1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 
26 #define DEBUG_TYPE "amdgpu-call-lowering"
27 
28 using namespace llvm;
29 
30 namespace {
31 
32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
34                                     Register ValVReg, CCValAssign &VA) {
35   if (VA.getLocVT().getSizeInBits() < 32) {
36     // 16-bit types are reported as legal for 32-bit registers. We need to
37     // extend and do a 32-bit copy to avoid the verifier complaining about it.
38     return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
39   }
40 
41   return Handler.extendRegister(ValVReg, VA);
42 }
43 
44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
45   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
46                              MachineInstrBuilder MIB)
47       : OutgoingValueHandler(B, MRI), MIB(MIB) {}
48 
49   MachineInstrBuilder MIB;
50 
51   Register getStackAddress(uint64_t Size, int64_t Offset,
52                            MachinePointerInfo &MPO,
53                            ISD::ArgFlagsTy Flags) override {
54     llvm_unreachable("not implemented");
55   }
56 
57   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
58                             MachinePointerInfo &MPO, CCValAssign &VA) override {
59     llvm_unreachable("not implemented");
60   }
61 
62   void assignValueToReg(Register ValVReg, Register PhysReg,
63                         CCValAssign &VA) override {
64     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
65 
66     // If this is a scalar return, insert a readfirstlane just in case the value
67     // ends up in a VGPR.
68     // FIXME: Assert this is a shader return.
69     const SIRegisterInfo *TRI
70       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
71     if (TRI->isSGPRReg(MRI, PhysReg)) {
72       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
73                                               {MRI.getType(ExtReg)}, false)
74         .addReg(ExtReg);
75       ExtReg = ToSGPR.getReg(0);
76     }
77 
78     MIRBuilder.buildCopy(PhysReg, ExtReg);
79     MIB.addUse(PhysReg, RegState::Implicit);
80   }
81 };
82 
83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
84   uint64_t StackUsed = 0;
85 
86   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
87       : IncomingValueHandler(B, MRI) {}
88 
89   Register getStackAddress(uint64_t Size, int64_t Offset,
90                            MachinePointerInfo &MPO,
91                            ISD::ArgFlagsTy Flags) override {
92     auto &MFI = MIRBuilder.getMF().getFrameInfo();
93 
94     // Byval is assumed to be writable memory, but other stack passed arguments
95     // are not.
96     const bool IsImmutable = !Flags.isByVal();
97     int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
98     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
99     auto AddrReg = MIRBuilder.buildFrameIndex(
100         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
101     StackUsed = std::max(StackUsed, Size + Offset);
102     return AddrReg.getReg(0);
103   }
104 
105   void assignValueToReg(Register ValVReg, Register PhysReg,
106                         CCValAssign &VA) override {
107     markPhysRegUsed(PhysReg);
108 
109     if (VA.getLocVT().getSizeInBits() < 32) {
110       // 16-bit types are reported as legal for 32-bit registers. We need to do
111       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
112       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
113 
114       // If we have signext/zeroext, it applies to the whole 32-bit register
115       // before truncation.
116       auto Extended =
117           buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
118       MIRBuilder.buildTrunc(ValVReg, Extended);
119       return;
120     }
121 
122     IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
123   }
124 
125   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
126                             MachinePointerInfo &MPO, CCValAssign &VA) override {
127     MachineFunction &MF = MIRBuilder.getMF();
128 
129     auto MMO = MF.getMachineMemOperand(
130         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
131         inferAlignFromPtrInfo(MF, MPO));
132     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
133   }
134 
135   /// How the physical register gets marked varies between formal
136   /// parameters (it's a basic-block live-in), and a call instruction
137   /// (it's an implicit-def of the BL).
138   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
139 };
140 
141 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
142   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
143       : AMDGPUIncomingArgHandler(B, MRI) {}
144 
145   void markPhysRegUsed(unsigned PhysReg) override {
146     MIRBuilder.getMBB().addLiveIn(PhysReg);
147   }
148 };
149 
150 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
151   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
152                     MachineInstrBuilder MIB)
153       : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
154 
155   void markPhysRegUsed(unsigned PhysReg) override {
156     MIB.addDef(PhysReg, RegState::Implicit);
157   }
158 
159   MachineInstrBuilder MIB;
160 };
161 
162 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
163   /// For tail calls, the byte offset of the call's argument area from the
164   /// callee's. Unused elsewhere.
165   int FPDiff;
166 
167   // Cache the SP register vreg if we need it more than once in this call site.
