTy Flags) override { 181 MachineFunction &MF = MIRBuilder.getMF(); 182 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 183 const LLT S32 = LLT::scalar(32); 184 185 if (IsTailCall) { 186 Offset += FPDiff; 187 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); 188 auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI); 189 MPO = MachinePointerInfo::getFixedStack(MF, FI); 190 return FIReg.getReg(0); 191 } 192 193 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 194 195 if (!SPReg) 196 SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0); 197 198 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 199 200 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 201 MPO = MachinePointerInfo::getStack(MF, Offset); 202 return AddrReg.getReg(0); 203 } 204 205 void assignValueToReg(Register ValVReg, Register PhysReg, 206 CCValAssign VA) override { 207 MIB.addUse(PhysReg, RegState::Implicit); 208 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 209 MIRBuilder.buildCopy(PhysReg, ExtReg); 210 } 211 212 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 213 MachinePointerInfo &MPO, CCValAssign &VA) override { 214 MachineFunction &MF = MIRBuilder.getMF(); 215 uint64_t LocMemOffset = VA.getLocMemOffset(); 216 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 217 218 auto MMO = MF.getMachineMemOperand( 219 MPO, MachineMemOperand::MOStore, MemTy, 220 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 221 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 222 } 223 224 void assignValueToAddress(const CallLowering::ArgInfo &Arg, 225 unsigned ValRegIndex, Register Addr, LLT MemTy, 226 MachinePointerInfo &MPO, CCValAssign &VA) override { 227 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 228 ? extendRegister(Arg.Regs[ValRegIndex], VA) 229 : Arg.Regs[ValRegIndex]; 230 assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA); 231 } 232 }; 233 } 234 235 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 236 : CallLowering(&TLI) { 237 } 238 239 // FIXME: Compatibility shim 240 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 241 switch (MIOpc) { 242 case TargetOpcode::G_SEXT: 243 return ISD::SIGN_EXTEND; 244 case TargetOpcode::G_ZEXT: 245 return ISD::ZERO_EXTEND; 246 case TargetOpcode::G_ANYEXT: 247 return ISD::ANY_EXTEND; 248 default: 249 llvm_unreachable("not an extend opcode"); 250 } 251 } 252 253 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, 254 CallingConv::ID CallConv, 255 SmallVectorImpl<BaseArgInfo> &Outs, 256 bool IsVarArg) const { 257 // For shaders. Vector types should be explicitly handled by CC. 258 if (AMDGPU::isEntryFunctionCC(CallConv)) 259 return true; 260 261 SmallVector<CCValAssign, 16> ArgLocs; 262 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 263 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 264 MF.getFunction().getContext()); 265 266 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); 267 } 268 269 /// Lower the return value for the already existing \p Ret. This assumes that 270 /// \p B's insertion point is correct. 271 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 272 const Value *Val, ArrayRef<Register> VRegs, 273 MachineInstrBuilder &Ret) const { 274 if (!Val) 275 return true; 276 277 auto &MF = B.getMF(); 278 const auto &F = MF.getFunction(); 279 const DataLayout &DL = MF.getDataLayout(); 280 MachineRegisterInfo *MRI = B.getMRI(); 281 LLVMContext &Ctx = F.getContext(); 282 283 CallingConv::ID CC = F.getCallingConv(); 284 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 285 286 SmallVector<EVT, 8> SplitEVTs; 287 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 288 assert(VRegs.size() == SplitEVTs.size() && 289 "For each split Type there should be exactly one VReg."); 290 291 SmallVector<ArgInfo, 8> SplitRetInfos; 292 293 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 294 EVT VT = SplitEVTs[i]; 295 Register Reg = VRegs[i]; 296 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0); 297 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 298 299 if (VT.isScalarInteger()) { 300 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 301 if (RetInfo.Flags[0].isSExt()) { 302 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 303 ExtendOp = TargetOpcode::G_SEXT; 304 } else if (RetInfo.Flags[0].isZExt()) { 305 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 306 ExtendOp = TargetOpcode::G_ZEXT; 307 } 308 309 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 310 extOpcodeToISDExtOpcode(ExtendOp)); 311 if (ExtVT != VT) { 312 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 313 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 314 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 315 } 316 } 317 318 if (Reg != RetInfo.Regs[0]) { 319 RetInfo.Regs[0] = Reg; 320 // Reset the arg flags after modifying Reg. 321 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 322 } 323 324 splitToValueTypes(RetInfo, SplitRetInfos, DL, CC); 325 } 326 327 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 328 329 OutgoingValueAssigner Assigner(AssignFn); 330 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret); 331 return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B, 332 CC, F.isVarArg()); 333 } 334 335 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 336 ArrayRef<Register> VRegs, 337 FunctionLoweringInfo &FLI) const { 338 339 MachineFunction &MF = B.getMF(); 340 MachineRegisterInfo &MRI = MF.getRegInfo(); 341 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 342 MFI->setIfReturnsVoid(!Val); 343 344 assert(!Val == VRegs.empty() && "Return value without a vreg"); 345 346 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 347 const bool IsShader = AMDGPU::isShader(CC); 348 const bool IsWaveEnd = 349 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 350 if (IsWaveEnd) { 351 B.buildInstr(AMDGPU::S_ENDPGM) 352 .addImm(0); 353 return true; 354 } 355 356 auto const &ST = MF.getSubtarget<GCNSubtarget>(); 357 358 unsigned ReturnOpc = 0; 359 if (IsShader) 360 ReturnOpc = AMDGPU::SI_RETURN_TO_EPILOG; 361 else if (CC == CallingConv::AMDGPU_Gfx) 362 ReturnOpc = AMDGPU::S_SETPC_B64_return_gfx; 363 else 364 ReturnOpc = AMDGPU::S_SETPC_B64_return; 365 366 auto Ret = B.buildInstrNoInsert(ReturnOpc); 367 Register ReturnAddrVReg; 368 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 369 ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass); 370 Ret.addUse(ReturnAddrVReg); 371 } else if (ReturnOpc == AMDGPU::S_SETPC_B64_return_gfx) { 372 ReturnAddrVReg = 373 MRI.createVirtualRegister(&AMDGPU::Gfx_CCR_SGPR_64RegClass); 374 Ret.addUse(ReturnAddrVReg); 375 } 376 377 if (!FLI.CanLowerReturn) 378 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); 379 else if (!lowerReturnVal(B, Val, VRegs, Ret)) 380 return false; 381 382 if (ReturnOpc == AMDGPU::S_SETPC_B64_return || 383 ReturnOpc == AMDGPU::S_SETPC_B64_return_gfx) { 384 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 385 Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF), 386 &AMDGPU::SGPR_64RegClass); 387 B.buildCopy(ReturnAddrVReg, LiveInReturn); 388 } 389 390 // TODO: Handle CalleeSavedRegsViaCopy. 391 392 B.insertInstr(Ret); 393 return true; 394 } 395 396 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 397 uint64_t Offset) const { 398 MachineFunction &MF = B.getMF(); 399 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 400 MachineRegisterInfo &MRI = MF.getRegInfo(); 401 Register KernArgSegmentPtr = 402 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 403 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 404 405 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 406 407 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 408 } 409 410 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg, 411 uint64_t Offset, 412 Align Alignment) const { 413 MachineFunction &MF = B.getMF(); 414 const Function &F = MF.getFunction(); 415 const DataLayout &DL = F.getParent()->getDataLayout(); 416 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 417 418 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 419 420 SmallVector<ArgInfo, 32> SplitArgs; 421 SmallVector<uint64_t> FieldOffsets; 422 splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets); 423 424 unsigned Idx = 0; 425 for (ArgInfo &SplitArg : SplitArgs) { 426 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 427 lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]); 428 429 LLT ArgTy = getLLTForType(*SplitArg.Ty, DL); 430 if (SplitArg.Flags[0].isPointer()) { 431 // Compensate for losing pointeriness in splitValueTypes. 432 LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(), 433 ArgTy.getScalarSizeInBits()); 434 ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy) 435 : PtrTy; 436 } 437 438 MachineMemOperand *MMO = MF.getMachineMemOperand( 439 PtrInfo, 440 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 441 MachineMemOperand::MOInvariant, 442 ArgTy, commonAlignment(Alignment, FieldOffsets[Idx])); 443 444 assert(SplitArg.Regs.size() == 1); 445 446 B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO); 447 ++Idx; 448 } 449 } 450 451 // Allocate special inputs passed in user SGPRs. 452 static void allocateHSAUserSGPRs(CCState &CCInfo, 453 MachineIRBuilder &B, 454 MachineFunction &MF, 455 const SIRegisterInfo &TRI, 456 SIMachineFunctionInfo &Info) { 457 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 458 if (Info.hasPrivateSegmentBuffer()) { 459 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 460 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 461 CCInfo.AllocateReg(PrivateSegmentBufferReg); 462 } 463 464 if (Info.hasDispatchPtr()) { 465 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 466 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 467 CCInfo.AllocateReg(DispatchPtrReg); 468 } 469 470 if (Info.hasQueuePtr()) { 471 Register QueuePtrReg = Info.addQueuePtr(TRI); 472 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 473 CCInfo.AllocateReg(QueuePtrReg); 474 } 475 476 if (Info.hasKernargSegmentPtr()) { 477 MachineRegisterInfo &MRI = MF.getRegInfo(); 478 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 479 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 480 Register VReg = MRI.createGenericVirtualRegister(P4); 481 MRI.addLiveIn(InputPtrReg, VReg); 482 B.getMBB().addLiveIn(InputPtrReg); 483 B.buildCopy(VReg, InputPtrReg); 484 CCInfo.AllocateReg(InputPtrReg); 485 } 486 487 if (Info.hasDispatchID()) { 488 Register DispatchIDReg = Info.addDispatchID(TRI); 489 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 490 CCInfo.AllocateReg(DispatchIDReg); 491 } 492 493 if (Info.hasFlatScratchInit()) { 494 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 495 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 496 CCInfo.AllocateReg(FlatScratchInitReg); 497 } 498 499 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 500 // these from the dispatch pointer. 501 } 502 503 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 504 MachineIRBuilder &B, const Function &F, 505 ArrayRef<ArrayRef<Register>> VRegs) const { 506 MachineFunction &MF = B.getMF(); 507 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 508 MachineRegisterInfo &MRI = MF.getRegInfo(); 509 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 510 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 511 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 512 const DataLayout &DL = F.getParent()->getDataLayout(); 513 514 Info->allocateModuleLDSGlobal(F.getParent()); 515 516 SmallVector<CCValAssign, 16> ArgLocs; 517 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 518 519 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 520 521 unsigned i = 0; 522 const Align KernArgBaseAlign(16); 523 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 524 uint64_t ExplicitArgOffset = 0; 525 526 // TODO: Align down to dword alignment and extract bits for extending loads. 