1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "SIRegisterInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 26 #define DEBUG_TYPE "amdgpu-call-lowering" 27 28 using namespace llvm; 29 30 namespace { 31 32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register. 33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler, 34 Register ValVReg, CCValAssign &VA) { 35 if (VA.getLocVT().getSizeInBits() < 32) { 36 // 16-bit types are reported as legal for 32-bit registers. We need to 37 // extend and do a 32-bit copy to avoid the verifier complaining about it. 38 return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 39 } 40 41 return Handler.extendRegister(ValVReg, VA); 42 } 43 44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler { 45 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 46 MachineInstrBuilder MIB) 47 : OutgoingValueHandler(B, MRI), MIB(MIB) {} 48 49 MachineInstrBuilder MIB; 50 51 Register getStackAddress(uint64_t Size, int64_t Offset, 52 MachinePointerInfo &MPO, 53 ISD::ArgFlagsTy Flags) override { 54 llvm_unreachable("not implemented"); 55 } 56 57 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 58 MachinePointerInfo &MPO, CCValAssign &VA) override { 59 llvm_unreachable("not implemented"); 60 } 61 62 void assignValueToReg(Register ValVReg, Register PhysReg, 63 CCValAssign VA) override { 64 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 65 66 // If this is a scalar return, insert a readfirstlane just in case the value 67 // ends up in a VGPR. 68 // FIXME: Assert this is a shader return. 69 const SIRegisterInfo *TRI 70 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 71 if (TRI->isSGPRReg(MRI, PhysReg)) { 72 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 73 {MRI.getType(ExtReg)}, false) 74 .addReg(ExtReg); 75 ExtReg = ToSGPR.getReg(0); 76 } 77 78 MIRBuilder.buildCopy(PhysReg, ExtReg); 79 MIB.addUse(PhysReg, RegState::Implicit); 80 } 81 }; 82 83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler { 84 uint64_t StackUsed = 0; 85 86 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 87 : IncomingValueHandler(B, MRI) {} 88 89 Register getStackAddress(uint64_t Size, int64_t Offset, 90 MachinePointerInfo &MPO, 91 ISD::ArgFlagsTy Flags) override { 92 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 93 94 // Byval is assumed to be writable memory, but other stack passed arguments 95 // are not. 96 const bool IsImmutable = !Flags.isByVal(); 97 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); 98 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 99 auto AddrReg = MIRBuilder.buildFrameIndex( 100 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 101 StackUsed = std::max(StackUsed, Size + Offset); 102 return AddrReg.getReg(0); 103 } 104 105 void assignValueToReg(Register ValVReg, Register PhysReg, 106 CCValAssign VA) override { 107 markPhysRegUsed(PhysReg); 108 109 if (VA.getLocVT().getSizeInBits() < 32) { 110 // 16-bit types are reported as legal for 32-bit registers. We need to do 111 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 112 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 113 114 // If we have signext/zeroext, it applies to the whole 32-bit register 115 // before truncation. 116 auto Extended = 117 buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT())); 118 MIRBuilder.buildTrunc(ValVReg, Extended); 119 return; 120 } 121 122 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); 123 } 124 125 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 126 MachinePointerInfo &MPO, CCValAssign &VA) override { 127 MachineFunction &MF = MIRBuilder.getMF(); 128 129 auto MMO = MF.getMachineMemOperand( 130 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy, 131 inferAlignFromPtrInfo(MF, MPO)); 132 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 133 } 134 135 /// How the physical register gets marked varies between formal 136 /// parameters (it's a basic-block live-in), and a call instruction 137 /// (it's an implicit-def of the BL). 138 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 139 }; 140 141 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 142 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 143 : AMDGPUIncomingArgHandler(B, MRI) {} 144 145 void markPhysRegUsed(unsigned PhysReg) override { 146 MIRBuilder.getMBB().addLiveIn(PhysReg); 147 } 148 }; 149 150 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 151 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 152 MachineInstrBuilder MIB) 153 : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} 154 155 void markPhysRegUsed(unsigned PhysReg) override { 156 MIB.addDef(PhysReg, RegState::Implicit); 157 } 158 159 MachineInstrBuilder MIB; 160 }; 161 162 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler { 163 /// For tail calls, the byte offset of the call's argument area from the 164 /// callee's. Unused elsewhere. 165 int FPDiff; 166 167 // Cache the SP register vreg if we need it more than once in this call site. 168 Register SPReg; 169 170 bool IsTailCall; 171 172 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 173 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 174 bool IsTailCall = false, int FPDiff = 0) 175 : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff), 176 IsTailCall(IsTailCall) {} 177 178 Register getStackAddress(uint64_t Size, int64_t Offset, 179 MachinePointerInfo &MPO, 180 ISD::ArgFlagsTy Flags) override { 181 MachineFunction &MF = MIRBuilder.getMF(); 182 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 183 const LLT S32 = LLT::scalar(32); 184 185 if (IsTailCall) { 186 Offset += FPDiff; 187 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); 188 auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI); 189 MPO = MachinePointerInfo::getFixedStack(MF, FI); 190 return FIReg.getReg(0); 191 } 192 193 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 194 195 if (!SPReg) { 196 const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>(); 197 if (ST.enableFlatScratch()) { 198 // The stack is accessed unswizzled, so we can use a regular copy. 199 SPReg = MIRBuilder.buildCopy(PtrTy, 200 MFI->getStackPtrOffsetReg()).getReg(0); 201 } else { 202 // The address we produce here, without knowing the use context, is going 203 // to be interpreted as a vector address, so we need to convert to a 204 // swizzled address. 