1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "SIRegisterInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 26 #define DEBUG_TYPE "amdgpu-call-lowering" 27 28 using namespace llvm; 29 30 namespace { 31 32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register. 33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler, 34 Register ValVReg, CCValAssign &VA) { 35 if (VA.getLocVT().getSizeInBits() < 32) { 36 // 16-bit types are reported as legal for 32-bit registers. We need to 37 // extend and do a 32-bit copy to avoid the verifier complaining about it. 38 return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 39 } 40 41 return Handler.extendRegister(ValVReg, VA); 42 } 43 44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler { 45 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 46 MachineInstrBuilder MIB) 47 : OutgoingValueHandler(B, MRI), MIB(MIB) {} 48 49 MachineInstrBuilder MIB; 50 51 Register getStackAddress(uint64_t Size, int64_t Offset, 52 MachinePointerInfo &MPO, 53 ISD::ArgFlagsTy Flags) override { 54 llvm_unreachable("not implemented"); 55 } 56 57 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 58 MachinePointerInfo &MPO, CCValAssign &VA) override { 59 llvm_unreachable("not implemented"); 60 } 61 62 void assignValueToReg(Register ValVReg, Register PhysReg, 63 CCValAssign &VA) override { 64 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 65 66 // If this is a scalar return, insert a readfirstlane just in case the value 67 // ends up in a VGPR. 68 // FIXME: Assert this is a shader return. 69 const SIRegisterInfo *TRI 70 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 71 if (TRI->isSGPRReg(MRI, PhysReg)) { 72 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 73 {MRI.getType(ExtReg)}, false) 74 .addReg(ExtReg); 75 ExtReg = ToSGPR.getReg(0); 76 } 77 78 MIRBuilder.buildCopy(PhysReg, ExtReg); 79 MIB.addUse(PhysReg, RegState::Implicit); 80 } 81 }; 82 83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler { 84 uint64_t StackUsed = 0; 85 86 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 87 : IncomingValueHandler(B, MRI) {} 88 89 Register getStackAddress(uint64_t Size, int64_t Offset, 90 MachinePointerInfo &MPO, 91 ISD::ArgFlagsTy Flags) override { 92 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 93 94 // Byval is assumed to be writable memory, but other stack passed arguments 95 // are not. 96 const bool IsImmutable = !Flags.isByVal(); 97 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); 98 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 99 auto AddrReg = MIRBuilder.buildFrameIndex( 100 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 101 StackUsed = std::max(StackUsed, Size + Offset); 102 return AddrReg.getReg(0); 103 } 104 105 void assignValueToReg(Register ValVReg, Register PhysReg, 106 CCValAssign &VA) override { 107 markPhysRegUsed(PhysReg); 108 109 if (VA.getLocVT().getSizeInBits() < 32) { 110 // 16-bit types are reported as legal for 32-bit registers. We need to do 111 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 112 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 113 114 // If we have signext/zeroext, it applies to the whole 32-bit register 115 // before truncation. 116 auto Extended = 117 buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT())); 118 MIRBuilder.buildTrunc(ValVReg, Extended); 119 return; 120 } 121 122 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); 123 } 124 125 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize, 126 MachinePointerInfo &MPO, CCValAssign &VA) override { 127 MachineFunction &MF = MIRBuilder.getMF(); 128 129 auto MMO = MF.getMachineMemOperand( 130 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize, 131 inferAlignFromPtrInfo(MF, MPO)); 132 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 133 } 134 135 /// How the physical register gets marked varies between formal 136 /// parameters (it's a basic-block live-in), and a call instruction 137 /// (it's an implicit-def of the BL). 138 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 139 }; 140 141 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 142 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 143 : AMDGPUIncomingArgHandler(B, MRI) {} 144 145 void markPhysRegUsed(unsigned PhysReg) override { 146 MIRBuilder.getMBB().addLiveIn(PhysReg); 147 } 148 }; 149 150 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 151 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 152 MachineInstrBuilder MIB) 153 : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} 154 155 void markPhysRegUsed(unsigned PhysReg) override { 156 MIB.addDef(PhysReg, RegState::Implicit); 157 } 158 159 MachineInstrBuilder MIB; 160 }; 161 162 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler { 163 /// For tail calls, the byte offset of the call's argument area from the 164 /// callee's. Unused elsewhere. 165 int FPDiff; 166 167 // Cache the SP register vreg if we need it more than once in this call site. 168 Register SPReg; 169 170 bool IsTailCall; 171 172 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 173 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 174 bool IsTailCall = false, int FPDiff = 0) 175 : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff), 176 IsTailCall(IsTailCall) {} 177 178 Register getStackAddress(uint64_t Size, int64_t Offset, 179 MachinePointerInfo &MPO, 180 ISD::ArgFlagsTy Flags) override { 181 MachineFunction &MF = MIRBuilder.getMF(); 182 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 183 const LLT S32 = LLT::scalar(32); 184 185 if (IsTailCall) { 186 Offset += FPDiff; 187 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); 188 auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI); 189 MPO = MachinePointerInfo::getFixedStack(MF, FI); 190 return FIReg.getReg(0); 191 } 192 193 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 194 195 if (!SPReg) 196 SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0); 197 198 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 199 200 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 