1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 
26 #define DEBUG_TYPE "amdgpu-call-lowering"
27 
28 using namespace llvm;
29 
30 namespace {
31 
32 struct AMDGPUValueHandler : public CallLowering::ValueHandler {
33   AMDGPUValueHandler(bool IsIncoming, MachineIRBuilder &B,
34                      MachineRegisterInfo &MRI, CCAssignFn *AssignFn)
35       : ValueHandler(IsIncoming, B, MRI, AssignFn) {}
36 
37   /// Wrapper around extendRegister to ensure we extend to a full 32-bit
38   /// register.
39   Register extendRegisterMin32(Register ValVReg, CCValAssign &VA) {
40     if (VA.getLocVT().getSizeInBits() < 32) {
41       // 16-bit types are reported as legal for 32-bit registers. We need to
42       // extend and do a 32-bit copy to avoid the verifier complaining about it.
43       return MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
44     }
45 
46     return extendRegister(ValVReg, VA);
47   }
48 };
49 
50 struct AMDGPUOutgoingValueHandler : public AMDGPUValueHandler {
51   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
52                              MachineInstrBuilder MIB, CCAssignFn *AssignFn)
53       : AMDGPUValueHandler(false, B, MRI, AssignFn), MIB(MIB) {}
54 
55   MachineInstrBuilder MIB;
56 
57   Register getStackAddress(uint64_t Size, int64_t Offset,
58                            MachinePointerInfo &MPO) override {
59     llvm_unreachable("not implemented");
60   }
61 
62   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
63                             MachinePointerInfo &MPO, CCValAssign &VA) override {
64     llvm_unreachable("not implemented");
65   }
66 
67   void assignValueToReg(Register ValVReg, Register PhysReg,
68                         CCValAssign &VA) override {
69     Register ExtReg = extendRegisterMin32(ValVReg, VA);
70 
71     // If this is a scalar return, insert a readfirstlane just in case the value
72     // ends up in a VGPR.
73     // FIXME: Assert this is a shader return.
74     const SIRegisterInfo *TRI
75       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
76     if (TRI->isSGPRReg(MRI, PhysReg)) {
77       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
78                                               {MRI.getType(ExtReg)}, false)
79         .addReg(ExtReg);
80       ExtReg = ToSGPR.getReg(0);
81     }
82 
83     MIRBuilder.buildCopy(PhysReg, ExtReg);
84     MIB.addUse(PhysReg, RegState::Implicit);
85   }
86 
87   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
88                  CCValAssign::LocInfo LocInfo,
89                  const CallLowering::ArgInfo &Info,
90                  ISD::ArgFlagsTy Flags,
91                  CCState &State) override {
92     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
93   }
94 };
95 
96 struct AMDGPUIncomingArgHandler : public AMDGPUValueHandler {
97   uint64_t StackUsed = 0;
98 
99   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
100                            CCAssignFn *AssignFn)
101       : AMDGPUValueHandler(true, B, MRI, AssignFn) {}
102 
103   Register getStackAddress(uint64_t Size, int64_t Offset,
104                            MachinePointerInfo &MPO) override {
105     auto &MFI = MIRBuilder.getMF().getFrameInfo();
106     int FI = MFI.CreateFixedObject(Size, Offset, true);
107     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
108     auto AddrReg = MIRBuilder.buildFrameIndex(
109         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
110     StackUsed = std::max(StackUsed, Size + Offset);
111     return AddrReg.getReg(0);
112   }
113 
114   void assignValueToReg(Register ValVReg, Register PhysReg,
115                         CCValAssign &VA) override {
116     markPhysRegUsed(PhysReg);
117 
118     if (VA.getLocVT().getSizeInBits() < 32) {
119       // 16-bit types are reported as legal for 32-bit registers. We need to do
120       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
121       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
122       MIRBuilder.buildTrunc(ValVReg, Copy);
123       return;
124     }
125 
126     switch (VA.getLocInfo()) {
127     case CCValAssign::LocInfo::SExt:
128     case CCValAssign::LocInfo::ZExt:
129     case CCValAssign::LocInfo::AExt: {
130       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
131       MIRBuilder.buildTrunc(ValVReg, Copy);
132       break;
133     }
134     default:
135       MIRBuilder.buildCopy(ValVReg, PhysReg);
136       break;
137     }
138   }
139 
140   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
141                             MachinePointerInfo &MPO, CCValAssign &VA) override {
142     MachineFunction &MF = MIRBuilder.getMF();
143 
144     // The reported memory location may be wider than the value.
145     const LLT RegTy = MRI.getType(ValVReg);
146     MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
147 
148     // FIXME: Get alignment
149     auto MMO = MF.getMachineMemOperand(
150         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
151         inferAlignFromPtrInfo(MF, MPO));
152     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
153   }
154 
155   /// How the physical register gets marked varies between formal
156   /// parameters (it's a basic-block live-in), and a call instruction
157   /// (it's an implicit-def of the BL).