205 SPReg = MIRBuilder.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {PtrTy}, 206 {MFI->getStackPtrOffsetReg()}).getReg(0); 207 } 208 } 209 210 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 211 212 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 213 MPO = MachinePointerInfo::getStack(MF, Offset); 214 return AddrReg.getReg(0); 215 } 216 217 void assignValueToReg(Register ValVReg, Register PhysReg, 218 CCValAssign VA) override { 219 MIB.addUse(PhysReg, RegState::Implicit); 220 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 221 MIRBuilder.buildCopy(PhysReg, ExtReg); 222 } 223 224 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 225 MachinePointerInfo &MPO, CCValAssign &VA) override { 226 MachineFunction &MF = MIRBuilder.getMF(); 227 uint64_t LocMemOffset = VA.getLocMemOffset(); 228 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 229 230 auto MMO = MF.getMachineMemOperand( 231 MPO, MachineMemOperand::MOStore, MemTy, 232 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 233 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 234 } 235 236 void assignValueToAddress(const CallLowering::ArgInfo &Arg, 237 unsigned ValRegIndex, Register Addr, LLT MemTy, 238 MachinePointerInfo &MPO, CCValAssign &VA) override { 239 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 240 ? extendRegister(Arg.Regs[ValRegIndex], VA) 241 : Arg.Regs[ValRegIndex]; 242 assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA); 243 } 244 }; 245 } 246 247 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 248 : CallLowering(&TLI) { 249 } 250 251 // FIXME: Compatibility shim 252 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 253 switch (MIOpc) { 254 case TargetOpcode::G_SEXT: 255 return ISD::SIGN_EXTEND; 256 case TargetOpcode::G_ZEXT: 257 return ISD::ZERO_EXTEND; 258 case TargetOpcode::G_ANYEXT: 259 return ISD::ANY_EXTEND; 260 default: 261 llvm_unreachable("not an extend opcode"); 262 } 263 } 264 265 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, 266 CallingConv::ID CallConv, 267 SmallVectorImpl<BaseArgInfo> &Outs, 268 bool IsVarArg) const { 269 // For shaders. Vector types should be explicitly handled by CC. 270 if (AMDGPU::isEntryFunctionCC(CallConv)) 271 return true; 272 273 SmallVector<CCValAssign, 16> ArgLocs; 274 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 275 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 276 MF.getFunction().getContext()); 277 278 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); 279 } 280 281 /// Lower the return value for the already existing \p Ret. This assumes that 282 /// \p B's insertion point is correct. 283 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 284 const Value *Val, ArrayRef<Register> VRegs, 285 MachineInstrBuilder &Ret) const { 286 if (!Val) 287 return true; 288 289 auto &MF = B.getMF(); 290 const auto &F = MF.getFunction(); 291 const DataLayout &DL = MF.getDataLayout(); 292 MachineRegisterInfo *MRI = B.getMRI(); 293 LLVMContext &Ctx = F.getContext(); 294 295 CallingConv::ID CC = F.getCallingConv(); 296 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 297 298 SmallVector<EVT, 8> SplitEVTs; 299 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 300 assert(VRegs.size() == SplitEVTs.size() && 301 "For each split Type there should be exactly one VReg."); 302 303 SmallVector<ArgInfo, 8> SplitRetInfos; 304 305 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 306 EVT VT = SplitEVTs[i]; 307 Register Reg = VRegs[i]; 308 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0); 309 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 310 311 if (VT.isScalarInteger()) { 312 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 313 if (RetInfo.Flags[0].isSExt()) { 314 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 315 ExtendOp = TargetOpcode::G_SEXT; 316 } else if (RetInfo.Flags[0].isZExt()) { 317 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 318 ExtendOp = TargetOpcode::G_ZEXT; 319 } 320 321 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 322 extOpcodeToISDExtOpcode(ExtendOp)); 323 if (ExtVT != VT) { 324 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 325 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 326 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 327 } 328 } 329 330 if (Reg != RetInfo.Regs[0]) { 331 RetInfo.Regs[0] = Reg; 332 // Reset the arg flags after modifying Reg. 333 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 334 } 335 336 splitToValueTypes(RetInfo, SplitRetInfos, DL, CC); 337 } 338 339 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 340 341 OutgoingValueAssigner Assigner(AssignFn); 342 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret); 343 return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B, 344 CC, F.isVarArg()); 345 } 346 347 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 348 ArrayRef<Register> VRegs, 349 FunctionLoweringInfo &FLI) const { 350 351 MachineFunction &MF = B.getMF(); 352 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 353 MFI->setIfReturnsVoid(!Val); 354 355 assert(!Val == VRegs.empty() && "Return value without a vreg"); 356 357 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 358 const bool IsShader = AMDGPU::isShader(CC); 359 const bool IsWaveEnd = 360 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 361 if (IsWaveEnd) { 362 B.buildInstr(AMDGPU::S_ENDPGM) 363 .addImm(0); 364 return true; 365 } 366 367 unsigned ReturnOpc = 368 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN; 369 auto Ret = B.buildInstrNoInsert(ReturnOpc); 370 371 if (!FLI.CanLowerReturn) 372 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); 373 else if (!lowerReturnVal(B, Val, VRegs, Ret)) 374 return false; 375 376 // TODO: Handle CalleeSavedRegsViaCopy. 