201 MPO = MachinePointerInfo::getStack(MF, Offset); 202 return AddrReg.getReg(0); 203 } 204 205 void assignValueToReg(Register ValVReg, Register PhysReg, 206 CCValAssign &VA) override { 207 MIB.addUse(PhysReg, RegState::Implicit); 208 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 209 MIRBuilder.buildCopy(PhysReg, ExtReg); 210 } 211 212 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 213 MachinePointerInfo &MPO, CCValAssign &VA) override { 214 MachineFunction &MF = MIRBuilder.getMF(); 215 uint64_t LocMemOffset = VA.getLocMemOffset(); 216 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 217 218 auto MMO = MF.getMachineMemOperand( 219 MPO, MachineMemOperand::MOStore, Size, 220 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 221 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 222 } 223 224 void assignValueToAddress(const CallLowering::ArgInfo &Arg, 225 unsigned ValRegIndex, Register Addr, 226 uint64_t MemSize, MachinePointerInfo &MPO, 227 CCValAssign &VA) override { 228 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 229 ? extendRegister(Arg.Regs[ValRegIndex], VA) 230 : Arg.Regs[ValRegIndex]; 231 assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA); 232 } 233 }; 234 } 235 236 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 237 : CallLowering(&TLI) { 238 } 239 240 // FIXME: Compatability shim 241 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 242 switch (MIOpc) { 243 case TargetOpcode::G_SEXT: 244 return ISD::SIGN_EXTEND; 245 case TargetOpcode::G_ZEXT: 246 return ISD::ZERO_EXTEND; 247 case TargetOpcode::G_ANYEXT: 248 return ISD::ANY_EXTEND; 249 default: 250 llvm_unreachable("not an extend opcode"); 251 } 252 } 253 254 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, 255 CallingConv::ID CallConv, 256 SmallVectorImpl<BaseArgInfo> &Outs, 257 bool IsVarArg) const { 258 // For shaders. Vector types should be explicitly handled by CC. 259 if (AMDGPU::isEntryFunctionCC(CallConv)) 260 return true; 261 262 SmallVector<CCValAssign, 16> ArgLocs; 263 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 264 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 265 MF.getFunction().getContext()); 266 267 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); 268 } 269 270 /// Lower the return value for the already existing \p Ret. This assumes that 271 /// \p B's insertion point is correct. 272 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 273 const Value *Val, ArrayRef<Register> VRegs, 274 MachineInstrBuilder &Ret) const { 275 if (!Val) 276 return true; 277 278 auto &MF = B.getMF(); 279 const auto &F = MF.getFunction(); 280 const DataLayout &DL = MF.getDataLayout(); 281 MachineRegisterInfo *MRI = B.getMRI(); 282 LLVMContext &Ctx = F.getContext(); 283 284 CallingConv::ID CC = F.getCallingConv(); 285 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 286 287 SmallVector<EVT, 8> SplitEVTs; 288 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 289 assert(VRegs.size() == SplitEVTs.size() && 290 "For each split Type there should be exactly one VReg."); 291 292 SmallVector<ArgInfo, 8> SplitRetInfos; 293 294 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 295 EVT VT = SplitEVTs[i]; 296 Register Reg = VRegs[i]; 297 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx)); 298 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 299 300 if (VT.isScalarInteger()) { 301 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 302 if (RetInfo.Flags[0].isSExt()) { 303 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 304 ExtendOp = TargetOpcode::G_SEXT; 305 } else if (RetInfo.Flags[0].isZExt()) { 306 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 307 ExtendOp = TargetOpcode::G_ZEXT; 308 } 309 310 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 311 extOpcodeToISDExtOpcode(ExtendOp)); 312 if (ExtVT != VT) { 313 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 314 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 315 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 316 } 317 } 318 319 if (Reg != RetInfo.Regs[0]) { 320 RetInfo.Regs[0] = Reg; 321 // Reset the arg flags after modifying Reg. 322 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 323 } 324 325 splitToValueTypes(RetInfo, SplitRetInfos, DL, CC); 326 } 327 328 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 329 330 OutgoingValueAssigner Assigner(AssignFn); 331 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret); 332 return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B, 333 CC, F.isVarArg()); 334 } 335 336 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 337 ArrayRef<Register> VRegs, 338 FunctionLoweringInfo &FLI) const { 339 340 MachineFunction &MF = B.getMF(); 341 MachineRegisterInfo &MRI = MF.getRegInfo(); 342 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 343 MFI->setIfReturnsVoid(!Val); 344 345 assert(!Val == VRegs.empty() && "Return value without a vreg"); 346 347 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 348 const bool IsShader = AMDGPU::isShader(CC); 349 const bool IsWaveEnd = 350 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 351 if (IsWaveEnd) { 352 B.buildInstr(AMDGPU::S_ENDPGM) 353 .addImm(0); 354 return true; 355 } 356 357 auto const &ST = MF.getSubtarget<GCNSubtarget>(); 358 359 unsigned ReturnOpc = 360 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return; 361 362 auto Ret = B.buildInstrNoInsert(ReturnOpc); 363 Register ReturnAddrVReg; 364 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 365 ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass); 366 Ret.addUse(ReturnAddrVReg); 367 } 368 369 if (!FLI.CanLowerReturn) 370 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); 371 else if (!lowerReturnVal(B, Val, VRegs, Ret)) 372 return false; 373 374 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 375 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 376 Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF), 377 &AMDGPU::SGPR_64RegClass); 378 B.buildCopy(ReturnAddrVReg, LiveInReturn); 379 } 380 381 // TODO: Handle CalleeSavedRegsViaCopy. 