168   Register SPReg;
169 
170   bool IsTailCall;
171 
172   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
173                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
174                            bool IsTailCall = false, int FPDiff = 0)
175       : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff),
176         IsTailCall(IsTailCall) {}
177 
178   Register getStackAddress(uint64_t Size, int64_t Offset,
179                            MachinePointerInfo &MPO,
180                            ISD::ArgFlagsTy Flags) override {
181     MachineFunction &MF = MIRBuilder.getMF();
182     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
183     const LLT S32 = LLT::scalar(32);
184 
185     if (IsTailCall) {
186       Offset += FPDiff;
187       int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
188       auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI);
189       MPO = MachinePointerInfo::getFixedStack(MF, FI);
190       return FIReg.getReg(0);
191     }
192 
193     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
194 
195     if (!SPReg)
196       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
197 
198     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
199 
200     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
201     MPO = MachinePointerInfo::getStack(MF, Offset);
202     return AddrReg.getReg(0);
203   }
204 
205   void assignValueToReg(Register ValVReg, Register PhysReg,
206                         CCValAssign &VA) override {
207     MIB.addUse(PhysReg, RegState::Implicit);
208     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
209     MIRBuilder.buildCopy(PhysReg, ExtReg);
210   }
211 
212   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
213                             MachinePointerInfo &MPO, CCValAssign &VA) override {
214     MachineFunction &MF = MIRBuilder.getMF();
215     uint64_t LocMemOffset = VA.getLocMemOffset();
216     const auto &ST = MF.getSubtarget<GCNSubtarget>();
217 
218     auto MMO = MF.getMachineMemOperand(
219       MPO, MachineMemOperand::MOStore, Size,
220       commonAlignment(ST.getStackAlignment(), LocMemOffset));
221     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
222   }
223 
224   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
225                             unsigned ValRegIndex, Register Addr,
226                             uint64_t MemSize, MachinePointerInfo &MPO,
227                             CCValAssign &VA) override {
228     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
229                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
230                            : Arg.Regs[ValRegIndex];
231     assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA);
232   }
233 };
234 }
235 
236 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
237   : CallLowering(&TLI) {
238 }
239 
240 // FIXME: Compatability shim
241 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
242   switch (MIOpc) {
243   case TargetOpcode::G_SEXT:
244     return ISD::SIGN_EXTEND;
245   case TargetOpcode::G_ZEXT:
246     return ISD::ZERO_EXTEND;
247   case TargetOpcode::G_ANYEXT:
248     return ISD::ANY_EXTEND;
249   default:
250     llvm_unreachable("not an extend opcode");
251   }
252 }
253 
254 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
255                                         CallingConv::ID CallConv,
256                                         SmallVectorImpl<BaseArgInfo> &Outs,
257                                         bool IsVarArg) const {
258   // For shaders. Vector types should be explicitly handled by CC.
259   if (AMDGPU::isEntryFunctionCC(CallConv))
260     return true;
261 
262   SmallVector<CCValAssign, 16> ArgLocs;
263   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
264   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
265                  MF.getFunction().getContext());
266 
267   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
268 }
269 
270 /// Lower the return value for the already existing \p Ret. This assumes that
271 /// \p B's insertion point is correct.
272 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
273                                         const Value *Val, ArrayRef<Register> VRegs,
274                                         MachineInstrBuilder &Ret) const {
275   if (!Val)
276     return true;
277 
278   auto &MF = B.getMF();
279   const auto &F = MF.getFunction();
280   const DataLayout &DL = MF.getDataLayout();
281   MachineRegisterInfo *MRI = B.getMRI();
282   LLVMContext &Ctx = F.getContext();
283 
284   CallingConv::ID CC = F.getCallingConv();
285   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
286 
287   SmallVector<EVT, 8> SplitEVTs;
288   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
289   assert(VRegs.size() == SplitEVTs.size() &&
290          "For each split Type there should be exactly one VReg.");
291 
292   SmallVector<ArgInfo, 8> SplitRetInfos;
293 
294   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
295     EVT VT = SplitEVTs[i];
296     Register Reg = VRegs[i];
297     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx));
298     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
299 
300     if (VT.isScalarInteger()) {
301       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
302       if (RetInfo.Flags[0].isSExt()) {
303         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
304         ExtendOp = TargetOpcode::G_SEXT;
305       } else if (RetInfo.Flags[0].isZExt()) {
306         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
307         ExtendOp = TargetOpcode::G_ZEXT;
308       }
309 
310       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
311                                           extOpcodeToISDExtOpcode(ExtendOp));
312       if (ExtVT != VT) {
313         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
314         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
315         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
316       }
317     }
318 
319     if (Reg != RetInfo.Regs[0]) {
320       RetInfo.Regs[0] = Reg;
321       // Reset the arg flags after modifying Reg.
322       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
323     }
324 
325     splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
326   }
327 
328   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
329 
330   OutgoingValueAssigner Assigner(AssignFn);
331   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret);
332   return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B,
333                                        CC, F.isVarArg());
334 }
335 
336 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
337                                      ArrayRef<Register> VRegs,
338                                      FunctionLoweringInfo &FLI) const {
339 
340   MachineFunction &MF = B.getMF();
341   MachineRegisterInfo &MRI = MF.getRegInfo();
342   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
343   MFI->setIfReturnsVoid(!Val);
344 
345   assert(!Val == VRegs.empty() && "Return value without a vreg");
346 
347   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
348   const bool IsShader = AMDGPU::isShader(CC);
349   const bool IsWaveEnd =
350       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
351   if (IsWaveEnd) {
352     B.buildInstr(AMDGPU::S_ENDPGM)
353       .addImm(0);
354     return true;
355   }
356 
357   auto const &ST = MF.getSubtarget<GCNSubtarget>();
358 
359   unsigned ReturnOpc =
360       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
361 
362   auto Ret = B.buildInstrNoInsert(ReturnOpc);
363   Register ReturnAddrVReg;
364   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
365     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
366     Ret.addUse(ReturnAddrVReg);
367   }
368 
369   if (!FLI.CanLowerReturn)
370     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
371   else if (!lowerReturnVal(B, Val, VRegs, Ret))
372     return false;
373 
374   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
375     const SIRegisterInfo *TRI = ST.getRegisterInfo();
376     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
377                                          &AMDGPU::SGPR_64RegClass);
378     B.buildCopy(ReturnAddrVReg, LiveInReturn);
379   }
380 
381   // TODO: Handle CalleeSavedRegsViaCopy.
