1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUISelLowering.h"
18 #include "AMDGPUSubtarget.h"
19 #include "AMDGPUTargetMachine.h"
20 #include "SIISelLowering.h"
21 #include "SIMachineFunctionInfo.h"
22 #include "SIRegisterInfo.h"
23 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/Support/LowLevelTypeImpl.h"
29 
30 using namespace llvm;
31 
32 namespace {
33 
34 struct OutgoingValueHandler : public CallLowering::ValueHandler {
35   OutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
36                        MachineInstrBuilder MIB, CCAssignFn *AssignFn)
37       : ValueHandler(B, MRI, AssignFn), MIB(MIB) {}
38 
39   MachineInstrBuilder MIB;
40 
41   bool isIncomingArgumentHandler() const override { return false; }
42 
43   Register getStackAddress(uint64_t Size, int64_t Offset,
44                            MachinePointerInfo &MPO) override {
45     llvm_unreachable("not implemented");
46   }
47 
48   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
49                             MachinePointerInfo &MPO, CCValAssign &VA) override {
50     llvm_unreachable("not implemented");
51   }
52 
53   void assignValueToReg(Register ValVReg, Register PhysReg,
54                         CCValAssign &VA) override {
55     Register ExtReg;
56     if (VA.getLocVT().getSizeInBits() < 32) {
57       // 16-bit types are reported as legal for 32-bit registers. We need to
58       // extend and do a 32-bit copy to avoid the verifier complaining about it.
59       ExtReg = MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
60     } else
61       ExtReg = extendRegister(ValVReg, VA);
62 
63     // If this is a scalar return, insert a readfirstlane just in case the value
64     // ends up in a VGPR.
65     // FIXME: Assert this is a shader return.
66     const SIRegisterInfo *TRI
67       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
68     if (TRI->isSGPRReg(MRI, PhysReg)) {
69       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
70                                               {MRI.getType(ExtReg)}, false)
71         .addReg(ExtReg);
72       ExtReg = ToSGPR.getReg(0);
73     }
74 
75     MIRBuilder.buildCopy(PhysReg, ExtReg);
76     MIB.addUse(PhysReg, RegState::Implicit);
77   }
78 
79   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
80                  CCValAssign::LocInfo LocInfo,
81                  const CallLowering::ArgInfo &Info,
82                  ISD::ArgFlagsTy Flags,
83                  CCState &State) override {
84     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
85   }
86 };
87 
88 struct IncomingArgHandler : public CallLowering::ValueHandler {
89   uint64_t StackUsed = 0;
90 
91   IncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
92                      CCAssignFn *AssignFn)
93     : ValueHandler(B, MRI, AssignFn) {}
94 
95   Register getStackAddress(uint64_t Size, int64_t Offset,
96                            MachinePointerInfo &MPO) override {
97     auto &MFI = MIRBuilder.getMF().getFrameInfo();
98     int FI = MFI.CreateFixedObject(Size, Offset, true);
99     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
100     auto AddrReg = MIRBuilder.buildFrameIndex(
101         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
102     StackUsed = std::max(StackUsed, Size + Offset);
103     return AddrReg.getReg(0);
104   }
105 
106   void assignValueToReg(Register ValVReg, Register PhysReg,
107                         CCValAssign &VA) override {
108     markPhysRegUsed(PhysReg);
109 
110     if (VA.getLocVT().getSizeInBits() < 32) {
111       // 16-bit types are reported as legal for 32-bit registers. We need to do
112       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
113       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
114       MIRBuilder.buildTrunc(ValVReg, Copy);
115       return;
116     }
117 
118     switch (VA.getLocInfo()) {
119     case CCValAssign::LocInfo::SExt:
120     case CCValAssign::LocInfo::ZExt:
121     case CCValAssign::LocInfo::AExt: {
122       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
123       MIRBuilder.buildTrunc(ValVReg, Copy);
124       break;
125     }
126     default:
127       MIRBuilder.buildCopy(ValVReg, PhysReg);
128       break;
129     }
130   }
131 
132   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
133                             MachinePointerInfo &MPO, CCValAssign &VA) override {
134     MachineFunction &MF = MIRBuilder.getMF();
135 
136     // FIXME: Get alignment
137     auto MMO = MF.getMachineMemOperand(
138         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
139         inferAlignFromPtrInfo(MF, MPO));
140     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
141   }
142 
143   /// How the physical register gets marked varies between formal
144   /// parameters (it's a basic-block live-in), and a call instruction
145   /// (it's an implicit-def of the BL).