527 for (auto &Arg : F.args()) { 528 const bool IsByRef = Arg.hasByRefAttr(); 529 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 530 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 531 if (AllocSize == 0) 532 continue; 533 534 MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None; 535 if (!ABIAlign) 536 ABIAlign = DL.getABITypeAlign(ArgTy); 537 538 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 539 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 540 541 if (Arg.use_empty()) { 542 ++i; 543 continue; 544 } 545 546 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 547 548 if (IsByRef) { 549 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 550 551 assert(VRegs[i].size() == 1 && 552 "expected only one register for byval pointers"); 553 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 554 lowerParameterPtr(VRegs[i][0], B, ArgOffset); 555 } else { 556 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 557 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 558 lowerParameterPtr(PtrReg, B, ArgOffset); 559 560 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 561 } 562 } else { 563 ArgInfo OrigArg(VRegs[i], Arg, i); 564 const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex; 565 setArgFlags(OrigArg, OrigArgIdx, DL, F); 566 lowerParameter(B, OrigArg, ArgOffset, Alignment); 567 } 568 569 ++i; 570 } 571 572 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 573 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 574 return true; 575 } 576 577 bool AMDGPUCallLowering::lowerFormalArguments( 578 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 579 FunctionLoweringInfo &FLI) const { 580 CallingConv::ID CC = F.getCallingConv(); 581 582 // The infrastructure for normal calling convention lowering is essentially 583 // useless for kernels. We want to avoid any kind of legalization or argument 584 // splitting. 585 if (CC == CallingConv::AMDGPU_KERNEL) 586 return lowerFormalArgumentsKernel(B, F, VRegs); 587 588 const bool IsGraphics = AMDGPU::isGraphics(CC); 589 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 590 591 MachineFunction &MF = B.getMF(); 592 MachineBasicBlock &MBB = B.getMBB(); 593 MachineRegisterInfo &MRI = MF.getRegInfo(); 594 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 595 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 596 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 597 const DataLayout &DL = F.getParent()->getDataLayout(); 598 599 Info->allocateModuleLDSGlobal(F.getParent()); 600 601 SmallVector<CCValAssign, 16> ArgLocs; 602 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 603 604 if (!IsEntryFunc) { 605 Register ReturnAddrReg = TRI->getReturnAddressReg(MF); 606 Register LiveInReturn = MF.addLiveIn(ReturnAddrReg, 607 &AMDGPU::SGPR_64RegClass); 608 MBB.addLiveIn(ReturnAddrReg); 609 B.buildCopy(LiveInReturn, ReturnAddrReg); 610 } 611 612 if (Info->hasImplicitBufferPtr()) { 613 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 614 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 615 CCInfo.AllocateReg(ImplicitBufferPtrReg); 616 } 617 618 SmallVector<ArgInfo, 32> SplitArgs; 619 unsigned Idx = 0; 620 unsigned PSInputNum = 0; 621 622 // Insert the hidden sret parameter if the return value won't fit in the 623 // return registers. 624 if (!FLI.CanLowerReturn) 625 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 626 627 for (auto &Arg : F.args()) { 628 if (DL.getTypeStoreSize(Arg.getType()) == 0) 629 continue; 630 631 const bool InReg = Arg.hasAttribute(Attribute::InReg); 632 633 // SGPR arguments to functions not implemented. 634 if (!IsGraphics && InReg) 635 return false; 636 637 if (Arg.hasAttribute(Attribute::SwiftSelf) || 638 Arg.hasAttribute(Attribute::SwiftError) || 639 Arg.hasAttribute(Attribute::Nest)) 640 return false; 641 642 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 643 const bool ArgUsed = !Arg.use_empty(); 644 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 645 646 if (!SkipArg) { 647 Info->markPSInputAllocated(PSInputNum); 648 if (ArgUsed) 649 Info->markPSInputEnabled(PSInputNum); 650 } 651 652 ++PSInputNum; 653 654 if (SkipArg) { 655 for (Register R : VRegs[Idx]) 656 B.buildUndef(R); 657 658 ++Idx; 659 continue; 660 } 661 } 662 663 ArgInfo OrigArg(VRegs[Idx], Arg, Idx); 664 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 665 setArgFlags(OrigArg, OrigArgIdx, DL, F); 666 667 splitToValueTypes(OrigArg, SplitArgs, DL, CC); 668 ++Idx; 669 } 670 671 // At least one interpolation mode must be enabled or else the GPU will 672 // hang. 673 // 674 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 675 // set PSInputAddr, the user wants to enable some bits after the compilation 676 // based on run-time states. Since we can't know what the final PSInputEna 677 // will look like, so we shouldn't do anything here and the user should take 678 // responsibility for the correct programming. 