1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "SIRegisterInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 26 #define DEBUG_TYPE "amdgpu-call-lowering" 27 28 using namespace llvm; 29 30 namespace { 31 32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register. 33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler, 34 Register ValVReg, CCValAssign &VA) { 35 if (VA.getLocVT().getSizeInBits() < 32) { 36 // 16-bit types are reported as legal for 32-bit registers. We need to 37 // extend and do a 32-bit copy to avoid the verifier complaining about it. 38 return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 39 } 40 41 return Handler.extendRegister(ValVReg, VA); 42 } 43 44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler { 45 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 46 MachineInstrBuilder MIB) 47 : OutgoingValueHandler(B, MRI), MIB(MIB) {} 48 49 MachineInstrBuilder MIB; 50 51 Register getStackAddress(uint64_t Size, int64_t Offset, 52 MachinePointerInfo &MPO, 53 ISD::ArgFlagsTy Flags) override { 54 llvm_unreachable("not implemented"); 55 } 56 57 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 58 MachinePointerInfo &MPO, CCValAssign &VA) override { 59 llvm_unreachable("not implemented"); 60 } 61 62 void assignValueToReg(Register ValVReg, Register PhysReg, 63 CCValAssign VA) override { 64 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 65 66 // If this is a scalar return, insert a readfirstlane just in case the value 67 // ends up in a VGPR. 68 // FIXME: Assert this is a shader return. 69 const SIRegisterInfo *TRI 70 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 71 if (TRI->isSGPRReg(MRI, PhysReg)) { 72 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 73 {MRI.getType(ExtReg)}, false) 74 .addReg(ExtReg); 75 ExtReg = ToSGPR.getReg(0); 76 } 77 78 MIRBuilder.buildCopy(PhysReg, ExtReg); 79 MIB.addUse(PhysReg, RegState::Implicit); 80 } 81 }; 82 83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler { 84 uint64_t StackUsed = 0; 85 86 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 87 : IncomingValueHandler(B, MRI) {} 88 89 Register getStackAddress(uint64_t Size, int64_t Offset, 90 MachinePointerInfo &MPO, 91 ISD::ArgFlagsTy Flags) override { 92 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 93 94 // Byval is assumed to be writable memory, but other stack passed arguments 95 // are not. 96 const bool IsImmutable = !Flags.isByVal(); 97 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); 98 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 99 auto AddrReg = MIRBuilder.buildFrameIndex( 100 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 101 StackUsed = std::max(StackUsed, Size + Offset); 102 return AddrReg.getReg(0); 103 } 104 105 void assignValueToReg(Register ValVReg, Register PhysReg, 106 CCValAssign VA) override { 107 markPhysRegUsed(PhysReg); 108 109 if (VA.getLocVT().getSizeInBits() < 32) { 110 // 16-bit types are reported as legal for 32-bit registers. We need to do 111 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 112 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 113 114 // If we have signext/zeroext, it applies to the whole 32-bit register 115 // before truncation. 116 auto Extended = 117 buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT())); 118 MIRBuilder.buildTrunc(ValVReg, Extended); 119 return; 120 } 121 122 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); 123 } 124 125 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 126 MachinePointerInfo &MPO, CCValAssign &VA) override { 127 MachineFunction &MF = MIRBuilder.getMF(); 128 129 auto MMO = MF.getMachineMemOperand( 130 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy, 131 inferAlignFromPtrInfo(MF, MPO)); 132 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 133 } 134 135 /// How the physical register gets marked varies between formal 136 /// parameters (it's a basic-block live-in), and a call instruction 137 /// (it's an implicit-def of the BL). 138 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 139 }; 140 141 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 142 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 143 : AMDGPUIncomingArgHandler(B, MRI) {} 144 145 void markPhysRegUsed(unsigned PhysReg) override { 146 MIRBuilder.getMBB().addLiveIn(PhysReg); 147 } 148 }; 149 150 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 151 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 152 MachineInstrBuilder MIB) 153 : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} 154 155 void markPhysRegUsed(unsigned PhysReg) override { 156 MIB.addDef(PhysReg, RegState::Implicit); 157 } 158 159 MachineInstrBuilder MIB; 160 }; 161 162 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler { 163 /// For tail calls, the byte offset of the call's argument area from the 164 /// callee's. Unused elsewhere. 165 int FPDiff; 166 167 // Cache the SP register vreg if we need it more than once in this call site. 168 Register SPReg; 169 170 bool IsTailCall; 171 172 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 173 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 174 bool IsTailCall = false, int FPDiff = 0) 175 : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff), 176 IsTailCall(IsTailCall) {} 177 178 Register getStackAddress(uint64_t Size, int64_t Offset, 179 MachinePointerInfo &MPO, 180 ISD::ArgFlagsTy Flags) override { 181 MachineFunction &MF = MIRBuilder.getMF(); 182 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 183 const LLT S32 = LLT::scalar(32); 184 185 if (IsTailCall) { 186 Offset += FPDiff; 187 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); 188 auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI); 189 MPO = MachinePointerInfo::getFixedStack(MF, FI); 190 return FIReg.getReg(0); 191 } 192 193 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 194 195 if (!SPReg) 196 SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0); 197 198 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 199 200 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 201 MPO = MachinePointerInfo::getStack(MF, Offset); 