382 
383   B.insertInstr(Ret);
384   return true;
385 }
386 
387 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
388                                            Type *ParamTy,
389                                            uint64_t Offset) const {
390   MachineFunction &MF = B.getMF();
391   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
392   MachineRegisterInfo &MRI = MF.getRegInfo();
393   Register KernArgSegmentPtr =
394     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
395   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
396 
397   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
398 
399   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
400 }
401 
402 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
403                                         uint64_t Offset, Align Alignment,
404                                         Register DstReg) const {
405   MachineFunction &MF = B.getMF();
406   const Function &F = MF.getFunction();
407   const DataLayout &DL = F.getParent()->getDataLayout();
408   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
409   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
410 
411   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
412   Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
413   lowerParameterPtr(PtrReg, B, ParamTy, Offset);
414 
415   MachineMemOperand *MMO = MF.getMachineMemOperand(
416       PtrInfo,
417       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
418           MachineMemOperand::MOInvariant,
419       TypeSize, Alignment);
420 
421   B.buildLoad(DstReg, PtrReg, *MMO);
422 }
423 
424 // Allocate special inputs passed in user SGPRs.
425 static void allocateHSAUserSGPRs(CCState &CCInfo,
426                                  MachineIRBuilder &B,
427                                  MachineFunction &MF,
428                                  const SIRegisterInfo &TRI,
429                                  SIMachineFunctionInfo &Info) {
430   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
431   if (Info.hasPrivateSegmentBuffer()) {
432     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
433     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
434     CCInfo.AllocateReg(PrivateSegmentBufferReg);
435   }
436 
437   if (Info.hasDispatchPtr()) {
438     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
439     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
440     CCInfo.AllocateReg(DispatchPtrReg);
441   }
442 
443   if (Info.hasQueuePtr()) {
444     Register QueuePtrReg = Info.addQueuePtr(TRI);
445     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
446     CCInfo.AllocateReg(QueuePtrReg);
447   }
448 
449   if (Info.hasKernargSegmentPtr()) {
450     MachineRegisterInfo &MRI = MF.getRegInfo();
451     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
452     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
453     Register VReg = MRI.createGenericVirtualRegister(P4);
454     MRI.addLiveIn(InputPtrReg, VReg);
455     B.getMBB().addLiveIn(InputPtrReg);
456     B.buildCopy(VReg, InputPtrReg);
457     CCInfo.AllocateReg(InputPtrReg);
458   }
459 
460   if (Info.hasDispatchID()) {
461     Register DispatchIDReg = Info.addDispatchID(TRI);
462     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
463     CCInfo.AllocateReg(DispatchIDReg);
464   }
465 
466   if (Info.hasFlatScratchInit()) {
467     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
468     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
469     CCInfo.AllocateReg(FlatScratchInitReg);
470   }
471 
472   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
473   // these from the dispatch pointer.
474 }
475 
476 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
477     MachineIRBuilder &B, const Function &F,
478     ArrayRef<ArrayRef<Register>> VRegs) const {
479   MachineFunction &MF = B.getMF();
480   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
481   MachineRegisterInfo &MRI = MF.getRegInfo();
482   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
483   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
484   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
485   const DataLayout &DL = F.getParent()->getDataLayout();
486 
487   Info->allocateModuleLDSGlobal(F.getParent());
488 
489   SmallVector<CCValAssign, 16> ArgLocs;
490   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
491 
492   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
493 
494   unsigned i = 0;
495   const Align KernArgBaseAlign(16);
496   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
497   uint64_t ExplicitArgOffset = 0;
498 
499   // TODO: Align down to dword alignment and extract bits for extending loads.
500   for (auto &Arg : F.args()) {
501     const bool IsByRef = Arg.hasByRefAttr();
502     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
503     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
504     if (AllocSize == 0)
505       continue;
506 
507     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
508     if (!ABIAlign)
509       ABIAlign = DL.getABITypeAlign(ArgTy);
510 
511     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
512     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
513 
514     if (Arg.use_empty()) {
515       ++i;
516       continue;
517     }
518 
519     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
520 
521     if (IsByRef) {
522       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
523 
524       assert(VRegs[i].size() == 1 &&
525              "expected only one register for byval pointers");
526       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
527         lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
528       } else {
529         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
530         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
531         lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
532 
533         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
534       }
535     } else {
536       ArrayRef<Register> OrigArgRegs = VRegs[i];
537       Register ArgReg =
538         OrigArgRegs.size() == 1
539         ? OrigArgRegs[0]
540         : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
541 
542       lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
543       if (OrigArgRegs.size() > 1)
544         unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
545     }
546 
547     ++i;
548   }
549 
550   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
551   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
552   return true;
553 }
554 
555 bool AMDGPUCallLowering::lowerFormalArguments(
556     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
557     FunctionLoweringInfo &FLI) const {
558   CallingConv::ID CC = F.getCallingConv();
559 
560   // The infrastructure for normal calling convention lowering is essentially
561   // useless for kernels. We want to avoid any kind of legalization or argument
562   // splitting.
