1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 
26 #define DEBUG_TYPE "amdgpu-call-lowering"
27 
28 using namespace llvm;
29 
30 namespace {
31 
32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
34                                     Register ValVReg, CCValAssign &VA) {
35   if (VA.getLocVT().getSizeInBits() < 32) {
36     // 16-bit types are reported as legal for 32-bit registers. We need to
37     // extend and do a 32-bit copy to avoid the verifier complaining about it.
38     return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
39   }
40 
41   return Handler.extendRegister(ValVReg, VA);
42 }
43 
44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
45   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
46                              MachineInstrBuilder MIB)
47       : OutgoingValueHandler(B, MRI), MIB(MIB) {}
48 
49   MachineInstrBuilder MIB;
50 
51   Register getStackAddress(uint64_t Size, int64_t Offset,
52                            MachinePointerInfo &MPO,
53                            ISD::ArgFlagsTy Flags) override {
54     llvm_unreachable("not implemented");
55   }
56 
57   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
58                             MachinePointerInfo &MPO, CCValAssign &VA) override {
59     llvm_unreachable("not implemented");
60   }
61 
62   void assignValueToReg(Register ValVReg, Register PhysReg,
63                         CCValAssign VA) override {
64     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
65 
66     // If this is a scalar return, insert a readfirstlane just in case the value
67     // ends up in a VGPR.
68     // FIXME: Assert this is a shader return.
69     const SIRegisterInfo *TRI
70       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
71     if (TRI->isSGPRReg(MRI, PhysReg)) {
72       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
73                                               {MRI.getType(ExtReg)}, false)
74         .addReg(ExtReg);
75       ExtReg = ToSGPR.getReg(0);
76     }
77 
78     MIRBuilder.buildCopy(PhysReg, ExtReg);
79     MIB.addUse(PhysReg, RegState::Implicit);
80   }
81 };
82 
83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
84   uint64_t StackUsed = 0;
85 
86   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
87       : IncomingValueHandler(B, MRI) {}
88 
89   Register getStackAddress(uint64_t Size, int64_t Offset,
90                            MachinePointerInfo &MPO,
91                            ISD::ArgFlagsTy Flags) override {
92     auto &MFI = MIRBuilder.getMF().getFrameInfo();
93 
94     // Byval is assumed to be writable memory, but other stack passed arguments
95     // are not.
96     const bool IsImmutable = !Flags.isByVal();
97     int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
98     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
99     auto AddrReg = MIRBuilder.buildFrameIndex(
100         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
101     StackUsed = std::max(StackUsed, Size + Offset);
102     return AddrReg.getReg(0);
103   }
104 
105   void assignValueToReg(Register ValVReg, Register PhysReg,
106                         CCValAssign VA) override {
107     markPhysRegUsed(PhysReg);
108 
109     if (VA.getLocVT().getSizeInBits() < 32) {
110       // 16-bit types are reported as legal for 32-bit registers. We need to do
111       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
112       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
113 
114       // If we have signext/zeroext, it applies to the whole 32-bit register
115       // before truncation.
116       auto Extended =
117           buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
118       MIRBuilder.buildTrunc(ValVReg, Extended);
119       return;
120     }
121 
122     IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
123   }
124 
125   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
126                             MachinePointerInfo &MPO, CCValAssign &VA) override {
127     MachineFunction &MF = MIRBuilder.getMF();
128 
129     auto MMO = MF.getMachineMemOperand(
130         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy,
131         inferAlignFromPtrInfo(MF, MPO));
132     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
133   }
134 
135   /// How the physical register gets marked varies between formal
136   /// parameters (it's a basic-block live-in), and a call instruction
137   /// (it's an implicit-def of the BL).
138   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
139 };
140 
141 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
142   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
143       : AMDGPUIncomingArgHandler(B, MRI) {}
144 
145   void markPhysRegUsed(unsigned PhysReg) override {
146     MIRBuilder.getMBB().addLiveIn(PhysReg);
147   }
148 };
149 
150 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
151   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
152                     MachineInstrBuilder MIB)
153       : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
154 
155   void markPhysRegUsed(unsigned PhysReg) override {
156     MIB.addDef(PhysReg, RegState::Implicit);
157   }
158 
159   MachineInstrBuilder MIB;
160 };
161 
162 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
163   /// For tail calls, the byte offset of the call's argument area from the
164   /// callee's. Unused elsewhere.
165   int FPDiff;
166 
167   // Cache the SP register vreg if we need it more than once in this call site.
168   Register SPReg;
169 
170   bool IsTailCall;
171 
172   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
173                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
174                            bool IsTailCall = false, int FPDiff = 0)
175       : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff),
176         IsTailCall(IsTailCall) {}
177 
178   Register getStackAddress(uint64_t Size, int64_t Offset,
179                            MachinePointerInfo &MPO,
180                            ISD::ArgFlagsTy Flags) override {
181     MachineFunction &MF = MIRBuilder.getMF();
182     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
183     const LLT S32 = LLT::scalar(32);
184 
185     if (IsTailCall) {
186       Offset += FPDiff;
187       int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
188       auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI);
189       MPO = MachinePointerInfo::getFixedStack(MF, FI);
190       return FIReg.getReg(0);
191     }
192 
193     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
194 
195     if (!SPReg) {
196       const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>();
197       if (ST.enableFlatScratch()) {
198         // The stack is accessed unswizzled, so we can use a regular copy.
199         SPReg = MIRBuilder.buildCopy(PtrTy,
200                                      MFI->getStackPtrOffsetReg()).getReg(0);
201       } else {
202         // The address we produce here, without knowing the use context, is going
203         // to be interpreted as a vector address, so we need to convert to a
204         // swizzled address.