202 return AddrReg.getReg(0); 203 } 204 205 void assignValueToReg(Register ValVReg, Register PhysReg, 206 CCValAssign VA) override { 207 MIB.addUse(PhysReg, RegState::Implicit); 208 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 209 MIRBuilder.buildCopy(PhysReg, ExtReg); 210 } 211 212 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 213 MachinePointerInfo &MPO, CCValAssign &VA) override { 214 MachineFunction &MF = MIRBuilder.getMF(); 215 uint64_t LocMemOffset = VA.getLocMemOffset(); 216 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 217 218 auto MMO = MF.getMachineMemOperand( 219 MPO, MachineMemOperand::MOStore, MemTy, 220 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 221 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 222 } 223 224 void assignValueToAddress(const CallLowering::ArgInfo &Arg, 225 unsigned ValRegIndex, Register Addr, LLT MemTy, 226 MachinePointerInfo &MPO, CCValAssign &VA) override { 227 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 228 ? extendRegister(Arg.Regs[ValRegIndex], VA) 229 : Arg.Regs[ValRegIndex]; 230 assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA); 231 } 232 }; 233 } 234 235 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 236 : CallLowering(&TLI) { 237 } 238 239 // FIXME: Compatibility shim 240 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 241 switch (MIOpc) { 242 case TargetOpcode::G_SEXT: 243 return ISD::SIGN_EXTEND; 244 case TargetOpcode::G_ZEXT: 245 return ISD::ZERO_EXTEND; 246 case TargetOpcode::G_ANYEXT: 247 return ISD::ANY_EXTEND; 248 default: 249 llvm_unreachable("not an extend opcode"); 250 } 251 } 252 253 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, 254 CallingConv::ID CallConv, 255 SmallVectorImpl<BaseArgInfo> &Outs, 256 bool IsVarArg) const { 257 // For shaders. Vector types should be explicitly handled by CC. 258 if (AMDGPU::isEntryFunctionCC(CallConv)) 259 return true; 260 261 SmallVector<CCValAssign, 16> ArgLocs; 262 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 263 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 264 MF.getFunction().getContext()); 265 266 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); 267 } 268 269 /// Lower the return value for the already existing \p Ret. This assumes that 270 /// \p B's insertion point is correct. 271 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 272 const Value *Val, ArrayRef<Register> VRegs, 273 MachineInstrBuilder &Ret) const { 274 if (!Val) 275 return true; 276 277 auto &MF = B.getMF(); 278 const auto &F = MF.getFunction(); 279 const DataLayout &DL = MF.getDataLayout(); 280 MachineRegisterInfo *MRI = B.getMRI(); 281 LLVMContext &Ctx = F.getContext(); 282 283 CallingConv::ID CC = F.getCallingConv(); 284 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 285 286 SmallVector<EVT, 8> SplitEVTs; 287 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 288 assert(VRegs.size() == SplitEVTs.size() && 289 "For each split Type there should be exactly one VReg."); 290 291 SmallVector<ArgInfo, 8> SplitRetInfos; 292 293 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 294 EVT VT = SplitEVTs[i]; 295 Register Reg = VRegs[i]; 296 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0); 297 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 298 299 if (VT.isScalarInteger()) { 300 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 301 if (RetInfo.Flags[0].isSExt()) { 302 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 303 ExtendOp = TargetOpcode::G_SEXT; 304 } else if (RetInfo.Flags[0].isZExt()) { 305 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 306 ExtendOp = TargetOpcode::G_ZEXT; 307 } 308 309 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 310 extOpcodeToISDExtOpcode(ExtendOp)); 311 if (ExtVT != VT) { 312 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 313 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 314 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 315 } 316 } 317 318 if (Reg != RetInfo.Regs[0]) { 319 RetInfo.Regs[0] = Reg; 320 // Reset the arg flags after modifying Reg. 321 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 322 } 323 324 splitToValueTypes(RetInfo, SplitRetInfos, DL, CC); 325 } 326 327 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 328 329 OutgoingValueAssigner Assigner(AssignFn); 330 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret); 331 return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B, 332 CC, F.isVarArg()); 333 } 334 335 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 336 ArrayRef<Register> VRegs, 337 FunctionLoweringInfo &FLI) const { 338 339 MachineFunction &MF = B.getMF(); 340 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 341 MFI->setIfReturnsVoid(!Val); 342 343 assert(!Val == VRegs.empty() && "Return value without a vreg"); 344 345 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 346 const bool IsShader = AMDGPU::isShader(CC); 347 const bool IsWaveEnd = 348 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 349 if (IsWaveEnd) { 350 B.buildInstr(AMDGPU::S_ENDPGM) 351 .addImm(0); 352 return true; 353 } 354 355 unsigned ReturnOpc = 356 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN; 357 auto Ret = B.buildInstrNoInsert(ReturnOpc); 358 359 if (!FLI.CanLowerReturn) 360 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); 361 else if (!lowerReturnVal(B, Val, VRegs, Ret)) 362 return false; 363 364 // TODO: Handle CalleeSavedRegsViaCopy. 