158   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
159 };
160 
161 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
162   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
163                    CCAssignFn *AssignFn)
164       : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {}
165 
166   void markPhysRegUsed(unsigned PhysReg) override {
167     MIRBuilder.getMBB().addLiveIn(PhysReg);
168   }
169 };
170 
171 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
172   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
173                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
174       : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
175 
176   void markPhysRegUsed(unsigned PhysReg) override {
177     MIB.addDef(PhysReg, RegState::Implicit);
178   }
179 
180   MachineInstrBuilder MIB;
181 };
182 
183 struct AMDGPUOutgoingArgHandler : public AMDGPUValueHandler {
184   MachineInstrBuilder MIB;
185   CCAssignFn *AssignFnVarArg;
186 
187   /// For tail calls, the byte offset of the call's argument area from the
188   /// callee's. Unused elsewhere.
189   int FPDiff;
190 
191   // Cache the SP register vreg if we need it more than once in this call site.
192   Register SPReg;
193 
194   bool IsTailCall;
195 
196   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
197                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
198                            CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg,
199                            bool IsTailCall = false, int FPDiff = 0)
200       : AMDGPUValueHandler(false, MIRBuilder, MRI, AssignFn), MIB(MIB),
201         AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) {
202   }
203 
204   Register getStackAddress(uint64_t Size, int64_t Offset,
205                            MachinePointerInfo &MPO) override {
206     MachineFunction &MF = MIRBuilder.getMF();
207     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
208     const LLT S32 = LLT::scalar(32);
209 
210     if (IsTailCall) {
211       llvm_unreachable("implement me");
212     }
213 
214     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
215 
216     if (!SPReg)
217       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
218 
219     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
220 
221     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
222     MPO = MachinePointerInfo::getStack(MF, Offset);
223     return AddrReg.getReg(0);
224   }
225 
226   void assignValueToReg(Register ValVReg, Register PhysReg,
227                         CCValAssign &VA) override {
228     MIB.addUse(PhysReg, RegState::Implicit);
229     Register ExtReg = extendRegisterMin32(ValVReg, VA);
230     MIRBuilder.buildCopy(PhysReg, ExtReg);
231   }
232 
233   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
234                             MachinePointerInfo &MPO, CCValAssign &VA) override {
235     MachineFunction &MF = MIRBuilder.getMF();
236     uint64_t LocMemOffset = VA.getLocMemOffset();
237     const auto &ST = MF.getSubtarget<GCNSubtarget>();
238 
239     auto MMO = MF.getMachineMemOperand(
240       MPO, MachineMemOperand::MOStore, Size,
241       commonAlignment(ST.getStackAlignment(), LocMemOffset));
242     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
243   }
244 
245   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
246                             unsigned ValRegIndex, Register Addr,
247                             uint64_t MemSize, MachinePointerInfo &MPO,
248                             CCValAssign &VA) override {
249     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
250                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
251                            : Arg.Regs[ValRegIndex];
252 
253     // If we extended the value type we might need to adjust the MMO's
254     // Size. This happens if ComputeValueVTs widened a small type value to a
255     // legal register type (e.g. s8->s16)
256     const LLT RegTy = MRI.getType(ValVReg);
257     MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes());
258     assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA);
259   }
260 };
261 }
262 
263 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
264   : CallLowering(&TLI) {
265 }
266 
267 // FIXME: Compatability shim
268 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
269   switch (MIOpc) {
270   case TargetOpcode::G_SEXT:
271     return ISD::SIGN_EXTEND;
272   case TargetOpcode::G_ZEXT:
273     return ISD::ZERO_EXTEND;
274   case TargetOpcode::G_ANYEXT:
275     return ISD::ANY_EXTEND;
276   default:
277     llvm_unreachable("not an extend opcode");
278   }
279 }
280 
281 void AMDGPUCallLowering::processSplitArgs(
282     MachineIRBuilder &B, const ArgInfo &OrigArg,
283     const SmallVectorImpl<ArgInfo> &SplitArg,
284     SmallVectorImpl<ArgInfo> &SplitArgs, const DataLayout &DL,
285     CallingConv::ID CallConv, bool IsOutgoing,
286     SplitArgTy PerformArgSplit) const {
287   LLVMContext &Ctx = OrigArg.Ty->getContext();
288   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
289 
290   // FIXME: This is mostly nasty pre-processing before handleAssignments. Most
291   // of this should be performed by handleAssignments.