146   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
147 
148   // FIXME: What is the point of this being a callback?
149   bool isIncomingArgumentHandler() const override { return true; }
150 };
151 
152 struct FormalArgHandler : public IncomingArgHandler {
153   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
154                    CCAssignFn *AssignFn)
155     : IncomingArgHandler(B, MRI, AssignFn) {}
156 
157   void markPhysRegUsed(unsigned PhysReg) override {
158     MIRBuilder.getMBB().addLiveIn(PhysReg);
159   }
160 };
161 
162 }
163 
164 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
165   : CallLowering(&TLI) {
166 }
167 
168 // FIXME: Compatability shim
169 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
170   switch (MIOpc) {
171   case TargetOpcode::G_SEXT:
172     return ISD::SIGN_EXTEND;
173   case TargetOpcode::G_ZEXT:
174     return ISD::ZERO_EXTEND;
175   case TargetOpcode::G_ANYEXT:
176     return ISD::ANY_EXTEND;
177   default:
178     llvm_unreachable("not an extend opcode");
179   }
180 }
181 
182 void AMDGPUCallLowering::splitToValueTypes(
183   MachineIRBuilder &B,
184   const ArgInfo &OrigArg, unsigned OrigArgIdx,
185   SmallVectorImpl<ArgInfo> &SplitArgs,
186   const DataLayout &DL, CallingConv::ID CallConv,
187   SplitArgTy PerformArgSplit) const {
188   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
189   LLVMContext &Ctx = OrigArg.Ty->getContext();
190 
191   if (OrigArg.Ty->isVoidTy())
192     return;
193 
194   SmallVector<EVT, 4> SplitVTs;
195   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
196 
197   assert(OrigArg.Regs.size() == SplitVTs.size());
198 
199   int SplitIdx = 0;
200   for (EVT VT : SplitVTs) {
201     Register Reg = OrigArg.Regs[SplitIdx];
202     Type *Ty = VT.getTypeForEVT(Ctx);
203     LLT LLTy = getLLTForType(*Ty, DL);
204 
205     if (OrigArgIdx == AttributeList::ReturnIndex && VT.isScalarInteger()) {
206       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
207       if (OrigArg.Flags[0].isSExt()) {
208         assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
209         ExtendOp = TargetOpcode::G_SEXT;
210       } else if (OrigArg.Flags[0].isZExt()) {
211         assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
212         ExtendOp = TargetOpcode::G_ZEXT;
213       }
214 
215       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
216                                           extOpcodeToISDExtOpcode(ExtendOp));
217       if (ExtVT != VT) {
218         VT = ExtVT;
219         Ty = ExtVT.getTypeForEVT(Ctx);
220         LLTy = getLLTForType(*Ty, DL);
221         Reg = B.buildInstr(ExtendOp, {LLTy}, {Reg}).getReg(0);
222       }
223     }
224 
225     unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
226     MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
227 
228     if (NumParts == 1) {
229       // Fixup EVTs to an MVT.
230       //
231       // FIXME: This is pretty hacky. Why do we have to split the type
232       // legalization logic between here and handleAssignments?
