1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 
26 #define DEBUG_TYPE "amdgpu-call-lowering"
27 
28 using namespace llvm;
29 
30 namespace {
31 
32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
34                                     Register ValVReg, CCValAssign &VA) {
35   if (VA.getLocVT().getSizeInBits() < 32) {
36     // 16-bit types are reported as legal for 32-bit registers. We need to
37     // extend and do a 32-bit copy to avoid the verifier complaining about it.
38     return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
39   }
40 
41   return Handler.extendRegister(ValVReg, VA);
42 }
43 
44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
45   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
46                              MachineInstrBuilder MIB)
47       : OutgoingValueHandler(B, MRI), MIB(MIB) {}
48 
49   MachineInstrBuilder MIB;
50 
51   Register getStackAddress(uint64_t Size, int64_t Offset,
52                            MachinePointerInfo &MPO,
53                            ISD::ArgFlagsTy Flags) override {
54     llvm_unreachable("not implemented");
55   }
56 
57   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
58                             MachinePointerInfo &MPO, CCValAssign &VA) override {
59     llvm_unreachable("not implemented");
60   }
61 
62   void assignValueToReg(Register ValVReg, Register PhysReg,
63                         CCValAssign VA) override {
64     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
65 
66     // If this is a scalar return, insert a readfirstlane just in case the value
67     // ends up in a VGPR.
68     // FIXME: Assert this is a shader return.
69     const SIRegisterInfo *TRI
70       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
71     if (TRI->isSGPRReg(MRI, PhysReg)) {
72       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
73                                               {MRI.getType(ExtReg)}, false)
74         .addReg(ExtReg);
75       ExtReg = ToSGPR.getReg(0);
76     }
77 
78     MIRBuilder.buildCopy(PhysReg, ExtReg);
79     MIB.addUse(PhysReg, RegState::Implicit);
80   }
81 };
82 
83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
84   uint64_t StackUsed = 0;
85 
86   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
87       : IncomingValueHandler(B, MRI) {}
88 
89   Register getStackAddress(uint64_t Size, int64_t Offset,
90                            MachinePointerInfo &MPO,
91                            ISD::ArgFlagsTy Flags) override {
92     auto &MFI = MIRBuilder.getMF().getFrameInfo();
93 
94     // Byval is assumed to be writable memory, but other stack passed arguments
95     // are not.
96     const bool IsImmutable = !Flags.isByVal();
97     int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
98     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
99     auto AddrReg = MIRBuilder.buildFrameIndex(
100         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
101     StackUsed = std::max(StackUsed, Size + Offset);
102     return AddrReg.getReg(0);
103   }
104 
105   void assignValueToReg(Register ValVReg, Register PhysReg,
106                         CCValAssign VA) override {
107     markPhysRegUsed(PhysReg);
108 
109     if (VA.getLocVT().getSizeInBits() < 32) {
110       // 16-bit types are reported as legal for 32-bit registers. We need to do
111       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
112       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
113 
114       // If we have signext/zeroext, it applies to the whole 32-bit register
115       // before truncation.
116       auto Extended =
117           buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
118       MIRBuilder.buildTrunc(ValVReg, Extended);
119       return;
120     }
121 
122     IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
123   }
124 
125   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
126                             MachinePointerInfo &MPO, CCValAssign &VA) override {
127     MachineFunction &MF = MIRBuilder.getMF();
128 
129     auto MMO = MF.getMachineMemOperand(
130         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy,
131         inferAlignFromPtrInfo(MF, MPO));
132     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
133   }
134 
135   /// How the physical register gets marked varies between formal
136   /// parameters (it's a basic-block live-in), and a call instruction
137   /// (it's an implicit-def of the BL).
138   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
139 };
140 
141 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
142   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
143       : AMDGPUIncomingArgHandler(B, MRI) {}
144 
145   void markPhysRegUsed(unsigned PhysReg) override {
146     MIRBuilder.getMBB().addLiveIn(PhysReg);
147   }
148 };
149 
150 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
151   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
152                     MachineInstrBuilder MIB)
153       : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
154 
155   void markPhysRegUsed(unsigned PhysReg) override {
156     MIB.addDef(PhysReg, RegState::Implicit);
157   }
158 
159   MachineInstrBuilder MIB;
160 };
161 
162 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
163   /// For tail calls, the byte offset of the call's argument area from the
164   /// callee's. Unused elsewhere.
165   int FPDiff;
166 
167   // Cache the SP register vreg if we need it more than once in this call site.