292 
293   for (int SplitIdx = 0, e = SplitArg.size(); SplitIdx != e; ++SplitIdx) {
294     const ArgInfo &CurSplitArg = SplitArg[SplitIdx];
295     Register Reg = OrigArg.Regs[SplitIdx];
296     EVT VT = EVT::getEVT(CurSplitArg.Ty);
297     LLT LLTy = getLLTForType(*CurSplitArg.Ty, DL);
298 
299     unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
300     MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
301 
302     if (NumParts == 1) {
303       // No splitting to do, but we want to replace the original type (e.g. [1 x
304       // double] -> double).
305       SplitArgs.emplace_back(Reg, CurSplitArg.Ty, OrigArg.Flags,
306                              OrigArg.IsFixed);
307       continue;
308     }
309 
310     SmallVector<Register, 8> SplitRegs;
311     Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx);
312     LLT PartLLT = getLLTForType(*PartTy, DL);
313     MachineRegisterInfo &MRI = *B.getMRI();
314 
315     // FIXME: Should we be reporting all of the part registers for a single
316     // argument, and let handleAssignments take care of the repacking?
317     for (unsigned i = 0; i < NumParts; ++i) {
318       Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
319       SplitRegs.push_back(PartReg);
320       SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
321     }
322 
323     PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx);
324   }
325 }
326 
327 // TODO: Move to generic code
328 static void unpackRegsToOrigType(MachineIRBuilder &B,
329                                  ArrayRef<Register> DstRegs,
330                                  Register SrcReg,
331                                  const CallLowering::ArgInfo &Info,
332                                  LLT SrcTy,
333                                  LLT PartTy) {
334   assert(DstRegs.size() > 1 && "Nothing to unpack");
335 
336   const unsigned PartSize = PartTy.getSizeInBits();
337 
338   if (SrcTy.isVector() && !PartTy.isVector() &&
339       PartSize > SrcTy.getElementType().getSizeInBits()) {
340     // Vector was scalarized, and the elements extended.
341     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
342     for (int i = 0, e = DstRegs.size(); i != e; ++i)
343       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
344     return;
345   }
346 
347   LLT GCDTy = getGCDType(SrcTy, PartTy);
348   if (GCDTy == PartTy) {
349     // If this already evenly divisible, we can create a simple unmerge.
350     B.buildUnmerge(DstRegs, SrcReg);
351     return;
352   }
353 
354   MachineRegisterInfo &MRI = *B.getMRI();
355   LLT DstTy = MRI.getType(DstRegs[0]);
356   LLT LCMTy = getLCMType(SrcTy, PartTy);
357 
358   const unsigned LCMSize = LCMTy.getSizeInBits();
359   const unsigned DstSize = DstTy.getSizeInBits();
360   const unsigned SrcSize = SrcTy.getSizeInBits();
361 
362   Register UnmergeSrc = SrcReg;
363   if (LCMSize != SrcSize) {
364     // Widen to the common type.
365     Register Undef = B.buildUndef(SrcTy).getReg(0);
366     SmallVector<Register, 8> MergeParts(1, SrcReg);
367     for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize)
368       MergeParts.push_back(Undef);
369 
370     UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
371   }
372 
373   // Unmerge to the original registers and pad with dead defs.
374   SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
375   for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize;
376        Size += DstSize) {
377     UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
378   }
379 
380   B.buildUnmerge(UnmergeResults, UnmergeSrc);
381 }
382 
383 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
384                                         CallingConv::ID CallConv,
385                                         SmallVectorImpl<BaseArgInfo> &Outs,
386                                         bool IsVarArg) const {
387   // For shaders. Vector types should be explicitly handled by CC.
388   if (AMDGPU::isEntryFunctionCC(CallConv))
389     return true;
390 
391   SmallVector<CCValAssign, 16> ArgLocs;
392   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
393   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
394                  MF.getFunction().getContext());
395 
396   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
397 }
398 
399 /// Lower the return value for the already existing \p Ret. This assumes that
400 /// \p B's insertion point is correct.
401 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
402                                         const Value *Val, ArrayRef<Register> VRegs,
403                                         MachineInstrBuilder &Ret) const {
404   if (!Val)
405     return true;
406 
407   auto &MF = B.getMF();
408   const auto &F = MF.getFunction();
409   const DataLayout &DL = MF.getDataLayout();
410   MachineRegisterInfo *MRI = B.getMRI();
411   LLVMContext &Ctx = F.getContext();
412 
413   CallingConv::ID CC = F.getCallingConv();
414   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
415 
416   SmallVector<EVT, 8> SplitEVTs;
417   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
418   assert(VRegs.size() == SplitEVTs.size() &&
419          "For each split Type there should be exactly one VReg.");
420 
421   // We pre-process the return value decomposed into EVTs.
422   SmallVector<ArgInfo, 8> PreSplitRetInfos;
423 
424   // Further processing is applied to split the arguments from PreSplitRetInfos
425   // into 32-bit pieces in SplitRetInfos before passing off to
426   // handleAssignments.