205         SPReg = MIRBuilder.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {PtrTy},
206                                       {MFI->getStackPtrOffsetReg()}).getReg(0);
207       }
208     }
209 
210     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
211 
212     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
213     MPO = MachinePointerInfo::getStack(MF, Offset);
214     return AddrReg.getReg(0);
215   }
216 
217   void assignValueToReg(Register ValVReg, Register PhysReg,
218                         CCValAssign VA) override {
219     MIB.addUse(PhysReg, RegState::Implicit);
220     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
221     MIRBuilder.buildCopy(PhysReg, ExtReg);
222   }
223 
224   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
225                             MachinePointerInfo &MPO, CCValAssign &VA) override {
226     MachineFunction &MF = MIRBuilder.getMF();
227     uint64_t LocMemOffset = VA.getLocMemOffset();
228     const auto &ST = MF.getSubtarget<GCNSubtarget>();
229 
230     auto MMO = MF.getMachineMemOperand(
231         MPO, MachineMemOperand::MOStore, MemTy,
232         commonAlignment(ST.getStackAlignment(), LocMemOffset));
233     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
234   }
235 
236   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
237                             unsigned ValRegIndex, Register Addr, LLT MemTy,
238                             MachinePointerInfo &MPO, CCValAssign &VA) override {
239     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
240                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
241                            : Arg.Regs[ValRegIndex];
242     assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
243   }
244 };
245 }
246 
247 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
248   : CallLowering(&TLI) {
249 }
250 
251 // FIXME: Compatibility shim
252 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
253   switch (MIOpc) {
254   case TargetOpcode::G_SEXT:
255     return ISD::SIGN_EXTEND;
256   case TargetOpcode::G_ZEXT:
257     return ISD::ZERO_EXTEND;
258   case TargetOpcode::G_ANYEXT:
259     return ISD::ANY_EXTEND;
260   default:
261     llvm_unreachable("not an extend opcode");
262   }
263 }
264 
265 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
266                                         CallingConv::ID CallConv,
267                                         SmallVectorImpl<BaseArgInfo> &Outs,
268                                         bool IsVarArg) const {
269   // For shaders. Vector types should be explicitly handled by CC.
270   if (AMDGPU::isEntryFunctionCC(CallConv))
271     return true;
272 
273   SmallVector<CCValAssign, 16> ArgLocs;
274   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
275   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
276                  MF.getFunction().getContext());
277 
278   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
279 }
280 
281 /// Lower the return value for the already existing \p Ret. This assumes that
282 /// \p B's insertion point is correct.
283 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
284                                         const Value *Val, ArrayRef<Register> VRegs,
285                                         MachineInstrBuilder &Ret) const {
286   if (!Val)
287     return true;
288 
289   auto &MF = B.getMF();
290   const auto &F = MF.getFunction();
291   const DataLayout &DL = MF.getDataLayout();
292   MachineRegisterInfo *MRI = B.getMRI();
293   LLVMContext &Ctx = F.getContext();
294 
295   CallingConv::ID CC = F.getCallingConv();
296   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
297 
298   SmallVector<EVT, 8> SplitEVTs;
299   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
300   assert(VRegs.size() == SplitEVTs.size() &&
301          "For each split Type there should be exactly one VReg.");
302 
303   SmallVector<ArgInfo, 8> SplitRetInfos;
304 
305   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
306     EVT VT = SplitEVTs[i];
307     Register Reg = VRegs[i];
308     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0);
309     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
310 
311     if (VT.isScalarInteger()) {
312       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
313       if (RetInfo.Flags[0].isSExt()) {
314         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
315         ExtendOp = TargetOpcode::G_SEXT;
316       } else if (RetInfo.Flags[0].isZExt()) {
317         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
318         ExtendOp = TargetOpcode::G_ZEXT;
319       }
320 
321       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
322                                           extOpcodeToISDExtOpcode(ExtendOp));
323       if (ExtVT != VT) {
324         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
325         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
326         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
327       }
328     }
329 
330     if (Reg != RetInfo.Regs[0]) {
331       RetInfo.Regs[0] = Reg;
332       // Reset the arg flags after modifying Reg.
333       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
334     }
335 
336     splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
337   }
338 
339   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
340 
341   OutgoingValueAssigner Assigner(AssignFn);
342   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret);
343   return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B,
344                                        CC, F.isVarArg());
345 }
346 
347 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
348                                      ArrayRef<Register> VRegs,
349                                      FunctionLoweringInfo &FLI) const {
350 
351   MachineFunction &MF = B.getMF();
352   MachineRegisterInfo &MRI = MF.getRegInfo();
353   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
354   MFI->setIfReturnsVoid(!Val);
355 
356   assert(!Val == VRegs.empty() && "Return value without a vreg");
357 
358   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
359   const bool IsShader = AMDGPU::isShader(CC);
360   const bool IsWaveEnd =
361       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
362   if (IsWaveEnd) {
363     B.buildInstr(AMDGPU::S_ENDPGM)
364       .addImm(0);
365     return true;
366   }
367 
368   auto const &ST = MF.getSubtarget<GCNSubtarget>();
369 
370   unsigned ReturnOpc = 0;
371   if (IsShader)
372     ReturnOpc = AMDGPU::SI_RETURN_TO_EPILOG;
373   else if (CC == CallingConv::AMDGPU_Gfx)
374     ReturnOpc = AMDGPU::S_SETPC_B64_return_gfx;
375   else
376     ReturnOpc = AMDGPU::S_SETPC_B64_return;
377 
378   auto Ret = B.buildInstrNoInsert(ReturnOpc);
379   Register ReturnAddrVReg;
380   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
381     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
382     Ret.addUse(ReturnAddrVReg);
383   } else if (ReturnOpc == AMDGPU::S_SETPC_B64_return_gfx) {
384     ReturnAddrVReg =
385         MRI.createVirtualRegister(&AMDGPU::Gfx_CCR_SGPR_64RegClass);
386     Ret.addUse(ReturnAddrVReg);
387   }
388 
389   if (!FLI.CanLowerReturn)
390     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
391   else if (!lowerReturnVal(B, Val, VRegs, Ret))
392     return false;
393 
394   if (ReturnOpc == AMDGPU::S_SETPC_B64_return ||
395       ReturnOpc == AMDGPU::S_SETPC_B64_return_gfx) {
396     const SIRegisterInfo *TRI = ST.getRegisterInfo();
397     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
398                                          &AMDGPU::SGPR_64RegClass);
399     B.buildCopy(ReturnAddrVReg, LiveInReturn);
400   }
401 
402   // TODO: Handle CalleeSavedRegsViaCopy.