382 383 B.insertInstr(Ret); 384 return true; 385 } 386 387 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 388 Type *ParamTy, 389 uint64_t Offset) const { 390 MachineFunction &MF = B.getMF(); 391 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 392 MachineRegisterInfo &MRI = MF.getRegInfo(); 393 Register KernArgSegmentPtr = 394 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 395 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 396 397 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 398 399 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 400 } 401 402 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy, 403 uint64_t Offset, Align Alignment, 404 Register DstReg) const { 405 MachineFunction &MF = B.getMF(); 406 const Function &F = MF.getFunction(); 407 const DataLayout &DL = F.getParent()->getDataLayout(); 408 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 409 unsigned TypeSize = DL.getTypeStoreSize(ParamTy); 410 411 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 412 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 413 lowerParameterPtr(PtrReg, B, ParamTy, Offset); 414 415 MachineMemOperand *MMO = MF.getMachineMemOperand( 416 PtrInfo, 417 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 418 MachineMemOperand::MOInvariant, 419 TypeSize, Alignment); 420 421 B.buildLoad(DstReg, PtrReg, *MMO); 422 } 423 424 // Allocate special inputs passed in user SGPRs. 425 static void allocateHSAUserSGPRs(CCState &CCInfo, 426 MachineIRBuilder &B, 427 MachineFunction &MF, 428 const SIRegisterInfo &TRI, 429 SIMachineFunctionInfo &Info) { 430 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 431 if (Info.hasPrivateSegmentBuffer()) { 432 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 433 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 434 CCInfo.AllocateReg(PrivateSegmentBufferReg); 435 } 436 437 if (Info.hasDispatchPtr()) { 438 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 439 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 440 CCInfo.AllocateReg(DispatchPtrReg); 441 } 442 443 if (Info.hasQueuePtr()) { 444 Register QueuePtrReg = Info.addQueuePtr(TRI); 445 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 446 CCInfo.AllocateReg(QueuePtrReg); 447 } 448 449 if (Info.hasKernargSegmentPtr()) { 450 MachineRegisterInfo &MRI = MF.getRegInfo(); 451 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 452 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 453 Register VReg = MRI.createGenericVirtualRegister(P4); 454 MRI.addLiveIn(InputPtrReg, VReg); 455 B.getMBB().addLiveIn(InputPtrReg); 456 B.buildCopy(VReg, InputPtrReg); 457 CCInfo.AllocateReg(InputPtrReg); 458 } 459 460 if (Info.hasDispatchID()) { 461 Register DispatchIDReg = Info.addDispatchID(TRI); 462 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 463 CCInfo.AllocateReg(DispatchIDReg); 464 } 465 466 if (Info.hasFlatScratchInit()) { 467 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 468 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 469 CCInfo.AllocateReg(FlatScratchInitReg); 470 } 471 472 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 473 // these from the dispatch pointer. 474 } 475 476 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 477 MachineIRBuilder &B, const Function &F, 478 ArrayRef<ArrayRef<Register>> VRegs) const { 479 MachineFunction &MF = B.getMF(); 480 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 481 MachineRegisterInfo &MRI = MF.getRegInfo(); 482 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 483 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 484 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 485 const DataLayout &DL = F.getParent()->getDataLayout(); 486 487 Info->allocateModuleLDSGlobal(F.getParent()); 488 489 SmallVector<CCValAssign, 16> ArgLocs; 490 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 491 492 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 493 494 unsigned i = 0; 495 const Align KernArgBaseAlign(16); 496 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 497 uint64_t ExplicitArgOffset = 0; 498 499 // TODO: Align down to dword alignment and extract bits for extending loads. 500 for (auto &Arg : F.args()) { 501 const bool IsByRef = Arg.hasByRefAttr(); 502 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 503 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 504 if (AllocSize == 0) 505 continue; 506 507 MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None; 508 if (!ABIAlign) 509 ABIAlign = DL.getABITypeAlign(ArgTy); 510 511 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 512 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 513 514 if (Arg.use_empty()) { 515 ++i; 516 continue; 517 } 518 519 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 520 521 if (IsByRef) { 522 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 523 524 assert(VRegs[i].size() == 1 && 525 "expected only one register for byval pointers"); 526 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 527 lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset); 528 } else { 529 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 530 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 531 lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset); 532 533 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 534 } 535 } else { 536 ArrayRef<Register> OrigArgRegs = VRegs[i]; 537 Register ArgReg = 538 OrigArgRegs.size() == 1 539 ? OrigArgRegs[0] 540 : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL)); 541 542 lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg); 543 if (OrigArgRegs.size() > 1) 544 unpackRegs(OrigArgRegs, ArgReg, ArgTy, B); 545 } 546 547 ++i; 548 } 549 550 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 551 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 552 return true; 553 } 554 555 bool AMDGPUCallLowering::lowerFormalArguments( 556 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 557 FunctionLoweringInfo &FLI) const { 558 CallingConv::ID CC = F.getCallingConv(); 559 560 // The infrastructure for normal calling convention lowering is essentially 561 // useless for kernels. We want to avoid any kind of legalization or argument 562 // splitting. 