233       if (OrigArgIdx != AttributeList::ReturnIndex && VT != RegVT) {
234         assert(VT.getSizeInBits() < 32 &&
235                "unexpected illegal type");
236         Ty = Type::getInt32Ty(Ctx);
237         Register OrigReg = Reg;
238         Reg = B.getMRI()->createGenericVirtualRegister(LLT::scalar(32));
239         B.buildTrunc(OrigReg, Reg);
240       }
241 
242       // No splitting to do, but we want to replace the original type (e.g. [1 x
243       // double] -> double).
244       SplitArgs.emplace_back(Reg, Ty, OrigArg.Flags, OrigArg.IsFixed);
245 
246       ++SplitIdx;
247       continue;
248     }
249 
250     SmallVector<Register, 8> SplitRegs;
251     Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx);
252     LLT PartLLT = getLLTForType(*PartTy, DL);
253     MachineRegisterInfo &MRI = *B.getMRI();
254 
255     // FIXME: Should we be reporting all of the part registers for a single
256     // argument, and let handleAssignments take care of the repacking?
257     for (unsigned i = 0; i < NumParts; ++i) {
258       Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
259       SplitRegs.push_back(PartReg);
260       SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
261     }
262 
263     PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx);
264 
265     ++SplitIdx;
266   }
267 }
268 
269 // Get the appropriate type to make \p OrigTy \p Factor times bigger.
270 static LLT getMultipleType(LLT OrigTy, int Factor) {
271   if (OrigTy.isVector()) {
272     return LLT::vector(OrigTy.getNumElements() * Factor,
273                        OrigTy.getElementType());
274   }
275 
276   return LLT::scalar(OrigTy.getSizeInBits() * Factor);
277 }
278 
279 // TODO: Move to generic code
280 static void unpackRegsToOrigType(MachineIRBuilder &B,
281                                  ArrayRef<Register> DstRegs,
282                                  Register SrcReg,
283                                  const CallLowering::ArgInfo &Info,
284                                  LLT SrcTy,
285                                  LLT PartTy) {
286   assert(DstRegs.size() > 1 && "Nothing to unpack");
287 
288   const unsigned SrcSize = SrcTy.getSizeInBits();
289   const unsigned PartSize = PartTy.getSizeInBits();
290 
291   if (SrcTy.isVector() && !PartTy.isVector() &&
292       PartSize > SrcTy.getElementType().getSizeInBits()) {
293     // Vector was scalarized, and the elements extended.
294     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(),
295                                                   SrcReg);
296     for (int i = 0, e = DstRegs.size(); i != e; ++i)
297       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
298     return;
299   }
300 
301   if (SrcSize % PartSize == 0) {
302     B.buildUnmerge(DstRegs, SrcReg);
303     return;
304   }
305 
306   const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize;
307 
308   LLT BigTy = getMultipleType(PartTy, NumRoundedParts);
309   auto ImpDef = B.buildUndef(BigTy);
310 
311   auto Big = B.buildInsert(BigTy, ImpDef.getReg(0), SrcReg, 0).getReg(0);
312 
313   int64_t Offset = 0;
314   for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize)
315     B.buildExtract(DstRegs[i], Big, Offset);
316 }
317 
318 /// Lower the return value for the already existing \p Ret. This assumes that
319 /// \p B's insertion point is correct.