563   if (CC == CallingConv::AMDGPU_KERNEL)
564     return lowerFormalArgumentsKernel(B, F, VRegs);
565 
566   const bool IsGraphics = AMDGPU::isGraphics(CC);
567   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
568 
569   MachineFunction &MF = B.getMF();
570   MachineBasicBlock &MBB = B.getMBB();
571   MachineRegisterInfo &MRI = MF.getRegInfo();
572   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
573   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
574   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
575   const DataLayout &DL = F.getParent()->getDataLayout();
576 
577   Info->allocateModuleLDSGlobal(F.getParent());
578 
579   SmallVector<CCValAssign, 16> ArgLocs;
580   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
581 
582   if (!IsEntryFunc) {
583     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
584     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
585                                          &AMDGPU::SGPR_64RegClass);
586     MBB.addLiveIn(ReturnAddrReg);
587     B.buildCopy(LiveInReturn, ReturnAddrReg);
588   }
589 
590   if (Info->hasImplicitBufferPtr()) {
591     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
592     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
593     CCInfo.AllocateReg(ImplicitBufferPtrReg);
594   }
595 
596   SmallVector<ArgInfo, 32> SplitArgs;
597   unsigned Idx = 0;
598   unsigned PSInputNum = 0;
599 
600   // Insert the hidden sret parameter if the return value won't fit in the
601   // return registers.
602   if (!FLI.CanLowerReturn)
603     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
604 
605   for (auto &Arg : F.args()) {
606     if (DL.getTypeStoreSize(Arg.getType()) == 0)
607       continue;
608 
609     const bool InReg = Arg.hasAttribute(Attribute::InReg);
610 
611     // SGPR arguments to functions not implemented.
612     if (!IsGraphics && InReg)
613       return false;
614 
615     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
616         Arg.hasAttribute(Attribute::SwiftError) ||
617         Arg.hasAttribute(Attribute::Nest))
618       return false;
619 
620     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
621       const bool ArgUsed = !Arg.use_empty();
622       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
623 
624       if (!SkipArg) {
625         Info->markPSInputAllocated(PSInputNum);
626         if (ArgUsed)
627           Info->markPSInputEnabled(PSInputNum);
628       }
629 
630       ++PSInputNum;
631 
632       if (SkipArg) {
633         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
634           B.buildUndef(VRegs[Idx][I]);
635 
636         ++Idx;
637         continue;
638       }
639     }
640 
641     ArgInfo OrigArg(VRegs[Idx], Arg);
642     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
643     setArgFlags(OrigArg, OrigArgIdx, DL, F);
644 
645     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
646     ++Idx;
647   }
648 
649   // At least one interpolation mode must be enabled or else the GPU will
650   // hang.
651   //
652   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
653   // set PSInputAddr, the user wants to enable some bits after the compilation
654   // based on run-time states. Since we can't know what the final PSInputEna
655   // will look like, so we shouldn't do anything here and the user should take
656   // responsibility for the correct programming.
657   //
658   // Otherwise, the following restrictions apply:
659   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
660   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
661   //   enabled too.
662   if (CC == CallingConv::AMDGPU_PS) {
663     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
664         ((Info->getPSInputAddr() & 0xF) == 0 &&
665          Info->isPSInputAllocated(11))) {
666       CCInfo.AllocateReg(AMDGPU::VGPR0);
667       CCInfo.AllocateReg(AMDGPU::VGPR1);
668       Info->markPSInputAllocated(0);
669       Info->markPSInputEnabled(0);
670     }
671 
672     if (Subtarget.isAmdPalOS()) {
673       // For isAmdPalOS, the user does not enable some bits after compilation
674       // based on run-time states; the register values being generated here are
675       // the final ones set in hardware. Therefore we need to apply the
676       // workaround to PSInputAddr and PSInputEnable together.  (The case where
677       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
678       // set up an input arg for a particular interpolation mode, but nothing
679       // uses that input arg. Really we should have an earlier pass that removes
680       // such an arg.)
681       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
682       if ((PsInputBits & 0x7F) == 0 ||
683           ((PsInputBits & 0xF) == 0 &&
684            (PsInputBits >> 11 & 1)))
685         Info->markPSInputEnabled(
686           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
687     }
688   }
689 
690   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
691   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
692 
693   if (!MBB.empty())
694     B.setInstr(*MBB.begin());
695 
696   if (!IsEntryFunc) {
697     // For the fixed ABI, pass workitem IDs in the last argument register.
698     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
699       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
700   }
701 
702   IncomingValueAssigner Assigner(AssignFn);
703   if (!determineAssignments(Assigner, SplitArgs, CCInfo))
704     return false;
705 
706   FormalArgHandler Handler(B, MRI);
707   if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B))
708     return false;
709 
710   uint64_t StackOffset = Assigner.StackOffset;
711 
712   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
713     // Special inputs come after user arguments.