563 if (CC == CallingConv::AMDGPU_KERNEL) 564 return lowerFormalArgumentsKernel(B, F, VRegs); 565 566 const bool IsGraphics = AMDGPU::isGraphics(CC); 567 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 568 569 MachineFunction &MF = B.getMF(); 570 MachineBasicBlock &MBB = B.getMBB(); 571 MachineRegisterInfo &MRI = MF.getRegInfo(); 572 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 573 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 574 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 575 const DataLayout &DL = F.getParent()->getDataLayout(); 576 577 Info->allocateModuleLDSGlobal(F.getParent()); 578 579 SmallVector<CCValAssign, 16> ArgLocs; 580 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 581 582 if (!IsEntryFunc) { 583 Register ReturnAddrReg = TRI->getReturnAddressReg(MF); 584 Register LiveInReturn = MF.addLiveIn(ReturnAddrReg, 585 &AMDGPU::SGPR_64RegClass); 586 MBB.addLiveIn(ReturnAddrReg); 587 B.buildCopy(LiveInReturn, ReturnAddrReg); 588 } 589 590 if (Info->hasImplicitBufferPtr()) { 591 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 592 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 593 CCInfo.AllocateReg(ImplicitBufferPtrReg); 594 } 595 596 SmallVector<ArgInfo, 32> SplitArgs; 597 unsigned Idx = 0; 598 unsigned PSInputNum = 0; 599 600 // Insert the hidden sret parameter if the return value won't fit in the 601 // return registers. 602 if (!FLI.CanLowerReturn) 603 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 604 605 for (auto &Arg : F.args()) { 606 if (DL.getTypeStoreSize(Arg.getType()) == 0) 607 continue; 608 609 const bool InReg = Arg.hasAttribute(Attribute::InReg); 610 611 // SGPR arguments to functions not implemented. 612 if (!IsGraphics && InReg) 613 return false; 614 615 if (Arg.hasAttribute(Attribute::SwiftSelf) || 616 Arg.hasAttribute(Attribute::SwiftError) || 617 Arg.hasAttribute(Attribute::Nest)) 618 return false; 619 620 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 621 const bool ArgUsed = !Arg.use_empty(); 622 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 623 624 if (!SkipArg) { 625 Info->markPSInputAllocated(PSInputNum); 626 if (ArgUsed) 627 Info->markPSInputEnabled(PSInputNum); 628 } 629 630 ++PSInputNum; 631 632 if (SkipArg) { 633 for (int I = 0, E = VRegs[Idx].size(); I != E; ++I) 634 B.buildUndef(VRegs[Idx][I]); 635 636 ++Idx; 637 continue; 638 } 639 } 640 641 ArgInfo OrigArg(VRegs[Idx], Arg); 642 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 643 setArgFlags(OrigArg, OrigArgIdx, DL, F); 644 645 splitToValueTypes(OrigArg, SplitArgs, DL, CC); 646 ++Idx; 647 } 648 649 // At least one interpolation mode must be enabled or else the GPU will 650 // hang. 651 // 652 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 653 // set PSInputAddr, the user wants to enable some bits after the compilation 654 // based on run-time states. Since we can't know what the final PSInputEna 655 // will look like, so we shouldn't do anything here and the user should take 656 // responsibility for the correct programming. 657 // 658 // Otherwise, the following restrictions apply: 659 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 660 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 661 // enabled too. 662 if (CC == CallingConv::AMDGPU_PS) { 663 if ((Info->getPSInputAddr() & 0x7F) == 0 || 664 ((Info->getPSInputAddr() & 0xF) == 0 && 665 Info->isPSInputAllocated(11))) { 666 CCInfo.AllocateReg(AMDGPU::VGPR0); 667 CCInfo.AllocateReg(AMDGPU::VGPR1); 668 Info->markPSInputAllocated(0); 669 Info->markPSInputEnabled(0); 670 } 671 672 if (Subtarget.isAmdPalOS()) { 673 // For isAmdPalOS, the user does not enable some bits after compilation 674 // based on run-time states; the register values being generated here are 675 // the final ones set in hardware. Therefore we need to apply the 676 // workaround to PSInputAddr and PSInputEnable together. (The case where 677 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 678 // set up an input arg for a particular interpolation mode, but nothing 679 // uses that input arg. Really we should have an earlier pass that removes 680 // such an arg.) 681 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 682 if ((PsInputBits & 0x7F) == 0 || 683 ((PsInputBits & 0xF) == 0 && 684 (PsInputBits >> 11 & 1))) 685 Info->markPSInputEnabled( 686 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 687 } 688 } 689 690 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 691 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 692 693 if (!MBB.empty()) 694 B.setInstr(*MBB.begin()); 695 696 if (!IsEntryFunc) { 697 // For the fixed ABI, pass workitem IDs in the last argument register. 698 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 699 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 700 } 701 702 IncomingValueAssigner Assigner(AssignFn); 703 if (!determineAssignments(Assigner, SplitArgs, CCInfo)) 704 return false; 705 706 FormalArgHandler Handler(B, MRI); 707 if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B)) 708 return false; 709 710 uint64_t StackOffset = Assigner.StackOffset; 711 712 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 713 // Special inputs come after user arguments. 714 TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 715 } 716 717 // Start adding system SGPRs. 718 if (IsEntryFunc) { 719 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 720 } else { 721 if (!Subtarget.enableFlatScratch()) 722 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 723 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 724 } 725 726 // When we tail call, we need to check if the callee's arguments will fit on 727 // the caller's stack. So, whenever we lower formal arguments, we should keep 728 // track of this information, since we might lower a tail call in this 729 // function later. 730 Info->setBytesInStackArgArea(StackOffset); 731 732 // Move back to the end of the basic block. 