377 378 B.insertInstr(Ret); 379 return true; 380 } 381 382 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 383 uint64_t Offset) const { 384 MachineFunction &MF = B.getMF(); 385 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 386 MachineRegisterInfo &MRI = MF.getRegInfo(); 387 Register KernArgSegmentPtr = 388 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 389 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 390 391 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 392 393 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 394 } 395 396 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg, 397 uint64_t Offset, 398 Align Alignment) const { 399 MachineFunction &MF = B.getMF(); 400 const Function &F = MF.getFunction(); 401 const DataLayout &DL = F.getParent()->getDataLayout(); 402 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 403 404 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 405 406 SmallVector<ArgInfo, 32> SplitArgs; 407 SmallVector<uint64_t> FieldOffsets; 408 splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets); 409 410 unsigned Idx = 0; 411 for (ArgInfo &SplitArg : SplitArgs) { 412 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 413 lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]); 414 415 LLT ArgTy = getLLTForType(*SplitArg.Ty, DL); 416 if (SplitArg.Flags[0].isPointer()) { 417 // Compensate for losing pointeriness in splitValueTypes. 418 LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(), 419 ArgTy.getScalarSizeInBits()); 420 ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy) 421 : PtrTy; 422 } 423 424 MachineMemOperand *MMO = MF.getMachineMemOperand( 425 PtrInfo, 426 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 427 MachineMemOperand::MOInvariant, 428 ArgTy, commonAlignment(Alignment, FieldOffsets[Idx])); 429 430 assert(SplitArg.Regs.size() == 1); 431 432 B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO); 433 ++Idx; 434 } 435 } 436 437 // Allocate special inputs passed in user SGPRs. 438 static void allocateHSAUserSGPRs(CCState &CCInfo, 439 MachineIRBuilder &B, 440 MachineFunction &MF, 441 const SIRegisterInfo &TRI, 442 SIMachineFunctionInfo &Info) { 443 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 444 if (Info.hasPrivateSegmentBuffer()) { 445 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 446 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 447 CCInfo.AllocateReg(PrivateSegmentBufferReg); 448 } 449 450 if (Info.hasDispatchPtr()) { 451 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 452 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 453 CCInfo.AllocateReg(DispatchPtrReg); 454 } 455 456 if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) { 457 Register QueuePtrReg = Info.addQueuePtr(TRI); 458 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 459 CCInfo.AllocateReg(QueuePtrReg); 460 } 461 462 if (Info.hasKernargSegmentPtr()) { 463 MachineRegisterInfo &MRI = MF.getRegInfo(); 464 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 465 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 466 Register VReg = MRI.createGenericVirtualRegister(P4); 467 MRI.addLiveIn(InputPtrReg, VReg); 468 B.getMBB().addLiveIn(InputPtrReg); 469 B.buildCopy(VReg, InputPtrReg); 470 CCInfo.AllocateReg(InputPtrReg); 471 } 472 473 if (Info.hasDispatchID()) { 474 Register DispatchIDReg = Info.addDispatchID(TRI); 475 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 476 CCInfo.AllocateReg(DispatchIDReg); 477 } 478 479 if (Info.hasFlatScratchInit()) { 480 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 481 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 482 CCInfo.AllocateReg(FlatScratchInitReg); 483 } 484 485 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 486 // these from the dispatch pointer. 487 } 488 489 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 490 MachineIRBuilder &B, const Function &F, 491 ArrayRef<ArrayRef<Register>> VRegs) const { 492 MachineFunction &MF = B.getMF(); 493 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 494 MachineRegisterInfo &MRI = MF.getRegInfo(); 495 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 496 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 497 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 498 const DataLayout &DL = F.getParent()->getDataLayout(); 499 500 Info->allocateModuleLDSGlobal(F.getParent()); 501 502 SmallVector<CCValAssign, 16> ArgLocs; 503 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 504 505 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 506 507 unsigned i = 0; 508 const Align KernArgBaseAlign(16); 509 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 510 uint64_t ExplicitArgOffset = 0; 511 512 // TODO: Align down to dword alignment and extract bits for extending loads. 513 for (auto &Arg : F.args()) { 514 const bool IsByRef = Arg.hasByRefAttr(); 515 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 516 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 517 if (AllocSize == 0) 518 continue; 519 520 MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None; 521 if (!ABIAlign) 522 ABIAlign = DL.getABITypeAlign(ArgTy); 523 524 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 525 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 526 527 if (Arg.use_empty()) { 528 ++i; 529 continue; 530 } 531 532 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 533 534 if (IsByRef) { 535 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 536 537 assert(VRegs[i].size() == 1 && 538 "expected only one register for byval pointers"); 539 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 540 lowerParameterPtr(VRegs[i][0], B, ArgOffset); 541 } else { 542 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 543 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 544 lowerParameterPtr(PtrReg, B, ArgOffset); 545 546 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 547 } 548 } else { 549 ArgInfo OrigArg(VRegs[i], Arg, i); 550 const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex; 551 setArgFlags(OrigArg, OrigArgIdx, DL, F); 552 lowerParameter(B, OrigArg, ArgOffset, Alignment); 553 } 554 555 ++i; 556 } 557 558 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 559 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 560 return true; 561 } 562 563 bool AMDGPUCallLowering::lowerFormalArguments( 564 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 565 FunctionLoweringInfo &FLI) const { 566 CallingConv::ID CC = F.getCallingConv(); 567 568 // The infrastructure for normal calling convention lowering is essentially 569 // useless for kernels. We want to avoid any kind of legalization or argument 570 // splitting. 