403 
404   B.insertInstr(Ret);
405   return true;
406 }
407 
408 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
409                                            uint64_t Offset) const {
410   MachineFunction &MF = B.getMF();
411   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
412   MachineRegisterInfo &MRI = MF.getRegInfo();
413   Register KernArgSegmentPtr =
414     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
415   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
416 
417   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
418 
419   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
420 }
421 
422 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg,
423                                         uint64_t Offset,
424                                         Align Alignment) const {
425   MachineFunction &MF = B.getMF();
426   const Function &F = MF.getFunction();
427   const DataLayout &DL = F.getParent()->getDataLayout();
428   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
429 
430   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
431 
432   SmallVector<ArgInfo, 32> SplitArgs;
433   SmallVector<uint64_t> FieldOffsets;
434   splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets);
435 
436   unsigned Idx = 0;
437   for (ArgInfo &SplitArg : SplitArgs) {
438     Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
439     lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]);
440 
441     LLT ArgTy = getLLTForType(*SplitArg.Ty, DL);
442     if (SplitArg.Flags[0].isPointer()) {
443       // Compensate for losing pointeriness in splitValueTypes.
444       LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(),
445                                ArgTy.getScalarSizeInBits());
446       ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy)
447                                : PtrTy;
448     }
449 
450     MachineMemOperand *MMO = MF.getMachineMemOperand(
451         PtrInfo,
452         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
453             MachineMemOperand::MOInvariant,
454         ArgTy, commonAlignment(Alignment, FieldOffsets[Idx]));
455 
456     assert(SplitArg.Regs.size() == 1);
457 
458     B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO);
459     ++Idx;
460   }
461 }
462 
463 // Allocate special inputs passed in user SGPRs.
464 static void allocateHSAUserSGPRs(CCState &CCInfo,
465                                  MachineIRBuilder &B,
466                                  MachineFunction &MF,
467                                  const SIRegisterInfo &TRI,
468                                  SIMachineFunctionInfo &Info) {
469   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
470   if (Info.hasPrivateSegmentBuffer()) {
471     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
472     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
473     CCInfo.AllocateReg(PrivateSegmentBufferReg);
474   }
475 
476   if (Info.hasDispatchPtr()) {
477     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
478     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
479     CCInfo.AllocateReg(DispatchPtrReg);
480   }
481 
482   if (Info.hasQueuePtr()) {
483     Register QueuePtrReg = Info.addQueuePtr(TRI);
484     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
485     CCInfo.AllocateReg(QueuePtrReg);
486   }
487 
488   if (Info.hasKernargSegmentPtr()) {
489     MachineRegisterInfo &MRI = MF.getRegInfo();
490     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
491     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
492     Register VReg = MRI.createGenericVirtualRegister(P4);
493     MRI.addLiveIn(InputPtrReg, VReg);
494     B.getMBB().addLiveIn(InputPtrReg);
495     B.buildCopy(VReg, InputPtrReg);
496     CCInfo.AllocateReg(InputPtrReg);
497   }
498 
499   if (Info.hasDispatchID()) {
500     Register DispatchIDReg = Info.addDispatchID(TRI);
501     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
502     CCInfo.AllocateReg(DispatchIDReg);
503   }
504 
505   if (Info.hasFlatScratchInit()) {
506     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
507     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
508     CCInfo.AllocateReg(FlatScratchInitReg);
509   }
510 
511   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
512   // these from the dispatch pointer.
513 }
514 
515 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
516     MachineIRBuilder &B, const Function &F,
517     ArrayRef<ArrayRef<Register>> VRegs) const {
518   MachineFunction &MF = B.getMF();
519   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
520   MachineRegisterInfo &MRI = MF.getRegInfo();
521   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
522   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
523   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
524   const DataLayout &DL = F.getParent()->getDataLayout();
525 
526   Info->allocateModuleLDSGlobal(F.getParent());
527 
528   SmallVector<CCValAssign, 16> ArgLocs;
529   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
530 
531   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
532 
533   unsigned i = 0;
534   const Align KernArgBaseAlign(16);
535   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
536   uint64_t ExplicitArgOffset = 0;
537 
538   // TODO: Align down to dword alignment and extract bits for extending loads.