365 366 B.insertInstr(Ret); 367 return true; 368 } 369 370 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 371 uint64_t Offset) const { 372 MachineFunction &MF = B.getMF(); 373 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 374 MachineRegisterInfo &MRI = MF.getRegInfo(); 375 Register KernArgSegmentPtr = 376 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 377 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 378 379 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 380 381 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 382 } 383 384 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg, 385 uint64_t Offset, 386 Align Alignment) const { 387 MachineFunction &MF = B.getMF(); 388 const Function &F = MF.getFunction(); 389 const DataLayout &DL = F.getParent()->getDataLayout(); 390 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 391 392 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 393 394 SmallVector<ArgInfo, 32> SplitArgs; 395 SmallVector<uint64_t> FieldOffsets; 396 splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets); 397 398 unsigned Idx = 0; 399 for (ArgInfo &SplitArg : SplitArgs) { 400 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 401 lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]); 402 403 LLT ArgTy = getLLTForType(*SplitArg.Ty, DL); 404 if (SplitArg.Flags[0].isPointer()) { 405 // Compensate for losing pointeriness in splitValueTypes. 406 LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(), 407 ArgTy.getScalarSizeInBits()); 408 ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy) 409 : PtrTy; 410 } 411 412 MachineMemOperand *MMO = MF.getMachineMemOperand( 413 PtrInfo, 414 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 415 MachineMemOperand::MOInvariant, 416 ArgTy, commonAlignment(Alignment, FieldOffsets[Idx])); 417 418 assert(SplitArg.Regs.size() == 1); 419 420 B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO); 421 ++Idx; 422 } 423 } 424 425 // Allocate special inputs passed in user SGPRs. 426 static void allocateHSAUserSGPRs(CCState &CCInfo, 427 MachineIRBuilder &B, 428 MachineFunction &MF, 429 const SIRegisterInfo &TRI, 430 SIMachineFunctionInfo &Info) { 431 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 432 if (Info.hasPrivateSegmentBuffer()) { 433 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 434 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 435 CCInfo.AllocateReg(PrivateSegmentBufferReg); 436 } 437 438 if (Info.hasDispatchPtr()) { 439 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 440 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 441 CCInfo.AllocateReg(DispatchPtrReg); 442 } 443 444 if (Info.hasQueuePtr()) { 445 Register QueuePtrReg = Info.addQueuePtr(TRI); 446 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 447 CCInfo.AllocateReg(QueuePtrReg); 448 } 449 450 if (Info.hasKernargSegmentPtr()) { 451 MachineRegisterInfo &MRI = MF.getRegInfo(); 452 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 453 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 454 Register VReg = MRI.createGenericVirtualRegister(P4); 455 MRI.addLiveIn(InputPtrReg, VReg); 456 B.getMBB().addLiveIn(InputPtrReg); 457 B.buildCopy(VReg, InputPtrReg); 458 CCInfo.AllocateReg(InputPtrReg); 459 } 460 461 if (Info.hasDispatchID()) { 462 Register DispatchIDReg = Info.addDispatchID(TRI); 463 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 464 CCInfo.AllocateReg(DispatchIDReg); 465 } 466 467 if (Info.hasFlatScratchInit()) { 468 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 469 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 470 CCInfo.AllocateReg(FlatScratchInitReg); 471 } 472 473 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 474 // these from the dispatch pointer. 475 } 476 477 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 478 MachineIRBuilder &B, const Function &F, 479 ArrayRef<ArrayRef<Register>> VRegs) const { 480 MachineFunction &MF = B.getMF(); 481 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 482 MachineRegisterInfo &MRI = MF.getRegInfo(); 483 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 484 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 485 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 486 const DataLayout &DL = F.getParent()->getDataLayout(); 487 488 Info->allocateModuleLDSGlobal(F.getParent()); 489 490 SmallVector<CCValAssign, 16> ArgLocs; 491 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 492 493 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 494 495 unsigned i = 0; 496 const Align KernArgBaseAlign(16); 497 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 498 uint64_t ExplicitArgOffset = 0; 499 500 // TODO: Align down to dword alignment and extract bits for extending loads. 501 for (auto &Arg : F.args()) { 502 const bool IsByRef = Arg.hasByRefAttr(); 503 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 504 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 505 if (AllocSize == 0) 506 continue; 507 508 MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None; 509 if (!ABIAlign) 510 ABIAlign = DL.getABITypeAlign(ArgTy); 511 512 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 513 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 514 515 if (Arg.use_empty()) { 516 ++i; 517 continue; 518 } 519 520 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 521 522 if (IsByRef) { 523 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 524 525 assert(VRegs[i].size() == 1 && 526 "expected only one register for byval pointers"); 527 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 528 lowerParameterPtr(VRegs[i][0], B, ArgOffset); 529 } else { 530 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 531 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 532 lowerParameterPtr(PtrReg, B, ArgOffset); 533 534 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 535 } 536 } else { 537 ArgInfo OrigArg(VRegs[i], Arg, i); 538 const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex; 539 setArgFlags(OrigArg, OrigArgIdx, DL, F); 540 lowerParameter(B, OrigArg, ArgOffset, Alignment); 541 } 542 543 ++i; 544 } 545 546 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 547 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 548 return true; 549 } 550 551 bool AMDGPUCallLowering::lowerFormalArguments( 552 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 553 FunctionLoweringInfo &FLI) const { 554 CallingConv::ID CC = F.getCallingConv(); 555 556 // The infrastructure for normal calling convention lowering is essentially 557 // useless for kernels. We want to avoid any kind of legalization or argument 558 // splitting. 