571 if (CC == CallingConv::AMDGPU_KERNEL) 572 return lowerFormalArgumentsKernel(B, F, VRegs); 573 574 const bool IsGraphics = AMDGPU::isGraphics(CC); 575 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 576 577 MachineFunction &MF = B.getMF(); 578 MachineBasicBlock &MBB = B.getMBB(); 579 MachineRegisterInfo &MRI = MF.getRegInfo(); 580 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 581 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 582 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 583 const DataLayout &DL = F.getParent()->getDataLayout(); 584 585 Info->allocateModuleLDSGlobal(F.getParent()); 586 587 SmallVector<CCValAssign, 16> ArgLocs; 588 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 589 590 if (Info->hasImplicitBufferPtr()) { 591 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 592 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 593 CCInfo.AllocateReg(ImplicitBufferPtrReg); 594 } 595 596 // FIXME: This probably isn't defined for mesa 597 if (Info->hasFlatScratchInit() && !Subtarget.isAmdPalOS()) { 598 Register FlatScratchInitReg = Info->addFlatScratchInit(*TRI); 599 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 600 CCInfo.AllocateReg(FlatScratchInitReg); 601 } 602 603 SmallVector<ArgInfo, 32> SplitArgs; 604 unsigned Idx = 0; 605 unsigned PSInputNum = 0; 606 607 // Insert the hidden sret parameter if the return value won't fit in the 608 // return registers. 609 if (!FLI.CanLowerReturn) 610 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 611 612 for (auto &Arg : F.args()) { 613 if (DL.getTypeStoreSize(Arg.getType()) == 0) 614 continue; 615 616 const bool InReg = Arg.hasAttribute(Attribute::InReg); 617 618 // SGPR arguments to functions not implemented. 619 if (!IsGraphics && InReg) 620 return false; 621 622 if (Arg.hasAttribute(Attribute::SwiftSelf) || 623 Arg.hasAttribute(Attribute::SwiftError) || 624 Arg.hasAttribute(Attribute::Nest)) 625 return false; 626 627 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 628 const bool ArgUsed = !Arg.use_empty(); 629 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 630 631 if (!SkipArg) { 632 Info->markPSInputAllocated(PSInputNum); 633 if (ArgUsed) 634 Info->markPSInputEnabled(PSInputNum); 635 } 636 637 ++PSInputNum; 638 639 if (SkipArg) { 640 for (Register R : VRegs[Idx]) 641 B.buildUndef(R); 642 643 ++Idx; 644 continue; 645 } 646 } 647 648 ArgInfo OrigArg(VRegs[Idx], Arg, Idx); 649 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 650 setArgFlags(OrigArg, OrigArgIdx, DL, F); 651 652 splitToValueTypes(OrigArg, SplitArgs, DL, CC); 653 ++Idx; 654 } 655 656 // At least one interpolation mode must be enabled or else the GPU will 657 // hang. 658 // 659 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 660 // set PSInputAddr, the user wants to enable some bits after the compilation 661 // based on run-time states. Since we can't know what the final PSInputEna 662 // will look like, so we shouldn't do anything here and the user should take 663 // responsibility for the correct programming. 664 // 665 // Otherwise, the following restrictions apply: 666 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 667 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 668 // enabled too. 669 if (CC == CallingConv::AMDGPU_PS) { 670 if ((Info->getPSInputAddr() & 0x7F) == 0 || 671 ((Info->getPSInputAddr() & 0xF) == 0 && 672 Info->isPSInputAllocated(11))) { 673 CCInfo.AllocateReg(AMDGPU::VGPR0); 674 CCInfo.AllocateReg(AMDGPU::VGPR1); 675 Info->markPSInputAllocated(0); 676 Info->markPSInputEnabled(0); 677 } 678 679 if (Subtarget.isAmdPalOS()) { 680 // For isAmdPalOS, the user does not enable some bits after compilation 681 // based on run-time states; the register values being generated here are 682 // the final ones set in hardware. Therefore we need to apply the 683 // workaround to PSInputAddr and PSInputEnable together. (The case where 684 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 685 // set up an input arg for a particular interpolation mode, but nothing 686 // uses that input arg. Really we should have an earlier pass that removes 687 // such an arg.) 688 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 689 if ((PsInputBits & 0x7F) == 0 || 690 ((PsInputBits & 0xF) == 0 && 691 (PsInputBits >> 11 & 1))) 692 Info->markPSInputEnabled( 693 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 694 } 695 } 696 697 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 698 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 699 700 if (!MBB.empty()) 701 B.setInstr(*MBB.begin()); 702 703 if (!IsEntryFunc && !IsGraphics) { 704 // For the fixed ABI, pass workitem IDs in the last argument register. 705 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 706 } 707 708 IncomingValueAssigner Assigner(AssignFn); 709 if (!determineAssignments(Assigner, SplitArgs, CCInfo)) 710 return false; 711 712 FormalArgHandler Handler(B, MRI); 713 if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B)) 714 return false; 715 716 uint64_t StackOffset = Assigner.StackOffset; 717 718 // Start adding system SGPRs. 719 if (IsEntryFunc) { 720 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 721 } else { 722 if (!Subtarget.enableFlatScratch()) 723 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 724 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 725 } 726 727 // When we tail call, we need to check if the callee's arguments will fit on 728 // the caller's stack. So, whenever we lower formal arguments, we should keep 729 // track of this information, since we might lower a tail call in this 730 // function later. 731 Info->setBytesInStackArgArea(StackOffset); 732 733 // Move back to the end of the basic block. 734 B.setMBB(MBB); 735 736 return true; 737 } 738 739 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 740 CCState &CCInfo, 741 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 742 CallLoweringInfo &Info) const { 743 MachineFunction &MF = MIRBuilder.getMF(); 744 745 // If there's no call site, this doesn't correspond to a call from the IR and 746 // doesn't need implicit inputs. 747 if (!Info.CB) 748 return true; 749 750 const AMDGPUFunctionArgInfo *CalleeArgInfo 751 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 752 753 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 754 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 755 756 757 // TODO: Unify with private memory register handling. This is complicated by 758 // the fact that at least in kernels, the input argument is not necessarily 759 // in the same location as the input. 