733 B.setMBB(MBB); 734 735 return true; 736 } 737 738 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 739 CCState &CCInfo, 740 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 741 CallLoweringInfo &Info) const { 742 MachineFunction &MF = MIRBuilder.getMF(); 743 744 const AMDGPUFunctionArgInfo *CalleeArgInfo 745 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 746 747 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 748 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 749 750 751 // TODO: Unify with private memory register handling. This is complicated by 752 // the fact that at least in kernels, the input argument is not necessarily 753 // in the same location as the input. 754 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 755 AMDGPUFunctionArgInfo::DISPATCH_PTR, 756 AMDGPUFunctionArgInfo::QUEUE_PTR, 757 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 758 AMDGPUFunctionArgInfo::DISPATCH_ID, 759 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 760 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 761 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 762 }; 763 764 MachineRegisterInfo &MRI = MF.getRegInfo(); 765 766 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 767 const AMDGPULegalizerInfo *LI 768 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 769 770 for (auto InputID : InputRegs) { 771 const ArgDescriptor *OutgoingArg; 772 const TargetRegisterClass *ArgRC; 773 LLT ArgTy; 774 775 std::tie(OutgoingArg, ArgRC, ArgTy) = 776 CalleeArgInfo->getPreloadedValue(InputID); 777 if (!OutgoingArg) 778 continue; 779 780 const ArgDescriptor *IncomingArg; 781 const TargetRegisterClass *IncomingArgRC; 782 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 783 CallerArgInfo.getPreloadedValue(InputID); 784 assert(IncomingArgRC == ArgRC); 785 786 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 787 788 if (IncomingArg) { 789 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 790 } else { 791 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 792 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 793 } 794 795 if (OutgoingArg->isRegister()) { 796 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 797 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 798 report_fatal_error("failed to allocate implicit input argument"); 799 } else { 800 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 801 return false; 802 } 803 } 804 805 // Pack workitem IDs into a single register or pass it as is if already 806 // packed. 807 const ArgDescriptor *OutgoingArg; 808 const TargetRegisterClass *ArgRC; 809 LLT ArgTy; 810 811 std::tie(OutgoingArg, ArgRC, ArgTy) = 812 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 813 if (!OutgoingArg) 814 std::tie(OutgoingArg, ArgRC, ArgTy) = 815 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 816 if (!OutgoingArg) 817 std::tie(OutgoingArg, ArgRC, ArgTy) = 818 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 819 if (!OutgoingArg) 820 return false; 821 822 auto WorkitemIDX = 823 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 824 auto WorkitemIDY = 825 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 826 auto WorkitemIDZ = 827 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 828 829 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 830 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 831 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 832 const LLT S32 = LLT::scalar(32); 833 834 // If incoming ids are not packed we need to pack them. 835 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 836 Register InputReg; 837 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) { 838 InputReg = MRI.createGenericVirtualRegister(S32); 839 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 840 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 841 } 842 843 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { 844 Register Y = MRI.createGenericVirtualRegister(S32); 845 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 846 std::get<2>(WorkitemIDY)); 847 848 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 849 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 850 } 851 852 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { 853 Register Z = MRI.createGenericVirtualRegister(S32); 854 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 855 std::get<2>(WorkitemIDZ)); 856 857 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 858 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 859 } 860 861 if (!InputReg) { 862 InputReg = MRI.createGenericVirtualRegister(S32); 863 864 // Workitem ids are already packed, any of present incoming arguments will 865 // carry all required fields. 866 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 867 IncomingArgX ? *IncomingArgX : 868 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 869 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 870 &AMDGPU::VGPR_32RegClass, S32); 871 } 872 873 if (OutgoingArg->isRegister()) { 874 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 875 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 876 report_fatal_error("failed to allocate implicit input argument"); 877 } else { 878 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 879 return false; 880 } 881 882 return true; 883 } 884 885 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 886 /// CC. 887 static std::pair<CCAssignFn *, CCAssignFn *> 888 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 889 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 890 } 891 892 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 893 bool IsTailCall) { 894 return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::SI_CALL; 895 } 896 897 // Add operands to call instruction to track the callee. 