539   for (auto &Arg : F.args()) {
540     const bool IsByRef = Arg.hasByRefAttr();
541     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
542     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
543     if (AllocSize == 0)
544       continue;
545 
546     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
547     if (!ABIAlign)
548       ABIAlign = DL.getABITypeAlign(ArgTy);
549 
550     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
551     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
552 
553     if (Arg.use_empty()) {
554       ++i;
555       continue;
556     }
557 
558     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
559 
560     if (IsByRef) {
561       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
562 
563       assert(VRegs[i].size() == 1 &&
564              "expected only one register for byval pointers");
565       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
566         lowerParameterPtr(VRegs[i][0], B, ArgOffset);
567       } else {
568         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
569         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
570         lowerParameterPtr(PtrReg, B, ArgOffset);
571 
572         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
573       }
574     } else {
575       ArgInfo OrigArg(VRegs[i], Arg, i);
576       const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex;
577       setArgFlags(OrigArg, OrigArgIdx, DL, F);
578       lowerParameter(B, OrigArg, ArgOffset, Alignment);
579     }
580 
581     ++i;
582   }
583 
584   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
585   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
586   return true;
587 }
588 
589 bool AMDGPUCallLowering::lowerFormalArguments(
590     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
591     FunctionLoweringInfo &FLI) const {
592   CallingConv::ID CC = F.getCallingConv();
593 
594   // The infrastructure for normal calling convention lowering is essentially
595   // useless for kernels. We want to avoid any kind of legalization or argument
596   // splitting.
597   if (CC == CallingConv::AMDGPU_KERNEL)
598     return lowerFormalArgumentsKernel(B, F, VRegs);
599 
600   const bool IsGraphics = AMDGPU::isGraphics(CC);
601   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
602 
603   MachineFunction &MF = B.getMF();
604   MachineBasicBlock &MBB = B.getMBB();
605   MachineRegisterInfo &MRI = MF.getRegInfo();
606   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
607   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
608   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
609   const DataLayout &DL = F.getParent()->getDataLayout();
610 
611   Info->allocateModuleLDSGlobal(F.getParent());
612 
613   SmallVector<CCValAssign, 16> ArgLocs;
614   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
615 
616   if (!IsEntryFunc) {
617     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
618     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
619                                          &AMDGPU::SGPR_64RegClass);
620     MBB.addLiveIn(ReturnAddrReg);
621     B.buildCopy(LiveInReturn, ReturnAddrReg);
622   }
623 
624   if (Info->hasImplicitBufferPtr()) {
625     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
626     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
627     CCInfo.AllocateReg(ImplicitBufferPtrReg);
628   }
629 
630   SmallVector<ArgInfo, 32> SplitArgs;
631   unsigned Idx = 0;
632   unsigned PSInputNum = 0;
633 
634   // Insert the hidden sret parameter if the return value won't fit in the
635   // return registers.
636   if (!FLI.CanLowerReturn)
637     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
638 
639   for (auto &Arg : F.args()) {
640     if (DL.getTypeStoreSize(Arg.getType()) == 0)
641       continue;
642 
643     const bool InReg = Arg.hasAttribute(Attribute::InReg);
644 
645     // SGPR arguments to functions not implemented.
646     if (!IsGraphics && InReg)
647       return false;
648 
649     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
650         Arg.hasAttribute(Attribute::SwiftError) ||
651         Arg.hasAttribute(Attribute::Nest))
652       return false;
653 
654     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
655       const bool ArgUsed = !Arg.use_empty();
656       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
657 
658       if (!SkipArg) {
659         Info->markPSInputAllocated(PSInputNum);
660         if (ArgUsed)
661           Info->markPSInputEnabled(PSInputNum);
662       }
663 
664       ++PSInputNum;
665 
666       if (SkipArg) {
667         for (Register R : VRegs[Idx])
668           B.buildUndef(R);
669 
670         ++Idx;
671         continue;
672       }
673     }
674 
675     ArgInfo OrigArg(VRegs[Idx], Arg, Idx);
676     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
677     setArgFlags(OrigArg, OrigArgIdx, DL, F);
678 
679     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
680     ++Idx;
681   }
682 
683   // At least one interpolation mode must be enabled or else the GPU will
684   // hang.
685   //
686   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
687   // set PSInputAddr, the user wants to enable some bits after the compilation
688   // based on run-time states. Since we can't know what the final PSInputEna
689   // will look like, so we shouldn't do anything here and the user should take
690   // responsibility for the correct programming.
691   //
692   // Otherwise, the following restrictions apply:
693   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
694   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
695   //   enabled too.
696   if (CC == CallingConv::AMDGPU_PS) {
697     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
698         ((Info->getPSInputAddr() & 0xF) == 0 &&
699          Info->isPSInputAllocated(11))) {
700       CCInfo.AllocateReg(AMDGPU::VGPR0);
701       CCInfo.AllocateReg(AMDGPU::VGPR1);
702       Info->markPSInputAllocated(0);
703       Info->markPSInputEnabled(0);
704     }
705 
706     if (Subtarget.isAmdPalOS()) {
707       // For isAmdPalOS, the user does not enable some bits after compilation
708       // based on run-time states; the register values being generated here are
709       // the final ones set in hardware. Therefore we need to apply the
710       // workaround to PSInputAddr and PSInputEnable together.  (The case where
711       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
712       // set up an input arg for a particular interpolation mode, but nothing
713       // uses that input arg. Really we should have an earlier pass that removes
714       // such an arg.)
715       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
716       if ((PsInputBits & 0x7F) == 0 ||
717           ((PsInputBits & 0xF) == 0 &&
718            (PsInputBits >> 11 & 1)))
719         Info->markPSInputEnabled(
720           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
721     }
722   }
723 
724   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
725   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
726 
727   if (!MBB.empty())
728     B.setInstr(*MBB.begin());
729 
730   if (!IsEntryFunc && !IsGraphics) {
731     // For the fixed ABI, pass workitem IDs in the last argument register.