679 // 680 // Otherwise, the following restrictions apply: 681 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 682 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 683 // enabled too. 684 if (CC == CallingConv::AMDGPU_PS) { 685 if ((Info->getPSInputAddr() & 0x7F) == 0 || 686 ((Info->getPSInputAddr() & 0xF) == 0 && 687 Info->isPSInputAllocated(11))) { 688 CCInfo.AllocateReg(AMDGPU::VGPR0); 689 CCInfo.AllocateReg(AMDGPU::VGPR1); 690 Info->markPSInputAllocated(0); 691 Info->markPSInputEnabled(0); 692 } 693 694 if (Subtarget.isAmdPalOS()) { 695 // For isAmdPalOS, the user does not enable some bits after compilation 696 // based on run-time states; the register values being generated here are 697 // the final ones set in hardware. Therefore we need to apply the 698 // workaround to PSInputAddr and PSInputEnable together. (The case where 699 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 700 // set up an input arg for a particular interpolation mode, but nothing 701 // uses that input arg. Really we should have an earlier pass that removes 702 // such an arg.) 703 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 704 if ((PsInputBits & 0x7F) == 0 || 705 ((PsInputBits & 0xF) == 0 && 706 (PsInputBits >> 11 & 1))) 707 Info->markPSInputEnabled( 708 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 709 } 710 } 711 712 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 713 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 714 715 if (!MBB.empty()) 716 B.setInstr(*MBB.begin()); 717 718 if (!IsEntryFunc && !IsGraphics) { 719 // For the fixed ABI, pass workitem IDs in the last argument register. 720 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 721 } 722 723 IncomingValueAssigner Assigner(AssignFn); 724 if (!determineAssignments(Assigner, SplitArgs, CCInfo)) 725 return false; 726 727 FormalArgHandler Handler(B, MRI); 728 if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B)) 729 return false; 730 731 uint64_t StackOffset = Assigner.StackOffset; 732 733 // Start adding system SGPRs. 734 if (IsEntryFunc) { 735 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 736 } else { 737 if (!Subtarget.enableFlatScratch()) 738 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 739 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 740 } 741 742 // When we tail call, we need to check if the callee's arguments will fit on 743 // the caller's stack. So, whenever we lower formal arguments, we should keep 744 // track of this information, since we might lower a tail call in this 745 // function later. 746 Info->setBytesInStackArgArea(StackOffset); 747 748 // Move back to the end of the basic block. 749 B.setMBB(MBB); 750 751 return true; 752 } 753 754 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 755 CCState &CCInfo, 756 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 757 CallLoweringInfo &Info) const { 758 MachineFunction &MF = MIRBuilder.getMF(); 759 760 // If there's no call site, this doesn't correspond to a call from the IR and 761 // doesn't need implicit inputs. 762 if (!Info.CB) 763 return true; 764 765 const AMDGPUFunctionArgInfo *CalleeArgInfo 766 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 767 768 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 769 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 770 771 772 // TODO: Unify with private memory register handling. This is complicated by 773 // the fact that at least in kernels, the input argument is not necessarily 774 // in the same location as the input. 775 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 776 AMDGPUFunctionArgInfo::DISPATCH_PTR, 777 AMDGPUFunctionArgInfo::QUEUE_PTR, 778 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 779 AMDGPUFunctionArgInfo::DISPATCH_ID, 780 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 781 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 782 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 783 }; 784 785 static constexpr StringLiteral ImplicitAttrNames[] = { 786 "amdgpu-no-dispatch-ptr", 787 "amdgpu-no-queue-ptr", 788 "amdgpu-no-implicitarg-ptr", 789 "amdgpu-no-dispatch-id", 790 "amdgpu-no-workgroup-id-x", 791 "amdgpu-no-workgroup-id-y", 792 "amdgpu-no-workgroup-id-z" 793 }; 794 795 MachineRegisterInfo &MRI = MF.getRegInfo(); 796 797 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 798 const AMDGPULegalizerInfo *LI 799 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 800 801 unsigned I = 0; 802 for (auto InputID : InputRegs) { 803 const ArgDescriptor *OutgoingArg; 804 const TargetRegisterClass *ArgRC; 805 LLT ArgTy; 806 807 // If the callee does not use the attribute value, skip copying the value. 808 if (Info.CB->hasFnAttr(ImplicitAttrNames[I++])) 809 continue; 810 811 std::tie(OutgoingArg, ArgRC, ArgTy) = 812 CalleeArgInfo->getPreloadedValue(InputID); 813 if (!OutgoingArg) 814 continue; 815 816 const ArgDescriptor *IncomingArg; 817 const TargetRegisterClass *IncomingArgRC; 818 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 819 CallerArgInfo.getPreloadedValue(InputID); 820 assert(IncomingArgRC == ArgRC); 821 822 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 823 824 if (IncomingArg) { 825 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 826 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { 827 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 828 } else { 829 // We may have proven the input wasn't needed, although the ABI is 830 // requiring it. We just need to allocate the register appropriately. 831 MIRBuilder.buildUndef(InputReg); 832 } 833 834 if (OutgoingArg->isRegister()) { 835 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 836 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 837 report_fatal_error("failed to allocate implicit input argument"); 838 } else { 839 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 840 return false; 841 } 842 } 843 844 // Pack workitem IDs into a single register or pass it as is if already 845 // packed. 