427   SmallVector<ArgInfo, 8> SplitRetInfos;
428 
429   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
430     EVT VT = SplitEVTs[i];
431     Register Reg = VRegs[i];
432     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx));
433     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
434 
435     if (VT.isScalarInteger()) {
436       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
437       if (RetInfo.Flags[0].isSExt()) {
438         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
439         ExtendOp = TargetOpcode::G_SEXT;
440       } else if (RetInfo.Flags[0].isZExt()) {
441         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
442         ExtendOp = TargetOpcode::G_ZEXT;
443       }
444 
445       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
446                                           extOpcodeToISDExtOpcode(ExtendOp));
447       if (ExtVT != VT) {
448         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
449         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
450         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
451       }
452     }
453 
454     if (Reg != RetInfo.Regs[0]) {
455       RetInfo.Regs[0] = Reg;
456       // Reset the arg flags after modifying Reg.
457       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
458     }
459 
460     splitToValueTypes(RetInfo, PreSplitRetInfos, DL, CC);
461 
462     // FIXME: This splitting should mostly be done by handleAssignments
463     processSplitArgs(B, RetInfo,
464                      PreSplitRetInfos, SplitRetInfos, DL, CC, true,
465                      [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy,
466                          LLT PartLLT, int VTSplitIdx) {
467                        unpackRegsToOrigType(B, Regs, SrcReg,
468                                             PreSplitRetInfos[VTSplitIdx], LLTy,
469                                             PartLLT);
470                      });
471     PreSplitRetInfos.clear();
472   }
473 
474   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
475   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
476   return handleAssignments(B, SplitRetInfos, RetHandler, CC, F.isVarArg());
477 }
478 
479 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
480                                      ArrayRef<Register> VRegs,
481                                      FunctionLoweringInfo &FLI) const {
482 
483   MachineFunction &MF = B.getMF();
484   MachineRegisterInfo &MRI = MF.getRegInfo();
485   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
486   MFI->setIfReturnsVoid(!Val);
487 
488   assert(!Val == VRegs.empty() && "Return value without a vreg");
489 
490   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
491   const bool IsShader = AMDGPU::isShader(CC);
492   const bool IsWaveEnd =
493       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
494   if (IsWaveEnd) {
495     B.buildInstr(AMDGPU::S_ENDPGM)
496       .addImm(0);
497     return true;
498   }
499 
500   auto const &ST = MF.getSubtarget<GCNSubtarget>();
501 
502   unsigned ReturnOpc =
503       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
504 
505   auto Ret = B.buildInstrNoInsert(ReturnOpc);
506   Register ReturnAddrVReg;
507   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
508     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
509     Ret.addUse(ReturnAddrVReg);
510   }
511 
512   if (!FLI.CanLowerReturn)
513     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
514   else if (!lowerReturnVal(B, Val, VRegs, Ret))
515     return false;
516 
517   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
518     const SIRegisterInfo *TRI = ST.getRegisterInfo();
519     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
520                                          &AMDGPU::SGPR_64RegClass);
521     B.buildCopy(ReturnAddrVReg, LiveInReturn);
522   }
523 
524   // TODO: Handle CalleeSavedRegsViaCopy.
525 
526   B.insertInstr(Ret);
527   return true;
528 }
529 
530 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
531                                            Type *ParamTy,
532                                            uint64_t Offset) const {
533   MachineFunction &MF = B.getMF();
534   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
535   MachineRegisterInfo &MRI = MF.getRegInfo();
536   Register KernArgSegmentPtr =
537     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
538   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
539 
540   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
541 
542   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
543 }
544 
545 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
546                                         uint64_t Offset, Align Alignment,
547                                         Register DstReg) const {
548   MachineFunction &MF = B.getMF();
549   const Function &F = MF.getFunction();
550   const DataLayout &DL = F.getParent()->getDataLayout();
551   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
552   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
553 
554   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
555   Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
556   lowerParameterPtr(PtrReg, B, ParamTy, Offset);
557 
558   MachineMemOperand *MMO = MF.getMachineMemOperand(
559       PtrInfo,
560       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
561           MachineMemOperand::MOInvariant,
562       TypeSize, Alignment);
563 
564   B.buildLoad(DstReg, PtrReg, *MMO);
565 }
566 
567 // Allocate special inputs passed in user SGPRs.