168   Register SPReg;
169 
170   bool IsTailCall;
171 
172   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
173                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
174                            bool IsTailCall = false, int FPDiff = 0)
175       : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff),
176         IsTailCall(IsTailCall) {}
177 
178   Register getStackAddress(uint64_t Size, int64_t Offset,
179                            MachinePointerInfo &MPO,
180                            ISD::ArgFlagsTy Flags) override {
181     MachineFunction &MF = MIRBuilder.getMF();
182     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
183     const LLT S32 = LLT::scalar(32);
184 
185     if (IsTailCall) {
186       Offset += FPDiff;
187       int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
188       auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI);
189       MPO = MachinePointerInfo::getFixedStack(MF, FI);
190       return FIReg.getReg(0);
191     }
192 
193     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
194 
195     if (!SPReg)
196       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
197 
198     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
199 
200     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
201     MPO = MachinePointerInfo::getStack(MF, Offset);
202     return AddrReg.getReg(0);
203   }
204 
205   void assignValueToReg(Register ValVReg, Register PhysReg,
206                         CCValAssign VA) override {
207     MIB.addUse(PhysReg, RegState::Implicit);
208     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
209     MIRBuilder.buildCopy(PhysReg, ExtReg);
210   }
211 
212   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
213                             MachinePointerInfo &MPO, CCValAssign &VA) override {
214     MachineFunction &MF = MIRBuilder.getMF();
215     uint64_t LocMemOffset = VA.getLocMemOffset();
216     const auto &ST = MF.getSubtarget<GCNSubtarget>();
217 
218     auto MMO = MF.getMachineMemOperand(
219         MPO, MachineMemOperand::MOStore, MemTy,
220         commonAlignment(ST.getStackAlignment(), LocMemOffset));
221     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
222   }
223 
224   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
225                             unsigned ValRegIndex, Register Addr, LLT MemTy,
226                             MachinePointerInfo &MPO, CCValAssign &VA) override {
227     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
228                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
229                            : Arg.Regs[ValRegIndex];
230     assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
231   }
232 };
233 }
234 
235 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
236   : CallLowering(&TLI) {
237 }
238 
239 // FIXME: Compatibility shim
240 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
241   switch (MIOpc) {
242   case TargetOpcode::G_SEXT:
243     return ISD::SIGN_EXTEND;
244   case TargetOpcode::G_ZEXT:
245     return ISD::ZERO_EXTEND;
246   case TargetOpcode::G_ANYEXT:
247     return ISD::ANY_EXTEND;
248   default:
249     llvm_unreachable("not an extend opcode");
250   }
251 }
252 
253 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
254                                         CallingConv::ID CallConv,
255                                         SmallVectorImpl<BaseArgInfo> &Outs,
256                                         bool IsVarArg) const {
257   // For shaders. Vector types should be explicitly handled by CC.
258   if (AMDGPU::isEntryFunctionCC(CallConv))
259     return true;
260 
261   SmallVector<CCValAssign, 16> ArgLocs;
262   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
263   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
264                  MF.getFunction().getContext());
265 
266   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
267 }
268 
269 /// Lower the return value for the already existing \p Ret. This assumes that
270 /// \p B's insertion point is correct.
271 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
272                                         const Value *Val, ArrayRef<Register> VRegs,
273                                         MachineInstrBuilder &Ret) const {
274   if (!Val)
275     return true;
276 
277   auto &MF = B.getMF();
278   const auto &F = MF.getFunction();
279   const DataLayout &DL = MF.getDataLayout();
280   MachineRegisterInfo *MRI = B.getMRI();
281   LLVMContext &Ctx = F.getContext();
282 
283   CallingConv::ID CC = F.getCallingConv();
284   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
285 
286   SmallVector<EVT, 8> SplitEVTs;
287   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
288   assert(VRegs.size() == SplitEVTs.size() &&
289          "For each split Type there should be exactly one VReg.");
290 
291   SmallVector<ArgInfo, 8> SplitRetInfos;
292 
293   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
294     EVT VT = SplitEVTs[i];
295     Register Reg = VRegs[i];
296     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0);
297     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
298 
299     if (VT.isScalarInteger()) {
300       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
301       if (RetInfo.Flags[0].isSExt()) {
302         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
303         ExtendOp = TargetOpcode::G_SEXT;
304       } else if (RetInfo.Flags[0].isZExt()) {
305         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
306         ExtendOp = TargetOpcode::G_ZEXT;
307       }
308 
309       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
310                                           extOpcodeToISDExtOpcode(ExtendOp));
311       if (ExtVT != VT) {
312         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
313         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
314         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
315       }
316     }
317 
318     if (Reg != RetInfo.Regs[0]) {
319       RetInfo.Regs[0] = Reg;
320       // Reset the arg flags after modifying Reg.
321       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
322     }
323 
324     splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
325   }
326 
327   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
328 
329   OutgoingValueAssigner Assigner(AssignFn);
330   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret);
331   return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B,
332                                        CC, F.isVarArg());
333 }
334 
335 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
336                                      ArrayRef<Register> VRegs,
337                                      FunctionLoweringInfo &FLI) const {
338 
339   MachineFunction &MF = B.getMF();
340   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
341   MFI->setIfReturnsVoid(!Val);
342 
343   assert(!Val == VRegs.empty() && "Return value without a vreg");
344 
345   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
346   const bool IsShader = AMDGPU::isShader(CC);
347   const bool IsWaveEnd =
348       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
349   if (IsWaveEnd) {
350     B.buildInstr(AMDGPU::S_ENDPGM)
351       .addImm(0);
352     return true;
353   }
354 
355   unsigned ReturnOpc =
356       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN;
357   auto Ret = B.buildInstrNoInsert(ReturnOpc);
358 
359   if (!FLI.CanLowerReturn)
360     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
361   else if (!lowerReturnVal(B, Val, VRegs, Ret))
362     return false;
363 
364   // TODO: Handle CalleeSavedRegsViaCopy.