320 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
321                                         const Value *Val, ArrayRef<Register> VRegs,
322                                         MachineInstrBuilder &Ret) const {
323   if (!Val)
324     return true;
325 
326   auto &MF = B.getMF();
327   const auto &F = MF.getFunction();
328   const DataLayout &DL = MF.getDataLayout();
329   MachineRegisterInfo *MRI = B.getMRI();
330 
331   CallingConv::ID CC = F.getCallingConv();
332   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
333 
334   ArgInfo OrigRetInfo(VRegs, Val->getType());
335   setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
336   SmallVector<ArgInfo, 4> SplitRetInfos;
337 
338   splitToValueTypes(
339     B, OrigRetInfo, AttributeList::ReturnIndex, SplitRetInfos, DL, CC,
340     [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
341         int VTSplitIdx) {
342       unpackRegsToOrigType(B, Regs, SrcReg,
343                            SplitRetInfos[VTSplitIdx],
344                            LLTy, PartLLT);
345     });
346 
347   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
348   OutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
349   return handleAssignments(B, SplitRetInfos, RetHandler);
350 }
351 
352 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
353                                      const Value *Val,
354                                      ArrayRef<Register> VRegs) const {
355 
356   MachineFunction &MF = B.getMF();
357   MachineRegisterInfo &MRI = MF.getRegInfo();
358   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
359   MFI->setIfReturnsVoid(!Val);
360 
361   assert(!Val == VRegs.empty() && "Return value without a vreg");
362 
363   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
364   const bool IsShader = AMDGPU::isShader(CC);
365   const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
366                          AMDGPU::isKernel(CC);
367   if (IsWaveEnd) {
368     B.buildInstr(AMDGPU::S_ENDPGM)
369       .addImm(0);
370     return true;
371   }
372 
373   auto const &ST = MF.getSubtarget<GCNSubtarget>();
374 
375   unsigned ReturnOpc =
376       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
377 
378   auto Ret = B.buildInstrNoInsert(ReturnOpc);
379   Register ReturnAddrVReg;
380   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
381     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
382     Ret.addUse(ReturnAddrVReg);
383   }
384 
385   if (!lowerReturnVal(B, Val, VRegs, Ret))
386     return false;
387 
388   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
389     const SIRegisterInfo *TRI = ST.getRegisterInfo();
390     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
391                                          &AMDGPU::SGPR_64RegClass);
392     B.buildCopy(ReturnAddrVReg, LiveInReturn);
393   }
394 
395   // TODO: Handle CalleeSavedRegsViaCopy.
396 
397   B.insertInstr(Ret);
398   return true;
399 }
400 
401 Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &B,
402                                                Type *ParamTy,
403                                                uint64_t Offset) const {
404 
405   MachineFunction &MF = B.getMF();
406   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
407   MachineRegisterInfo &MRI = MF.getRegInfo();
408   const Function &F = MF.getFunction();
409   const DataLayout &DL = F.getParent()->getDataLayout();
410   PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
411   LLT PtrType = getLLTForType(*PtrTy, DL);
412   Register KernArgSegmentPtr =
413     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
414   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
415 
416   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
417 
418   return B.buildPtrAdd(PtrType, KernArgSegmentVReg, OffsetReg).getReg(0);
419 }
420 
421 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
422                                         uint64_t Offset, Align Alignment,
423                                         Register DstReg) const {
424   MachineFunction &MF = B.getMF();
425   const Function &F = MF.getFunction();
426   const DataLayout &DL = F.getParent()->getDataLayout();
427   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
428   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
429   Register PtrReg = lowerParameterPtr(B, ParamTy, Offset);
430 
431   MachineMemOperand *MMO = MF.getMachineMemOperand(
432       PtrInfo,
433       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
434           MachineMemOperand::MOInvariant,
435       TypeSize, Alignment);
436 
437   B.buildLoad(DstReg, PtrReg, *MMO);
438 }
439 
440 // Allocate special inputs passed in user SGPRs.