559 if (CC == CallingConv::AMDGPU_KERNEL) 560 return lowerFormalArgumentsKernel(B, F, VRegs); 561 562 const bool IsGraphics = AMDGPU::isGraphics(CC); 563 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 564 565 MachineFunction &MF = B.getMF(); 566 MachineBasicBlock &MBB = B.getMBB(); 567 MachineRegisterInfo &MRI = MF.getRegInfo(); 568 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 569 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 570 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 571 const DataLayout &DL = F.getParent()->getDataLayout(); 572 573 Info->allocateModuleLDSGlobal(F.getParent()); 574 575 SmallVector<CCValAssign, 16> ArgLocs; 576 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 577 578 if (Info->hasImplicitBufferPtr()) { 579 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 580 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 581 CCInfo.AllocateReg(ImplicitBufferPtrReg); 582 } 583 584 SmallVector<ArgInfo, 32> SplitArgs; 585 unsigned Idx = 0; 586 unsigned PSInputNum = 0; 587 588 // Insert the hidden sret parameter if the return value won't fit in the 589 // return registers. 590 if (!FLI.CanLowerReturn) 591 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 592 593 for (auto &Arg : F.args()) { 594 if (DL.getTypeStoreSize(Arg.getType()) == 0) 595 continue; 596 597 const bool InReg = Arg.hasAttribute(Attribute::InReg); 598 599 // SGPR arguments to functions not implemented. 600 if (!IsGraphics && InReg) 601 return false; 602 603 if (Arg.hasAttribute(Attribute::SwiftSelf) || 604 Arg.hasAttribute(Attribute::SwiftError) || 605 Arg.hasAttribute(Attribute::Nest)) 606 return false; 607 608 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 609 const bool ArgUsed = !Arg.use_empty(); 610 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 611 612 if (!SkipArg) { 613 Info->markPSInputAllocated(PSInputNum); 614 if (ArgUsed) 615 Info->markPSInputEnabled(PSInputNum); 616 } 617 618 ++PSInputNum; 619 620 if (SkipArg) { 621 for (Register R : VRegs[Idx]) 622 B.buildUndef(R); 623 624 ++Idx; 625 continue; 626 } 627 } 628 629 ArgInfo OrigArg(VRegs[Idx], Arg, Idx); 630 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 631 setArgFlags(OrigArg, OrigArgIdx, DL, F); 632 633 splitToValueTypes(OrigArg, SplitArgs, DL, CC); 634 ++Idx; 635 } 636 637 // At least one interpolation mode must be enabled or else the GPU will 638 // hang. 639 // 640 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 641 // set PSInputAddr, the user wants to enable some bits after the compilation 642 // based on run-time states. Since we can't know what the final PSInputEna 643 // will look like, so we shouldn't do anything here and the user should take 644 // responsibility for the correct programming. 645 // 646 // Otherwise, the following restrictions apply: 647 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 648 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 649 // enabled too. 650 if (CC == CallingConv::AMDGPU_PS) { 651 if ((Info->getPSInputAddr() & 0x7F) == 0 || 652 ((Info->getPSInputAddr() & 0xF) == 0 && 653 Info->isPSInputAllocated(11))) { 654 CCInfo.AllocateReg(AMDGPU::VGPR0); 655 CCInfo.AllocateReg(AMDGPU::VGPR1); 656 Info->markPSInputAllocated(0); 657 Info->markPSInputEnabled(0); 658 } 659 660 if (Subtarget.isAmdPalOS()) { 661 // For isAmdPalOS, the user does not enable some bits after compilation 662 // based on run-time states; the register values being generated here are 663 // the final ones set in hardware. Therefore we need to apply the 664 // workaround to PSInputAddr and PSInputEnable together. (The case where 665 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 666 // set up an input arg for a particular interpolation mode, but nothing 667 // uses that input arg. Really we should have an earlier pass that removes 668 // such an arg.) 669 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 670 if ((PsInputBits & 0x7F) == 0 || 671 ((PsInputBits & 0xF) == 0 && 672 (PsInputBits >> 11 & 1))) 673 Info->markPSInputEnabled( 674 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 675 } 676 } 677 678 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 679 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 680 681 if (!MBB.empty()) 682 B.setInstr(*MBB.begin()); 683 684 if (!IsEntryFunc && !IsGraphics) { 685 // For the fixed ABI, pass workitem IDs in the last argument register. 686 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 687 } 688 689 IncomingValueAssigner Assigner(AssignFn); 690 if (!determineAssignments(Assigner, SplitArgs, CCInfo)) 691 return false; 692 693 FormalArgHandler Handler(B, MRI); 694 if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B)) 695 return false; 696 697 uint64_t StackOffset = Assigner.StackOffset; 698 699 // Start adding system SGPRs. 700 if (IsEntryFunc) { 701 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 702 } else { 703 if (!Subtarget.enableFlatScratch()) 704 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 705 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 706 } 707 708 // When we tail call, we need to check if the callee's arguments will fit on 709 // the caller's stack. So, whenever we lower formal arguments, we should keep 710 // track of this information, since we might lower a tail call in this 711 // function later. 712 Info->setBytesInStackArgArea(StackOffset); 713 714 // Move back to the end of the basic block. 715 B.setMBB(MBB); 716 717 return true; 718 } 719 720 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 721 CCState &CCInfo, 722 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 723 CallLoweringInfo &Info) const { 724 MachineFunction &MF = MIRBuilder.getMF(); 725 726 // If there's no call site, this doesn't correspond to a call from the IR and 727 // doesn't need implicit inputs. 728 if (!Info.CB) 729 return true; 730 731 const AMDGPUFunctionArgInfo *CalleeArgInfo 732 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 733 734 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 735 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 736 737 738 // TODO: Unify with private memory register handling. This is complicated by 739 // the fact that at least in kernels, the input argument is not necessarily 740 // in the same location as the input. 