365 
366   B.insertInstr(Ret);
367   return true;
368 }
369 
370 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
371                                            uint64_t Offset) const {
372   MachineFunction &MF = B.getMF();
373   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
374   MachineRegisterInfo &MRI = MF.getRegInfo();
375   Register KernArgSegmentPtr =
376     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
377   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
378 
379   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
380 
381   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
382 }
383 
384 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg,
385                                         uint64_t Offset,
386                                         Align Alignment) const {
387   MachineFunction &MF = B.getMF();
388   const Function &F = MF.getFunction();
389   const DataLayout &DL = F.getParent()->getDataLayout();
390   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
391 
392   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
393 
394   SmallVector<ArgInfo, 32> SplitArgs;
395   SmallVector<uint64_t> FieldOffsets;
396   splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets);
397 
398   unsigned Idx = 0;
399   for (ArgInfo &SplitArg : SplitArgs) {
400     Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
401     lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]);
402 
403     LLT ArgTy = getLLTForType(*SplitArg.Ty, DL);
404     if (SplitArg.Flags[0].isPointer()) {
405       // Compensate for losing pointeriness in splitValueTypes.
406       LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(),
407                                ArgTy.getScalarSizeInBits());
408       ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy)
409                                : PtrTy;
410     }
411 
412     MachineMemOperand *MMO = MF.getMachineMemOperand(
413         PtrInfo,
414         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
415             MachineMemOperand::MOInvariant,
416         ArgTy, commonAlignment(Alignment, FieldOffsets[Idx]));
417 
418     assert(SplitArg.Regs.size() == 1);
419 
420     B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO);
421     ++Idx;
422   }
423 }
424 
425 // Allocate special inputs passed in user SGPRs.
426 static void allocateHSAUserSGPRs(CCState &CCInfo,
427                                  MachineIRBuilder &B,
428                                  MachineFunction &MF,
429                                  const SIRegisterInfo &TRI,
430                                  SIMachineFunctionInfo &Info) {
431   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
432   if (Info.hasPrivateSegmentBuffer()) {
433     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
434     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
435     CCInfo.AllocateReg(PrivateSegmentBufferReg);
436   }
437 
438   if (Info.hasDispatchPtr()) {
439     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
440     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
441     CCInfo.AllocateReg(DispatchPtrReg);
442   }
443 
444   if (Info.hasQueuePtr()) {
445     Register QueuePtrReg = Info.addQueuePtr(TRI);
446     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
447     CCInfo.AllocateReg(QueuePtrReg);
448   }
449 
450   if (Info.hasKernargSegmentPtr()) {
451     MachineRegisterInfo &MRI = MF.getRegInfo();
452     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
453     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
454     Register VReg = MRI.createGenericVirtualRegister(P4);
455     MRI.addLiveIn(InputPtrReg, VReg);
456     B.getMBB().addLiveIn(InputPtrReg);
457     B.buildCopy(VReg, InputPtrReg);
458     CCInfo.AllocateReg(InputPtrReg);
459   }
460 
461   if (Info.hasDispatchID()) {
462     Register DispatchIDReg = Info.addDispatchID(TRI);
463     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
464     CCInfo.AllocateReg(DispatchIDReg);
465   }
466 
467   if (Info.hasFlatScratchInit()) {
468     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
469     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
470     CCInfo.AllocateReg(FlatScratchInitReg);
471   }
472 
473   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
474   // these from the dispatch pointer.
475 }
476 
477 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
478     MachineIRBuilder &B, const Function &F,
479     ArrayRef<ArrayRef<Register>> VRegs) const {
480   MachineFunction &MF = B.getMF();
481   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
482   MachineRegisterInfo &MRI = MF.getRegInfo();
483   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
484   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
485   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
486   const DataLayout &DL = F.getParent()->getDataLayout();
487 
488   Info->allocateModuleLDSGlobal(F.getParent());
489 
490   SmallVector<CCValAssign, 16> ArgLocs;
491   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
492 
493   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
494 
495   unsigned i = 0;
496   const Align KernArgBaseAlign(16);
497   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
498   uint64_t ExplicitArgOffset = 0;
499 
500   // TODO: Align down to dword alignment and extract bits for extending loads.
501   for (auto &Arg : F.args()) {
502     const bool IsByRef = Arg.hasByRefAttr();
503     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
504     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
505     if (AllocSize == 0)
506       continue;
507 
508     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
509     if (!ABIAlign)
510       ABIAlign = DL.getABITypeAlign(ArgTy);
511 
512     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
513     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
514 
515     if (Arg.use_empty()) {
516       ++i;
517       continue;
518     }
519 
520     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
521 
522     if (IsByRef) {
523       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
524 
525       assert(VRegs[i].size() == 1 &&
526              "expected only one register for byval pointers");
527       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
528         lowerParameterPtr(VRegs[i][0], B, ArgOffset);
529       } else {
530         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
531         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
532         lowerParameterPtr(PtrReg, B, ArgOffset);
533 
534         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
535       }
536     } else {
537       ArgInfo OrigArg(VRegs[i], Arg, i);
538       const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex;
539       setArgFlags(OrigArg, OrigArgIdx, DL, F);
540       lowerParameter(B, OrigArg, ArgOffset, Alignment);
541     }
542 
543     ++i;
544   }
545 
546   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
547   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
548   return true;
549 }
550 
551 bool AMDGPUCallLowering::lowerFormalArguments(
552     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
553     FunctionLoweringInfo &FLI) const {
554   CallingConv::ID CC = F.getCallingConv();
555 
556   // The infrastructure for normal calling convention lowering is essentially
557   // useless for kernels. We want to avoid any kind of legalization or argument
558   // splitting.