568 static void allocateHSAUserSGPRs(CCState &CCInfo,
569                                  MachineIRBuilder &B,
570                                  MachineFunction &MF,
571                                  const SIRegisterInfo &TRI,
572                                  SIMachineFunctionInfo &Info) {
573   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
574   if (Info.hasPrivateSegmentBuffer()) {
575     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
576     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
577     CCInfo.AllocateReg(PrivateSegmentBufferReg);
578   }
579 
580   if (Info.hasDispatchPtr()) {
581     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
582     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
583     CCInfo.AllocateReg(DispatchPtrReg);
584   }
585 
586   if (Info.hasQueuePtr()) {
587     Register QueuePtrReg = Info.addQueuePtr(TRI);
588     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
589     CCInfo.AllocateReg(QueuePtrReg);
590   }
591 
592   if (Info.hasKernargSegmentPtr()) {
593     MachineRegisterInfo &MRI = MF.getRegInfo();
594     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
595     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
596     Register VReg = MRI.createGenericVirtualRegister(P4);
597     MRI.addLiveIn(InputPtrReg, VReg);
598     B.getMBB().addLiveIn(InputPtrReg);
599     B.buildCopy(VReg, InputPtrReg);
600     CCInfo.AllocateReg(InputPtrReg);
601   }
602 
603   if (Info.hasDispatchID()) {
604     Register DispatchIDReg = Info.addDispatchID(TRI);
605     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
606     CCInfo.AllocateReg(DispatchIDReg);
607   }
608 
609   if (Info.hasFlatScratchInit()) {
610     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
611     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
612     CCInfo.AllocateReg(FlatScratchInitReg);
613   }
614 
615   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
616   // these from the dispatch pointer.
617 }
618 
619 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
620     MachineIRBuilder &B, const Function &F,
621     ArrayRef<ArrayRef<Register>> VRegs) const {
622   MachineFunction &MF = B.getMF();
623   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
624   MachineRegisterInfo &MRI = MF.getRegInfo();
625   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
626   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
627   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
628 
629   const DataLayout &DL = F.getParent()->getDataLayout();
630 
631   SmallVector<CCValAssign, 16> ArgLocs;
632   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
633 
634   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
635 
636   unsigned i = 0;
637   const Align KernArgBaseAlign(16);
638   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
639   uint64_t ExplicitArgOffset = 0;
640 
641   // TODO: Align down to dword alignment and extract bits for extending loads.
642   for (auto &Arg : F.args()) {
643     const bool IsByRef = Arg.hasByRefAttr();
644     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
645     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
646     if (AllocSize == 0)
647       continue;
648 
649     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
650     if (!ABIAlign)
651       ABIAlign = DL.getABITypeAlign(ArgTy);
652 
653     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
654     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
655 
656     if (Arg.use_empty()) {
657       ++i;
658       continue;
659     }
660 
661     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
662 
663     if (IsByRef) {
664       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
665 
666       assert(VRegs[i].size() == 1 &&
667              "expected only one register for byval pointers");
668       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
669         lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
670       } else {
671         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
672         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
673         lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
674 
675         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
676       }
677     } else {
678       ArrayRef<Register> OrigArgRegs = VRegs[i];
679       Register ArgReg =
680         OrigArgRegs.size() == 1
681         ? OrigArgRegs[0]
682         : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
683 
684       lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
685       if (OrigArgRegs.size() > 1)
686         unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
687     }
688 
689     ++i;
690   }
691 
692   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
693   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
694   return true;
695 }
696 
697 bool AMDGPUCallLowering::lowerFormalArguments(
698     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
699     FunctionLoweringInfo &FLI) const {
700   CallingConv::ID CC = F.getCallingConv();
701 
702   // The infrastructure for normal calling convention lowering is essentially
703   // useless for kernels. We want to avoid any kind of legalization or argument
704   // splitting.
705   if (CC == CallingConv::AMDGPU_KERNEL)
706     return lowerFormalArgumentsKernel(B, F, VRegs);
707 
708   const bool IsGraphics = AMDGPU::isGraphics(CC);
709   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
710 
711   MachineFunction &MF = B.getMF();
712   MachineBasicBlock &MBB = B.getMBB();
713   MachineRegisterInfo &MRI = MF.getRegInfo();
714   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
715   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
716   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
717   const DataLayout &DL = F.getParent()->getDataLayout();
718 
719 
720   SmallVector<CCValAssign, 16> ArgLocs;
721   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
722 
723   if (!IsEntryFunc) {
724     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
725     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
726                                          &AMDGPU::SGPR_64RegClass);
727     MBB.addLiveIn(ReturnAddrReg);
728     B.buildCopy(LiveInReturn, ReturnAddrReg);
729   }
730 
731   if (Info->hasImplicitBufferPtr()) {
732     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
733     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
734     CCInfo.AllocateReg(ImplicitBufferPtrReg);
735   }
736 
737   SmallVector<ArgInfo, 32> SplitArgs;
738   unsigned Idx = 0;
739   unsigned PSInputNum = 0;
740 
741   // Insert the hidden sret parameter if the return value won't fit in the
742   // return registers.