732     TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
733   }
734 
735   IncomingValueAssigner Assigner(AssignFn);
736   if (!determineAssignments(Assigner, SplitArgs, CCInfo))
737     return false;
738 
739   FormalArgHandler Handler(B, MRI);
740   if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B))
741     return false;
742 
743   uint64_t StackOffset = Assigner.StackOffset;
744 
745   // Start adding system SGPRs.
746   if (IsEntryFunc) {
747     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
748   } else {
749     if (!Subtarget.enableFlatScratch())
750       CCInfo.AllocateReg(Info->getScratchRSrcReg());
751     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
752   }
753 
754   // When we tail call, we need to check if the callee's arguments will fit on
755   // the caller's stack. So, whenever we lower formal arguments, we should keep
756   // track of this information, since we might lower a tail call in this
757   // function later.
758   Info->setBytesInStackArgArea(StackOffset);
759 
760   // Move back to the end of the basic block.
761   B.setMBB(MBB);
762 
763   return true;
764 }
765 
766 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
767                                            CCState &CCInfo,
768                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
769                                            CallLoweringInfo &Info) const {
770   MachineFunction &MF = MIRBuilder.getMF();
771 
772   // If there's no call site, this doesn't correspond to a call from the IR and
773   // doesn't need implicit inputs.
774   if (!Info.CB)
775     return true;
776 
777   const AMDGPUFunctionArgInfo *CalleeArgInfo
778     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
779 
780   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
781   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
782 
783 
784   // TODO: Unify with private memory register handling. This is complicated by
785   // the fact that at least in kernels, the input argument is not necessarily
786   // in the same location as the input.
787   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
788     AMDGPUFunctionArgInfo::DISPATCH_PTR,
789     AMDGPUFunctionArgInfo::QUEUE_PTR,
790     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
791     AMDGPUFunctionArgInfo::DISPATCH_ID,
792     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
793     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
794     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
795   };
796 
797   static constexpr StringLiteral ImplicitAttrNames[] = {
798     "amdgpu-no-dispatch-ptr",
799     "amdgpu-no-queue-ptr",
800     "amdgpu-no-implicitarg-ptr",
801     "amdgpu-no-dispatch-id",
802     "amdgpu-no-workgroup-id-x",
803     "amdgpu-no-workgroup-id-y",
804     "amdgpu-no-workgroup-id-z"
805   };
806 
807   MachineRegisterInfo &MRI = MF.getRegInfo();
808 
809   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
810   const AMDGPULegalizerInfo *LI
811     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
812 
813   unsigned I = 0;
814   for (auto InputID : InputRegs) {
815     const ArgDescriptor *OutgoingArg;
816     const TargetRegisterClass *ArgRC;
817     LLT ArgTy;
818 
819     // If the callee does not use the attribute value, skip copying the value.
820     if (Info.CB->hasFnAttr(ImplicitAttrNames[I++]))
821       continue;
822 
823     std::tie(OutgoingArg, ArgRC, ArgTy) =
824         CalleeArgInfo->getPreloadedValue(InputID);
825     if (!OutgoingArg)
826       continue;
827 
828     const ArgDescriptor *IncomingArg;
829     const TargetRegisterClass *IncomingArgRC;
830     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
831         CallerArgInfo.getPreloadedValue(InputID);
832     assert(IncomingArgRC == ArgRC);
833 
834     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
835 
836     if (IncomingArg) {
837       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
838     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
839       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
840     } else {
841       // We may have proven the input wasn't needed, although the ABI is
842       // requiring it. We just need to allocate the register appropriately.
843       MIRBuilder.buildUndef(InputReg);
844     }
845 
846     if (OutgoingArg->isRegister()) {
847       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
848       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
849         report_fatal_error("failed to allocate implicit input argument");
850     } else {
851       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
852       return false;
853     }
854   }
855 
856   // Pack workitem IDs into a single register or pass it as is if already
857   // packed.
858   const ArgDescriptor *OutgoingArg;
859   const TargetRegisterClass *ArgRC;
860   LLT ArgTy;
861 
862   std::tie(OutgoingArg, ArgRC, ArgTy) =
863       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
864   if (!OutgoingArg)
865     std::tie(OutgoingArg, ArgRC, ArgTy) =
866         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
867   if (!OutgoingArg)
868     std::tie(OutgoingArg, ArgRC, ArgTy) =
869         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
870   if (!OutgoingArg)
871     return false;
872 
873   auto WorkitemIDX =
874       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
875   auto WorkitemIDY =
876       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
877   auto WorkitemIDZ =
878       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
879 
880   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
881   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
882   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
883   const LLT S32 = LLT::scalar(32);
884 
885   const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x");
886   const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y");
887   const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z");
888 
889   // If incoming ids are not packed we need to pack them.
890   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
891   Register InputReg;
892   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
893       NeedWorkItemIDX) {
894     if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) {
895       InputReg = MRI.createGenericVirtualRegister(S32);
896       LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
897                          std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
898     } else {
899       InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0);
900     }
901   }
902 
903   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
904       NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) {
905     Register Y = MRI.createGenericVirtualRegister(S32);
906     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
907                        std::get<2>(WorkitemIDY));
908 
909     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
910     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
911   }
912 
913   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
914       NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) {
915     Register Z = MRI.createGenericVirtualRegister(S32);
916     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
917                        std::get<2>(WorkitemIDZ));
918 
919     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
920     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
921   }
922 
923   if (!InputReg &&
924       (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
925     InputReg = MRI.createGenericVirtualRegister(S32);
926     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
927       // We're in a situation where the outgoing function requires the workitem
928       // ID, but the calling function does not have it (e.g a graphics function
929       // calling a C calling convention function). This is illegal, but we need
930       // to produce something.