559   if (CC == CallingConv::AMDGPU_KERNEL)
560     return lowerFormalArgumentsKernel(B, F, VRegs);
561 
562   const bool IsGraphics = AMDGPU::isGraphics(CC);
563   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
564 
565   MachineFunction &MF = B.getMF();
566   MachineBasicBlock &MBB = B.getMBB();
567   MachineRegisterInfo &MRI = MF.getRegInfo();
568   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
569   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
570   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
571   const DataLayout &DL = F.getParent()->getDataLayout();
572 
573   Info->allocateModuleLDSGlobal(F.getParent());
574 
575   SmallVector<CCValAssign, 16> ArgLocs;
576   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
577 
578   if (Info->hasImplicitBufferPtr()) {
579     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
580     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
581     CCInfo.AllocateReg(ImplicitBufferPtrReg);
582   }
583 
584   SmallVector<ArgInfo, 32> SplitArgs;
585   unsigned Idx = 0;
586   unsigned PSInputNum = 0;
587 
588   // Insert the hidden sret parameter if the return value won't fit in the
589   // return registers.
590   if (!FLI.CanLowerReturn)
591     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
592 
593   for (auto &Arg : F.args()) {
594     if (DL.getTypeStoreSize(Arg.getType()) == 0)
595       continue;
596 
597     const bool InReg = Arg.hasAttribute(Attribute::InReg);
598 
599     // SGPR arguments to functions not implemented.
600     if (!IsGraphics && InReg)
601       return false;
602 
603     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
604         Arg.hasAttribute(Attribute::SwiftError) ||
605         Arg.hasAttribute(Attribute::Nest))
606       return false;
607 
608     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
609       const bool ArgUsed = !Arg.use_empty();
610       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
611 
612       if (!SkipArg) {
613         Info->markPSInputAllocated(PSInputNum);
614         if (ArgUsed)
615           Info->markPSInputEnabled(PSInputNum);
616       }
617 
618       ++PSInputNum;
619 
620       if (SkipArg) {
621         for (Register R : VRegs[Idx])
622           B.buildUndef(R);
623 
624         ++Idx;
625         continue;
626       }
627     }
628 
629     ArgInfo OrigArg(VRegs[Idx], Arg, Idx);
630     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
631     setArgFlags(OrigArg, OrigArgIdx, DL, F);
632 
633     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
634     ++Idx;
635   }
636 
637   // At least one interpolation mode must be enabled or else the GPU will
638   // hang.
639   //
640   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
641   // set PSInputAddr, the user wants to enable some bits after the compilation
642   // based on run-time states. Since we can't know what the final PSInputEna
643   // will look like, so we shouldn't do anything here and the user should take
644   // responsibility for the correct programming.
645   //
646   // Otherwise, the following restrictions apply:
647   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
648   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
649   //   enabled too.
650   if (CC == CallingConv::AMDGPU_PS) {
651     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
652         ((Info->getPSInputAddr() & 0xF) == 0 &&
653          Info->isPSInputAllocated(11))) {
654       CCInfo.AllocateReg(AMDGPU::VGPR0);
655       CCInfo.AllocateReg(AMDGPU::VGPR1);
656       Info->markPSInputAllocated(0);
657       Info->markPSInputEnabled(0);
658     }
659 
660     if (Subtarget.isAmdPalOS()) {
661       // For isAmdPalOS, the user does not enable some bits after compilation
662       // based on run-time states; the register values being generated here are
663       // the final ones set in hardware. Therefore we need to apply the
664       // workaround to PSInputAddr and PSInputEnable together.  (The case where
665       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
666       // set up an input arg for a particular interpolation mode, but nothing
667       // uses that input arg. Really we should have an earlier pass that removes
668       // such an arg.)
669       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
670       if ((PsInputBits & 0x7F) == 0 ||
671           ((PsInputBits & 0xF) == 0 &&
672            (PsInputBits >> 11 & 1)))
673         Info->markPSInputEnabled(
674           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
675     }
676   }
677 
678   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
679   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
680 
681   if (!MBB.empty())
682     B.setInstr(*MBB.begin());
683 
684   if (!IsEntryFunc && !IsGraphics) {
685     // For the fixed ABI, pass workitem IDs in the last argument register.
686     TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
687   }
688 
689   IncomingValueAssigner Assigner(AssignFn);
690   if (!determineAssignments(Assigner, SplitArgs, CCInfo))
691     return false;
692 
693   FormalArgHandler Handler(B, MRI);
694   if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B))
695     return false;
696 
697   uint64_t StackOffset = Assigner.StackOffset;
698 
699   // Start adding system SGPRs.
700   if (IsEntryFunc) {
701     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
702   } else {
703     if (!Subtarget.enableFlatScratch())
704       CCInfo.AllocateReg(Info->getScratchRSrcReg());
705     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
706   }
707 
708   // When we tail call, we need to check if the callee's arguments will fit on
709   // the caller's stack. So, whenever we lower formal arguments, we should keep
710   // track of this information, since we might lower a tail call in this
711   // function later.