743   if (!FLI.CanLowerReturn)
744     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
745 
746   for (auto &Arg : F.args()) {
747     if (DL.getTypeStoreSize(Arg.getType()) == 0)
748       continue;
749 
750     const bool InReg = Arg.hasAttribute(Attribute::InReg);
751 
752     // SGPR arguments to functions not implemented.
753     if (!IsGraphics && InReg)
754       return false;
755 
756     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
757         Arg.hasAttribute(Attribute::SwiftError) ||
758         Arg.hasAttribute(Attribute::Nest))
759       return false;
760 
761     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
762       const bool ArgUsed = !Arg.use_empty();
763       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
764 
765       if (!SkipArg) {
766         Info->markPSInputAllocated(PSInputNum);
767         if (ArgUsed)
768           Info->markPSInputEnabled(PSInputNum);
769       }
770 
771       ++PSInputNum;
772 
773       if (SkipArg) {
774         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
775           B.buildUndef(VRegs[Idx][I]);
776 
777         ++Idx;
778         continue;
779       }
780     }
781 
782     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
783     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
784     setArgFlags(OrigArg, OrigArgIdx, DL, F);
785 
786     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
787     ++Idx;
788   }
789 
790   // At least one interpolation mode must be enabled or else the GPU will
791   // hang.
792   //
793   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
794   // set PSInputAddr, the user wants to enable some bits after the compilation
795   // based on run-time states. Since we can't know what the final PSInputEna
796   // will look like, so we shouldn't do anything here and the user should take
797   // responsibility for the correct programming.
798   //
799   // Otherwise, the following restrictions apply:
800   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
801   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
802   //   enabled too.
803   if (CC == CallingConv::AMDGPU_PS) {
804     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
805         ((Info->getPSInputAddr() & 0xF) == 0 &&
806          Info->isPSInputAllocated(11))) {
807       CCInfo.AllocateReg(AMDGPU::VGPR0);
808       CCInfo.AllocateReg(AMDGPU::VGPR1);
809       Info->markPSInputAllocated(0);
810       Info->markPSInputEnabled(0);
811     }
812 
813     if (Subtarget.isAmdPalOS()) {
814       // For isAmdPalOS, the user does not enable some bits after compilation
815       // based on run-time states; the register values being generated here are
816       // the final ones set in hardware. Therefore we need to apply the
817       // workaround to PSInputAddr and PSInputEnable together.  (The case where
818       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
819       // set up an input arg for a particular interpolation mode, but nothing
820       // uses that input arg. Really we should have an earlier pass that removes
821       // such an arg.)
822       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
823       if ((PsInputBits & 0x7F) == 0 ||
824           ((PsInputBits & 0xF) == 0 &&
825            (PsInputBits >> 11 & 1)))
826         Info->markPSInputEnabled(
827           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
828     }
829   }
830 
831   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
832   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
833 
834   if (!MBB.empty())
835     B.setInstr(*MBB.begin());
836 
837   if (!IsEntryFunc) {
838     // For the fixed ABI, pass workitem IDs in the last argument register.
839     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
840       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
841   }
842 
843   FormalArgHandler Handler(B, MRI, AssignFn);
844   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
845     return false;
846 
847   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
848     // Special inputs come after user arguments.
849     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
850   }
851 
852   // Start adding system SGPRs.
853   if (IsEntryFunc) {
854     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
855   } else {
856     if (!Subtarget.enableFlatScratch())
857       CCInfo.AllocateReg(Info->getScratchRSrcReg());
858     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
859   }
860 
861   // Move back to the end of the basic block.
862   B.setMBB(MBB);
863 
864   return true;
865 }
866 
867 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
868                                            CCState &CCInfo,
869                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
870                                            CallLoweringInfo &Info) const {
871   MachineFunction &MF = MIRBuilder.getMF();
872 
873   const AMDGPUFunctionArgInfo *CalleeArgInfo
874     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
875 
876   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
877   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
878 
879 
880   // TODO: Unify with private memory register handling. This is complicated by
881   // the fact that at least in kernels, the input argument is not necessarily
882   // in the same location as the input.
883   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
884     AMDGPUFunctionArgInfo::DISPATCH_PTR,
885     AMDGPUFunctionArgInfo::QUEUE_PTR,
886     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
887     AMDGPUFunctionArgInfo::DISPATCH_ID,
888     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
889     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
890     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
891   };
892 
893   MachineRegisterInfo &MRI = MF.getRegInfo();
894 
895   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
896   const AMDGPULegalizerInfo *LI
897     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
898 
899   for (auto InputID : InputRegs) {
900     const ArgDescriptor *OutgoingArg;
901     const TargetRegisterClass *ArgRC;
902     LLT ArgTy;
903 
904     std::tie(OutgoingArg, ArgRC, ArgTy) =
905         CalleeArgInfo->getPreloadedValue(InputID);
906     if (!OutgoingArg)
907       continue;
908 
909     const ArgDescriptor *IncomingArg;
910     const TargetRegisterClass *IncomingArgRC;
911     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
912         CallerArgInfo.getPreloadedValue(InputID);
913     assert(IncomingArgRC == ArgRC);
914 
915     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
916 
917     if (IncomingArg) {
918       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
919     } else {
920       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
921       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
922     }
923 
924     if (OutgoingArg->isRegister()) {
925       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
926       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
927         report_fatal_error("failed to allocate implicit input argument");
928     } else {
929       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
930       return false;
931     }
932   }
933 
934   // Pack workitem IDs into a single register or pass it as is if already
935   // packed.