846 const ArgDescriptor *OutgoingArg; 847 const TargetRegisterClass *ArgRC; 848 LLT ArgTy; 849 850 std::tie(OutgoingArg, ArgRC, ArgTy) = 851 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 852 if (!OutgoingArg) 853 std::tie(OutgoingArg, ArgRC, ArgTy) = 854 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 855 if (!OutgoingArg) 856 std::tie(OutgoingArg, ArgRC, ArgTy) = 857 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 858 if (!OutgoingArg) 859 return false; 860 861 auto WorkitemIDX = 862 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 863 auto WorkitemIDY = 864 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 865 auto WorkitemIDZ = 866 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 867 868 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 869 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 870 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 871 const LLT S32 = LLT::scalar(32); 872 873 const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x"); 874 const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y"); 875 const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z"); 876 877 // If incoming ids are not packed we need to pack them. 878 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 879 Register InputReg; 880 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && 881 NeedWorkItemIDX) { 882 if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) { 883 InputReg = MRI.createGenericVirtualRegister(S32); 884 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 885 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 886 } else { 887 InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0); 888 } 889 } 890 891 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && 892 NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) { 893 Register Y = MRI.createGenericVirtualRegister(S32); 894 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 895 std::get<2>(WorkitemIDY)); 896 897 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 898 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 899 } 900 901 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && 902 NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) { 903 Register Z = MRI.createGenericVirtualRegister(S32); 904 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 905 std::get<2>(WorkitemIDZ)); 906 907 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 908 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 909 } 910 911 if (!InputReg && 912 (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { 913 InputReg = MRI.createGenericVirtualRegister(S32); 914 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { 915 // We're in a situation where the outgoing function requires the workitem 916 // ID, but the calling function does not have it (e.g a graphics function 917 // calling a C calling convention function). This is illegal, but we need 918 // to produce something. 919 MIRBuilder.buildUndef(InputReg); 920 } else { 921 // Workitem ids are already packed, any of present incoming arguments will 922 // carry all required fields. 923 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 924 IncomingArgX ? *IncomingArgX : 925 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 926 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 927 &AMDGPU::VGPR_32RegClass, S32); 928 } 929 } 930 931 if (OutgoingArg->isRegister()) { 932 if (InputReg) 933 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 934 935 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 936 report_fatal_error("failed to allocate implicit input argument"); 937 } else { 938 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 939 return false; 940 } 941 942 return true; 943 } 944 945 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 946 /// CC. 947 static std::pair<CCAssignFn *, CCAssignFn *> 948 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 949 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 950 } 951 952 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 953 bool IsTailCall) { 954 assert(!(IsIndirect && IsTailCall) && "Indirect calls can't be tail calls, " 955 "because the address can be divergent"); 956 return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::G_SI_CALL; 957 } 958 959 // Add operands to call instruction to track the callee. 960 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 961 MachineIRBuilder &MIRBuilder, 962 AMDGPUCallLowering::CallLoweringInfo &Info) { 963 if (Info.Callee.isReg()) { 964 CallInst.addReg(Info.Callee.getReg()); 965 CallInst.addImm(0); 966 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 967 // The call lowering lightly assumed we can directly encode a call target in 968 // the instruction, which is not the case. Materialize the address here. 969 const GlobalValue *GV = Info.Callee.getGlobal(); 970 auto Ptr = MIRBuilder.buildGlobalValue( 971 LLT::pointer(GV->getAddressSpace(), 64), GV); 972 CallInst.addReg(Ptr.getReg(0)); 973 CallInst.add(Info.Callee); 974 } else 975 return false; 976 977 return true; 978 } 979 980 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay( 981 CallLoweringInfo &Info, MachineFunction &MF, 982 SmallVectorImpl<ArgInfo> &InArgs) const { 983 const Function &CallerF = MF.getFunction(); 984 CallingConv::ID CalleeCC = Info.CallConv; 985 CallingConv::ID CallerCC = CallerF.getCallingConv(); 986 987 // If the calling conventions match, then everything must be the same. 988 if (CalleeCC == CallerCC) 989 return true; 990 991 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 992 993 // Make sure that the caller and callee preserve all of the same registers. 