712   Info->setBytesInStackArgArea(StackOffset);
713 
714   // Move back to the end of the basic block.
715   B.setMBB(MBB);
716 
717   return true;
718 }
719 
720 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
721                                            CCState &CCInfo,
722                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
723                                            CallLoweringInfo &Info) const {
724   MachineFunction &MF = MIRBuilder.getMF();
725 
726   // If there's no call site, this doesn't correspond to a call from the IR and
727   // doesn't need implicit inputs.
728   if (!Info.CB)
729     return true;
730 
731   const AMDGPUFunctionArgInfo *CalleeArgInfo
732     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
733 
734   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
735   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
736 
737 
738   // TODO: Unify with private memory register handling. This is complicated by
739   // the fact that at least in kernels, the input argument is not necessarily
740   // in the same location as the input.
741   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
742     AMDGPUFunctionArgInfo::DISPATCH_PTR,
743     AMDGPUFunctionArgInfo::QUEUE_PTR,
744     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
745     AMDGPUFunctionArgInfo::DISPATCH_ID,
746     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
747     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
748     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
749   };
750 
751   static constexpr StringLiteral ImplicitAttrNames[] = {
752     "amdgpu-no-dispatch-ptr",
753     "amdgpu-no-queue-ptr",
754     "amdgpu-no-implicitarg-ptr",
755     "amdgpu-no-dispatch-id",
756     "amdgpu-no-workgroup-id-x",
757     "amdgpu-no-workgroup-id-y",
758     "amdgpu-no-workgroup-id-z"
759   };
760 
761   MachineRegisterInfo &MRI = MF.getRegInfo();
762 
763   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
764   const AMDGPULegalizerInfo *LI
765     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
766 
767   unsigned I = 0;
768   for (auto InputID : InputRegs) {
769     const ArgDescriptor *OutgoingArg;
770     const TargetRegisterClass *ArgRC;
771     LLT ArgTy;
772 
773     // If the callee does not use the attribute value, skip copying the value.
774     if (Info.CB->hasFnAttr(ImplicitAttrNames[I++]))
775       continue;
776 
777     std::tie(OutgoingArg, ArgRC, ArgTy) =
778         CalleeArgInfo->getPreloadedValue(InputID);
779     if (!OutgoingArg)
780       continue;
781 
782     const ArgDescriptor *IncomingArg;
783     const TargetRegisterClass *IncomingArgRC;
784     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
785         CallerArgInfo.getPreloadedValue(InputID);
786     assert(IncomingArgRC == ArgRC);
787 
788     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
789 
790     if (IncomingArg) {
791       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
792     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
793       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
794     } else {
795       // We may have proven the input wasn't needed, although the ABI is
796       // requiring it. We just need to allocate the register appropriately.
797       MIRBuilder.buildUndef(InputReg);
798     }
799 
800     if (OutgoingArg->isRegister()) {
801       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
802       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
803         report_fatal_error("failed to allocate implicit input argument");
804     } else {
805       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
806       return false;
807     }
808   }
809 
810   // Pack workitem IDs into a single register or pass it as is if already
811   // packed.
812   const ArgDescriptor *OutgoingArg;
813   const TargetRegisterClass *ArgRC;
814   LLT ArgTy;
815 
816   std::tie(OutgoingArg, ArgRC, ArgTy) =
817       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
818   if (!OutgoingArg)
819     std::tie(OutgoingArg, ArgRC, ArgTy) =
820         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
821   if (!OutgoingArg)
822     std::tie(OutgoingArg, ArgRC, ArgTy) =
823         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
824   if (!OutgoingArg)
825     return false;
826 
827   auto WorkitemIDX =
828       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
829   auto WorkitemIDY =
830       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
831   auto WorkitemIDZ =
832       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
833 
834   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
835   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
836   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
837   const LLT S32 = LLT::scalar(32);
838 
839   const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x");
840   const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y");
841   const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z");
842 
843   // If incoming ids are not packed we need to pack them.
844   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
845   Register InputReg;
846   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
847       NeedWorkItemIDX) {
848     InputReg = MRI.createGenericVirtualRegister(S32);
849     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
850                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
851   }
852 
853   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
854       NeedWorkItemIDY) {
855     Register Y = MRI.createGenericVirtualRegister(S32);
856     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
857                        std::get<2>(WorkitemIDY));
858 
859     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
860     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
861   }
862 
863   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
864       NeedWorkItemIDZ) {
865     Register Z = MRI.createGenericVirtualRegister(S32);
866     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
867                        std::get<2>(WorkitemIDZ));
868 
869     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
870     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
871   }
872 
873   if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
874     InputReg = MRI.createGenericVirtualRegister(S32);
875 
876     // Workitem ids are already packed, any of present incoming arguments will
877     // carry all required fields.
878     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
879       IncomingArgX ? *IncomingArgX :
880         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
881     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
882                        &AMDGPU::VGPR_32RegClass, S32);
883   }
884 
885   if (OutgoingArg->isRegister()) {
886     if (InputReg)
887       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
888 
889     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
890       report_fatal_error("failed to allocate implicit input argument");
891   } else {
892     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
893     return false;
894   }
895 
896   return true;
897 }
898 
899 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
900 /// CC.