936   const ArgDescriptor *OutgoingArg;
937   const TargetRegisterClass *ArgRC;
938   LLT ArgTy;
939 
940   std::tie(OutgoingArg, ArgRC, ArgTy) =
941       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
942   if (!OutgoingArg)
943     std::tie(OutgoingArg, ArgRC, ArgTy) =
944         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
945   if (!OutgoingArg)
946     std::tie(OutgoingArg, ArgRC, ArgTy) =
947         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
948   if (!OutgoingArg)
949     return false;
950 
951   auto WorkitemIDX =
952       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
953   auto WorkitemIDY =
954       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
955   auto WorkitemIDZ =
956       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
957 
958   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
959   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
960   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
961   const LLT S32 = LLT::scalar(32);
962 
963   // If incoming ids are not packed we need to pack them.
964   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
965   Register InputReg;
966   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
967     InputReg = MRI.createGenericVirtualRegister(S32);
968     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
969                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
970   }
971 
972   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
973     Register Y = MRI.createGenericVirtualRegister(S32);
974     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
975                        std::get<2>(WorkitemIDY));
976 
977     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
978     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
979   }
980 
981   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
982     Register Z = MRI.createGenericVirtualRegister(S32);
983     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
984                        std::get<2>(WorkitemIDZ));
985 
986     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
987     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
988   }
989 
990   if (!InputReg) {
991     InputReg = MRI.createGenericVirtualRegister(S32);
992 
993     // Workitem ids are already packed, any of present incoming arguments will
994     // carry all required fields.
995     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
996       IncomingArgX ? *IncomingArgX :
997         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
998     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
999                        &AMDGPU::VGPR_32RegClass, S32);
1000   }
1001 
1002   if (OutgoingArg->isRegister()) {
1003     ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
1004     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
1005       report_fatal_error("failed to allocate implicit input argument");
1006   } else {
1007     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
1008     return false;
1009   }
1010 
1011   return true;
1012 }
1013 
1014 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
1015 /// CC.
1016 static std::pair<CCAssignFn *, CCAssignFn *>
1017 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
1018   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
1019 }
1020 
1021 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
1022                               bool IsTailCall) {
1023   return AMDGPU::SI_CALL;
1024 }
1025 
1026 // Add operands to call instruction to track the callee.
1027 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
1028                                   MachineIRBuilder &MIRBuilder,
1029                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
1030   if (Info.Callee.isReg()) {
1031     CallInst.addReg(Info.Callee.getReg());
1032     CallInst.addImm(0);
1033   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
1034     // The call lowering lightly assumed we can directly encode a call target in
1035     // the instruction, which is not the case. Materialize the address here.
1036     const GlobalValue *GV = Info.Callee.getGlobal();
1037     auto Ptr = MIRBuilder.buildGlobalValue(
1038       LLT::pointer(GV->getAddressSpace(), 64), GV);
1039     CallInst.addReg(Ptr.getReg(0));
1040     CallInst.add(Info.Callee);
1041   } else
1042     return false;
1043 
1044   return true;
1045 }
1046 
1047 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1048                                    CallLoweringInfo &Info) const {
1049   if (Info.IsVarArg) {
1050     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1051     return false;
1052   }
1053 
1054   MachineFunction &MF = MIRBuilder.getMF();
1055   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1056   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1057 
1058   const Function &F = MF.getFunction();
1059   MachineRegisterInfo &MRI = MF.getRegInfo();
1060   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1061   const DataLayout &DL = F.getParent()->getDataLayout();
1062   CallingConv::ID CallConv = F.getCallingConv();
1063 
1064   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
1065       CallConv != CallingConv::AMDGPU_Gfx) {
1066     LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
1067     return false;
1068   }
1069 
1070   if (AMDGPU::isShader(CallConv)) {
1071     LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n");
1072     return false;
1073   }
1074 
1075   SmallVector<ArgInfo, 8> OutArgs;
1076 
1077   SmallVector<ArgInfo, 8> SplitArg;
1078   for (auto &OrigArg : Info.OrigArgs) {
1079     splitToValueTypes(OrigArg, SplitArg, DL, Info.CallConv);
1080 
1081     processSplitArgs(
1082       MIRBuilder, OrigArg, SplitArg, OutArgs, DL, Info.CallConv, true,
1083       // FIXME: We should probably be passing multiple registers to
1084       // handleAssignments to do this
1085       [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
1086           int VTSplitIdx) {
1087         unpackRegsToOrigType(MIRBuilder, Regs, SrcReg, OrigArg, LLTy, PartLLT);
1088       });
1089 
1090     SplitArg.clear();
1091   }
1092 
1093   // If we can lower as a tail call, do that instead.