898 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 899 MachineIRBuilder &MIRBuilder, 900 AMDGPUCallLowering::CallLoweringInfo &Info) { 901 if (Info.Callee.isReg()) { 902 CallInst.addReg(Info.Callee.getReg()); 903 CallInst.addImm(0); 904 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 905 // The call lowering lightly assumed we can directly encode a call target in 906 // the instruction, which is not the case. Materialize the address here. 907 const GlobalValue *GV = Info.Callee.getGlobal(); 908 auto Ptr = MIRBuilder.buildGlobalValue( 909 LLT::pointer(GV->getAddressSpace(), 64), GV); 910 CallInst.addReg(Ptr.getReg(0)); 911 CallInst.add(Info.Callee); 912 } else 913 return false; 914 915 return true; 916 } 917 918 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay( 919 CallLoweringInfo &Info, MachineFunction &MF, 920 SmallVectorImpl<ArgInfo> &InArgs) const { 921 const Function &CallerF = MF.getFunction(); 922 CallingConv::ID CalleeCC = Info.CallConv; 923 CallingConv::ID CallerCC = CallerF.getCallingConv(); 924 925 // If the calling conventions match, then everything must be the same. 926 if (CalleeCC == CallerCC) 927 return true; 928 929 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 930 931 // Make sure that the caller and callee preserve all of the same registers. 932 auto TRI = ST.getRegisterInfo(); 933 934 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 935 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 936 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 937 return false; 938 939 // Check if the caller and callee will handle arguments in the same way. 940 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 941 CCAssignFn *CalleeAssignFnFixed; 942 CCAssignFn *CalleeAssignFnVarArg; 943 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = 944 getAssignFnsForCC(CalleeCC, TLI); 945 946 CCAssignFn *CallerAssignFnFixed; 947 CCAssignFn *CallerAssignFnVarArg; 948 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = 949 getAssignFnsForCC(CallerCC, TLI); 950 951 // FIXME: We are not accounting for potential differences in implicitly passed 952 // inputs, but only the fixed ABI is supported now anyway. 953 IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, 954 CalleeAssignFnVarArg); 955 IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, 956 CallerAssignFnVarArg); 957 return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner); 958 } 959 960 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable( 961 CallLoweringInfo &Info, MachineFunction &MF, 962 SmallVectorImpl<ArgInfo> &OutArgs) const { 963 // If there are no outgoing arguments, then we are done. 964 if (OutArgs.empty()) 965 return true; 966 967 const Function &CallerF = MF.getFunction(); 968 CallingConv::ID CalleeCC = Info.CallConv; 969 CallingConv::ID CallerCC = CallerF.getCallingConv(); 970 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 971 972 CCAssignFn *AssignFnFixed; 973 CCAssignFn *AssignFnVarArg; 974 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 975 976 // We have outgoing arguments. Make sure that we can tail call with them. 977 SmallVector<CCValAssign, 16> OutLocs; 978 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); 979 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 980 981 if (!determineAssignments(Assigner, OutArgs, OutInfo)) { 982 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); 983 return false; 984 } 985 986 // Make sure that they can fit on the caller's stack. 987 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 988 if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) { 989 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); 990 return false; 991 } 992 993 // Verify that the parameters in callee-saved registers match. 994 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 995 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 996 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); 997 MachineRegisterInfo &MRI = MF.getRegInfo(); 998 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs); 999 } 1000 1001 /// Return true if the calling convention is one that we can guarantee TCO for. 1002 static bool canGuaranteeTCO(CallingConv::ID CC) { 1003 return CC == CallingConv::Fast; 1004 } 1005 1006 /// Return true if we might ever do TCO for calls with this calling convention. 1007 static bool mayTailCallThisCC(CallingConv::ID CC) { 1008 switch (CC) { 1009 case CallingConv::C: 1010 case CallingConv::AMDGPU_Gfx: 1011 return true; 1012 default: 1013 return canGuaranteeTCO(CC); 1014 } 1015 } 1016 1017 bool AMDGPUCallLowering::isEligibleForTailCallOptimization( 1018 MachineIRBuilder &B, CallLoweringInfo &Info, 1019 SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const { 1020 // Must pass all target-independent checks in order to tail call optimize. 1021 if (!Info.IsTailCall) 1022 return false; 1023 1024 MachineFunction &MF = B.getMF(); 1025 const Function &CallerF = MF.getFunction(); 1026 CallingConv::ID CalleeCC = Info.CallConv; 1027 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1028 1029 const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo(); 1030 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1031 // Kernels aren't callable, and don't have a live in return address so it 1032 // doesn't make sense to do a tail call with entry functions. 1033 if (!CallerPreserved) 1034 return false; 1035 1036 if (!mayTailCallThisCC(CalleeCC)) { 1037 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); 1038 return false; 1039 } 1040 1041 if (any_of(CallerF.args(), [](const Argument &A) { 1042 return A.hasByValAttr() || A.hasSwiftErrorAttr(); 1043 })) { 1044 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval " 1045 "or swifterror arguments\n"); 1046 return false; 1047 } 1048 1049 // If we have -tailcallopt, then we're done. 1050 if (MF.getTarget().Options.GuaranteedTailCallOpt) 1051 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv(); 1052 1053 // Verify that the incoming and outgoing arguments from the callee are 1054 // safe to tail call. 1055 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { 1056 LLVM_DEBUG( 1057 dbgs() 1058 << "... Caller and callee have incompatible calling conventions.