901 static std::pair<CCAssignFn *, CCAssignFn *>
902 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
903   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
904 }
905 
906 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
907                               bool IsTailCall) {
908   assert(!(IsIndirect && IsTailCall) && "Indirect calls can't be tail calls, "
909                                         "because the address can be divergent");
910   return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::G_SI_CALL;
911 }
912 
913 // Add operands to call instruction to track the callee.
914 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
915                                   MachineIRBuilder &MIRBuilder,
916                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
917   if (Info.Callee.isReg()) {
918     CallInst.addReg(Info.Callee.getReg());
919     CallInst.addImm(0);
920   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
921     // The call lowering lightly assumed we can directly encode a call target in
922     // the instruction, which is not the case. Materialize the address here.
923     const GlobalValue *GV = Info.Callee.getGlobal();
924     auto Ptr = MIRBuilder.buildGlobalValue(
925       LLT::pointer(GV->getAddressSpace(), 64), GV);
926     CallInst.addReg(Ptr.getReg(0));
927     CallInst.add(Info.Callee);
928   } else
929     return false;
930 
931   return true;
932 }
933 
934 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay(
935     CallLoweringInfo &Info, MachineFunction &MF,
936     SmallVectorImpl<ArgInfo> &InArgs) const {
937   const Function &CallerF = MF.getFunction();
938   CallingConv::ID CalleeCC = Info.CallConv;
939   CallingConv::ID CallerCC = CallerF.getCallingConv();
940 
941   // If the calling conventions match, then everything must be the same.
942   if (CalleeCC == CallerCC)
943     return true;
944 
945   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
946 
947   // Make sure that the caller and callee preserve all of the same registers.
948   auto TRI = ST.getRegisterInfo();
949 
950   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
951   const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
952   if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
953     return false;
954 
955   // Check if the caller and callee will handle arguments in the same way.
956   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
957   CCAssignFn *CalleeAssignFnFixed;
958   CCAssignFn *CalleeAssignFnVarArg;
959   std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
960       getAssignFnsForCC(CalleeCC, TLI);
961 
962   CCAssignFn *CallerAssignFnFixed;
963   CCAssignFn *CallerAssignFnVarArg;
964   std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
965       getAssignFnsForCC(CallerCC, TLI);
966 
967   // FIXME: We are not accounting for potential differences in implicitly passed
968   // inputs, but only the fixed ABI is supported now anyway.
969   IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
970                                        CalleeAssignFnVarArg);
971   IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
972                                        CallerAssignFnVarArg);
973   return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner);
974 }
975 
976 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable(
977     CallLoweringInfo &Info, MachineFunction &MF,
978     SmallVectorImpl<ArgInfo> &OutArgs) const {
979   // If there are no outgoing arguments, then we are done.
980   if (OutArgs.empty())
981     return true;
982 
983   const Function &CallerF = MF.getFunction();
984   CallingConv::ID CalleeCC = Info.CallConv;
985   CallingConv::ID CallerCC = CallerF.getCallingConv();
986   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
987 
988   CCAssignFn *AssignFnFixed;
989   CCAssignFn *AssignFnVarArg;
990   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
991 
992   // We have outgoing arguments. Make sure that we can tail call with them.
993   SmallVector<CCValAssign, 16> OutLocs;
994   CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
995   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
996 
997   if (!determineAssignments(Assigner, OutArgs, OutInfo)) {
998     LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
999     return false;
1000   }
1001 
1002   // Make sure that they can fit on the caller's stack.
1003   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1004   if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
1005     LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
1006     return false;
1007   }
1008 
1009   // Verify that the parameters in callee-saved registers match.
1010   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1011   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1012   const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
1013   MachineRegisterInfo &MRI = MF.getRegInfo();
1014   return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
1015 }
1016 
1017 /// Return true if the calling convention is one that we can guarantee TCO for.
1018 static bool canGuaranteeTCO(CallingConv::ID CC) {
1019   return CC == CallingConv::Fast;
1020 }
1021 
1022 /// Return true if we might ever do TCO for calls with this calling convention.
1023 static bool mayTailCallThisCC(CallingConv::ID CC) {
1024   switch (CC) {
1025   case CallingConv::C:
1026   case CallingConv::AMDGPU_Gfx:
1027     return true;
1028   default:
1029     return canGuaranteeTCO(CC);
1030   }
1031 }
1032 
1033 bool AMDGPUCallLowering::isEligibleForTailCallOptimization(
1034     MachineIRBuilder &B, CallLoweringInfo &Info,
1035     SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const {
1036   // Must pass all target-independent checks in order to tail call optimize.
1037   if (!Info.IsTailCall)
1038     return false;
1039 
1040   // Indirect calls can't be tail calls, because the address can be divergent.
1041   // TODO Check divergence info if the call really is divergent.
1042   if (Info.Callee.isReg())
1043     return false;
1044 
1045   MachineFunction &MF = B.getMF();
1046   const Function &CallerF = MF.getFunction();
1047   CallingConv::ID CalleeCC = Info.CallConv;
1048   CallingConv::ID CallerCC = CallerF.getCallingConv();
1049 
1050   const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
1051   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1052   // Kernels aren't callable, and don't have a live in return address so it
1053   // doesn't make sense to do a tail call with entry functions.