760 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 761 AMDGPUFunctionArgInfo::DISPATCH_PTR, 762 AMDGPUFunctionArgInfo::QUEUE_PTR, 763 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 764 AMDGPUFunctionArgInfo::DISPATCH_ID, 765 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 766 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 767 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 768 }; 769 770 static constexpr StringLiteral ImplicitAttrNames[] = { 771 "amdgpu-no-dispatch-ptr", 772 "amdgpu-no-queue-ptr", 773 "amdgpu-no-implicitarg-ptr", 774 "amdgpu-no-dispatch-id", 775 "amdgpu-no-workgroup-id-x", 776 "amdgpu-no-workgroup-id-y", 777 "amdgpu-no-workgroup-id-z" 778 }; 779 780 MachineRegisterInfo &MRI = MF.getRegInfo(); 781 782 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 783 const AMDGPULegalizerInfo *LI 784 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 785 786 unsigned I = 0; 787 for (auto InputID : InputRegs) { 788 const ArgDescriptor *OutgoingArg; 789 const TargetRegisterClass *ArgRC; 790 LLT ArgTy; 791 792 // If the callee does not use the attribute value, skip copying the value. 793 if (Info.CB->hasFnAttr(ImplicitAttrNames[I++])) 794 continue; 795 796 std::tie(OutgoingArg, ArgRC, ArgTy) = 797 CalleeArgInfo->getPreloadedValue(InputID); 798 if (!OutgoingArg) 799 continue; 800 801 const ArgDescriptor *IncomingArg; 802 const TargetRegisterClass *IncomingArgRC; 803 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 804 CallerArgInfo.getPreloadedValue(InputID); 805 assert(IncomingArgRC == ArgRC); 806 807 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 808 809 if (IncomingArg) { 810 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 811 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { 812 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 813 } else { 814 // We may have proven the input wasn't needed, although the ABI is 815 // requiring it. We just need to allocate the register appropriately. 816 MIRBuilder.buildUndef(InputReg); 817 } 818 819 if (OutgoingArg->isRegister()) { 820 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 821 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 822 report_fatal_error("failed to allocate implicit input argument"); 823 } else { 824 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 825 return false; 826 } 827 } 828 829 // Pack workitem IDs into a single register or pass it as is if already 830 // packed. 831 const ArgDescriptor *OutgoingArg; 832 const TargetRegisterClass *ArgRC; 833 LLT ArgTy; 834 835 std::tie(OutgoingArg, ArgRC, ArgTy) = 836 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 837 if (!OutgoingArg) 838 std::tie(OutgoingArg, ArgRC, ArgTy) = 839 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 840 if (!OutgoingArg) 841 std::tie(OutgoingArg, ArgRC, ArgTy) = 842 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 843 if (!OutgoingArg) 844 return false; 845 846 auto WorkitemIDX = 847 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 848 auto WorkitemIDY = 849 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 850 auto WorkitemIDZ = 851 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 852 853 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 854 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 855 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 856 const LLT S32 = LLT::scalar(32); 857 858 const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x"); 859 const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y"); 860 const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z"); 861 862 // If incoming ids are not packed we need to pack them. 863 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 864 Register InputReg; 865 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && 866 NeedWorkItemIDX) { 867 if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) { 868 InputReg = MRI.createGenericVirtualRegister(S32); 869 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 870 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 871 } else { 872 InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0); 873 } 874 } 875 876 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && 877 NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) { 878 Register Y = MRI.createGenericVirtualRegister(S32); 879 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 880 std::get<2>(WorkitemIDY)); 881 882 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 883 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 884 } 885 886 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && 887 NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) { 888 Register Z = MRI.createGenericVirtualRegister(S32); 889 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 890 std::get<2>(WorkitemIDZ)); 891 892 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 893 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 894 } 895 896 if (!InputReg && 897 (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { 898 InputReg = MRI.createGenericVirtualRegister(S32); 899 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { 900 // We're in a situation where the outgoing function requires the workitem 901 // ID, but the calling function does not have it (e.g a graphics function 902 // calling a C calling convention function). This is illegal, but we need 903 // to produce something. 904 MIRBuilder.buildUndef(InputReg); 905 } else { 906 // Workitem ids are already packed, any of present incoming arguments will 907 // carry all required fields. 908 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 909 IncomingArgX ? *IncomingArgX : 910 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 911 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 912 &AMDGPU::VGPR_32RegClass, S32); 913 } 914 } 915 916 if (OutgoingArg->isRegister()) { 917 if (InputReg) 918 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 919 920 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 921 report_fatal_error("failed to allocate implicit input argument"); 922 } else { 923 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 924 return false; 925 } 926 927 return true; 928 } 929 930 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 931 /// CC. 932 static std::pair<CCAssignFn *, CCAssignFn *> 933 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 934 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 935 } 936 937 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 938 bool IsTailCall) { 939 assert(!