714     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
715   }
716 
717   // Start adding system SGPRs.
718   if (IsEntryFunc) {
719     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
720   } else {
721     if (!Subtarget.enableFlatScratch())
722       CCInfo.AllocateReg(Info->getScratchRSrcReg());
723     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
724   }
725 
726   // When we tail call, we need to check if the callee's arguments will fit on
727   // the caller's stack. So, whenever we lower formal arguments, we should keep
728   // track of this information, since we might lower a tail call in this
729   // function later.
730   Info->setBytesInStackArgArea(StackOffset);
731 
732   // Move back to the end of the basic block.
733   B.setMBB(MBB);
734 
735   return true;
736 }
737 
738 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
739                                            CCState &CCInfo,
740                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
741                                            CallLoweringInfo &Info) const {
742   MachineFunction &MF = MIRBuilder.getMF();
743 
744   const AMDGPUFunctionArgInfo *CalleeArgInfo
745     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
746 
747   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
748   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
749 
750 
751   // TODO: Unify with private memory register handling. This is complicated by
752   // the fact that at least in kernels, the input argument is not necessarily
753   // in the same location as the input.
754   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
755     AMDGPUFunctionArgInfo::DISPATCH_PTR,
756     AMDGPUFunctionArgInfo::QUEUE_PTR,
757     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
758     AMDGPUFunctionArgInfo::DISPATCH_ID,
759     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
760     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
761     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
762   };
763 
764   MachineRegisterInfo &MRI = MF.getRegInfo();
765 
766   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
767   const AMDGPULegalizerInfo *LI
768     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
769 
770   for (auto InputID : InputRegs) {
771     const ArgDescriptor *OutgoingArg;
772     const TargetRegisterClass *ArgRC;
773     LLT ArgTy;
774 
775     std::tie(OutgoingArg, ArgRC, ArgTy) =
776         CalleeArgInfo->getPreloadedValue(InputID);
777     if (!OutgoingArg)
778       continue;
779 
780     const ArgDescriptor *IncomingArg;
781     const TargetRegisterClass *IncomingArgRC;
782     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
783         CallerArgInfo.getPreloadedValue(InputID);
784     assert(IncomingArgRC == ArgRC);
785 
786     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
787 
788     if (IncomingArg) {
789       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
790     } else {
791       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
792       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
793     }
794 
795     if (OutgoingArg->isRegister()) {
796       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
797       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
798         report_fatal_error("failed to allocate implicit input argument");
799     } else {
800       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
801       return false;
802     }
803   }
804 
805   // Pack workitem IDs into a single register or pass it as is if already
806   // packed.
807   const ArgDescriptor *OutgoingArg;
808   const TargetRegisterClass *ArgRC;
809   LLT ArgTy;
810 
811   std::tie(OutgoingArg, ArgRC, ArgTy) =
812       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
813   if (!OutgoingArg)
814     std::tie(OutgoingArg, ArgRC, ArgTy) =
815         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
816   if (!OutgoingArg)
817     std::tie(OutgoingArg, ArgRC, ArgTy) =
818         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
819   if (!OutgoingArg)
820     return false;
821 
822   auto WorkitemIDX =
823       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
824   auto WorkitemIDY =
825       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
826   auto WorkitemIDZ =
827       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
828 
829   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
830   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
831   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
832   const LLT S32 = LLT::scalar(32);
833 
834   // If incoming ids are not packed we need to pack them.
835   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
836   Register InputReg;
837   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
838     InputReg = MRI.createGenericVirtualRegister(S32);
839     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
840                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
841   }
842 
843   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
844     Register Y = MRI.createGenericVirtualRegister(S32);
845     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
846                        std::get<2>(WorkitemIDY));
847 
848     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
849     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
850   }
851 
852   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
853     Register Z = MRI.createGenericVirtualRegister(S32);
854     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
855                        std::get<2>(WorkitemIDZ));
856 
857     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
858     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
859   }
860 
861   if (!InputReg) {
862     InputReg = MRI.createGenericVirtualRegister(S32);
863 
864     // Workitem ids are already packed, any of present incoming arguments will
865     // carry all required fields.
866     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
867       IncomingArgX ? *IncomingArgX :
868         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
869     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
870                        &AMDGPU::VGPR_32RegClass, S32);
871   }
872 
873   if (OutgoingArg->isRegister()) {
874     ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
875     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
876       report_fatal_error("failed to allocate implicit input argument");
877   } else {
878     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
879     return false;
880   }
881 
882   return true;
883 }
884 
885 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
886 /// CC.
887 static std::pair<CCAssignFn *, CCAssignFn *>
888 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
889   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
890 }
891 
892 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
893                               bool IsTailCall) {
894   return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::SI_CALL;
895 }
896 
897 // Add operands to call instruction to track the callee.
898 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
899                                   MachineIRBuilder &MIRBuilder,
900                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
901   if (Info.Callee.isReg()) {
902     CallInst.addReg(Info.Callee.getReg());
903     CallInst.addImm(0);
904   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
905     // The call lowering lightly assumed we can directly encode a call target in
906     // the instruction, which is not the case. Materialize the address here.