741 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 742 AMDGPUFunctionArgInfo::DISPATCH_PTR, 743 AMDGPUFunctionArgInfo::QUEUE_PTR, 744 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 745 AMDGPUFunctionArgInfo::DISPATCH_ID, 746 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 747 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 748 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 749 }; 750 751 static constexpr StringLiteral ImplicitAttrNames[] = { 752 "amdgpu-no-dispatch-ptr", 753 "amdgpu-no-queue-ptr", 754 "amdgpu-no-implicitarg-ptr", 755 "amdgpu-no-dispatch-id", 756 "amdgpu-no-workgroup-id-x", 757 "amdgpu-no-workgroup-id-y", 758 "amdgpu-no-workgroup-id-z" 759 }; 760 761 MachineRegisterInfo &MRI = MF.getRegInfo(); 762 763 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 764 const AMDGPULegalizerInfo *LI 765 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 766 767 unsigned I = 0; 768 for (auto InputID : InputRegs) { 769 const ArgDescriptor *OutgoingArg; 770 const TargetRegisterClass *ArgRC; 771 LLT ArgTy; 772 773 // If the callee does not use the attribute value, skip copying the value. 774 if (Info.CB->hasFnAttr(ImplicitAttrNames[I++])) 775 continue; 776 777 std::tie(OutgoingArg, ArgRC, ArgTy) = 778 CalleeArgInfo->getPreloadedValue(InputID); 779 if (!OutgoingArg) 780 continue; 781 782 const ArgDescriptor *IncomingArg; 783 const TargetRegisterClass *IncomingArgRC; 784 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 785 CallerArgInfo.getPreloadedValue(InputID); 786 assert(IncomingArgRC == ArgRC); 787 788 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 789 790 if (IncomingArg) { 791 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 792 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { 793 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 794 } else { 795 // We may have proven the input wasn't needed, although the ABI is 796 // requiring it. We just need to allocate the register appropriately. 797 MIRBuilder.buildUndef(InputReg); 798 } 799 800 if (OutgoingArg->isRegister()) { 801 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 802 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 803 report_fatal_error("failed to allocate implicit input argument"); 804 } else { 805 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 806 return false; 807 } 808 } 809 810 // Pack workitem IDs into a single register or pass it as is if already 811 // packed. 812 const ArgDescriptor *OutgoingArg; 813 const TargetRegisterClass *ArgRC; 814 LLT ArgTy; 815 816 std::tie(OutgoingArg, ArgRC, ArgTy) = 817 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 818 if (!OutgoingArg) 819 std::tie(OutgoingArg, ArgRC, ArgTy) = 820 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 821 if (!OutgoingArg) 822 std::tie(OutgoingArg, ArgRC, ArgTy) = 823 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 824 if (!OutgoingArg) 825 return false; 826 827 auto WorkitemIDX = 828 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 829 auto WorkitemIDY = 830 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 831 auto WorkitemIDZ = 832 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 833 834 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 835 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 836 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 837 const LLT S32 = LLT::scalar(32); 838 839 const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x"); 840 const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y"); 841 const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z"); 842 843 // If incoming ids are not packed we need to pack them. 844 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 845 Register InputReg; 846 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && 847 NeedWorkItemIDX) { 848 InputReg = MRI.createGenericVirtualRegister(S32); 849 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 850 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 851 } 852 853 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && 854 NeedWorkItemIDY) { 855 Register Y = MRI.createGenericVirtualRegister(S32); 856 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 857 std::get<2>(WorkitemIDY)); 858 859 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 860 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 861 } 862 863 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && 864 NeedWorkItemIDZ) { 865 Register Z = MRI.createGenericVirtualRegister(S32); 866 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 867 std::get<2>(WorkitemIDZ)); 868 869 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 870 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 871 } 872 873 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { 874 InputReg = MRI.createGenericVirtualRegister(S32); 875 876 // Workitem ids are already packed, any of present incoming arguments will 877 // carry all required fields. 878 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 879 IncomingArgX ? *IncomingArgX : 880 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 881 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 882 &AMDGPU::VGPR_32RegClass, S32); 883 } 884 885 if (OutgoingArg->isRegister()) { 886 if (InputReg) 887 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 888 889 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 890 report_fatal_error("failed to allocate implicit input argument"); 891 } else { 892 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 893 return false; 894 } 895 896 return true; 897 } 898 899 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 900 /// CC. 901 static std::pair<CCAssignFn *, CCAssignFn *> 902 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 903 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 904 } 905 906 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 907 bool IsTailCall) { 908 assert(!(IsIndirect && IsTailCall) && "Indirect calls can't be tail calls, " 909 "because the address can be divergent"); 910 return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::G_SI_CALL; 911 } 912 913 // Add operands to call instruction to track the callee. 