931       MIRBuilder.buildUndef(InputReg);
932     } else {
933       // Workitem ids are already packed, any of present incoming arguments will
934       // carry all required fields.
935       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
936         IncomingArgX ? *IncomingArgX :
937         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
938       LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
939                          &AMDGPU::VGPR_32RegClass, S32);
940     }
941   }
942 
943   if (OutgoingArg->isRegister()) {
944     if (InputReg)
945       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
946 
947     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
948       report_fatal_error("failed to allocate implicit input argument");
949   } else {
950     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
951     return false;
952   }
953 
954   return true;
955 }
956 
957 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
958 /// CC.
959 static std::pair<CCAssignFn *, CCAssignFn *>
960 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
961   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
962 }
963 
964 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
965                               bool IsTailCall) {
966   assert(!(IsIndirect && IsTailCall) && "Indirect calls can't be tail calls, "
967                                         "because the address can be divergent");
968   return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::G_SI_CALL;
969 }
970 
971 // Add operands to call instruction to track the callee.
972 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
973                                   MachineIRBuilder &MIRBuilder,
974                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
975   if (Info.Callee.isReg()) {
976     CallInst.addReg(Info.Callee.getReg());
977     CallInst.addImm(0);
978   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
979     // The call lowering lightly assumed we can directly encode a call target in
980     // the instruction, which is not the case. Materialize the address here.
981     const GlobalValue *GV = Info.Callee.getGlobal();
982     auto Ptr = MIRBuilder.buildGlobalValue(
983       LLT::pointer(GV->getAddressSpace(), 64), GV);
984     CallInst.addReg(Ptr.getReg(0));
985     CallInst.add(Info.Callee);
986   } else
987     return false;
988 
989   return true;
990 }
991 
992 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay(
993     CallLoweringInfo &Info, MachineFunction &MF,
994     SmallVectorImpl<ArgInfo> &InArgs) const {
995   const Function &CallerF = MF.getFunction();
996   CallingConv::ID CalleeCC = Info.CallConv;
997   CallingConv::ID CallerCC = CallerF.getCallingConv();
998 
999   // If the calling conventions match, then everything must be the same.
1000   if (CalleeCC == CallerCC)
1001     return true;
1002 
1003   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1004 
1005   // Make sure that the caller and callee preserve all of the same registers.
1006   auto TRI = ST.getRegisterInfo();
1007 
1008   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1009   const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
1010   if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
1011     return false;
1012 
1013   // Check if the caller and callee will handle arguments in the same way.
1014   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1015   CCAssignFn *CalleeAssignFnFixed;
1016   CCAssignFn *CalleeAssignFnVarArg;
1017   std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
1018       getAssignFnsForCC(CalleeCC, TLI);
1019 
1020   CCAssignFn *CallerAssignFnFixed;
1021   CCAssignFn *CallerAssignFnVarArg;
1022   std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
1023       getAssignFnsForCC(CallerCC, TLI);
1024 
1025   // FIXME: We are not accounting for potential differences in implicitly passed
1026   // inputs, but only the fixed ABI is supported now anyway.
1027   IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
1028                                        CalleeAssignFnVarArg);
1029   IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
1030                                        CallerAssignFnVarArg);
1031   return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner);
1032 }
1033 
1034 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable(
1035     CallLoweringInfo &Info, MachineFunction &MF,
1036     SmallVectorImpl<ArgInfo> &OutArgs) const {
1037   // If there are no outgoing arguments, then we are done.
1038   if (OutArgs.empty())
1039     return true;
1040 
1041   const Function &CallerF = MF.getFunction();
1042   CallingConv::ID CalleeCC = Info.CallConv;
1043   CallingConv::ID CallerCC = CallerF.getCallingConv();
1044   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1045 
1046   CCAssignFn *AssignFnFixed;
1047   CCAssignFn *AssignFnVarArg;
1048   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1049 
1050   // We have outgoing arguments. Make sure that we can tail call with them.
1051   SmallVector<CCValAssign, 16> OutLocs;
1052   CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
1053   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1054 
1055   if (!determineAssignments(Assigner, OutArgs, OutInfo)) {
1056     LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
1057     return false;
1058   }
1059 
1060   // Make sure that they can fit on the caller's stack.
1061   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1062   if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
1063     LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
1064     return false;
1065   }
1066 
1067   // Verify that the parameters in callee-saved registers match.
1068   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1069   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1070   const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
1071   MachineRegisterInfo &MRI = MF.getRegInfo();
1072   return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
1073 }
1074 
1075 /// Return true if the calling convention is one that we can guarantee TCO for.
1076 static bool canGuaranteeTCO(CallingConv::ID CC) {
1077   return CC == CallingConv::Fast;
1078 }
1079 
1080 /// Return true if we might ever do TCO for calls with this calling convention.
1081 static bool mayTailCallThisCC(CallingConv::ID CC) {
1082   switch (CC) {
1083   case CallingConv::C:
1084   case CallingConv::AMDGPU_Gfx:
1085     return true;
1086   default:
1087     return canGuaranteeTCO(CC);
1088   }
1089 }
1090 
1091 bool AMDGPUCallLowering::isEligibleForTailCallOptimization(
1092     MachineIRBuilder &B, CallLoweringInfo &Info,
1093     SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const {
1094   // Must pass all target-independent checks in order to tail call optimize.
1095   if (!Info.IsTailCall)
1096     return false;
1097 
1098   // Indirect calls can't be tail calls, because the address can be divergent.
1099   // TODO Check divergence info if the call really is divergent.