907     const GlobalValue *GV = Info.Callee.getGlobal();
908     auto Ptr = MIRBuilder.buildGlobalValue(
909       LLT::pointer(GV->getAddressSpace(), 64), GV);
910     CallInst.addReg(Ptr.getReg(0));
911     CallInst.add(Info.Callee);
912   } else
913     return false;
914 
915   return true;
916 }
917 
918 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay(
919     CallLoweringInfo &Info, MachineFunction &MF,
920     SmallVectorImpl<ArgInfo> &InArgs) const {
921   const Function &CallerF = MF.getFunction();
922   CallingConv::ID CalleeCC = Info.CallConv;
923   CallingConv::ID CallerCC = CallerF.getCallingConv();
924 
925   // If the calling conventions match, then everything must be the same.
926   if (CalleeCC == CallerCC)
927     return true;
928 
929   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
930 
931   // Make sure that the caller and callee preserve all of the same registers.
932   auto TRI = ST.getRegisterInfo();
933 
934   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
935   const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
936   if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
937     return false;
938 
939   // Check if the caller and callee will handle arguments in the same way.
940   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
941   CCAssignFn *CalleeAssignFnFixed;
942   CCAssignFn *CalleeAssignFnVarArg;
943   std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
944       getAssignFnsForCC(CalleeCC, TLI);
945 
946   CCAssignFn *CallerAssignFnFixed;
947   CCAssignFn *CallerAssignFnVarArg;
948   std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
949       getAssignFnsForCC(CallerCC, TLI);
950 
951   // FIXME: We are not accounting for potential differences in implicitly passed
952   // inputs, but only the fixed ABI is supported now anyway.
953   IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
954                                        CalleeAssignFnVarArg);
955   IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
956                                        CallerAssignFnVarArg);
957   return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner);
958 }
959 
960 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable(
961     CallLoweringInfo &Info, MachineFunction &MF,
962     SmallVectorImpl<ArgInfo> &OutArgs) const {
963   // If there are no outgoing arguments, then we are done.
964   if (OutArgs.empty())
965     return true;
966 
967   const Function &CallerF = MF.getFunction();
968   CallingConv::ID CalleeCC = Info.CallConv;
969   CallingConv::ID CallerCC = CallerF.getCallingConv();
970   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
971 
972   CCAssignFn *AssignFnFixed;
973   CCAssignFn *AssignFnVarArg;
974   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
975 
976   // We have outgoing arguments. Make sure that we can tail call with them.
977   SmallVector<CCValAssign, 16> OutLocs;
978   CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
979   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
980 
981   if (!determineAssignments(Assigner, OutArgs, OutInfo)) {
982     LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
983     return false;
984   }
985 
986   // Make sure that they can fit on the caller's stack.
987   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
988   if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
989     LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
990     return false;
991   }
992 
993   // Verify that the parameters in callee-saved registers match.
994   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
995   const SIRegisterInfo *TRI = ST.getRegisterInfo();
996   const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
997   MachineRegisterInfo &MRI = MF.getRegInfo();
998   return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
999 }
1000 
1001 /// Return true if the calling convention is one that we can guarantee TCO for.
1002 static bool canGuaranteeTCO(CallingConv::ID CC) {
1003   return CC == CallingConv::Fast;
1004 }
1005 
1006 /// Return true if we might ever do TCO for calls with this calling convention.
1007 static bool mayTailCallThisCC(CallingConv::ID CC) {
1008   switch (CC) {
1009   case CallingConv::C:
1010   case CallingConv::AMDGPU_Gfx:
1011     return true;
1012   default:
1013     return canGuaranteeTCO(CC);
1014   }
1015 }
1016 
1017 bool AMDGPUCallLowering::isEligibleForTailCallOptimization(
1018     MachineIRBuilder &B, CallLoweringInfo &Info,
1019     SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const {
1020   // Must pass all target-independent checks in order to tail call optimize.
1021   if (!Info.IsTailCall)
1022     return false;
1023 
1024   MachineFunction &MF = B.getMF();
1025   const Function &CallerF = MF.getFunction();
1026   CallingConv::ID CalleeCC = Info.CallConv;
1027   CallingConv::ID CallerCC = CallerF.getCallingConv();
1028 
1029   const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
1030   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1031   // Kernels aren't callable, and don't have a live in return address so it
1032   // doesn't make sense to do a tail call with entry functions.
1033   if (!CallerPreserved)
1034     return false;
1035 
1036   if (!mayTailCallThisCC(CalleeCC)) {
1037     LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
1038     return false;
1039   }
1040 
1041   if (any_of(CallerF.args(), [](const Argument &A) {
1042         return A.hasByValAttr() || A.hasSwiftErrorAttr();
1043       })) {
1044     LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval "
1045                          "or swifterror arguments\n");
1046     return false;
1047   }
1048 
1049   // If we have -tailcallopt, then we're done.
1050   if (MF.getTarget().Options.GuaranteedTailCallOpt)
1051     return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
1052 
1053   // Verify that the incoming and outgoing arguments from the callee are
1054   // safe to tail call.