914 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 915 MachineIRBuilder &MIRBuilder, 916 AMDGPUCallLowering::CallLoweringInfo &Info) { 917 if (Info.Callee.isReg()) { 918 CallInst.addReg(Info.Callee.getReg()); 919 CallInst.addImm(0); 920 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 921 // The call lowering lightly assumed we can directly encode a call target in 922 // the instruction, which is not the case. Materialize the address here. 923 const GlobalValue *GV = Info.Callee.getGlobal(); 924 auto Ptr = MIRBuilder.buildGlobalValue( 925 LLT::pointer(GV->getAddressSpace(), 64), GV); 926 CallInst.addReg(Ptr.getReg(0)); 927 CallInst.add(Info.Callee); 928 } else 929 return false; 930 931 return true; 932 } 933 934 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay( 935 CallLoweringInfo &Info, MachineFunction &MF, 936 SmallVectorImpl<ArgInfo> &InArgs) const { 937 const Function &CallerF = MF.getFunction(); 938 CallingConv::ID CalleeCC = Info.CallConv; 939 CallingConv::ID CallerCC = CallerF.getCallingConv(); 940 941 // If the calling conventions match, then everything must be the same. 942 if (CalleeCC == CallerCC) 943 return true; 944 945 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 946 947 // Make sure that the caller and callee preserve all of the same registers. 948 auto TRI = ST.getRegisterInfo(); 949 950 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 951 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 952 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 953 return false; 954 955 // Check if the caller and callee will handle arguments in the same way. 956 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 957 CCAssignFn *CalleeAssignFnFixed; 958 CCAssignFn *CalleeAssignFnVarArg; 959 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = 960 getAssignFnsForCC(CalleeCC, TLI); 961 962 CCAssignFn *CallerAssignFnFixed; 963 CCAssignFn *CallerAssignFnVarArg; 964 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = 965 getAssignFnsForCC(CallerCC, TLI); 966 967 // FIXME: We are not accounting for potential differences in implicitly passed 968 // inputs, but only the fixed ABI is supported now anyway. 969 IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, 970 CalleeAssignFnVarArg); 971 IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, 972 CallerAssignFnVarArg); 973 return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner); 974 } 975 976 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable( 977 CallLoweringInfo &Info, MachineFunction &MF, 978 SmallVectorImpl<ArgInfo> &OutArgs) const { 979 // If there are no outgoing arguments, then we are done. 980 if (OutArgs.empty()) 981 return true; 982 983 const Function &CallerF = MF.getFunction(); 984 CallingConv::ID CalleeCC = Info.CallConv; 985 CallingConv::ID CallerCC = CallerF.getCallingConv(); 986 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 987 988 CCAssignFn *AssignFnFixed; 989 CCAssignFn *AssignFnVarArg; 990 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 991 992 // We have outgoing arguments. Make sure that we can tail call with them. 993 SmallVector<CCValAssign, 16> OutLocs; 994 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); 995 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 996 997 if (!determineAssignments(Assigner, OutArgs, OutInfo)) { 998 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); 999 return false; 1000 } 1001 1002 // Make sure that they can fit on the caller's stack. 1003 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1004 if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) { 1005 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); 1006 return false; 1007 } 1008 1009 // Verify that the parameters in callee-saved registers match. 1010 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1011 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1012 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); 1013 MachineRegisterInfo &MRI = MF.getRegInfo(); 1014 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs); 1015 } 1016 1017 /// Return true if the calling convention is one that we can guarantee TCO for. 1018 static bool canGuaranteeTCO(CallingConv::ID CC) { 1019 return CC == CallingConv::Fast; 1020 } 1021 1022 /// Return true if we might ever do TCO for calls with this calling convention. 1023 static bool mayTailCallThisCC(CallingConv::ID CC) { 1024 switch (CC) { 1025 case CallingConv::C: 1026 case CallingConv::AMDGPU_Gfx: 1027 return true; 1028 default: 1029 return canGuaranteeTCO(CC); 1030 } 1031 } 1032 1033 bool AMDGPUCallLowering::isEligibleForTailCallOptimization( 1034 MachineIRBuilder &B, CallLoweringInfo &Info, 1035 SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const { 1036 // Must pass all target-independent checks in order to tail call optimize. 1037 if (!Info.IsTailCall) 1038 return false; 1039 1040 // Indirect calls can't be tail calls, because the address can be divergent. 1041 // TODO Check divergence info if the call really is divergent. 1042 if (Info.Callee.isReg()) 1043 return false; 1044 1045 MachineFunction &MF = B.getMF(); 1046 const Function &CallerF = MF.getFunction(); 1047 CallingConv::ID CalleeCC = Info.CallConv; 1048 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1049 1050 const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo(); 1051 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1052 // Kernels aren't callable, and don't have a live in return address so it 1053 // doesn't make sense to do a tail call with entry functions. 1054 if (!CallerPreserved) 1055 return false; 1056 1057 if (!mayTailCallThisCC(CalleeCC)) { 1058 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); 1059 return false; 1060 } 1061 1062 if (any_of(CallerF.args(), [](const Argument &A) { 1063 return A.hasByValAttr() || A.hasSwiftErrorAttr(); 1064 })) { 1065 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval " 1066 "or swifterror arguments\n"); 1067 return false; 1068 } 1069 1070 // If we have -tailcallopt, then we're done. 1071 if (MF.getTarget().Options.GuaranteedTailCallOpt) 1072 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv(); 1073 1074 // Verify that the incoming and outgoing arguments from the callee are 1075 // safe to tail call. 1076 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { 1077 LLVM_DEBUG( 1078 dbgs() 1079 << "... Caller and callee have incompatible calling conventions.