\n"); 1059 return false; 1060 } 1061 1062 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) 1063 return false; 1064 1065 LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n"); 1066 return true; 1067 } 1068 1069 // Insert outgoing implicit arguments for a call, by inserting copies to the 1070 // implicit argument registers and adding the necessary implicit uses to the 1071 // call instruction. 1072 void AMDGPUCallLowering::handleImplicitCallArguments( 1073 MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst, 1074 const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo, 1075 ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const { 1076 if (!ST.enableFlatScratch()) { 1077 // Insert copies for the SRD. In the HSA case, this should be an identity 1078 // copy. 1079 auto ScratchRSrcReg = 1080 MIRBuilder.buildCopy(LLT::vector(4, 32), FuncInfo.getScratchRSrcReg()); 1081 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 1082 CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); 1083 } 1084 1085 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1086 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1087 CallInst.addReg(ArgReg.first, RegState::Implicit); 1088 } 1089 } 1090 1091 bool AMDGPUCallLowering::lowerTailCall( 1092 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 1093 SmallVectorImpl<ArgInfo> &OutArgs) const { 1094 MachineFunction &MF = MIRBuilder.getMF(); 1095 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1096 SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1097 const Function &F = MF.getFunction(); 1098 MachineRegisterInfo &MRI = MF.getRegInfo(); 1099 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1100 1101 // True when we're tail calling, but without -tailcallopt. 1102 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt; 1103 1104 // Find out which ABI gets to decide where things go. 1105 CallingConv::ID CalleeCC = Info.CallConv; 1106 CCAssignFn *AssignFnFixed; 1107 CCAssignFn *AssignFnVarArg; 1108 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1109 1110 MachineInstrBuilder CallSeqStart; 1111 if (!IsSibCall) 1112 CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP); 1113 1114 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true); 1115 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1116 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1117 return false; 1118 1119 // Byte offset for the tail call. When we are sibcalling, this will always 1120 // be 0. 1121 MIB.addImm(0); 1122 1123 // Tell the call which registers are clobbered. 1124 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1125 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); 1126 MIB.addRegMask(Mask); 1127 1128 // FPDiff is the byte offset of the call's argument area from the callee's. 1129 // Stores to callee stack arguments will be placed in FixedStackSlots offset 1130 // by this amount for a tail call. In a sibling call it must be 0 because the 1131 // caller will deallocate the entire stack and the callee still expects its 1132 // arguments to begin at SP+0. 1133 int FPDiff = 0; 1134 1135 // This will be 0 for sibcalls, potentially nonzero for tail calls produced 1136 // by -tailcallopt. For sibcalls, the memory operands for the call are 1137 // already available in the caller's incoming argument space. 1138 unsigned NumBytes = 0; 1139 if (!IsSibCall) { 1140 // We aren't sibcalling, so we need to compute FPDiff. We need to do this 1141 // before handling assignments, because FPDiff must be known for memory 1142 // arguments. 1143 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 1144 SmallVector<CCValAssign, 16> OutLocs; 1145 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); 1146 1147 // FIXME: Not accounting for callee implicit inputs 1148 OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg); 1149 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) 1150 return false; 1151 1152 // The callee will pop the argument stack as a tail call. Thus, we must 1153 // keep it 16-byte aligned. 1154 NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment()); 1155 1156 // FPDiff will be negative if this tail call requires more space than we 1157 // would automatically have in our incoming argument space. Positive if we 1158 // actually shrink the stack. 1159 FPDiff = NumReusableBytes - NumBytes; 1160 1161 // The stack pointer must be 16-byte aligned at all times it's used for a 1162 // memory operation, which in practice means at *all* times and in 1163 // particular across call boundaries. Therefore our own arguments started at 1164 // a 16-byte aligned SP and the delta applied for the tail call should 1165 // satisfy the same constraint. 1166 assert(isAligned(ST.getStackAlignment(), FPDiff) && 1167 "unaligned stack on tail call"); 1168 } 1169 1170 SmallVector<CCValAssign, 16> ArgLocs; 1171 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1172 1173 // We could pass MIB and directly add the implicit uses to the call 1174 // now. However, as an aesthetic choice, place implicit argument operands 1175 // after the ordinary user argument registers. 1176 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1177 1178 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 1179 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1180 // With a fixed ABI, allocate fixed registers before user arguments. 1181 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1182 return false; 1183 } 1184 1185 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1186 1187 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1188 return false; 1189 1190 // Do the actual argument marshalling. 1191 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff); 1192 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1193 return false; 1194 1195 handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs); 1196 1197 // If we have -tailcallopt, we need to adjust the stack. We'll do the call 1198 // sequence start and end here. 1199 if (!IsSibCall) { 1200 MIB->getOperand(1).setImm(FPDiff); 1201 CallSeqStart.addImm(NumBytes).addImm(0); 1202 // End the call sequence *before* emitting the call. Normally, we would 1203 // tidy the frame up after the call. However, here, we've laid out the 1204 // parameters so that when SP is reset, they will be in the correct 1205 // location. 