(IsIndirect && IsTailCall) && "Indirect calls can't be tail calls, " 940 "because the address can be divergent"); 941 return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::G_SI_CALL; 942 } 943 944 // Add operands to call instruction to track the callee. 945 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 946 MachineIRBuilder &MIRBuilder, 947 AMDGPUCallLowering::CallLoweringInfo &Info) { 948 if (Info.Callee.isReg()) { 949 CallInst.addReg(Info.Callee.getReg()); 950 CallInst.addImm(0); 951 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 952 // The call lowering lightly assumed we can directly encode a call target in 953 // the instruction, which is not the case. Materialize the address here. 954 const GlobalValue *GV = Info.Callee.getGlobal(); 955 auto Ptr = MIRBuilder.buildGlobalValue( 956 LLT::pointer(GV->getAddressSpace(), 64), GV); 957 CallInst.addReg(Ptr.getReg(0)); 958 CallInst.add(Info.Callee); 959 } else 960 return false; 961 962 return true; 963 } 964 965 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay( 966 CallLoweringInfo &Info, MachineFunction &MF, 967 SmallVectorImpl<ArgInfo> &InArgs) const { 968 const Function &CallerF = MF.getFunction(); 969 CallingConv::ID CalleeCC = Info.CallConv; 970 CallingConv::ID CallerCC = CallerF.getCallingConv(); 971 972 // If the calling conventions match, then everything must be the same. 973 if (CalleeCC == CallerCC) 974 return true; 975 976 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 977 978 // Make sure that the caller and callee preserve all of the same registers. 979 auto TRI = ST.getRegisterInfo(); 980 981 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 982 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 983 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 984 return false; 985 986 // Check if the caller and callee will handle arguments in the same way. 987 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 988 CCAssignFn *CalleeAssignFnFixed; 989 CCAssignFn *CalleeAssignFnVarArg; 990 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = 991 getAssignFnsForCC(CalleeCC, TLI); 992 993 CCAssignFn *CallerAssignFnFixed; 994 CCAssignFn *CallerAssignFnVarArg; 995 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = 996 getAssignFnsForCC(CallerCC, TLI); 997 998 // FIXME: We are not accounting for potential differences in implicitly passed 999 // inputs, but only the fixed ABI is supported now anyway. 1000 IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, 1001 CalleeAssignFnVarArg); 1002 IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, 1003 CallerAssignFnVarArg); 1004 return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner); 1005 } 1006 1007 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable( 1008 CallLoweringInfo &Info, MachineFunction &MF, 1009 SmallVectorImpl<ArgInfo> &OutArgs) const { 1010 // If there are no outgoing arguments, then we are done. 1011 if (OutArgs.empty()) 1012 return true; 1013 1014 const Function &CallerF = MF.getFunction(); 1015 CallingConv::ID CalleeCC = Info.CallConv; 1016 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1017 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1018 1019 CCAssignFn *AssignFnFixed; 1020 CCAssignFn *AssignFnVarArg; 1021 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1022 1023 // We have outgoing arguments. Make sure that we can tail call with them. 1024 SmallVector<CCValAssign, 16> OutLocs; 1025 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); 1026 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1027 1028 if (!determineAssignments(Assigner, OutArgs, OutInfo)) { 1029 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); 1030 return false; 1031 } 1032 1033 // Make sure that they can fit on the caller's stack. 1034 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1035 if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) { 1036 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); 1037 return false; 1038 } 1039 1040 // Verify that the parameters in callee-saved registers match. 1041 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1042 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1043 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); 1044 MachineRegisterInfo &MRI = MF.getRegInfo(); 1045 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs); 1046 } 1047 1048 /// Return true if the calling convention is one that we can guarantee TCO for. 1049 static bool canGuaranteeTCO(CallingConv::ID CC) { 1050 return CC == CallingConv::Fast; 1051 } 1052 1053 /// Return true if we might ever do TCO for calls with this calling convention. 1054 static bool mayTailCallThisCC(CallingConv::ID CC) { 1055 switch (CC) { 1056 case CallingConv::C: 1057 case CallingConv::AMDGPU_Gfx: 1058 return true; 1059 default: 1060 return canGuaranteeTCO(CC); 1061 } 1062 } 1063 1064 bool AMDGPUCallLowering::isEligibleForTailCallOptimization( 1065 MachineIRBuilder &B, CallLoweringInfo &Info, 1066 SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const { 1067 // Must pass all target-independent checks in order to tail call optimize. 1068 if (!Info.IsTailCall) 1069 return false; 1070 1071 // Indirect calls can't be tail calls, because the address can be divergent. 1072 // TODO Check divergence info if the call really is divergent. 1073 if (Info.Callee.isReg()) 1074 return false; 1075 1076 MachineFunction &MF = B.getMF(); 1077 const Function &CallerF = MF.getFunction(); 1078 CallingConv::ID CalleeCC = Info.CallConv; 1079 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1080 1081 const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo(); 1082 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1083 // Kernels aren't callable, and don't have a live in return address so it 1084 // doesn't make sense to do a tail call with entry functions. 