1055   if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
1056     LLVM_DEBUG(
1057         dbgs()
1058         << "... Caller and callee have incompatible calling conventions.\n");
1059     return false;
1060   }
1061 
1062   if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
1063     return false;
1064 
1065   LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n");
1066   return true;
1067 }
1068 
1069 // Insert outgoing implicit arguments for a call, by inserting copies to the
1070 // implicit argument registers and adding the necessary implicit uses to the
1071 // call instruction.
1072 void AMDGPUCallLowering::handleImplicitCallArguments(
1073     MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst,
1074     const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo,
1075     ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const {
1076   if (!ST.enableFlatScratch()) {
1077     // Insert copies for the SRD. In the HSA case, this should be an identity
1078     // copy.
1079     auto ScratchRSrcReg =
1080         MIRBuilder.buildCopy(LLT::vector(4, 32), FuncInfo.getScratchRSrcReg());
1081     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1082     CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1083   }
1084 
1085   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1086     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1087     CallInst.addReg(ArgReg.first, RegState::Implicit);
1088   }
1089 }
1090 
1091 bool AMDGPUCallLowering::lowerTailCall(
1092     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
1093     SmallVectorImpl<ArgInfo> &OutArgs) const {
1094   MachineFunction &MF = MIRBuilder.getMF();
1095   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1096   SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1097   const Function &F = MF.getFunction();
1098   MachineRegisterInfo &MRI = MF.getRegInfo();
1099   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1100 
1101   // True when we're tail calling, but without -tailcallopt.
1102   bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
1103 
1104   // Find out which ABI gets to decide where things go.
1105   CallingConv::ID CalleeCC = Info.CallConv;
1106   CCAssignFn *AssignFnFixed;
1107   CCAssignFn *AssignFnVarArg;
1108   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1109 
1110   MachineInstrBuilder CallSeqStart;
1111   if (!IsSibCall)
1112     CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP);
1113 
1114   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
1115   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1116   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1117     return false;
1118 
1119   // Byte offset for the tail call. When we are sibcalling, this will always
1120   // be 0.
1121   MIB.addImm(0);
1122 
1123   // Tell the call which registers are clobbered.
1124   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1125   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
1126   MIB.addRegMask(Mask);
1127 
1128   // FPDiff is the byte offset of the call's argument area from the callee's.
1129   // Stores to callee stack arguments will be placed in FixedStackSlots offset
1130   // by this amount for a tail call. In a sibling call it must be 0 because the
1131   // caller will deallocate the entire stack and the callee still expects its
1132   // arguments to begin at SP+0.
1133   int FPDiff = 0;
1134 
1135   // This will be 0 for sibcalls, potentially nonzero for tail calls produced
1136   // by -tailcallopt. For sibcalls, the memory operands for the call are
1137   // already available in the caller's incoming argument space.
1138   unsigned NumBytes = 0;
1139   if (!IsSibCall) {
1140     // We aren't sibcalling, so we need to compute FPDiff. We need to do this
1141     // before handling assignments, because FPDiff must be known for memory
1142     // arguments.
1143     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1144     SmallVector<CCValAssign, 16> OutLocs;
1145     CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
1146 
1147     // FIXME: Not accounting for callee implicit inputs
1148     OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg);
1149     if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
1150       return false;
1151 
1152     // The callee will pop the argument stack as a tail call. Thus, we must
1153     // keep it 16-byte aligned.
1154     NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment());
1155 
1156     // FPDiff will be negative if this tail call requires more space than we
1157     // would automatically have in our incoming argument space. Positive if we
1158     // actually shrink the stack.
1159     FPDiff = NumReusableBytes - NumBytes;
1160 
1161     // The stack pointer must be 16-byte aligned at all times it's used for a
1162     // memory operation, which in practice means at *all* times and in
1163     // particular across call boundaries. Therefore our own arguments started at
1164     // a 16-byte aligned SP and the delta applied for the tail call should
1165     // satisfy the same constraint.
1166     assert(isAligned(ST.getStackAlignment(), FPDiff) &&
1167            "unaligned stack on tail call");
1168   }
1169 
1170   SmallVector<CCValAssign, 16> ArgLocs;
1171   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1172 
1173   // We could pass MIB and directly add the implicit uses to the call
1174   // now. However, as an aesthetic choice, place implicit argument operands
1175   // after the ordinary user argument registers.
1176   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1177 
1178   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
1179       Info.CallConv != CallingConv::AMDGPU_Gfx) {
1180     // With a fixed ABI, allocate fixed registers before user arguments.
1181     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1182       return false;
1183   }
1184 
1185   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1186 
1187   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1188     return false;
1189 
1190   // Do the actual argument marshalling.
1191   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff);
1192   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1193     return false;
1194 
1195   handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs);
1196 
1197   // If we have -tailcallopt, we need to adjust the stack. We'll do the call
1198   // sequence start and end here.
1199   if (!IsSibCall) {
1200     MIB->getOperand(1).setImm(FPDiff);
1201     CallSeqStart.addImm(NumBytes).addImm(0);
1202     // End the call sequence *before* emitting the call. Normally, we would
1203     // tidy the frame up after the call. However, here, we've laid out the
1204     // parameters so that when SP is reset, they will be in the correct
1205     // location.