1054   if (!CallerPreserved)
1055     return false;
1056 
1057   if (!mayTailCallThisCC(CalleeCC)) {
1058     LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
1059     return false;
1060   }
1061 
1062   if (any_of(CallerF.args(), [](const Argument &A) {
1063         return A.hasByValAttr() || A.hasSwiftErrorAttr();
1064       })) {
1065     LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval "
1066                          "or swifterror arguments\n");
1067     return false;
1068   }
1069 
1070   // If we have -tailcallopt, then we're done.
1071   if (MF.getTarget().Options.GuaranteedTailCallOpt)
1072     return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
1073 
1074   // Verify that the incoming and outgoing arguments from the callee are
1075   // safe to tail call.
1076   if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
1077     LLVM_DEBUG(
1078         dbgs()
1079         << "... Caller and callee have incompatible calling conventions.\n");
1080     return false;
1081   }
1082 
1083   if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
1084     return false;
1085 
1086   LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n");
1087   return true;
1088 }
1089 
1090 // Insert outgoing implicit arguments for a call, by inserting copies to the
1091 // implicit argument registers and adding the necessary implicit uses to the
1092 // call instruction.
1093 void AMDGPUCallLowering::handleImplicitCallArguments(
1094     MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst,
1095     const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo,
1096     ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const {
1097   if (!ST.enableFlatScratch()) {
1098     // Insert copies for the SRD. In the HSA case, this should be an identity
1099     // copy.
1100     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32),
1101                                                FuncInfo.getScratchRSrcReg());
1102     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1103     CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1104   }
1105 
1106   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1107     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1108     CallInst.addReg(ArgReg.first, RegState::Implicit);
1109   }
1110 }
1111 
1112 bool AMDGPUCallLowering::lowerTailCall(
1113     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
1114     SmallVectorImpl<ArgInfo> &OutArgs) const {
1115   MachineFunction &MF = MIRBuilder.getMF();
1116   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1117   SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1118   const Function &F = MF.getFunction();
1119   MachineRegisterInfo &MRI = MF.getRegInfo();
1120   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1121 
1122   // True when we're tail calling, but without -tailcallopt.
1123   bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
1124 
1125   // Find out which ABI gets to decide where things go.
1126   CallingConv::ID CalleeCC = Info.CallConv;
1127   CCAssignFn *AssignFnFixed;
1128   CCAssignFn *AssignFnVarArg;
1129   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1130 
1131   MachineInstrBuilder CallSeqStart;
1132   if (!IsSibCall)
1133     CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP);
1134 
1135   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
1136   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1137   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1138     return false;
1139 
1140   // Byte offset for the tail call. When we are sibcalling, this will always
1141   // be 0.
1142   MIB.addImm(0);
1143 
1144   // Tell the call which registers are clobbered.
1145   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1146   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
1147   MIB.addRegMask(Mask);
1148 
1149   // FPDiff is the byte offset of the call's argument area from the callee's.
1150   // Stores to callee stack arguments will be placed in FixedStackSlots offset
1151   // by this amount for a tail call. In a sibling call it must be 0 because the
1152   // caller will deallocate the entire stack and the callee still expects its
1153   // arguments to begin at SP+0.
1154   int FPDiff = 0;
1155 
1156   // This will be 0 for sibcalls, potentially nonzero for tail calls produced
1157   // by -tailcallopt. For sibcalls, the memory operands for the call are
1158   // already available in the caller's incoming argument space.
1159   unsigned NumBytes = 0;
1160   if (!IsSibCall) {
1161     // We aren't sibcalling, so we need to compute FPDiff. We need to do this
1162     // before handling assignments, because FPDiff must be known for memory
1163     // arguments.
1164     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1165     SmallVector<CCValAssign, 16> OutLocs;
1166     CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
1167 
1168     // FIXME: Not accounting for callee implicit inputs
1169     OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg);
1170     if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
1171       return false;
1172 
1173     // The callee will pop the argument stack as a tail call. Thus, we must
1174     // keep it 16-byte aligned.
1175     NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment());
1176 
1177     // FPDiff will be negative if this tail call requires more space than we
1178     // would automatically have in our incoming argument space. Positive if we
1179     // actually shrink the stack.
1180     FPDiff = NumReusableBytes - NumBytes;
1181 
1182     // The stack pointer must be 16-byte aligned at all times it's used for a
1183     // memory operation, which in practice means at *all* times and in
1184     // particular across call boundaries. Therefore our own arguments started at
1185     // a 16-byte aligned SP and the delta applied for the tail call should
1186     // satisfy the same constraint.
1187     assert(isAligned(ST.getStackAlignment(), FPDiff) &&
1188            "unaligned stack on tail call");
1189   }
1190 
1191   SmallVector<CCValAssign, 16> ArgLocs;
1192   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1193 
1194   // We could pass MIB and directly add the implicit uses to the call
1195   // now. However, as an aesthetic choice, place implicit argument operands
1196   // after the ordinary user argument registers.
1197   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1198 
1199   if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
1200     // With a fixed ABI, allocate fixed registers before user arguments.
1201     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1202       return false;
1203   }
1204 
1205   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1206 
1207   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1208     return false;
1209 
1210   // Do the actual argument marshalling.
1211   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff);
1212   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1213     return false;
1214 
1215   handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs);
1216 
1217   // If we have -tailcallopt, we need to adjust the stack. We'll do the call
1218   // sequence start and end here.