\n"); 1080 return false; 1081 } 1082 1083 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) 1084 return false; 1085 1086 LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n"); 1087 return true; 1088 } 1089 1090 // Insert outgoing implicit arguments for a call, by inserting copies to the 1091 // implicit argument registers and adding the necessary implicit uses to the 1092 // call instruction. 1093 void AMDGPUCallLowering::handleImplicitCallArguments( 1094 MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst, 1095 const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo, 1096 ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const { 1097 if (!ST.enableFlatScratch()) { 1098 // Insert copies for the SRD. In the HSA case, this should be an identity 1099 // copy. 1100 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32), 1101 FuncInfo.getScratchRSrcReg()); 1102 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 1103 CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); 1104 } 1105 1106 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1107 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1108 CallInst.addReg(ArgReg.first, RegState::Implicit); 1109 } 1110 } 1111 1112 bool AMDGPUCallLowering::lowerTailCall( 1113 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 1114 SmallVectorImpl<ArgInfo> &OutArgs) const { 1115 MachineFunction &MF = MIRBuilder.getMF(); 1116 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1117 SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1118 const Function &F = MF.getFunction(); 1119 MachineRegisterInfo &MRI = MF.getRegInfo(); 1120 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1121 1122 // True when we're tail calling, but without -tailcallopt. 1123 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt; 1124 1125 // Find out which ABI gets to decide where things go. 1126 CallingConv::ID CalleeCC = Info.CallConv; 1127 CCAssignFn *AssignFnFixed; 1128 CCAssignFn *AssignFnVarArg; 1129 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1130 1131 MachineInstrBuilder CallSeqStart; 1132 if (!IsSibCall) 1133 CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP); 1134 1135 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true); 1136 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1137 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1138 return false; 1139 1140 // Byte offset for the tail call. When we are sibcalling, this will always 1141 // be 0. 1142 MIB.addImm(0); 1143 1144 // Tell the call which registers are clobbered. 1145 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1146 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); 1147 MIB.addRegMask(Mask); 1148 1149 // FPDiff is the byte offset of the call's argument area from the callee's. 1150 // Stores to callee stack arguments will be placed in FixedStackSlots offset 1151 // by this amount for a tail call. In a sibling call it must be 0 because the 1152 // caller will deallocate the entire stack and the callee still expects its 1153 // arguments to begin at SP+0. 1154 int FPDiff = 0; 1155 1156 // This will be 0 for sibcalls, potentially nonzero for tail calls produced 1157 // by -tailcallopt. For sibcalls, the memory operands for the call are 1158 // already available in the caller's incoming argument space. 1159 unsigned NumBytes = 0; 1160 if (!IsSibCall) { 1161 // We aren't sibcalling, so we need to compute FPDiff. We need to do this 1162 // before handling assignments, because FPDiff must be known for memory 1163 // arguments. 1164 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 1165 SmallVector<CCValAssign, 16> OutLocs; 1166 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); 1167 1168 // FIXME: Not accounting for callee implicit inputs 1169 OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg); 1170 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) 1171 return false; 1172 1173 // The callee will pop the argument stack as a tail call. Thus, we must 1174 // keep it 16-byte aligned. 1175 NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment()); 1176 1177 // FPDiff will be negative if this tail call requires more space than we 1178 // would automatically have in our incoming argument space. Positive if we 1179 // actually shrink the stack. 1180 FPDiff = NumReusableBytes - NumBytes; 1181 1182 // The stack pointer must be 16-byte aligned at all times it's used for a 1183 // memory operation, which in practice means at *all* times and in 1184 // particular across call boundaries. Therefore our own arguments started at 1185 // a 16-byte aligned SP and the delta applied for the tail call should 1186 // satisfy the same constraint. 1187 assert(isAligned(ST.getStackAlignment(), FPDiff) && 1188 "unaligned stack on tail call"); 1189 } 1190 1191 SmallVector<CCValAssign, 16> ArgLocs; 1192 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1193 1194 // We could pass MIB and directly add the implicit uses to the call 1195 // now. However, as an aesthetic choice, place implicit argument operands 1196 // after the ordinary user argument registers. 1197 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1198 1199 if (Info.CallConv != CallingConv::AMDGPU_Gfx) { 1200 // With a fixed ABI, allocate fixed registers before user arguments. 1201 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1202 return false; 1203 } 1204 1205 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1206 1207 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1208 return false; 1209 1210 // Do the actual argument marshalling. 