1085 if (!CallerPreserved) 1086 return false; 1087 1088 if (!mayTailCallThisCC(CalleeCC)) { 1089 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); 1090 return false; 1091 } 1092 1093 if (any_of(CallerF.args(), [](const Argument &A) { 1094 return A.hasByValAttr() || A.hasSwiftErrorAttr(); 1095 })) { 1096 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval " 1097 "or swifterror arguments\n"); 1098 return false; 1099 } 1100 1101 // If we have -tailcallopt, then we're done. 1102 if (MF.getTarget().Options.GuaranteedTailCallOpt) 1103 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv(); 1104 1105 // Verify that the incoming and outgoing arguments from the callee are 1106 // safe to tail call. 1107 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { 1108 LLVM_DEBUG( 1109 dbgs() 1110 << "... Caller and callee have incompatible calling conventions.\n"); 1111 return false; 1112 } 1113 1114 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) 1115 return false; 1116 1117 LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n"); 1118 return true; 1119 } 1120 1121 // Insert outgoing implicit arguments for a call, by inserting copies to the 1122 // implicit argument registers and adding the necessary implicit uses to the 1123 // call instruction. 1124 void AMDGPUCallLowering::handleImplicitCallArguments( 1125 MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst, 1126 const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo, 1127 ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const { 1128 if (!ST.enableFlatScratch()) { 1129 // Insert copies for the SRD. In the HSA case, this should be an identity 1130 // copy. 1131 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32), 1132 FuncInfo.getScratchRSrcReg()); 1133 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 1134 CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); 1135 } 1136 1137 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1138 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1139 CallInst.addReg(ArgReg.first, RegState::Implicit); 1140 } 1141 } 1142 1143 bool AMDGPUCallLowering::lowerTailCall( 1144 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 1145 SmallVectorImpl<ArgInfo> &OutArgs) const { 1146 MachineFunction &MF = MIRBuilder.getMF(); 1147 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1148 SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1149 const Function &F = MF.getFunction(); 1150 MachineRegisterInfo &MRI = MF.getRegInfo(); 1151 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1152 1153 // True when we're tail calling, but without -tailcallopt. 1154 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt; 1155 1156 // Find out which ABI gets to decide where things go. 1157 CallingConv::ID CalleeCC = Info.CallConv; 1158 CCAssignFn *AssignFnFixed; 1159 CCAssignFn *AssignFnVarArg; 1160 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1161 1162 MachineInstrBuilder CallSeqStart; 1163 if (!IsSibCall) 1164 CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP); 1165 1166 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true); 1167 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1168 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1169 return false; 1170 1171 // Byte offset for the tail call. When we are sibcalling, this will always 1172 // be 0. 1173 MIB.addImm(0); 1174 1175 // Tell the call which registers are clobbered. 1176 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1177 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); 1178 MIB.addRegMask(Mask); 1179 1180 // FPDiff is the byte offset of the call's argument area from the callee's. 1181 // Stores to callee stack arguments will be placed in FixedStackSlots offset 1182 // by this amount for a tail call. In a sibling call it must be 0 because the 1183 // caller will deallocate the entire stack and the callee still expects its 1184 // arguments to begin at SP+0. 1185 int FPDiff = 0; 1186 1187 // This will be 0 for sibcalls, potentially nonzero for tail calls produced 1188 // by -tailcallopt. For sibcalls, the memory operands for the call are 1189 // already available in the caller's incoming argument space. 1190 unsigned NumBytes = 0; 1191 if (!IsSibCall) { 1192 // We aren't sibcalling, so we need to compute FPDiff. We need to do this 1193 // before handling assignments, because FPDiff must be known for memory 1194 // arguments. 1195 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 1196 SmallVector<CCValAssign, 16> OutLocs; 1197 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); 1198 1199 // FIXME: Not accounting for callee implicit inputs 1200 OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg); 1201 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) 1202 return false; 1203 1204 // The callee will pop the argument stack as a tail call. Thus, we must 1205 // keep it 16-byte aligned. 1206 NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment()); 1207 1208 // FPDiff will be negative if this tail call requires more space than we 1209 // would automatically have in our incoming argument space. Positive if we 1210 // actually shrink the stack. 1211 FPDiff = NumReusableBytes - NumBytes; 1212 1213 // The stack pointer must be 16-byte aligned at all times it's used for a 1214 // memory operation, which in practice means at *all* times and in 1215 // particular across call boundaries. Therefore our own arguments started at 1216 // a 16-byte aligned SP and the delta applied for the tail call should 1217 // satisfy the same constraint. 1218 assert(isAligned(ST.getStackAlignment(), FPDiff) && 1219 "unaligned stack on tail call"); 1220 } 1221 1222 SmallVector<CCValAssign, 16> ArgLocs; 1223 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1224 1225 // We could pass MIB and directly add the implicit uses to the call 1226 // now. However, as an aesthetic choice, place implicit argument operands 1227 // after the ordinary user argument registers. 1228 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1229 1230 if (Info.CallConv != CallingConv::AMDGPU_Gfx) { 1231 // With a fixed ABI, allocate fixed registers before user arguments. 1232 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1233 return false; 1234 } 1235 1236 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1237 1238 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1239 return false; 1240 1241 // Do the actual argument marshalling. 