1094   bool CanTailCallOpt = false;
1095 
1096   // We must emit a tail call if we have musttail.
1097   if (Info.IsMustTailCall && !CanTailCallOpt) {
1098     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1099     return false;
1100   }
1101 
1102   // Find out which ABI gets to decide where things go.
1103   CCAssignFn *AssignFnFixed;
1104   CCAssignFn *AssignFnVarArg;
1105   std::tie(AssignFnFixed, AssignFnVarArg) =
1106       getAssignFnsForCC(Info.CallConv, TLI);
1107 
1108   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1109     .addImm(0)
1110     .addImm(0);
1111 
1112   // Create a temporarily-floating call instruction so we can add the implicit
1113   // uses of arg registers.
1114   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
1115 
1116   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1117   MIB.addDef(TRI->getReturnAddressReg(MF));
1118 
1119   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1120     return false;
1121 
1122   // Tell the call which registers are clobbered.
1123   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1124   MIB.addRegMask(Mask);
1125 
1126   SmallVector<CCValAssign, 16> ArgLocs;
1127   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1128 
1129   // We could pass MIB and directly add the implicit uses to the call
1130   // now. However, as an aesthetic choice, place implicit argument operands
1131   // after the ordinary user argument registers.
1132   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1133 
1134   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
1135       Info.CallConv != CallingConv::AMDGPU_Gfx) {
1136     // With a fixed ABI, allocate fixed registers before user arguments.
1137     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1138       return false;
1139   }
1140 
1141   // Do the actual argument marshalling.
1142   SmallVector<Register, 8> PhysRegs;
1143   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
1144                                    AssignFnVarArg, false);
1145   if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler))
1146     return false;
1147 
1148   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1149 
1150   if (!ST.enableFlatScratch()) {
1151     // Insert copies for the SRD. In the HSA case, this should be an identity
1152     // copy.
1153     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32),
1154                                                MFI->getScratchRSrcReg());
1155     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1156     MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1157   }
1158 
1159   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1160     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1161     MIB.addReg(ArgReg.first, RegState::Implicit);
1162   }
1163 
1164   // Get a count of how many bytes are to be pushed on the stack.
1165   unsigned NumBytes = CCInfo.getNextStackOffset();
1166 
1167   // If Callee is a reg, since it is used by a target specific
1168   // instruction, it must have a register class matching the
1169   // constraint of that instruction.
1170 
1171   // FIXME: We should define regbankselectable call instructions to handle
1172   // divergent call targets.
1173   if (MIB->getOperand(1).isReg()) {
1174     MIB->getOperand(1).setReg(constrainOperandRegClass(
1175         MF, *TRI, MRI, *ST.getInstrInfo(),
1176         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1177         1));
1178   }
1179 
1180   auto OrigInsertPt = MIRBuilder.getInsertPt();
1181 
1182   // Now we can add the actual call instruction to the correct position.
1183   MIRBuilder.insertInstr(MIB);
1184 
1185   // Insert this now to give us an anchor point for managing the insert point.
1186   MachineInstrBuilder CallSeqEnd =
1187     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN);
1188 
1189   SmallVector<ArgInfo, 8> InArgs;
1190   if (!Info.CanLowerReturn) {
1191     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1192                     Info.DemoteRegister, Info.DemoteStackIndex);
1193   } else if (!Info.OrigRet.Ty->isVoidTy()) {
1194     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1195   }
1196 
1197   // Make sure the raw argument copies are inserted before the marshalling to
1198   // the original types.
1199   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd);
1200 
1201   // Finally we can copy the returned value back into its virtual-register. In
1202   // symmetry with the arguments, the physical register must be an
1203   // implicit-define of the call instruction.
1204   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1205     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1206                                                       Info.IsVarArg);
1207     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1208     if (!handleAssignments(MIRBuilder, InArgs, Handler, Info.CallConv,
1209                            Info.IsVarArg))
1210       return false;
1211   }
1212 
1213   uint64_t CalleePopBytes = NumBytes;
1214   CallSeqEnd.addImm(0)
1215             .addImm(CalleePopBytes);
1216 
1217   // Restore the insert point to after the call sequence.
1218   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt);
1219   return true;
1220 }
1221