1100   if (Info.Callee.isReg())
1101     return false;
1102 
1103   MachineFunction &MF = B.getMF();
1104   const Function &CallerF = MF.getFunction();
1105   CallingConv::ID CalleeCC = Info.CallConv;
1106   CallingConv::ID CallerCC = CallerF.getCallingConv();
1107 
1108   const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
1109   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1110   // Kernels aren't callable, and don't have a live in return address so it
1111   // doesn't make sense to do a tail call with entry functions.
1112   if (!CallerPreserved)
1113     return false;
1114 
1115   if (!mayTailCallThisCC(CalleeCC)) {
1116     LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
1117     return false;
1118   }
1119 
1120   if (any_of(CallerF.args(), [](const Argument &A) {
1121         return A.hasByValAttr() || A.hasSwiftErrorAttr();
1122       })) {
1123     LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval "
1124                          "or swifterror arguments\n");
1125     return false;
1126   }
1127 
1128   // If we have -tailcallopt, then we're done.
1129   if (MF.getTarget().Options.GuaranteedTailCallOpt)
1130     return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
1131 
1132   // Verify that the incoming and outgoing arguments from the callee are
1133   // safe to tail call.
1134   if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
1135     LLVM_DEBUG(
1136         dbgs()
1137         << "... Caller and callee have incompatible calling conventions.\n");
1138     return false;
1139   }
1140 
1141   if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
1142     return false;
1143 
1144   LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n");
1145   return true;
1146 }
1147 
1148 // Insert outgoing implicit arguments for a call, by inserting copies to the
1149 // implicit argument registers and adding the necessary implicit uses to the
1150 // call instruction.
1151 void AMDGPUCallLowering::handleImplicitCallArguments(
1152     MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst,
1153     const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo,
1154     ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const {
1155   if (!ST.enableFlatScratch()) {
1156     // Insert copies for the SRD. In the HSA case, this should be an identity
1157     // copy.
1158     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32),
1159                                                FuncInfo.getScratchRSrcReg());
1160     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1161     CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1162   }
1163 
1164   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1165     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1166     CallInst.addReg(ArgReg.first, RegState::Implicit);
1167   }
1168 }
1169 
1170 bool AMDGPUCallLowering::lowerTailCall(
1171     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
1172     SmallVectorImpl<ArgInfo> &OutArgs) const {
1173   MachineFunction &MF = MIRBuilder.getMF();
1174   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1175   SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1176   const Function &F = MF.getFunction();
1177   MachineRegisterInfo &MRI = MF.getRegInfo();
1178   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1179 
1180   // True when we're tail calling, but without -tailcallopt.
1181   bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
1182 
1183   // Find out which ABI gets to decide where things go.
1184   CallingConv::ID CalleeCC = Info.CallConv;
1185   CCAssignFn *AssignFnFixed;
1186   CCAssignFn *AssignFnVarArg;
1187   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1188 
1189   MachineInstrBuilder CallSeqStart;
1190   if (!IsSibCall)
1191     CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP);
1192 
1193   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
1194   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1195   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1196     return false;
1197 
1198   // Byte offset for the tail call. When we are sibcalling, this will always
1199   // be 0.
1200   MIB.addImm(0);
1201 
1202   // Tell the call which registers are clobbered.
1203   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1204   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
1205   MIB.addRegMask(Mask);
1206 
1207   // FPDiff is the byte offset of the call's argument area from the callee's.
1208   // Stores to callee stack arguments will be placed in FixedStackSlots offset
1209   // by this amount for a tail call. In a sibling call it must be 0 because the
1210   // caller will deallocate the entire stack and the callee still expects its
1211   // arguments to begin at SP+0.
1212   int FPDiff = 0;
1213 
1214   // This will be 0 for sibcalls, potentially nonzero for tail calls produced
1215   // by -tailcallopt. For sibcalls, the memory operands for the call are
1216   // already available in the caller's incoming argument space.
1217   unsigned NumBytes = 0;
1218   if (!IsSibCall) {
1219     // We aren't sibcalling, so we need to compute FPDiff. We need to do this
1220     // before handling assignments, because FPDiff must be known for memory
1221     // arguments.
1222     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1223     SmallVector<CCValAssign, 16> OutLocs;
1224     CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
1225 
1226     // FIXME: Not accounting for callee implicit inputs
1227     OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg);
1228     if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
1229       return false;
1230 
1231     // The callee will pop the argument stack as a tail call. Thus, we must
1232     // keep it 16-byte aligned.
1233     NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment());
1234 
1235     // FPDiff will be negative if this tail call requires more space than we
1236     // would automatically have in our incoming argument space. Positive if we
1237     // actually shrink the stack.
1238     FPDiff = NumReusableBytes - NumBytes;
1239 
1240     // The stack pointer must be 16-byte aligned at all times it's used for a
1241     // memory operation, which in practice means at *all* times and in
1242     // particular across call boundaries. Therefore our own arguments started at
1243     // a 16-byte aligned SP and the delta applied for the tail call should
1244     // satisfy the same constraint.
1245     assert(isAligned(ST.getStackAlignment(), FPDiff) &&
1246            "unaligned stack on tail call");
1247   }
1248 
1249   SmallVector<CCValAssign, 16> ArgLocs;
1250   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1251 
1252   // We could pass MIB and directly add the implicit uses to the call
1253   // now. However, as an aesthetic choice, place implicit argument operands
1254   // after the ordinary user argument registers.
1255   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1256 
1257   if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
1258     // With a fixed ABI, allocate fixed registers before user arguments.
1259     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1260       return false;
1261   }
1262 
1263   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1264 
1265   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1266     return false;
1267 
1268   // Do the actual argument marshalling.