994 auto TRI = ST.getRegisterInfo(); 995 996 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 997 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 998 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 999 return false; 1000 1001 // Check if the caller and callee will handle arguments in the same way. 1002 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1003 CCAssignFn *CalleeAssignFnFixed; 1004 CCAssignFn *CalleeAssignFnVarArg; 1005 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = 1006 getAssignFnsForCC(CalleeCC, TLI); 1007 1008 CCAssignFn *CallerAssignFnFixed; 1009 CCAssignFn *CallerAssignFnVarArg; 1010 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = 1011 getAssignFnsForCC(CallerCC, TLI); 1012 1013 // FIXME: We are not accounting for potential differences in implicitly passed 1014 // inputs, but only the fixed ABI is supported now anyway. 1015 IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, 1016 CalleeAssignFnVarArg); 1017 IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, 1018 CallerAssignFnVarArg); 1019 return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner); 1020 } 1021 1022 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable( 1023 CallLoweringInfo &Info, MachineFunction &MF, 1024 SmallVectorImpl<ArgInfo> &OutArgs) const { 1025 // If there are no outgoing arguments, then we are done. 1026 if (OutArgs.empty()) 1027 return true; 1028 1029 const Function &CallerF = MF.getFunction(); 1030 CallingConv::ID CalleeCC = Info.CallConv; 1031 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1032 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1033 1034 CCAssignFn *AssignFnFixed; 1035 CCAssignFn *AssignFnVarArg; 1036 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1037 1038 // We have outgoing arguments. Make sure that we can tail call with them. 1039 SmallVector<CCValAssign, 16> OutLocs; 1040 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); 1041 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1042 1043 if (!determineAssignments(Assigner, OutArgs, OutInfo)) { 1044 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); 1045 return false; 1046 } 1047 1048 // Make sure that they can fit on the caller's stack. 1049 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1050 if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) { 1051 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); 1052 return false; 1053 } 1054 1055 // Verify that the parameters in callee-saved registers match. 1056 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1057 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1058 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); 1059 MachineRegisterInfo &MRI = MF.getRegInfo(); 1060 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs); 1061 } 1062 1063 /// Return true if the calling convention is one that we can guarantee TCO for. 1064 static bool canGuaranteeTCO(CallingConv::ID CC) { 1065 return CC == CallingConv::Fast; 1066 } 1067 1068 /// Return true if we might ever do TCO for calls with this calling convention. 1069 static bool mayTailCallThisCC(CallingConv::ID CC) { 1070 switch (CC) { 1071 case CallingConv::C: 1072 case CallingConv::AMDGPU_Gfx: 1073 return true; 1074 default: 1075 return canGuaranteeTCO(CC); 1076 } 1077 } 1078 1079 bool AMDGPUCallLowering::isEligibleForTailCallOptimization( 1080 MachineIRBuilder &B, CallLoweringInfo &Info, 1081 SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const { 1082 // Must pass all target-independent checks in order to tail call optimize. 1083 if (!Info.IsTailCall) 1084 return false; 1085 1086 // Indirect calls can't be tail calls, because the address can be divergent. 1087 // TODO Check divergence info if the call really is divergent. 1088 if (Info.Callee.isReg()) 1089 return false; 1090 1091 MachineFunction &MF = B.getMF(); 1092 const Function &CallerF = MF.getFunction(); 1093 CallingConv::ID CalleeCC = Info.CallConv; 1094 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1095 1096 const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo(); 1097 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1098 // Kernels aren't callable, and don't have a live in return address so it 1099 // doesn't make sense to do a tail call with entry functions. 1100 if (!CallerPreserved) 1101 return false; 1102 1103 if (!mayTailCallThisCC(CalleeCC)) { 1104 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); 1105 return false; 1106 } 1107 1108 if (any_of(CallerF.args(), [](const Argument &A) { 1109 return A.hasByValAttr() || A.hasSwiftErrorAttr(); 1110 })) { 1111 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval " 1112 "or swifterror arguments\n"); 1113 return false; 1114 } 1115 1116 // If we have -tailcallopt, then we're done. 1117 if (MF.getTarget().Options.GuaranteedTailCallOpt) 1118 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv(); 1119 1120 // Verify that the incoming and outgoing arguments from the callee are 1121 // safe to tail call. 1122 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { 1123 LLVM_DEBUG( 1124 dbgs() 1125 << "... Caller and callee have incompatible calling conventions.\n"); 1126 return false; 1127 } 1128 1129 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) 1130 return false; 1131 1132 LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n"); 1133 return true; 1134 } 1135 1136 // Insert outgoing implicit arguments for a call, by inserting copies to the 1137 // implicit argument registers and adding the necessary implicit uses to the 1138 // call instruction. 