441 static void allocateHSAUserSGPRs(CCState &CCInfo,
442                                  MachineIRBuilder &B,
443                                  MachineFunction &MF,
444                                  const SIRegisterInfo &TRI,
445                                  SIMachineFunctionInfo &Info) {
446   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
447   if (Info.hasPrivateSegmentBuffer()) {
448     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
449     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
450     CCInfo.AllocateReg(PrivateSegmentBufferReg);
451   }
452 
453   if (Info.hasDispatchPtr()) {
454     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
455     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
456     CCInfo.AllocateReg(DispatchPtrReg);
457   }
458 
459   if (Info.hasQueuePtr()) {
460     Register QueuePtrReg = Info.addQueuePtr(TRI);
461     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
462     CCInfo.AllocateReg(QueuePtrReg);
463   }
464 
465   if (Info.hasKernargSegmentPtr()) {
466     MachineRegisterInfo &MRI = MF.getRegInfo();
467     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
468     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
469     Register VReg = MRI.createGenericVirtualRegister(P4);
470     MRI.addLiveIn(InputPtrReg, VReg);
471     B.getMBB().addLiveIn(InputPtrReg);
472     B.buildCopy(VReg, InputPtrReg);
473     CCInfo.AllocateReg(InputPtrReg);
474   }
475 
476   if (Info.hasDispatchID()) {
477     Register DispatchIDReg = Info.addDispatchID(TRI);
478     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
479     CCInfo.AllocateReg(DispatchIDReg);
480   }
481 
482   if (Info.hasFlatScratchInit()) {
483     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
484     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
485     CCInfo.AllocateReg(FlatScratchInitReg);
486   }
487 
488   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
489   // these from the dispatch pointer.
490 }
491 
492 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
493     MachineIRBuilder &B, const Function &F,
494     ArrayRef<ArrayRef<Register>> VRegs) const {
495   MachineFunction &MF = B.getMF();
496   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
497   MachineRegisterInfo &MRI = MF.getRegInfo();
498   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
499   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
500   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
501 
502   const DataLayout &DL = F.getParent()->getDataLayout();
503 
504   SmallVector<CCValAssign, 16> ArgLocs;
505   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
506 
507   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
508 
509   unsigned i = 0;
510   const Align KernArgBaseAlign(16);
511   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
512   uint64_t ExplicitArgOffset = 0;
513 
514   // TODO: Align down to dword alignment and extract bits for extending loads.
515   for (auto &Arg : F.args()) {
516     Type *ArgTy = Arg.getType();
517     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
518     if (AllocSize == 0)
519       continue;
520 
521     unsigned ABIAlign = DL.getABITypeAlignment(ArgTy);
522 
523     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
524     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
525 
526     ArrayRef<Register> OrigArgRegs = VRegs[i];
527     Register ArgReg =
528       OrigArgRegs.size() == 1
529       ? OrigArgRegs[0]
530       : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
531 
532     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
533     lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
534     if (OrigArgRegs.size() > 1)
535       unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
536     ++i;
537   }
538 
539   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
540   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
541   return true;
542 }
543 
544 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
545 static MachineInstrBuilder mergeVectorRegsToResultRegs(
546   MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) {
547   MachineRegisterInfo &MRI = *B.getMRI();
548   LLT LLTy = MRI.getType(DstRegs[0]);
549   LLT PartLLT = MRI.getType(SrcRegs[0]);
550 
551   // Deal with v3s16 split into v2s16
552   LLT LCMTy = getLCMType(LLTy, PartLLT);
553   if (LCMTy == LLTy) {
554     // Common case where no padding is needed.
555     assert(DstRegs.size() == 1);
556     return B.buildConcatVectors(DstRegs[0], SrcRegs);
557   }
558 
559   const int NumWide =  LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
560   Register Undef = B.buildUndef(PartLLT).getReg(0);
561 
562   // Build vector of undefs.
563   SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
564 
565   // Replace the first sources with the real registers.
566   std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
567 
568   auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
569   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
570 
571   SmallVector<Register, 8> PadDstRegs(NumDst);
572   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
573 
574   // Create the excess dead defs for the unmerge.