1206     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0);
1207   }
1208 
1209   // Now we can add the actual call instruction to the correct basic block.
1210   MIRBuilder.insertInstr(MIB);
1211 
1212   // If Callee is a reg, since it is used by a target specific
1213   // instruction, it must have a register class matching the
1214   // constraint of that instruction.
1215 
1216   // FIXME: We should define regbankselectable call instructions to handle
1217   // divergent call targets.
1218   if (MIB->getOperand(0).isReg()) {
1219     MIB->getOperand(0).setReg(constrainOperandRegClass(
1220         MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
1221         MIB->getDesc(), MIB->getOperand(0), 0));
1222   }
1223 
1224   MF.getFrameInfo().setHasTailCall();
1225   Info.LoweredTailCall = true;
1226   return true;
1227 }
1228 
1229 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1230                                    CallLoweringInfo &Info) const {
1231   if (Info.IsVarArg) {
1232     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1233     return false;
1234   }
1235 
1236   MachineFunction &MF = MIRBuilder.getMF();
1237   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1238   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1239 
1240   const Function &F = MF.getFunction();
1241   MachineRegisterInfo &MRI = MF.getRegInfo();
1242   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1243   const DataLayout &DL = F.getParent()->getDataLayout();
1244 
1245   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
1246       Info.CallConv != CallingConv::AMDGPU_Gfx) {
1247     LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
1248     return false;
1249   }
1250 
1251   SmallVector<ArgInfo, 8> OutArgs;
1252   for (auto &OrigArg : Info.OrigArgs)
1253     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
1254 
1255   SmallVector<ArgInfo, 8> InArgs;
1256   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
1257     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1258 
1259   // If we can lower as a tail call, do that instead.
1260   bool CanTailCallOpt =
1261       isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
1262 
1263   // We must emit a tail call if we have musttail.
1264   if (Info.IsMustTailCall && !CanTailCallOpt) {
1265     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1266     return false;
1267   }
1268 
1269   if (CanTailCallOpt)
1270     return lowerTailCall(MIRBuilder, Info, OutArgs);
1271 
1272   // Find out which ABI gets to decide where things go.
1273   CCAssignFn *AssignFnFixed;
1274   CCAssignFn *AssignFnVarArg;
1275   std::tie(AssignFnFixed, AssignFnVarArg) =
1276       getAssignFnsForCC(Info.CallConv, TLI);
1277 
1278   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1279     .addImm(0)
1280     .addImm(0);
1281 
1282   // Create a temporarily-floating call instruction so we can add the implicit
1283   // uses of arg registers.
1284   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
1285 
1286   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1287   MIB.addDef(TRI->getReturnAddressReg(MF));
1288 
1289   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1290     return false;
1291 
1292   // Tell the call which registers are clobbered.
1293   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1294   MIB.addRegMask(Mask);
1295 
1296   SmallVector<CCValAssign, 16> ArgLocs;
1297   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1298 
1299   // We could pass MIB and directly add the implicit uses to the call
1300   // now. However, as an aesthetic choice, place implicit argument operands
1301   // after the ordinary user argument registers.
1302   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1303 
1304   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
1305       Info.CallConv != CallingConv::AMDGPU_Gfx) {
1306     // With a fixed ABI, allocate fixed registers before user arguments.
1307     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1308       return false;
1309   }
1310 
1311   // Do the actual argument marshalling.
1312   SmallVector<Register, 8> PhysRegs;
1313 
1314   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1315   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1316     return false;
1317 
1318   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false);
1319   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1320     return false;
1321 
1322   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1323 
1324   handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs);
1325 
1326   // Get a count of how many bytes are to be pushed on the stack.
1327   unsigned NumBytes = CCInfo.getNextStackOffset();
1328 
1329   // If Callee is a reg, since it is used by a target specific
1330   // instruction, it must have a register class matching the
1331   // constraint of that instruction.
1332 
1333   // FIXME: We should define regbankselectable call instructions to handle
1334   // divergent call targets.
1335   if (MIB->getOperand(1).isReg()) {
1336     MIB->getOperand(1).setReg(constrainOperandRegClass(
1337         MF, *TRI, MRI, *ST.getInstrInfo(),
1338         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1339         1));
1340   }
1341 
1342   // Now we can add the actual call instruction to the correct position.
1343   MIRBuilder.insertInstr(MIB);
1344 
1345   // Finally we can copy the returned value back into its virtual-register. In
1346   // symmetry with the arguments, the physical register must be an
1347   // implicit-define of the call instruction.
1348   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1349     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1350                                                       Info.IsVarArg);
1351     IncomingValueAssigner Assigner(RetAssignFn);
1352     CallReturnHandler Handler(MIRBuilder, MRI, MIB);
1353     if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder,
1354                                        Info.CallConv, Info.IsVarArg))
1355       return false;
1356   }
1357 
1358   uint64_t CalleePopBytes = NumBytes;
1359 
1360   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
1361             .addImm(0)
1362             .addImm(CalleePopBytes);
1363 
1364   if (!Info.CanLowerReturn) {
1365     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1366                     Info.DemoteRegister, Info.DemoteStackIndex);
1367   }
1368 
1369   return true;
1370 }
1371