1139 void AMDGPUCallLowering::handleImplicitCallArguments( 1140 MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst, 1141 const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo, 1142 ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const { 1143 if (!ST.enableFlatScratch()) { 1144 // Insert copies for the SRD. In the HSA case, this should be an identity 1145 // copy. 1146 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32), 1147 FuncInfo.getScratchRSrcReg()); 1148 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 1149 CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); 1150 } 1151 1152 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1153 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1154 CallInst.addReg(ArgReg.first, RegState::Implicit); 1155 } 1156 } 1157 1158 bool AMDGPUCallLowering::lowerTailCall( 1159 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 1160 SmallVectorImpl<ArgInfo> &OutArgs) const { 1161 MachineFunction &MF = MIRBuilder.getMF(); 1162 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1163 SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1164 const Function &F = MF.getFunction(); 1165 MachineRegisterInfo &MRI = MF.getRegInfo(); 1166 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1167 1168 // True when we're tail calling, but without -tailcallopt. 1169 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt; 1170 1171 // Find out which ABI gets to decide where things go. 1172 CallingConv::ID CalleeCC = Info.CallConv; 1173 CCAssignFn *AssignFnFixed; 1174 CCAssignFn *AssignFnVarArg; 1175 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1176 1177 MachineInstrBuilder CallSeqStart; 1178 if (!IsSibCall) 1179 CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP); 1180 1181 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true); 1182 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1183 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1184 return false; 1185 1186 // Byte offset for the tail call. When we are sibcalling, this will always 1187 // be 0. 1188 MIB.addImm(0); 1189 1190 // Tell the call which registers are clobbered. 1191 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1192 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); 1193 MIB.addRegMask(Mask); 1194 1195 // FPDiff is the byte offset of the call's argument area from the callee's. 1196 // Stores to callee stack arguments will be placed in FixedStackSlots offset 1197 // by this amount for a tail call. In a sibling call it must be 0 because the 1198 // caller will deallocate the entire stack and the callee still expects its 1199 // arguments to begin at SP+0. 1200 int FPDiff = 0; 1201 1202 // This will be 0 for sibcalls, potentially nonzero for tail calls produced 1203 // by -tailcallopt. For sibcalls, the memory operands for the call are 1204 // already available in the caller's incoming argument space. 1205 unsigned NumBytes = 0; 1206 if (!IsSibCall) { 1207 // We aren't sibcalling, so we need to compute FPDiff. We need to do this 1208 // before handling assignments, because FPDiff must be known for memory 1209 // arguments. 1210 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 1211 SmallVector<CCValAssign, 16> OutLocs; 1212 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); 1213 1214 // FIXME: Not accounting for callee implicit inputs 1215 OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg); 1216 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) 1217 return false; 1218 1219 // The callee will pop the argument stack as a tail call. Thus, we must 1220 // keep it 16-byte aligned. 1221 NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment()); 1222 1223 // FPDiff will be negative if this tail call requires more space than we 1224 // would automatically have in our incoming argument space. Positive if we 1225 // actually shrink the stack. 1226 FPDiff = NumReusableBytes - NumBytes; 1227 1228 // The stack pointer must be 16-byte aligned at all times it's used for a 1229 // memory operation, which in practice means at *all* times and in 1230 // particular across call boundaries. Therefore our own arguments started at 1231 // a 16-byte aligned SP and the delta applied for the tail call should 1232 // satisfy the same constraint. 1233 assert(isAligned(ST.getStackAlignment(), FPDiff) && 1234 "unaligned stack on tail call"); 1235 } 1236 1237 SmallVector<CCValAssign, 16> ArgLocs; 1238 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1239 1240 // We could pass MIB and directly add the implicit uses to the call 1241 // now. However, as an aesthetic choice, place implicit argument operands 1242 // after the ordinary user argument registers. 1243 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1244 1245 if (Info.CallConv != CallingConv::AMDGPU_Gfx) { 1246 // With a fixed ABI, allocate fixed registers before user arguments. 1247 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1248 return false; 1249 } 1250 1251 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1252 1253 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1254 return false; 1255 1256 // Do the actual argument marshalling. 1257 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff); 1258 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1259 return false; 1260 1261 handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs); 1262 1263 // If we have -tailcallopt, we need to adjust the stack. We'll do the call 1264 // sequence start and end here. 1265 if (!IsSibCall) { 1266 MIB->getOperand(1).setImm(FPDiff); 1267 CallSeqStart.addImm(NumBytes).addImm(0); 1268 // End the call sequence *before* emitting the call. Normally, we would 1269 // tidy the frame up after the call. However, here, we've laid out the 1270 // parameters so that when SP is reset, they will be in the correct 1271 // location. 