1206 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0); 1207 } 1208 1209 // Now we can add the actual call instruction to the correct basic block. 1210 MIRBuilder.insertInstr(MIB); 1211 1212 // If Callee is a reg, since it is used by a target specific 1213 // instruction, it must have a register class matching the 1214 // constraint of that instruction. 1215 1216 // FIXME: We should define regbankselectable call instructions to handle 1217 // divergent call targets. 1218 if (MIB->getOperand(0).isReg()) { 1219 MIB->getOperand(0).setReg(constrainOperandRegClass( 1220 MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB, 1221 MIB->getDesc(), MIB->getOperand(0), 0)); 1222 } 1223 1224 MF.getFrameInfo().setHasTailCall(); 1225 Info.LoweredTailCall = true; 1226 return true; 1227 } 1228 1229 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1230 CallLoweringInfo &Info) const { 1231 if (Info.IsVarArg) { 1232 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 1233 return false; 1234 } 1235 1236 MachineFunction &MF = MIRBuilder.getMF(); 1237 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1238 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1239 1240 const Function &F = MF.getFunction(); 1241 MachineRegisterInfo &MRI = MF.getRegInfo(); 1242 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1243 const DataLayout &DL = F.getParent()->getDataLayout(); 1244 1245 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 1246 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1247 LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n"); 1248 return false; 1249 } 1250 1251 SmallVector<ArgInfo, 8> OutArgs; 1252 for (auto &OrigArg : Info.OrigArgs) 1253 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); 1254 1255 SmallVector<ArgInfo, 8> InArgs; 1256 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) 1257 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); 1258 1259 // If we can lower as a tail call, do that instead. 1260 bool CanTailCallOpt = 1261 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); 1262 1263 // We must emit a tail call if we have musttail. 1264 if (Info.IsMustTailCall && !CanTailCallOpt) { 1265 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1266 return false; 1267 } 1268 1269 if (CanTailCallOpt) 1270 return lowerTailCall(MIRBuilder, Info, OutArgs); 1271 1272 // Find out which ABI gets to decide where things go. 1273 CCAssignFn *AssignFnFixed; 1274 CCAssignFn *AssignFnVarArg; 1275 std::tie(AssignFnFixed, AssignFnVarArg) = 1276 getAssignFnsForCC(Info.CallConv, TLI); 1277 1278 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 1279 .addImm(0) 1280 .addImm(0); 1281 1282 // Create a temporarily-floating call instruction so we can add the implicit 1283 // uses of arg registers. 1284 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 1285 1286 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1287 MIB.addDef(TRI->getReturnAddressReg(MF)); 1288 1289 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1290 return false; 1291 1292 // Tell the call which registers are clobbered. 1293 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 1294 MIB.addRegMask(Mask); 1295 1296 SmallVector<CCValAssign, 16> ArgLocs; 1297 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1298 1299 // We could pass MIB and directly add the implicit uses to the call 1300 // now. However, as an aesthetic choice, place implicit argument operands 1301 // after the ordinary user argument registers. 1302 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1303 1304 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 1305 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1306 // With a fixed ABI, allocate fixed registers before user arguments. 1307 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1308 return false; 1309 } 1310 1311 // Do the actual argument marshalling. 1312 SmallVector<Register, 8> PhysRegs; 1313 1314 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1315 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1316 return false; 1317 1318 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false); 1319 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1320 return false; 1321 1322 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1323 1324 handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs); 1325 1326 // Get a count of how many bytes are to be pushed on the stack. 1327 unsigned NumBytes = CCInfo.getNextStackOffset(); 1328 1329 // If Callee is a reg, since it is used by a target specific 1330 // instruction, it must have a register class matching the 1331 // constraint of that instruction. 1332 1333 // FIXME: We should define regbankselectable call instructions to handle 1334 // divergent call targets. 1335 if (MIB->getOperand(1).isReg()) { 1336 MIB->getOperand(1).setReg(constrainOperandRegClass( 1337 MF, *TRI, MRI, *ST.getInstrInfo(), 1338 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1339 1)); 1340 } 1341 1342 // Now we can add the actual call instruction to the correct position. 1343 MIRBuilder.insertInstr(MIB); 1344 1345 // Finally we can copy the returned value back into its virtual-register. In 1346 // symmetry with the arguments, the physical register must be an 1347 // implicit-define of the call instruction. 1348 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1349 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1350 Info.IsVarArg); 1351 IncomingValueAssigner Assigner(RetAssignFn); 1352 CallReturnHandler Handler(MIRBuilder, MRI, MIB); 1353 if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder, 1354 Info.CallConv, Info.IsVarArg)) 1355 return false; 1356 } 1357 1358 uint64_t CalleePopBytes = NumBytes; 1359 1360 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN) 1361 .addImm(0) 1362 .addImm(CalleePopBytes); 1363 1364 if (!Info.CanLowerReturn) { 1365 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1366 Info.DemoteRegister, Info.DemoteStackIndex); 1367 } 1368 1369 return true; 1370 } 1371