1219   if (!IsSibCall) {
1220     MIB->getOperand(1).setImm(FPDiff);
1221     CallSeqStart.addImm(NumBytes).addImm(0);
1222     // End the call sequence *before* emitting the call. Normally, we would
1223     // tidy the frame up after the call. However, here, we've laid out the
1224     // parameters so that when SP is reset, they will be in the correct
1225     // location.
1226     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0);
1227   }
1228 
1229   // Now we can add the actual call instruction to the correct basic block.
1230   MIRBuilder.insertInstr(MIB);
1231 
1232   // If Callee is a reg, since it is used by a target specific
1233   // instruction, it must have a register class matching the
1234   // constraint of that instruction.
1235 
1236   // FIXME: We should define regbankselectable call instructions to handle
1237   // divergent call targets.
1238   if (MIB->getOperand(0).isReg()) {
1239     MIB->getOperand(0).setReg(constrainOperandRegClass(
1240         MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
1241         MIB->getDesc(), MIB->getOperand(0), 0));
1242   }
1243 
1244   MF.getFrameInfo().setHasTailCall();
1245   Info.LoweredTailCall = true;
1246   return true;
1247 }
1248 
1249 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1250                                    CallLoweringInfo &Info) const {
1251   if (Info.IsVarArg) {
1252     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1253     return false;
1254   }
1255 
1256   MachineFunction &MF = MIRBuilder.getMF();
1257   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1258   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1259 
1260   const Function &F = MF.getFunction();
1261   MachineRegisterInfo &MRI = MF.getRegInfo();
1262   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1263   const DataLayout &DL = F.getParent()->getDataLayout();
1264 
1265   SmallVector<ArgInfo, 8> OutArgs;
1266   for (auto &OrigArg : Info.OrigArgs)
1267     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
1268 
1269   SmallVector<ArgInfo, 8> InArgs;
1270   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
1271     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1272 
1273   // If we can lower as a tail call, do that instead.
1274   bool CanTailCallOpt =
1275       isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
1276 
1277   // We must emit a tail call if we have musttail.
1278   if (Info.IsMustTailCall && !CanTailCallOpt) {
1279     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1280     return false;
1281   }
1282 
1283   if (CanTailCallOpt)
1284     return lowerTailCall(MIRBuilder, Info, OutArgs);
1285 
1286   // Find out which ABI gets to decide where things go.
1287   CCAssignFn *AssignFnFixed;
1288   CCAssignFn *AssignFnVarArg;
1289   std::tie(AssignFnFixed, AssignFnVarArg) =
1290       getAssignFnsForCC(Info.CallConv, TLI);
1291 
1292   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1293     .addImm(0)
1294     .addImm(0);
1295 
1296   // Create a temporarily-floating call instruction so we can add the implicit
1297   // uses of arg registers.
1298   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
1299 
1300   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1301   MIB.addDef(TRI->getReturnAddressReg(MF));
1302 
1303   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1304     return false;
1305 
1306   // Tell the call which registers are clobbered.
1307   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1308   MIB.addRegMask(Mask);
1309 
1310   SmallVector<CCValAssign, 16> ArgLocs;
1311   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1312 
1313   // We could pass MIB and directly add the implicit uses to the call
1314   // now. However, as an aesthetic choice, place implicit argument operands
1315   // after the ordinary user argument registers.
1316   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1317 
1318   if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
1319     // With a fixed ABI, allocate fixed registers before user arguments.
1320     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1321       return false;
1322   }
1323 
1324   // Do the actual argument marshalling.
1325   SmallVector<Register, 8> PhysRegs;
1326 
1327   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1328   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1329     return false;
1330 
1331   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false);
1332   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1333     return false;
1334 
1335   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1336 
1337   handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs);
1338 
1339   // Get a count of how many bytes are to be pushed on the stack.
1340   unsigned NumBytes = CCInfo.getNextStackOffset();
1341 
1342   // If Callee is a reg, since it is used by a target specific
1343   // instruction, it must have a register class matching the
1344   // constraint of that instruction.
1345 
1346   // FIXME: We should define regbankselectable call instructions to handle
1347   // divergent call targets.
1348   if (MIB->getOperand(1).isReg()) {
1349     MIB->getOperand(1).setReg(constrainOperandRegClass(
1350         MF, *TRI, MRI, *ST.getInstrInfo(),
1351         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1352         1));
1353   }
1354 
1355   // Now we can add the actual call instruction to the correct position.
1356   MIRBuilder.insertInstr(MIB);
1357 
1358   // Finally we can copy the returned value back into its virtual-register. In
1359   // symmetry with the arguments, the physical register must be an
1360   // implicit-define of the call instruction.
1361   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1362     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1363                                                       Info.IsVarArg);
1364     IncomingValueAssigner Assigner(RetAssignFn);
1365     CallReturnHandler Handler(MIRBuilder, MRI, MIB);
1366     if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder,
1367                                        Info.CallConv, Info.IsVarArg))
1368       return false;
1369   }
1370 
1371   uint64_t CalleePopBytes = NumBytes;
1372 
1373   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
1374             .addImm(0)
1375             .addImm(CalleePopBytes);
1376 
1377   if (!Info.CanLowerReturn) {
1378     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1379                     Info.DemoteRegister, Info.DemoteStackIndex);
1380   }
1381 
1382   return true;
1383 }
1384