1272 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0); 1273 } 1274 1275 // Now we can add the actual call instruction to the correct basic block. 1276 MIRBuilder.insertInstr(MIB); 1277 1278 // If Callee is a reg, since it is used by a target specific 1279 // instruction, it must have a register class matching the 1280 // constraint of that instruction. 1281 1282 // FIXME: We should define regbankselectable call instructions to handle 1283 // divergent call targets. 1284 if (MIB->getOperand(0).isReg()) { 1285 MIB->getOperand(0).setReg(constrainOperandRegClass( 1286 MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB, 1287 MIB->getDesc(), MIB->getOperand(0), 0)); 1288 } 1289 1290 MF.getFrameInfo().setHasTailCall(); 1291 Info.LoweredTailCall = true; 1292 return true; 1293 } 1294 1295 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1296 CallLoweringInfo &Info) const { 1297 if (Info.IsVarArg) { 1298 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 1299 return false; 1300 } 1301 1302 MachineFunction &MF = MIRBuilder.getMF(); 1303 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1304 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1305 1306 const Function &F = MF.getFunction(); 1307 MachineRegisterInfo &MRI = MF.getRegInfo(); 1308 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1309 const DataLayout &DL = F.getParent()->getDataLayout(); 1310 1311 SmallVector<ArgInfo, 8> OutArgs; 1312 for (auto &OrigArg : Info.OrigArgs) 1313 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); 1314 1315 SmallVector<ArgInfo, 8> InArgs; 1316 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) 1317 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); 1318 1319 // If we can lower as a tail call, do that instead. 1320 bool CanTailCallOpt = 1321 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); 1322 1323 // We must emit a tail call if we have musttail. 1324 if (Info.IsMustTailCall && !CanTailCallOpt) { 1325 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1326 return false; 1327 } 1328 1329 if (CanTailCallOpt) 1330 return lowerTailCall(MIRBuilder, Info, OutArgs); 1331 1332 // Find out which ABI gets to decide where things go. 1333 CCAssignFn *AssignFnFixed; 1334 CCAssignFn *AssignFnVarArg; 1335 std::tie(AssignFnFixed, AssignFnVarArg) = 1336 getAssignFnsForCC(Info.CallConv, TLI); 1337 1338 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 1339 .addImm(0) 1340 .addImm(0); 1341 1342 // Create a temporarily-floating call instruction so we can add the implicit 1343 // uses of arg registers. 1344 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 1345 1346 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1347 MIB.addDef(TRI->getReturnAddressReg(MF)); 1348 1349 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1350 return false; 1351 1352 // Tell the call which registers are clobbered. 1353 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 1354 MIB.addRegMask(Mask); 1355 1356 SmallVector<CCValAssign, 16> ArgLocs; 1357 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1358 1359 // We could pass MIB and directly add the implicit uses to the call 1360 // now. However, as an aesthetic choice, place implicit argument operands 1361 // after the ordinary user argument registers. 1362 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1363 1364 if (Info.CallConv != CallingConv::AMDGPU_Gfx) { 1365 // With a fixed ABI, allocate fixed registers before user arguments. 1366 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1367 return false; 1368 } 1369 1370 // Do the actual argument marshalling. 1371 SmallVector<Register, 8> PhysRegs; 1372 1373 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1374 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1375 return false; 1376 1377 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false); 1378 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1379 return false; 1380 1381 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1382 1383 handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs); 1384 1385 // Get a count of how many bytes are to be pushed on the stack. 1386 unsigned NumBytes = CCInfo.getNextStackOffset(); 1387 1388 // If Callee is a reg, since it is used by a target specific 1389 // instruction, it must have a register class matching the 1390 // constraint of that instruction. 1391 1392 // FIXME: We should define regbankselectable call instructions to handle 1393 // divergent call targets. 1394 if (MIB->getOperand(1).isReg()) { 1395 MIB->getOperand(1).setReg(constrainOperandRegClass( 1396 MF, *TRI, MRI, *ST.getInstrInfo(), 1397 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1398 1)); 1399 } 1400 1401 // Now we can add the actual call instruction to the correct position. 1402 MIRBuilder.insertInstr(MIB); 1403 1404 // Finally we can copy the returned value back into its virtual-register. In 1405 // symmetry with the arguments, the physical register must be an 1406 // implicit-define of the call instruction. 1407 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1408 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1409 Info.IsVarArg); 1410 IncomingValueAssigner Assigner(RetAssignFn); 1411 CallReturnHandler Handler(MIRBuilder, MRI, MIB); 1412 if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder, 1413 Info.CallConv, Info.IsVarArg)) 1414 return false; 1415 } 1416 1417 uint64_t CalleePopBytes = NumBytes; 1418 1419 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN) 1420 .addImm(0) 1421 .addImm(CalleePopBytes); 1422 1423 if (!Info.CanLowerReturn) { 1424 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1425 Info.DemoteRegister, Info.DemoteStackIndex); 1426 } 1427 1428 return true; 1429 } 1430