1269   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff);
1270   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1271     return false;
1272 
1273   handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs);
1274 
1275   // If we have -tailcallopt, we need to adjust the stack. We'll do the call
1276   // sequence start and end here.
1277   if (!IsSibCall) {
1278     MIB->getOperand(1).setImm(FPDiff);
1279     CallSeqStart.addImm(NumBytes).addImm(0);
1280     // End the call sequence *before* emitting the call. Normally, we would
1281     // tidy the frame up after the call. However, here, we've laid out the
1282     // parameters so that when SP is reset, they will be in the correct
1283     // location.
1284     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0);
1285   }
1286 
1287   // Now we can add the actual call instruction to the correct basic block.
1288   MIRBuilder.insertInstr(MIB);
1289 
1290   // If Callee is a reg, since it is used by a target specific
1291   // instruction, it must have a register class matching the
1292   // constraint of that instruction.
1293 
1294   // FIXME: We should define regbankselectable call instructions to handle
1295   // divergent call targets.
1296   if (MIB->getOperand(0).isReg()) {
1297     MIB->getOperand(0).setReg(constrainOperandRegClass(
1298         MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
1299         MIB->getDesc(), MIB->getOperand(0), 0));
1300   }
1301 
1302   MF.getFrameInfo().setHasTailCall();
1303   Info.LoweredTailCall = true;
1304   return true;
1305 }
1306 
1307 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1308                                    CallLoweringInfo &Info) const {
1309   if (Info.IsVarArg) {
1310     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1311     return false;
1312   }
1313 
1314   MachineFunction &MF = MIRBuilder.getMF();
1315   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1316   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1317 
1318   const Function &F = MF.getFunction();
1319   MachineRegisterInfo &MRI = MF.getRegInfo();
1320   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1321   const DataLayout &DL = F.getParent()->getDataLayout();
1322 
1323   SmallVector<ArgInfo, 8> OutArgs;
1324   for (auto &OrigArg : Info.OrigArgs)
1325     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
1326 
1327   SmallVector<ArgInfo, 8> InArgs;
1328   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
1329     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1330 
1331   // If we can lower as a tail call, do that instead.
1332   bool CanTailCallOpt =
1333       isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
1334 
1335   // We must emit a tail call if we have musttail.
1336   if (Info.IsMustTailCall && !CanTailCallOpt) {
1337     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1338     return false;
1339   }
1340 
1341   Info.IsTailCall = CanTailCallOpt;
1342   if (CanTailCallOpt)
1343     return lowerTailCall(MIRBuilder, Info, OutArgs);
1344 
1345   // Find out which ABI gets to decide where things go.
1346   CCAssignFn *AssignFnFixed;
1347   CCAssignFn *AssignFnVarArg;
1348   std::tie(AssignFnFixed, AssignFnVarArg) =
1349       getAssignFnsForCC(Info.CallConv, TLI);
1350 
1351   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1352     .addImm(0)
1353     .addImm(0);
1354 
1355   // Create a temporarily-floating call instruction so we can add the implicit
1356   // uses of arg registers.
1357   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
1358 
1359   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1360   MIB.addDef(TRI->getReturnAddressReg(MF));
1361 
1362   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1363     return false;
1364 
1365   // Tell the call which registers are clobbered.
1366   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1367   MIB.addRegMask(Mask);
1368 
1369   SmallVector<CCValAssign, 16> ArgLocs;
1370   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1371 
1372   // We could pass MIB and directly add the implicit uses to the call
1373   // now. However, as an aesthetic choice, place implicit argument operands
1374   // after the ordinary user argument registers.
1375   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1376 
1377   if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
1378     // With a fixed ABI, allocate fixed registers before user arguments.
1379     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1380       return false;
1381   }
1382 
1383   // Do the actual argument marshalling.
1384   SmallVector<Register, 8> PhysRegs;
1385 
1386   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1387   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1388     return false;
1389 
1390   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false);
1391   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1392     return false;
1393 
1394   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1395 
1396   handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs);
1397 
1398   // Get a count of how many bytes are to be pushed on the stack.
1399   unsigned NumBytes = CCInfo.getNextStackOffset();
1400 
1401   // If Callee is a reg, since it is used by a target specific
1402   // instruction, it must have a register class matching the
1403   // constraint of that instruction.
1404 
1405   // FIXME: We should define regbankselectable call instructions to handle
1406   // divergent call targets.
1407   if (MIB->getOperand(1).isReg()) {
1408     MIB->getOperand(1).setReg(constrainOperandRegClass(
1409         MF, *TRI, MRI, *ST.getInstrInfo(),
1410         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1411         1));
1412   }
1413 
1414   // Now we can add the actual call instruction to the correct position.
1415   MIRBuilder.insertInstr(MIB);
1416 
1417   // Finally we can copy the returned value back into its virtual-register. In
1418   // symmetry with the arguments, the physical register must be an
1419   // implicit-define of the call instruction.
1420   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1421     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1422                                                       Info.IsVarArg);
1423     IncomingValueAssigner Assigner(RetAssignFn);
1424     CallReturnHandler Handler(MIRBuilder, MRI, MIB);
1425     if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder,
1426                                        Info.CallConv, Info.IsVarArg))
1427       return false;
1428   }
1429 
1430   uint64_t CalleePopBytes = NumBytes;
1431 
1432   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
1433             .addImm(0)
1434             .addImm(CalleePopBytes);
1435 
1436   if (!Info.CanLowerReturn) {
1437     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1438                     Info.DemoteRegister, Info.DemoteStackIndex);
1439   }
1440 
1441   return true;
1442 }
1443