1211 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff); 1212 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1213 return false; 1214 1215 handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs); 1216 1217 // If we have -tailcallopt, we need to adjust the stack. We'll do the call 1218 // sequence start and end here. 1219 if (!IsSibCall) { 1220 MIB->getOperand(1).setImm(FPDiff); 1221 CallSeqStart.addImm(NumBytes).addImm(0); 1222 // End the call sequence *before* emitting the call. Normally, we would 1223 // tidy the frame up after the call. However, here, we've laid out the 1224 // parameters so that when SP is reset, they will be in the correct 1225 // location. 1226 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0); 1227 } 1228 1229 // Now we can add the actual call instruction to the correct basic block. 1230 MIRBuilder.insertInstr(MIB); 1231 1232 // If Callee is a reg, since it is used by a target specific 1233 // instruction, it must have a register class matching the 1234 // constraint of that instruction. 1235 1236 // FIXME: We should define regbankselectable call instructions to handle 1237 // divergent call targets. 1238 if (MIB->getOperand(0).isReg()) { 1239 MIB->getOperand(0).setReg(constrainOperandRegClass( 1240 MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB, 1241 MIB->getDesc(), MIB->getOperand(0), 0)); 1242 } 1243 1244 MF.getFrameInfo().setHasTailCall(); 1245 Info.LoweredTailCall = true; 1246 return true; 1247 } 1248 1249 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1250 CallLoweringInfo &Info) const { 1251 if (Info.IsVarArg) { 1252 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 1253 return false; 1254 } 1255 1256 MachineFunction &MF = MIRBuilder.getMF(); 1257 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1258 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1259 1260 const Function &F = MF.getFunction(); 1261 MachineRegisterInfo &MRI = MF.getRegInfo(); 1262 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1263 const DataLayout &DL = F.getParent()->getDataLayout(); 1264 1265 SmallVector<ArgInfo, 8> OutArgs; 1266 for (auto &OrigArg : Info.OrigArgs) 1267 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); 1268 1269 SmallVector<ArgInfo, 8> InArgs; 1270 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) 1271 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); 1272 1273 // If we can lower as a tail call, do that instead. 1274 bool CanTailCallOpt = 1275 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); 1276 1277 // We must emit a tail call if we have musttail. 1278 if (Info.IsMustTailCall && !CanTailCallOpt) { 1279 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1280 return false; 1281 } 1282 1283 if (CanTailCallOpt) 1284 return lowerTailCall(MIRBuilder, Info, OutArgs); 1285 1286 // Find out which ABI gets to decide where things go. 1287 CCAssignFn *AssignFnFixed; 1288 CCAssignFn *AssignFnVarArg; 1289 std::tie(AssignFnFixed, AssignFnVarArg) = 1290 getAssignFnsForCC(Info.CallConv, TLI); 1291 1292 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 1293 .addImm(0) 1294 .addImm(0); 1295 1296 // Create a temporarily-floating call instruction so we can add the implicit 1297 // uses of arg registers. 1298 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 1299 1300 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1301 MIB.addDef(TRI->getReturnAddressReg(MF)); 1302 1303 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1304 return false; 1305 1306 // Tell the call which registers are clobbered. 1307 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 1308 MIB.addRegMask(Mask); 1309 1310 SmallVector<CCValAssign, 16> ArgLocs; 1311 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1312 1313 // We could pass MIB and directly add the implicit uses to the call 1314 // now. However, as an aesthetic choice, place implicit argument operands 1315 // after the ordinary user argument registers. 1316 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1317 1318 if (Info.CallConv != CallingConv::AMDGPU_Gfx) { 1319 // With a fixed ABI, allocate fixed registers before user arguments. 1320 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1321 return false; 1322 } 1323 1324 // Do the actual argument marshalling. 1325 SmallVector<Register, 8> PhysRegs; 1326 1327 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1328 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1329 return false; 1330 1331 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false); 1332 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1333 return false; 1334 1335 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1336 1337 handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs); 1338 1339 // Get a count of how many bytes are to be pushed on the stack. 1340 unsigned NumBytes = CCInfo.getNextStackOffset(); 1341 1342 // If Callee is a reg, since it is used by a target specific 1343 // instruction, it must have a register class matching the 1344 // constraint of that instruction. 1345 1346 // FIXME: We should define regbankselectable call instructions to handle 1347 // divergent call targets. 1348 if (MIB->getOperand(1).isReg()) { 1349 MIB->getOperand(1).setReg(constrainOperandRegClass( 1350 MF, *TRI, MRI, *ST.getInstrInfo(), 1351 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1352 1)); 1353 } 1354 1355 // Now we can add the actual call instruction to the correct position. 1356 MIRBuilder.insertInstr(MIB); 1357 1358 // Finally we can copy the returned value back into its virtual-register. In 1359 // symmetry with the arguments, the physical register must be an 1360 // implicit-define of the call instruction. 1361 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1362 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1363 Info.IsVarArg); 1364 IncomingValueAssigner Assigner(RetAssignFn); 1365 CallReturnHandler Handler(MIRBuilder, MRI, MIB); 1366 if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder, 1367 Info.CallConv, Info.IsVarArg)) 1368 return false; 1369 } 1370 1371 uint64_t CalleePopBytes = NumBytes; 1372 1373 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN) 1374 .addImm(0) 1375 .addImm(CalleePopBytes); 1376 1377 if (!Info.CanLowerReturn) { 1378 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1379 Info.DemoteRegister, Info.DemoteStackIndex); 1380 } 1381 1382 return true; 1383 } 1384