575   for (int I = DstRegs.size(); I != NumDst; ++I)
576     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
577 
578   return B.buildUnmerge(PadDstRegs, Widened);
579 }
580 
581 // TODO: Move this to generic code
582 static void packSplitRegsToOrigType(MachineIRBuilder &B,
583                                     ArrayRef<Register> OrigRegs,
584                                     ArrayRef<Register> Regs,
585                                     LLT LLTy,
586                                     LLT PartLLT) {
587   MachineRegisterInfo &MRI = *B.getMRI();
588 
589   if (!LLTy.isVector() && !PartLLT.isVector()) {
590     assert(OrigRegs.size() == 1);
591     LLT OrigTy = MRI.getType(OrigRegs[0]);
592 
593     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
594     if (SrcSize == OrigTy.getSizeInBits())
595       B.buildMerge(OrigRegs[0], Regs);
596     else {
597       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
598       B.buildTrunc(OrigRegs[0], Widened);
599     }
600 
601     return;
602   }
603 
604   if (LLTy.isVector() && PartLLT.isVector()) {
605     assert(OrigRegs.size() == 1);
606     assert(LLTy.getElementType() == PartLLT.getElementType());
607     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
608     return;
609   }
610 
611   assert(LLTy.isVector() && !PartLLT.isVector());
612 
613   LLT DstEltTy = LLTy.getElementType();
614 
615   // Pointer information was discarded. We'll need to coerce some register types
616   // to avoid violating type constraints.
617   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
618 
619   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
620 
621   if (DstEltTy == PartLLT) {
622     // Vector was trivially scalarized.
623 
624     if (RealDstEltTy.isPointer()) {
625       for (Register Reg : Regs)
626         MRI.setType(Reg, RealDstEltTy);
627     }
628 
629     B.buildBuildVector(OrigRegs[0], Regs);
630   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
631     // Deal with vector with 64-bit elements decomposed to 32-bit
632     // registers. Need to create intermediate 64-bit elements.
633     SmallVector<Register, 8> EltMerges;
634     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
635 
636     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
637 
638     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I)  {
639       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
640       // Fix the type in case this is really a vector of pointers.
641       MRI.setType(Merge.getReg(0), RealDstEltTy);
642       EltMerges.push_back(Merge.getReg(0));
643       Regs = Regs.drop_front(PartsPerElt);
644     }
645 
646     B.buildBuildVector(OrigRegs[0], EltMerges);
647   } else {
648     // Vector was split, and elements promoted to a wider type.
649     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
650     auto BV = B.buildBuildVector(BVType, Regs);
651     B.buildTrunc(OrigRegs[0], BV);
652   }
653 }
654 
655 bool AMDGPUCallLowering::lowerFormalArguments(
656     MachineIRBuilder &B, const Function &F,
657     ArrayRef<ArrayRef<Register>> VRegs) const {
658   CallingConv::ID CC = F.getCallingConv();
659 
660   // The infrastructure for normal calling convention lowering is essentially
661   // useless for kernels. We want to avoid any kind of legalization or argument
662   // splitting.
663   if (CC == CallingConv::AMDGPU_KERNEL)
664     return lowerFormalArgumentsKernel(B, F, VRegs);
665 
666   const bool IsShader = AMDGPU::isShader(CC);
667   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
668 
669   MachineFunction &MF = B.getMF();
670   MachineBasicBlock &MBB = B.getMBB();
671   MachineRegisterInfo &MRI = MF.getRegInfo();
672   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
673   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
674   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
675   const DataLayout &DL = F.getParent()->getDataLayout();
676 
677 
678   SmallVector<CCValAssign, 16> ArgLocs;
679   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
680 
681   if (!IsEntryFunc) {
682     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
683     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
684                                          &AMDGPU::SGPR_64RegClass);
685     MBB.addLiveIn(ReturnAddrReg);
686     B.buildCopy(LiveInReturn, ReturnAddrReg);
687   }
688 
689   if (Info->hasImplicitBufferPtr()) {
690     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
691     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
692     CCInfo.AllocateReg(ImplicitBufferPtrReg);
693   }
694 
695 
696   SmallVector<ArgInfo, 32> SplitArgs;
697   unsigned Idx = 0;
698   unsigned PSInputNum = 0;
699 
700   for (auto &Arg : F.args()) {
701     if (DL.getTypeStoreSize(Arg.getType()) == 0)
702       continue;
703 
704     const bool InReg = Arg.hasAttribute(Attribute::InReg);
705 
706     // SGPR arguments to functions not implemented.