1242 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff); 1243 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1244 return false; 1245 1246 handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs); 1247 1248 // If we have -tailcallopt, we need to adjust the stack. We'll do the call 1249 // sequence start and end here. 1250 if (!IsSibCall) { 1251 MIB->getOperand(1).setImm(FPDiff); 1252 CallSeqStart.addImm(NumBytes).addImm(0); 1253 // End the call sequence *before* emitting the call. Normally, we would 1254 // tidy the frame up after the call. However, here, we've laid out the 1255 // parameters so that when SP is reset, they will be in the correct 1256 // location. 1257 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0); 1258 } 1259 1260 // Now we can add the actual call instruction to the correct basic block. 1261 MIRBuilder.insertInstr(MIB); 1262 1263 // If Callee is a reg, since it is used by a target specific 1264 // instruction, it must have a register class matching the 1265 // constraint of that instruction. 1266 1267 // FIXME: We should define regbankselectable call instructions to handle 1268 // divergent call targets. 1269 if (MIB->getOperand(0).isReg()) { 1270 MIB->getOperand(0).setReg(constrainOperandRegClass( 1271 MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB, 1272 MIB->getDesc(), MIB->getOperand(0), 0)); 1273 } 1274 1275 MF.getFrameInfo().setHasTailCall(); 1276 Info.LoweredTailCall = true; 1277 return true; 1278 } 1279 1280 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1281 CallLoweringInfo &Info) const { 1282 if (Info.IsVarArg) { 1283 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 1284 return false; 1285 } 1286 1287 MachineFunction &MF = MIRBuilder.getMF(); 1288 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1289 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1290 1291 const Function &F = MF.getFunction(); 1292 MachineRegisterInfo &MRI = MF.getRegInfo(); 1293 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1294 const DataLayout &DL = F.getParent()->getDataLayout(); 1295 1296 SmallVector<ArgInfo, 8> OutArgs; 1297 for (auto &OrigArg : Info.OrigArgs) 1298 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); 1299 1300 SmallVector<ArgInfo, 8> InArgs; 1301 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) 1302 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); 1303 1304 // If we can lower as a tail call, do that instead. 1305 bool CanTailCallOpt = 1306 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); 1307 1308 // We must emit a tail call if we have musttail. 1309 if (Info.IsMustTailCall && !CanTailCallOpt) { 1310 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1311 return false; 1312 } 1313 1314 Info.IsTailCall = CanTailCallOpt; 1315 if (CanTailCallOpt) 1316 return lowerTailCall(MIRBuilder, Info, OutArgs); 1317 1318 // Find out which ABI gets to decide where things go. 1319 CCAssignFn *AssignFnFixed; 1320 CCAssignFn *AssignFnVarArg; 1321 std::tie(AssignFnFixed, AssignFnVarArg) = 1322 getAssignFnsForCC(Info.CallConv, TLI); 1323 1324 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 1325 .addImm(0) 1326 .addImm(0); 1327 1328 // Create a temporarily-floating call instruction so we can add the implicit 1329 // uses of arg registers. 1330 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 1331 1332 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1333 MIB.addDef(TRI->getReturnAddressReg(MF)); 1334 1335 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1336 return false; 1337 1338 // Tell the call which registers are clobbered. 1339 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 1340 MIB.addRegMask(Mask); 1341 1342 SmallVector<CCValAssign, 16> ArgLocs; 1343 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1344 1345 // We could pass MIB and directly add the implicit uses to the call 1346 // now. However, as an aesthetic choice, place implicit argument operands 1347 // after the ordinary user argument registers. 1348 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1349 1350 if (Info.CallConv != CallingConv::AMDGPU_Gfx) { 1351 // With a fixed ABI, allocate fixed registers before user arguments. 1352 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1353 return false; 1354 } 1355 1356 // Do the actual argument marshalling. 1357 SmallVector<Register, 8> PhysRegs; 1358 1359 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1360 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1361 return false; 1362 1363 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false); 1364 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1365 return false; 1366 1367 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1368 1369 handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs); 1370 1371 // Get a count of how many bytes are to be pushed on the stack. 1372 unsigned NumBytes = CCInfo.getNextStackOffset(); 1373 1374 // If Callee is a reg, since it is used by a target specific 1375 // instruction, it must have a register class matching the 1376 // constraint of that instruction. 1377 1378 // FIXME: We should define regbankselectable call instructions to handle 1379 // divergent call targets. 1380 if (MIB->getOperand(1).isReg()) { 1381 MIB->getOperand(1).setReg(constrainOperandRegClass( 1382 MF, *TRI, MRI, *ST.getInstrInfo(), 1383 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1384 1)); 1385 } 1386 1387 // Now we can add the actual call instruction to the correct position. 1388 MIRBuilder.insertInstr(MIB); 1389 1390 // Finally we can copy the returned value back into its virtual-register. In 1391 // symmetry with the arguments, the physical register must be an 1392 // implicit-define of the call instruction. 1393 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1394 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1395 Info.IsVarArg); 1396 IncomingValueAssigner Assigner(RetAssignFn); 1397 CallReturnHandler Handler(MIRBuilder, MRI, MIB); 1398 if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder, 1399 Info.CallConv, Info.IsVarArg)) 1400 return false; 1401 } 1402 1403 uint64_t CalleePopBytes = NumBytes; 1404 1405 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN) 1406 .addImm(0) 1407 .addImm(CalleePopBytes); 1408 1409 if (!Info.CanLowerReturn) { 1410 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1411 Info.DemoteRegister, Info.DemoteStackIndex); 1412 } 1413 1414 return true; 1415 } 1416