707     if (!IsShader && InReg)
708       return false;
709 
710     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
711         Arg.hasAttribute(Attribute::SwiftError) ||
712         Arg.hasAttribute(Attribute::Nest))
713       return false;
714 
715     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
716       const bool ArgUsed = !Arg.use_empty();
717       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
718 
719       if (!SkipArg) {
720         Info->markPSInputAllocated(PSInputNum);
721         if (ArgUsed)
722           Info->markPSInputEnabled(PSInputNum);
723       }
724 
725       ++PSInputNum;
726 
727       if (SkipArg) {
728         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
729           B.buildUndef(VRegs[Idx][I]);
730 
731         ++Idx;
732         continue;
733       }
734     }
735 
736     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
737     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
738     setArgFlags(OrigArg, OrigArgIdx, DL, F);
739 
740     splitToValueTypes(
741       B, OrigArg, OrigArgIdx, SplitArgs, DL, CC,
742       // FIXME: We should probably be passing multiple registers to
743       // handleAssignments to do this
744       [&](ArrayRef<Register> Regs, Register DstReg,
745           LLT LLTy, LLT PartLLT, int VTSplitIdx) {
746         assert(DstReg == VRegs[Idx][VTSplitIdx]);
747         packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
748                                 LLTy, PartLLT);
749       });
750 
751     ++Idx;
752   }
753 
754   // At least one interpolation mode must be enabled or else the GPU will
755   // hang.
756   //
757   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
758   // set PSInputAddr, the user wants to enable some bits after the compilation
759   // based on run-time states. Since we can't know what the final PSInputEna
760   // will look like, so we shouldn't do anything here and the user should take
761   // responsibility for the correct programming.
762   //
763   // Otherwise, the following restrictions apply:
764   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
765   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
766   //   enabled too.
767   if (CC == CallingConv::AMDGPU_PS) {
768     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
769         ((Info->getPSInputAddr() & 0xF) == 0 &&
770          Info->isPSInputAllocated(11))) {
771       CCInfo.AllocateReg(AMDGPU::VGPR0);
772       CCInfo.AllocateReg(AMDGPU::VGPR1);
773       Info->markPSInputAllocated(0);
774       Info->markPSInputEnabled(0);
775     }
776 
777     if (Subtarget.isAmdPalOS()) {
778       // For isAmdPalOS, the user does not enable some bits after compilation
779       // based on run-time states; the register values being generated here are
780       // the final ones set in hardware. Therefore we need to apply the
781       // workaround to PSInputAddr and PSInputEnable together.  (The case where
782       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
783       // set up an input arg for a particular interpolation mode, but nothing
784       // uses that input arg. Really we should have an earlier pass that removes
785       // such an arg.)
786       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
787       if ((PsInputBits & 0x7F) == 0 ||
788           ((PsInputBits & 0xF) == 0 &&
789            (PsInputBits >> 11 & 1)))
790         Info->markPSInputEnabled(
791           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
792     }
793   }
794 
795   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
796   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
797 
798   if (!MBB.empty())
799     B.setInstr(*MBB.begin());
800 
801   if (!IsEntryFunc) {
802     // For the fixed ABI, pass workitem IDs in the last argument register.
803     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
804       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
805   }
806 
807   FormalArgHandler Handler(B, MRI, AssignFn);
808   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
809     return false;
810 
811   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
812     // Special inputs come after user arguments.
813     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
814   }
815 
816   // Start adding system SGPRs.
817   if (IsEntryFunc) {
818     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
819   } else {
820     CCInfo.AllocateReg(Info->getScratchRSrcReg());
821     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
822   }
823 
824   // Move back to the end of the basic block.
825   B.setMBB(MBB);
826 
827   return true;
828 }
829